1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 // Memory allocator, based on tcmalloc.
6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
7 
8 // The main allocator works in runs of pages.
9 // Small allocation sizes (up to and including 32 kB) are
10 // rounded to one of about 100 size classes, each of which
11 // has its own free list of objects of exactly that size.
12 // Any free page of memory can be split into a set of objects
13 // of one size class, which are then managed using free list
14 // allocators.
15 //
16 // The allocator's data structures are:
17 //
18 //	FixAlloc: a free-list allocator for fixed-size objects,
19 //		used to manage storage used by the allocator.
20 //	MHeap: the malloc heap, managed at page (4096-byte) granularity.
21 //	MSpan: a run of pages managed by the MHeap.
22 //	MCentral: a shared free list for a given size class.
23 //	MCache: a per-thread (in Go, per-P) cache for small objects.
24 //	MStats: allocation statistics.
25 //
26 // Allocating a small object proceeds up a hierarchy of caches:
27 //
28 //	1. Round the size up to one of the small size classes
29 //	   and look in the corresponding MCache free list.
30 //	   If the list is not empty, allocate an object from it.
31 //	   This can all be done without acquiring a lock.
32 //
33 //	2. If the MCache free list is empty, replenish it by
34 //	   taking a bunch of objects from the MCentral free list.
35 //	   Moving a bunch amortizes the cost of acquiring the MCentral lock.
36 //
37 //	3. If the MCentral free list is empty, replenish it by
38 //	   allocating a run of pages from the MHeap and then
39 //	   chopping that memory into a objects of the given size.
40 //	   Allocating many objects amortizes the cost of locking
41 //	   the heap.
42 //
43 //	4. If the MHeap is empty or has no page runs large enough,
44 //	   allocate a new group of pages (at least 1MB) from the
45 //	   operating system.  Allocating a large run of pages
46 //	   amortizes the cost of talking to the operating system.
47 //
48 // Freeing a small object proceeds up the same hierarchy:
49 //
50 //	1. Look up the size class for the object and add it to
51 //	   the MCache free list.
52 //
53 //	2. If the MCache free list is too long or the MCache has
54 //	   too much memory, return some to the MCentral free lists.
55 //
56 //	3. If all the objects in a given span have returned to
57 //	   the MCentral list, return that span to the page heap.
58 //
59 //	4. If the heap has too much memory, return some to the
60 //	   operating system.
61 //
62 //	TODO(rsc): Step 4 is not implemented.
63 //
64 // Allocating and freeing a large object uses the page heap
65 // directly, bypassing the MCache and MCentral free lists.
66 //
67 // The small objects on the MCache and MCentral free lists
68 // may or may not be zeroed.  They are zeroed if and only if
69 // the second word of the object is zero.  A span in the
70 // page heap is zeroed unless s->needzero is set. When a span
71 // is allocated to break into small objects, it is zeroed if needed
72 // and s->needzero is set. There are two main benefits to delaying the
73 // zeroing this way:
74 //
75 //	1. stack frames allocated from the small object lists
76 //	   or the page heap can avoid zeroing altogether.
77 //	2. the cost of zeroing when reusing a small object is
78 //	   charged to the mutator, not the garbage collector.
79 //
80 // This C code was written with an eye toward translating to Go
81 // in the future.  Methods have the form Type_Method(Type *t, ...).
82 
83 typedef struct MCentral	MCentral;
84 typedef struct MHeap	MHeap;
85 typedef struct MSpan	MSpan;
86 typedef struct MStats	MStats;
87 typedef struct MLink	MLink;
88 typedef struct MTypes	MTypes;
89 typedef struct GCStats	GCStats;
90 
91 enum
92 {
93 	PageShift	= 13,
94 	PageSize	= 1<<PageShift,
95 	PageMask	= PageSize - 1,
96 };
97 typedef	uintptr	PageID;		// address >> PageShift
98 
99 enum
100 {
101 	// Computed constant.  The definition of MaxSmallSize and the
102 	// algorithm in msize.c produce some number of different allocation
103 	// size classes.  NumSizeClasses is that number.  It's needed here
104 	// because there are static arrays of this length; when msize runs its
105 	// size choosing algorithm it double-checks that NumSizeClasses agrees.
106 	NumSizeClasses = 67,
107 
108 	// Tunable constants.
109 	MaxSmallSize = 32<<10,
110 
111 	// Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
112 	TinySize = 16,
113 	TinySizeClass = 2,
114 
115 	FixAllocChunk = 16<<10,		// Chunk size for FixAlloc
116 	MaxMHeapList = 1<<(20 - PageShift),	// Maximum page length for fixed-size list in MHeap.
117 	HeapAllocChunk = 1<<20,		// Chunk size for heap growth
118 
119 	// Number of bits in page to span calculations (4k pages).
120 	// On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
121 	// On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
122 	// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
123 #if __SIZEOF_POINTER__ == 8
124 #ifdef GOOS_windows
125 	// Windows counts memory used by page table into committed memory
126 	// of the process, so we can't reserve too much memory.
127 	// See http://golang.org/issue/5402 and http://golang.org/issue/5236.
128 	MHeapMap_Bits = 35 - PageShift,
129 #else
130 	MHeapMap_Bits = 37 - PageShift,
131 #endif
132 #else
133 	MHeapMap_Bits = 32 - PageShift,
134 #endif
135 
136 	// Max number of threads to run garbage collection.
137 	// 2, 3, and 4 are all plausible maximums depending
138 	// on the hardware details of the machine.  The garbage
139 	// collector scales well to 8 cpus.
140 	MaxGcproc = 8,
141 };
142 
143 // Maximum memory allocation size, a hint for callers.
144 // This must be a #define instead of an enum because it
145 // is so large.
146 #if __SIZEOF_POINTER__ == 8
147 #define	MaxMem	(1ULL<<(MHeapMap_Bits+PageShift))	/* 128 GB or 32 GB */
148 #else
149 #define	MaxMem	((uintptr)-1)
150 #endif
151 
152 // A generic linked list of blocks.  (Typically the block is bigger than sizeof(MLink).)
153 struct MLink
154 {
155 	MLink *next;
156 };
157 
158 // SysAlloc obtains a large chunk of zeroed memory from the
159 // operating system, typically on the order of a hundred kilobytes
160 // or a megabyte.
161 // NOTE: SysAlloc returns OS-aligned memory, but the heap allocator
162 // may use larger alignment, so the caller must be careful to realign the
163 // memory obtained by SysAlloc.
164 //
165 // SysUnused notifies the operating system that the contents
166 // of the memory region are no longer needed and can be reused
167 // for other purposes.
168 // SysUsed notifies the operating system that the contents
169 // of the memory region are needed again.
170 //
171 // SysFree returns it unconditionally; this is only used if
172 // an out-of-memory error has been detected midway through
173 // an allocation.  It is okay if SysFree is a no-op.
174 //
175 // SysReserve reserves address space without allocating memory.
176 // If the pointer passed to it is non-nil, the caller wants the
177 // reservation there, but SysReserve can still choose another
178 // location if that one is unavailable.  On some systems and in some
179 // cases SysReserve will simply check that the address space is
180 // available and not actually reserve it.  If SysReserve returns
181 // non-nil, it sets *reserved to true if the address space is
182 // reserved, false if it has merely been checked.
183 // NOTE: SysReserve returns OS-aligned memory, but the heap allocator
184 // may use larger alignment, so the caller must be careful to realign the
185 // memory obtained by SysAlloc.
186 //
187 // SysMap maps previously reserved address space for use.
188 // The reserved argument is true if the address space was really
189 // reserved, not merely checked.
190 //
191 // SysFault marks a (already SysAlloc'd) region to fault
192 // if accessed.  Used only for debugging the runtime.
193 
194 void*	runtime_SysAlloc(uintptr nbytes, uint64 *stat);
195 void	runtime_SysFree(void *v, uintptr nbytes, uint64 *stat);
196 void	runtime_SysUnused(void *v, uintptr nbytes);
197 void	runtime_SysUsed(void *v, uintptr nbytes);
198 void	runtime_SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat);
199 void*	runtime_SysReserve(void *v, uintptr nbytes, bool *reserved);
200 void	runtime_SysFault(void *v, uintptr nbytes);
201 
202 // FixAlloc is a simple free-list allocator for fixed size objects.
203 // Malloc uses a FixAlloc wrapped around SysAlloc to manages its
204 // MCache and MSpan objects.
205 //
206 // Memory returned by FixAlloc_Alloc is not zeroed.
207 // The caller is responsible for locking around FixAlloc calls.
208 // Callers can keep state in the object but the first word is
209 // smashed by freeing and reallocating.
210 struct FixAlloc
211 {
212 	uintptr	size;
213 	void	(*first)(void *arg, byte *p);	// called first time p is returned
214 	void*	arg;
215 	MLink*	list;
216 	byte*	chunk;
217 	uint32	nchunk;
218 	uintptr	inuse;	// in-use bytes now
219 	uint64*	stat;
220 };
221 
222 void	runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
223 void*	runtime_FixAlloc_Alloc(FixAlloc *f);
224 void	runtime_FixAlloc_Free(FixAlloc *f, void *p);
225 
226 
227 // Statistics.
228 // Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
229 struct MStats
230 {
231 	// General statistics.
232 	uint64	alloc;		// bytes allocated and still in use
233 	uint64	total_alloc;	// bytes allocated (even if freed)
234 	uint64	sys;		// bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
235 	uint64	nlookup;	// number of pointer lookups
236 	uint64	nmalloc;	// number of mallocs
237 	uint64	nfree;  // number of frees
238 
239 	// Statistics about malloc heap.
240 	// protected by mheap.Lock
241 	uint64	heap_alloc;	// bytes allocated and still in use
242 	uint64	heap_sys;	// bytes obtained from system
243 	uint64	heap_idle;	// bytes in idle spans
244 	uint64	heap_inuse;	// bytes in non-idle spans
245 	uint64	heap_released;	// bytes released to the OS
246 	uint64	heap_objects;	// total number of allocated objects
247 
248 	// Statistics about allocation of low-level fixed-size structures.
249 	// Protected by FixAlloc locks.
250 	uint64	stacks_inuse;	// bootstrap stacks
251 	uint64	stacks_sys;
252 	uint64	mspan_inuse;	// MSpan structures
253 	uint64	mspan_sys;
254 	uint64	mcache_inuse;	// MCache structures
255 	uint64	mcache_sys;
256 	uint64	buckhash_sys;	// profiling bucket hash table
257 	uint64	gc_sys;
258 	uint64	other_sys;
259 
260 	// Statistics about garbage collector.
261 	// Protected by mheap or stopping the world during GC.
262 	uint64	next_gc;	// next GC (in heap_alloc time)
263 	uint64  last_gc;	// last GC (in absolute time)
264 	uint64	pause_total_ns;
265 	uint64	pause_ns[256];
266 	uint64	pause_end[256];
267 	uint32	numgc;
268 	float64	gc_cpu_fraction;
269 	bool	enablegc;
270 	bool	debuggc;
271 
272 	// Statistics about allocation size classes.
273 	struct {
274 		uint32 size;
275 		uint64 nmalloc;
276 		uint64 nfree;
277 	} by_size[NumSizeClasses];
278 };
279 
280 extern MStats mstats
281   __asm__ (GOSYM_PREFIX "runtime.memStats");
282 void	runtime_updatememstats(GCStats *stats);
283 
284 // Size classes.  Computed and initialized by InitSizes.
285 //
286 // SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
287 //	1 <= sizeclass < NumSizeClasses, for n.
288 //	Size class 0 is reserved to mean "not small".
289 //
290 // class_to_size[i] = largest size in class i
291 // class_to_allocnpages[i] = number of pages to allocate when
292 //	making new objects in class i
293 
294 int32	runtime_SizeToClass(int32);
295 uintptr	runtime_roundupsize(uintptr);
296 extern	int32	runtime_class_to_size[NumSizeClasses];
297 extern	int32	runtime_class_to_allocnpages[NumSizeClasses];
298 extern	int8	runtime_size_to_class8[1024/8 + 1];
299 extern	int8	runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1];
300 extern	void	runtime_InitSizes(void);
301 
302 
303 typedef struct MCacheList MCacheList;
304 struct MCacheList
305 {
306 	MLink *list;
307 	uint32 nlist;
308 };
309 
310 // Per-thread (in Go, per-P) cache for small objects.
311 // No locking needed because it is per-thread (per-P).
312 struct MCache
313 {
314 	// The following members are accessed on every malloc,
315 	// so they are grouped here for better caching.
316 	int32 next_sample;		// trigger heap sample after allocating this many bytes
317 	intptr local_cachealloc;	// bytes allocated (or freed) from cache since last lock of heap
318 	// Allocator cache for tiny objects w/o pointers.
319 	// See "Tiny allocator" comment in malloc.goc.
320 	byte*	tiny;
321 	uintptr	tinysize;
322 	// The rest is not accessed on every malloc.
323 	MSpan*	alloc[NumSizeClasses];	// spans to allocate from
324 	MCacheList free[NumSizeClasses];// lists of explicitly freed objects
325 	// Local allocator stats, flushed during GC.
326 	uintptr local_nlookup;		// number of pointer lookups
327 	uintptr local_largefree;	// bytes freed for large objects (>MaxSmallSize)
328 	uintptr local_nlargefree;	// number of frees for large objects (>MaxSmallSize)
329 	uintptr local_nsmallfree[NumSizeClasses];	// number of frees for small objects (<=MaxSmallSize)
330 };
331 
332 MSpan*	runtime_MCache_Refill(MCache *c, int32 sizeclass);
333 void	runtime_MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size);
334 void	runtime_MCache_ReleaseAll(MCache *c);
335 
336 // MTypes describes the types of blocks allocated within a span.
337 // The compression field describes the layout of the data.
338 //
339 // MTypes_Empty:
340 //     All blocks are free, or no type information is available for
341 //     allocated blocks.
342 //     The data field has no meaning.
343 // MTypes_Single:
344 //     The span contains just one block.
345 //     The data field holds the type information.
346 //     The sysalloc field has no meaning.
347 // MTypes_Words:
348 //     The span contains multiple blocks.
349 //     The data field points to an array of type [NumBlocks]uintptr,
350 //     and each element of the array holds the type of the corresponding
351 //     block.
352 // MTypes_Bytes:
353 //     The span contains at most seven different types of blocks.
354 //     The data field points to the following structure:
355 //         struct {
356 //             type  [8]uintptr       // type[0] is always 0
357 //             index [NumBlocks]byte
358 //         }
359 //     The type of the i-th block is: data.type[data.index[i]]
360 enum
361 {
362 	MTypes_Empty = 0,
363 	MTypes_Single = 1,
364 	MTypes_Words = 2,
365 	MTypes_Bytes = 3,
366 };
367 struct MTypes
368 {
369 	byte	compression;	// one of MTypes_*
370 	uintptr	data;
371 };
372 
373 enum
374 {
375 	KindSpecialFinalizer = 1,
376 	KindSpecialProfile = 2,
377 	// Note: The finalizer special must be first because if we're freeing
378 	// an object, a finalizer special will cause the freeing operation
379 	// to abort, and we want to keep the other special records around
380 	// if that happens.
381 };
382 
383 typedef struct Special Special;
384 struct Special
385 {
386 	Special*	next;	// linked list in span
387 	uint16		offset;	// span offset of object
388 	byte		kind;	// kind of Special
389 };
390 
391 // The described object has a finalizer set for it.
392 typedef struct SpecialFinalizer SpecialFinalizer;
393 struct SpecialFinalizer
394 {
395 	Special;
396 	FuncVal*	fn;
397 	const FuncType*	ft;
398 	const PtrType*	ot;
399 };
400 
401 // The described object is being heap profiled.
402 typedef struct Bucket Bucket; // from mprof.goc
403 typedef struct SpecialProfile SpecialProfile;
404 struct SpecialProfile
405 {
406 	Special;
407 	Bucket*	b;
408 };
409 
410 // An MSpan is a run of pages.
411 enum
412 {
413 	MSpanInUse = 0,
414 	MSpanFree,
415 	MSpanListHead,
416 	MSpanDead,
417 };
418 struct MSpan
419 {
420 	MSpan	*next;		// in a span linked list
421 	MSpan	*prev;		// in a span linked list
422 	PageID	start;		// starting page number
423 	uintptr	npages;		// number of pages in span
424 	MLink	*freelist;	// list of free objects
425 	// sweep generation:
426 	// if sweepgen == h->sweepgen - 2, the span needs sweeping
427 	// if sweepgen == h->sweepgen - 1, the span is currently being swept
428 	// if sweepgen == h->sweepgen, the span is swept and ready to use
429 	// h->sweepgen is incremented by 2 after every GC
430 	uint32	sweepgen;
431 	uint16	ref;		// capacity - number of objects in freelist
432 	uint8	sizeclass;	// size class
433 	bool	incache;	// being used by an MCache
434 	uint8	state;		// MSpanInUse etc
435 	uint8	needzero;	// needs to be zeroed before allocation
436 	uintptr	elemsize;	// computed from sizeclass or from npages
437 	int64   unusedsince;	// First time spotted by GC in MSpanFree state
438 	uintptr npreleased;	// number of pages released to the OS
439 	byte	*limit;		// end of data in span
440 	MTypes	types;		// types of allocated objects in this span
441 	Lock	specialLock;	// guards specials list
442 	Special	*specials;	// linked list of special records sorted by offset.
443 	MLink	*freebuf;	// objects freed explicitly, not incorporated into freelist yet
444 };
445 
446 void	runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
447 void	runtime_MSpan_EnsureSwept(MSpan *span);
448 bool	runtime_MSpan_Sweep(MSpan *span);
449 
450 // Every MSpan is in one doubly-linked list,
451 // either one of the MHeap's free lists or one of the
452 // MCentral's span lists.  We use empty MSpan structures as list heads.
453 void	runtime_MSpanList_Init(MSpan *list);
454 bool	runtime_MSpanList_IsEmpty(MSpan *list);
455 void	runtime_MSpanList_Insert(MSpan *list, MSpan *span);
456 void	runtime_MSpanList_InsertBack(MSpan *list, MSpan *span);
457 void	runtime_MSpanList_Remove(MSpan *span);	// from whatever list it is in
458 
459 
460 // Central list of free objects of a given size.
461 struct MCentral
462 {
463 	Lock;
464 	int32 sizeclass;
465 	MSpan nonempty;	// list of spans with a free object
466 	MSpan empty;	// list of spans with no free objects (or cached in an MCache)
467 	int32 nfree;	// # of objects available in nonempty spans
468 };
469 
470 void	runtime_MCentral_Init(MCentral *c, int32 sizeclass);
471 MSpan*	runtime_MCentral_CacheSpan(MCentral *c);
472 void	runtime_MCentral_UncacheSpan(MCentral *c, MSpan *s);
473 bool	runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
474 void	runtime_MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this?
475 
476 // Main malloc heap.
477 // The heap itself is the "free[]" and "large" arrays,
478 // but all the other global data is here too.
479 struct MHeap
480 {
481 	Lock;
482 	MSpan free[MaxMHeapList];	// free lists of given length
483 	MSpan freelarge;		// free lists length >= MaxMHeapList
484 	MSpan busy[MaxMHeapList];	// busy lists of large objects of given length
485 	MSpan busylarge;		// busy lists of large objects length >= MaxMHeapList
486 	MSpan **allspans;		// all spans out there
487 	MSpan **sweepspans;		// copy of allspans referenced by sweeper
488 	uint32	nspan;
489 	uint32	nspancap;
490 	uint32	sweepgen;		// sweep generation, see comment in MSpan
491 	uint32	sweepdone;		// all spans are swept
492 
493 	// span lookup
494 	MSpan**	spans;
495 	uintptr	spans_mapped;
496 
497 	// range of addresses we might see in the heap
498 	byte *bitmap;
499 	uintptr bitmap_mapped;
500 	byte *arena_start;
501 	byte *arena_used;
502 	byte *arena_end;
503 	bool arena_reserved;
504 
505 	// central free lists for small size classes.
506 	// the padding makes sure that the MCentrals are
507 	// spaced CacheLineSize bytes apart, so that each MCentral.Lock
508 	// gets its own cache line.
509 	struct {
510 		MCentral;
511 		byte pad[64];
512 	} central[NumSizeClasses];
513 
514 	FixAlloc spanalloc;	// allocator for Span*
515 	FixAlloc cachealloc;	// allocator for MCache*
516 	FixAlloc specialfinalizeralloc;	// allocator for SpecialFinalizer*
517 	FixAlloc specialprofilealloc;	// allocator for SpecialProfile*
518 	Lock speciallock; // lock for sepcial record allocators.
519 
520 	// Malloc stats.
521 	uint64 largefree;	// bytes freed for large objects (>MaxSmallSize)
522 	uint64 nlargefree;	// number of frees for large objects (>MaxSmallSize)
523 	uint64 nsmallfree[NumSizeClasses];	// number of frees for small objects (<=MaxSmallSize)
524 };
525 extern MHeap runtime_mheap;
526 
527 void	runtime_MHeap_Init(MHeap *h);
528 MSpan*	runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero);
529 void	runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
530 MSpan*	runtime_MHeap_Lookup(MHeap *h, void *v);
531 MSpan*	runtime_MHeap_LookupMaybe(MHeap *h, void *v);
532 void	runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
533 void*	runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
534 void	runtime_MHeap_MapBits(MHeap *h);
535 void	runtime_MHeap_MapSpans(MHeap *h);
536 void	runtime_MHeap_Scavenger(void*);
537 void	runtime_MHeap_SplitSpan(MHeap *h, MSpan *s);
538 
539 void*	runtime_mallocgc(uintptr size, uintptr typ, uint32 flag);
540 void*	runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat);
541 int32	runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
542 void	runtime_gc(int32 force);
543 uintptr	runtime_sweepone(void);
544 void	runtime_markscan(void *v);
545 void	runtime_marknogc(void *v);
546 void	runtime_checkallocated(void *v, uintptr n);
547 void	runtime_markfreed(void *v);
548 void	runtime_checkfreed(void *v, uintptr n);
549 extern	int32	runtime_checking;
550 void	runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
551 void	runtime_unmarkspan(void *v, uintptr size);
552 void	runtime_purgecachedstats(MCache*);
553 void*	runtime_cnew(const Type*);
554 void*	runtime_cnewarray(const Type*, intgo);
555 void	runtime_tracealloc(void*, uintptr, uintptr);
556 void	runtime_tracefree(void*, uintptr);
557 void	runtime_tracegc(void);
558 
559 uintptr	runtime_gettype(void*);
560 
561 enum
562 {
563 	// flags to malloc
564 	FlagNoScan	= 1<<0,	// GC doesn't have to scan object
565 	FlagNoProfiling	= 1<<1,	// must not profile
566 	FlagNoGC	= 1<<2,	// must not free or scan for pointers
567 	FlagNoZero	= 1<<3, // don't zero memory
568 	FlagNoInvokeGC	= 1<<4, // don't invoke GC
569 };
570 
571 typedef struct Obj Obj;
572 struct Obj
573 {
574 	byte	*p;	// data pointer
575 	uintptr	n;	// size of data in bytes
576 	uintptr	ti;	// type info
577 };
578 
579 void	runtime_MProf_Malloc(void*, uintptr);
580 void	runtime_MProf_Free(Bucket*, uintptr, bool);
581 void	runtime_MProf_GC(void);
582 void	runtime_iterate_memprof(void (*callback)(Bucket*, uintptr, Location*, uintptr, uintptr, uintptr));
583 int32	runtime_gcprocs(void);
584 void	runtime_helpgc(int32 nproc);
585 void	runtime_gchelper(void);
586 void	runtime_createfing(void);
587 G*	runtime_wakefing(void);
588 extern bool	runtime_fingwait;
589 extern bool	runtime_fingwake;
590 
591 void	runtime_setprofilebucket(void *p, Bucket *b);
592 
593 struct __go_func_type;
594 struct __go_ptr_type;
595 bool	runtime_addfinalizer(void *p, FuncVal *fn, const struct __go_func_type*, const struct __go_ptr_type*);
596 void	runtime_removefinalizer(void*);
597 void	runtime_queuefinalizer(void *p, FuncVal *fn, const struct __go_func_type *ft, const struct __go_ptr_type *ot);
598 
599 void	runtime_freeallspecials(MSpan *span, void *p, uintptr size);
600 bool	runtime_freespecial(Special *s, void *p, uintptr size, bool freed);
601 
602 enum
603 {
604 	TypeInfo_SingleObject = 0,
605 	TypeInfo_Array = 1,
606 	TypeInfo_Chan = 2,
607 
608 	// Enables type information at the end of blocks allocated from heap
609 	DebugTypeAtBlockEnd = 0,
610 };
611 
612 // Information from the compiler about the layout of stack frames.
613 typedef struct BitVector BitVector;
614 struct BitVector
615 {
616 	int32 n; // # of bits
617 	uint32 *data;
618 };
619 typedef struct StackMap StackMap;
620 struct StackMap
621 {
622 	int32 n; // number of bitmaps
623 	int32 nbit; // number of bits in each bitmap
624 	uint32 data[];
625 };
626 enum {
627 	// Pointer map
628 	BitsPerPointer = 2,
629 	BitsDead = 0,
630 	BitsScalar = 1,
631 	BitsPointer = 2,
632 	BitsMultiWord = 3,
633 	// BitsMultiWord will be set for the first word of a multi-word item.
634 	// When it is set, one of the following will be set for the second word.
635 	BitsString = 0,
636 	BitsSlice = 1,
637 	BitsIface = 2,
638 	BitsEface = 3,
639 };
640 // Returns pointer map data for the given stackmap index
641 // (the index is encoded in PCDATA_StackMapIndex).
642 BitVector	runtime_stackmapdata(StackMap *stackmap, int32 n);
643 
644 // defined in mgc0.go
645 void	runtime_gc_m_ptr(Eface*);
646 void	runtime_gc_g_ptr(Eface*);
647 void	runtime_gc_itab_ptr(Eface*);
648 
649 void	runtime_memorydump(void);
650 int32	runtime_setgcpercent(int32);
651 
652 // Value we use to mark dead pointers when GODEBUG=gcdead=1.
653 #define PoisonGC ((uintptr)0xf969696969696969ULL)
654 #define PoisonStack ((uintptr)0x6868686868686868ULL)
655 
656 struct Workbuf;
657 void	runtime_MProf_Mark(struct Workbuf**, void (*)(struct Workbuf**, Obj));
658 void	runtime_proc_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
659 void	runtime_time_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
660 void	runtime_netpoll_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
661