1 /* Graph representation and manipulation functions.
2    Copyright (C) 2007-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "bitmap.h"
24 #include "graphds.h"
25 
26 /* Dumps graph G into F.  */
27 
28 void
dump_graph(FILE * f,struct graph * g)29 dump_graph (FILE *f, struct graph *g)
30 {
31   int i;
32   struct graph_edge *e;
33 
34   for (i = 0; i < g->n_vertices; i++)
35     {
36       if (!g->vertices[i].pred
37 	  && !g->vertices[i].succ)
38 	continue;
39 
40       fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
41       for (e = g->vertices[i].pred; e; e = e->pred_next)
42 	fprintf (f, " %d", e->src);
43       fprintf (f, "\n");
44 
45       fprintf (f, "\t->");
46       for (e = g->vertices[i].succ; e; e = e->succ_next)
47 	fprintf (f, " %d", e->dest);
48       fprintf (f, "\n");
49     }
50 }
51 
52 /* Creates a new graph with N_VERTICES vertices.  */
53 
54 struct graph *
new_graph(int n_vertices)55 new_graph (int n_vertices)
56 {
57   struct graph *g = XNEW (struct graph);
58 
59   gcc_obstack_init (&g->ob);
60   g->n_vertices = n_vertices;
61   g->vertices = XOBNEWVEC (&g->ob, struct vertex, n_vertices);
62   memset (g->vertices, 0, sizeof (struct vertex) * n_vertices);
63 
64   return g;
65 }
66 
67 /* Adds an edge from F to T to graph G.  The new edge is returned.  */
68 
69 struct graph_edge *
add_edge(struct graph * g,int f,int t)70 add_edge (struct graph *g, int f, int t)
71 {
72   struct graph_edge *e = XOBNEW (&g->ob, struct graph_edge);
73   struct vertex *vf = &g->vertices[f], *vt = &g->vertices[t];
74 
75   e->src = f;
76   e->dest = t;
77 
78   e->pred_next = vt->pred;
79   vt->pred = e;
80 
81   e->succ_next = vf->succ;
82   vf->succ = e;
83 
84   e->data = NULL;
85   return e;
86 }
87 
88 /* Moves all the edges incident with U to V.  */
89 
90 void
identify_vertices(struct graph * g,int v,int u)91 identify_vertices (struct graph *g, int v, int u)
92 {
93   struct vertex *vv = &g->vertices[v];
94   struct vertex *uu = &g->vertices[u];
95   struct graph_edge *e, *next;
96 
97   for (e = uu->succ; e; e = next)
98     {
99       next = e->succ_next;
100 
101       e->src = v;
102       e->succ_next = vv->succ;
103       vv->succ = e;
104     }
105   uu->succ = NULL;
106 
107   for (e = uu->pred; e; e = next)
108     {
109       next = e->pred_next;
110 
111       e->dest = v;
112       e->pred_next = vv->pred;
113       vv->pred = e;
114     }
115   uu->pred = NULL;
116 }
117 
118 /* Helper function for graphds_dfs.  Returns the source vertex of E, in the
119    direction given by FORWARD.  */
120 
121 static inline int
dfs_edge_src(struct graph_edge * e,bool forward)122 dfs_edge_src (struct graph_edge *e, bool forward)
123 {
124   return forward ? e->src : e->dest;
125 }
126 
127 /* Helper function for graphds_dfs.  Returns the destination vertex of E, in
128    the direction given by FORWARD.  */
129 
130 static inline int
dfs_edge_dest(struct graph_edge * e,bool forward)131 dfs_edge_dest (struct graph_edge *e, bool forward)
132 {
133   return forward ? e->dest : e->src;
134 }
135 
136 /* Helper function for graphds_dfs.  Returns the first edge after E (including
137    E), in the graph direction given by FORWARD, that belongs to SUBGRAPH.  If
138    SKIP_EDGE_P is not NULL, it points to a callback function.  Edge E will be
139    skipped if callback function returns true.  */
140 
141 static inline struct graph_edge *
foll_in_subgraph(struct graph_edge * e,bool forward,bitmap subgraph,skip_edge_callback skip_edge_p)142 foll_in_subgraph (struct graph_edge *e, bool forward, bitmap subgraph,
143 		  skip_edge_callback skip_edge_p)
144 {
145   int d;
146 
147   if (!e)
148     return e;
149 
150   if (!subgraph && (!skip_edge_p || !skip_edge_p (e)))
151     return e;
152 
153   while (e)
154     {
155       d = dfs_edge_dest (e, forward);
156       /* Return edge if it belongs to subgraph and shouldn't be skipped.  */
157       if ((!subgraph || bitmap_bit_p (subgraph, d))
158 	  && (!skip_edge_p || !skip_edge_p (e)))
159 	return e;
160 
161       e = forward ? e->succ_next : e->pred_next;
162     }
163 
164   return e;
165 }
166 
167 /* Helper function for graphds_dfs.  Select the first edge from V in G, in the
168    direction given by FORWARD, that belongs to SUBGRAPH.  If SKIP_EDGE_P is not
169    NULL, it points to a callback function.  Edge E will be skipped if callback
170    function returns true.  */
171 
172 static inline struct graph_edge *
dfs_fst_edge(struct graph * g,int v,bool forward,bitmap subgraph,skip_edge_callback skip_edge_p)173 dfs_fst_edge (struct graph *g, int v, bool forward, bitmap subgraph,
174 	      skip_edge_callback skip_edge_p)
175 {
176   struct graph_edge *e;
177 
178   e = (forward ? g->vertices[v].succ : g->vertices[v].pred);
179   return foll_in_subgraph (e, forward, subgraph, skip_edge_p);
180 }
181 
182 /* Helper function for graphds_dfs.  Returns the next edge after E, in the
183    graph direction given by FORWARD, that belongs to SUBGRAPH.  If SKIP_EDGE_P
184    is not NULL, it points to a callback function.  Edge E will be skipped if
185    callback function returns true.  */
186 
187 static inline struct graph_edge *
dfs_next_edge(struct graph_edge * e,bool forward,bitmap subgraph,skip_edge_callback skip_edge_p)188 dfs_next_edge (struct graph_edge *e, bool forward, bitmap subgraph,
189 	       skip_edge_callback skip_edge_p)
190 {
191   return foll_in_subgraph (forward ? e->succ_next : e->pred_next,
192 			   forward, subgraph, skip_edge_p);
193 }
194 
195 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
196    The vertices in postorder are stored into QT.  If FORWARD is false,
197    backward dfs is run.  If SUBGRAPH is not NULL, it specifies the
198    subgraph of G to run DFS on.  Returns the number of the components
199    of the graph (number of the restarts of DFS).  If SKIP_EDGE_P is not
200    NULL, it points to a callback function.  Edge E will be skipped if
201    callback function returns true.  */
202 
203 int
graphds_dfs(struct graph * g,int * qs,int nq,vec<int> * qt,bool forward,bitmap subgraph,skip_edge_callback skip_edge_p)204 graphds_dfs (struct graph *g, int *qs, int nq, vec<int> *qt,
205 	     bool forward, bitmap subgraph,
206 	     skip_edge_callback skip_edge_p)
207 {
208   int i, tick = 0, v, comp = 0, top;
209   struct graph_edge *e;
210   struct graph_edge **stack = XNEWVEC (struct graph_edge *, g->n_vertices);
211   bitmap_iterator bi;
212   unsigned av;
213 
214   if (subgraph)
215     {
216       EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, av, bi)
217 	{
218 	  g->vertices[av].component = -1;
219 	  g->vertices[av].post = -1;
220 	}
221     }
222   else
223     {
224       for (i = 0; i < g->n_vertices; i++)
225 	{
226 	  g->vertices[i].component = -1;
227 	  g->vertices[i].post = -1;
228 	}
229     }
230 
231   for (i = 0; i < nq; i++)
232     {
233       v = qs[i];
234       if (g->vertices[v].post != -1)
235 	continue;
236 
237       g->vertices[v].component = comp++;
238       e = dfs_fst_edge (g, v, forward, subgraph, skip_edge_p);
239       top = 0;
240 
241       while (1)
242 	{
243 	  while (e)
244 	    {
245 	      if (g->vertices[dfs_edge_dest (e, forward)].component
246 		  == -1)
247 		break;
248 	      e = dfs_next_edge (e, forward, subgraph, skip_edge_p);
249 	    }
250 
251 	  if (!e)
252 	    {
253 	      if (qt)
254 		qt->safe_push (v);
255 	      g->vertices[v].post = tick++;
256 
257 	      if (!top)
258 		break;
259 
260 	      e = stack[--top];
261 	      v = dfs_edge_src (e, forward);
262 	      e = dfs_next_edge (e, forward, subgraph, skip_edge_p);
263 	      continue;
264 	    }
265 
266 	  stack[top++] = e;
267 	  v = dfs_edge_dest (e, forward);
268 	  e = dfs_fst_edge (g, v, forward, subgraph, skip_edge_p);
269 	  g->vertices[v].component = comp - 1;
270 	}
271     }
272 
273   free (stack);
274 
275   return comp;
276 }
277 
278 /* Determines the strongly connected components of G, using the algorithm of
279    Tarjan -- first determine the postorder dfs numbering in reversed graph,
280    then run the dfs on the original graph in the order given by decreasing
281    numbers assigned by the previous pass.  If SUBGRAPH is not NULL, it
282    specifies the subgraph of G whose strongly connected components we want
283    to determine.  If SKIP_EDGE_P is not NULL, it points to a callback function.
284    Edge E will be skipped if callback function returns true.
285 
286    After running this function, v->component is the number of the strongly
287    connected component for each vertex of G.  Returns the number of the
288    sccs of G.  */
289 
290 int
graphds_scc(struct graph * g,bitmap subgraph,skip_edge_callback skip_edge_p)291 graphds_scc (struct graph *g, bitmap subgraph,
292 	     skip_edge_callback skip_edge_p)
293 {
294   int *queue = XNEWVEC (int, g->n_vertices);
295   vec<int> postorder = vNULL;
296   int nq, i, comp;
297   unsigned v;
298   bitmap_iterator bi;
299 
300   if (subgraph)
301     {
302       nq = 0;
303       EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, v, bi)
304 	{
305 	  queue[nq++] = v;
306 	}
307     }
308   else
309     {
310       for (i = 0; i < g->n_vertices; i++)
311 	queue[i] = i;
312       nq = g->n_vertices;
313     }
314 
315   graphds_dfs (g, queue, nq, &postorder, false, subgraph, skip_edge_p);
316   gcc_assert (postorder.length () == (unsigned) nq);
317 
318   for (i = 0; i < nq; i++)
319     queue[i] = postorder[nq - i - 1];
320   comp = graphds_dfs (g, queue, nq, NULL, true, subgraph, skip_edge_p);
321 
322   free (queue);
323   postorder.release ();
324 
325   return comp;
326 }
327 
328 /* Runs CALLBACK for all edges in G.  DATA is private data for CALLBACK.  */
329 
330 void
for_each_edge(struct graph * g,graphds_edge_callback callback,void * data)331 for_each_edge (struct graph *g, graphds_edge_callback callback, void *data)
332 {
333   struct graph_edge *e;
334   int i;
335 
336   for (i = 0; i < g->n_vertices; i++)
337     for (e = g->vertices[i].succ; e; e = e->succ_next)
338       callback (g, e, data);
339 }
340 
341 /* Releases the memory occupied by G.  */
342 
343 void
free_graph(struct graph * g)344 free_graph (struct graph *g)
345 {
346   obstack_free (&g->ob, NULL);
347   free (g);
348 }
349 
350 /* Returns the nearest common ancestor of X and Y in tree whose parent
351    links are given by PARENT.  MARKS is the array used to mark the
352    vertices of the tree, and MARK is the number currently used as a mark.  */
353 
354 static int
tree_nca(int x,int y,int * parent,int * marks,int mark)355 tree_nca (int x, int y, int *parent, int *marks, int mark)
356 {
357   if (x == -1 || x == y)
358     return y;
359 
360   /* We climb with X and Y up the tree, marking the visited nodes.  When
361      we first arrive to a marked node, it is the common ancestor.  */
362   marks[x] = mark;
363   marks[y] = mark;
364 
365   while (1)
366     {
367       x = parent[x];
368       if (x == -1)
369 	break;
370       if (marks[x] == mark)
371 	return x;
372       marks[x] = mark;
373 
374       y = parent[y];
375       if (y == -1)
376 	break;
377       if (marks[y] == mark)
378 	return y;
379       marks[y] = mark;
380     }
381 
382   /* If we reached the root with one of the vertices, continue
383      with the other one till we reach the marked part of the
384      tree.  */
385   if (x == -1)
386     {
387       for (y = parent[y]; marks[y] != mark; y = parent[y])
388 	continue;
389 
390       return y;
391     }
392   else
393     {
394       for (x = parent[x]; marks[x] != mark; x = parent[x])
395 	continue;
396 
397       return x;
398     }
399 }
400 
401 /* Determines the dominance tree of G (stored in the PARENT, SON and BROTHER
402    arrays), where the entry node is ENTRY.  */
403 
404 void
graphds_domtree(struct graph * g,int entry,int * parent,int * son,int * brother)405 graphds_domtree (struct graph *g, int entry,
406 		 int *parent, int *son, int *brother)
407 {
408   vec<int> postorder = vNULL;
409   int *marks = XCNEWVEC (int, g->n_vertices);
410   int mark = 1, i, v, idom;
411   bool changed = true;
412   struct graph_edge *e;
413 
414   /* We use a slight modification of the standard iterative algorithm, as
415      described in
416 
417      K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
418 	Algorithm
419 
420      sort vertices in reverse postorder
421      foreach v
422        dom(v) = everything
423      dom(entry) = entry;
424 
425      while (anything changes)
426        foreach v
427          dom(v) = {v} union (intersection of dom(p) over all predecessors of v)
428 
429      The sets dom(v) are represented by the parent links in the current version
430      of the dominance tree.  */
431 
432   for (i = 0; i < g->n_vertices; i++)
433     {
434       parent[i] = -1;
435       son[i] = -1;
436       brother[i] = -1;
437     }
438   graphds_dfs (g, &entry, 1, &postorder, true, NULL);
439   gcc_assert (postorder.length () == (unsigned) g->n_vertices);
440   gcc_assert (postorder[g->n_vertices - 1] == entry);
441 
442   while (changed)
443     {
444       changed = false;
445 
446       for (i = g->n_vertices - 2; i >= 0; i--)
447 	{
448 	  v = postorder[i];
449 	  idom = -1;
450 	  for (e = g->vertices[v].pred; e; e = e->pred_next)
451 	    {
452 	      if (e->src != entry
453 		  && parent[e->src] == -1)
454 		continue;
455 
456 	      idom = tree_nca (idom, e->src, parent, marks, mark++);
457 	    }
458 
459 	  if (idom != parent[v])
460 	    {
461 	      parent[v] = idom;
462 	      changed = true;
463 	    }
464 	}
465     }
466 
467   free (marks);
468   postorder.release ();
469 
470   for (i = 0; i < g->n_vertices; i++)
471     if (parent[i] != -1)
472       {
473 	brother[i] = son[parent[i]];
474 	son[parent[i]] = i;
475       }
476 }
477