1 /* Single entry single exit control flow regions.
2    Copyright (C) 2008-2018 Free Software Foundation, Inc.
3    Contributed by Jan Sjodin <jan.sjodin@amd.com> and
4    Sebastian Pop <sebastian.pop@amd.com>.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #ifndef GCC_SESE_H
23 #define GCC_SESE_H
24 
25 typedef struct ifsese_s *ifsese;
26 
27 /* A Single Entry, Single Exit region is a part of the CFG delimited
28    by two edges.  */
29 struct sese_l
30 {
sese_lsese_l31   sese_l (edge e, edge x) : entry (e), exit (x) {}
32 
33   operator bool () const { return entry && exit; }
34 
35   edge entry;
36   edge exit;
37 };
38 
39 void print_edge (FILE *file, const_edge e);
40 void print_sese (FILE *file, const sese_l &s);
41 void dump_edge (const_edge e);
42 void dump_sese (const sese_l &);
43 
44 /* Get the entry of an sese S.  */
45 
46 static inline basic_block
get_entry_bb(sese_l & s)47 get_entry_bb (sese_l &s)
48 {
49   return s.entry->dest;
50 }
51 
52 /* Get the exit of an sese S.  */
53 
54 static inline basic_block
get_exit_bb(sese_l & s)55 get_exit_bb (sese_l &s)
56 {
57   return s.exit->src;
58 }
59 
60 /* Returns the index of V where ELEM can be found. -1 Otherwise.  */
61 template<typename T>
62 int
vec_find(const vec<T> & v,const T & elem)63 vec_find (const vec<T> &v, const T &elem)
64 {
65   int i;
66   T t;
67   FOR_EACH_VEC_ELT (v, i, t)
68     if (elem == t)
69       return i;
70   return -1;
71 }
72 
73 /* A helper structure for bookkeeping information about a scop in graphite.  */
74 typedef struct sese_info_t
75 {
76   /* The SESE region.  */
77   sese_l region;
78 
79   /* Liveout vars.  */
80   bitmap liveout;
81 
82   /* Liveout in debug stmts.  */
83   bitmap debug_liveout;
84 
85   /* Parameters used within the SCOP.  */
86   vec<tree> params;
87 
88   /* Maps an old name to a new decl.  */
89   hash_map<tree, tree> *rename_map;
90 
91   /* Basic blocks contained in this SESE.  */
92   vec<basic_block> bbs;
93 
94   /* The condition region generated for this sese.  */
95   ifsese if_region;
96 
97 } *sese_info_p;
98 
99 extern sese_info_p new_sese_info (edge, edge);
100 extern void free_sese_info (sese_info_p);
101 extern void sese_insert_phis_for_liveouts (sese_info_p, basic_block, edge, edge);
102 extern struct loop *outermost_loop_in_sese (sese_l &, basic_block);
103 extern tree scalar_evolution_in_region (const sese_l &, loop_p, tree);
104 extern bool scev_analyzable_p (tree, sese_l &);
105 extern bool invariant_in_sese_p_rec (tree, const sese_l &, bool *);
106 extern void sese_build_liveouts (sese_info_p);
107 extern bool sese_trivially_empty_bb_p (basic_block);
108 
109 /* The number of parameters in REGION. */
110 
111 static inline unsigned
sese_nb_params(sese_info_p region)112 sese_nb_params (sese_info_p region)
113 {
114   return region->params.length ();
115 }
116 
117 /* Checks whether BB is contained in the region delimited by ENTRY and
118    EXIT blocks.  */
119 
120 static inline bool
bb_in_region(const_basic_block bb,const_basic_block entry,const_basic_block exit)121 bb_in_region (const_basic_block bb, const_basic_block entry, const_basic_block exit)
122 {
123   return dominated_by_p (CDI_DOMINATORS, bb, entry)
124 	 && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
125 	      && !dominated_by_p (CDI_DOMINATORS, entry, exit));
126 }
127 
128 /* Checks whether BB is contained in the region delimited by ENTRY and
129    EXIT blocks.  */
130 
131 static inline bool
bb_in_sese_p(basic_block bb,const sese_l & r)132 bb_in_sese_p (basic_block bb, const sese_l &r)
133 {
134   return bb_in_region (bb, r.entry->dest, r.exit->dest);
135 }
136 
137 /* Returns true when STMT is defined in REGION.  */
138 
139 static inline bool
stmt_in_sese_p(gimple * stmt,const sese_l & r)140 stmt_in_sese_p (gimple *stmt, const sese_l &r)
141 {
142   basic_block bb = gimple_bb (stmt);
143   return bb && bb_in_sese_p (bb, r);
144 }
145 
146 /* Returns true when NAME is defined in REGION.  */
147 
148 static inline bool
defined_in_sese_p(tree name,const sese_l & r)149 defined_in_sese_p (tree name, const sese_l &r)
150 {
151   return stmt_in_sese_p (SSA_NAME_DEF_STMT (name), r);
152 }
153 
154 /* Returns true when LOOP is in REGION.  */
155 
156 static inline bool
loop_in_sese_p(struct loop * loop,const sese_l & region)157 loop_in_sese_p (struct loop *loop, const sese_l &region)
158 {
159   return (bb_in_sese_p (loop->header, region)
160 	  && bb_in_sese_p (loop->latch, region));
161 }
162 
163 /* Returns the loop depth of LOOP in REGION.  The loop depth
164    is the same as the normal loop depth, but limited by a region.
165 
166    Example:
167 
168    loop_0
169      loop_1
170        {
171          S0
172             <- region start
173          S1
174 
175          loop_2
176            S2
177 
178          S3
179             <- region end
180        }
181 
182     loop_0 does not exist in the region -> invalid
183     loop_1 exists, but is not completely contained in the region -> depth 0
184     loop_2 is completely contained -> depth 1  */
185 
186 static inline unsigned int
sese_loop_depth(const sese_l & region,loop_p loop)187 sese_loop_depth (const sese_l &region, loop_p loop)
188 {
189   unsigned int depth = 0;
190 
191   while (loop_in_sese_p (loop, region))
192     {
193       depth++;
194       loop = loop_outer (loop);
195     }
196 
197   return depth;
198 }
199 
200 /* A single entry single exit specialized for conditions.  */
201 
202 typedef struct ifsese_s {
203   sese_info_p region;
204   sese_info_p true_region;
205   sese_info_p false_region;
206 } *ifsese;
207 
208 extern ifsese move_sese_in_condition (sese_info_p);
209 extern void set_ifsese_condition (ifsese, tree);
210 extern edge get_true_edge_from_guard_bb (basic_block);
211 extern edge get_false_edge_from_guard_bb (basic_block);
212 
213 static inline edge
if_region_entry(ifsese if_region)214 if_region_entry (ifsese if_region)
215 {
216   return if_region->region->region.entry;
217 }
218 
219 static inline edge
if_region_exit(ifsese if_region)220 if_region_exit (ifsese if_region)
221 {
222   return if_region->region->region.exit;
223 }
224 
225 static inline basic_block
if_region_get_condition_block(ifsese if_region)226 if_region_get_condition_block (ifsese if_region)
227 {
228   return if_region_entry (if_region)->dest;
229 }
230 
231 typedef std::pair <gimple *, tree> scalar_use;
232 
233 typedef struct gimple_poly_bb
234 {
235   basic_block bb;
236   struct poly_bb *pbb;
237 
238   /* Lists containing the restrictions of the conditional statements
239      dominating this bb.  This bb can only be executed, if all conditions
240      are true.
241 
242      Example:
243 
244      for (i = 0; i <= 20; i++)
245      {
246        A
247 
248        if (2i <= 8)
249          B
250      }
251 
252      So for B there is an additional condition (2i <= 8).
253 
254      List of COND_EXPR and SWITCH_EXPR.  A COND_EXPR is true only if the
255      corresponding element in CONDITION_CASES is not NULL_TREE.  For a
256      SWITCH_EXPR the corresponding element in CONDITION_CASES is a
257      CASE_LABEL_EXPR.  */
258   vec<gimple *> conditions;
259   vec<gimple *> condition_cases;
260   vec<data_reference_p> data_refs;
261   vec<scalar_use> read_scalar_refs;
262   vec<tree> write_scalar_refs;
263 } *gimple_poly_bb_p;
264 
265 #define GBB_BB(GBB) (GBB)->bb
266 #define GBB_PBB(GBB) (GBB)->pbb
267 #define GBB_DATA_REFS(GBB) (GBB)->data_refs
268 #define GBB_CONDITIONS(GBB) (GBB)->conditions
269 #define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
270 
271 /* Return the innermost loop that contains the basic block GBB.  */
272 
273 static inline struct loop *
gbb_loop(gimple_poly_bb_p gbb)274 gbb_loop (gimple_poly_bb_p gbb)
275 {
276   return GBB_BB (gbb)->loop_father;
277 }
278 
279 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
280    If there is no corresponding gimple loop, we return NULL.  */
281 
282 static inline loop_p
gbb_loop_at_index(gimple_poly_bb_p gbb,sese_l & region,int index)283 gbb_loop_at_index (gimple_poly_bb_p gbb, sese_l &region, int index)
284 {
285   loop_p loop = gbb_loop (gbb);
286   int depth = sese_loop_depth (region, loop);
287 
288   while (--depth > index)
289     loop = loop_outer (loop);
290 
291   gcc_assert (loop_in_sese_p (loop, region));
292 
293   return loop;
294 }
295 
296 /* The number of common loops in REGION for GBB1 and GBB2.  */
297 
298 static inline int
nb_common_loops(sese_l & region,gimple_poly_bb_p gbb1,gimple_poly_bb_p gbb2)299 nb_common_loops (sese_l &region, gimple_poly_bb_p gbb1, gimple_poly_bb_p gbb2)
300 {
301   loop_p l1 = gbb_loop (gbb1);
302   loop_p l2 = gbb_loop (gbb2);
303   loop_p common = find_common_loop (l1, l2);
304 
305   return sese_loop_depth (region, common);
306 }
307 
308 #endif
309