1 /*
2    Copyright (C) 1995, 2004 Free Software Foundation
3 
4    The GNU C Library is free software; you can redistribute it and/or
5    modify it under the terms of the GNU Lesser General Public
6    License as published by the Free Software Foundation; either
7    version 2.1 of the License, or (at your option) any later version.
8 
9    The GNU C Library is distributed in the hope that it will be useful,
10    but WITHOUT ANY WARRANTY; without even the implied warranty of
11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12    Lesser General Public License for more details.
13 
14    You should have received a copy of the GNU Lesser General Public
15    License along with the GNU C Library; if not, write to the Free
16    Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
17    02110-1301 USA.  */
18 
19 /*
20    Copyright (C) 1983 Regents of the University of California.
21    All rights reserved.
22 
23    Redistribution and use in source and binary forms, with or without
24    modification, are permitted provided that the following conditions
25    are met:
26 
27    1. Redistributions of source code must retain the above copyright
28       notice, this list of conditions and the following disclaimer.
29    2. Redistributions in binary form must reproduce the above copyright
30       notice, this list of conditions and the following disclaimer in the
31       documentation and/or other materials provided with the distribution.
32    4. Neither the name of the University nor the names of its contributors
33       may be used to endorse or promote products derived from this software
34       without specific prior written permission.
35 
36    THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37    ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39    ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42    OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45    OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46    SUCH DAMAGE.*/
47 
48 /*
49  * This is derived from the Berkeley source:
50  *	@(#)random.c	5.5 (Berkeley) 7/6/88
51  * It was reworked for the GNU C Library by Roland McGrath.
52  * Rewritten to be reentrant by Ulrich Drepper, 1995
53  */
54 
55 #include <limits.h>
56 #include <stdlib.h>
57 #include "generate-random.h"
58 
59 
60 /* An improved random number generation package.  In addition to the standard
61    rand()/srand() like interface, this package also has a special state info
62    interface.  The initstate() routine is called with a seed, an array of
63    bytes, and a count of how many bytes are being passed in; this array is
64    then initialized to contain information for random number generation with
65    that much state information.  Good sizes for the amount of state
66    information are 32, 64, 128, and 256 bytes.  The state can be switched by
67    calling the setstate() function with the same array as was initialized
68    with initstate().  By default, the package runs with 128 bytes of state
69    information and generates far better random numbers than a linear
70    congruential generator.  If the amount of state information is less than
71    32 bytes, a simple linear congruential R.N.G. is used.  Internally, the
72    state information is treated as an array of longs; the zeroth element of
73    the array is the type of R.N.G. being used (small integer); the remainder
74    of the array is the state information for the R.N.G.  Thus, 32 bytes of
75    state information will give 7 longs worth of state information, which will
76    allow a degree seven polynomial.  (Note: The zeroth word of state
77    information also has some other information stored in it; see setstate
78    for details).  The random number generation technique is a linear feedback
79    shift register approach, employing trinomials (since there are fewer terms
80    to sum up that way).  In this approach, the least significant bit of all
81    the numbers in the state table will act as a linear feedback shift register,
82    and will have period 2^deg - 1 (where deg is the degree of the polynomial
83    being used, assuming that the polynomial is irreducible and primitive).
84    The higher order bits will have longer periods, since their values are
85    also influenced by pseudo-random carries out of the lower bits.  The
86    total period of the generator is approximately deg*(2**deg - 1); thus
87    doubling the amount of state information has a vast influence on the
88    period of the generator.  Note: The deg*(2**deg - 1) is an approximation
89    only good for large deg, when the period of the shift register is the
90    dominant factor.  With deg equal to seven, the period is actually much
91    longer than the 7*(2**7 - 1) predicted by this formula.  */
92 
93 
94 
95 /* For each of the currently supported random number generators, we have a
96    break value on the amount of state information (you need at least this many
97    bytes of state info to support this random number generator), a degree for
98    the polynomial (actually a trinomial) that the R.N.G. is based on, and
99    separation between the two lower order coefficients of the trinomial.  */
100 
101 /* Linear congruential.  */
102 #define	TYPE_0		0
103 #define	BREAK_0		8
104 #define	DEG_0		0
105 #define	SEP_0		0
106 
107 /* x**7 + x**3 + 1.  */
108 #define	TYPE_1		1
109 #define	BREAK_1		32
110 #define	DEG_1		7
111 #define	SEP_1		3
112 
113 /* x**15 + x + 1.  */
114 #define	TYPE_2		2
115 #define	BREAK_2		64
116 #define	DEG_2		15
117 #define	SEP_2		1
118 
119 /* x**31 + x**3 + 1.  */
120 #define	TYPE_3		3
121 #define	BREAK_3		128
122 #define	DEG_3		31
123 #define	SEP_3		3
124 
125 /* x**63 + x + 1.  */
126 #define	TYPE_4		4
127 #define	BREAK_4		256
128 #define	DEG_4		63
129 #define	SEP_4		1
130 
131 
132 /* Array versions of the above information to make code run faster.
133    Relies on fact that TYPE_i == i.  */
134 
135 #define	MAX_TYPES	5	/* Max number of types above.  */
136 
137 struct random_poly_info
138 {
139   int seps[MAX_TYPES];
140   int degrees[MAX_TYPES];
141 };
142 
143 static const struct random_poly_info random_poly_info =
144 {
145   { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 },
146   { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 }
147 };
148 
149 
150 
151 
152 /* Initialize the random number generator based on the given seed.  If the
153    type is the trivial no-state-information type, just remember the seed.
154    Otherwise, initializes state[] based on the given "seed" via a linear
155    congruential generator.  Then, the pointers are set to known locations
156    that are exactly rand_sep places apart.  Lastly, it cycles the state
157    information a given number of times to get rid of any initial dependencies
158    introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
159    for default usage relies on values produced by this routine.  */
160 int
generate_srandom_r(unsigned int seed,struct generate_random_data * buf)161 generate_srandom_r (unsigned int seed, struct generate_random_data *buf)
162 {
163   int type;
164   int *state;
165   long int i;
166   long int word;
167   int *dst;
168   int kc;
169 
170   if (buf == NULL)
171     goto fail;
172   type = buf->rand_type;
173   if ((unsigned int) type >= MAX_TYPES)
174     goto fail;
175 
176   state = buf->state;
177   /* We must make sure the seed is not 0.  Take arbitrarily 1 in this case.  */
178   if (seed == 0)
179     seed = 1;
180   state[0] = seed;
181   if (type == TYPE_0)
182     goto done;
183 
184   dst = state;
185   word = seed;
186   kc = buf->rand_deg;
187   for (i = 1; i < kc; ++i)
188     {
189       /* This does:
190 	   state[i] = (16807 * state[i - 1]) % 2147483647;
191 	 but avoids overflowing 31 bits.  */
192       long int hi = word / 127773;
193       long int lo = word % 127773;
194       word = 16807 * lo - 2836 * hi;
195       if (word < 0)
196 	word += 2147483647;
197       *++dst = word;
198     }
199 
200   buf->fptr = &state[buf->rand_sep];
201   buf->rptr = &state[0];
202   kc *= 10;
203   while (--kc >= 0)
204     {
205       int discard;
206       (void) generate_random_r (buf, &discard);
207     }
208 
209  done:
210   return 0;
211 
212  fail:
213   return -1;
214 }
215 
216 /* Initialize the state information in the given array of N bytes for
217    future random number generation.  Based on the number of bytes we
218    are given, and the break values for the different R.N.G.'s, we choose
219    the best (largest) one we can and set things up for it.  srandom is
220    then called to initialize the state information.  Note that on return
221    from srandom, we set state[-1] to be the type multiplexed with the current
222    value of the rear pointer; this is so successive calls to initstate won't
223    lose this information and will be able to restart with setstate.
224    Note: The first thing we do is save the current state, if any, just like
225    setstate so that it doesn't matter when initstate is called.
226    Returns a pointer to the old state.  */
227 int
generate_initstate_r(unsigned int seed,char * arg_state,size_t n,struct generate_random_data * buf)228 generate_initstate_r (unsigned int seed, char *arg_state, size_t n,
229 		      struct generate_random_data *buf)
230 {
231   int type;
232   int degree;
233   int separation;
234   int *state;
235 
236   if (buf == NULL)
237     goto fail;
238 
239   if (n >= BREAK_3)
240     type = n < BREAK_4 ? TYPE_3 : TYPE_4;
241   else if (n < BREAK_1)
242     {
243       if (n < BREAK_0)
244 	{
245 	  goto fail;
246 	}
247       type = TYPE_0;
248     }
249   else
250     type = n < BREAK_2 ? TYPE_1 : TYPE_2;
251 
252   degree = random_poly_info.degrees[type];
253   separation = random_poly_info.seps[type];
254 
255   buf->rand_type = type;
256   buf->rand_sep = separation;
257   buf->rand_deg = degree;
258   state = &((int *) arg_state)[1];	/* First location.  */
259   /* Must set END_PTR before srandom.  */
260   buf->end_ptr = &state[degree];
261 
262   buf->state = state;
263 
264   generate_srandom_r (seed, buf);
265 
266   state[-1] = TYPE_0;
267   if (type != TYPE_0)
268     state[-1] = (buf->rptr - state) * MAX_TYPES + type;
269 
270   return 0;
271 
272  fail:
273   return -1;
274 }
275 
276 /* Restore the state from the given state array.
277    Note: It is important that we also remember the locations of the pointers
278    in the current state information, and restore the locations of the pointers
279    from the old state information.  This is done by multiplexing the pointer
280    location into the zeroth word of the state information. Note that due
281    to the order in which things are done, it is OK to call setstate with the
282    same state as the current state
283    Returns a pointer to the old state information.  */
284 int
generate_setstate_r(char * arg_state,struct generate_random_data * buf)285 generate_setstate_r (char *arg_state, struct generate_random_data *buf)
286 {
287   int *new_state = 1 + (int *) arg_state;
288   int type;
289   int old_type;
290   int *old_state;
291   int degree;
292   int separation;
293 
294   if (arg_state == NULL || buf == NULL)
295     goto fail;
296 
297   old_type = buf->rand_type;
298   old_state = buf->state;
299   if (old_type == TYPE_0)
300     old_state[-1] = TYPE_0;
301   else
302     old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;
303 
304   type = new_state[-1] % MAX_TYPES;
305   if (type < TYPE_0 || type > TYPE_4)
306     goto fail;
307 
308   buf->rand_deg = degree = random_poly_info.degrees[type];
309   buf->rand_sep = separation = random_poly_info.seps[type];
310   buf->rand_type = type;
311 
312   if (type != TYPE_0)
313     {
314       int rear = new_state[-1] / MAX_TYPES;
315       buf->rptr = &new_state[rear];
316       buf->fptr = &new_state[(rear + separation) % degree];
317     }
318   buf->state = new_state;
319   /* Set end_ptr too.  */
320   buf->end_ptr = &new_state[degree];
321 
322   return 0;
323 
324  fail:
325   return -1;
326 }
327 
328 /* If we are using the trivial TYPE_0 R.N.G., just do the old linear
329    congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
330    same in all the other cases due to all the global variables that have been
331    set up.  The basic operation is to add the number at the rear pointer into
332    the one at the front pointer.  Then both pointers are advanced to the next
333    location cyclically in the table.  The value returned is the sum generated,
334    reduced to 31 bits by throwing away the "least random" low bit.
335    Note: The code takes advantage of the fact that both the front and
336    rear pointers can't wrap on the same call by not testing the rear
337    pointer if the front one has wrapped.  Returns a 31-bit random number.  */
338 
339 int
generate_random_r(struct generate_random_data * buf,int * result)340 generate_random_r (struct generate_random_data *buf, int *result)
341 {
342   int *state;
343 
344   if (buf == NULL || result == NULL)
345     goto fail;
346 
347   state = buf->state;
348 
349   if (buf->rand_type == TYPE_0)
350     {
351       int val = state[0];
352       val = ((state[0] * 1103515245) + 12345) & 0x7fffffff;
353       state[0] = val;
354       *result = val;
355     }
356   else
357     {
358       int *fptr = buf->fptr;
359       int *rptr = buf->rptr;
360       int *end_ptr = buf->end_ptr;
361       int val;
362 
363       val = *fptr += *rptr;
364       /* Chucking least random bit.  */
365       *result = (val >> 1) & 0x7fffffff;
366       ++fptr;
367       if (fptr >= end_ptr)
368 	{
369 	  fptr = state;
370 	  ++rptr;
371 	}
372       else
373 	{
374 	  ++rptr;
375 	  if (rptr >= end_ptr)
376 	    rptr = state;
377 	}
378       buf->fptr = fptr;
379       buf->rptr = rptr;
380     }
381   return 0;
382 
383  fail:
384   return -1;
385 }
386