1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file implements unsigned multi-precision integers (natural
6// numbers). They are the building blocks for the implementation
7// of signed integers, rationals, and floating-point numbers.
8
9package big
10
11import (
12	"math/bits"
13	"math/rand"
14	"sync"
15)
16
17// An unsigned integer x of the form
18//
19//   x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
20//
21// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
22// with the digits x[i] as the slice elements.
23//
24// A number is normalized if the slice contains no leading 0 digits.
25// During arithmetic operations, denormalized values may occur but are
26// always normalized before returning the final result. The normalized
27// representation of 0 is the empty or nil slice (length = 0).
28//
29type nat []Word
30
31var (
32	natOne = nat{1}
33	natTwo = nat{2}
34	natTen = nat{10}
35)
36
37func (z nat) clear() {
38	for i := range z {
39		z[i] = 0
40	}
41}
42
43func (z nat) norm() nat {
44	i := len(z)
45	for i > 0 && z[i-1] == 0 {
46		i--
47	}
48	return z[0:i]
49}
50
51func (z nat) make(n int) nat {
52	if n <= cap(z) {
53		return z[:n] // reuse z
54	}
55	// Choosing a good value for e has significant performance impact
56	// because it increases the chance that a value can be reused.
57	const e = 4 // extra capacity
58	return make(nat, n, n+e)
59}
60
61func (z nat) setWord(x Word) nat {
62	if x == 0 {
63		return z[:0]
64	}
65	z = z.make(1)
66	z[0] = x
67	return z
68}
69
70func (z nat) setUint64(x uint64) nat {
71	// single-word value
72	if w := Word(x); uint64(w) == x {
73		return z.setWord(w)
74	}
75	// 2-word value
76	z = z.make(2)
77	z[1] = Word(x >> 32)
78	z[0] = Word(x)
79	return z
80}
81
82func (z nat) set(x nat) nat {
83	z = z.make(len(x))
84	copy(z, x)
85	return z
86}
87
88func (z nat) add(x, y nat) nat {
89	m := len(x)
90	n := len(y)
91
92	switch {
93	case m < n:
94		return z.add(y, x)
95	case m == 0:
96		// n == 0 because m >= n; result is 0
97		return z[:0]
98	case n == 0:
99		// result is x
100		return z.set(x)
101	}
102	// m > 0
103
104	z = z.make(m + 1)
105	c := addVV(z[0:n], x, y)
106	if m > n {
107		c = addVW(z[n:m], x[n:], c)
108	}
109	z[m] = c
110
111	return z.norm()
112}
113
114func (z nat) sub(x, y nat) nat {
115	m := len(x)
116	n := len(y)
117
118	switch {
119	case m < n:
120		panic("underflow")
121	case m == 0:
122		// n == 0 because m >= n; result is 0
123		return z[:0]
124	case n == 0:
125		// result is x
126		return z.set(x)
127	}
128	// m > 0
129
130	z = z.make(m)
131	c := subVV(z[0:n], x, y)
132	if m > n {
133		c = subVW(z[n:], x[n:], c)
134	}
135	if c != 0 {
136		panic("underflow")
137	}
138
139	return z.norm()
140}
141
142func (x nat) cmp(y nat) (r int) {
143	m := len(x)
144	n := len(y)
145	if m != n || m == 0 {
146		switch {
147		case m < n:
148			r = -1
149		case m > n:
150			r = 1
151		}
152		return
153	}
154
155	i := m - 1
156	for i > 0 && x[i] == y[i] {
157		i--
158	}
159
160	switch {
161	case x[i] < y[i]:
162		r = -1
163	case x[i] > y[i]:
164		r = 1
165	}
166	return
167}
168
169func (z nat) mulAddWW(x nat, y, r Word) nat {
170	m := len(x)
171	if m == 0 || y == 0 {
172		return z.setWord(r) // result is r
173	}
174	// m > 0
175
176	z = z.make(m + 1)
177	z[m] = mulAddVWW(z[0:m], x, y, r)
178
179	return z.norm()
180}
181
182// basicMul multiplies x and y and leaves the result in z.
183// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
184func basicMul(z, x, y nat) {
185	z[0 : len(x)+len(y)].clear() // initialize z
186	for i, d := range y {
187		if d != 0 {
188			z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
189		}
190	}
191}
192
193// montgomery computes z mod m = x*y*2**(-n*_W) mod m,
194// assuming k = -1/m mod 2**_W.
195// z is used for storing the result which is returned;
196// z must not alias x, y or m.
197// See Gueron, "Efficient Software Implementations of Modular Exponentiation".
198// https://eprint.iacr.org/2011/239.pdf
199// In the terminology of that paper, this is an "Almost Montgomery Multiplication":
200// x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
201// z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
202func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
203	// This code assumes x, y, m are all the same length, n.
204	// (required by addMulVVW and the for loop).
205	// It also assumes that x, y are already reduced mod m,
206	// or else the result will not be properly reduced.
207	if len(x) != n || len(y) != n || len(m) != n {
208		panic("math/big: mismatched montgomery number lengths")
209	}
210	z = z.make(n)
211	z.clear()
212	var c Word
213	for i := 0; i < n; i++ {
214		d := y[i]
215		c2 := addMulVVW(z, x, d)
216		t := z[0] * k
217		c3 := addMulVVW(z, m, t)
218		copy(z, z[1:])
219		cx := c + c2
220		cy := cx + c3
221		z[n-1] = cy
222		if cx < c2 || cy < c3 {
223			c = 1
224		} else {
225			c = 0
226		}
227	}
228	if c != 0 {
229		subVV(z, z, m)
230	}
231	return z
232}
233
234// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
235// Factored out for readability - do not use outside karatsuba.
236func karatsubaAdd(z, x nat, n int) {
237	if c := addVV(z[0:n], z, x); c != 0 {
238		addVW(z[n:n+n>>1], z[n:], c)
239	}
240}
241
242// Like karatsubaAdd, but does subtract.
243func karatsubaSub(z, x nat, n int) {
244	if c := subVV(z[0:n], z, x); c != 0 {
245		subVW(z[n:n+n>>1], z[n:], c)
246	}
247}
248
249// Operands that are shorter than karatsubaThreshold are multiplied using
250// "grade school" multiplication; for longer operands the Karatsuba algorithm
251// is used.
252var karatsubaThreshold = 40 // computed by calibrate_test.go
253
254// karatsuba multiplies x and y and leaves the result in z.
255// Both x and y must have the same length n and n must be a
256// power of 2. The result vector z must have len(z) >= 6*n.
257// The (non-normalized) result is placed in z[0 : 2*n].
258func karatsuba(z, x, y nat) {
259	n := len(y)
260
261	// Switch to basic multiplication if numbers are odd or small.
262	// (n is always even if karatsubaThreshold is even, but be
263	// conservative)
264	if n&1 != 0 || n < karatsubaThreshold || n < 2 {
265		basicMul(z, x, y)
266		return
267	}
268	// n&1 == 0 && n >= karatsubaThreshold && n >= 2
269
270	// Karatsuba multiplication is based on the observation that
271	// for two numbers x and y with:
272	//
273	//   x = x1*b + x0
274	//   y = y1*b + y0
275	//
276	// the product x*y can be obtained with 3 products z2, z1, z0
277	// instead of 4:
278	//
279	//   x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
280	//       =    z2*b*b +              z1*b +    z0
281	//
282	// with:
283	//
284	//   xd = x1 - x0
285	//   yd = y0 - y1
286	//
287	//   z1 =      xd*yd                    + z2 + z0
288	//      = (x1-x0)*(y0 - y1)             + z2 + z0
289	//      = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
290	//      = x1*y0 -    z2 -    z0 + x0*y1 + z2 + z0
291	//      = x1*y0                 + x0*y1
292
293	// split x, y into "digits"
294	n2 := n >> 1              // n2 >= 1
295	x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
296	y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
297
298	// z is used for the result and temporary storage:
299	//
300	//   6*n     5*n     4*n     3*n     2*n     1*n     0*n
301	// z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
302	//
303	// For each recursive call of karatsuba, an unused slice of
304	// z is passed in that has (at least) half the length of the
305	// caller's z.
306
307	// compute z0 and z2 with the result "in place" in z
308	karatsuba(z, x0, y0)     // z0 = x0*y0
309	karatsuba(z[n:], x1, y1) // z2 = x1*y1
310
311	// compute xd (or the negative value if underflow occurs)
312	s := 1 // sign of product xd*yd
313	xd := z[2*n : 2*n+n2]
314	if subVV(xd, x1, x0) != 0 { // x1-x0
315		s = -s
316		subVV(xd, x0, x1) // x0-x1
317	}
318
319	// compute yd (or the negative value if underflow occurs)
320	yd := z[2*n+n2 : 3*n]
321	if subVV(yd, y0, y1) != 0 { // y0-y1
322		s = -s
323		subVV(yd, y1, y0) // y1-y0
324	}
325
326	// p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
327	// p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
328	p := z[n*3:]
329	karatsuba(p, xd, yd)
330
331	// save original z2:z0
332	// (ok to use upper half of z since we're done recursing)
333	r := z[n*4:]
334	copy(r, z[:n*2])
335
336	// add up all partial products
337	//
338	//   2*n     n     0
339	// z = [ z2  | z0  ]
340	//   +    [ z0  ]
341	//   +    [ z2  ]
342	//   +    [  p  ]
343	//
344	karatsubaAdd(z[n2:], r, n)
345	karatsubaAdd(z[n2:], r[n:], n)
346	if s > 0 {
347		karatsubaAdd(z[n2:], p, n)
348	} else {
349		karatsubaSub(z[n2:], p, n)
350	}
351}
352
353// alias reports whether x and y share the same base array.
354func alias(x, y nat) bool {
355	return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
356}
357
358// addAt implements z += x<<(_W*i); z must be long enough.
359// (we don't use nat.add because we need z to stay the same
360// slice, and we don't need to normalize z after each addition)
361func addAt(z, x nat, i int) {
362	if n := len(x); n > 0 {
363		if c := addVV(z[i:i+n], z[i:], x); c != 0 {
364			j := i + n
365			if j < len(z) {
366				addVW(z[j:], z[j:], c)
367			}
368		}
369	}
370}
371
372func max(x, y int) int {
373	if x > y {
374		return x
375	}
376	return y
377}
378
379// karatsubaLen computes an approximation to the maximum k <= n such that
380// k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the
381// result is the largest number that can be divided repeatedly by 2 before
382// becoming about the value of karatsubaThreshold.
383func karatsubaLen(n int) int {
384	i := uint(0)
385	for n > karatsubaThreshold {
386		n >>= 1
387		i++
388	}
389	return n << i
390}
391
392func (z nat) mul(x, y nat) nat {
393	m := len(x)
394	n := len(y)
395
396	switch {
397	case m < n:
398		return z.mul(y, x)
399	case m == 0 || n == 0:
400		return z[:0]
401	case n == 1:
402		return z.mulAddWW(x, y[0], 0)
403	}
404	// m >= n > 1
405
406	// determine if z can be reused
407	if alias(z, x) || alias(z, y) {
408		z = nil // z is an alias for x or y - cannot reuse
409	}
410
411	// use basic multiplication if the numbers are small
412	if n < karatsubaThreshold {
413		z = z.make(m + n)
414		basicMul(z, x, y)
415		return z.norm()
416	}
417	// m >= n && n >= karatsubaThreshold && n >= 2
418
419	// determine Karatsuba length k such that
420	//
421	//   x = xh*b + x0  (0 <= x0 < b)
422	//   y = yh*b + y0  (0 <= y0 < b)
423	//   b = 1<<(_W*k)  ("base" of digits xi, yi)
424	//
425	k := karatsubaLen(n)
426	// k <= n
427
428	// multiply x0 and y0 via Karatsuba
429	x0 := x[0:k]              // x0 is not normalized
430	y0 := y[0:k]              // y0 is not normalized
431	z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
432	karatsuba(z, x0, y0)
433	z = z[0 : m+n]  // z has final length but may be incomplete
434	z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
435
436	// If xh != 0 or yh != 0, add the missing terms to z. For
437	//
438	//   xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
439	//   yh =                         y1*b (0 <= y1 < b)
440	//
441	// the missing terms are
442	//
443	//   x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
444	//
445	// since all the yi for i > 1 are 0 by choice of k: If any of them
446	// were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
447	// be a larger valid threshold contradicting the assumption about k.
448	//
449	if k < n || m != n {
450		var t nat
451
452		// add x0*y1*b
453		x0 := x0.norm()
454		y1 := y[k:]       // y1 is normalized because y is
455		t = t.mul(x0, y1) // update t so we don't lose t's underlying array
456		addAt(z, t, k)
457
458		// add xi*y0<<i, xi*y1*b<<(i+k)
459		y0 := y0.norm()
460		for i := k; i < len(x); i += k {
461			xi := x[i:]
462			if len(xi) > k {
463				xi = xi[:k]
464			}
465			xi = xi.norm()
466			t = t.mul(xi, y0)
467			addAt(z, t, i)
468			t = t.mul(xi, y1)
469			addAt(z, t, i+k)
470		}
471	}
472
473	return z.norm()
474}
475
476// basicSqr sets z = x*x and is asymptotically faster than basicMul
477// by about a factor of 2, but slower for small arguments due to overhead.
478// Requirements: len(x) > 0, len(z) >= 2*len(x)
479// The (non-normalized) result is placed in z[0 : 2 * len(x)].
480func basicSqr(z, x nat) {
481	n := len(x)
482	t := make(nat, 2*n)            // temporary variable to hold the products
483	z[1], z[0] = mulWW(x[0], x[0]) // the initial square
484	for i := 1; i < n; i++ {
485		d := x[i]
486		// z collects the squares x[i] * x[i]
487		z[2*i+1], z[2*i] = mulWW(d, d)
488		// t collects the products x[i] * x[j] where j < i
489		t[2*i] = addMulVVW(t[i:2*i], x[0:i], d)
490	}
491	t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products
492	addVV(z, z, t)                              // combine the result
493}
494
495// Operands that are shorter than basicSqrThreshold are squared using
496// "grade school" multiplication; for operands longer than karatsubaSqrThreshold
497// the Karatsuba algorithm is used.
498var basicSqrThreshold = 20      // computed by calibrate_test.go
499var karatsubaSqrThreshold = 400 // computed by calibrate_test.go
500
501// z = x*x
502func (z nat) sqr(x nat) nat {
503	n := len(x)
504	switch {
505	case n == 0:
506		return z[:0]
507	case n == 1:
508		d := x[0]
509		z = z.make(2)
510		z[1], z[0] = mulWW(d, d)
511		return z.norm()
512	}
513
514	if alias(z, x) {
515		z = nil // z is an alias for x - cannot reuse
516	}
517	z = z.make(2 * n)
518
519	if n < basicSqrThreshold {
520		basicMul(z, x, x)
521		return z.norm()
522	}
523	if n < karatsubaSqrThreshold {
524		basicSqr(z, x)
525		return z.norm()
526	}
527
528	return z.mul(x, x)
529}
530
531// mulRange computes the product of all the unsigned integers in the
532// range [a, b] inclusively. If a > b (empty range), the result is 1.
533func (z nat) mulRange(a, b uint64) nat {
534	switch {
535	case a == 0:
536		// cut long ranges short (optimization)
537		return z.setUint64(0)
538	case a > b:
539		return z.setUint64(1)
540	case a == b:
541		return z.setUint64(a)
542	case a+1 == b:
543		return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
544	}
545	m := (a + b) / 2
546	return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
547}
548
549// q = (x-r)/y, with 0 <= r < y
550func (z nat) divW(x nat, y Word) (q nat, r Word) {
551	m := len(x)
552	switch {
553	case y == 0:
554		panic("division by zero")
555	case y == 1:
556		q = z.set(x) // result is x
557		return
558	case m == 0:
559		q = z[:0] // result is 0
560		return
561	}
562	// m > 0
563	z = z.make(m)
564	r = divWVW(z, 0, x, y)
565	q = z.norm()
566	return
567}
568
569func (z nat) div(z2, u, v nat) (q, r nat) {
570	if len(v) == 0 {
571		panic("division by zero")
572	}
573
574	if u.cmp(v) < 0 {
575		q = z[:0]
576		r = z2.set(u)
577		return
578	}
579
580	if len(v) == 1 {
581		var r2 Word
582		q, r2 = z.divW(u, v[0])
583		r = z2.setWord(r2)
584		return
585	}
586
587	q, r = z.divLarge(z2, u, v)
588	return
589}
590
591// getNat returns a *nat of len n. The contents may not be zero.
592// The pool holds *nat to avoid allocation when converting to interface{}.
593func getNat(n int) *nat {
594	var z *nat
595	if v := natPool.Get(); v != nil {
596		z = v.(*nat)
597	}
598	if z == nil {
599		z = new(nat)
600	}
601	*z = z.make(n)
602	return z
603}
604
605func putNat(x *nat) {
606	natPool.Put(x)
607}
608
609var natPool sync.Pool
610
611// q = (uIn-r)/v, with 0 <= r < y
612// Uses z as storage for q, and u as storage for r if possible.
613// See Knuth, Volume 2, section 4.3.1, Algorithm D.
614// Preconditions:
615//    len(v) >= 2
616//    len(uIn) >= len(v)
617func (z nat) divLarge(u, uIn, v nat) (q, r nat) {
618	n := len(v)
619	m := len(uIn) - n
620
621	// determine if z can be reused
622	// TODO(gri) should find a better solution - this if statement
623	//           is very costly (see e.g. time pidigits -s -n 10000)
624	if alias(z, u) || alias(z, uIn) || alias(z, v) {
625		z = nil // z is an alias for u or uIn or v - cannot reuse
626	}
627	q = z.make(m + 1)
628
629	qhatvp := getNat(n + 1)
630	qhatv := *qhatvp
631	if alias(u, uIn) || alias(u, v) {
632		u = nil // u is an alias for uIn or v - cannot reuse
633	}
634	u = u.make(len(uIn) + 1)
635	u.clear() // TODO(gri) no need to clear if we allocated a new u
636
637	// D1.
638	var v1p *nat
639	shift := nlz(v[n-1])
640	if shift > 0 {
641		// do not modify v, it may be used by another goroutine simultaneously
642		v1p = getNat(n)
643		v1 := *v1p
644		shlVU(v1, v, shift)
645		v = v1
646	}
647	u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
648
649	// D2.
650	vn1 := v[n-1]
651	for j := m; j >= 0; j-- {
652		// D3.
653		qhat := Word(_M)
654		if ujn := u[j+n]; ujn != vn1 {
655			var rhat Word
656			qhat, rhat = divWW(ujn, u[j+n-1], vn1)
657
658			// x1 | x2 = q̂v_{n-2}
659			vn2 := v[n-2]
660			x1, x2 := mulWW(qhat, vn2)
661			// test if q̂v_{n-2} > br̂ + u_{j+n-2}
662			ujn2 := u[j+n-2]
663			for greaterThan(x1, x2, rhat, ujn2) {
664				qhat--
665				prevRhat := rhat
666				rhat += vn1
667				// v[n-1] >= 0, so this tests for overflow.
668				if rhat < prevRhat {
669					break
670				}
671				x1, x2 = mulWW(qhat, vn2)
672			}
673		}
674
675		// D4.
676		qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
677
678		c := subVV(u[j:j+len(qhatv)], u[j:], qhatv)
679		if c != 0 {
680			c := addVV(u[j:j+n], u[j:], v)
681			u[j+n] += c
682			qhat--
683		}
684
685		q[j] = qhat
686	}
687	if v1p != nil {
688		putNat(v1p)
689	}
690	putNat(qhatvp)
691
692	q = q.norm()
693	shrVU(u, u, shift)
694	r = u.norm()
695
696	return q, r
697}
698
699// Length of x in bits. x must be normalized.
700func (x nat) bitLen() int {
701	if i := len(x) - 1; i >= 0 {
702		return i*_W + bits.Len(uint(x[i]))
703	}
704	return 0
705}
706
707// trailingZeroBits returns the number of consecutive least significant zero
708// bits of x.
709func (x nat) trailingZeroBits() uint {
710	if len(x) == 0 {
711		return 0
712	}
713	var i uint
714	for x[i] == 0 {
715		i++
716	}
717	// x[i] != 0
718	return i*_W + uint(bits.TrailingZeros(uint(x[i])))
719}
720
721// z = x << s
722func (z nat) shl(x nat, s uint) nat {
723	m := len(x)
724	if m == 0 {
725		return z[:0]
726	}
727	// m > 0
728
729	n := m + int(s/_W)
730	z = z.make(n + 1)
731	z[n] = shlVU(z[n-m:n], x, s%_W)
732	z[0 : n-m].clear()
733
734	return z.norm()
735}
736
737// z = x >> s
738func (z nat) shr(x nat, s uint) nat {
739	m := len(x)
740	n := m - int(s/_W)
741	if n <= 0 {
742		return z[:0]
743	}
744	// n > 0
745
746	z = z.make(n)
747	shrVU(z, x[m-n:], s%_W)
748
749	return z.norm()
750}
751
752func (z nat) setBit(x nat, i uint, b uint) nat {
753	j := int(i / _W)
754	m := Word(1) << (i % _W)
755	n := len(x)
756	switch b {
757	case 0:
758		z = z.make(n)
759		copy(z, x)
760		if j >= n {
761			// no need to grow
762			return z
763		}
764		z[j] &^= m
765		return z.norm()
766	case 1:
767		if j >= n {
768			z = z.make(j + 1)
769			z[n:].clear()
770		} else {
771			z = z.make(n)
772		}
773		copy(z, x)
774		z[j] |= m
775		// no need to normalize
776		return z
777	}
778	panic("set bit is not 0 or 1")
779}
780
781// bit returns the value of the i'th bit, with lsb == bit 0.
782func (x nat) bit(i uint) uint {
783	j := i / _W
784	if j >= uint(len(x)) {
785		return 0
786	}
787	// 0 <= j < len(x)
788	return uint(x[j] >> (i % _W) & 1)
789}
790
791// sticky returns 1 if there's a 1 bit within the
792// i least significant bits, otherwise it returns 0.
793func (x nat) sticky(i uint) uint {
794	j := i / _W
795	if j >= uint(len(x)) {
796		if len(x) == 0 {
797			return 0
798		}
799		return 1
800	}
801	// 0 <= j < len(x)
802	for _, x := range x[:j] {
803		if x != 0 {
804			return 1
805		}
806	}
807	if x[j]<<(_W-i%_W) != 0 {
808		return 1
809	}
810	return 0
811}
812
813func (z nat) and(x, y nat) nat {
814	m := len(x)
815	n := len(y)
816	if m > n {
817		m = n
818	}
819	// m <= n
820
821	z = z.make(m)
822	for i := 0; i < m; i++ {
823		z[i] = x[i] & y[i]
824	}
825
826	return z.norm()
827}
828
829func (z nat) andNot(x, y nat) nat {
830	m := len(x)
831	n := len(y)
832	if n > m {
833		n = m
834	}
835	// m >= n
836
837	z = z.make(m)
838	for i := 0; i < n; i++ {
839		z[i] = x[i] &^ y[i]
840	}
841	copy(z[n:m], x[n:m])
842
843	return z.norm()
844}
845
846func (z nat) or(x, y nat) nat {
847	m := len(x)
848	n := len(y)
849	s := x
850	if m < n {
851		n, m = m, n
852		s = y
853	}
854	// m >= n
855
856	z = z.make(m)
857	for i := 0; i < n; i++ {
858		z[i] = x[i] | y[i]
859	}
860	copy(z[n:m], s[n:m])
861
862	return z.norm()
863}
864
865func (z nat) xor(x, y nat) nat {
866	m := len(x)
867	n := len(y)
868	s := x
869	if m < n {
870		n, m = m, n
871		s = y
872	}
873	// m >= n
874
875	z = z.make(m)
876	for i := 0; i < n; i++ {
877		z[i] = x[i] ^ y[i]
878	}
879	copy(z[n:m], s[n:m])
880
881	return z.norm()
882}
883
884// greaterThan reports whether (x1<<_W + x2) > (y1<<_W + y2)
885func greaterThan(x1, x2, y1, y2 Word) bool {
886	return x1 > y1 || x1 == y1 && x2 > y2
887}
888
889// modW returns x % d.
890func (x nat) modW(d Word) (r Word) {
891	// TODO(agl): we don't actually need to store the q value.
892	var q nat
893	q = q.make(len(x))
894	return divWVW(q, 0, x, d)
895}
896
897// random creates a random integer in [0..limit), using the space in z if
898// possible. n is the bit length of limit.
899func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
900	if alias(z, limit) {
901		z = nil // z is an alias for limit - cannot reuse
902	}
903	z = z.make(len(limit))
904
905	bitLengthOfMSW := uint(n % _W)
906	if bitLengthOfMSW == 0 {
907		bitLengthOfMSW = _W
908	}
909	mask := Word((1 << bitLengthOfMSW) - 1)
910
911	for {
912		switch _W {
913		case 32:
914			for i := range z {
915				z[i] = Word(rand.Uint32())
916			}
917		case 64:
918			for i := range z {
919				z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
920			}
921		default:
922			panic("unknown word size")
923		}
924		z[len(limit)-1] &= mask
925		if z.cmp(limit) < 0 {
926			break
927		}
928	}
929
930	return z.norm()
931}
932
933// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
934// otherwise it sets z to x**y. The result is the value of z.
935func (z nat) expNN(x, y, m nat) nat {
936	if alias(z, x) || alias(z, y) {
937		// We cannot allow in-place modification of x or y.
938		z = nil
939	}
940
941	// x**y mod 1 == 0
942	if len(m) == 1 && m[0] == 1 {
943		return z.setWord(0)
944	}
945	// m == 0 || m > 1
946
947	// x**0 == 1
948	if len(y) == 0 {
949		return z.setWord(1)
950	}
951	// y > 0
952
953	// x**1 mod m == x mod m
954	if len(y) == 1 && y[0] == 1 && len(m) != 0 {
955		_, z = z.div(z, x, m)
956		return z
957	}
958	// y > 1
959
960	if len(m) != 0 {
961		// We likely end up being as long as the modulus.
962		z = z.make(len(m))
963	}
964	z = z.set(x)
965
966	// If the base is non-trivial and the exponent is large, we use
967	// 4-bit, windowed exponentiation. This involves precomputing 14 values
968	// (x^2...x^15) but then reduces the number of multiply-reduces by a
969	// third. Even for a 32-bit exponent, this reduces the number of
970	// operations. Uses Montgomery method for odd moduli.
971	if x.cmp(natOne) > 0 && len(y) > 1 && len(m) > 0 {
972		if m[0]&1 == 1 {
973			return z.expNNMontgomery(x, y, m)
974		}
975		return z.expNNWindowed(x, y, m)
976	}
977
978	v := y[len(y)-1] // v > 0 because y is normalized and y > 0
979	shift := nlz(v) + 1
980	v <<= shift
981	var q nat
982
983	const mask = 1 << (_W - 1)
984
985	// We walk through the bits of the exponent one by one. Each time we
986	// see a bit, we square, thus doubling the power. If the bit is a one,
987	// we also multiply by x, thus adding one to the power.
988
989	w := _W - int(shift)
990	// zz and r are used to avoid allocating in mul and div as
991	// otherwise the arguments would alias.
992	var zz, r nat
993	for j := 0; j < w; j++ {
994		zz = zz.sqr(z)
995		zz, z = z, zz
996
997		if v&mask != 0 {
998			zz = zz.mul(z, x)
999			zz, z = z, zz
1000		}
1001
1002		if len(m) != 0 {
1003			zz, r = zz.div(r, z, m)
1004			zz, r, q, z = q, z, zz, r
1005		}
1006
1007		v <<= 1
1008	}
1009
1010	for i := len(y) - 2; i >= 0; i-- {
1011		v = y[i]
1012
1013		for j := 0; j < _W; j++ {
1014			zz = zz.sqr(z)
1015			zz, z = z, zz
1016
1017			if v&mask != 0 {
1018				zz = zz.mul(z, x)
1019				zz, z = z, zz
1020			}
1021
1022			if len(m) != 0 {
1023				zz, r = zz.div(r, z, m)
1024				zz, r, q, z = q, z, zz, r
1025			}
1026
1027			v <<= 1
1028		}
1029	}
1030
1031	return z.norm()
1032}
1033
1034// expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
1035func (z nat) expNNWindowed(x, y, m nat) nat {
1036	// zz and r are used to avoid allocating in mul and div as otherwise
1037	// the arguments would alias.
1038	var zz, r nat
1039
1040	const n = 4
1041	// powers[i] contains x^i.
1042	var powers [1 << n]nat
1043	powers[0] = natOne
1044	powers[1] = x
1045	for i := 2; i < 1<<n; i += 2 {
1046		p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
1047		*p = p.sqr(*p2)
1048		zz, r = zz.div(r, *p, m)
1049		*p, r = r, *p
1050		*p1 = p1.mul(*p, x)
1051		zz, r = zz.div(r, *p1, m)
1052		*p1, r = r, *p1
1053	}
1054
1055	z = z.setWord(1)
1056
1057	for i := len(y) - 1; i >= 0; i-- {
1058		yi := y[i]
1059		for j := 0; j < _W; j += n {
1060			if i != len(y)-1 || j != 0 {
1061				// Unrolled loop for significant performance
1062				// gain. Use go test -bench=".*" in crypto/rsa
1063				// to check performance before making changes.
1064				zz = zz.sqr(z)
1065				zz, z = z, zz
1066				zz, r = zz.div(r, z, m)
1067				z, r = r, z
1068
1069				zz = zz.sqr(z)
1070				zz, z = z, zz
1071				zz, r = zz.div(r, z, m)
1072				z, r = r, z
1073
1074				zz = zz.sqr(z)
1075				zz, z = z, zz
1076				zz, r = zz.div(r, z, m)
1077				z, r = r, z
1078
1079				zz = zz.sqr(z)
1080				zz, z = z, zz
1081				zz, r = zz.div(r, z, m)
1082				z, r = r, z
1083			}
1084
1085			zz = zz.mul(z, powers[yi>>(_W-n)])
1086			zz, z = z, zz
1087			zz, r = zz.div(r, z, m)
1088			z, r = r, z
1089
1090			yi <<= n
1091		}
1092	}
1093
1094	return z.norm()
1095}
1096
1097// expNNMontgomery calculates x**y mod m using a fixed, 4-bit window.
1098// Uses Montgomery representation.
1099func (z nat) expNNMontgomery(x, y, m nat) nat {
1100	numWords := len(m)
1101
1102	// We want the lengths of x and m to be equal.
1103	// It is OK if x >= m as long as len(x) == len(m).
1104	if len(x) > numWords {
1105		_, x = nat(nil).div(nil, x, m)
1106		// Note: now len(x) <= numWords, not guaranteed ==.
1107	}
1108	if len(x) < numWords {
1109		rr := make(nat, numWords)
1110		copy(rr, x)
1111		x = rr
1112	}
1113
1114	// Ideally the precomputations would be performed outside, and reused
1115	// k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson
1116	// Iteration for Multiplicative Inverses Modulo Prime Powers".
1117	k0 := 2 - m[0]
1118	t := m[0] - 1
1119	for i := 1; i < _W; i <<= 1 {
1120		t *= t
1121		k0 *= (t + 1)
1122	}
1123	k0 = -k0
1124
1125	// RR = 2**(2*_W*len(m)) mod m
1126	RR := nat(nil).setWord(1)
1127	zz := nat(nil).shl(RR, uint(2*numWords*_W))
1128	_, RR = RR.div(RR, zz, m)
1129	if len(RR) < numWords {
1130		zz = zz.make(numWords)
1131		copy(zz, RR)
1132		RR = zz
1133	}
1134	// one = 1, with equal length to that of m
1135	one := make(nat, numWords)
1136	one[0] = 1
1137
1138	const n = 4
1139	// powers[i] contains x^i
1140	var powers [1 << n]nat
1141	powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
1142	powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
1143	for i := 2; i < 1<<n; i++ {
1144		powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
1145	}
1146
1147	// initialize z = 1 (Montgomery 1)
1148	z = z.make(numWords)
1149	copy(z, powers[0])
1150
1151	zz = zz.make(numWords)
1152
1153	// same windowed exponent, but with Montgomery multiplications
1154	for i := len(y) - 1; i >= 0; i-- {
1155		yi := y[i]
1156		for j := 0; j < _W; j += n {
1157			if i != len(y)-1 || j != 0 {
1158				zz = zz.montgomery(z, z, m, k0, numWords)
1159				z = z.montgomery(zz, zz, m, k0, numWords)
1160				zz = zz.montgomery(z, z, m, k0, numWords)
1161				z = z.montgomery(zz, zz, m, k0, numWords)
1162			}
1163			zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
1164			z, zz = zz, z
1165			yi <<= n
1166		}
1167	}
1168	// convert to regular number
1169	zz = zz.montgomery(z, one, m, k0, numWords)
1170
1171	// One last reduction, just in case.
1172	// See golang.org/issue/13907.
1173	if zz.cmp(m) >= 0 {
1174		// Common case is m has high bit set; in that case,
1175		// since zz is the same length as m, there can be just
1176		// one multiple of m to remove. Just subtract.
1177		// We think that the subtract should be sufficient in general,
1178		// so do that unconditionally, but double-check,
1179		// in case our beliefs are wrong.
1180		// The div is not expected to be reached.
1181		zz = zz.sub(zz, m)
1182		if zz.cmp(m) >= 0 {
1183			_, zz = nat(nil).div(nil, zz, m)
1184		}
1185	}
1186
1187	return zz.norm()
1188}
1189
1190// bytes writes the value of z into buf using big-endian encoding.
1191// len(buf) must be >= len(z)*_S. The value of z is encoded in the
1192// slice buf[i:]. The number i of unused bytes at the beginning of
1193// buf is returned as result.
1194func (z nat) bytes(buf []byte) (i int) {
1195	i = len(buf)
1196	for _, d := range z {
1197		for j := 0; j < _S; j++ {
1198			i--
1199			buf[i] = byte(d)
1200			d >>= 8
1201		}
1202	}
1203
1204	for i < len(buf) && buf[i] == 0 {
1205		i++
1206	}
1207
1208	return
1209}
1210
1211// setBytes interprets buf as the bytes of a big-endian unsigned
1212// integer, sets z to that value, and returns z.
1213func (z nat) setBytes(buf []byte) nat {
1214	z = z.make((len(buf) + _S - 1) / _S)
1215
1216	k := 0
1217	s := uint(0)
1218	var d Word
1219	for i := len(buf); i > 0; i-- {
1220		d |= Word(buf[i-1]) << s
1221		if s += 8; s == _S*8 {
1222			z[k] = d
1223			k++
1224			s = 0
1225			d = 0
1226		}
1227	}
1228	if k < len(z) {
1229		z[k] = d
1230	}
1231
1232	return z.norm()
1233}
1234
1235// sqrt sets z = ⌊√x⌋
1236func (z nat) sqrt(x nat) nat {
1237	if x.cmp(natOne) <= 0 {
1238		return z.set(x)
1239	}
1240	if alias(z, x) {
1241		z = nil
1242	}
1243
1244	// Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
1245	// See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
1246	// https://members.loria.fr/PZimmermann/mca/pub226.html
1247	// If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
1248	// otherwise it converges to the correct z and stays there.
1249	var z1, z2 nat
1250	z1 = z
1251	z1 = z1.setUint64(1)
1252	z1 = z1.shl(z1, uint(x.bitLen()/2+1)) // must be ≥ √x
1253	for n := 0; ; n++ {
1254		z2, _ = z2.div(nil, x, z1)
1255		z2 = z2.add(z2, z1)
1256		z2 = z2.shr(z2, 1)
1257		if z2.cmp(z1) >= 0 {
1258			// z1 is answer.
1259			// Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
1260			if n&1 == 0 {
1261				return z1
1262			}
1263			return z.set(z1)
1264		}
1265		z1, z2 = z2, z1
1266	}
1267}
1268