1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2019 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 #if __cplusplus > 201402L
37 # include <bits/node_handle.h>
38 #endif
39 
_GLIBCXX_VISIBILITY(default)40 namespace std _GLIBCXX_VISIBILITY(default)
41 {
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
43 
44   template<typename _Tp, typename _Hash>
45     using __cache_default
46       =  __not_<__and_<// Do not cache for fast hasher.
47 		       __is_fast_hash<_Hash>,
48 		       // Mandatory to have erase not throwing.
49 		       __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
50 
51   /**
52    *  Primary class template _Hashtable.
53    *
54    *  @ingroup hashtable-detail
55    *
56    *  @tparam _Value  CopyConstructible type.
57    *
58    *  @tparam _Key    CopyConstructible type.
59    *
60    *  @tparam _Alloc  An allocator type
61    *  ([lib.allocator.requirements]) whose _Alloc::value_type is
62    *  _Value.  As a conforming extension, we allow for
63    *  _Alloc::value_type != _Value.
64    *
65    *  @tparam _ExtractKey  Function object that takes an object of type
66    *  _Value and returns a value of type _Key.
67    *
68    *  @tparam _Equal  Function object that takes two objects of type k
69    *  and returns a bool-like value that is true if the two objects
70    *  are considered equal.
71    *
72    *  @tparam _H1  The hash function. A unary function object with
73    *  argument type _Key and result type size_t. Return values should
74    *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
75    *
76    *  @tparam _H2  The range-hashing function (in the terminology of
77    *  Tavori and Dreizin).  A binary function object whose argument
78    *  types and result type are all size_t.  Given arguments r and N,
79    *  the return value is in the range [0, N).
80    *
81    *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
82    *  binary function whose argument types are _Key and size_t and
83    *  whose result type is size_t.  Given arguments k and N, the
84    *  return value is in the range [0, N).  Default: hash(k, N) =
85    *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
86    *  and _H2 are ignored.
87    *
88    *  @tparam _RehashPolicy  Policy class with three members, all of
89    *  which govern the bucket count. _M_next_bkt(n) returns a bucket
90    *  count no smaller than n.  _M_bkt_for_elements(n) returns a
91    *  bucket count appropriate for an element count of n.
92    *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
93    *  current bucket count is n_bkt and the current element count is
94    *  n_elt, we need to increase the bucket count.  If so, returns
95    *  make_pair(true, n), where n is the new bucket count.  If not,
96    *  returns make_pair(false, <anything>)
97    *
98    *  @tparam _Traits  Compile-time class with three boolean
99    *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
100    *   __unique_keys.
101    *
102    *  Each _Hashtable data structure has:
103    *
104    *  - _Bucket[]       _M_buckets
105    *  - _Hash_node_base _M_before_begin
106    *  - size_type       _M_bucket_count
107    *  - size_type       _M_element_count
108    *
109    *  with _Bucket being _Hash_node* and _Hash_node containing:
110    *
111    *  - _Hash_node*   _M_next
112    *  - Tp            _M_value
113    *  - size_t        _M_hash_code if cache_hash_code is true
114    *
115    *  In terms of Standard containers the hashtable is like the aggregation of:
116    *
117    *  - std::forward_list<_Node> containing the elements
118    *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
119    *
120    *  The non-empty buckets contain the node before the first node in the
121    *  bucket. This design makes it possible to implement something like a
122    *  std::forward_list::insert_after on container insertion and
123    *  std::forward_list::erase_after on container erase
124    *  calls. _M_before_begin is equivalent to
125    *  std::forward_list::before_begin. Empty buckets contain
126    *  nullptr.  Note that one of the non-empty buckets contains
127    *  &_M_before_begin which is not a dereferenceable node so the
128    *  node pointer in a bucket shall never be dereferenced, only its
129    *  next node can be.
130    *
131    *  Walking through a bucket's nodes requires a check on the hash code to
132    *  see if each node is still in the bucket. Such a design assumes a
133    *  quite efficient hash functor and is one of the reasons it is
134    *  highly advisable to set __cache_hash_code to true.
135    *
136    *  The container iterators are simply built from nodes. This way
137    *  incrementing the iterator is perfectly efficient independent of
138    *  how many empty buckets there are in the container.
139    *
140    *  On insert we compute the element's hash code and use it to find the
141    *  bucket index. If the element must be inserted in an empty bucket
142    *  we add it at the beginning of the singly linked list and make the
143    *  bucket point to _M_before_begin. The bucket that used to point to
144    *  _M_before_begin, if any, is updated to point to its new before
145    *  begin node.
146    *
147    *  On erase, the simple iterator design requires using the hash
148    *  functor to get the index of the bucket to update. For this
149    *  reason, when __cache_hash_code is set to false the hash functor must
150    *  not throw and this is enforced by a static assertion.
151    *
152    *  Functionality is implemented by decomposition into base classes,
153    *  where the derived _Hashtable class is used in _Map_base,
154    *  _Insert, _Rehash_base, and _Equality base classes to access the
155    *  "this" pointer. _Hashtable_base is used in the base classes as a
156    *  non-recursive, fully-completed-type so that detailed nested type
157    *  information, such as iterator type and node type, can be
158    *  used. This is similar to the "Curiously Recurring Template
159    *  Pattern" (CRTP) technique, but uses a reconstructed, not
160    *  explicitly passed, template pattern.
161    *
162    *  Base class templates are:
163    *    - __detail::_Hashtable_base
164    *    - __detail::_Map_base
165    *    - __detail::_Insert
166    *    - __detail::_Rehash_base
167    *    - __detail::_Equality
168    */
169   template<typename _Key, typename _Value, typename _Alloc,
170 	   typename _ExtractKey, typename _Equal,
171 	   typename _H1, typename _H2, typename _Hash,
172 	   typename _RehashPolicy, typename _Traits>
173     class _Hashtable
174     : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
175 				       _H1, _H2, _Hash, _Traits>,
176       public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
177 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
178       public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
179 			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
180       public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
181 				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182       public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
183 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
184       private __detail::_Hashtable_alloc<
185 	__alloc_rebind<_Alloc,
186 		       __detail::_Hash_node<_Value,
187 					    _Traits::__hash_cached::value>>>
188     {
189       static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
190 	  "unordered container must have a non-const, non-volatile value_type");
191 #ifdef __STRICT_ANSI__
192       static_assert(is_same<typename _Alloc::value_type, _Value>{},
193 	  "unordered container must have the same value_type as its allocator");
194 #endif
195 
196       using __traits_type = _Traits;
197       using __hash_cached = typename __traits_type::__hash_cached;
198       using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
199       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
200 
201       using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
202 
203       using __value_alloc_traits =
204 	typename __hashtable_alloc::__value_alloc_traits;
205       using __node_alloc_traits =
206 	typename __hashtable_alloc::__node_alloc_traits;
207       using __node_base = typename __hashtable_alloc::__node_base;
208       using __bucket_type = typename __hashtable_alloc::__bucket_type;
209 
210     public:
211       typedef _Key						key_type;
212       typedef _Value						value_type;
213       typedef _Alloc						allocator_type;
214       typedef _Equal						key_equal;
215 
216       // mapped_type, if present, comes from _Map_base.
217       // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
218       typedef typename __value_alloc_traits::pointer		pointer;
219       typedef typename __value_alloc_traits::const_pointer	const_pointer;
220       typedef value_type&					reference;
221       typedef const value_type&					const_reference;
222 
223     private:
224       using __rehash_type = _RehashPolicy;
225       using __rehash_state = typename __rehash_type::_State;
226 
227       using __constant_iterators = typename __traits_type::__constant_iterators;
228       using __unique_keys = typename __traits_type::__unique_keys;
229 
230       using __key_extract = typename std::conditional<
231 					     __constant_iterators::value,
232 				       	     __detail::_Identity,
233 					     __detail::_Select1st>::type;
234 
235       using __hashtable_base = __detail::
236 			       _Hashtable_base<_Key, _Value, _ExtractKey,
237 					      _Equal, _H1, _H2, _Hash, _Traits>;
238 
239       using __hash_code_base =  typename __hashtable_base::__hash_code_base;
240       using __hash_code =  typename __hashtable_base::__hash_code;
241       using __ireturn_type = typename __hashtable_base::__ireturn_type;
242 
243       using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
244 					     _Equal, _H1, _H2, _Hash,
245 					     _RehashPolicy, _Traits>;
246 
247       using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
248 						   _ExtractKey, _Equal,
249 						   _H1, _H2, _Hash,
250 						   _RehashPolicy, _Traits>;
251 
252       using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
253 					    _Equal, _H1, _H2, _Hash,
254 					    _RehashPolicy, _Traits>;
255 
256       using __reuse_or_alloc_node_type =
257 	__detail::_ReuseOrAllocNode<__node_alloc_type>;
258 
259       // Metaprogramming for picking apart hash caching.
260       template<typename _Cond>
261 	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
262 
263       template<typename _Cond>
264 	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
265 
266       // Compile-time diagnostics.
267 
268       // _Hash_code_base has everything protected, so use this derived type to
269       // access it.
270       struct __hash_code_base_access : __hash_code_base
271       { using __hash_code_base::_M_bucket_index; };
272 
273       // Getting a bucket index from a node shall not throw because it is used
274       // in methods (erase, swap...) that shall not throw.
275       static_assert(noexcept(declval<const __hash_code_base_access&>()
276 			     ._M_bucket_index((const __node_type*)nullptr,
277 					      (std::size_t)0)),
278 		    "Cache the hash code or qualify your functors involved"
279 		    " in hash code and bucket index computation with noexcept");
280 
281       // Following two static assertions are necessary to guarantee
282       // that local_iterator will be default constructible.
283 
284       // When hash codes are cached local iterator inherits from H2 functor
285       // which must then be default constructible.
286       static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
287 		    "Functor used to map hash code to bucket index"
288 		    " must be default constructible");
289 
290       template<typename _Keya, typename _Valuea, typename _Alloca,
291 	       typename _ExtractKeya, typename _Equala,
292 	       typename _H1a, typename _H2a, typename _Hasha,
293 	       typename _RehashPolicya, typename _Traitsa,
294 	       bool _Unique_keysa>
295 	friend struct __detail::_Map_base;
296 
297       template<typename _Keya, typename _Valuea, typename _Alloca,
298 	       typename _ExtractKeya, typename _Equala,
299 	       typename _H1a, typename _H2a, typename _Hasha,
300 	       typename _RehashPolicya, typename _Traitsa>
301 	friend struct __detail::_Insert_base;
302 
303       template<typename _Keya, typename _Valuea, typename _Alloca,
304 	       typename _ExtractKeya, typename _Equala,
305 	       typename _H1a, typename _H2a, typename _Hasha,
306 	       typename _RehashPolicya, typename _Traitsa,
307 	       bool _Constant_iteratorsa>
308 	friend struct __detail::_Insert;
309 
310     public:
311       using size_type = typename __hashtable_base::size_type;
312       using difference_type = typename __hashtable_base::difference_type;
313 
314       using iterator = typename __hashtable_base::iterator;
315       using const_iterator = typename __hashtable_base::const_iterator;
316 
317       using local_iterator = typename __hashtable_base::local_iterator;
318       using const_local_iterator = typename __hashtable_base::
319 				   const_local_iterator;
320 
321 #if __cplusplus > 201402L
322       using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
323       using insert_return_type = _Node_insert_return<iterator, node_type>;
324 #endif
325 
326     private:
327       __bucket_type*		_M_buckets		= &_M_single_bucket;
328       size_type			_M_bucket_count		= 1;
329       __node_base		_M_before_begin;
330       size_type			_M_element_count	= 0;
331       _RehashPolicy		_M_rehash_policy;
332 
333       // A single bucket used when only need for 1 bucket. Especially
334       // interesting in move semantic to leave hashtable with only 1 buckets
335       // which is not allocated so that we can have those operations noexcept
336       // qualified.
337       // Note that we can't leave hashtable with 0 bucket without adding
338       // numerous checks in the code to avoid 0 modulus.
339       __bucket_type		_M_single_bucket	= nullptr;
340 
341       bool
342       _M_uses_single_bucket(__bucket_type* __bkts) const
343       { return __builtin_expect(__bkts == &_M_single_bucket, false); }
344 
345       bool
346       _M_uses_single_bucket() const
347       { return _M_uses_single_bucket(_M_buckets); }
348 
349       __hashtable_alloc&
350       _M_base_alloc() { return *this; }
351 
352       __bucket_type*
353       _M_allocate_buckets(size_type __n)
354       {
355 	if (__builtin_expect(__n == 1, false))
356 	  {
357 	    _M_single_bucket = nullptr;
358 	    return &_M_single_bucket;
359 	  }
360 
361 	return __hashtable_alloc::_M_allocate_buckets(__n);
362       }
363 
364       void
365       _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
366       {
367 	if (_M_uses_single_bucket(__bkts))
368 	  return;
369 
370 	__hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
371       }
372 
373       void
374       _M_deallocate_buckets()
375       { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
376 
377       // Gets bucket begin, deals with the fact that non-empty buckets contain
378       // their before begin node.
379       __node_type*
380       _M_bucket_begin(size_type __bkt) const;
381 
382       __node_type*
383       _M_begin() const
384       { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
385 
386       // Assign *this using another _Hashtable instance. Either elements
387       // are copy or move depends on the _NodeGenerator.
388       template<typename _Ht, typename _NodeGenerator>
389 	void
390 	_M_assign_elements(_Ht&&, const _NodeGenerator&);
391 
392       template<typename _NodeGenerator>
393 	void
394 	_M_assign(const _Hashtable&, const _NodeGenerator&);
395 
396       void
397       _M_move_assign(_Hashtable&&, std::true_type);
398 
399       void
400       _M_move_assign(_Hashtable&&, std::false_type);
401 
402       void
403       _M_reset() noexcept;
404 
405       _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
406 		 const _Equal& __eq, const _ExtractKey& __exk,
407 		 const allocator_type& __a)
408 	: __hashtable_base(__exk, __h1, __h2, __h, __eq),
409 	  __hashtable_alloc(__node_alloc_type(__a))
410       { }
411 
412     public:
413       // Constructor, destructor, assignment, swap
414       _Hashtable() = default;
415       _Hashtable(size_type __bucket_hint,
416 		 const _H1&, const _H2&, const _Hash&,
417 		 const _Equal&, const _ExtractKey&,
418 		 const allocator_type&);
419 
420       template<typename _InputIterator>
421 	_Hashtable(_InputIterator __first, _InputIterator __last,
422 		   size_type __bucket_hint,
423 		   const _H1&, const _H2&, const _Hash&,
424 		   const _Equal&, const _ExtractKey&,
425 		   const allocator_type&);
426 
427       _Hashtable(const _Hashtable&);
428 
429       _Hashtable(_Hashtable&&) noexcept;
430 
431       _Hashtable(const _Hashtable&, const allocator_type&);
432 
433       _Hashtable(_Hashtable&&, const allocator_type&);
434 
435       // Use delegating constructors.
436       explicit
437       _Hashtable(const allocator_type& __a)
438 	: __hashtable_alloc(__node_alloc_type(__a))
439       { }
440 
441       explicit
442       _Hashtable(size_type __n,
443 		 const _H1& __hf = _H1(),
444 		 const key_equal& __eql = key_equal(),
445 		 const allocator_type& __a = allocator_type())
446       : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
447 		   __key_extract(), __a)
448       { }
449 
450       template<typename _InputIterator>
451 	_Hashtable(_InputIterator __f, _InputIterator __l,
452 		   size_type __n = 0,
453 		   const _H1& __hf = _H1(),
454 		   const key_equal& __eql = key_equal(),
455 		   const allocator_type& __a = allocator_type())
456 	: _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
457 		     __key_extract(), __a)
458 	{ }
459 
460       _Hashtable(initializer_list<value_type> __l,
461 		 size_type __n = 0,
462 		 const _H1& __hf = _H1(),
463 		 const key_equal& __eql = key_equal(),
464 		 const allocator_type& __a = allocator_type())
465       : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
466 		   __key_extract(), __a)
467       { }
468 
469       _Hashtable&
470       operator=(const _Hashtable& __ht);
471 
472       _Hashtable&
473       operator=(_Hashtable&& __ht)
474       noexcept(__node_alloc_traits::_S_nothrow_move()
475 	       && is_nothrow_move_assignable<_H1>::value
476 	       && is_nothrow_move_assignable<_Equal>::value)
477       {
478         constexpr bool __move_storage =
479 	  __node_alloc_traits::_S_propagate_on_move_assign()
480 	  || __node_alloc_traits::_S_always_equal();
481 	_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
482 	return *this;
483       }
484 
485       _Hashtable&
486       operator=(initializer_list<value_type> __l)
487       {
488 	__reuse_or_alloc_node_type __roan(_M_begin(), *this);
489 	_M_before_begin._M_nxt = nullptr;
490 	clear();
491 	this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys());
492 	return *this;
493       }
494 
495       ~_Hashtable() noexcept;
496 
497       void
498       swap(_Hashtable&)
499       noexcept(__and_<__is_nothrow_swappable<_H1>,
500 	                  __is_nothrow_swappable<_Equal>>::value);
501 
502       // Basic container operations
503       iterator
504       begin() noexcept
505       { return iterator(_M_begin()); }
506 
507       const_iterator
508       begin() const noexcept
509       { return const_iterator(_M_begin()); }
510 
511       iterator
512       end() noexcept
513       { return iterator(nullptr); }
514 
515       const_iterator
516       end() const noexcept
517       { return const_iterator(nullptr); }
518 
519       const_iterator
520       cbegin() const noexcept
521       { return const_iterator(_M_begin()); }
522 
523       const_iterator
524       cend() const noexcept
525       { return const_iterator(nullptr); }
526 
527       size_type
528       size() const noexcept
529       { return _M_element_count; }
530 
531       _GLIBCXX_NODISCARD bool
532       empty() const noexcept
533       { return size() == 0; }
534 
535       allocator_type
536       get_allocator() const noexcept
537       { return allocator_type(this->_M_node_allocator()); }
538 
539       size_type
540       max_size() const noexcept
541       { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
542 
543       // Observers
544       key_equal
545       key_eq() const
546       { return this->_M_eq(); }
547 
548       // hash_function, if present, comes from _Hash_code_base.
549 
550       // Bucket operations
551       size_type
552       bucket_count() const noexcept
553       { return _M_bucket_count; }
554 
555       size_type
556       max_bucket_count() const noexcept
557       { return max_size(); }
558 
559       size_type
560       bucket_size(size_type __n) const
561       { return std::distance(begin(__n), end(__n)); }
562 
563       size_type
564       bucket(const key_type& __k) const
565       { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
566 
567       local_iterator
568       begin(size_type __n)
569       {
570 	return local_iterator(*this, _M_bucket_begin(__n),
571 			      __n, _M_bucket_count);
572       }
573 
574       local_iterator
575       end(size_type __n)
576       { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
577 
578       const_local_iterator
579       begin(size_type __n) const
580       {
581 	return const_local_iterator(*this, _M_bucket_begin(__n),
582 				    __n, _M_bucket_count);
583       }
584 
585       const_local_iterator
586       end(size_type __n) const
587       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
588 
589       // DR 691.
590       const_local_iterator
591       cbegin(size_type __n) const
592       {
593 	return const_local_iterator(*this, _M_bucket_begin(__n),
594 				    __n, _M_bucket_count);
595       }
596 
597       const_local_iterator
598       cend(size_type __n) const
599       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
600 
601       float
602       load_factor() const noexcept
603       {
604 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
605       }
606 
607       // max_load_factor, if present, comes from _Rehash_base.
608 
609       // Generalization of max_load_factor.  Extension, not found in
610       // TR1.  Only useful if _RehashPolicy is something other than
611       // the default.
612       const _RehashPolicy&
613       __rehash_policy() const
614       { return _M_rehash_policy; }
615 
616       void
617       __rehash_policy(const _RehashPolicy& __pol)
618       { _M_rehash_policy = __pol; }
619 
620       // Lookup.
621       iterator
622       find(const key_type& __k);
623 
624       const_iterator
625       find(const key_type& __k) const;
626 
627       size_type
628       count(const key_type& __k) const;
629 
630       std::pair<iterator, iterator>
631       equal_range(const key_type& __k);
632 
633       std::pair<const_iterator, const_iterator>
634       equal_range(const key_type& __k) const;
635 
636     protected:
637       // Bucket index computation helpers.
638       size_type
639       _M_bucket_index(__node_type* __n) const noexcept
640       { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
641 
642       size_type
643       _M_bucket_index(const key_type& __k, __hash_code __c) const
644       { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
645 
646       // Find and insert helper functions and types
647       // Find the node before the one matching the criteria.
648       __node_base*
649       _M_find_before_node(size_type, const key_type&, __hash_code) const;
650 
651       __node_type*
652       _M_find_node(size_type __bkt, const key_type& __key,
653 		   __hash_code __c) const
654       {
655 	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
656 	if (__before_n)
657 	  return static_cast<__node_type*>(__before_n->_M_nxt);
658 	return nullptr;
659       }
660 
661       // Insert a node at the beginning of a bucket.
662       void
663       _M_insert_bucket_begin(size_type, __node_type*);
664 
665       // Remove the bucket first node
666       void
667       _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
668 			     size_type __next_bkt);
669 
670       // Get the node before __n in the bucket __bkt
671       __node_base*
672       _M_get_previous_node(size_type __bkt, __node_base* __n);
673 
674       // Insert node with hash code __code, in bucket bkt if no rehash (assumes
675       // no element with its key already present). Take ownership of the node,
676       // deallocate it on exception.
677       iterator
678       _M_insert_unique_node(size_type __bkt, __hash_code __code,
679 			    __node_type* __n, size_type __n_elt = 1);
680 
681       // Insert node with hash code __code. Take ownership of the node,
682       // deallocate it on exception.
683       iterator
684       _M_insert_multi_node(__node_type* __hint,
685 			   __hash_code __code, __node_type* __n);
686 
687       template<typename... _Args>
688 	std::pair<iterator, bool>
689 	_M_emplace(std::true_type, _Args&&... __args);
690 
691       template<typename... _Args>
692 	iterator
693 	_M_emplace(std::false_type __uk, _Args&&... __args)
694 	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
695 
696       // Emplace with hint, useless when keys are unique.
697       template<typename... _Args>
698 	iterator
699 	_M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
700 	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
701 
702       template<typename... _Args>
703 	iterator
704 	_M_emplace(const_iterator, std::false_type, _Args&&... __args);
705 
706       template<typename _Arg, typename _NodeGenerator>
707 	std::pair<iterator, bool>
708 	_M_insert(_Arg&&, const _NodeGenerator&, true_type, size_type = 1);
709 
710       template<typename _Arg, typename _NodeGenerator>
711 	iterator
712 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
713 		  false_type __uk)
714 	{
715 	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
716 			   __uk);
717 	}
718 
719       // Insert with hint, not used when keys are unique.
720       template<typename _Arg, typename _NodeGenerator>
721 	iterator
722 	_M_insert(const_iterator, _Arg&& __arg,
723 		  const _NodeGenerator& __node_gen, true_type __uk)
724 	{
725 	  return
726 	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
727 	}
728 
729       // Insert with hint when keys are not unique.
730       template<typename _Arg, typename _NodeGenerator>
731 	iterator
732 	_M_insert(const_iterator, _Arg&&,
733 		  const _NodeGenerator&, false_type);
734 
735       size_type
736       _M_erase(std::true_type, const key_type&);
737 
738       size_type
739       _M_erase(std::false_type, const key_type&);
740 
741       iterator
742       _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
743 
744     public:
745       // Emplace
746       template<typename... _Args>
747 	__ireturn_type
748 	emplace(_Args&&... __args)
749 	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
750 
751       template<typename... _Args>
752 	iterator
753 	emplace_hint(const_iterator __hint, _Args&&... __args)
754 	{
755 	  return _M_emplace(__hint, __unique_keys(),
756 			    std::forward<_Args>(__args)...);
757 	}
758 
759       // Insert member functions via inheritance.
760 
761       // Erase
762       iterator
763       erase(const_iterator);
764 
765       // LWG 2059.
766       iterator
767       erase(iterator __it)
768       { return erase(const_iterator(__it)); }
769 
770       size_type
771       erase(const key_type& __k)
772       { return _M_erase(__unique_keys(), __k); }
773 
774       iterator
775       erase(const_iterator, const_iterator);
776 
777       void
778       clear() noexcept;
779 
780       // Set number of buckets to be appropriate for container of n element.
781       void rehash(size_type __n);
782 
783       // DR 1189.
784       // reserve, if present, comes from _Rehash_base.
785 
786 #if __cplusplus > 201402L
787       /// Re-insert an extracted node into a container with unique keys.
788       insert_return_type
789       _M_reinsert_node(node_type&& __nh)
790       {
791 	insert_return_type __ret;
792 	if (__nh.empty())
793 	  __ret.position = end();
794 	else
795 	  {
796 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
797 
798 	    const key_type& __k = __nh._M_key();
799 	    __hash_code __code = this->_M_hash_code(__k);
800 	    size_type __bkt = _M_bucket_index(__k, __code);
801 	    if (__node_type* __n = _M_find_node(__bkt, __k, __code))
802 	      {
803 		__ret.node = std::move(__nh);
804 		__ret.position = iterator(__n);
805 		__ret.inserted = false;
806 	      }
807 	    else
808 	      {
809 		__ret.position
810 		  = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
811 		__nh._M_ptr = nullptr;
812 		__ret.inserted = true;
813 	      }
814 	  }
815 	return __ret;
816       }
817 
818       /// Re-insert an extracted node into a container with equivalent keys.
819       iterator
820       _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
821       {
822 	iterator __ret;
823 	if (__nh.empty())
824 	  __ret = end();
825 	else
826 	  {
827 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
828 
829 	    auto __code = this->_M_hash_code(__nh._M_key());
830 	    auto __node = std::exchange(__nh._M_ptr, nullptr);
831 	    // FIXME: this deallocates the node on exception.
832 	    __ret = _M_insert_multi_node(__hint._M_cur, __code, __node);
833 	  }
834 	return __ret;
835       }
836 
837       /// Extract a node.
838       node_type
839       extract(const_iterator __pos)
840       {
841 	__node_type* __n = __pos._M_cur;
842 	size_t __bkt = _M_bucket_index(__n);
843 
844 	// Look for previous node to unlink it from the erased one, this
845 	// is why we need buckets to contain the before begin to make
846 	// this search fast.
847 	__node_base* __prev_n = _M_get_previous_node(__bkt, __n);
848 
849 	if (__prev_n == _M_buckets[__bkt])
850 	  _M_remove_bucket_begin(__bkt, __n->_M_next(),
851 	     __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
852 	else if (__n->_M_nxt)
853 	  {
854 	    size_type __next_bkt = _M_bucket_index(__n->_M_next());
855 	    if (__next_bkt != __bkt)
856 	      _M_buckets[__next_bkt] = __prev_n;
857 	  }
858 
859 	__prev_n->_M_nxt = __n->_M_nxt;
860 	__n->_M_nxt = nullptr;
861 	--_M_element_count;
862 	return { __n, this->_M_node_allocator() };
863       }
864 
865       /// Extract a node.
866       node_type
867       extract(const _Key& __k)
868       {
869 	node_type __nh;
870 	auto __pos = find(__k);
871 	if (__pos != end())
872 	  __nh = extract(const_iterator(__pos));
873 	return __nh;
874       }
875 
876       /// Merge from a compatible container into one with unique keys.
877       template<typename _Compatible_Hashtable>
878 	void
879 	_M_merge_unique(_Compatible_Hashtable& __src) noexcept
880 	{
881 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
882 	      node_type>, "Node types are compatible");
883 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
884 
885 	  auto __n_elt = __src.size();
886 	  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
887 	    {
888 	      auto __pos = __i++;
889 	      const key_type& __k = this->_M_extract()(__pos._M_cur->_M_v());
890 	      __hash_code __code = this->_M_hash_code(__k);
891 	      size_type __bkt = _M_bucket_index(__k, __code);
892 	      if (_M_find_node(__bkt, __k, __code) == nullptr)
893 		{
894 		  auto __nh = __src.extract(__pos);
895 		  _M_insert_unique_node(__bkt, __code, __nh._M_ptr, __n_elt);
896 		  __nh._M_ptr = nullptr;
897 		  __n_elt = 1;
898 		}
899 	      else if (__n_elt != 1)
900 		--__n_elt;
901 	    }
902 	}
903 
904       /// Merge from a compatible container into one with equivalent keys.
905       template<typename _Compatible_Hashtable>
906 	void
907 	_M_merge_multi(_Compatible_Hashtable& __src) noexcept
908 	{
909 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
910 	      node_type>, "Node types are compatible");
911 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
912 
913 	  this->reserve(size() + __src.size());
914 	  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
915 	    _M_reinsert_node_multi(cend(), __src.extract(__i++));
916 	}
917 #endif // C++17
918 
919     private:
920       // Helper rehash method used when keys are unique.
921       void _M_rehash_aux(size_type __n, std::true_type);
922 
923       // Helper rehash method used when keys can be non-unique.
924       void _M_rehash_aux(size_type __n, std::false_type);
925 
926       // Unconditionally change size of bucket array to n, restore
927       // hash policy state to __state on exception.
928       void _M_rehash(size_type __n, const __rehash_state& __state);
929     };
930 
931 
932   // Definitions of class template _Hashtable's out-of-line member functions.
933   template<typename _Key, typename _Value,
934 	   typename _Alloc, typename _ExtractKey, typename _Equal,
935 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
936 	   typename _Traits>
937     auto
938     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
939 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
940     _M_bucket_begin(size_type __bkt) const
941     -> __node_type*
942     {
943       __node_base* __n = _M_buckets[__bkt];
944       return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
945     }
946 
947   template<typename _Key, typename _Value,
948 	   typename _Alloc, typename _ExtractKey, typename _Equal,
949 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
950 	   typename _Traits>
951     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
952 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
953     _Hashtable(size_type __bucket_hint,
954 	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
955 	       const _Equal& __eq, const _ExtractKey& __exk,
956 	       const allocator_type& __a)
957       : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
958     {
959       auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
960       if (__bkt > _M_bucket_count)
961 	{
962 	  _M_buckets = _M_allocate_buckets(__bkt);
963 	  _M_bucket_count = __bkt;
964 	}
965     }
966 
967   template<typename _Key, typename _Value,
968 	   typename _Alloc, typename _ExtractKey, typename _Equal,
969 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
970 	   typename _Traits>
971     template<typename _InputIterator>
972       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
973 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
974       _Hashtable(_InputIterator __f, _InputIterator __l,
975 		 size_type __bucket_hint,
976 		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
977 		 const _Equal& __eq, const _ExtractKey& __exk,
978 		 const allocator_type& __a)
979 	: _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
980       {
981 	auto __nb_elems = __detail::__distance_fw(__f, __l);
982 	auto __bkt_count =
983 	  _M_rehash_policy._M_next_bkt(
984 	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
985 		     __bucket_hint));
986 
987 	if (__bkt_count > _M_bucket_count)
988 	  {
989 	    _M_buckets = _M_allocate_buckets(__bkt_count);
990 	    _M_bucket_count = __bkt_count;
991 	  }
992 
993 	for (; __f != __l; ++__f)
994 	  this->insert(*__f);
995       }
996 
997   template<typename _Key, typename _Value,
998 	   typename _Alloc, typename _ExtractKey, typename _Equal,
999 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1000 	   typename _Traits>
1001     auto
1002     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1003 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1004     operator=(const _Hashtable& __ht)
1005     -> _Hashtable&
1006     {
1007       if (&__ht == this)
1008 	return *this;
1009 
1010       if (__node_alloc_traits::_S_propagate_on_copy_assign())
1011 	{
1012 	  auto& __this_alloc = this->_M_node_allocator();
1013 	  auto& __that_alloc = __ht._M_node_allocator();
1014 	  if (!__node_alloc_traits::_S_always_equal()
1015 	      && __this_alloc != __that_alloc)
1016 	    {
1017 	      // Replacement allocator cannot free existing storage.
1018 	      this->_M_deallocate_nodes(_M_begin());
1019 	      _M_before_begin._M_nxt = nullptr;
1020 	      _M_deallocate_buckets();
1021 	      _M_buckets = nullptr;
1022 	      std::__alloc_on_copy(__this_alloc, __that_alloc);
1023 	      __hashtable_base::operator=(__ht);
1024 	      _M_bucket_count = __ht._M_bucket_count;
1025 	      _M_element_count = __ht._M_element_count;
1026 	      _M_rehash_policy = __ht._M_rehash_policy;
1027 	      __try
1028 		{
1029 		  _M_assign(__ht,
1030 			    [this](const __node_type* __n)
1031 			    { return this->_M_allocate_node(__n->_M_v()); });
1032 		}
1033 	      __catch(...)
1034 		{
1035 		  // _M_assign took care of deallocating all memory. Now we
1036 		  // must make sure this instance remains in a usable state.
1037 		  _M_reset();
1038 		  __throw_exception_again;
1039 		}
1040 	      return *this;
1041 	    }
1042 	  std::__alloc_on_copy(__this_alloc, __that_alloc);
1043 	}
1044 
1045       // Reuse allocated buckets and nodes.
1046       _M_assign_elements(__ht,
1047 	[](const __reuse_or_alloc_node_type& __roan, const __node_type* __n)
1048 	{ return __roan(__n->_M_v()); });
1049       return *this;
1050     }
1051 
1052   template<typename _Key, typename _Value,
1053 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1054 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1055 	   typename _Traits>
1056     template<typename _Ht, typename _NodeGenerator>
1057       void
1058       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1059 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1060       _M_assign_elements(_Ht&& __ht, const _NodeGenerator& __node_gen)
1061       {
1062 	__bucket_type* __former_buckets = nullptr;
1063 	std::size_t __former_bucket_count = _M_bucket_count;
1064 	const __rehash_state& __former_state = _M_rehash_policy._M_state();
1065 
1066 	if (_M_bucket_count != __ht._M_bucket_count)
1067 	  {
1068 	    __former_buckets = _M_buckets;
1069 	    _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1070 	    _M_bucket_count = __ht._M_bucket_count;
1071 	  }
1072 	else
1073 	  __builtin_memset(_M_buckets, 0,
1074 			   _M_bucket_count * sizeof(__bucket_type));
1075 
1076 	__try
1077 	  {
1078 	    __hashtable_base::operator=(std::forward<_Ht>(__ht));
1079 	    _M_element_count = __ht._M_element_count;
1080 	    _M_rehash_policy = __ht._M_rehash_policy;
1081 	    __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1082 	    _M_before_begin._M_nxt = nullptr;
1083 	    _M_assign(__ht,
1084 		      [&__node_gen, &__roan](__node_type* __n)
1085 		      { return __node_gen(__roan, __n); });
1086 	    if (__former_buckets)
1087 	      _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1088 	  }
1089 	__catch(...)
1090 	  {
1091 	    if (__former_buckets)
1092 	      {
1093 		// Restore previous buckets.
1094 		_M_deallocate_buckets();
1095 		_M_rehash_policy._M_reset(__former_state);
1096 		_M_buckets = __former_buckets;
1097 		_M_bucket_count = __former_bucket_count;
1098 	      }
1099 	    __builtin_memset(_M_buckets, 0,
1100 			     _M_bucket_count * sizeof(__bucket_type));
1101 	    __throw_exception_again;
1102 	  }
1103       }
1104 
1105   template<typename _Key, typename _Value,
1106 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1107 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1108 	   typename _Traits>
1109     template<typename _NodeGenerator>
1110       void
1111       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1112 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1113       _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
1114       {
1115 	__bucket_type* __buckets = nullptr;
1116 	if (!_M_buckets)
1117 	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1118 
1119 	__try
1120 	  {
1121 	    if (!__ht._M_before_begin._M_nxt)
1122 	      return;
1123 
1124 	    // First deal with the special first node pointed to by
1125 	    // _M_before_begin.
1126 	    __node_type* __ht_n = __ht._M_begin();
1127 	    __node_type* __this_n = __node_gen(__ht_n);
1128 	    this->_M_copy_code(__this_n, __ht_n);
1129 	    _M_before_begin._M_nxt = __this_n;
1130 	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
1131 
1132 	    // Then deal with other nodes.
1133 	    __node_base* __prev_n = __this_n;
1134 	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1135 	      {
1136 		__this_n = __node_gen(__ht_n);
1137 		__prev_n->_M_nxt = __this_n;
1138 		this->_M_copy_code(__this_n, __ht_n);
1139 		size_type __bkt = _M_bucket_index(__this_n);
1140 		if (!_M_buckets[__bkt])
1141 		  _M_buckets[__bkt] = __prev_n;
1142 		__prev_n = __this_n;
1143 	      }
1144 	  }
1145 	__catch(...)
1146 	  {
1147 	    clear();
1148 	    if (__buckets)
1149 	      _M_deallocate_buckets();
1150 	    __throw_exception_again;
1151 	  }
1152       }
1153 
1154   template<typename _Key, typename _Value,
1155 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1156 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1157 	   typename _Traits>
1158     void
1159     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1160 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1161     _M_reset() noexcept
1162     {
1163       _M_rehash_policy._M_reset();
1164       _M_bucket_count = 1;
1165       _M_single_bucket = nullptr;
1166       _M_buckets = &_M_single_bucket;
1167       _M_before_begin._M_nxt = nullptr;
1168       _M_element_count = 0;
1169     }
1170 
1171   template<typename _Key, typename _Value,
1172 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1173 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1174 	   typename _Traits>
1175     void
1176     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1177 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1178     _M_move_assign(_Hashtable&& __ht, std::true_type)
1179     {
1180       this->_M_deallocate_nodes(_M_begin());
1181       _M_deallocate_buckets();
1182       __hashtable_base::operator=(std::move(__ht));
1183       _M_rehash_policy = __ht._M_rehash_policy;
1184       if (!__ht._M_uses_single_bucket())
1185 	_M_buckets = __ht._M_buckets;
1186       else
1187 	{
1188 	  _M_buckets = &_M_single_bucket;
1189 	  _M_single_bucket = __ht._M_single_bucket;
1190 	}
1191       _M_bucket_count = __ht._M_bucket_count;
1192       _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1193       _M_element_count = __ht._M_element_count;
1194       std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1195 
1196       // Fix buckets containing the _M_before_begin pointers that can't be
1197       // moved.
1198       if (_M_begin())
1199 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1200       __ht._M_reset();
1201     }
1202 
1203   template<typename _Key, typename _Value,
1204 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1205 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1206 	   typename _Traits>
1207     void
1208     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1209 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1210     _M_move_assign(_Hashtable&& __ht, std::false_type)
1211     {
1212       if (__ht._M_node_allocator() == this->_M_node_allocator())
1213 	_M_move_assign(std::move(__ht), std::true_type());
1214       else
1215 	{
1216 	  // Can't move memory, move elements then.
1217 	  _M_assign_elements(std::move(__ht),
1218 		[](const __reuse_or_alloc_node_type& __roan, __node_type* __n)
1219 		{ return __roan(std::move_if_noexcept(__n->_M_v())); });
1220 	  __ht.clear();
1221 	}
1222     }
1223 
1224   template<typename _Key, typename _Value,
1225 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1226 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1227 	   typename _Traits>
1228     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1229 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1230     _Hashtable(const _Hashtable& __ht)
1231     : __hashtable_base(__ht),
1232       __map_base(__ht),
1233       __rehash_base(__ht),
1234       __hashtable_alloc(
1235 	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1236       _M_buckets(nullptr),
1237       _M_bucket_count(__ht._M_bucket_count),
1238       _M_element_count(__ht._M_element_count),
1239       _M_rehash_policy(__ht._M_rehash_policy)
1240     {
1241       _M_assign(__ht,
1242 		[this](const __node_type* __n)
1243 		{ return this->_M_allocate_node(__n->_M_v()); });
1244     }
1245 
1246   template<typename _Key, typename _Value,
1247 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1248 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1249 	   typename _Traits>
1250     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1251 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1252     _Hashtable(_Hashtable&& __ht) noexcept
1253     : __hashtable_base(__ht),
1254       __map_base(__ht),
1255       __rehash_base(__ht),
1256       __hashtable_alloc(std::move(__ht._M_base_alloc())),
1257       _M_buckets(__ht._M_buckets),
1258       _M_bucket_count(__ht._M_bucket_count),
1259       _M_before_begin(__ht._M_before_begin._M_nxt),
1260       _M_element_count(__ht._M_element_count),
1261       _M_rehash_policy(__ht._M_rehash_policy)
1262     {
1263       // Update, if necessary, buckets if __ht is using its single bucket.
1264       if (__ht._M_uses_single_bucket())
1265 	{
1266 	  _M_buckets = &_M_single_bucket;
1267 	  _M_single_bucket = __ht._M_single_bucket;
1268 	}
1269 
1270       // Update, if necessary, bucket pointing to before begin that hasn't
1271       // moved.
1272       if (_M_begin())
1273 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1274 
1275       __ht._M_reset();
1276     }
1277 
1278   template<typename _Key, typename _Value,
1279 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1280 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1281 	   typename _Traits>
1282     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1283 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1284     _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1285     : __hashtable_base(__ht),
1286       __map_base(__ht),
1287       __rehash_base(__ht),
1288       __hashtable_alloc(__node_alloc_type(__a)),
1289       _M_buckets(),
1290       _M_bucket_count(__ht._M_bucket_count),
1291       _M_element_count(__ht._M_element_count),
1292       _M_rehash_policy(__ht._M_rehash_policy)
1293     {
1294       _M_assign(__ht,
1295 		[this](const __node_type* __n)
1296 		{ return this->_M_allocate_node(__n->_M_v()); });
1297     }
1298 
1299   template<typename _Key, typename _Value,
1300 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1301 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1302 	   typename _Traits>
1303     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1304 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1305     _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1306     : __hashtable_base(__ht),
1307       __map_base(__ht),
1308       __rehash_base(__ht),
1309       __hashtable_alloc(__node_alloc_type(__a)),
1310       _M_buckets(nullptr),
1311       _M_bucket_count(__ht._M_bucket_count),
1312       _M_element_count(__ht._M_element_count),
1313       _M_rehash_policy(__ht._M_rehash_policy)
1314     {
1315       if (__ht._M_node_allocator() == this->_M_node_allocator())
1316 	{
1317 	  if (__ht._M_uses_single_bucket())
1318 	    {
1319 	      _M_buckets = &_M_single_bucket;
1320 	      _M_single_bucket = __ht._M_single_bucket;
1321 	    }
1322 	  else
1323 	    _M_buckets = __ht._M_buckets;
1324 
1325 	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1326 	  // Update, if necessary, bucket pointing to before begin that hasn't
1327 	  // moved.
1328 	  if (_M_begin())
1329 	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1330 	  __ht._M_reset();
1331 	}
1332       else
1333 	{
1334 	  _M_assign(__ht,
1335 		    [this](__node_type* __n)
1336 		    {
1337 		      return this->_M_allocate_node(
1338 					std::move_if_noexcept(__n->_M_v()));
1339 		    });
1340 	  __ht.clear();
1341 	}
1342     }
1343 
1344   template<typename _Key, typename _Value,
1345 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1346 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1347 	   typename _Traits>
1348     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1349 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1350     ~_Hashtable() noexcept
1351     {
1352       clear();
1353       _M_deallocate_buckets();
1354 
1355       static_assert(__is_invocable<const _H1&, const _Key&>{},
1356 	  "hash function must be invocable with an argument of key type");
1357       static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
1358 	  "key equality predicate must be invocable with two arguments of "
1359 	  "key type");
1360     }
1361 
1362   template<typename _Key, typename _Value,
1363 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1364 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1365 	   typename _Traits>
1366     void
1367     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1368 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1369     swap(_Hashtable& __x)
1370     noexcept(__and_<__is_nothrow_swappable<_H1>,
1371 	                __is_nothrow_swappable<_Equal>>::value)
1372     {
1373       // The only base class with member variables is hash_code_base.
1374       // We define _Hash_code_base::_M_swap because different
1375       // specializations have different members.
1376       this->_M_swap(__x);
1377 
1378       std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1379       std::swap(_M_rehash_policy, __x._M_rehash_policy);
1380 
1381       // Deal properly with potentially moved instances.
1382       if (this->_M_uses_single_bucket())
1383 	{
1384 	  if (!__x._M_uses_single_bucket())
1385 	    {
1386 	      _M_buckets = __x._M_buckets;
1387 	      __x._M_buckets = &__x._M_single_bucket;
1388 	    }
1389 	}
1390       else if (__x._M_uses_single_bucket())
1391 	{
1392 	  __x._M_buckets = _M_buckets;
1393 	  _M_buckets = &_M_single_bucket;
1394 	}
1395       else
1396 	std::swap(_M_buckets, __x._M_buckets);
1397 
1398       std::swap(_M_bucket_count, __x._M_bucket_count);
1399       std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1400       std::swap(_M_element_count, __x._M_element_count);
1401       std::swap(_M_single_bucket, __x._M_single_bucket);
1402 
1403       // Fix buckets containing the _M_before_begin pointers that can't be
1404       // swapped.
1405       if (_M_begin())
1406 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1407 
1408       if (__x._M_begin())
1409 	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1410 	  = &__x._M_before_begin;
1411     }
1412 
1413   template<typename _Key, typename _Value,
1414 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1415 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1416 	   typename _Traits>
1417     auto
1418     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1419 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1420     find(const key_type& __k)
1421     -> iterator
1422     {
1423       __hash_code __code = this->_M_hash_code(__k);
1424       std::size_t __n = _M_bucket_index(__k, __code);
1425       __node_type* __p = _M_find_node(__n, __k, __code);
1426       return __p ? iterator(__p) : end();
1427     }
1428 
1429   template<typename _Key, typename _Value,
1430 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1431 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1432 	   typename _Traits>
1433     auto
1434     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1435 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1436     find(const key_type& __k) const
1437     -> const_iterator
1438     {
1439       __hash_code __code = this->_M_hash_code(__k);
1440       std::size_t __n = _M_bucket_index(__k, __code);
1441       __node_type* __p = _M_find_node(__n, __k, __code);
1442       return __p ? const_iterator(__p) : end();
1443     }
1444 
1445   template<typename _Key, typename _Value,
1446 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1447 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1448 	   typename _Traits>
1449     auto
1450     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1451 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1452     count(const key_type& __k) const
1453     -> size_type
1454     {
1455       __hash_code __code = this->_M_hash_code(__k);
1456       std::size_t __n = _M_bucket_index(__k, __code);
1457       __node_type* __p = _M_bucket_begin(__n);
1458       if (!__p)
1459 	return 0;
1460 
1461       std::size_t __result = 0;
1462       for (;; __p = __p->_M_next())
1463 	{
1464 	  if (this->_M_equals(__k, __code, __p))
1465 	    ++__result;
1466 	  else if (__result)
1467 	    // All equivalent values are next to each other, if we
1468 	    // found a non-equivalent value after an equivalent one it
1469 	    // means that we won't find any new equivalent value.
1470 	    break;
1471 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1472 	    break;
1473 	}
1474       return __result;
1475     }
1476 
1477   template<typename _Key, typename _Value,
1478 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1479 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1480 	   typename _Traits>
1481     auto
1482     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1483 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1484     equal_range(const key_type& __k)
1485     -> pair<iterator, iterator>
1486     {
1487       __hash_code __code = this->_M_hash_code(__k);
1488       std::size_t __n = _M_bucket_index(__k, __code);
1489       __node_type* __p = _M_find_node(__n, __k, __code);
1490 
1491       if (__p)
1492 	{
1493 	  __node_type* __p1 = __p->_M_next();
1494 	  while (__p1 && _M_bucket_index(__p1) == __n
1495 		 && this->_M_equals(__k, __code, __p1))
1496 	    __p1 = __p1->_M_next();
1497 
1498 	  return std::make_pair(iterator(__p), iterator(__p1));
1499 	}
1500       else
1501 	return std::make_pair(end(), end());
1502     }
1503 
1504   template<typename _Key, typename _Value,
1505 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1506 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1507 	   typename _Traits>
1508     auto
1509     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1510 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1511     equal_range(const key_type& __k) const
1512     -> pair<const_iterator, const_iterator>
1513     {
1514       __hash_code __code = this->_M_hash_code(__k);
1515       std::size_t __n = _M_bucket_index(__k, __code);
1516       __node_type* __p = _M_find_node(__n, __k, __code);
1517 
1518       if (__p)
1519 	{
1520 	  __node_type* __p1 = __p->_M_next();
1521 	  while (__p1 && _M_bucket_index(__p1) == __n
1522 		 && this->_M_equals(__k, __code, __p1))
1523 	    __p1 = __p1->_M_next();
1524 
1525 	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1526 	}
1527       else
1528 	return std::make_pair(end(), end());
1529     }
1530 
1531   // Find the node whose key compares equal to k in the bucket n.
1532   // Return nullptr if no node is found.
1533   template<typename _Key, typename _Value,
1534 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1535 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1536 	   typename _Traits>
1537     auto
1538     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1539 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1540     _M_find_before_node(size_type __n, const key_type& __k,
1541 			__hash_code __code) const
1542     -> __node_base*
1543     {
1544       __node_base* __prev_p = _M_buckets[__n];
1545       if (!__prev_p)
1546 	return nullptr;
1547 
1548       for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1549 	   __p = __p->_M_next())
1550 	{
1551 	  if (this->_M_equals(__k, __code, __p))
1552 	    return __prev_p;
1553 
1554 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1555 	    break;
1556 	  __prev_p = __p;
1557 	}
1558       return nullptr;
1559     }
1560 
1561   template<typename _Key, typename _Value,
1562 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1563 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1564 	   typename _Traits>
1565     void
1566     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1567 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1568     _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1569     {
1570       if (_M_buckets[__bkt])
1571 	{
1572 	  // Bucket is not empty, we just need to insert the new node
1573 	  // after the bucket before begin.
1574 	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1575 	  _M_buckets[__bkt]->_M_nxt = __node;
1576 	}
1577       else
1578 	{
1579 	  // The bucket is empty, the new node is inserted at the
1580 	  // beginning of the singly-linked list and the bucket will
1581 	  // contain _M_before_begin pointer.
1582 	  __node->_M_nxt = _M_before_begin._M_nxt;
1583 	  _M_before_begin._M_nxt = __node;
1584 	  if (__node->_M_nxt)
1585 	    // We must update former begin bucket that is pointing to
1586 	    // _M_before_begin.
1587 	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1588 	  _M_buckets[__bkt] = &_M_before_begin;
1589 	}
1590     }
1591 
1592   template<typename _Key, typename _Value,
1593 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1594 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1595 	   typename _Traits>
1596     void
1597     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1598 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1599     _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1600 			   size_type __next_bkt)
1601     {
1602       if (!__next || __next_bkt != __bkt)
1603 	{
1604 	  // Bucket is now empty
1605 	  // First update next bucket if any
1606 	  if (__next)
1607 	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1608 
1609 	  // Second update before begin node if necessary
1610 	  if (&_M_before_begin == _M_buckets[__bkt])
1611 	    _M_before_begin._M_nxt = __next;
1612 	  _M_buckets[__bkt] = nullptr;
1613 	}
1614     }
1615 
1616   template<typename _Key, typename _Value,
1617 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1618 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1619 	   typename _Traits>
1620     auto
1621     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1622 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1623     _M_get_previous_node(size_type __bkt, __node_base* __n)
1624     -> __node_base*
1625     {
1626       __node_base* __prev_n = _M_buckets[__bkt];
1627       while (__prev_n->_M_nxt != __n)
1628 	__prev_n = __prev_n->_M_nxt;
1629       return __prev_n;
1630     }
1631 
1632   template<typename _Key, typename _Value,
1633 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1634 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1635 	   typename _Traits>
1636     template<typename... _Args>
1637       auto
1638       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1639 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1640       _M_emplace(std::true_type, _Args&&... __args)
1641       -> pair<iterator, bool>
1642       {
1643 	// First build the node to get access to the hash code
1644 	__node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1645 	const key_type& __k = this->_M_extract()(__node->_M_v());
1646 	__hash_code __code;
1647 	__try
1648 	  {
1649 	    __code = this->_M_hash_code(__k);
1650 	  }
1651 	__catch(...)
1652 	  {
1653 	    this->_M_deallocate_node(__node);
1654 	    __throw_exception_again;
1655 	  }
1656 
1657 	size_type __bkt = _M_bucket_index(__k, __code);
1658 	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1659 	  {
1660 	    // There is already an equivalent node, no insertion
1661 	    this->_M_deallocate_node(__node);
1662 	    return std::make_pair(iterator(__p), false);
1663 	  }
1664 
1665 	// Insert the node
1666 	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1667 			      true);
1668       }
1669 
1670   template<typename _Key, typename _Value,
1671 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1672 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1673 	   typename _Traits>
1674     template<typename... _Args>
1675       auto
1676       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1677 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1678       _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1679       -> iterator
1680       {
1681 	// First build the node to get its hash code.
1682 	__node_type* __node =
1683 	  this->_M_allocate_node(std::forward<_Args>(__args)...);
1684 
1685 	__hash_code __code;
1686 	__try
1687 	  {
1688 	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1689 	  }
1690 	__catch(...)
1691 	  {
1692 	    this->_M_deallocate_node(__node);
1693 	    __throw_exception_again;
1694 	  }
1695 
1696 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1697       }
1698 
1699   template<typename _Key, typename _Value,
1700 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1701 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1702 	   typename _Traits>
1703     auto
1704     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1705 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1706     _M_insert_unique_node(size_type __bkt, __hash_code __code,
1707 			  __node_type* __node, size_type __n_elt)
1708     -> iterator
1709     {
1710       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1711       std::pair<bool, std::size_t> __do_rehash
1712 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
1713 					  __n_elt);
1714 
1715       __try
1716 	{
1717 	  if (__do_rehash.first)
1718 	    {
1719 	      _M_rehash(__do_rehash.second, __saved_state);
1720 	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1721 	    }
1722 
1723 	  this->_M_store_code(__node, __code);
1724 
1725 	  // Always insert at the beginning of the bucket.
1726 	  _M_insert_bucket_begin(__bkt, __node);
1727 	  ++_M_element_count;
1728 	  return iterator(__node);
1729 	}
1730       __catch(...)
1731 	{
1732 	  this->_M_deallocate_node(__node);
1733 	  __throw_exception_again;
1734 	}
1735     }
1736 
1737   // Insert node, in bucket bkt if no rehash (assumes no element with its key
1738   // already present). Take ownership of the node, deallocate it on exception.
1739   template<typename _Key, typename _Value,
1740 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1741 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1742 	   typename _Traits>
1743     auto
1744     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1745 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1746     _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1747 			 __node_type* __node)
1748     -> iterator
1749     {
1750       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1751       std::pair<bool, std::size_t> __do_rehash
1752 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1753 
1754       __try
1755 	{
1756 	  if (__do_rehash.first)
1757 	    _M_rehash(__do_rehash.second, __saved_state);
1758 
1759 	  this->_M_store_code(__node, __code);
1760 	  const key_type& __k = this->_M_extract()(__node->_M_v());
1761 	  size_type __bkt = _M_bucket_index(__k, __code);
1762 
1763 	  // Find the node before an equivalent one or use hint if it exists and
1764 	  // if it is equivalent.
1765 	  __node_base* __prev
1766 	    = __builtin_expect(__hint != nullptr, false)
1767 	      && this->_M_equals(__k, __code, __hint)
1768 		? __hint
1769 		: _M_find_before_node(__bkt, __k, __code);
1770 	  if (__prev)
1771 	    {
1772 	      // Insert after the node before the equivalent one.
1773 	      __node->_M_nxt = __prev->_M_nxt;
1774 	      __prev->_M_nxt = __node;
1775 	      if (__builtin_expect(__prev == __hint, false))
1776 	      	// hint might be the last bucket node, in this case we need to
1777 	      	// update next bucket.
1778 	      	if (__node->_M_nxt
1779 	      	    && !this->_M_equals(__k, __code, __node->_M_next()))
1780 	      	  {
1781 	      	    size_type __next_bkt = _M_bucket_index(__node->_M_next());
1782 	      	    if (__next_bkt != __bkt)
1783 	      	      _M_buckets[__next_bkt] = __node;
1784 	      	  }
1785 	    }
1786 	  else
1787 	    // The inserted node has no equivalent in the
1788 	    // hashtable. We must insert the new node at the
1789 	    // beginning of the bucket to preserve equivalent
1790 	    // elements' relative positions.
1791 	    _M_insert_bucket_begin(__bkt, __node);
1792 	  ++_M_element_count;
1793 	  return iterator(__node);
1794 	}
1795       __catch(...)
1796 	{
1797 	  this->_M_deallocate_node(__node);
1798 	  __throw_exception_again;
1799 	}
1800     }
1801 
1802   // Insert v if no element with its key is already present.
1803   template<typename _Key, typename _Value,
1804 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1805 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1806 	   typename _Traits>
1807     template<typename _Arg, typename _NodeGenerator>
1808       auto
1809       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1810 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1811       _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, true_type,
1812 		size_type __n_elt)
1813       -> pair<iterator, bool>
1814       {
1815 	const key_type& __k = this->_M_extract()(__v);
1816 	__hash_code __code = this->_M_hash_code(__k);
1817 	size_type __bkt = _M_bucket_index(__k, __code);
1818 
1819 	__node_type* __n = _M_find_node(__bkt, __k, __code);
1820 	if (__n)
1821 	  return std::make_pair(iterator(__n), false);
1822 
1823 	__n = __node_gen(std::forward<_Arg>(__v));
1824 	return { _M_insert_unique_node(__bkt, __code, __n, __n_elt), true };
1825       }
1826 
1827   // Insert v unconditionally.
1828   template<typename _Key, typename _Value,
1829 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1830 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1831 	   typename _Traits>
1832     template<typename _Arg, typename _NodeGenerator>
1833       auto
1834       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1835 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1836       _M_insert(const_iterator __hint, _Arg&& __v,
1837 		const _NodeGenerator& __node_gen, false_type)
1838       -> iterator
1839       {
1840 	// First compute the hash code so that we don't do anything if it
1841 	// throws.
1842 	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1843 
1844 	// Second allocate new node so that we don't rehash if it throws.
1845 	__node_type* __node = __node_gen(std::forward<_Arg>(__v));
1846 
1847 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1848       }
1849 
1850   template<typename _Key, typename _Value,
1851 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1852 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1853 	   typename _Traits>
1854     auto
1855     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1856 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1857     erase(const_iterator __it)
1858     -> iterator
1859     {
1860       __node_type* __n = __it._M_cur;
1861       std::size_t __bkt = _M_bucket_index(__n);
1862 
1863       // Look for previous node to unlink it from the erased one, this
1864       // is why we need buckets to contain the before begin to make
1865       // this search fast.
1866       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1867       return _M_erase(__bkt, __prev_n, __n);
1868     }
1869 
1870   template<typename _Key, typename _Value,
1871 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1872 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1873 	   typename _Traits>
1874     auto
1875     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1876 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1877     _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1878     -> iterator
1879     {
1880       if (__prev_n == _M_buckets[__bkt])
1881 	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1882 	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1883       else if (__n->_M_nxt)
1884 	{
1885 	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1886 	  if (__next_bkt != __bkt)
1887 	    _M_buckets[__next_bkt] = __prev_n;
1888 	}
1889 
1890       __prev_n->_M_nxt = __n->_M_nxt;
1891       iterator __result(__n->_M_next());
1892       this->_M_deallocate_node(__n);
1893       --_M_element_count;
1894 
1895       return __result;
1896     }
1897 
1898   template<typename _Key, typename _Value,
1899 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1900 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1901 	   typename _Traits>
1902     auto
1903     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1904 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1905     _M_erase(std::true_type, const key_type& __k)
1906     -> size_type
1907     {
1908       __hash_code __code = this->_M_hash_code(__k);
1909       std::size_t __bkt = _M_bucket_index(__k, __code);
1910 
1911       // Look for the node before the first matching node.
1912       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1913       if (!__prev_n)
1914 	return 0;
1915 
1916       // We found a matching node, erase it.
1917       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1918       _M_erase(__bkt, __prev_n, __n);
1919       return 1;
1920     }
1921 
1922   template<typename _Key, typename _Value,
1923 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1924 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1925 	   typename _Traits>
1926     auto
1927     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1928 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1929     _M_erase(std::false_type, const key_type& __k)
1930     -> size_type
1931     {
1932       __hash_code __code = this->_M_hash_code(__k);
1933       std::size_t __bkt = _M_bucket_index(__k, __code);
1934 
1935       // Look for the node before the first matching node.
1936       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1937       if (!__prev_n)
1938 	return 0;
1939 
1940       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1941       // 526. Is it undefined if a function in the standard changes
1942       // in parameters?
1943       // We use one loop to find all matching nodes and another to deallocate
1944       // them so that the key stays valid during the first loop. It might be
1945       // invalidated indirectly when destroying nodes.
1946       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1947       __node_type* __n_last = __n;
1948       std::size_t __n_last_bkt = __bkt;
1949       do
1950 	{
1951 	  __n_last = __n_last->_M_next();
1952 	  if (!__n_last)
1953 	    break;
1954 	  __n_last_bkt = _M_bucket_index(__n_last);
1955 	}
1956       while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1957 
1958       // Deallocate nodes.
1959       size_type __result = 0;
1960       do
1961 	{
1962 	  __node_type* __p = __n->_M_next();
1963 	  this->_M_deallocate_node(__n);
1964 	  __n = __p;
1965 	  ++__result;
1966 	  --_M_element_count;
1967 	}
1968       while (__n != __n_last);
1969 
1970       if (__prev_n == _M_buckets[__bkt])
1971 	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1972       else if (__n_last && __n_last_bkt != __bkt)
1973 	_M_buckets[__n_last_bkt] = __prev_n;
1974       __prev_n->_M_nxt = __n_last;
1975       return __result;
1976     }
1977 
1978   template<typename _Key, typename _Value,
1979 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1980 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1981 	   typename _Traits>
1982     auto
1983     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1984 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1985     erase(const_iterator __first, const_iterator __last)
1986     -> iterator
1987     {
1988       __node_type* __n = __first._M_cur;
1989       __node_type* __last_n = __last._M_cur;
1990       if (__n == __last_n)
1991 	return iterator(__n);
1992 
1993       std::size_t __bkt = _M_bucket_index(__n);
1994 
1995       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1996       bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1997       std::size_t __n_bkt = __bkt;
1998       for (;;)
1999 	{
2000 	  do
2001 	    {
2002 	      __node_type* __tmp = __n;
2003 	      __n = __n->_M_next();
2004 	      this->_M_deallocate_node(__tmp);
2005 	      --_M_element_count;
2006 	      if (!__n)
2007 		break;
2008 	      __n_bkt = _M_bucket_index(__n);
2009 	    }
2010 	  while (__n != __last_n && __n_bkt == __bkt);
2011 	  if (__is_bucket_begin)
2012 	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2013 	  if (__n == __last_n)
2014 	    break;
2015 	  __is_bucket_begin = true;
2016 	  __bkt = __n_bkt;
2017 	}
2018 
2019       if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2020 	_M_buckets[__n_bkt] = __prev_n;
2021       __prev_n->_M_nxt = __n;
2022       return iterator(__n);
2023     }
2024 
2025   template<typename _Key, typename _Value,
2026 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2027 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2028 	   typename _Traits>
2029     void
2030     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2031 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2032     clear() noexcept
2033     {
2034       this->_M_deallocate_nodes(_M_begin());
2035       __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
2036       _M_element_count = 0;
2037       _M_before_begin._M_nxt = nullptr;
2038     }
2039 
2040   template<typename _Key, typename _Value,
2041 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2042 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2043 	   typename _Traits>
2044     void
2045     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2046 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2047     rehash(size_type __n)
2048     {
2049       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2050       std::size_t __buckets
2051 	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2052 		   __n);
2053       __buckets = _M_rehash_policy._M_next_bkt(__buckets);
2054 
2055       if (__buckets != _M_bucket_count)
2056 	_M_rehash(__buckets, __saved_state);
2057       else
2058 	// No rehash, restore previous state to keep a consistent state.
2059 	_M_rehash_policy._M_reset(__saved_state);
2060     }
2061 
2062   template<typename _Key, typename _Value,
2063 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2064 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2065 	   typename _Traits>
2066     void
2067     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2068 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2069     _M_rehash(size_type __n, const __rehash_state& __state)
2070     {
2071       __try
2072 	{
2073 	  _M_rehash_aux(__n, __unique_keys());
2074 	}
2075       __catch(...)
2076 	{
2077 	  // A failure here means that buckets allocation failed.  We only
2078 	  // have to restore hash policy previous state.
2079 	  _M_rehash_policy._M_reset(__state);
2080 	  __throw_exception_again;
2081 	}
2082     }
2083 
2084   // Rehash when there is no equivalent elements.
2085   template<typename _Key, typename _Value,
2086 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2087 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2088 	   typename _Traits>
2089     void
2090     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2091 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2092     _M_rehash_aux(size_type __n, std::true_type)
2093     {
2094       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2095       __node_type* __p = _M_begin();
2096       _M_before_begin._M_nxt = nullptr;
2097       std::size_t __bbegin_bkt = 0;
2098       while (__p)
2099 	{
2100 	  __node_type* __next = __p->_M_next();
2101 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2102 	  if (!__new_buckets[__bkt])
2103 	    {
2104 	      __p->_M_nxt = _M_before_begin._M_nxt;
2105 	      _M_before_begin._M_nxt = __p;
2106 	      __new_buckets[__bkt] = &_M_before_begin;
2107 	      if (__p->_M_nxt)
2108 		__new_buckets[__bbegin_bkt] = __p;
2109 	      __bbegin_bkt = __bkt;
2110 	    }
2111 	  else
2112 	    {
2113 	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2114 	      __new_buckets[__bkt]->_M_nxt = __p;
2115 	    }
2116 	  __p = __next;
2117 	}
2118 
2119       _M_deallocate_buckets();
2120       _M_bucket_count = __n;
2121       _M_buckets = __new_buckets;
2122     }
2123 
2124   // Rehash when there can be equivalent elements, preserve their relative
2125   // order.
2126   template<typename _Key, typename _Value,
2127 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2128 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2129 	   typename _Traits>
2130     void
2131     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2132 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2133     _M_rehash_aux(size_type __n, std::false_type)
2134     {
2135       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2136 
2137       __node_type* __p = _M_begin();
2138       _M_before_begin._M_nxt = nullptr;
2139       std::size_t __bbegin_bkt = 0;
2140       std::size_t __prev_bkt = 0;
2141       __node_type* __prev_p = nullptr;
2142       bool __check_bucket = false;
2143 
2144       while (__p)
2145 	{
2146 	  __node_type* __next = __p->_M_next();
2147 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2148 
2149 	  if (__prev_p && __prev_bkt == __bkt)
2150 	    {
2151 	      // Previous insert was already in this bucket, we insert after
2152 	      // the previously inserted one to preserve equivalent elements
2153 	      // relative order.
2154 	      __p->_M_nxt = __prev_p->_M_nxt;
2155 	      __prev_p->_M_nxt = __p;
2156 
2157 	      // Inserting after a node in a bucket require to check that we
2158 	      // haven't change the bucket last node, in this case next
2159 	      // bucket containing its before begin node must be updated. We
2160 	      // schedule a check as soon as we move out of the sequence of
2161 	      // equivalent nodes to limit the number of checks.
2162 	      __check_bucket = true;
2163 	    }
2164 	  else
2165 	    {
2166 	      if (__check_bucket)
2167 		{
2168 		  // Check if we shall update the next bucket because of
2169 		  // insertions into __prev_bkt bucket.
2170 		  if (__prev_p->_M_nxt)
2171 		    {
2172 		      std::size_t __next_bkt
2173 			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2174 							    __n);
2175 		      if (__next_bkt != __prev_bkt)
2176 			__new_buckets[__next_bkt] = __prev_p;
2177 		    }
2178 		  __check_bucket = false;
2179 		}
2180 
2181 	      if (!__new_buckets[__bkt])
2182 		{
2183 		  __p->_M_nxt = _M_before_begin._M_nxt;
2184 		  _M_before_begin._M_nxt = __p;
2185 		  __new_buckets[__bkt] = &_M_before_begin;
2186 		  if (__p->_M_nxt)
2187 		    __new_buckets[__bbegin_bkt] = __p;
2188 		  __bbegin_bkt = __bkt;
2189 		}
2190 	      else
2191 		{
2192 		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2193 		  __new_buckets[__bkt]->_M_nxt = __p;
2194 		}
2195 	    }
2196 	  __prev_p = __p;
2197 	  __prev_bkt = __bkt;
2198 	  __p = __next;
2199 	}
2200 
2201       if (__check_bucket && __prev_p->_M_nxt)
2202 	{
2203 	  std::size_t __next_bkt
2204 	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2205 	  if (__next_bkt != __prev_bkt)
2206 	    __new_buckets[__next_bkt] = __prev_p;
2207 	}
2208 
2209       _M_deallocate_buckets();
2210       _M_bucket_count = __n;
2211       _M_buckets = __new_buckets;
2212     }
2213 
2214 #if __cplusplus > 201402L
2215   template<typename, typename, typename> class _Hash_merge_helper { };
2216 #endif // C++17
2217 
2218 #if __cpp_deduction_guides >= 201606
2219   // Used to constrain deduction guides
2220   template<typename _Hash>
2221     using _RequireNotAllocatorOrIntegral
2222       = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
2223 #endif
2224 
2225 _GLIBCXX_END_NAMESPACE_VERSION
2226 } // namespace std
2227 
2228 #endif // _HASHTABLE_H
2229