1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              E X P _ C H 5                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Debug;    use Debug;
30with Einfo;    use Einfo;
31with Elists;   use Elists;
32with Errout;   use Errout;
33with Exp_Aggr; use Exp_Aggr;
34with Exp_Ch6;  use Exp_Ch6;
35with Exp_Ch7;  use Exp_Ch7;
36with Exp_Ch11; use Exp_Ch11;
37with Exp_Dbug; use Exp_Dbug;
38with Exp_Pakd; use Exp_Pakd;
39with Exp_Tss;  use Exp_Tss;
40with Exp_Util; use Exp_Util;
41with Inline;   use Inline;
42with Namet;    use Namet;
43with Nlists;   use Nlists;
44with Nmake;    use Nmake;
45with Opt;      use Opt;
46with Restrict; use Restrict;
47with Rident;   use Rident;
48with Rtsfind;  use Rtsfind;
49with Sinfo;    use Sinfo;
50with Sem;      use Sem;
51with Sem_Aux;  use Sem_Aux;
52with Sem_Ch3;  use Sem_Ch3;
53with Sem_Ch8;  use Sem_Ch8;
54with Sem_Ch13; use Sem_Ch13;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res;  use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Snames;   use Snames;
59with Stand;    use Stand;
60with Stringt;  use Stringt;
61with Tbuild;   use Tbuild;
62with Uintp;    use Uintp;
63with Validsw;  use Validsw;
64
65package body Exp_Ch5 is
66
67   procedure Build_Formal_Container_Iteration
68     (N         : Node_Id;
69      Container : Entity_Id;
70      Cursor    : Entity_Id;
71      Init      : out Node_Id;
72      Advance   : out Node_Id;
73      New_Loop  : out Node_Id);
74   --  Utility to create declarations and loop statement for both forms
75   --  of formal container iterators.
76
77   function Convert_To_Iterable_Type
78     (Container : Entity_Id;
79      Loc       : Source_Ptr) return Node_Id;
80   --  Returns New_Occurrence_Of (Container), possibly converted to an ancestor
81   --  type, if the type of Container inherited the Iterable aspect from that
82   --  ancestor.
83
84   function Change_Of_Representation (N : Node_Id) return Boolean;
85   --  Determine if the right-hand side of assignment N is a type conversion
86   --  which requires a change of representation. Called only for the array
87   --  and record cases.
88
89   procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
90   --  N is an assignment which assigns an array value. This routine process
91   --  the various special cases and checks required for such assignments,
92   --  including change of representation. Rhs is normally simply the right-
93   --  hand side of the assignment, except that if the right-hand side is a
94   --  type conversion or a qualified expression, then the RHS is the actual
95   --  expression inside any such type conversions or qualifications.
96
97   function Expand_Assign_Array_Loop
98     (N      : Node_Id;
99      Larray : Entity_Id;
100      Rarray : Entity_Id;
101      L_Type : Entity_Id;
102      R_Type : Entity_Id;
103      Ndim   : Pos;
104      Rev    : Boolean) return Node_Id;
105   --  N is an assignment statement which assigns an array value. This routine
106   --  expands the assignment into a loop (or nested loops for the case of a
107   --  multi-dimensional array) to do the assignment component by component.
108   --  Larray and Rarray are the entities of the actual arrays on the left-hand
109   --  and right-hand sides. L_Type and R_Type are the types of these arrays
110   --  (which may not be the same, due to either sliding, or to a change of
111   --  representation case). Ndim is the number of dimensions and the parameter
112   --  Rev indicates if the loops run normally (Rev = False), or reversed
113   --  (Rev = True). The value returned is the constructed loop statement.
114   --  Auxiliary declarations are inserted before node N using the standard
115   --  Insert_Actions mechanism.
116
117   procedure Expand_Assign_Record (N : Node_Id);
118   --  N is an assignment of an untagged record value. This routine handles
119   --  the case where the assignment must be made component by component,
120   --  either because the target is not byte aligned, or there is a change
121   --  of representation, or when we have a tagged type with a representation
122   --  clause (this last case is required because holes in the tagged type
123   --  might be filled with components from child types).
124
125   procedure Expand_Assign_With_Target_Names (N : Node_Id);
126   --  (AI12-0125): N is an assignment statement whose RHS contains occurrences
127   --  of @ that designate the value of the LHS of the assignment. If the LHS
128   --  is side-effect free the target names can be replaced with a copy of the
129   --  LHS; otherwise the semantics of the assignment is described in terms of
130   --  a procedure with an in-out parameter, and expanded as such.
131
132   procedure Expand_Formal_Container_Loop (N : Node_Id);
133   --  Use the primitives specified in an Iterable aspect to expand a loop
134   --  over a so-called formal container, primarily for SPARK usage.
135
136   procedure Expand_Formal_Container_Element_Loop (N : Node_Id);
137   --  Same, for an iterator of the form " For E of C". In this case the
138   --  iterator provides the name of the element, and the cursor is generated
139   --  internally.
140
141   procedure Expand_Iterator_Loop (N : Node_Id);
142   --  Expand loop over arrays and containers that uses the form "for X of C"
143   --  with an optional subtype mark, or "for Y in C".
144
145   procedure Expand_Iterator_Loop_Over_Container
146     (N             : Node_Id;
147      Isc           : Node_Id;
148      I_Spec        : Node_Id;
149      Container     : Node_Id;
150      Container_Typ : Entity_Id);
151   --  Expand loop over containers that uses the form "for X of C" with an
152   --  optional subtype mark, or "for Y in C". Isc is the iteration scheme.
153   --  I_Spec is the iterator specification and Container is either the
154   --  Container (for OF) or the iterator (for IN).
155
156   procedure Expand_Predicated_Loop (N : Node_Id);
157   --  Expand for loop over predicated subtype
158
159   function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
160   --  Generate the necessary code for controlled and tagged assignment, that
161   --  is to say, finalization of the target before, adjustment of the target
162   --  after and save and restore of the tag and finalization pointers which
163   --  are not 'part of the value' and must not be changed upon assignment. N
164   --  is the original Assignment node.
165
166   --------------------------------------
167   -- Build_Formal_Container_Iteration --
168   --------------------------------------
169
170   procedure Build_Formal_Container_Iteration
171     (N         : Node_Id;
172      Container : Entity_Id;
173      Cursor    : Entity_Id;
174      Init      : out Node_Id;
175      Advance   : out Node_Id;
176      New_Loop  : out Node_Id)
177   is
178      Loc   : constant Source_Ptr := Sloc (N);
179      Stats : constant List_Id    := Statements (N);
180      Typ   : constant Entity_Id  := Base_Type (Etype (Container));
181
182      Has_Element_Op : constant Entity_Id :=
183                         Get_Iterable_Type_Primitive (Typ, Name_Has_Element);
184
185      First_Op : Entity_Id;
186      Next_Op  : Entity_Id;
187
188   begin
189      --  Use the proper set of primitives depending on the direction of
190      --  iteration. The legality of a reverse iteration has been checked
191      --  during analysis.
192
193      if Reverse_Present (Iterator_Specification (Iteration_Scheme (N))) then
194         First_Op := Get_Iterable_Type_Primitive (Typ, Name_Last);
195         Next_Op  := Get_Iterable_Type_Primitive (Typ, Name_Previous);
196
197      else
198         First_Op := Get_Iterable_Type_Primitive (Typ, Name_First);
199         Next_Op  := Get_Iterable_Type_Primitive (Typ, Name_Next);
200      end if;
201
202      --  Declaration for Cursor
203
204      Init :=
205        Make_Object_Declaration (Loc,
206          Defining_Identifier => Cursor,
207          Object_Definition   => New_Occurrence_Of (Etype (First_Op),  Loc),
208          Expression          =>
209            Make_Function_Call (Loc,
210              Name                   => New_Occurrence_Of (First_Op, Loc),
211              Parameter_Associations => New_List (
212                Convert_To_Iterable_Type (Container, Loc))));
213
214      --  Statement that advances (in the right direction) cursor in loop
215
216      Advance :=
217        Make_Assignment_Statement (Loc,
218          Name       => New_Occurrence_Of (Cursor, Loc),
219          Expression =>
220            Make_Function_Call (Loc,
221              Name                   => New_Occurrence_Of (Next_Op, Loc),
222              Parameter_Associations => New_List (
223                Convert_To_Iterable_Type (Container, Loc),
224                New_Occurrence_Of (Cursor, Loc))));
225
226      --  Iterator is rewritten as a while_loop
227
228      New_Loop :=
229        Make_Loop_Statement (Loc,
230          Iteration_Scheme =>
231            Make_Iteration_Scheme (Loc,
232              Condition =>
233                Make_Function_Call (Loc,
234                  Name => New_Occurrence_Of (Has_Element_Op, Loc),
235                  Parameter_Associations => New_List (
236                    Convert_To_Iterable_Type (Container, Loc),
237                    New_Occurrence_Of (Cursor, Loc)))),
238          Statements => Stats,
239          End_Label  => Empty);
240
241      --  If the contruct has a specified loop name, preserve it in the new
242      --  loop, for possible use in exit statements.
243
244      if Present (Identifier (N))
245        and then Comes_From_Source (Identifier (N))
246      then
247         Set_Identifier (New_Loop, Identifier (N));
248      end if;
249   end Build_Formal_Container_Iteration;
250
251   ------------------------------
252   -- Change_Of_Representation --
253   ------------------------------
254
255   function Change_Of_Representation (N : Node_Id) return Boolean is
256      Rhs : constant Node_Id := Expression (N);
257   begin
258      return
259        Nkind (Rhs) = N_Type_Conversion
260          and then
261            not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
262   end Change_Of_Representation;
263
264   ------------------------------
265   -- Convert_To_Iterable_Type --
266   ------------------------------
267
268   function Convert_To_Iterable_Type
269     (Container : Entity_Id;
270      Loc       : Source_Ptr) return Node_Id
271   is
272      Typ    : constant Entity_Id := Base_Type (Etype (Container));
273      Aspect : constant Node_Id   := Find_Aspect (Typ, Aspect_Iterable);
274      Result : Node_Id;
275
276   begin
277      Result := New_Occurrence_Of (Container, Loc);
278
279      if Entity (Aspect) /= Typ then
280         Result :=
281           Make_Type_Conversion (Loc,
282             Subtype_Mark => New_Occurrence_Of (Entity (Aspect), Loc),
283             Expression   => Result);
284      end if;
285
286      return Result;
287   end Convert_To_Iterable_Type;
288
289   -------------------------
290   -- Expand_Assign_Array --
291   -------------------------
292
293   --  There are two issues here. First, do we let Gigi do a block move, or
294   --  do we expand out into a loop? Second, we need to set the two flags
295   --  Forwards_OK and Backwards_OK which show whether the block move (or
296   --  corresponding loops) can be legitimately done in a forwards (low to
297   --  high) or backwards (high to low) manner.
298
299   procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
300      Loc : constant Source_Ptr := Sloc (N);
301
302      Lhs : constant Node_Id := Name (N);
303
304      Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
305      Act_Rhs : Node_Id          := Get_Referenced_Object (Rhs);
306
307      L_Type : constant Entity_Id :=
308                 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
309      R_Type : Entity_Id :=
310                 Underlying_Type (Get_Actual_Subtype (Act_Rhs));
311
312      L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
313      R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
314
315      Crep : constant Boolean := Change_Of_Representation (N);
316
317      Larray  : Node_Id;
318      Rarray  : Node_Id;
319
320      Ndim : constant Pos := Number_Dimensions (L_Type);
321
322      Loop_Required : Boolean := False;
323      --  This switch is set to True if the array move must be done using
324      --  an explicit front end generated loop.
325
326      procedure Apply_Dereference (Arg : Node_Id);
327      --  If the argument is an access to an array, and the assignment is
328      --  converted into a procedure call, apply explicit dereference.
329
330      function Has_Address_Clause (Exp : Node_Id) return Boolean;
331      --  Test if Exp is a reference to an array whose declaration has
332      --  an address clause, or it is a slice of such an array.
333
334      function Is_Formal_Array (Exp : Node_Id) return Boolean;
335      --  Test if Exp is a reference to an array which is either a formal
336      --  parameter or a slice of a formal parameter. These are the cases
337      --  where hidden aliasing can occur.
338
339      function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
340      --  Determine if Exp is a reference to an array variable which is other
341      --  than an object defined in the current scope, or a component or a
342      --  slice of such an object. Such objects can be aliased to parameters
343      --  (unlike local array references).
344
345      -----------------------
346      -- Apply_Dereference --
347      -----------------------
348
349      procedure Apply_Dereference (Arg : Node_Id) is
350         Typ : constant Entity_Id := Etype (Arg);
351      begin
352         if Is_Access_Type (Typ) then
353            Rewrite (Arg, Make_Explicit_Dereference (Loc,
354              Prefix => Relocate_Node (Arg)));
355            Analyze_And_Resolve (Arg, Designated_Type (Typ));
356         end if;
357      end Apply_Dereference;
358
359      ------------------------
360      -- Has_Address_Clause --
361      ------------------------
362
363      function Has_Address_Clause (Exp : Node_Id) return Boolean is
364      begin
365         return
366           (Is_Entity_Name (Exp) and then
367                              Present (Address_Clause (Entity (Exp))))
368             or else
369           (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
370      end Has_Address_Clause;
371
372      ---------------------
373      -- Is_Formal_Array --
374      ---------------------
375
376      function Is_Formal_Array (Exp : Node_Id) return Boolean is
377      begin
378         return
379           (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
380             or else
381           (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
382      end Is_Formal_Array;
383
384      ------------------------
385      -- Is_Non_Local_Array --
386      ------------------------
387
388      function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
389      begin
390         case Nkind (Exp) is
391            when N_Indexed_Component
392               | N_Selected_Component
393               | N_Slice
394            =>
395               return Is_Non_Local_Array (Prefix (Exp));
396
397            when others =>
398               return
399                 not (Is_Entity_Name (Exp)
400                       and then Scope (Entity (Exp)) = Current_Scope);
401         end case;
402      end Is_Non_Local_Array;
403
404      --  Determine if Lhs, Rhs are formal arrays or nonlocal arrays
405
406      Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
407      Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
408
409      Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
410      Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
411
412   --  Start of processing for Expand_Assign_Array
413
414   begin
415      --  Deal with length check. Note that the length check is done with
416      --  respect to the right-hand side as given, not a possible underlying
417      --  renamed object, since this would generate incorrect extra checks.
418
419      Apply_Length_Check (Rhs, L_Type);
420
421      --  We start by assuming that the move can be done in either direction,
422      --  i.e. that the two sides are completely disjoint.
423
424      Set_Forwards_OK  (N, True);
425      Set_Backwards_OK (N, True);
426
427      --  Normally it is only the slice case that can lead to overlap, and
428      --  explicit checks for slices are made below. But there is one case
429      --  where the slice can be implicit and invisible to us: when we have a
430      --  one dimensional array, and either both operands are parameters, or
431      --  one is a parameter (which can be a slice passed by reference) and the
432      --  other is a non-local variable. In this case the parameter could be a
433      --  slice that overlaps with the other operand.
434
435      --  However, if the array subtype is a constrained first subtype in the
436      --  parameter case, then we don't have to worry about overlap, since
437      --  slice assignments aren't possible (other than for a slice denoting
438      --  the whole array).
439
440      --  Note: No overlap is possible if there is a change of representation,
441      --  so we can exclude this case.
442
443      if Ndim = 1
444        and then not Crep
445        and then
446           ((Lhs_Formal and Rhs_Formal)
447              or else
448            (Lhs_Formal and Rhs_Non_Local_Var)
449              or else
450            (Rhs_Formal and Lhs_Non_Local_Var))
451        and then
452           (not Is_Constrained (Etype (Lhs))
453             or else not Is_First_Subtype (Etype (Lhs)))
454      then
455         Set_Forwards_OK  (N, False);
456         Set_Backwards_OK (N, False);
457
458         --  Note: the bit-packed case is not worrisome here, since if we have
459         --  a slice passed as a parameter, it is always aligned on a byte
460         --  boundary, and if there are no explicit slices, the assignment
461         --  can be performed directly.
462      end if;
463
464      --  If either operand has an address clause clear Backwards_OK and
465      --  Forwards_OK, since we cannot tell if the operands overlap. We
466      --  exclude this treatment when Rhs is an aggregate, since we know
467      --  that overlap can't occur.
468
469      if (Has_Address_Clause (Lhs) and then Nkind (Rhs) /= N_Aggregate)
470        or else Has_Address_Clause (Rhs)
471      then
472         Set_Forwards_OK  (N, False);
473         Set_Backwards_OK (N, False);
474      end if;
475
476      --  We certainly must use a loop for change of representation and also
477      --  we use the operand of the conversion on the right-hand side as the
478      --  effective right-hand side (the component types must match in this
479      --  situation).
480
481      if Crep then
482         Act_Rhs := Get_Referenced_Object (Rhs);
483         R_Type  := Get_Actual_Subtype (Act_Rhs);
484         Loop_Required := True;
485
486      --  We require a loop if the left side is possibly bit unaligned
487
488      elsif Possible_Bit_Aligned_Component (Lhs)
489              or else
490            Possible_Bit_Aligned_Component (Rhs)
491      then
492         Loop_Required := True;
493
494      --  Arrays with controlled components are expanded into a loop to force
495      --  calls to Adjust at the component level.
496
497      elsif Has_Controlled_Component (L_Type) then
498         Loop_Required := True;
499
500      --  If object is atomic/VFA, we cannot tolerate a loop
501
502      elsif Is_Atomic_Or_VFA_Object (Act_Lhs)
503              or else
504            Is_Atomic_Or_VFA_Object (Act_Rhs)
505      then
506         return;
507
508      --  Loop is required if we have atomic components since we have to
509      --  be sure to do any accesses on an element by element basis.
510
511      elsif Has_Atomic_Components (L_Type)
512        or else Has_Atomic_Components (R_Type)
513        or else Is_Atomic_Or_VFA (Component_Type (L_Type))
514        or else Is_Atomic_Or_VFA (Component_Type (R_Type))
515      then
516         Loop_Required := True;
517
518      --  Case where no slice is involved
519
520      elsif not L_Slice and not R_Slice then
521
522         --  The following code deals with the case of unconstrained bit packed
523         --  arrays. The problem is that the template for such arrays contains
524         --  the bounds of the actual source level array, but the copy of an
525         --  entire array requires the bounds of the underlying array. It would
526         --  be nice if the back end could take care of this, but right now it
527         --  does not know how, so if we have such a type, then we expand out
528         --  into a loop, which is inefficient but works correctly. If we don't
529         --  do this, we get the wrong length computed for the array to be
530         --  moved. The two cases we need to worry about are:
531
532         --  Explicit dereference of an unconstrained packed array type as in
533         --  the following example:
534
535         --    procedure C52 is
536         --       type BITS is array(INTEGER range <>) of BOOLEAN;
537         --       pragma PACK(BITS);
538         --       type A is access BITS;
539         --       P1,P2 : A;
540         --    begin
541         --       P1 := new BITS (1 .. 65_535);
542         --       P2 := new BITS (1 .. 65_535);
543         --       P2.ALL := P1.ALL;
544         --    end C52;
545
546         --  A formal parameter reference with an unconstrained bit array type
547         --  is the other case we need to worry about (here we assume the same
548         --  BITS type declared above):
549
550         --    procedure Write_All (File : out BITS; Contents : BITS);
551         --    begin
552         --       File.Storage := Contents;
553         --    end Write_All;
554
555         --  We expand to a loop in either of these two cases
556
557         --  Question for future thought. Another potentially more efficient
558         --  approach would be to create the actual subtype, and then do an
559         --  unchecked conversion to this actual subtype ???
560
561         Check_Unconstrained_Bit_Packed_Array : declare
562
563            function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
564            --  Function to perform required test for the first case, above
565            --  (dereference of an unconstrained bit packed array).
566
567            -----------------------
568            -- Is_UBPA_Reference --
569            -----------------------
570
571            function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
572               Typ      : constant Entity_Id := Underlying_Type (Etype (Opnd));
573               P_Type   : Entity_Id;
574               Des_Type : Entity_Id;
575
576            begin
577               if Present (Packed_Array_Impl_Type (Typ))
578                 and then Is_Array_Type (Packed_Array_Impl_Type (Typ))
579                 and then not Is_Constrained (Packed_Array_Impl_Type (Typ))
580               then
581                  return True;
582
583               elsif Nkind (Opnd) = N_Explicit_Dereference then
584                  P_Type := Underlying_Type (Etype (Prefix (Opnd)));
585
586                  if not Is_Access_Type (P_Type) then
587                     return False;
588
589                  else
590                     Des_Type := Designated_Type (P_Type);
591                     return
592                       Is_Bit_Packed_Array (Des_Type)
593                         and then not Is_Constrained (Des_Type);
594                  end if;
595
596               else
597                  return False;
598               end if;
599            end Is_UBPA_Reference;
600
601         --  Start of processing for Check_Unconstrained_Bit_Packed_Array
602
603         begin
604            if Is_UBPA_Reference (Lhs)
605                 or else
606               Is_UBPA_Reference (Rhs)
607            then
608               Loop_Required := True;
609
610            --  Here if we do not have the case of a reference to a bit packed
611            --  unconstrained array case. In this case gigi can most certainly
612            --  handle the assignment if a forwards move is allowed.
613
614            --  (could it handle the backwards case also???)
615
616            elsif Forwards_OK (N) then
617               return;
618            end if;
619         end Check_Unconstrained_Bit_Packed_Array;
620
621      --  The back end can always handle the assignment if the right side is a
622      --  string literal (note that overlap is definitely impossible in this
623      --  case). If the type is packed, a string literal is always converted
624      --  into an aggregate, except in the case of a null slice, for which no
625      --  aggregate can be written. In that case, rewrite the assignment as a
626      --  null statement, a length check has already been emitted to verify
627      --  that the range of the left-hand side is empty.
628
629      --  Note that this code is not executed if we have an assignment of a
630      --  string literal to a non-bit aligned component of a record, a case
631      --  which cannot be handled by the backend.
632
633      elsif Nkind (Rhs) = N_String_Literal then
634         if String_Length (Strval (Rhs)) = 0
635           and then Is_Bit_Packed_Array (L_Type)
636         then
637            Rewrite (N, Make_Null_Statement (Loc));
638            Analyze (N);
639         end if;
640
641         return;
642
643      --  If either operand is bit packed, then we need a loop, since we can't
644      --  be sure that the slice is byte aligned. Similarly, if either operand
645      --  is a possibly unaligned slice, then we need a loop (since the back
646      --  end cannot handle unaligned slices).
647
648      elsif Is_Bit_Packed_Array (L_Type)
649        or else Is_Bit_Packed_Array (R_Type)
650        or else Is_Possibly_Unaligned_Slice (Lhs)
651        or else Is_Possibly_Unaligned_Slice (Rhs)
652      then
653         Loop_Required := True;
654
655      --  If we are not bit-packed, and we have only one slice, then no overlap
656      --  is possible except in the parameter case, so we can let the back end
657      --  handle things.
658
659      elsif not (L_Slice and R_Slice) then
660         if Forwards_OK (N) then
661            return;
662         end if;
663      end if;
664
665      --  If the right-hand side is a string literal, introduce a temporary for
666      --  it, for use in the generated loop that will follow.
667
668      if Nkind (Rhs) = N_String_Literal then
669         declare
670            Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Rhs);
671            Decl : Node_Id;
672
673         begin
674            Decl :=
675              Make_Object_Declaration (Loc,
676                 Defining_Identifier => Temp,
677                 Object_Definition => New_Occurrence_Of (L_Type, Loc),
678                 Expression => Relocate_Node (Rhs));
679
680            Insert_Action (N, Decl);
681            Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
682            R_Type := Etype (Temp);
683         end;
684      end if;
685
686      --  Come here to complete the analysis
687
688      --    Loop_Required: Set to True if we know that a loop is required
689      --                   regardless of overlap considerations.
690
691      --    Forwards_OK:   Set to False if we already know that a forwards
692      --                   move is not safe, else set to True.
693
694      --    Backwards_OK:  Set to False if we already know that a backwards
695      --                   move is not safe, else set to True
696
697      --  Our task at this stage is to complete the overlap analysis, which can
698      --  result in possibly setting Forwards_OK or Backwards_OK to False, and
699      --  then generating the final code, either by deciding that it is OK
700      --  after all to let Gigi handle it, or by generating appropriate code
701      --  in the front end.
702
703      declare
704         L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
705         R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
706
707         Left_Lo  : constant Node_Id := Type_Low_Bound  (L_Index_Typ);
708         Left_Hi  : constant Node_Id := Type_High_Bound (L_Index_Typ);
709         Right_Lo : constant Node_Id := Type_Low_Bound  (R_Index_Typ);
710         Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
711
712         Act_L_Array : Node_Id;
713         Act_R_Array : Node_Id;
714
715         Cleft_Lo  : Node_Id;
716         Cright_Lo : Node_Id;
717         Condition : Node_Id;
718
719         Cresult : Compare_Result;
720
721      begin
722         --  Get the expressions for the arrays. If we are dealing with a
723         --  private type, then convert to the underlying type. We can do
724         --  direct assignments to an array that is a private type, but we
725         --  cannot assign to elements of the array without this extra
726         --  unchecked conversion.
727
728         --  Note: We propagate Parent to the conversion nodes to generate
729         --  a well-formed subtree.
730
731         if Nkind (Act_Lhs) = N_Slice then
732            Larray := Prefix (Act_Lhs);
733         else
734            Larray := Act_Lhs;
735
736            if Is_Private_Type (Etype (Larray)) then
737               declare
738                  Par : constant Node_Id := Parent (Larray);
739               begin
740                  Larray :=
741                    Unchecked_Convert_To
742                      (Underlying_Type (Etype (Larray)), Larray);
743                  Set_Parent (Larray, Par);
744               end;
745            end if;
746         end if;
747
748         if Nkind (Act_Rhs) = N_Slice then
749            Rarray := Prefix (Act_Rhs);
750         else
751            Rarray := Act_Rhs;
752
753            if Is_Private_Type (Etype (Rarray)) then
754               declare
755                  Par : constant Node_Id := Parent (Rarray);
756               begin
757                  Rarray :=
758                    Unchecked_Convert_To
759                      (Underlying_Type (Etype (Rarray)), Rarray);
760                  Set_Parent (Rarray, Par);
761               end;
762            end if;
763         end if;
764
765         --  If both sides are slices, we must figure out whether it is safe
766         --  to do the move in one direction or the other. It is always safe
767         --  if there is a change of representation since obviously two arrays
768         --  with different representations cannot possibly overlap.
769
770         if (not Crep) and L_Slice and R_Slice then
771            Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
772            Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
773
774            --  If both left- and right-hand arrays are entity names, and refer
775            --  to different entities, then we know that the move is safe (the
776            --  two storage areas are completely disjoint).
777
778            if Is_Entity_Name (Act_L_Array)
779              and then Is_Entity_Name (Act_R_Array)
780              and then Entity (Act_L_Array) /= Entity (Act_R_Array)
781            then
782               null;
783
784            --  Otherwise, we assume the worst, which is that the two arrays
785            --  are the same array. There is no need to check if we know that
786            --  is the case, because if we don't know it, we still have to
787            --  assume it.
788
789            --  Generally if the same array is involved, then we have an
790            --  overlapping case. We will have to really assume the worst (i.e.
791            --  set neither of the OK flags) unless we can determine the lower
792            --  or upper bounds at compile time and compare them.
793
794            else
795               Cresult :=
796                 Compile_Time_Compare
797                   (Left_Lo, Right_Lo, Assume_Valid => True);
798
799               if Cresult = Unknown then
800                  Cresult :=
801                    Compile_Time_Compare
802                      (Left_Hi, Right_Hi, Assume_Valid => True);
803               end if;
804
805               case Cresult is
806                  when EQ | LE | LT =>
807                     Set_Backwards_OK (N, False);
808
809                  when GE | GT =>
810                     Set_Forwards_OK  (N, False);
811
812                  when NE | Unknown =>
813                     Set_Backwards_OK (N, False);
814                     Set_Forwards_OK  (N, False);
815               end case;
816            end if;
817         end if;
818
819         --  If after that analysis Loop_Required is False, meaning that we
820         --  have not discovered some non-overlap reason for requiring a loop,
821         --  then the outcome depends on the capabilities of the back end.
822
823         if not Loop_Required then
824            --  Assume the back end can deal with all cases of overlap by
825            --  falling back to memmove if it cannot use a more efficient
826            --  approach.
827
828            return;
829         end if;
830
831         --  At this stage we have to generate an explicit loop, and we have
832         --  the following cases:
833
834         --  Forwards_OK = True
835
836         --    Rnn : right_index := right_index'First;
837         --    for Lnn in left-index loop
838         --       left (Lnn) := right (Rnn);
839         --       Rnn := right_index'Succ (Rnn);
840         --    end loop;
841
842         --    Note: the above code MUST be analyzed with checks off, because
843         --    otherwise the Succ could overflow. But in any case this is more
844         --    efficient.
845
846         --  Forwards_OK = False, Backwards_OK = True
847
848         --    Rnn : right_index := right_index'Last;
849         --    for Lnn in reverse left-index loop
850         --       left (Lnn) := right (Rnn);
851         --       Rnn := right_index'Pred (Rnn);
852         --    end loop;
853
854         --    Note: the above code MUST be analyzed with checks off, because
855         --    otherwise the Pred could overflow. But in any case this is more
856         --    efficient.
857
858         --  Forwards_OK = Backwards_OK = False
859
860         --    This only happens if we have the same array on each side. It is
861         --    possible to create situations using overlays that violate this,
862         --    but we simply do not promise to get this "right" in this case.
863
864         --    There are two possible subcases. If the No_Implicit_Conditionals
865         --    restriction is set, then we generate the following code:
866
867         --      declare
868         --        T : constant <operand-type> := rhs;
869         --      begin
870         --        lhs := T;
871         --      end;
872
873         --    If implicit conditionals are permitted, then we generate:
874
875         --      if Left_Lo <= Right_Lo then
876         --         <code for Forwards_OK = True above>
877         --      else
878         --         <code for Backwards_OK = True above>
879         --      end if;
880
881         --  In order to detect possible aliasing, we examine the renamed
882         --  expression when the source or target is a renaming. However,
883         --  the renaming may be intended to capture an address that may be
884         --  affected by subsequent code, and therefore we must recover
885         --  the actual entity for the expansion that follows, not the
886         --  object it renames. In particular, if source or target designate
887         --  a portion of a dynamically allocated object, the pointer to it
888         --  may be reassigned but the renaming preserves the proper location.
889
890         if Is_Entity_Name (Rhs)
891           and then
892             Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration
893           and then Nkind (Act_Rhs) = N_Slice
894         then
895            Rarray := Rhs;
896         end if;
897
898         if Is_Entity_Name (Lhs)
899           and then
900             Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration
901           and then Nkind (Act_Lhs) = N_Slice
902         then
903            Larray := Lhs;
904         end if;
905
906         --  Cases where either Forwards_OK or Backwards_OK is true
907
908         if Forwards_OK (N) or else Backwards_OK (N) then
909            if Needs_Finalization (Component_Type (L_Type))
910              and then Base_Type (L_Type) = Base_Type (R_Type)
911              and then Ndim = 1
912              and then not No_Ctrl_Actions (N)
913            then
914               declare
915                  Proc    : constant Entity_Id :=
916                              TSS (Base_Type (L_Type), TSS_Slice_Assign);
917                  Actuals : List_Id;
918
919               begin
920                  Apply_Dereference (Larray);
921                  Apply_Dereference (Rarray);
922                  Actuals := New_List (
923                    Duplicate_Subexpr (Larray,   Name_Req => True),
924                    Duplicate_Subexpr (Rarray,   Name_Req => True),
925                    Duplicate_Subexpr (Left_Lo,  Name_Req => True),
926                    Duplicate_Subexpr (Left_Hi,  Name_Req => True),
927                    Duplicate_Subexpr (Right_Lo, Name_Req => True),
928                    Duplicate_Subexpr (Right_Hi, Name_Req => True));
929
930                  Append_To (Actuals,
931                    New_Occurrence_Of (
932                      Boolean_Literals (not Forwards_OK (N)), Loc));
933
934                  Rewrite (N,
935                    Make_Procedure_Call_Statement (Loc,
936                      Name => New_Occurrence_Of (Proc, Loc),
937                      Parameter_Associations => Actuals));
938               end;
939
940            else
941               Rewrite (N,
942                 Expand_Assign_Array_Loop
943                   (N, Larray, Rarray, L_Type, R_Type, Ndim,
944                    Rev => not Forwards_OK (N)));
945            end if;
946
947         --  Case of both are false with No_Implicit_Conditionals
948
949         elsif Restriction_Active (No_Implicit_Conditionals) then
950            declare
951                  T : constant Entity_Id :=
952                        Make_Defining_Identifier (Loc, Chars => Name_T);
953
954            begin
955               Rewrite (N,
956                 Make_Block_Statement (Loc,
957                  Declarations => New_List (
958                    Make_Object_Declaration (Loc,
959                      Defining_Identifier => T,
960                      Constant_Present  => True,
961                      Object_Definition =>
962                        New_Occurrence_Of (Etype (Rhs), Loc),
963                      Expression        => Relocate_Node (Rhs))),
964
965                    Handled_Statement_Sequence =>
966                      Make_Handled_Sequence_Of_Statements (Loc,
967                        Statements => New_List (
968                          Make_Assignment_Statement (Loc,
969                            Name       => Relocate_Node (Lhs),
970                            Expression => New_Occurrence_Of (T, Loc))))));
971            end;
972
973         --  Case of both are false with implicit conditionals allowed
974
975         else
976            --  Before we generate this code, we must ensure that the left and
977            --  right side array types are defined. They may be itypes, and we
978            --  cannot let them be defined inside the if, since the first use
979            --  in the then may not be executed.
980
981            Ensure_Defined (L_Type, N);
982            Ensure_Defined (R_Type, N);
983
984            --  We normally compare addresses to find out which way round to
985            --  do the loop, since this is reliable, and handles the cases of
986            --  parameters, conversions etc. But we can't do that in the bit
987            --  packed case, because addresses don't work there.
988
989            if not Is_Bit_Packed_Array (L_Type) then
990               Condition :=
991                 Make_Op_Le (Loc,
992                   Left_Opnd =>
993                     Unchecked_Convert_To (RTE (RE_Integer_Address),
994                       Make_Attribute_Reference (Loc,
995                         Prefix =>
996                           Make_Indexed_Component (Loc,
997                             Prefix =>
998                               Duplicate_Subexpr_Move_Checks (Larray, True),
999                             Expressions => New_List (
1000                               Make_Attribute_Reference (Loc,
1001                                 Prefix =>
1002                                   New_Occurrence_Of
1003                                     (L_Index_Typ, Loc),
1004                                 Attribute_Name => Name_First))),
1005                         Attribute_Name => Name_Address)),
1006
1007                   Right_Opnd =>
1008                     Unchecked_Convert_To (RTE (RE_Integer_Address),
1009                       Make_Attribute_Reference (Loc,
1010                         Prefix =>
1011                           Make_Indexed_Component (Loc,
1012                             Prefix =>
1013                               Duplicate_Subexpr_Move_Checks (Rarray, True),
1014                             Expressions => New_List (
1015                               Make_Attribute_Reference (Loc,
1016                                 Prefix =>
1017                                   New_Occurrence_Of
1018                                     (R_Index_Typ, Loc),
1019                                 Attribute_Name => Name_First))),
1020                         Attribute_Name => Name_Address)));
1021
1022            --  For the bit packed and VM cases we use the bounds. That's OK,
1023            --  because we don't have to worry about parameters, since they
1024            --  cannot cause overlap. Perhaps we should worry about weird slice
1025            --  conversions ???
1026
1027            else
1028               --  Copy the bounds
1029
1030               Cleft_Lo  := New_Copy_Tree (Left_Lo);
1031               Cright_Lo := New_Copy_Tree (Right_Lo);
1032
1033               --  If the types do not match we add an implicit conversion
1034               --  here to ensure proper match
1035
1036               if Etype (Left_Lo) /= Etype (Right_Lo) then
1037                  Cright_Lo :=
1038                    Unchecked_Convert_To (Etype (Left_Lo), Cright_Lo);
1039               end if;
1040
1041               --  Reset the Analyzed flag, because the bounds of the index
1042               --  type itself may be universal, and must must be reanalyzed
1043               --  to acquire the proper type for the back end.
1044
1045               Set_Analyzed (Cleft_Lo, False);
1046               Set_Analyzed (Cright_Lo, False);
1047
1048               Condition :=
1049                 Make_Op_Le (Loc,
1050                   Left_Opnd  => Cleft_Lo,
1051                   Right_Opnd => Cright_Lo);
1052            end if;
1053
1054            if Needs_Finalization (Component_Type (L_Type))
1055              and then Base_Type (L_Type) = Base_Type (R_Type)
1056              and then Ndim = 1
1057              and then not No_Ctrl_Actions (N)
1058            then
1059
1060               --  Call TSS procedure for array assignment, passing the
1061               --  explicit bounds of right- and left-hand sides.
1062
1063               declare
1064                  Proc    : constant Entity_Id :=
1065                              TSS (Base_Type (L_Type), TSS_Slice_Assign);
1066                  Actuals : List_Id;
1067
1068               begin
1069                  Apply_Dereference (Larray);
1070                  Apply_Dereference (Rarray);
1071                  Actuals := New_List (
1072                    Duplicate_Subexpr (Larray,   Name_Req => True),
1073                    Duplicate_Subexpr (Rarray,   Name_Req => True),
1074                    Duplicate_Subexpr (Left_Lo,  Name_Req => True),
1075                    Duplicate_Subexpr (Left_Hi,  Name_Req => True),
1076                    Duplicate_Subexpr (Right_Lo, Name_Req => True),
1077                    Duplicate_Subexpr (Right_Hi, Name_Req => True));
1078
1079                  Append_To (Actuals,
1080                     Make_Op_Not (Loc,
1081                       Right_Opnd => Condition));
1082
1083                  Rewrite (N,
1084                    Make_Procedure_Call_Statement (Loc,
1085                      Name => New_Occurrence_Of (Proc, Loc),
1086                      Parameter_Associations => Actuals));
1087               end;
1088
1089            else
1090               Rewrite (N,
1091                 Make_Implicit_If_Statement (N,
1092                   Condition => Condition,
1093
1094                   Then_Statements => New_List (
1095                     Expand_Assign_Array_Loop
1096                      (N, Larray, Rarray, L_Type, R_Type, Ndim,
1097                       Rev => False)),
1098
1099                   Else_Statements => New_List (
1100                     Expand_Assign_Array_Loop
1101                      (N, Larray, Rarray, L_Type, R_Type, Ndim,
1102                       Rev => True))));
1103            end if;
1104         end if;
1105
1106         Analyze (N, Suppress => All_Checks);
1107      end;
1108
1109   exception
1110      when RE_Not_Available =>
1111         return;
1112   end Expand_Assign_Array;
1113
1114   ------------------------------
1115   -- Expand_Assign_Array_Loop --
1116   ------------------------------
1117
1118   --  The following is an example of the loop generated for the case of a
1119   --  two-dimensional array:
1120
1121   --    declare
1122   --       R2b : Tm1X1 := 1;
1123   --    begin
1124   --       for L1b in 1 .. 100 loop
1125   --          declare
1126   --             R4b : Tm1X2 := 1;
1127   --          begin
1128   --             for L3b in 1 .. 100 loop
1129   --                vm1 (L1b, L3b) := vm2 (R2b, R4b);
1130   --                R4b := Tm1X2'succ(R4b);
1131   --             end loop;
1132   --          end;
1133   --          R2b := Tm1X1'succ(R2b);
1134   --       end loop;
1135   --    end;
1136
1137   --  Here Rev is False, and Tm1Xn are the subscript types for the right-hand
1138   --  side. The declarations of R2b and R4b are inserted before the original
1139   --  assignment statement.
1140
1141   function Expand_Assign_Array_Loop
1142     (N      : Node_Id;
1143      Larray : Entity_Id;
1144      Rarray : Entity_Id;
1145      L_Type : Entity_Id;
1146      R_Type : Entity_Id;
1147      Ndim   : Pos;
1148      Rev    : Boolean) return Node_Id
1149   is
1150      Loc  : constant Source_Ptr := Sloc (N);
1151
1152      Lnn : array (1 .. Ndim) of Entity_Id;
1153      Rnn : array (1 .. Ndim) of Entity_Id;
1154      --  Entities used as subscripts on left and right sides
1155
1156      L_Index_Type : array (1 .. Ndim) of Entity_Id;
1157      R_Index_Type : array (1 .. Ndim) of Entity_Id;
1158      --  Left and right index types
1159
1160      Assign : Node_Id;
1161
1162      F_Or_L : Name_Id;
1163      S_Or_P : Name_Id;
1164
1165      function Build_Step (J : Nat) return Node_Id;
1166      --  The increment step for the index of the right-hand side is written
1167      --  as an attribute reference (Succ or Pred). This function returns
1168      --  the corresponding node, which is placed at the end of the loop body.
1169
1170      ----------------
1171      -- Build_Step --
1172      ----------------
1173
1174      function Build_Step (J : Nat) return Node_Id is
1175         Step : Node_Id;
1176         Lim  : Name_Id;
1177
1178      begin
1179         if Rev then
1180            Lim := Name_First;
1181         else
1182            Lim := Name_Last;
1183         end if;
1184
1185         Step :=
1186            Make_Assignment_Statement (Loc,
1187               Name => New_Occurrence_Of (Rnn (J), Loc),
1188               Expression =>
1189                 Make_Attribute_Reference (Loc,
1190                   Prefix =>
1191                     New_Occurrence_Of (R_Index_Type (J), Loc),
1192                   Attribute_Name => S_Or_P,
1193                   Expressions => New_List (
1194                     New_Occurrence_Of (Rnn (J), Loc))));
1195
1196      --  Note that on the last iteration of the loop, the index is increased
1197      --  (or decreased) past the corresponding bound. This is consistent with
1198      --  the C semantics of the back-end, where such an off-by-one value on a
1199      --  dead index variable is OK. However, in CodePeer mode this leads to
1200      --  spurious warnings, and thus we place a guard around the attribute
1201      --  reference. For obvious reasons we only do this for CodePeer.
1202
1203         if CodePeer_Mode then
1204            Step :=
1205              Make_If_Statement (Loc,
1206                 Condition =>
1207                    Make_Op_Ne (Loc,
1208                       Left_Opnd  => New_Occurrence_Of (Lnn (J), Loc),
1209                       Right_Opnd =>
1210                         Make_Attribute_Reference (Loc,
1211                           Prefix => New_Occurrence_Of (L_Index_Type (J), Loc),
1212                           Attribute_Name => Lim)),
1213                 Then_Statements => New_List (Step));
1214         end if;
1215
1216         return Step;
1217      end Build_Step;
1218
1219   --  Start of processing for Expand_Assign_Array_Loop
1220
1221   begin
1222      if Rev then
1223         F_Or_L := Name_Last;
1224         S_Or_P := Name_Pred;
1225      else
1226         F_Or_L := Name_First;
1227         S_Or_P := Name_Succ;
1228      end if;
1229
1230      --  Setup index types and subscript entities
1231
1232      declare
1233         L_Index : Node_Id;
1234         R_Index : Node_Id;
1235
1236      begin
1237         L_Index := First_Index (L_Type);
1238         R_Index := First_Index (R_Type);
1239
1240         for J in 1 .. Ndim loop
1241            Lnn (J) := Make_Temporary (Loc, 'L');
1242            Rnn (J) := Make_Temporary (Loc, 'R');
1243
1244            L_Index_Type (J) := Etype (L_Index);
1245            R_Index_Type (J) := Etype (R_Index);
1246
1247            Next_Index (L_Index);
1248            Next_Index (R_Index);
1249         end loop;
1250      end;
1251
1252      --  Now construct the assignment statement
1253
1254      declare
1255         ExprL : constant List_Id := New_List;
1256         ExprR : constant List_Id := New_List;
1257
1258      begin
1259         for J in 1 .. Ndim loop
1260            Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
1261            Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
1262         end loop;
1263
1264         Assign :=
1265           Make_Assignment_Statement (Loc,
1266             Name =>
1267               Make_Indexed_Component (Loc,
1268                 Prefix      => Duplicate_Subexpr (Larray, Name_Req => True),
1269                 Expressions => ExprL),
1270             Expression =>
1271               Make_Indexed_Component (Loc,
1272                 Prefix      => Duplicate_Subexpr (Rarray, Name_Req => True),
1273                 Expressions => ExprR));
1274
1275         --  We set assignment OK, since there are some cases, e.g. in object
1276         --  declarations, where we are actually assigning into a constant.
1277         --  If there really is an illegality, it was caught long before now,
1278         --  and was flagged when the original assignment was analyzed.
1279
1280         Set_Assignment_OK (Name (Assign));
1281
1282         --  Propagate the No_Ctrl_Actions flag to individual assignments
1283
1284         Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
1285      end;
1286
1287      --  Now construct the loop from the inside out, with the last subscript
1288      --  varying most rapidly. Note that Assign is first the raw assignment
1289      --  statement, and then subsequently the loop that wraps it up.
1290
1291      for J in reverse 1 .. Ndim loop
1292         Assign :=
1293           Make_Block_Statement (Loc,
1294             Declarations => New_List (
1295              Make_Object_Declaration (Loc,
1296                Defining_Identifier => Rnn (J),
1297                Object_Definition =>
1298                  New_Occurrence_Of (R_Index_Type (J), Loc),
1299                Expression =>
1300                  Make_Attribute_Reference (Loc,
1301                    Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
1302                    Attribute_Name => F_Or_L))),
1303
1304           Handled_Statement_Sequence =>
1305             Make_Handled_Sequence_Of_Statements (Loc,
1306               Statements => New_List (
1307                 Make_Implicit_Loop_Statement (N,
1308                   Iteration_Scheme =>
1309                     Make_Iteration_Scheme (Loc,
1310                       Loop_Parameter_Specification =>
1311                         Make_Loop_Parameter_Specification (Loc,
1312                           Defining_Identifier => Lnn (J),
1313                           Reverse_Present => Rev,
1314                           Discrete_Subtype_Definition =>
1315                             New_Occurrence_Of (L_Index_Type (J), Loc))),
1316
1317                   Statements => New_List (Assign, Build_Step (J))))));
1318      end loop;
1319
1320      return Assign;
1321   end Expand_Assign_Array_Loop;
1322
1323   --------------------------
1324   -- Expand_Assign_Record --
1325   --------------------------
1326
1327   procedure Expand_Assign_Record (N : Node_Id) is
1328      Lhs   : constant Node_Id    := Name (N);
1329      Rhs   : Node_Id             := Expression (N);
1330      L_Typ : constant Entity_Id  := Base_Type (Etype (Lhs));
1331
1332   begin
1333      --  If change of representation, then extract the real right-hand side
1334      --  from the type conversion, and proceed with component-wise assignment,
1335      --  since the two types are not the same as far as the back end is
1336      --  concerned.
1337
1338      if Change_Of_Representation (N) then
1339         Rhs := Expression (Rhs);
1340
1341      --  If this may be a case of a large bit aligned component, then proceed
1342      --  with component-wise assignment, to avoid possible clobbering of other
1343      --  components sharing bits in the first or last byte of the component to
1344      --  be assigned.
1345
1346      elsif Possible_Bit_Aligned_Component (Lhs)
1347              or
1348            Possible_Bit_Aligned_Component (Rhs)
1349      then
1350         null;
1351
1352      --  If we have a tagged type that has a complete record representation
1353      --  clause, we must do we must do component-wise assignments, since child
1354      --  types may have used gaps for their components, and we might be
1355      --  dealing with a view conversion.
1356
1357      elsif Is_Fully_Repped_Tagged_Type (L_Typ) then
1358         null;
1359
1360      --  If neither condition met, then nothing special to do, the back end
1361      --  can handle assignment of the entire component as a single entity.
1362
1363      else
1364         return;
1365      end if;
1366
1367      --  At this stage we know that we must do a component wise assignment
1368
1369      declare
1370         Loc   : constant Source_Ptr := Sloc (N);
1371         R_Typ : constant Entity_Id  := Base_Type (Etype (Rhs));
1372         Decl  : constant Node_Id    := Declaration_Node (R_Typ);
1373         RDef  : Node_Id;
1374         F     : Entity_Id;
1375
1376         function Find_Component
1377           (Typ  : Entity_Id;
1378            Comp : Entity_Id) return Entity_Id;
1379         --  Find the component with the given name in the underlying record
1380         --  declaration for Typ. We need to use the actual entity because the
1381         --  type may be private and resolution by identifier alone would fail.
1382
1383         function Make_Component_List_Assign
1384           (CL  : Node_Id;
1385            U_U : Boolean := False) return List_Id;
1386         --  Returns a sequence of statements to assign the components that
1387         --  are referenced in the given component list. The flag U_U is
1388         --  used to force the usage of the inferred value of the variant
1389         --  part expression as the switch for the generated case statement.
1390
1391         function Make_Field_Assign
1392           (C   : Entity_Id;
1393            U_U : Boolean := False) return Node_Id;
1394         --  Given C, the entity for a discriminant or component, build an
1395         --  assignment for the corresponding field values. The flag U_U
1396         --  signals the presence of an Unchecked_Union and forces the usage
1397         --  of the inferred discriminant value of C as the right-hand side
1398         --  of the assignment.
1399
1400         function Make_Field_Assigns (CI : List_Id) return List_Id;
1401         --  Given CI, a component items list, construct series of statements
1402         --  for fieldwise assignment of the corresponding components.
1403
1404         --------------------
1405         -- Find_Component --
1406         --------------------
1407
1408         function Find_Component
1409           (Typ  : Entity_Id;
1410            Comp : Entity_Id) return Entity_Id
1411         is
1412            Utyp : constant Entity_Id := Underlying_Type (Typ);
1413            C    : Entity_Id;
1414
1415         begin
1416            C := First_Entity (Utyp);
1417            while Present (C) loop
1418               if Chars (C) = Chars (Comp) then
1419                  return C;
1420               end if;
1421
1422               Next_Entity (C);
1423            end loop;
1424
1425            raise Program_Error;
1426         end Find_Component;
1427
1428         --------------------------------
1429         -- Make_Component_List_Assign --
1430         --------------------------------
1431
1432         function Make_Component_List_Assign
1433           (CL  : Node_Id;
1434            U_U : Boolean := False) return List_Id
1435         is
1436            CI : constant List_Id := Component_Items (CL);
1437            VP : constant Node_Id := Variant_Part (CL);
1438
1439            Alts   : List_Id;
1440            DC     : Node_Id;
1441            DCH    : List_Id;
1442            Expr   : Node_Id;
1443            Result : List_Id;
1444            V      : Node_Id;
1445
1446         begin
1447            Result := Make_Field_Assigns (CI);
1448
1449            if Present (VP) then
1450               V := First_Non_Pragma (Variants (VP));
1451               Alts := New_List;
1452               while Present (V) loop
1453                  DCH := New_List;
1454                  DC := First (Discrete_Choices (V));
1455                  while Present (DC) loop
1456                     Append_To (DCH, New_Copy_Tree (DC));
1457                     Next (DC);
1458                  end loop;
1459
1460                  Append_To (Alts,
1461                    Make_Case_Statement_Alternative (Loc,
1462                      Discrete_Choices => DCH,
1463                      Statements =>
1464                        Make_Component_List_Assign (Component_List (V))));
1465                  Next_Non_Pragma (V);
1466               end loop;
1467
1468               --  If we have an Unchecked_Union, use the value of the inferred
1469               --  discriminant of the variant part expression as the switch
1470               --  for the case statement. The case statement may later be
1471               --  folded.
1472
1473               if U_U then
1474                  Expr :=
1475                    New_Copy (Get_Discriminant_Value (
1476                      Entity (Name (VP)),
1477                      Etype (Rhs),
1478                      Discriminant_Constraint (Etype (Rhs))));
1479               else
1480                  Expr :=
1481                    Make_Selected_Component (Loc,
1482                      Prefix        => Duplicate_Subexpr (Rhs),
1483                      Selector_Name =>
1484                        Make_Identifier (Loc, Chars (Name (VP))));
1485               end if;
1486
1487               Append_To (Result,
1488                 Make_Case_Statement (Loc,
1489                   Expression => Expr,
1490                   Alternatives => Alts));
1491            end if;
1492
1493            return Result;
1494         end Make_Component_List_Assign;
1495
1496         -----------------------
1497         -- Make_Field_Assign --
1498         -----------------------
1499
1500         function Make_Field_Assign
1501           (C   : Entity_Id;
1502            U_U : Boolean := False) return Node_Id
1503         is
1504            A    : Node_Id;
1505            Disc : Entity_Id;
1506            Expr : Node_Id;
1507
1508         begin
1509            --  The discriminant entity to be used in the retrieval below must
1510            --  be one in the corresponding type, given that the assignment may
1511            --  be between derived and parent types.
1512
1513            if Is_Derived_Type (Etype (Rhs)) then
1514               Disc := Find_Component (R_Typ, C);
1515            else
1516               Disc := C;
1517            end if;
1518
1519            --  In the case of an Unchecked_Union, use the discriminant
1520            --  constraint value as on the right-hand side of the assignment.
1521
1522            if U_U then
1523               Expr :=
1524                 New_Copy (Get_Discriminant_Value (C,
1525                   Etype (Rhs),
1526                   Discriminant_Constraint (Etype (Rhs))));
1527            else
1528               Expr :=
1529                 Make_Selected_Component (Loc,
1530                   Prefix        => Duplicate_Subexpr (Rhs),
1531                   Selector_Name => New_Occurrence_Of (Disc, Loc));
1532            end if;
1533
1534            --  Generate the assignment statement. When the left-hand side
1535            --  is an object with an address clause present, force generated
1536            --  temporaries to be renamings so as to correctly assign to any
1537            --  overlaid objects.
1538
1539            A :=
1540              Make_Assignment_Statement (Loc,
1541                Name       =>
1542                  Make_Selected_Component (Loc,
1543                    Prefix        =>
1544                      Duplicate_Subexpr
1545                        (Exp          => Lhs,
1546                         Name_Req     => False,
1547                         Renaming_Req =>
1548                           Is_Entity_Name (Lhs)
1549                             and then Present (Address_Clause (Entity (Lhs)))),
1550                    Selector_Name =>
1551                      New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
1552                Expression => Expr);
1553
1554            --  Set Assignment_OK, so discriminants can be assigned
1555
1556            Set_Assignment_OK (Name (A), True);
1557
1558            if Componentwise_Assignment (N)
1559              and then Nkind (Name (A)) = N_Selected_Component
1560              and then Chars (Selector_Name (Name (A))) = Name_uParent
1561            then
1562               Set_Componentwise_Assignment (A);
1563            end if;
1564
1565            return A;
1566         end Make_Field_Assign;
1567
1568         ------------------------
1569         -- Make_Field_Assigns --
1570         ------------------------
1571
1572         function Make_Field_Assigns (CI : List_Id) return List_Id is
1573            Item   : Node_Id;
1574            Result : List_Id;
1575
1576         begin
1577            Item := First (CI);
1578            Result := New_List;
1579
1580            while Present (Item) loop
1581
1582               --  Look for components, but exclude _tag field assignment if
1583               --  the special Componentwise_Assignment flag is set.
1584
1585               if Nkind (Item) = N_Component_Declaration
1586                 and then not (Is_Tag (Defining_Identifier (Item))
1587                                 and then Componentwise_Assignment (N))
1588               then
1589                  Append_To
1590                    (Result, Make_Field_Assign (Defining_Identifier (Item)));
1591               end if;
1592
1593               Next (Item);
1594            end loop;
1595
1596            return Result;
1597         end Make_Field_Assigns;
1598
1599      --  Start of processing for Expand_Assign_Record
1600
1601      begin
1602         --  Note that we use the base types for this processing. This results
1603         --  in some extra work in the constrained case, but the change of
1604         --  representation case is so unusual that it is not worth the effort.
1605
1606         --  First copy the discriminants. This is done unconditionally. It
1607         --  is required in the unconstrained left side case, and also in the
1608         --  case where this assignment was constructed during the expansion
1609         --  of a type conversion (since initialization of discriminants is
1610         --  suppressed in this case). It is unnecessary but harmless in
1611         --  other cases.
1612
1613         --  Special case: no copy if the target has no discriminants
1614
1615         if Has_Discriminants (L_Typ)
1616           and then Is_Unchecked_Union (Base_Type (L_Typ))
1617         then
1618            null;
1619
1620         elsif Has_Discriminants (L_Typ) then
1621            F := First_Discriminant (R_Typ);
1622            while Present (F) loop
1623
1624               --  If we are expanding the initialization of a derived record
1625               --  that constrains or renames discriminants of the parent, we
1626               --  must use the corresponding discriminant in the parent.
1627
1628               declare
1629                  CF : Entity_Id;
1630
1631               begin
1632                  if Inside_Init_Proc
1633                    and then Present (Corresponding_Discriminant (F))
1634                  then
1635                     CF := Corresponding_Discriminant (F);
1636                  else
1637                     CF := F;
1638                  end if;
1639
1640                  if Is_Unchecked_Union (Base_Type (R_Typ)) then
1641
1642                     --  Within an initialization procedure this is the
1643                     --  assignment to an unchecked union component, in which
1644                     --  case there is no discriminant to initialize.
1645
1646                     if Inside_Init_Proc then
1647                        null;
1648
1649                     else
1650                        --  The assignment is part of a conversion from a
1651                        --  derived unchecked union type with an inferable
1652                        --  discriminant, to a parent type.
1653
1654                        Insert_Action (N, Make_Field_Assign (CF, True));
1655                     end if;
1656
1657                  else
1658                     Insert_Action (N, Make_Field_Assign (CF));
1659                  end if;
1660
1661                  Next_Discriminant (F);
1662               end;
1663            end loop;
1664
1665            --  If the derived type has a stored constraint, assign the value
1666            --  of the corresponding discriminants explicitly, skipping those
1667            --  that are renamed discriminants. We cannot just retrieve them
1668            --  from the Rhs by selected component because they are invisible
1669            --  in the type of the right-hand side.
1670
1671            if Stored_Constraint (R_Typ) /= No_Elist then
1672               declare
1673                  Assign    : Node_Id;
1674                  Discr_Val : Elmt_Id;
1675
1676               begin
1677                  Discr_Val := First_Elmt (Stored_Constraint (R_Typ));
1678                  F := First_Entity (R_Typ);
1679                  while Present (F) loop
1680                     if Ekind (F) = E_Discriminant
1681                       and then Is_Completely_Hidden (F)
1682                       and then Present (Corresponding_Record_Component (F))
1683                       and then
1684                         (not Is_Entity_Name (Node (Discr_Val))
1685                           or else Ekind (Entity (Node (Discr_Val))) /=
1686                                     E_Discriminant)
1687                     then
1688                        Assign :=
1689                          Make_Assignment_Statement (Loc,
1690                            Name       =>
1691                              Make_Selected_Component (Loc,
1692                                Prefix        => Duplicate_Subexpr (Lhs),
1693                                Selector_Name =>
1694                                  New_Occurrence_Of
1695                                    (Corresponding_Record_Component (F), Loc)),
1696                            Expression => New_Copy (Node (Discr_Val)));
1697
1698                        Set_Assignment_OK (Name (Assign));
1699                        Insert_Action (N, Assign);
1700                        Next_Elmt (Discr_Val);
1701                     end if;
1702
1703                     Next_Entity (F);
1704                  end loop;
1705               end;
1706            end if;
1707         end if;
1708
1709         --  We know the underlying type is a record, but its current view
1710         --  may be private. We must retrieve the usable record declaration.
1711
1712         if Nkind_In (Decl, N_Private_Type_Declaration,
1713                            N_Private_Extension_Declaration)
1714           and then Present (Full_View (R_Typ))
1715         then
1716            RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
1717         else
1718            RDef := Type_Definition (Decl);
1719         end if;
1720
1721         if Nkind (RDef) = N_Derived_Type_Definition then
1722            RDef := Record_Extension_Part (RDef);
1723         end if;
1724
1725         if Nkind (RDef) = N_Record_Definition
1726           and then Present (Component_List (RDef))
1727         then
1728            if Is_Unchecked_Union (R_Typ) then
1729               Insert_Actions (N,
1730                 Make_Component_List_Assign (Component_List (RDef), True));
1731            else
1732               Insert_Actions
1733                 (N, Make_Component_List_Assign (Component_List (RDef)));
1734            end if;
1735
1736            Rewrite (N, Make_Null_Statement (Loc));
1737         end if;
1738      end;
1739   end Expand_Assign_Record;
1740
1741   -------------------------------------
1742   -- Expand_Assign_With_Target_Names --
1743   -------------------------------------
1744
1745   procedure Expand_Assign_With_Target_Names (N : Node_Id) is
1746      LHS     : constant Node_Id    := Name (N);
1747      LHS_Typ : constant Entity_Id  := Etype (LHS);
1748      Loc     : constant Source_Ptr := Sloc (N);
1749      RHS     : constant Node_Id    := Expression (N);
1750
1751      Ent : Entity_Id;
1752      --  The entity of the left-hand side
1753
1754      function Replace_Target (N : Node_Id) return Traverse_Result;
1755      --  Replace occurrences of the target name by the proper entity: either
1756      --  the entity of the LHS in simple cases, or the formal of the
1757      --  constructed procedure otherwise.
1758
1759      --------------------
1760      -- Replace_Target --
1761      --------------------
1762
1763      function Replace_Target (N : Node_Id) return Traverse_Result is
1764      begin
1765         if Nkind (N) = N_Target_Name then
1766            Rewrite (N, New_Occurrence_Of (Ent, Sloc (N)));
1767
1768         --  The expression will be reanalyzed when the enclosing assignment
1769         --  is reanalyzed, so reset the entity, which may be a temporary
1770         --  created during analysis, e.g. a loop variable for an iterated
1771         --  component association. However, if entity is callable then
1772         --  resolution has established its proper identity (including in
1773         --  rewritten prefixed calls) so we must preserve it.
1774
1775         elsif Is_Entity_Name (N) then
1776            if Present (Entity (N))
1777              and then not Is_Overloadable (Entity (N))
1778            then
1779               Set_Entity (N, Empty);
1780            end if;
1781         end if;
1782
1783         Set_Analyzed (N, False);
1784         return OK;
1785      end Replace_Target;
1786
1787      procedure Replace_Target_Name is new Traverse_Proc (Replace_Target);
1788
1789      --  Local variables
1790
1791      New_RHS : Node_Id;
1792      Proc_Id : Entity_Id;
1793
1794   --  Start of processing for Expand_Assign_With_Target_Names
1795
1796   begin
1797      New_RHS := New_Copy_Tree (RHS);
1798
1799      --  The left-hand side is a direct name
1800
1801      if Is_Entity_Name (LHS)
1802        and then not Is_Renaming_Of_Object (Entity (LHS))
1803      then
1804         Ent := Entity (LHS);
1805         Replace_Target_Name (New_RHS);
1806
1807         --  Generate:
1808         --    LHS := ... LHS ...;
1809
1810         Rewrite (N,
1811           Make_Assignment_Statement (Loc,
1812             Name       => Relocate_Node (LHS),
1813             Expression => New_RHS));
1814
1815      --  The left-hand side is not a direct name, but is side-effect free.
1816      --  Capture its value in a temporary to avoid multiple evaluations.
1817
1818      elsif Side_Effect_Free (LHS) then
1819         Ent := Make_Temporary (Loc, 'T');
1820         Replace_Target_Name (New_RHS);
1821
1822         --  Generate:
1823         --    T : LHS_Typ := LHS;
1824
1825         Insert_Before_And_Analyze (N,
1826           Make_Object_Declaration (Loc,
1827             Defining_Identifier => Ent,
1828             Object_Definition   => New_Occurrence_Of (LHS_Typ, Loc),
1829             Expression          => New_Copy_Tree (LHS)));
1830
1831         --  Generate:
1832         --    LHS := ... T ...;
1833
1834         Rewrite (N,
1835           Make_Assignment_Statement (Loc,
1836             Name       => Relocate_Node (LHS),
1837             Expression => New_RHS));
1838
1839      --  Otherwise wrap the whole assignment statement in a procedure with an
1840      --  IN OUT parameter. The original assignment then becomes a call to the
1841      --  procedure with the left-hand side as an actual.
1842
1843      else
1844         Ent := Make_Temporary (Loc, 'T');
1845         Replace_Target_Name (New_RHS);
1846
1847         --  Generate:
1848         --    procedure P (T : in out LHS_Typ) is
1849         --    begin
1850         --       T := ... T ...;
1851         --    end P;
1852
1853         Proc_Id := Make_Temporary (Loc, 'P');
1854
1855         Insert_Before_And_Analyze (N,
1856           Make_Subprogram_Body (Loc,
1857             Specification              =>
1858               Make_Procedure_Specification (Loc,
1859                 Defining_Unit_Name       => Proc_Id,
1860                 Parameter_Specifications => New_List (
1861                   Make_Parameter_Specification (Loc,
1862                     Defining_Identifier => Ent,
1863                     In_Present          => True,
1864                     Out_Present         => True,
1865                     Parameter_Type      =>
1866                       New_Occurrence_Of (LHS_Typ, Loc)))),
1867
1868             Declarations               => Empty_List,
1869
1870             Handled_Statement_Sequence =>
1871               Make_Handled_Sequence_Of_Statements (Loc,
1872                 Statements => New_List (
1873                   Make_Assignment_Statement (Loc,
1874                     Name       => New_Occurrence_Of (Ent, Loc),
1875                     Expression => New_RHS)))));
1876
1877         --  Generate:
1878         --    P (LHS);
1879
1880         Rewrite (N,
1881           Make_Procedure_Call_Statement (Loc,
1882             Name                   => New_Occurrence_Of (Proc_Id, Loc),
1883             Parameter_Associations => New_List (Relocate_Node (LHS))));
1884      end if;
1885
1886      --  Analyze rewritten node, either as assignment or procedure call
1887
1888      Analyze (N);
1889   end Expand_Assign_With_Target_Names;
1890
1891   -----------------------------------
1892   -- Expand_N_Assignment_Statement --
1893   -----------------------------------
1894
1895   --  This procedure implements various cases where an assignment statement
1896   --  cannot just be passed on to the back end in untransformed state.
1897
1898   procedure Expand_N_Assignment_Statement (N : Node_Id) is
1899      Crep : constant Boolean    := Change_Of_Representation (N);
1900      Lhs  : constant Node_Id    := Name (N);
1901      Loc  : constant Source_Ptr := Sloc (N);
1902      Rhs  : constant Node_Id    := Expression (N);
1903      Typ  : constant Entity_Id  := Underlying_Type (Etype (Lhs));
1904      Exp  : Node_Id;
1905
1906   begin
1907      --  Special case to check right away, if the Componentwise_Assignment
1908      --  flag is set, this is a reanalysis from the expansion of the primitive
1909      --  assignment procedure for a tagged type, and all we need to do is to
1910      --  expand to assignment of components, because otherwise, we would get
1911      --  infinite recursion (since this looks like a tagged assignment which
1912      --  would normally try to *call* the primitive assignment procedure).
1913
1914      if Componentwise_Assignment (N) then
1915         Expand_Assign_Record (N);
1916         return;
1917      end if;
1918
1919      --  Defend against invalid subscripts on left side if we are in standard
1920      --  validity checking mode. No need to do this if we are checking all
1921      --  subscripts.
1922
1923      --  Note that we do this right away, because there are some early return
1924      --  paths in this procedure, and this is required on all paths.
1925
1926      if Validity_Checks_On
1927        and then Validity_Check_Default
1928        and then not Validity_Check_Subscripts
1929      then
1930         Check_Valid_Lvalue_Subscripts (Lhs);
1931      end if;
1932
1933      --  Separate expansion if RHS contain target names. Note that assignment
1934      --  may already have been expanded if RHS is aggregate.
1935
1936      if Nkind (N) = N_Assignment_Statement and then Has_Target_Names (N) then
1937         Expand_Assign_With_Target_Names (N);
1938         return;
1939      end if;
1940
1941      --  Ada 2005 (AI-327): Handle assignment to priority of protected object
1942
1943      --  Rewrite an assignment to X'Priority into a run-time call
1944
1945      --   For example:         X'Priority := New_Prio_Expr;
1946      --   ...is expanded into  Set_Ceiling (X._Object, New_Prio_Expr);
1947
1948      --  Note that although X'Priority is notionally an object, it is quite
1949      --  deliberately not defined as an aliased object in the RM. This means
1950      --  that it works fine to rewrite it as a call, without having to worry
1951      --  about complications that would other arise from X'Priority'Access,
1952      --  which is illegal, because of the lack of aliasing.
1953
1954      if Ada_Version >= Ada_2005 then
1955         declare
1956            Call           : Node_Id;
1957            Conctyp        : Entity_Id;
1958            Ent            : Entity_Id;
1959            Subprg         : Entity_Id;
1960            RT_Subprg_Name : Node_Id;
1961
1962         begin
1963            --  Handle chains of renamings
1964
1965            Ent := Name (N);
1966            while Nkind (Ent) in N_Has_Entity
1967              and then Present (Entity (Ent))
1968              and then Present (Renamed_Object (Entity (Ent)))
1969            loop
1970               Ent := Renamed_Object (Entity (Ent));
1971            end loop;
1972
1973            --  The attribute Priority applied to protected objects has been
1974            --  previously expanded into a call to the Get_Ceiling run-time
1975            --  subprogram. In restricted profiles this is not available.
1976
1977            if Is_Expanded_Priority_Attribute (Ent) then
1978
1979               --  Look for the enclosing concurrent type
1980
1981               Conctyp := Current_Scope;
1982               while not Is_Concurrent_Type (Conctyp) loop
1983                  Conctyp := Scope (Conctyp);
1984               end loop;
1985
1986               pragma Assert (Is_Protected_Type (Conctyp));
1987
1988               --  Generate the first actual of the call
1989
1990               Subprg := Current_Scope;
1991               while not Present (Protected_Body_Subprogram (Subprg)) loop
1992                  Subprg := Scope (Subprg);
1993               end loop;
1994
1995               --  Select the appropriate run-time call
1996
1997               if Number_Entries (Conctyp) = 0 then
1998                  RT_Subprg_Name :=
1999                    New_Occurrence_Of (RTE (RE_Set_Ceiling), Loc);
2000               else
2001                  RT_Subprg_Name :=
2002                    New_Occurrence_Of (RTE (RO_PE_Set_Ceiling), Loc);
2003               end if;
2004
2005               Call :=
2006                 Make_Procedure_Call_Statement (Loc,
2007                   Name => RT_Subprg_Name,
2008                   Parameter_Associations => New_List (
2009                     New_Copy_Tree (First (Parameter_Associations (Ent))),
2010                     Relocate_Node (Expression (N))));
2011
2012               Rewrite (N, Call);
2013               Analyze (N);
2014
2015               return;
2016            end if;
2017         end;
2018      end if;
2019
2020      --  Deal with assignment checks unless suppressed
2021
2022      if not Suppress_Assignment_Checks (N) then
2023
2024         --  First deal with generation of range check if required
2025
2026         if Do_Range_Check (Rhs) then
2027            Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
2028         end if;
2029
2030         --  Then generate predicate check if required
2031
2032         Apply_Predicate_Check (Rhs, Typ);
2033      end if;
2034
2035      --  Check for a special case where a high level transformation is
2036      --  required. If we have either of:
2037
2038      --    P.field := rhs;
2039      --    P (sub) := rhs;
2040
2041      --  where P is a reference to a bit packed array, then we have to unwind
2042      --  the assignment. The exact meaning of being a reference to a bit
2043      --  packed array is as follows:
2044
2045      --    An indexed component whose prefix is a bit packed array is a
2046      --    reference to a bit packed array.
2047
2048      --    An indexed component or selected component whose prefix is a
2049      --    reference to a bit packed array is itself a reference ot a
2050      --    bit packed array.
2051
2052      --  The required transformation is
2053
2054      --     Tnn : prefix_type := P;
2055      --     Tnn.field := rhs;
2056      --     P := Tnn;
2057
2058      --  or
2059
2060      --     Tnn : prefix_type := P;
2061      --     Tnn (subscr) := rhs;
2062      --     P := Tnn;
2063
2064      --  Since P is going to be evaluated more than once, any subscripts
2065      --  in P must have their evaluation forced.
2066
2067      if Nkind_In (Lhs, N_Indexed_Component, N_Selected_Component)
2068        and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
2069      then
2070         declare
2071            BPAR_Expr : constant Node_Id   := Relocate_Node (Prefix (Lhs));
2072            BPAR_Typ  : constant Entity_Id := Etype (BPAR_Expr);
2073            Tnn       : constant Entity_Id :=
2074                          Make_Temporary (Loc, 'T', BPAR_Expr);
2075
2076         begin
2077            --  Insert the post assignment first, because we want to copy the
2078            --  BPAR_Expr tree before it gets analyzed in the context of the
2079            --  pre assignment. Note that we do not analyze the post assignment
2080            --  yet (we cannot till we have completed the analysis of the pre
2081            --  assignment). As usual, the analysis of this post assignment
2082            --  will happen on its own when we "run into" it after finishing
2083            --  the current assignment.
2084
2085            Insert_After (N,
2086              Make_Assignment_Statement (Loc,
2087                Name       => New_Copy_Tree (BPAR_Expr),
2088                Expression => New_Occurrence_Of (Tnn, Loc)));
2089
2090            --  At this stage BPAR_Expr is a reference to a bit packed array
2091            --  where the reference was not expanded in the original tree,
2092            --  since it was on the left side of an assignment. But in the
2093            --  pre-assignment statement (the object definition), BPAR_Expr
2094            --  will end up on the right-hand side, and must be reexpanded. To
2095            --  achieve this, we reset the analyzed flag of all selected and
2096            --  indexed components down to the actual indexed component for
2097            --  the packed array.
2098
2099            Exp := BPAR_Expr;
2100            loop
2101               Set_Analyzed (Exp, False);
2102
2103               if Nkind_In (Exp, N_Indexed_Component,
2104                                 N_Selected_Component)
2105               then
2106                  Exp := Prefix (Exp);
2107               else
2108                  exit;
2109               end if;
2110            end loop;
2111
2112            --  Now we can insert and analyze the pre-assignment
2113
2114            --  If the right-hand side requires a transient scope, it has
2115            --  already been placed on the stack. However, the declaration is
2116            --  inserted in the tree outside of this scope, and must reflect
2117            --  the proper scope for its variable. This awkward bit is forced
2118            --  by the stricter scope discipline imposed by GCC 2.97.
2119
2120            declare
2121               Uses_Transient_Scope : constant Boolean :=
2122                                        Scope_Is_Transient
2123                                          and then N = Node_To_Be_Wrapped;
2124
2125            begin
2126               if Uses_Transient_Scope then
2127                  Push_Scope (Scope (Current_Scope));
2128               end if;
2129
2130               Insert_Before_And_Analyze (N,
2131                 Make_Object_Declaration (Loc,
2132                   Defining_Identifier => Tnn,
2133                   Object_Definition   => New_Occurrence_Of (BPAR_Typ, Loc),
2134                   Expression          => BPAR_Expr));
2135
2136               if Uses_Transient_Scope then
2137                  Pop_Scope;
2138               end if;
2139            end;
2140
2141            --  Now fix up the original assignment and continue processing
2142
2143            Rewrite (Prefix (Lhs),
2144              New_Occurrence_Of (Tnn, Loc));
2145
2146            --  We do not need to reanalyze that assignment, and we do not need
2147            --  to worry about references to the temporary, but we do need to
2148            --  make sure that the temporary is not marked as a true constant
2149            --  since we now have a generated assignment to it.
2150
2151            Set_Is_True_Constant (Tnn, False);
2152         end;
2153      end if;
2154
2155      --  When we have the appropriate type of aggregate in the expression (it
2156      --  has been determined during analysis of the aggregate by setting the
2157      --  delay flag), let's perform in place assignment and thus avoid
2158      --  creating a temporary.
2159
2160      if Is_Delayed_Aggregate (Rhs) then
2161         Convert_Aggr_In_Assignment (N);
2162         Rewrite (N, Make_Null_Statement (Loc));
2163         Analyze (N);
2164
2165         return;
2166      end if;
2167
2168      --  Apply discriminant check if required. If Lhs is an access type to a
2169      --  designated type with discriminants, we must always check. If the
2170      --  type has unknown discriminants, more elaborate processing below.
2171
2172      if Has_Discriminants (Etype (Lhs))
2173        and then not Has_Unknown_Discriminants (Etype (Lhs))
2174      then
2175         --  Skip discriminant check if change of representation. Will be
2176         --  done when the change of representation is expanded out.
2177
2178         if not Crep then
2179            Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
2180         end if;
2181
2182      --  If the type is private without discriminants, and the full type
2183      --  has discriminants (necessarily with defaults) a check may still be
2184      --  necessary if the Lhs is aliased. The private discriminants must be
2185      --  visible to build the discriminant constraints.
2186
2187      --  Only an explicit dereference that comes from source indicates
2188      --  aliasing. Access to formals of protected operations and entries
2189      --  create dereferences but are not semantic aliasings.
2190
2191      elsif Is_Private_Type (Etype (Lhs))
2192        and then Has_Discriminants (Typ)
2193        and then Nkind (Lhs) = N_Explicit_Dereference
2194        and then Comes_From_Source (Lhs)
2195      then
2196         declare
2197            Lt  : constant Entity_Id := Etype (Lhs);
2198            Ubt : Entity_Id          := Base_Type (Typ);
2199
2200         begin
2201            --  In the case of an expander-generated record subtype whose base
2202            --  type still appears private, Typ will have been set to that
2203            --  private type rather than the underlying record type (because
2204            --  Underlying type will have returned the record subtype), so it's
2205            --  necessary to apply Underlying_Type again to the base type to
2206            --  get the record type we need for the discriminant check. Such
2207            --  subtypes can be created for assignments in certain cases, such
2208            --  as within an instantiation passed this kind of private type.
2209            --  It would be good to avoid this special test, but making changes
2210            --  to prevent this odd form of record subtype seems difficult. ???
2211
2212            if Is_Private_Type (Ubt) then
2213               Ubt := Underlying_Type (Ubt);
2214            end if;
2215
2216            Set_Etype (Lhs, Ubt);
2217            Rewrite (Rhs, OK_Convert_To (Base_Type (Ubt), Rhs));
2218            Apply_Discriminant_Check (Rhs, Ubt, Lhs);
2219            Set_Etype (Lhs, Lt);
2220         end;
2221
2222      --  If the Lhs has a private type with unknown discriminants, it may
2223      --  have a full view with discriminants, but those are nameable only
2224      --  in the underlying type, so convert the Rhs to it before potential
2225      --  checking. Convert Lhs as well, otherwise the actual subtype might
2226      --  not be constructible. If the discriminants have defaults the type
2227      --  is unconstrained and there is nothing to check.
2228
2229      elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
2230        and then Has_Discriminants (Typ)
2231        and then not Has_Defaulted_Discriminants (Typ)
2232      then
2233         Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
2234         Rewrite (Lhs, OK_Convert_To (Base_Type (Typ), Lhs));
2235         Apply_Discriminant_Check (Rhs, Typ, Lhs);
2236
2237      --  In the access type case, we need the same discriminant check, and
2238      --  also range checks if we have an access to constrained array.
2239
2240      elsif Is_Access_Type (Etype (Lhs))
2241        and then Is_Constrained (Designated_Type (Etype (Lhs)))
2242      then
2243         if Has_Discriminants (Designated_Type (Etype (Lhs))) then
2244
2245            --  Skip discriminant check if change of representation. Will be
2246            --  done when the change of representation is expanded out.
2247
2248            if not Crep then
2249               Apply_Discriminant_Check (Rhs, Etype (Lhs));
2250            end if;
2251
2252         elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
2253            Apply_Range_Check (Rhs, Etype (Lhs));
2254
2255            if Is_Constrained (Etype (Lhs)) then
2256               Apply_Length_Check (Rhs, Etype (Lhs));
2257            end if;
2258
2259            if Nkind (Rhs) = N_Allocator then
2260               declare
2261                  Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
2262                  C_Es       : Check_Result;
2263
2264               begin
2265                  C_Es :=
2266                    Get_Range_Checks
2267                      (Lhs,
2268                       Target_Typ,
2269                       Etype (Designated_Type (Etype (Lhs))));
2270
2271                  Insert_Range_Checks
2272                    (C_Es,
2273                     N,
2274                     Target_Typ,
2275                     Sloc (Lhs),
2276                     Lhs);
2277               end;
2278            end if;
2279         end if;
2280
2281      --  Apply range check for access type case
2282
2283      elsif Is_Access_Type (Etype (Lhs))
2284        and then Nkind (Rhs) = N_Allocator
2285        and then Nkind (Expression (Rhs)) = N_Qualified_Expression
2286      then
2287         Analyze_And_Resolve (Expression (Rhs));
2288         Apply_Range_Check
2289           (Expression (Rhs), Designated_Type (Etype (Lhs)));
2290      end if;
2291
2292      --  Ada 2005 (AI-231): Generate the run-time check
2293
2294      if Is_Access_Type (Typ)
2295        and then Can_Never_Be_Null (Etype (Lhs))
2296        and then not Can_Never_Be_Null (Etype (Rhs))
2297
2298        --  If an actual is an out parameter of a null-excluding access
2299        --  type, there is access check on entry, so we set the flag
2300        --  Suppress_Assignment_Checks on the generated statement to
2301        --  assign the actual to the parameter block, and we do not want
2302        --  to generate an additional check at this point.
2303
2304        and then not Suppress_Assignment_Checks (N)
2305      then
2306         Apply_Constraint_Check (Rhs, Etype (Lhs));
2307      end if;
2308
2309      --  Ada 2012 (AI05-148): Update current accessibility level if Rhs is a
2310      --  stand-alone obj of an anonymous access type. Do not install the check
2311      --  when the Lhs denotes a container cursor and the Next function employs
2312      --  an access type, because this can never result in a dangling pointer.
2313
2314      if Is_Access_Type (Typ)
2315        and then Is_Entity_Name (Lhs)
2316        and then Ekind (Entity (Lhs)) /= E_Loop_Parameter
2317        and then Present (Effective_Extra_Accessibility (Entity (Lhs)))
2318      then
2319         declare
2320            function Lhs_Entity return Entity_Id;
2321            --  Look through renames to find the underlying entity.
2322            --  For assignment to a rename, we don't care about the
2323            --  Enclosing_Dynamic_Scope of the rename declaration.
2324
2325            ----------------
2326            -- Lhs_Entity --
2327            ----------------
2328
2329            function Lhs_Entity return Entity_Id is
2330               Result : Entity_Id := Entity (Lhs);
2331
2332            begin
2333               while Present (Renamed_Object (Result)) loop
2334
2335                  --  Renamed_Object must return an Entity_Name here
2336                  --  because of preceding "Present (E_E_A (...))" test.
2337
2338                  Result := Entity (Renamed_Object (Result));
2339               end loop;
2340
2341               return Result;
2342            end Lhs_Entity;
2343
2344            --  Local Declarations
2345
2346            Access_Check : constant Node_Id :=
2347                             Make_Raise_Program_Error (Loc,
2348                               Condition =>
2349                                 Make_Op_Gt (Loc,
2350                                   Left_Opnd  =>
2351                                     Dynamic_Accessibility_Level (Rhs),
2352                                   Right_Opnd =>
2353                                     Make_Integer_Literal (Loc,
2354                                       Intval =>
2355                                         Scope_Depth
2356                                           (Enclosing_Dynamic_Scope
2357                                             (Lhs_Entity)))),
2358                               Reason => PE_Accessibility_Check_Failed);
2359
2360            Access_Level_Update : constant Node_Id :=
2361                                    Make_Assignment_Statement (Loc,
2362                                     Name       =>
2363                                       New_Occurrence_Of
2364                                         (Effective_Extra_Accessibility
2365                                            (Entity (Lhs)), Loc),
2366                                     Expression =>
2367                                        Dynamic_Accessibility_Level (Rhs));
2368
2369         begin
2370            if not Accessibility_Checks_Suppressed (Entity (Lhs)) then
2371               Insert_Action (N, Access_Check);
2372            end if;
2373
2374            Insert_Action (N, Access_Level_Update);
2375         end;
2376      end if;
2377
2378      --  Case of assignment to a bit packed array element. If there is a
2379      --  change of representation this must be expanded into components,
2380      --  otherwise this is a bit-field assignment.
2381
2382      if Nkind (Lhs) = N_Indexed_Component
2383        and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
2384      then
2385         --  Normal case, no change of representation
2386
2387         if not Crep then
2388            Expand_Bit_Packed_Element_Set (N);
2389            return;
2390
2391         --  Change of representation case
2392
2393         else
2394            --  Generate the following, to force component-by-component
2395            --  assignments in an efficient way. Otherwise each component
2396            --  will require a temporary and two bit-field manipulations.
2397
2398            --  T1 : Elmt_Type;
2399            --  T1 := RhS;
2400            --  Lhs := T1;
2401
2402            declare
2403               Tnn : constant Entity_Id := Make_Temporary (Loc, 'T');
2404               Stats : List_Id;
2405
2406            begin
2407               Stats :=
2408                 New_List (
2409                   Make_Object_Declaration (Loc,
2410                     Defining_Identifier => Tnn,
2411                     Object_Definition   =>
2412                       New_Occurrence_Of (Etype (Lhs), Loc)),
2413                   Make_Assignment_Statement (Loc,
2414                     Name       => New_Occurrence_Of (Tnn, Loc),
2415                     Expression => Relocate_Node (Rhs)),
2416                   Make_Assignment_Statement (Loc,
2417                     Name       => Relocate_Node (Lhs),
2418                     Expression => New_Occurrence_Of (Tnn, Loc)));
2419
2420               Insert_Actions (N, Stats);
2421               Rewrite (N, Make_Null_Statement (Loc));
2422               Analyze (N);
2423            end;
2424         end if;
2425
2426      --  Build-in-place function call case. This is for assignment statements
2427      --  that come from aggregate component associations or from init procs.
2428      --  User-written assignment statements with b-i-p calls are handled
2429      --  elsewhere.
2430
2431      elsif Is_Build_In_Place_Function_Call (Rhs) then
2432         pragma Assert (not Comes_From_Source (N));
2433         Make_Build_In_Place_Call_In_Assignment (N, Rhs);
2434
2435      elsif Is_Tagged_Type (Typ)
2436        or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ))
2437      then
2438         Tagged_Case : declare
2439            L                   : List_Id := No_List;
2440            Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
2441
2442         begin
2443            --  In the controlled case, we ensure that function calls are
2444            --  evaluated before finalizing the target. In all cases, it makes
2445            --  the expansion easier if the side effects are removed first.
2446
2447            Remove_Side_Effects (Lhs);
2448            Remove_Side_Effects (Rhs);
2449
2450            --  Avoid recursion in the mechanism
2451
2452            Set_Analyzed (N);
2453
2454            --  If dispatching assignment, we need to dispatch to _assign
2455
2456            if Is_Class_Wide_Type (Typ)
2457
2458               --  If the type is tagged, we may as well use the predefined
2459               --  primitive assignment. This avoids inlining a lot of code
2460               --  and in the class-wide case, the assignment is replaced
2461               --  by a dispatching call to _assign. It is suppressed in the
2462               --  case of assignments created by the expander that correspond
2463               --  to initializations, where we do want to copy the tag
2464               --  (Expand_Ctrl_Actions flag is set False in this case). It is
2465               --  also suppressed if restriction No_Dispatching_Calls is in
2466               --  force because in that case predefined primitives are not
2467               --  generated.
2468
2469               or else (Is_Tagged_Type (Typ)
2470                         and then Chars (Current_Scope) /= Name_uAssign
2471                         and then Expand_Ctrl_Actions
2472                         and then
2473                           not Restriction_Active (No_Dispatching_Calls))
2474            then
2475               if Is_Limited_Type (Typ) then
2476
2477                  --  This can happen in an instance when the formal is an
2478                  --  extension of a limited interface, and the actual is
2479                  --  limited. This is an error according to AI05-0087, but
2480                  --  is not caught at the point of instantiation in earlier
2481                  --  versions. We also must verify that the limited type does
2482                  --  not come from source as corner cases may exist where
2483                  --  an assignment was not intended like the pathological case
2484                  --  of a raise expression within a return statement.
2485
2486                  --  This is wrong, error messages cannot be issued during
2487                  --  expansion, since they would be missed in -gnatc mode ???
2488
2489                  if Comes_From_Source (N) then
2490                     Error_Msg_N
2491                       ("assignment not available on limited type", N);
2492                  end if;
2493
2494                  return;
2495               end if;
2496
2497               --  Fetch the primitive op _assign and proper type to call it.
2498               --  Because of possible conflicts between private and full view,
2499               --  fetch the proper type directly from the operation profile.
2500
2501               declare
2502                  Op    : constant Entity_Id :=
2503                            Find_Prim_Op (Typ, Name_uAssign);
2504                  F_Typ : Entity_Id := Etype (First_Formal (Op));
2505
2506               begin
2507                  --  If the assignment is dispatching, make sure to use the
2508                  --  proper type.
2509
2510                  if Is_Class_Wide_Type (Typ) then
2511                     F_Typ := Class_Wide_Type (F_Typ);
2512                  end if;
2513
2514                  L := New_List;
2515
2516                  --  In case of assignment to a class-wide tagged type, before
2517                  --  the assignment we generate run-time check to ensure that
2518                  --  the tags of source and target match.
2519
2520                  if not Tag_Checks_Suppressed (Typ)
2521                    and then Is_Class_Wide_Type (Typ)
2522                    and then Is_Tagged_Type (Typ)
2523                    and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
2524                  then
2525                     declare
2526                        Lhs_Tag : Node_Id;
2527                        Rhs_Tag : Node_Id;
2528
2529                     begin
2530                        if not Is_Interface (Typ) then
2531                           Lhs_Tag :=
2532                             Make_Selected_Component (Loc,
2533                               Prefix        => Duplicate_Subexpr (Lhs),
2534                               Selector_Name =>
2535                                 Make_Identifier (Loc, Name_uTag));
2536                           Rhs_Tag :=
2537                             Make_Selected_Component (Loc,
2538                               Prefix        => Duplicate_Subexpr (Rhs),
2539                               Selector_Name =>
2540                                 Make_Identifier (Loc, Name_uTag));
2541                        else
2542                           --  Displace the pointer to the base of the objects
2543                           --  applying 'Address, which is later expanded into
2544                           --  a call to RE_Base_Address.
2545
2546                           Lhs_Tag :=
2547                             Make_Explicit_Dereference (Loc,
2548                               Prefix =>
2549                                 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
2550                                   Make_Attribute_Reference (Loc,
2551                                     Prefix         => Duplicate_Subexpr (Lhs),
2552                                     Attribute_Name => Name_Address)));
2553                           Rhs_Tag :=
2554                             Make_Explicit_Dereference (Loc,
2555                               Prefix =>
2556                                 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
2557                                   Make_Attribute_Reference (Loc,
2558                                     Prefix         => Duplicate_Subexpr (Rhs),
2559                                     Attribute_Name => Name_Address)));
2560                        end if;
2561
2562                        Append_To (L,
2563                          Make_Raise_Constraint_Error (Loc,
2564                            Condition =>
2565                              Make_Op_Ne (Loc,
2566                                Left_Opnd  => Lhs_Tag,
2567                                Right_Opnd => Rhs_Tag),
2568                            Reason    => CE_Tag_Check_Failed));
2569                     end;
2570                  end if;
2571
2572                  declare
2573                     Left_N  : Node_Id := Duplicate_Subexpr (Lhs);
2574                     Right_N : Node_Id := Duplicate_Subexpr (Rhs);
2575
2576                  begin
2577                     --  In order to dispatch the call to _assign the type of
2578                     --  the actuals must match. Add conversion (if required).
2579
2580                     if Etype (Lhs) /= F_Typ then
2581                        Left_N := Unchecked_Convert_To (F_Typ, Left_N);
2582                     end if;
2583
2584                     if Etype (Rhs) /= F_Typ then
2585                        Right_N := Unchecked_Convert_To (F_Typ, Right_N);
2586                     end if;
2587
2588                     Append_To (L,
2589                       Make_Procedure_Call_Statement (Loc,
2590                         Name => New_Occurrence_Of (Op, Loc),
2591                         Parameter_Associations => New_List (
2592                           Node1 => Left_N,
2593                           Node2 => Right_N)));
2594                  end;
2595               end;
2596
2597            else
2598               L := Make_Tag_Ctrl_Assignment (N);
2599
2600               --  We can't afford to have destructive Finalization Actions in
2601               --  the Self assignment case, so if the target and the source
2602               --  are not obviously different, code is generated to avoid the
2603               --  self assignment case:
2604
2605               --    if lhs'address /= rhs'address then
2606               --       <code for controlled and/or tagged assignment>
2607               --    end if;
2608
2609               --  Skip this if Restriction (No_Finalization) is active
2610
2611               if not Statically_Different (Lhs, Rhs)
2612                 and then Expand_Ctrl_Actions
2613                 and then not Restriction_Active (No_Finalization)
2614               then
2615                  L := New_List (
2616                    Make_Implicit_If_Statement (N,
2617                      Condition =>
2618                        Make_Op_Ne (Loc,
2619                          Left_Opnd =>
2620                            Make_Attribute_Reference (Loc,
2621                              Prefix         => Duplicate_Subexpr (Lhs),
2622                              Attribute_Name => Name_Address),
2623
2624                           Right_Opnd =>
2625                            Make_Attribute_Reference (Loc,
2626                              Prefix         => Duplicate_Subexpr (Rhs),
2627                              Attribute_Name => Name_Address)),
2628
2629                      Then_Statements => L));
2630               end if;
2631
2632               --  We need to set up an exception handler for implementing
2633               --  7.6.1(18). The remaining adjustments are tackled by the
2634               --  implementation of adjust for record_controllers (see
2635               --  s-finimp.adb).
2636
2637               --  This is skipped if we have no finalization
2638
2639               if Expand_Ctrl_Actions
2640                 and then not Restriction_Active (No_Finalization)
2641               then
2642                  L := New_List (
2643                    Make_Block_Statement (Loc,
2644                      Handled_Statement_Sequence =>
2645                        Make_Handled_Sequence_Of_Statements (Loc,
2646                          Statements => L,
2647                          Exception_Handlers => New_List (
2648                            Make_Handler_For_Ctrl_Operation (Loc)))));
2649               end if;
2650            end if;
2651
2652            Rewrite (N,
2653              Make_Block_Statement (Loc,
2654                Handled_Statement_Sequence =>
2655                  Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
2656
2657            --  If no restrictions on aborts, protect the whole assignment
2658            --  for controlled objects as per 9.8(11).
2659
2660            if Needs_Finalization (Typ)
2661              and then Expand_Ctrl_Actions
2662              and then Abort_Allowed
2663            then
2664               declare
2665                  Blk : constant Entity_Id :=
2666                          New_Internal_Entity
2667                            (E_Block, Current_Scope, Sloc (N), 'B');
2668                  AUD : constant Entity_Id := RTE (RE_Abort_Undefer_Direct);
2669
2670               begin
2671                  Set_Is_Abort_Block (N);
2672
2673                  Set_Scope (Blk, Current_Scope);
2674                  Set_Etype (Blk, Standard_Void_Type);
2675                  Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
2676
2677                  Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
2678                  Set_At_End_Proc (Handled_Statement_Sequence (N),
2679                    New_Occurrence_Of (AUD, Loc));
2680
2681                  --  Present the Abort_Undefer_Direct function to the backend
2682                  --  so that it can inline the call to the function.
2683
2684                  Add_Inlined_Body (AUD, N);
2685
2686                  Expand_At_End_Handler
2687                    (Handled_Statement_Sequence (N), Blk);
2688               end;
2689            end if;
2690
2691            --  N has been rewritten to a block statement for which it is
2692            --  known by construction that no checks are necessary: analyze
2693            --  it with all checks suppressed.
2694
2695            Analyze (N, Suppress => All_Checks);
2696            return;
2697         end Tagged_Case;
2698
2699      --  Array types
2700
2701      elsif Is_Array_Type (Typ) then
2702         declare
2703            Actual_Rhs : Node_Id := Rhs;
2704
2705         begin
2706            while Nkind_In (Actual_Rhs, N_Type_Conversion,
2707                                        N_Qualified_Expression)
2708            loop
2709               Actual_Rhs := Expression (Actual_Rhs);
2710            end loop;
2711
2712            Expand_Assign_Array (N, Actual_Rhs);
2713            return;
2714         end;
2715
2716      --  Record types
2717
2718      elsif Is_Record_Type (Typ) then
2719         Expand_Assign_Record (N);
2720         return;
2721
2722      --  Scalar types. This is where we perform the processing related to the
2723      --  requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
2724      --  scalar values.
2725
2726      elsif Is_Scalar_Type (Typ) then
2727
2728         --  Case where right side is known valid
2729
2730         if Expr_Known_Valid (Rhs) then
2731
2732            --  Here the right side is valid, so it is fine. The case to deal
2733            --  with is when the left side is a local variable reference whose
2734            --  value is not currently known to be valid. If this is the case,
2735            --  and the assignment appears in an unconditional context, then
2736            --  we can mark the left side as now being valid if one of these
2737            --  conditions holds:
2738
2739            --    The expression of the right side has Do_Range_Check set so
2740            --    that we know a range check will be performed. Note that it
2741            --    can be the case that a range check is omitted because we
2742            --    make the assumption that we can assume validity for operands
2743            --    appearing in the right side in determining whether a range
2744            --    check is required
2745
2746            --    The subtype of the right side matches the subtype of the
2747            --    left side. In this case, even though we have not checked
2748            --    the range of the right side, we know it is in range of its
2749            --    subtype if the expression is valid.
2750
2751            if Is_Local_Variable_Reference (Lhs)
2752              and then not Is_Known_Valid (Entity (Lhs))
2753              and then In_Unconditional_Context (N)
2754            then
2755               if Do_Range_Check (Rhs)
2756                 or else Etype (Lhs) = Etype (Rhs)
2757               then
2758                  Set_Is_Known_Valid (Entity (Lhs), True);
2759               end if;
2760            end if;
2761
2762         --  Case where right side may be invalid in the sense of the RM
2763         --  reference above. The RM does not require that we check for the
2764         --  validity on an assignment, but it does require that the assignment
2765         --  of an invalid value not cause erroneous behavior.
2766
2767         --  The general approach in GNAT is to use the Is_Known_Valid flag
2768         --  to avoid the need for validity checking on assignments. However
2769         --  in some cases, we have to do validity checking in order to make
2770         --  sure that the setting of this flag is correct.
2771
2772         else
2773            --  Validate right side if we are validating copies
2774
2775            if Validity_Checks_On
2776              and then Validity_Check_Copies
2777            then
2778               --  Skip this if left-hand side is an array or record component
2779               --  and elementary component validity checks are suppressed.
2780
2781               if Nkind_In (Lhs, N_Selected_Component, N_Indexed_Component)
2782                 and then not Validity_Check_Components
2783               then
2784                  null;
2785               else
2786                  Ensure_Valid (Rhs);
2787               end if;
2788
2789               --  We can propagate this to the left side where appropriate
2790
2791               if Is_Local_Variable_Reference (Lhs)
2792                 and then not Is_Known_Valid (Entity (Lhs))
2793                 and then In_Unconditional_Context (N)
2794               then
2795                  Set_Is_Known_Valid (Entity (Lhs), True);
2796               end if;
2797
2798            --  Otherwise check to see what should be done
2799
2800            --  If left side is a local variable, then we just set its flag to
2801            --  indicate that its value may no longer be valid, since we are
2802            --  copying a potentially invalid value.
2803
2804            elsif Is_Local_Variable_Reference (Lhs) then
2805               Set_Is_Known_Valid (Entity (Lhs), False);
2806
2807            --  Check for case of a nonlocal variable on the left side which
2808            --  is currently known to be valid. In this case, we simply ensure
2809            --  that the right side is valid. We only play the game of copying
2810            --  validity status for local variables, since we are doing this
2811            --  statically, not by tracing the full flow graph.
2812
2813            elsif Is_Entity_Name (Lhs)
2814              and then Is_Known_Valid (Entity (Lhs))
2815            then
2816               --  Note: If Validity_Checking mode is set to none, we ignore
2817               --  the Ensure_Valid call so don't worry about that case here.
2818
2819               Ensure_Valid (Rhs);
2820
2821            --  In all other cases, we can safely copy an invalid value without
2822            --  worrying about the status of the left side. Since it is not a
2823            --  variable reference it will not be considered
2824            --  as being known to be valid in any case.
2825
2826            else
2827               null;
2828            end if;
2829         end if;
2830      end if;
2831
2832   exception
2833      when RE_Not_Available =>
2834         return;
2835   end Expand_N_Assignment_Statement;
2836
2837   ------------------------------
2838   -- Expand_N_Block_Statement --
2839   ------------------------------
2840
2841   --  Encode entity names defined in block statement
2842
2843   procedure Expand_N_Block_Statement (N : Node_Id) is
2844   begin
2845      Qualify_Entity_Names (N);
2846   end Expand_N_Block_Statement;
2847
2848   -----------------------------
2849   -- Expand_N_Case_Statement --
2850   -----------------------------
2851
2852   procedure Expand_N_Case_Statement (N : Node_Id) is
2853      Loc    : constant Source_Ptr := Sloc (N);
2854      Expr   : constant Node_Id    := Expression (N);
2855      Alt    : Node_Id;
2856      Len    : Nat;
2857      Cond   : Node_Id;
2858      Choice : Node_Id;
2859      Chlist : List_Id;
2860
2861   begin
2862      --  Check for the situation where we know at compile time which branch
2863      --  will be taken.
2864
2865      --  If the value is static but its subtype is predicated and the value
2866      --  does not obey the predicate, the value is marked non-static, and
2867      --  there can be no corresponding static alternative. In that case we
2868      --  replace the case statement with an exception, regardless of whether
2869      --  assertions are enabled or not, unless predicates are ignored.
2870
2871      if Compile_Time_Known_Value (Expr)
2872        and then Has_Predicates (Etype (Expr))
2873        and then not Predicates_Ignored (Etype (Expr))
2874        and then not Is_OK_Static_Expression (Expr)
2875      then
2876         Rewrite (N,
2877           Make_Raise_Constraint_Error (Loc, Reason => CE_Invalid_Data));
2878         Analyze (N);
2879         return;
2880
2881      elsif Compile_Time_Known_Value (Expr)
2882        and then (not Has_Predicates (Etype (Expr))
2883                   or else Is_Static_Expression (Expr))
2884      then
2885         Alt := Find_Static_Alternative (N);
2886
2887         --  Do not consider controlled objects found in a case statement which
2888         --  actually models a case expression because their early finalization
2889         --  will affect the result of the expression.
2890
2891         if not From_Conditional_Expression (N) then
2892            Process_Statements_For_Controlled_Objects (Alt);
2893         end if;
2894
2895         --  Move statements from this alternative after the case statement.
2896         --  They are already analyzed, so will be skipped by the analyzer.
2897
2898         Insert_List_After (N, Statements (Alt));
2899
2900         --  That leaves the case statement as a shell. So now we can kill all
2901         --  other alternatives in the case statement.
2902
2903         Kill_Dead_Code (Expression (N));
2904
2905         declare
2906            Dead_Alt : Node_Id;
2907
2908         begin
2909            --  Loop through case alternatives, skipping pragmas, and skipping
2910            --  the one alternative that we select (and therefore retain).
2911
2912            Dead_Alt := First (Alternatives (N));
2913            while Present (Dead_Alt) loop
2914               if Dead_Alt /= Alt
2915                 and then Nkind (Dead_Alt) = N_Case_Statement_Alternative
2916               then
2917                  Kill_Dead_Code (Statements (Dead_Alt), Warn_On_Deleted_Code);
2918               end if;
2919
2920               Next (Dead_Alt);
2921            end loop;
2922         end;
2923
2924         Rewrite (N, Make_Null_Statement (Loc));
2925         return;
2926      end if;
2927
2928      --  Here if the choice is not determined at compile time
2929
2930      declare
2931         Last_Alt : constant Node_Id := Last (Alternatives (N));
2932
2933         Others_Present : Boolean;
2934         Others_Node    : Node_Id;
2935
2936         Then_Stms : List_Id;
2937         Else_Stms : List_Id;
2938
2939      begin
2940         if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
2941            Others_Present := True;
2942            Others_Node    := Last_Alt;
2943         else
2944            Others_Present := False;
2945         end if;
2946
2947         --  First step is to worry about possible invalid argument. The RM
2948         --  requires (RM 5.4(13)) that if the result is invalid (e.g. it is
2949         --  outside the base range), then Constraint_Error must be raised.
2950
2951         --  Case of validity check required (validity checks are on, the
2952         --  expression is not known to be valid, and the case statement
2953         --  comes from source -- no need to validity check internally
2954         --  generated case statements).
2955
2956         if Validity_Check_Default
2957           and then not Predicates_Ignored (Etype (Expr))
2958         then
2959            Ensure_Valid (Expr);
2960         end if;
2961
2962         --  If there is only a single alternative, just replace it with the
2963         --  sequence of statements since obviously that is what is going to
2964         --  be executed in all cases.
2965
2966         Len := List_Length (Alternatives (N));
2967
2968         if Len = 1 then
2969
2970            --  We still need to evaluate the expression if it has any side
2971            --  effects.
2972
2973            Remove_Side_Effects (Expression (N));
2974            Alt := First (Alternatives (N));
2975
2976            --  Do not consider controlled objects found in a case statement
2977            --  which actually models a case expression because their early
2978            --  finalization will affect the result of the expression.
2979
2980            if not From_Conditional_Expression (N) then
2981               Process_Statements_For_Controlled_Objects (Alt);
2982            end if;
2983
2984            Insert_List_After (N, Statements (Alt));
2985
2986            --  That leaves the case statement as a shell. The alternative that
2987            --  will be executed is reset to a null list. So now we can kill
2988            --  the entire case statement.
2989
2990            Kill_Dead_Code (Expression (N));
2991            Rewrite (N, Make_Null_Statement (Loc));
2992            return;
2993
2994         --  An optimization. If there are only two alternatives, and only
2995         --  a single choice, then rewrite the whole case statement as an
2996         --  if statement, since this can result in subsequent optimizations.
2997         --  This helps not only with case statements in the source of a
2998         --  simple form, but also with generated code (discriminant check
2999         --  functions in particular).
3000
3001         --  Note: it is OK to do this before expanding out choices for any
3002         --  static predicates, since the if statement processing will handle
3003         --  the static predicate case fine.
3004
3005         elsif Len = 2 then
3006            Chlist := Discrete_Choices (First (Alternatives (N)));
3007
3008            if List_Length (Chlist) = 1 then
3009               Choice := First (Chlist);
3010
3011               Then_Stms := Statements (First (Alternatives (N)));
3012               Else_Stms := Statements (Last  (Alternatives (N)));
3013
3014               --  For TRUE, generate "expression", not expression = true
3015
3016               if Nkind (Choice) = N_Identifier
3017                 and then Entity (Choice) = Standard_True
3018               then
3019                  Cond := Expression (N);
3020
3021               --  For FALSE, generate "expression" and switch then/else
3022
3023               elsif Nkind (Choice) = N_Identifier
3024                 and then Entity (Choice) = Standard_False
3025               then
3026                  Cond := Expression (N);
3027                  Else_Stms := Statements (First (Alternatives (N)));
3028                  Then_Stms := Statements (Last  (Alternatives (N)));
3029
3030               --  For a range, generate "expression in range"
3031
3032               elsif Nkind (Choice) = N_Range
3033                 or else (Nkind (Choice) = N_Attribute_Reference
3034                           and then Attribute_Name (Choice) = Name_Range)
3035                 or else (Is_Entity_Name (Choice)
3036                           and then Is_Type (Entity (Choice)))
3037               then
3038                  Cond :=
3039                    Make_In (Loc,
3040                      Left_Opnd  => Expression (N),
3041                      Right_Opnd => Relocate_Node (Choice));
3042
3043               --  A subtype indication is not a legal operator in a membership
3044               --  test, so retrieve its range.
3045
3046               elsif Nkind (Choice) = N_Subtype_Indication then
3047                  Cond :=
3048                    Make_In (Loc,
3049                      Left_Opnd  => Expression (N),
3050                      Right_Opnd =>
3051                        Relocate_Node
3052                          (Range_Expression (Constraint (Choice))));
3053
3054               --  For any other subexpression "expression = value"
3055
3056               else
3057                  Cond :=
3058                    Make_Op_Eq (Loc,
3059                      Left_Opnd  => Expression (N),
3060                      Right_Opnd => Relocate_Node (Choice));
3061               end if;
3062
3063               --  Now rewrite the case as an IF
3064
3065               Rewrite (N,
3066                 Make_If_Statement (Loc,
3067                   Condition => Cond,
3068                   Then_Statements => Then_Stms,
3069                   Else_Statements => Else_Stms));
3070               Analyze (N);
3071               return;
3072            end if;
3073         end if;
3074
3075         --  If the last alternative is not an Others choice, replace it with
3076         --  an N_Others_Choice. Note that we do not bother to call Analyze on
3077         --  the modified case statement, since it's only effect would be to
3078         --  compute the contents of the Others_Discrete_Choices which is not
3079         --  needed by the back end anyway.
3080
3081         --  The reason for this is that the back end always needs some default
3082         --  for a switch, so if we have not supplied one in the processing
3083         --  above for validity checking, then we need to supply one here.
3084
3085         if not Others_Present then
3086            Others_Node := Make_Others_Choice (Sloc (Last_Alt));
3087
3088            --  If Predicates_Ignored is true the value does not satisfy the
3089            --  predicate, and there is no Others choice, Constraint_Error
3090            --  must be raised (4.5.7 (21/3)).
3091
3092            if Predicates_Ignored (Etype (Expr)) then
3093               declare
3094                  Except  : constant Node_Id :=
3095                              Make_Raise_Constraint_Error (Loc,
3096                                Reason => CE_Invalid_Data);
3097                  New_Alt : constant Node_Id :=
3098                              Make_Case_Statement_Alternative (Loc,
3099                                Discrete_Choices => New_List (
3100                                  Make_Others_Choice (Loc)),
3101                                Statements       => New_List (Except));
3102
3103               begin
3104                  Append (New_Alt, Alternatives (N));
3105                  Analyze_And_Resolve (Except);
3106               end;
3107
3108            else
3109               Set_Others_Discrete_Choices
3110                 (Others_Node, Discrete_Choices (Last_Alt));
3111               Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
3112            end if;
3113
3114         end if;
3115
3116         --  Deal with possible declarations of controlled objects, and also
3117         --  with rewriting choice sequences for static predicate references.
3118
3119         Alt := First_Non_Pragma (Alternatives (N));
3120         while Present (Alt) loop
3121
3122            --  Do not consider controlled objects found in a case statement
3123            --  which actually models a case expression because their early
3124            --  finalization will affect the result of the expression.
3125
3126            if not From_Conditional_Expression (N) then
3127               Process_Statements_For_Controlled_Objects (Alt);
3128            end if;
3129
3130            if Has_SP_Choice (Alt) then
3131               Expand_Static_Predicates_In_Choices (Alt);
3132            end if;
3133
3134            Next_Non_Pragma (Alt);
3135         end loop;
3136      end;
3137   end Expand_N_Case_Statement;
3138
3139   -----------------------------
3140   -- Expand_N_Exit_Statement --
3141   -----------------------------
3142
3143   --  The only processing required is to deal with a possible C/Fortran
3144   --  boolean value used as the condition for the exit statement.
3145
3146   procedure Expand_N_Exit_Statement (N : Node_Id) is
3147   begin
3148      Adjust_Condition (Condition (N));
3149   end Expand_N_Exit_Statement;
3150
3151   ----------------------------------
3152   -- Expand_Formal_Container_Loop --
3153   ----------------------------------
3154
3155   procedure Expand_Formal_Container_Loop (N : Node_Id) is
3156      Loc       : constant Source_Ptr := Sloc (N);
3157      Isc       : constant Node_Id    := Iteration_Scheme (N);
3158      I_Spec    : constant Node_Id    := Iterator_Specification (Isc);
3159      Cursor    : constant Entity_Id  := Defining_Identifier (I_Spec);
3160      Container : constant Node_Id    := Entity (Name (I_Spec));
3161      Stats     : constant List_Id    := Statements (N);
3162
3163      Advance   : Node_Id;
3164      Init_Decl : Node_Id;
3165      Init_Name : Entity_Id;
3166      New_Loop  : Node_Id;
3167
3168   begin
3169      --  The expansion of a formal container loop resembles the one for Ada
3170      --  containers. The only difference is that the primitives mention the
3171      --  domain of iteration explicitly, and function First applied to the
3172      --  container yields a cursor directly.
3173
3174      --    Cursor : Cursor_type := First (Container);
3175      --    while Has_Element (Cursor, Container) loop
3176      --          <original loop statements>
3177      --       Cursor := Next (Container, Cursor);
3178      --    end loop;
3179
3180      Build_Formal_Container_Iteration
3181        (N, Container, Cursor, Init_Decl, Advance, New_Loop);
3182
3183      Append_To (Stats, Advance);
3184
3185      --  Build a block to capture declaration of the cursor
3186
3187      Rewrite (N,
3188        Make_Block_Statement (Loc,
3189          Declarations               => New_List (Init_Decl),
3190          Handled_Statement_Sequence =>
3191            Make_Handled_Sequence_Of_Statements (Loc,
3192              Statements => New_List (New_Loop))));
3193
3194      --  The loop parameter is declared by an object declaration, but within
3195      --  the loop we must prevent user assignments to it, so we analyze the
3196      --  declaration and reset the entity kind, before analyzing the rest of
3197      --  the loop.
3198
3199      Analyze (Init_Decl);
3200      Init_Name := Defining_Identifier (Init_Decl);
3201      Set_Ekind (Init_Name, E_Loop_Parameter);
3202
3203      --  The cursor was marked as a loop parameter to prevent user assignments
3204      --  to it, however this renders the advancement step illegal as it is not
3205      --  possible to change the value of a constant. Flag the advancement step
3206      --  as a legal form of assignment to remedy this side effect.
3207
3208      Set_Assignment_OK (Name (Advance));
3209      Analyze (N);
3210
3211      --  Because we have to analyze the initial declaration of the loop
3212      --  parameter multiple times its scope is incorrectly set at this point
3213      --  to the one surrounding the block statement - so set the scope
3214      --  manually to be the actual block statement, and indicate that it is
3215      --  not visible after the block has been analyzed.
3216
3217      Set_Scope (Init_Name, Entity (Identifier (N)));
3218      Set_Is_Immediately_Visible (Init_Name, False);
3219   end Expand_Formal_Container_Loop;
3220
3221   ------------------------------------------
3222   -- Expand_Formal_Container_Element_Loop --
3223   ------------------------------------------
3224
3225   procedure Expand_Formal_Container_Element_Loop (N : Node_Id) is
3226      Loc           : constant Source_Ptr := Sloc (N);
3227      Isc           : constant Node_Id    := Iteration_Scheme (N);
3228      I_Spec        : constant Node_Id    := Iterator_Specification (Isc);
3229      Element       : constant Entity_Id  := Defining_Identifier (I_Spec);
3230      Container     : constant Node_Id    := Entity (Name (I_Spec));
3231      Container_Typ : constant Entity_Id  := Base_Type (Etype (Container));
3232      Stats         : constant List_Id    := Statements (N);
3233
3234      Cursor    : constant Entity_Id :=
3235                    Make_Defining_Identifier (Loc,
3236                      Chars => New_External_Name (Chars (Element), 'C'));
3237      Elmt_Decl : Node_Id;
3238      Elmt_Ref  : Node_Id;
3239
3240      Element_Op : constant Entity_Id :=
3241                     Get_Iterable_Type_Primitive (Container_Typ, Name_Element);
3242
3243      Advance   : Node_Id;
3244      Init      : Node_Id;
3245      New_Loop  : Node_Id;
3246
3247   begin
3248      --  For an element iterator, the Element aspect must be present,
3249      --  (this is checked during analysis) and the expansion takes the form:
3250
3251      --    Cursor : Cursor_Type := First (Container);
3252      --    Elmt : Element_Type;
3253      --    while Has_Element (Cursor, Container) loop
3254      --       Elmt := Element (Container, Cursor);
3255      --          <original loop statements>
3256      --       Cursor := Next (Container, Cursor);
3257      --    end loop;
3258
3259      --   However this expansion is not legal if the element is indefinite.
3260      --   In that case we create a block to hold a variable declaration
3261      --   initialized with a call to Element, and generate:
3262
3263      --    Cursor : Cursor_Type := First (Container);
3264      --    while Has_Element (Cursor, Container) loop
3265      --       declare
3266      --          Elmt : Element_Type := Element (Container, Cursor);
3267      --       begin
3268      --          <original loop statements>
3269      --          Cursor := Next (Container, Cursor);
3270      --       end;
3271      --    end loop;
3272
3273      Build_Formal_Container_Iteration
3274        (N, Container, Cursor, Init, Advance, New_Loop);
3275      Append_To (Stats, Advance);
3276
3277      Set_Ekind (Cursor, E_Variable);
3278      Insert_Action (N, Init);
3279
3280      --  The loop parameter is declared by an object declaration, but within
3281      --  the loop we must prevent user assignments to it; the following flag
3282      --  accomplishes that.
3283
3284      Set_Is_Loop_Parameter (Element);
3285
3286      --  Declaration for Element
3287
3288      Elmt_Decl :=
3289        Make_Object_Declaration (Loc,
3290          Defining_Identifier => Element,
3291          Object_Definition   => New_Occurrence_Of (Etype (Element_Op), Loc));
3292
3293      if not Is_Constrained (Etype (Element_Op)) then
3294         Set_Expression (Elmt_Decl,
3295           Make_Function_Call (Loc,
3296             Name                   => New_Occurrence_Of (Element_Op, Loc),
3297             Parameter_Associations => New_List (
3298               Convert_To_Iterable_Type (Container, Loc),
3299               New_Occurrence_Of (Cursor, Loc))));
3300
3301         Set_Statements (New_Loop,
3302           New_List
3303             (Make_Block_Statement (Loc,
3304                Declarations => New_List (Elmt_Decl),
3305                Handled_Statement_Sequence =>
3306                  Make_Handled_Sequence_Of_Statements (Loc,
3307                    Statements =>  Stats))));
3308
3309      else
3310         Elmt_Ref :=
3311           Make_Assignment_Statement (Loc,
3312             Name       => New_Occurrence_Of (Element, Loc),
3313             Expression =>
3314               Make_Function_Call (Loc,
3315                 Name                   => New_Occurrence_Of (Element_Op, Loc),
3316                 Parameter_Associations => New_List (
3317                   Convert_To_Iterable_Type (Container, Loc),
3318                   New_Occurrence_Of (Cursor, Loc))));
3319
3320         Prepend (Elmt_Ref, Stats);
3321
3322         --  The element is assignable in the expanded code
3323
3324         Set_Assignment_OK (Name (Elmt_Ref));
3325
3326         --  The loop is rewritten as a block, to hold the element declaration
3327
3328         New_Loop :=
3329           Make_Block_Statement (Loc,
3330             Declarations               => New_List (Elmt_Decl),
3331             Handled_Statement_Sequence =>
3332               Make_Handled_Sequence_Of_Statements (Loc,
3333                 Statements =>  New_List (New_Loop)));
3334      end if;
3335
3336      --  The element is only modified in expanded code, so it appears as
3337      --  unassigned to the warning machinery. We must suppress this spurious
3338      --  warning explicitly.
3339
3340      Set_Warnings_Off (Element);
3341
3342      Rewrite (N, New_Loop);
3343      Analyze (N);
3344   end Expand_Formal_Container_Element_Loop;
3345
3346   -----------------------------
3347   -- Expand_N_Goto_Statement --
3348   -----------------------------
3349
3350   --  Add poll before goto if polling active
3351
3352   procedure Expand_N_Goto_Statement (N : Node_Id) is
3353   begin
3354      Generate_Poll_Call (N);
3355   end Expand_N_Goto_Statement;
3356
3357   ---------------------------
3358   -- Expand_N_If_Statement --
3359   ---------------------------
3360
3361   --  First we deal with the case of C and Fortran convention boolean values,
3362   --  with zero/non-zero semantics.
3363
3364   --  Second, we deal with the obvious rewriting for the cases where the
3365   --  condition of the IF is known at compile time to be True or False.
3366
3367   --  Third, we remove elsif parts which have non-empty Condition_Actions and
3368   --  rewrite as independent if statements. For example:
3369
3370   --     if x then xs
3371   --     elsif y then ys
3372   --     ...
3373   --     end if;
3374
3375   --  becomes
3376   --
3377   --     if x then xs
3378   --     else
3379   --        <<condition actions of y>>
3380   --        if y then ys
3381   --        ...
3382   --        end if;
3383   --     end if;
3384
3385   --  This rewriting is needed if at least one elsif part has a non-empty
3386   --  Condition_Actions list. We also do the same processing if there is a
3387   --  constant condition in an elsif part (in conjunction with the first
3388   --  processing step mentioned above, for the recursive call made to deal
3389   --  with the created inner if, this deals with properly optimizing the
3390   --  cases of constant elsif conditions).
3391
3392   procedure Expand_N_If_Statement (N : Node_Id) is
3393      Loc    : constant Source_Ptr := Sloc (N);
3394      Hed    : Node_Id;
3395      E      : Node_Id;
3396      New_If : Node_Id;
3397
3398      Warn_If_Deleted : constant Boolean :=
3399                          Warn_On_Deleted_Code and then Comes_From_Source (N);
3400      --  Indicates whether we want warnings when we delete branches of the
3401      --  if statement based on constant condition analysis. We never want
3402      --  these warnings for expander generated code.
3403
3404   begin
3405      --  Do not consider controlled objects found in an if statement which
3406      --  actually models an if expression because their early finalization
3407      --  will affect the result of the expression.
3408
3409      if not From_Conditional_Expression (N) then
3410         Process_Statements_For_Controlled_Objects (N);
3411      end if;
3412
3413      Adjust_Condition (Condition (N));
3414
3415      --  The following loop deals with constant conditions for the IF. We
3416      --  need a loop because as we eliminate False conditions, we grab the
3417      --  first elsif condition and use it as the primary condition.
3418
3419      while Compile_Time_Known_Value (Condition (N)) loop
3420
3421         --  If condition is True, we can simply rewrite the if statement now
3422         --  by replacing it by the series of then statements.
3423
3424         if Is_True (Expr_Value (Condition (N))) then
3425
3426            --  All the else parts can be killed
3427
3428            Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted);
3429            Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted);
3430
3431            Hed := Remove_Head (Then_Statements (N));
3432            Insert_List_After (N, Then_Statements (N));
3433            Rewrite (N, Hed);
3434            return;
3435
3436         --  If condition is False, then we can delete the condition and
3437         --  the Then statements
3438
3439         else
3440            --  We do not delete the condition if constant condition warnings
3441            --  are enabled, since otherwise we end up deleting the desired
3442            --  warning. Of course the backend will get rid of this True/False
3443            --  test anyway, so nothing is lost here.
3444
3445            if not Constant_Condition_Warnings then
3446               Kill_Dead_Code (Condition (N));
3447            end if;
3448
3449            Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted);
3450
3451            --  If there are no elsif statements, then we simply replace the
3452            --  entire if statement by the sequence of else statements.
3453
3454            if No (Elsif_Parts (N)) then
3455               if No (Else_Statements (N))
3456                 or else Is_Empty_List (Else_Statements (N))
3457               then
3458                  Rewrite (N,
3459                    Make_Null_Statement (Sloc (N)));
3460               else
3461                  Hed := Remove_Head (Else_Statements (N));
3462                  Insert_List_After (N, Else_Statements (N));
3463                  Rewrite (N, Hed);
3464               end if;
3465
3466               return;
3467
3468            --  If there are elsif statements, the first of them becomes the
3469            --  if/then section of the rebuilt if statement This is the case
3470            --  where we loop to reprocess this copied condition.
3471
3472            else
3473               Hed := Remove_Head (Elsif_Parts (N));
3474               Insert_Actions      (N, Condition_Actions (Hed));
3475               Set_Condition       (N, Condition (Hed));
3476               Set_Then_Statements (N, Then_Statements (Hed));
3477
3478               --  Hed might have been captured as the condition determining
3479               --  the current value for an entity. Now it is detached from
3480               --  the tree, so a Current_Value pointer in the condition might
3481               --  need to be updated.
3482
3483               Set_Current_Value_Condition (N);
3484
3485               if Is_Empty_List (Elsif_Parts (N)) then
3486                  Set_Elsif_Parts (N, No_List);
3487               end if;
3488            end if;
3489         end if;
3490      end loop;
3491
3492      --  Loop through elsif parts, dealing with constant conditions and
3493      --  possible condition actions that are present.
3494
3495      if Present (Elsif_Parts (N)) then
3496         E := First (Elsif_Parts (N));
3497         while Present (E) loop
3498
3499            --  Do not consider controlled objects found in an if statement
3500            --  which actually models an if expression because their early
3501            --  finalization will affect the result of the expression.
3502
3503            if not From_Conditional_Expression (N) then
3504               Process_Statements_For_Controlled_Objects (E);
3505            end if;
3506
3507            Adjust_Condition (Condition (E));
3508
3509            --  If there are condition actions, then rewrite the if statement
3510            --  as indicated above. We also do the same rewrite for a True or
3511            --  False condition. The further processing of this constant
3512            --  condition is then done by the recursive call to expand the
3513            --  newly created if statement
3514
3515            if Present (Condition_Actions (E))
3516              or else Compile_Time_Known_Value (Condition (E))
3517            then
3518               New_If :=
3519                 Make_If_Statement (Sloc (E),
3520                   Condition       => Condition (E),
3521                   Then_Statements => Then_Statements (E),
3522                   Elsif_Parts     => No_List,
3523                   Else_Statements => Else_Statements (N));
3524
3525               --  Elsif parts for new if come from remaining elsif's of parent
3526
3527               while Present (Next (E)) loop
3528                  if No (Elsif_Parts (New_If)) then
3529                     Set_Elsif_Parts (New_If, New_List);
3530                  end if;
3531
3532                  Append (Remove_Next (E), Elsif_Parts (New_If));
3533               end loop;
3534
3535               Set_Else_Statements (N, New_List (New_If));
3536
3537               if Present (Condition_Actions (E)) then
3538                  Insert_List_Before (New_If, Condition_Actions (E));
3539               end if;
3540
3541               Remove (E);
3542
3543               if Is_Empty_List (Elsif_Parts (N)) then
3544                  Set_Elsif_Parts (N, No_List);
3545               end if;
3546
3547               Analyze (New_If);
3548
3549               --  Note this is not an implicit if statement, since it is part
3550               --  of an explicit if statement in the source (or of an implicit
3551               --  if statement that has already been tested). We set the flag
3552               --  after calling Analyze to avoid generating extra warnings
3553               --  specific to pure if statements, however (see
3554               --  Sem_Ch5.Analyze_If_Statement).
3555
3556               Set_Comes_From_Source (New_If, Comes_From_Source (N));
3557               return;
3558
3559            --  No special processing for that elsif part, move to next
3560
3561            else
3562               Next (E);
3563            end if;
3564         end loop;
3565      end if;
3566
3567      --  Some more optimizations applicable if we still have an IF statement
3568
3569      if Nkind (N) /= N_If_Statement then
3570         return;
3571      end if;
3572
3573      --  Another optimization, special cases that can be simplified
3574
3575      --     if expression then
3576      --        return true;
3577      --     else
3578      --        return false;
3579      --     end if;
3580
3581      --  can be changed to:
3582
3583      --     return expression;
3584
3585      --  and
3586
3587      --     if expression then
3588      --        return false;
3589      --     else
3590      --        return true;
3591      --     end if;
3592
3593      --  can be changed to:
3594
3595      --     return not (expression);
3596
3597      --  Only do these optimizations if we are at least at -O1 level and
3598      --  do not do them if control flow optimizations are suppressed.
3599
3600      if Optimization_Level > 0
3601        and then not Opt.Suppress_Control_Flow_Optimizations
3602      then
3603         if Nkind (N) = N_If_Statement
3604           and then No (Elsif_Parts (N))
3605           and then Present (Else_Statements (N))
3606           and then List_Length (Then_Statements (N)) = 1
3607           and then List_Length (Else_Statements (N)) = 1
3608         then
3609            declare
3610               Then_Stm : constant Node_Id := First (Then_Statements (N));
3611               Else_Stm : constant Node_Id := First (Else_Statements (N));
3612
3613            begin
3614               if Nkind (Then_Stm) = N_Simple_Return_Statement
3615                    and then
3616                  Nkind (Else_Stm) = N_Simple_Return_Statement
3617               then
3618                  declare
3619                     Then_Expr : constant Node_Id := Expression (Then_Stm);
3620                     Else_Expr : constant Node_Id := Expression (Else_Stm);
3621
3622                  begin
3623                     if Nkind (Then_Expr) = N_Identifier
3624                          and then
3625                        Nkind (Else_Expr) = N_Identifier
3626                     then
3627                        if Entity (Then_Expr) = Standard_True
3628                          and then Entity (Else_Expr) = Standard_False
3629                        then
3630                           Rewrite (N,
3631                             Make_Simple_Return_Statement (Loc,
3632                               Expression => Relocate_Node (Condition (N))));
3633                           Analyze (N);
3634                           return;
3635
3636                        elsif Entity (Then_Expr) = Standard_False
3637                          and then Entity (Else_Expr) = Standard_True
3638                        then
3639                           Rewrite (N,
3640                             Make_Simple_Return_Statement (Loc,
3641                               Expression =>
3642                                 Make_Op_Not (Loc,
3643                                   Right_Opnd =>
3644                                     Relocate_Node (Condition (N)))));
3645                           Analyze (N);
3646                           return;
3647                        end if;
3648                     end if;
3649                  end;
3650               end if;
3651            end;
3652         end if;
3653      end if;
3654   end Expand_N_If_Statement;
3655
3656   --------------------------
3657   -- Expand_Iterator_Loop --
3658   --------------------------
3659
3660   procedure Expand_Iterator_Loop (N : Node_Id) is
3661      Isc    : constant Node_Id    := Iteration_Scheme (N);
3662      I_Spec : constant Node_Id    := Iterator_Specification (Isc);
3663
3664      Container     : constant Node_Id     := Name (I_Spec);
3665      Container_Typ : constant Entity_Id   := Base_Type (Etype (Container));
3666
3667   begin
3668      --  Processing for arrays
3669
3670      if Is_Array_Type (Container_Typ) then
3671         pragma Assert (Of_Present (I_Spec));
3672         Expand_Iterator_Loop_Over_Array (N);
3673
3674      elsif Has_Aspect (Container_Typ, Aspect_Iterable) then
3675         if Of_Present (I_Spec) then
3676            Expand_Formal_Container_Element_Loop (N);
3677         else
3678            Expand_Formal_Container_Loop (N);
3679         end if;
3680
3681      --  Processing for containers
3682
3683      else
3684         Expand_Iterator_Loop_Over_Container
3685           (N, Isc, I_Spec, Container, Container_Typ);
3686      end if;
3687   end Expand_Iterator_Loop;
3688
3689   -------------------------------------
3690   -- Expand_Iterator_Loop_Over_Array --
3691   -------------------------------------
3692
3693   procedure Expand_Iterator_Loop_Over_Array (N : Node_Id) is
3694      Isc        : constant Node_Id    := Iteration_Scheme (N);
3695      I_Spec     : constant Node_Id    := Iterator_Specification (Isc);
3696      Array_Node : constant Node_Id    := Name (I_Spec);
3697      Array_Typ  : constant Entity_Id  := Base_Type (Etype (Array_Node));
3698      Array_Dim  : constant Pos        := Number_Dimensions (Array_Typ);
3699      Id         : constant Entity_Id  := Defining_Identifier (I_Spec);
3700      Loc        : constant Source_Ptr := Sloc (Isc);
3701      Stats      : constant List_Id    := Statements (N);
3702      Core_Loop  : Node_Id;
3703      Dim1       : Int;
3704      Ind_Comp   : Node_Id;
3705      Iterator   : Entity_Id;
3706
3707   --  Start of processing for Expand_Iterator_Loop_Over_Array
3708
3709   begin
3710      --  for Element of Array loop
3711
3712      --  It requires an internally generated cursor to iterate over the array
3713
3714      pragma Assert (Of_Present (I_Spec));
3715
3716      Iterator := Make_Temporary (Loc, 'C');
3717
3718      --  Generate:
3719      --    Element : Component_Type renames Array (Iterator);
3720      --    Iterator is the index value, or a list of index values
3721      --    in the case of a multidimensional array.
3722
3723      Ind_Comp :=
3724        Make_Indexed_Component (Loc,
3725          Prefix      => New_Copy_Tree (Array_Node),
3726          Expressions => New_List (New_Occurrence_Of (Iterator, Loc)));
3727
3728      --  Propagate the original node to the copy since the analysis of the
3729      --  following object renaming declaration relies on the original node.
3730
3731      Set_Original_Node (Prefix (Ind_Comp), Original_Node (Array_Node));
3732
3733      Prepend_To (Stats,
3734        Make_Object_Renaming_Declaration (Loc,
3735          Defining_Identifier => Id,
3736          Subtype_Mark        =>
3737            New_Occurrence_Of (Component_Type (Array_Typ), Loc),
3738          Name                => Ind_Comp));
3739
3740      --  Mark the loop variable as needing debug info, so that expansion
3741      --  of the renaming will result in Materialize_Entity getting set via
3742      --  Debug_Renaming_Declaration. (This setting is needed here because
3743      --  the setting in Freeze_Entity comes after the expansion, which is
3744      --  too late. ???)
3745
3746      Set_Debug_Info_Needed (Id);
3747
3748      --  Generate:
3749
3750      --    for Iterator in [reverse] Array'Range (Array_Dim) loop
3751      --       Element : Component_Type renames Array (Iterator);
3752      --       <original loop statements>
3753      --    end loop;
3754
3755      --  If this is an iteration over a multidimensional array, the
3756      --  innermost loop is over the last dimension in Ada, and over
3757      --  the first dimension in Fortran.
3758
3759      if Convention (Array_Typ) = Convention_Fortran then
3760         Dim1 := 1;
3761      else
3762         Dim1 := Array_Dim;
3763      end if;
3764
3765      Core_Loop :=
3766        Make_Loop_Statement (Sloc (N),
3767          Iteration_Scheme =>
3768            Make_Iteration_Scheme (Loc,
3769              Loop_Parameter_Specification =>
3770                Make_Loop_Parameter_Specification (Loc,
3771                  Defining_Identifier         => Iterator,
3772                  Discrete_Subtype_Definition =>
3773                    Make_Attribute_Reference (Loc,
3774                      Prefix         => New_Copy_Tree (Array_Node),
3775                      Attribute_Name => Name_Range,
3776                      Expressions    => New_List (
3777                        Make_Integer_Literal (Loc, Dim1))),
3778                  Reverse_Present             => Reverse_Present (I_Spec))),
3779           Statements      => Stats,
3780           End_Label       => Empty);
3781
3782      --  Processing for multidimensional array. The body of each loop is
3783      --  a loop over a previous dimension, going in decreasing order in Ada
3784      --  and in increasing order in Fortran.
3785
3786      if Array_Dim > 1 then
3787         for Dim in 1 .. Array_Dim - 1 loop
3788            if Convention (Array_Typ) = Convention_Fortran then
3789               Dim1 := Dim + 1;
3790            else
3791               Dim1 := Array_Dim - Dim;
3792            end if;
3793
3794            Iterator := Make_Temporary (Loc, 'C');
3795
3796            --  Generate the dimension loops starting from the innermost one
3797
3798            --    for Iterator in [reverse] Array'Range (Array_Dim - Dim) loop
3799            --       <core loop>
3800            --    end loop;
3801
3802            Core_Loop :=
3803              Make_Loop_Statement (Sloc (N),
3804                Iteration_Scheme =>
3805                  Make_Iteration_Scheme (Loc,
3806                    Loop_Parameter_Specification =>
3807                      Make_Loop_Parameter_Specification (Loc,
3808                        Defining_Identifier         => Iterator,
3809                        Discrete_Subtype_Definition =>
3810                          Make_Attribute_Reference (Loc,
3811                            Prefix         => New_Copy_Tree (Array_Node),
3812                            Attribute_Name => Name_Range,
3813                            Expressions    => New_List (
3814                              Make_Integer_Literal (Loc, Dim1))),
3815                    Reverse_Present              => Reverse_Present (I_Spec))),
3816                Statements       => New_List (Core_Loop),
3817                End_Label        => Empty);
3818
3819            --  Update the previously created object renaming declaration with
3820            --  the new iterator, by adding the index of the next loop to the
3821            --  indexed component, in the order that corresponds to the
3822            --  convention.
3823
3824            if Convention (Array_Typ) = Convention_Fortran then
3825               Append_To (Expressions (Ind_Comp),
3826                 New_Occurrence_Of (Iterator, Loc));
3827            else
3828               Prepend_To (Expressions (Ind_Comp),
3829                 New_Occurrence_Of (Iterator, Loc));
3830            end if;
3831         end loop;
3832      end if;
3833
3834      --  Inherit the loop identifier from the original loop. This ensures that
3835      --  the scope stack is consistent after the rewriting.
3836
3837      if Present (Identifier (N)) then
3838         Set_Identifier (Core_Loop, Relocate_Node (Identifier (N)));
3839      end if;
3840
3841      Rewrite (N, Core_Loop);
3842      Analyze (N);
3843   end Expand_Iterator_Loop_Over_Array;
3844
3845   -----------------------------------------
3846   -- Expand_Iterator_Loop_Over_Container --
3847   -----------------------------------------
3848
3849   --  For a 'for ... in' loop, such as:
3850
3851   --      for Cursor in Iterator_Function (...) loop
3852   --          ...
3853   --      end loop;
3854
3855   --  we generate:
3856
3857   --    Iter : Iterator_Type := Iterator_Function (...);
3858   --    Cursor : Cursor_type := First (Iter); -- or Last for "reverse"
3859   --    while Has_Element (Cursor) loop
3860   --       ...
3861   --
3862   --       Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
3863   --    end loop;
3864
3865   --  For a 'for ... of' loop, such as:
3866
3867   --      for X of Container loop
3868   --          ...
3869   --      end loop;
3870
3871   --  the RM implies the generation of:
3872
3873   --    Iter : Iterator_Type := Container.Iterate; -- the Default_Iterator
3874   --    Cursor : Cursor_Type := First (Iter); -- or Last for "reverse"
3875   --    while Has_Element (Cursor) loop
3876   --       declare
3877   --          X : Element_Type renames Element (Cursor).Element.all;
3878   --          --  or Constant_Element
3879   --       begin
3880   --          ...
3881   --       end;
3882   --       Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
3883   --    end loop;
3884
3885   --  In the general case, we do what the RM says. However, the operations
3886   --  Element and Iter.Next are slow, which is bad inside a loop, because they
3887   --  involve dispatching via interfaces, secondary stack manipulation,
3888   --  Busy/Lock incr/decr, and adjust/finalization/at-end handling. So for the
3889   --  predefined containers, we use an equivalent but optimized expansion.
3890
3891   --  In the optimized case, we make use of these:
3892
3893   --     procedure Next (Position : in out Cursor); -- instead of Iter.Next
3894
3895   --     function Pseudo_Reference
3896   --       (Container : aliased Vector'Class) return Reference_Control_Type;
3897
3898   --     type Element_Access is access all Element_Type;
3899
3900   --     function Get_Element_Access
3901   --       (Position : Cursor) return not null Element_Access;
3902
3903   --  Next is declared in the visible part of the container packages.
3904   --  The other three are added in the private part. (We're not supposed to
3905   --  pollute the namespace for clients. The compiler has no trouble breaking
3906   --  privacy to call things in the private part of an instance.)
3907
3908   --  Source:
3909
3910   --      for X of My_Vector loop
3911   --          X.Count := X.Count + 1;
3912   --          ...
3913   --      end loop;
3914
3915   --  The compiler will generate:
3916
3917   --      Iter : Reversible_Iterator'Class := Iterate (My_Vector);
3918   --      --  Reversible_Iterator is an interface. Iterate is the
3919   --      --  Default_Iterator aspect of Vector. This increments Lock,
3920   --      --  disallowing tampering with cursors. Unfortunately, it does not
3921   --      --  increment Busy. The result of Iterate is Limited_Controlled;
3922   --      --  finalization will decrement Lock.  This is a build-in-place
3923   --      --  dispatching call to Iterate.
3924
3925   --      Cur : Cursor := First (Iter); -- or Last
3926   --      --  Dispatching call via interface.
3927
3928   --      Control : Reference_Control_Type := Pseudo_Reference (My_Vector);
3929   --      --  Pseudo_Reference increments Busy, to detect tampering with
3930   --      --  elements, as required by RM. Also redundantly increment
3931   --      --  Lock. Finalization of Control will decrement both Busy and
3932   --      --  Lock. Pseudo_Reference returns a record containing a pointer to
3933   --      --  My_Vector, used by Finalize.
3934   --      --
3935   --      --  Control is not used below, except to finalize it -- it's purely
3936   --      --  an RAII thing. This is needed because we are eliminating the
3937   --      --  call to Reference within the loop.
3938
3939   --      while Has_Element (Cur) loop
3940   --          declare
3941   --              X : My_Element renames Get_Element_Access (Cur).all;
3942   --              --  Get_Element_Access returns a pointer to the element
3943   --              --  designated by Cur. No dispatching here, and no horsing
3944   --              --  around with access discriminants. This is instead of the
3945   --              --  existing
3946   --              --
3947   --              --    X : My_Element renames Reference (Cur).Element.all;
3948   --              --
3949   --              --  which creates a controlled object.
3950   --          begin
3951   --              --  Any attempt to tamper with My_Vector here in the loop
3952   --              --  will correctly raise Program_Error, because of the
3953   --              --  Control.
3954   --
3955   --              X.Count := X.Count + 1;
3956   --              ...
3957   --
3958   --              Next (Cur); -- or Prev
3959   --              --  This is instead of "Cur := Next (Iter, Cur);"
3960   --          end;
3961   --          --  No finalization here
3962   --      end loop;
3963   --      Finalize Iter and Control here, decrementing Lock twice and Busy
3964   --      once.
3965
3966   --  This optimization makes "for ... of" loops over 30 times faster in cases
3967   --  measured.
3968
3969   procedure Expand_Iterator_Loop_Over_Container
3970     (N             : Node_Id;
3971      Isc           : Node_Id;
3972      I_Spec        : Node_Id;
3973      Container     : Node_Id;
3974      Container_Typ : Entity_Id)
3975   is
3976      Id       : constant Entity_Id   := Defining_Identifier (I_Spec);
3977      Elem_Typ : constant Entity_Id   := Etype (Id);
3978      Id_Kind  : constant Entity_Kind := Ekind (Id);
3979      Loc      : constant Source_Ptr  := Sloc (N);
3980      Stats    : constant List_Id     := Statements (N);
3981
3982      Cursor    : Entity_Id;
3983      Decl      : Node_Id;
3984      Iter_Type : Entity_Id;
3985      Iterator  : Entity_Id;
3986      Name_Init : Name_Id;
3987      Name_Step : Name_Id;
3988      New_Loop  : Node_Id;
3989
3990      Fast_Element_Access_Op : Entity_Id := Empty;
3991      Fast_Step_Op           : Entity_Id := Empty;
3992      --  Only for optimized version of "for ... of"
3993
3994      Iter_Pack : Entity_Id;
3995      --  The package in which the iterator interface is instantiated. This is
3996      --  typically an instance within the container package.
3997
3998      Pack : Entity_Id;
3999      --  The package in which the container type is declared
4000
4001   begin
4002      --  Determine the advancement and initialization steps for the cursor.
4003      --  Analysis of the expanded loop will verify that the container has a
4004      --  reverse iterator.
4005
4006      if Reverse_Present (I_Spec) then
4007         Name_Init := Name_Last;
4008         Name_Step := Name_Previous;
4009      else
4010         Name_Init := Name_First;
4011         Name_Step := Name_Next;
4012      end if;
4013
4014      --  The type of the iterator is the return type of the Iterate function
4015      --  used. For the "of" form this is the default iterator for the type,
4016      --  otherwise it is the type of the explicit function used in the
4017      --  iterator specification. The most common case will be an Iterate
4018      --  function in the container package.
4019
4020      --  The Iterator type is declared in an instance within the container
4021      --  package itself, for example:
4022
4023      --    package Vector_Iterator_Interfaces is new
4024      --      Ada.Iterator_Interfaces (Cursor, Has_Element);
4025
4026      --  If the container type is a derived type, the cursor type is found in
4027      --  the package of the ultimate ancestor type.
4028
4029      if Is_Derived_Type (Container_Typ) then
4030         Pack := Scope (Root_Type (Container_Typ));
4031      else
4032         Pack := Scope (Container_Typ);
4033      end if;
4034
4035      if Of_Present (I_Spec) then
4036         Handle_Of : declare
4037            Container_Arg : Node_Id;
4038
4039            function Get_Default_Iterator
4040              (T : Entity_Id) return Entity_Id;
4041            --  Return the default iterator for a specific type. If the type is
4042            --  derived, we return the inherited or overridden one if
4043            --  appropriate.
4044
4045            --------------------------
4046            -- Get_Default_Iterator --
4047            --------------------------
4048
4049            function Get_Default_Iterator
4050              (T : Entity_Id) return Entity_Id
4051            is
4052               Iter : constant Entity_Id :=
4053                 Entity (Find_Value_Of_Aspect (T, Aspect_Default_Iterator));
4054               Prim : Elmt_Id;
4055               Op   : Entity_Id;
4056
4057            begin
4058               Container_Arg := New_Copy_Tree (Container);
4059
4060               --  A previous version of GNAT allowed indexing aspects to be
4061               --  redefined on derived container types, while the default
4062               --  iterator was inherited from the parent type. This
4063               --  nonstandard extension is preserved for use by the
4064               --  modeling project under debug flag -gnatd.X.
4065
4066               if Debug_Flag_Dot_XX then
4067                  if Base_Type (Etype (Container)) /=
4068                     Base_Type (Etype (First_Formal (Iter)))
4069                  then
4070                     Container_Arg :=
4071                       Make_Type_Conversion (Loc,
4072                         Subtype_Mark =>
4073                           New_Occurrence_Of
4074                             (Etype (First_Formal (Iter)), Loc),
4075                         Expression   => Container_Arg);
4076                  end if;
4077
4078                  return Iter;
4079
4080               elsif Is_Derived_Type (T) then
4081
4082                  --  The default iterator must be a primitive operation of the
4083                  --  type, at the same dispatch slot position. The DT position
4084                  --  may not be established if type is not frozen yet.
4085
4086                  Prim := First_Elmt (Primitive_Operations (T));
4087                  while Present (Prim) loop
4088                     Op := Node (Prim);
4089
4090                     if Alias (Op) = Iter
4091                       or else
4092                         (Chars (Op) = Chars (Iter)
4093                           and then Present (DTC_Entity (Op))
4094                           and then DT_Position (Op) = DT_Position (Iter))
4095                     then
4096                        return Op;
4097                     end if;
4098
4099                     Next_Elmt (Prim);
4100                  end loop;
4101
4102                  --  If we didn't find it, then our parent type is not
4103                  --  iterable, so we return the Default_Iterator aspect of
4104                  --  this type.
4105
4106                  return Iter;
4107
4108               --  Otherwise not a derived type
4109
4110               else
4111                  return Iter;
4112               end if;
4113            end Get_Default_Iterator;
4114
4115            --  Local variables
4116
4117            Default_Iter : Entity_Id;
4118            Ent          : Entity_Id;
4119
4120            Reference_Control_Type : Entity_Id := Empty;
4121            Pseudo_Reference       : Entity_Id := Empty;
4122
4123         --  Start of processing for Handle_Of
4124
4125         begin
4126            if Is_Class_Wide_Type (Container_Typ) then
4127               Default_Iter :=
4128                 Get_Default_Iterator (Etype (Base_Type (Container_Typ)));
4129            else
4130               Default_Iter := Get_Default_Iterator (Etype (Container));
4131            end if;
4132
4133            Cursor := Make_Temporary (Loc, 'C');
4134
4135            --  For a container element iterator, the iterator type is obtained
4136            --  from the corresponding aspect, whose return type is descended
4137            --  from the corresponding interface type in some instance of
4138            --  Ada.Iterator_Interfaces. The actuals of that instantiation
4139            --  are Cursor and Has_Element.
4140
4141            Iter_Type := Etype (Default_Iter);
4142
4143            --  The iterator type, which is a class-wide type, may itself be
4144            --  derived locally, so the desired instantiation is the scope of
4145            --  the root type of the iterator type.
4146
4147            Iter_Pack := Scope (Root_Type (Etype (Iter_Type)));
4148
4149            --  Find declarations needed for "for ... of" optimization
4150
4151            Ent := First_Entity (Pack);
4152            while Present (Ent) loop
4153               if Chars (Ent) = Name_Get_Element_Access then
4154                  Fast_Element_Access_Op := Ent;
4155
4156               elsif Chars (Ent) = Name_Step
4157                 and then Ekind (Ent) = E_Procedure
4158               then
4159                  Fast_Step_Op := Ent;
4160
4161               elsif Chars (Ent) = Name_Reference_Control_Type then
4162                  Reference_Control_Type := Ent;
4163
4164               elsif Chars (Ent) = Name_Pseudo_Reference then
4165                  Pseudo_Reference := Ent;
4166               end if;
4167
4168               Next_Entity (Ent);
4169            end loop;
4170
4171            if Present (Reference_Control_Type)
4172              and then Present (Pseudo_Reference)
4173            then
4174               Insert_Action (N,
4175                 Make_Object_Declaration (Loc,
4176                   Defining_Identifier => Make_Temporary (Loc, 'D'),
4177                   Object_Definition   =>
4178                     New_Occurrence_Of (Reference_Control_Type, Loc),
4179                   Expression          =>
4180                     Make_Function_Call (Loc,
4181                       Name                   =>
4182                         New_Occurrence_Of (Pseudo_Reference, Loc),
4183                       Parameter_Associations =>
4184                         New_List (New_Copy_Tree (Container_Arg)))));
4185            end if;
4186
4187            --  Rewrite domain of iteration as a call to the default iterator
4188            --  for the container type. The formal may be an access parameter
4189            --  in which case we must build a reference to the container.
4190
4191            declare
4192               Arg : Node_Id;
4193            begin
4194               if Is_Access_Type (Etype (First_Entity (Default_Iter))) then
4195                  Arg :=
4196                    Make_Attribute_Reference (Loc,
4197                      Prefix         => Container_Arg,
4198                      Attribute_Name => Name_Unrestricted_Access);
4199               else
4200                  Arg := Container_Arg;
4201               end if;
4202
4203               Rewrite (Name (I_Spec),
4204                 Make_Function_Call (Loc,
4205                   Name                   =>
4206                     New_Occurrence_Of (Default_Iter, Loc),
4207                   Parameter_Associations => New_List (Arg)));
4208            end;
4209
4210            Analyze_And_Resolve (Name (I_Spec));
4211
4212            --  Find cursor type in proper iterator package, which is an
4213            --  instantiation of Iterator_Interfaces.
4214
4215            Ent := First_Entity (Iter_Pack);
4216            while Present (Ent) loop
4217               if Chars (Ent) = Name_Cursor then
4218                  Set_Etype (Cursor, Etype (Ent));
4219                  exit;
4220               end if;
4221
4222               Next_Entity (Ent);
4223            end loop;
4224
4225            if Present (Fast_Element_Access_Op) then
4226               Decl :=
4227                 Make_Object_Renaming_Declaration (Loc,
4228                   Defining_Identifier => Id,
4229                   Subtype_Mark        =>
4230                     New_Occurrence_Of (Elem_Typ, Loc),
4231                   Name                =>
4232                     Make_Explicit_Dereference (Loc,
4233                       Prefix =>
4234                         Make_Function_Call (Loc,
4235                           Name                   =>
4236                             New_Occurrence_Of (Fast_Element_Access_Op, Loc),
4237                           Parameter_Associations =>
4238                             New_List (New_Occurrence_Of (Cursor, Loc)))));
4239
4240            else
4241               Decl :=
4242                 Make_Object_Renaming_Declaration (Loc,
4243                   Defining_Identifier => Id,
4244                   Subtype_Mark        =>
4245                     New_Occurrence_Of (Elem_Typ, Loc),
4246                   Name                =>
4247                     Make_Indexed_Component (Loc,
4248                       Prefix      => Relocate_Node (Container_Arg),
4249                       Expressions =>
4250                         New_List (New_Occurrence_Of (Cursor, Loc))));
4251            end if;
4252
4253            --  The defining identifier in the iterator is user-visible and
4254            --  must be visible in the debugger.
4255
4256            Set_Debug_Info_Needed (Id);
4257
4258            --  If the container does not have a variable indexing aspect,
4259            --  the element is a constant in the loop. The container itself
4260            --  may be constant, in which case the element is a constant as
4261            --  well. The container has been rewritten as a call to Iterate,
4262            --  so examine original node.
4263
4264            if No (Find_Value_Of_Aspect
4265                     (Container_Typ, Aspect_Variable_Indexing))
4266              or else not Is_Variable (Original_Node (Container))
4267            then
4268               Set_Ekind (Id, E_Constant);
4269            end if;
4270
4271            Prepend_To (Stats, Decl);
4272         end Handle_Of;
4273
4274      --  X in Iterate (S) : type of iterator is type of explicitly given
4275      --  Iterate function, and the loop variable is the cursor. It will be
4276      --  assigned in the loop and must be a variable.
4277
4278      else
4279         Iter_Type := Etype (Name (I_Spec));
4280
4281         --  The iterator type, which is a class-wide type, may itself be
4282         --  derived locally, so the desired instantiation is the scope of
4283         --  the root type of the iterator type, as in the "of" case.
4284
4285         Iter_Pack := Scope (Root_Type (Etype (Iter_Type)));
4286         Cursor := Id;
4287      end if;
4288
4289      Iterator := Make_Temporary (Loc, 'I');
4290
4291      --  For both iterator forms, add a call to the step operation to advance
4292      --  the cursor. Generate:
4293
4294      --     Cursor := Iterator.Next (Cursor);
4295
4296      --   or else
4297
4298      --     Cursor := Next (Cursor);
4299
4300      if Present (Fast_Element_Access_Op) and then Present (Fast_Step_Op) then
4301         declare
4302            Curs_Name : constant Node_Id := New_Occurrence_Of (Cursor, Loc);
4303            Step_Call : Node_Id;
4304
4305         begin
4306            Step_Call :=
4307              Make_Procedure_Call_Statement (Loc,
4308                Name                   =>
4309                  New_Occurrence_Of (Fast_Step_Op, Loc),
4310                Parameter_Associations => New_List (Curs_Name));
4311
4312            Append_To (Stats, Step_Call);
4313            Set_Assignment_OK (Curs_Name);
4314         end;
4315
4316      else
4317         declare
4318            Rhs : Node_Id;
4319
4320         begin
4321            Rhs :=
4322              Make_Function_Call (Loc,
4323                Name                   =>
4324                  Make_Selected_Component (Loc,
4325                    Prefix        => New_Occurrence_Of (Iterator, Loc),
4326                    Selector_Name => Make_Identifier (Loc, Name_Step)),
4327                Parameter_Associations => New_List (
4328                   New_Occurrence_Of (Cursor, Loc)));
4329
4330            Append_To (Stats,
4331              Make_Assignment_Statement (Loc,
4332                 Name       => New_Occurrence_Of (Cursor, Loc),
4333                 Expression => Rhs));
4334            Set_Assignment_OK (Name (Last (Stats)));
4335         end;
4336      end if;
4337
4338      --  Generate:
4339      --    while Has_Element (Cursor) loop
4340      --       <Stats>
4341      --    end loop;
4342
4343      --   Has_Element is the second actual in the iterator package
4344
4345      New_Loop :=
4346        Make_Loop_Statement (Loc,
4347          Iteration_Scheme =>
4348            Make_Iteration_Scheme (Loc,
4349              Condition =>
4350                Make_Function_Call (Loc,
4351                  Name                   =>
4352                    New_Occurrence_Of
4353                      (Next_Entity (First_Entity (Iter_Pack)), Loc),
4354                  Parameter_Associations => New_List (
4355                    New_Occurrence_Of (Cursor, Loc)))),
4356
4357          Statements => Stats,
4358          End_Label  => Empty);
4359
4360      --  If present, preserve identifier of loop, which can be used in an exit
4361      --  statement in the body.
4362
4363      if Present (Identifier (N)) then
4364         Set_Identifier (New_Loop, Relocate_Node (Identifier (N)));
4365      end if;
4366
4367      --  Create the declarations for Iterator and cursor and insert them
4368      --  before the source loop. Given that the domain of iteration is already
4369      --  an entity, the iterator is just a renaming of that entity. Possible
4370      --  optimization ???
4371
4372      Insert_Action (N,
4373        Make_Object_Renaming_Declaration (Loc,
4374          Defining_Identifier => Iterator,
4375          Subtype_Mark        => New_Occurrence_Of (Iter_Type, Loc),
4376          Name                => Relocate_Node (Name (I_Spec))));
4377
4378      --  Create declaration for cursor
4379
4380      declare
4381         Cursor_Decl : constant Node_Id :=
4382                         Make_Object_Declaration (Loc,
4383                           Defining_Identifier => Cursor,
4384                           Object_Definition   =>
4385                             New_Occurrence_Of (Etype (Cursor), Loc),
4386                           Expression          =>
4387                             Make_Selected_Component (Loc,
4388                               Prefix        =>
4389                                 New_Occurrence_Of (Iterator, Loc),
4390                               Selector_Name =>
4391                                 Make_Identifier (Loc, Name_Init)));
4392
4393      begin
4394         --  The cursor is only modified in expanded code, so it appears
4395         --  as unassigned to the warning machinery. We must suppress this
4396         --  spurious warning explicitly. The cursor's kind is that of the
4397         --  original loop parameter (it is a constant if the domain of
4398         --  iteration is constant).
4399
4400         Set_Warnings_Off (Cursor);
4401         Set_Assignment_OK (Cursor_Decl);
4402
4403         Insert_Action (N, Cursor_Decl);
4404         Set_Ekind (Cursor, Id_Kind);
4405      end;
4406
4407      --  If the range of iteration is given by a function call that returns
4408      --  a container, the finalization actions have been saved in the
4409      --  Condition_Actions of the iterator. Insert them now at the head of
4410      --  the loop.
4411
4412      if Present (Condition_Actions (Isc)) then
4413         Insert_List_Before (N, Condition_Actions (Isc));
4414      end if;
4415
4416      Rewrite (N, New_Loop);
4417      Analyze (N);
4418   end Expand_Iterator_Loop_Over_Container;
4419
4420   -----------------------------
4421   -- Expand_N_Loop_Statement --
4422   -----------------------------
4423
4424   --  1. Remove null loop entirely
4425   --  2. Deal with while condition for C/Fortran boolean
4426   --  3. Deal with loops with a non-standard enumeration type range
4427   --  4. Deal with while loops where Condition_Actions is set
4428   --  5. Deal with loops over predicated subtypes
4429   --  6. Deal with loops with iterators over arrays and containers
4430   --  7. Insert polling call if required
4431
4432   procedure Expand_N_Loop_Statement (N : Node_Id) is
4433      Loc    : constant Source_Ptr := Sloc (N);
4434      Scheme : constant Node_Id    := Iteration_Scheme (N);
4435      Stmt   : Node_Id;
4436
4437   begin
4438      --  Delete null loop
4439
4440      if Is_Null_Loop (N) then
4441         Rewrite (N, Make_Null_Statement (Loc));
4442         return;
4443      end if;
4444
4445      --  Deal with condition for C/Fortran Boolean
4446
4447      if Present (Scheme) then
4448         Adjust_Condition (Condition (Scheme));
4449      end if;
4450
4451      --  Generate polling call
4452
4453      if Is_Non_Empty_List (Statements (N)) then
4454         Generate_Poll_Call (First (Statements (N)));
4455      end if;
4456
4457      --  Nothing more to do for plain loop with no iteration scheme
4458
4459      if No (Scheme) then
4460         null;
4461
4462      --  Case of for loop (Loop_Parameter_Specification present)
4463
4464      --  Note: we do not have to worry about validity checking of the for loop
4465      --  range bounds here, since they were frozen with constant declarations
4466      --  and it is during that process that the validity checking is done.
4467
4468      elsif Present (Loop_Parameter_Specification (Scheme)) then
4469         declare
4470            LPS     : constant Node_Id   :=
4471                        Loop_Parameter_Specification (Scheme);
4472            Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
4473            Ltype   : constant Entity_Id := Etype (Loop_Id);
4474            Btype   : constant Entity_Id := Base_Type (Ltype);
4475            Expr    : Node_Id;
4476            Decls   : List_Id;
4477            New_Id  : Entity_Id;
4478
4479         begin
4480            --  Deal with loop over predicates
4481
4482            if Is_Discrete_Type (Ltype)
4483              and then Present (Predicate_Function (Ltype))
4484            then
4485               Expand_Predicated_Loop (N);
4486
4487            --  Handle the case where we have a for loop with the range type
4488            --  being an enumeration type with non-standard representation.
4489            --  In this case we expand:
4490
4491            --    for x in [reverse] a .. b loop
4492            --       ...
4493            --    end loop;
4494
4495            --  to
4496
4497            --    for xP in [reverse] integer
4498            --      range etype'Pos (a) .. etype'Pos (b)
4499            --    loop
4500            --       declare
4501            --          x : constant etype := Pos_To_Rep (xP);
4502            --       begin
4503            --          ...
4504            --       end;
4505            --    end loop;
4506
4507            elsif Is_Enumeration_Type (Btype)
4508              and then Present (Enum_Pos_To_Rep (Btype))
4509            then
4510               New_Id :=
4511                 Make_Defining_Identifier (Loc,
4512                   Chars => New_External_Name (Chars (Loop_Id), 'P'));
4513
4514               --  If the type has a contiguous representation, successive
4515               --  values can be generated as offsets from the first literal.
4516
4517               if Has_Contiguous_Rep (Btype) then
4518                  Expr :=
4519                     Unchecked_Convert_To (Btype,
4520                       Make_Op_Add (Loc,
4521                         Left_Opnd =>
4522                            Make_Integer_Literal (Loc,
4523                              Enumeration_Rep (First_Literal (Btype))),
4524                         Right_Opnd => New_Occurrence_Of (New_Id, Loc)));
4525               else
4526                  --  Use the constructed array Enum_Pos_To_Rep
4527
4528                  Expr :=
4529                    Make_Indexed_Component (Loc,
4530                      Prefix      =>
4531                        New_Occurrence_Of (Enum_Pos_To_Rep (Btype), Loc),
4532                      Expressions =>
4533                        New_List (New_Occurrence_Of (New_Id, Loc)));
4534               end if;
4535
4536               --  Build declaration for loop identifier
4537
4538               Decls :=
4539                 New_List (
4540                   Make_Object_Declaration (Loc,
4541                     Defining_Identifier => Loop_Id,
4542                     Constant_Present    => True,
4543                     Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4544                     Expression          => Expr));
4545
4546               Rewrite (N,
4547                 Make_Loop_Statement (Loc,
4548                   Identifier => Identifier (N),
4549
4550                   Iteration_Scheme =>
4551                     Make_Iteration_Scheme (Loc,
4552                       Loop_Parameter_Specification =>
4553                         Make_Loop_Parameter_Specification (Loc,
4554                           Defining_Identifier => New_Id,
4555                           Reverse_Present => Reverse_Present (LPS),
4556
4557                           Discrete_Subtype_Definition =>
4558                             Make_Subtype_Indication (Loc,
4559
4560                               Subtype_Mark =>
4561                                 New_Occurrence_Of (Standard_Natural, Loc),
4562
4563                               Constraint =>
4564                                 Make_Range_Constraint (Loc,
4565                                   Range_Expression =>
4566                                     Make_Range (Loc,
4567
4568                                       Low_Bound =>
4569                                         Make_Attribute_Reference (Loc,
4570                                           Prefix =>
4571                                             New_Occurrence_Of (Btype, Loc),
4572
4573                                           Attribute_Name => Name_Pos,
4574
4575                                           Expressions => New_List (
4576                                             Relocate_Node
4577                                               (Type_Low_Bound (Ltype)))),
4578
4579                                       High_Bound =>
4580                                         Make_Attribute_Reference (Loc,
4581                                           Prefix =>
4582                                             New_Occurrence_Of (Btype, Loc),
4583
4584                                           Attribute_Name => Name_Pos,
4585
4586                                           Expressions => New_List (
4587                                             Relocate_Node
4588                                               (Type_High_Bound
4589                                                  (Ltype))))))))),
4590
4591                   Statements => New_List (
4592                     Make_Block_Statement (Loc,
4593                       Declarations => Decls,
4594                       Handled_Statement_Sequence =>
4595                         Make_Handled_Sequence_Of_Statements (Loc,
4596                           Statements => Statements (N)))),
4597
4598                   End_Label => End_Label (N)));
4599
4600               --  The loop parameter's entity must be removed from the loop
4601               --  scope's entity list and rendered invisible, since it will
4602               --  now be located in the new block scope. Any other entities
4603               --  already associated with the loop scope, such as the loop
4604               --  parameter's subtype, will remain there.
4605
4606               --  In an element loop, the loop will contain a declaration for
4607               --  a cursor variable; otherwise the loop id is the first entity
4608               --  in the scope constructed for the loop.
4609
4610               if Comes_From_Source (Loop_Id) then
4611                  pragma Assert (First_Entity (Scope (Loop_Id)) = Loop_Id);
4612                  null;
4613               end if;
4614
4615               Set_First_Entity (Scope (Loop_Id), Next_Entity (Loop_Id));
4616               Remove_Homonym (Loop_Id);
4617
4618               if Last_Entity (Scope (Loop_Id)) = Loop_Id then
4619                  Set_Last_Entity (Scope (Loop_Id), Empty);
4620               end if;
4621
4622               Analyze (N);
4623
4624            --  Nothing to do with other cases of for loops
4625
4626            else
4627               null;
4628            end if;
4629         end;
4630
4631      --  Second case, if we have a while loop with Condition_Actions set, then
4632      --  we change it into a plain loop:
4633
4634      --    while C loop
4635      --       ...
4636      --    end loop;
4637
4638      --  changed to:
4639
4640      --    loop
4641      --       <<condition actions>>
4642      --       exit when not C;
4643      --       ...
4644      --    end loop
4645
4646      elsif Present (Scheme)
4647        and then Present (Condition_Actions (Scheme))
4648        and then Present (Condition (Scheme))
4649      then
4650         declare
4651            ES : Node_Id;
4652
4653         begin
4654            ES :=
4655              Make_Exit_Statement (Sloc (Condition (Scheme)),
4656                Condition =>
4657                  Make_Op_Not (Sloc (Condition (Scheme)),
4658                    Right_Opnd => Condition (Scheme)));
4659
4660            Prepend (ES, Statements (N));
4661            Insert_List_Before (ES, Condition_Actions (Scheme));
4662
4663            --  This is not an implicit loop, since it is generated in response
4664            --  to the loop statement being processed. If this is itself
4665            --  implicit, the restriction has already been checked. If not,
4666            --  it is an explicit loop.
4667
4668            Rewrite (N,
4669              Make_Loop_Statement (Sloc (N),
4670                Identifier => Identifier (N),
4671                Statements => Statements (N),
4672                End_Label  => End_Label  (N)));
4673
4674            Analyze (N);
4675         end;
4676
4677      --  Here to deal with iterator case
4678
4679      elsif Present (Scheme)
4680        and then Present (Iterator_Specification (Scheme))
4681      then
4682         Expand_Iterator_Loop (N);
4683
4684         --  An iterator loop may generate renaming declarations for elements
4685         --  that require debug information. This is the case in particular
4686         --  with element iterators, where debug information must be generated
4687         --  for the temporary that holds the element value. These temporaries
4688         --  are created within a transient block whose local declarations are
4689         --  transferred to the loop, which now has nontrivial local objects.
4690
4691         if Nkind (N) = N_Loop_Statement
4692           and then Present (Identifier (N))
4693         then
4694            Qualify_Entity_Names (N);
4695         end if;
4696      end if;
4697
4698      --  When the iteration scheme mentiones attribute 'Loop_Entry, the loop
4699      --  is transformed into a conditional block where the original loop is
4700      --  the sole statement. Inspect the statements of the nested loop for
4701      --  controlled objects.
4702
4703      Stmt := N;
4704
4705      if Subject_To_Loop_Entry_Attributes (Stmt) then
4706         Stmt := Find_Loop_In_Conditional_Block (Stmt);
4707      end if;
4708
4709      Process_Statements_For_Controlled_Objects (Stmt);
4710   end Expand_N_Loop_Statement;
4711
4712   ----------------------------
4713   -- Expand_Predicated_Loop --
4714   ----------------------------
4715
4716   --  Note: the expander can handle generation of loops over predicated
4717   --  subtypes for both the dynamic and static cases. Depending on what
4718   --  we decide is allowed in Ada 2012 mode and/or extensions allowed
4719   --  mode, the semantic analyzer may disallow one or both forms.
4720
4721   procedure Expand_Predicated_Loop (N : Node_Id) is
4722      Loc     : constant Source_Ptr := Sloc (N);
4723      Isc     : constant Node_Id    := Iteration_Scheme (N);
4724      LPS     : constant Node_Id    := Loop_Parameter_Specification (Isc);
4725      Loop_Id : constant Entity_Id  := Defining_Identifier (LPS);
4726      Ltype   : constant Entity_Id  := Etype (Loop_Id);
4727      Stat    : constant List_Id    := Static_Discrete_Predicate (Ltype);
4728      Stmts   : constant List_Id    := Statements (N);
4729
4730   begin
4731      --  Case of iteration over non-static predicate, should not be possible
4732      --  since this is not allowed by the semantics and should have been
4733      --  caught during analysis of the loop statement.
4734
4735      if No (Stat) then
4736         raise Program_Error;
4737
4738      --  If the predicate list is empty, that corresponds to a predicate of
4739      --  False, in which case the loop won't run at all, and we rewrite the
4740      --  entire loop as a null statement.
4741
4742      elsif Is_Empty_List (Stat) then
4743         Rewrite (N, Make_Null_Statement (Loc));
4744         Analyze (N);
4745
4746      --  For expansion over a static predicate we generate the following
4747
4748      --     declare
4749      --        J : Ltype := min-val;
4750      --     begin
4751      --        loop
4752      --           body
4753      --           case J is
4754      --              when endpoint => J := startpoint;
4755      --              when endpoint => J := startpoint;
4756      --              ...
4757      --              when max-val  => exit;
4758      --              when others   => J := Lval'Succ (J);
4759      --           end case;
4760      --        end loop;
4761      --     end;
4762
4763      --  with min-val replaced by max-val and Succ replaced by Pred if the
4764      --  loop parameter specification carries a Reverse indicator.
4765
4766      --  To make this a little clearer, let's take a specific example:
4767
4768      --        type Int is range 1 .. 10;
4769      --        subtype StaticP is Int with
4770      --          predicate => StaticP in 3 | 10 | 5 .. 7;
4771      --          ...
4772      --        for L in StaticP loop
4773      --           Put_Line ("static:" & J'Img);
4774      --        end loop;
4775
4776      --  In this case, the loop is transformed into
4777
4778      --     begin
4779      --        J : L := 3;
4780      --        loop
4781      --           body
4782      --           case J is
4783      --              when 3  => J := 5;
4784      --              when 7  => J := 10;
4785      --              when 10 => exit;
4786      --              when others  => J := L'Succ (J);
4787      --           end case;
4788      --        end loop;
4789      --     end;
4790
4791      --  In addition, if the loop specification is given by a subtype
4792      --  indication that constrains a predicated type, the bounds of
4793      --  iteration are given by those of the subtype indication.
4794
4795      else
4796         Static_Predicate : declare
4797            S    : Node_Id;
4798            D    : Node_Id;
4799            P    : Node_Id;
4800            Alts : List_Id;
4801            Cstm : Node_Id;
4802
4803            --  If the domain is an itype, note the bounds of its range.
4804
4805            L_Hi  : Node_Id := Empty;
4806            L_Lo  : Node_Id := Empty;
4807
4808            function Lo_Val (N : Node_Id) return Node_Id;
4809            --  Given static expression or static range, returns an identifier
4810            --  whose value is the low bound of the expression value or range.
4811
4812            function Hi_Val (N : Node_Id) return Node_Id;
4813            --  Given static expression or static range, returns an identifier
4814            --  whose value is the high bound of the expression value or range.
4815
4816            ------------
4817            -- Hi_Val --
4818            ------------
4819
4820            function Hi_Val (N : Node_Id) return Node_Id is
4821            begin
4822               if Is_OK_Static_Expression (N) then
4823                  return New_Copy (N);
4824               else
4825                  pragma Assert (Nkind (N) = N_Range);
4826                  return New_Copy (High_Bound (N));
4827               end if;
4828            end Hi_Val;
4829
4830            ------------
4831            -- Lo_Val --
4832            ------------
4833
4834            function Lo_Val (N : Node_Id) return Node_Id is
4835            begin
4836               if Is_OK_Static_Expression (N) then
4837                  return New_Copy (N);
4838               else
4839                  pragma Assert (Nkind (N) = N_Range);
4840                  return New_Copy (Low_Bound (N));
4841               end if;
4842            end Lo_Val;
4843
4844         --  Start of processing for Static_Predicate
4845
4846         begin
4847            --  Convert loop identifier to normal variable and reanalyze it so
4848            --  that this conversion works. We have to use the same defining
4849            --  identifier, since there may be references in the loop body.
4850
4851            Set_Analyzed (Loop_Id, False);
4852            Set_Ekind    (Loop_Id, E_Variable);
4853
4854            --  In most loops the loop variable is assigned in various
4855            --  alternatives in the body. However, in the rare case when
4856            --  the range specifies a single element, the loop variable
4857            --  may trigger a spurious warning that is could be constant.
4858            --  This warning might as well be suppressed.
4859
4860            Set_Warnings_Off (Loop_Id);
4861
4862            if Is_Itype (Ltype) then
4863               L_Hi := High_Bound (Scalar_Range (Ltype));
4864               L_Lo := Low_Bound  (Scalar_Range (Ltype));
4865            end if;
4866
4867            --  Loop to create branches of case statement
4868
4869            Alts := New_List;
4870
4871            if Reverse_Present (LPS) then
4872
4873               --  Initial value is largest value in predicate.
4874
4875               if Is_Itype (Ltype) then
4876                  D :=
4877                    Make_Object_Declaration (Loc,
4878                      Defining_Identifier => Loop_Id,
4879                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4880                      Expression          => L_Hi);
4881
4882               else
4883                  D :=
4884                    Make_Object_Declaration (Loc,
4885                      Defining_Identifier => Loop_Id,
4886                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4887                      Expression          => Hi_Val (Last (Stat)));
4888               end if;
4889
4890               P := Last (Stat);
4891               while Present (P) loop
4892                  if No (Prev (P)) then
4893                     S := Make_Exit_Statement (Loc);
4894                  else
4895                     S :=
4896                       Make_Assignment_Statement (Loc,
4897                         Name       => New_Occurrence_Of (Loop_Id, Loc),
4898                         Expression => Hi_Val (Prev (P)));
4899                     Set_Suppress_Assignment_Checks (S);
4900                  end if;
4901
4902                  Append_To (Alts,
4903                    Make_Case_Statement_Alternative (Loc,
4904                      Statements       => New_List (S),
4905                      Discrete_Choices => New_List (Lo_Val (P))));
4906
4907                  Prev (P);
4908               end loop;
4909
4910               if Is_Itype (Ltype)
4911                 and then Is_OK_Static_Expression (L_Lo)
4912                 and then
4913                   Expr_Value (L_Lo) /= Expr_Value (Lo_Val (First (Stat)))
4914               then
4915                  Append_To (Alts,
4916                    Make_Case_Statement_Alternative (Loc,
4917                      Statements       => New_List (Make_Exit_Statement (Loc)),
4918                      Discrete_Choices => New_List (L_Lo)));
4919               end if;
4920
4921            else
4922               --  Initial value is smallest value in predicate
4923
4924               if Is_Itype (Ltype) then
4925                  D :=
4926                    Make_Object_Declaration (Loc,
4927                      Defining_Identifier => Loop_Id,
4928                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4929                      Expression          => L_Lo);
4930               else
4931                  D :=
4932                    Make_Object_Declaration (Loc,
4933                      Defining_Identifier => Loop_Id,
4934                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4935                      Expression          => Lo_Val (First (Stat)));
4936               end if;
4937
4938               P := First (Stat);
4939               while Present (P) loop
4940                  if No (Next (P)) then
4941                     S := Make_Exit_Statement (Loc);
4942                  else
4943                     S :=
4944                       Make_Assignment_Statement (Loc,
4945                         Name       => New_Occurrence_Of (Loop_Id, Loc),
4946                         Expression => Lo_Val (Next (P)));
4947                     Set_Suppress_Assignment_Checks (S);
4948                  end if;
4949
4950                  Append_To (Alts,
4951                    Make_Case_Statement_Alternative (Loc,
4952                      Statements       => New_List (S),
4953                      Discrete_Choices => New_List (Hi_Val (P))));
4954
4955                  Next (P);
4956               end loop;
4957
4958               if Is_Itype (Ltype)
4959                 and then Is_OK_Static_Expression (L_Hi)
4960                 and then
4961                   Expr_Value (L_Hi) /= Expr_Value (Lo_Val (Last (Stat)))
4962               then
4963                  Append_To (Alts,
4964                    Make_Case_Statement_Alternative (Loc,
4965                      Statements       => New_List (Make_Exit_Statement (Loc)),
4966                      Discrete_Choices => New_List (L_Hi)));
4967               end if;
4968            end if;
4969
4970            --  Add others choice
4971
4972            declare
4973               Name_Next : Name_Id;
4974
4975            begin
4976               if Reverse_Present (LPS) then
4977                  Name_Next := Name_Pred;
4978               else
4979                  Name_Next := Name_Succ;
4980               end if;
4981
4982               S :=
4983                 Make_Assignment_Statement (Loc,
4984                   Name       => New_Occurrence_Of (Loop_Id, Loc),
4985                   Expression =>
4986                     Make_Attribute_Reference (Loc,
4987                       Prefix         => New_Occurrence_Of (Ltype, Loc),
4988                       Attribute_Name => Name_Next,
4989                       Expressions    => New_List (
4990                         New_Occurrence_Of (Loop_Id, Loc))));
4991               Set_Suppress_Assignment_Checks (S);
4992            end;
4993
4994            Append_To (Alts,
4995              Make_Case_Statement_Alternative (Loc,
4996                Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4997                Statements       => New_List (S)));
4998
4999            --  Construct case statement and append to body statements
5000
5001            Cstm :=
5002              Make_Case_Statement (Loc,
5003                Expression   => New_Occurrence_Of (Loop_Id, Loc),
5004                Alternatives => Alts);
5005            Append_To (Stmts, Cstm);
5006
5007            --  Rewrite the loop
5008
5009            Set_Suppress_Assignment_Checks (D);
5010
5011            Rewrite (N,
5012              Make_Block_Statement (Loc,
5013                Declarations               => New_List (D),
5014                Handled_Statement_Sequence =>
5015                  Make_Handled_Sequence_Of_Statements (Loc,
5016                    Statements => New_List (
5017                      Make_Loop_Statement (Loc,
5018                        Statements => Stmts,
5019                        End_Label  => Empty)))));
5020
5021            Analyze (N);
5022         end Static_Predicate;
5023      end if;
5024   end Expand_Predicated_Loop;
5025
5026   ------------------------------
5027   -- Make_Tag_Ctrl_Assignment --
5028   ------------------------------
5029
5030   function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
5031      Asn : constant Node_Id    := Relocate_Node (N);
5032      L   : constant Node_Id    := Name (N);
5033      Loc : constant Source_Ptr := Sloc (N);
5034      Res : constant List_Id    := New_List;
5035      T   : constant Entity_Id  := Underlying_Type (Etype (L));
5036
5037      Comp_Asn : constant Boolean := Is_Fully_Repped_Tagged_Type (T);
5038      Ctrl_Act : constant Boolean := Needs_Finalization (T)
5039                                       and then not No_Ctrl_Actions (N);
5040      Save_Tag : constant Boolean := Is_Tagged_Type (T)
5041                                       and then not Comp_Asn
5042                                       and then not No_Ctrl_Actions (N)
5043                                       and then Tagged_Type_Expansion;
5044      Adj_Call : Node_Id;
5045      Fin_Call : Node_Id;
5046      Tag_Id   : Entity_Id;
5047
5048   begin
5049      --  Finalize the target of the assignment when controlled
5050
5051      --  We have two exceptions here:
5052
5053      --   1. If we are in an init proc since it is an initialization more
5054      --      than an assignment.
5055
5056      --   2. If the left-hand side is a temporary that was not initialized
5057      --      (or the parent part of a temporary since it is the case in
5058      --      extension aggregates). Such a temporary does not come from
5059      --      source. We must examine the original node for the prefix, because
5060      --      it may be a component of an entry formal, in which case it has
5061      --      been rewritten and does not appear to come from source either.
5062
5063      --  Case of init proc
5064
5065      if not Ctrl_Act then
5066         null;
5067
5068      --  The left-hand side is an uninitialized temporary object
5069
5070      elsif Nkind (L) = N_Type_Conversion
5071        and then Is_Entity_Name (Expression (L))
5072        and then Nkind (Parent (Entity (Expression (L)))) =
5073                                              N_Object_Declaration
5074        and then No_Initialization (Parent (Entity (Expression (L))))
5075      then
5076         null;
5077
5078      else
5079         Fin_Call :=
5080           Make_Final_Call
5081             (Obj_Ref => Duplicate_Subexpr_No_Checks (L),
5082              Typ     => Etype (L));
5083
5084         if Present (Fin_Call) then
5085            Append_To (Res, Fin_Call);
5086         end if;
5087      end if;
5088
5089      --  Save the Tag in a local variable Tag_Id
5090
5091      if Save_Tag then
5092         Tag_Id := Make_Temporary (Loc, 'A');
5093
5094         Append_To (Res,
5095           Make_Object_Declaration (Loc,
5096             Defining_Identifier => Tag_Id,
5097             Object_Definition   => New_Occurrence_Of (RTE (RE_Tag), Loc),
5098             Expression          =>
5099               Make_Selected_Component (Loc,
5100                 Prefix        => Duplicate_Subexpr_No_Checks (L),
5101                 Selector_Name =>
5102                   New_Occurrence_Of (First_Tag_Component (T), Loc))));
5103
5104      --  Otherwise Tag_Id is not used
5105
5106      else
5107         Tag_Id := Empty;
5108      end if;
5109
5110      --  If the tagged type has a full rep clause, expand the assignment into
5111      --  component-wise assignments. Mark the node as unanalyzed in order to
5112      --  generate the proper code and propagate this scenario by setting a
5113      --  flag to avoid infinite recursion.
5114
5115      if Comp_Asn then
5116         Set_Analyzed (Asn, False);
5117         Set_Componentwise_Assignment (Asn, True);
5118      end if;
5119
5120      Append_To (Res, Asn);
5121
5122      --  Restore the tag
5123
5124      if Save_Tag then
5125         Append_To (Res,
5126           Make_Assignment_Statement (Loc,
5127             Name       =>
5128               Make_Selected_Component (Loc,
5129                 Prefix        => Duplicate_Subexpr_No_Checks (L),
5130                 Selector_Name =>
5131                   New_Occurrence_Of (First_Tag_Component (T), Loc)),
5132             Expression => New_Occurrence_Of (Tag_Id, Loc)));
5133      end if;
5134
5135      --  Adjust the target after the assignment when controlled (not in the
5136      --  init proc since it is an initialization more than an assignment).
5137
5138      if Ctrl_Act then
5139         Adj_Call :=
5140           Make_Adjust_Call
5141             (Obj_Ref => Duplicate_Subexpr_Move_Checks (L),
5142              Typ     => Etype (L));
5143
5144         if Present (Adj_Call) then
5145            Append_To (Res, Adj_Call);
5146         end if;
5147      end if;
5148
5149      return Res;
5150
5151   exception
5152
5153      --  Could use comment here ???
5154
5155      when RE_Not_Available =>
5156         return Empty_List;
5157   end Make_Tag_Ctrl_Assignment;
5158
5159end Exp_Ch5;
5160