1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ F I X D                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Einfo;    use Einfo;
29with Exp_Util; use Exp_Util;
30with Nlists;   use Nlists;
31with Nmake;    use Nmake;
32with Restrict; use Restrict;
33with Rident;   use Rident;
34with Rtsfind;  use Rtsfind;
35with Sem;      use Sem;
36with Sem_Eval; use Sem_Eval;
37with Sem_Res;  use Sem_Res;
38with Sem_Util; use Sem_Util;
39with Sinfo;    use Sinfo;
40with Snames;   use Snames;
41with Stand;    use Stand;
42with Tbuild;   use Tbuild;
43with Uintp;    use Uintp;
44with Urealp;   use Urealp;
45
46package body Exp_Fixd is
47
48   -----------------------
49   -- Local Subprograms --
50   -----------------------
51
52   --  General note; in this unit, a number of routines are driven by the
53   --  types (Etype) of their operands. Since we are dealing with unanalyzed
54   --  expressions as they are constructed, the Etypes would not normally be
55   --  set, but the construction routines that we use in this unit do in fact
56   --  set the Etype values correctly. In addition, setting the Etype ensures
57   --  that the analyzer does not try to redetermine the type when the node
58   --  is analyzed (which would be wrong, since in the case where we set the
59   --  Treat_Fixed_As_Integer or Conversion_OK flags, it would think it was
60   --  still dealing with a normal fixed-point operation and mess it up).
61
62   function Build_Conversion
63     (N     : Node_Id;
64      Typ   : Entity_Id;
65      Expr  : Node_Id;
66      Rchk  : Boolean := False;
67      Trunc : Boolean := False) return Node_Id;
68   --  Build an expression that converts the expression Expr to type Typ,
69   --  taking the source location from Sloc (N). If the conversions involve
70   --  fixed-point types, then the Conversion_OK flag will be set so that the
71   --  resulting conversions do not get re-expanded. On return the resulting
72   --  node has its Etype set. If Rchk is set, then Do_Range_Check is set
73   --  in the resulting conversion node. If Trunc is set, then the
74   --  Float_Truncate flag is set on the conversion, which must be from
75   --  a floating-point type to an integer type.
76
77   function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id;
78   --  Builds an N_Op_Divide node from the given left and right operand
79   --  expressions, using the source location from Sloc (N). The operands are
80   --  either both Universal_Real, in which case Build_Divide differs from
81   --  Make_Op_Divide only in that the Etype of the resulting node is set (to
82   --  Universal_Real), or they can be integer types. In this case the integer
83   --  types need not be the same, and Build_Divide converts the operand with
84   --  the smaller sized type to match the type of the other operand and sets
85   --  this as the result type. The Rounded_Result flag of the result in this
86   --  case is set from the Rounded_Result flag of node N. On return, the
87   --  resulting node is analyzed, and has its Etype set.
88
89   function Build_Double_Divide
90     (N       : Node_Id;
91      X, Y, Z : Node_Id) return Node_Id;
92   --  Returns a node corresponding to the value X/(Y*Z) using the source
93   --  location from Sloc (N). The division is rounded if the Rounded_Result
94   --  flag of N is set. The integer types of X, Y, Z may be different. On
95   --  return the resulting node is analyzed, and has its Etype set.
96
97   procedure Build_Double_Divide_Code
98     (N        : Node_Id;
99      X, Y, Z  : Node_Id;
100      Qnn, Rnn : out Entity_Id;
101      Code     : out List_Id);
102   --  Generates a sequence of code for determining the quotient and remainder
103   --  of the division X/(Y*Z), using the source location from Sloc (N).
104   --  Entities of appropriate types are allocated for the quotient and
105   --  remainder and returned in Qnn and Rnn. The result is rounded if the
106   --  Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn are
107   --  appropriately set on return.
108
109   function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id;
110   --  Builds an N_Op_Multiply node from the given left and right operand
111   --  expressions, using the source location from Sloc (N). The operands are
112   --  either both Universal_Real, in which case Build_Multiply differs from
113   --  Make_Op_Multiply only in that the Etype of the resulting node is set (to
114   --  Universal_Real), or they can be integer types. In this case the integer
115   --  types need not be the same, and Build_Multiply chooses a type long
116   --  enough to hold the product (i.e. twice the size of the longer of the two
117   --  operand types), and both operands are converted to this type. The Etype
118   --  of the result is also set to this value. However, the result can never
119   --  overflow Integer_64, so this is the largest type that is ever generated.
120   --  On return, the resulting node is analyzed and has its Etype set.
121
122   function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id;
123   --  Builds an N_Op_Rem node from the given left and right operand
124   --  expressions, using the source location from Sloc (N). The operands are
125   --  both integer types, which need not be the same. Build_Rem converts the
126   --  operand with the smaller sized type to match the type of the other
127   --  operand and sets this as the result type. The result is never rounded
128   --  (rem operations cannot be rounded in any case). On return, the resulting
129   --  node is analyzed and has its Etype set.
130
131   function Build_Scaled_Divide
132     (N       : Node_Id;
133      X, Y, Z : Node_Id) return Node_Id;
134   --  Returns a node corresponding to the value X*Y/Z using the source
135   --  location from Sloc (N). The division is rounded if the Rounded_Result
136   --  flag of N is set. The integer types of X, Y, Z may be different. On
137   --  return the resulting node is analyzed and has is Etype set.
138
139   procedure Build_Scaled_Divide_Code
140     (N        : Node_Id;
141      X, Y, Z  : Node_Id;
142      Qnn, Rnn : out Entity_Id;
143      Code     : out List_Id);
144   --  Generates a sequence of code for determining the quotient and remainder
145   --  of the division X*Y/Z, using the source location from Sloc (N). Entities
146   --  of appropriate types are allocated for the quotient and remainder and
147   --  returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
148   --  The division is rounded if the Rounded_Result flag of N is set. The
149   --  Etype fields of Qnn and Rnn are appropriately set on return.
150
151   procedure Do_Divide_Fixed_Fixed (N : Node_Id);
152   --  Handles expansion of divide for case of two fixed-point operands
153   --  (neither of them universal), with an integer or fixed-point result.
154   --  N is the N_Op_Divide node to be expanded.
155
156   procedure Do_Divide_Fixed_Universal (N : Node_Id);
157   --  Handles expansion of divide for case of a fixed-point operand divided
158   --  by a universal real operand, with an integer or fixed-point result. N
159   --  is the N_Op_Divide node to be expanded.
160
161   procedure Do_Divide_Universal_Fixed (N : Node_Id);
162   --  Handles expansion of divide for case of a universal real operand
163   --  divided by a fixed-point operand, with an integer or fixed-point
164   --  result. N is the N_Op_Divide node to be expanded.
165
166   procedure Do_Multiply_Fixed_Fixed (N : Node_Id);
167   --  Handles expansion of multiply for case of two fixed-point operands
168   --  (neither of them universal), with an integer or fixed-point result.
169   --  N is the N_Op_Multiply node to be expanded.
170
171   procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id);
172   --  Handles expansion of multiply for case of a fixed-point operand
173   --  multiplied by a universal real operand, with an integer or fixed-
174   --  point result. N is the N_Op_Multiply node to be expanded, and
175   --  Left, Right are the operands (which may have been switched).
176
177   procedure Expand_Convert_Fixed_Static (N : Node_Id);
178   --  This routine is called where the node N is a conversion of a literal
179   --  or other static expression of a fixed-point type to some other type.
180   --  In such cases, we simply rewrite the operand as a real literal and
181   --  reanalyze. This avoids problems which would otherwise result from
182   --  attempting to build and fold expressions involving constants.
183
184   function Fpt_Value (N : Node_Id) return Node_Id;
185   --  Given an operand of fixed-point operation, return an expression that
186   --  represents the corresponding Universal_Real value. The expression
187   --  can be of integer type, floating-point type, or fixed-point type.
188   --  The expression returned is neither analyzed and resolved. The Etype
189   --  of the result is properly set (to Universal_Real).
190
191   function Integer_Literal
192     (N        : Node_Id;
193      V        : Uint;
194      Negative : Boolean := False) return Node_Id;
195   --  Given a non-negative universal integer value, build a typed integer
196   --  literal node, using the smallest applicable standard integer type. If
197   --  and only if Negative is true a negative literal is built. If V exceeds
198   --  2**63-1, the largest value allowed for perfect result set scaling
199   --  factors (see RM G.2.3(22)), then Empty is returned. The node N provides
200   --  the Sloc value for the constructed literal. The Etype of the resulting
201   --  literal is correctly set, and it is marked as analyzed.
202
203   function Real_Literal (N : Node_Id; V : Ureal) return Node_Id;
204   --  Build a real literal node from the given value, the Etype of the
205   --  returned node is set to Universal_Real, since all floating-point
206   --  arithmetic operations that we construct use Universal_Real
207
208   function Rounded_Result_Set (N : Node_Id) return Boolean;
209   --  Returns True if N is a node that contains the Rounded_Result flag
210   --  and if the flag is true or the target type is an integer type.
211
212   procedure Set_Result
213     (N     : Node_Id;
214      Expr  : Node_Id;
215      Rchk  : Boolean := False;
216      Trunc : Boolean := False);
217   --  N is the node for the current conversion, division or multiplication
218   --  operation, and Expr is an expression representing the result. Expr may
219   --  be of floating-point or integer type. If the operation result is fixed-
220   --  point, then the value of Expr is in units of small of the result type
221   --  (i.e. small's have already been dealt with). The result of the call is
222   --  to replace N by an appropriate conversion to the result type, dealing
223   --  with rounding for the decimal types case. The node is then analyzed and
224   --  resolved using the result type. If Rchk or Trunc are True, then
225   --  respectively Do_Range_Check and Float_Truncate are set in the
226   --  resulting conversion.
227
228   ----------------------
229   -- Build_Conversion --
230   ----------------------
231
232   function Build_Conversion
233     (N     : Node_Id;
234      Typ   : Entity_Id;
235      Expr  : Node_Id;
236      Rchk  : Boolean := False;
237      Trunc : Boolean := False) return Node_Id
238   is
239      Loc    : constant Source_Ptr := Sloc (N);
240      Result : Node_Id;
241      Rcheck : Boolean := Rchk;
242
243   begin
244      --  A special case, if the expression is an integer literal and the
245      --  target type is an integer type, then just retype the integer
246      --  literal to the desired target type. Don't do this if we need
247      --  a range check.
248
249      if Nkind (Expr) = N_Integer_Literal
250        and then Is_Integer_Type (Typ)
251        and then not Rchk
252      then
253         Result := Expr;
254
255      --  Cases where we end up with a conversion. Note that we do not use the
256      --  Convert_To abstraction here, since we may be decorating the resulting
257      --  conversion with Rounded_Result and/or Conversion_OK, so we want the
258      --  conversion node present, even if it appears to be redundant.
259
260      else
261         --  Remove inner conversion if both inner and outer conversions are
262         --  to integer types, since the inner one serves no purpose (except
263         --  perhaps to set rounding, so we preserve the Rounded_Result flag)
264         --  and also we preserve the range check flag on the inner operand
265
266         if Is_Integer_Type (Typ)
267           and then Is_Integer_Type (Etype (Expr))
268           and then Nkind (Expr) = N_Type_Conversion
269         then
270            Result :=
271              Make_Type_Conversion (Loc,
272                Subtype_Mark => New_Occurrence_Of (Typ, Loc),
273                Expression   => Expression (Expr));
274            Set_Rounded_Result (Result, Rounded_Result_Set (Expr));
275            Rcheck := Rcheck or Do_Range_Check (Expr);
276
277         --  For all other cases, a simple type conversion will work
278
279         else
280            Result :=
281              Make_Type_Conversion (Loc,
282                Subtype_Mark => New_Occurrence_Of (Typ, Loc),
283                Expression   => Expr);
284
285            Set_Float_Truncate (Result, Trunc);
286         end if;
287
288         --  Set Conversion_OK if either result or expression type is a
289         --  fixed-point type, since from a semantic point of view, we are
290         --  treating fixed-point values as integers at this stage.
291
292         if Is_Fixed_Point_Type (Typ)
293           or else Is_Fixed_Point_Type (Etype (Expression (Result)))
294         then
295            Set_Conversion_OK (Result);
296         end if;
297
298         --  Set Do_Range_Check if either it was requested by the caller,
299         --  or if an eliminated inner conversion had a range check.
300
301         if Rcheck then
302            Enable_Range_Check (Result);
303         else
304            Set_Do_Range_Check (Result, False);
305         end if;
306      end if;
307
308      Set_Etype (Result, Typ);
309      return Result;
310   end Build_Conversion;
311
312   ------------------
313   -- Build_Divide --
314   ------------------
315
316   function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is
317      Loc         : constant Source_Ptr := Sloc (N);
318      Left_Type   : constant Entity_Id  := Base_Type (Etype (L));
319      Right_Type  : constant Entity_Id  := Base_Type (Etype (R));
320      Result_Type : Entity_Id;
321      Rnode       : Node_Id;
322
323   begin
324      --  Deal with floating-point case first
325
326      if Is_Floating_Point_Type (Left_Type) then
327         pragma Assert (Left_Type = Universal_Real);
328         pragma Assert (Right_Type = Universal_Real);
329
330         Rnode := Make_Op_Divide (Loc, L, R);
331         Result_Type := Universal_Real;
332
333      --  Integer and fixed-point cases
334
335      else
336         --  An optimization. If the right operand is the literal 1, then we
337         --  can just return the left hand operand. Putting the optimization
338         --  here allows us to omit the check at the call site.
339
340         if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
341            return L;
342         end if;
343
344         --  If left and right types are the same, no conversion needed
345
346         if Left_Type = Right_Type then
347            Result_Type := Left_Type;
348            Rnode :=
349              Make_Op_Divide (Loc,
350                Left_Opnd  => L,
351                Right_Opnd => R);
352
353         --  Use left type if it is the larger of the two
354
355         elsif Esize (Left_Type) >= Esize (Right_Type) then
356            Result_Type := Left_Type;
357            Rnode :=
358              Make_Op_Divide (Loc,
359                Left_Opnd  => L,
360                Right_Opnd => Build_Conversion (N, Left_Type, R));
361
362         --  Otherwise right type is larger of the two, us it
363
364         else
365            Result_Type := Right_Type;
366            Rnode :=
367              Make_Op_Divide (Loc,
368                Left_Opnd => Build_Conversion (N, Right_Type, L),
369                Right_Opnd => R);
370         end if;
371      end if;
372
373      --  We now have a divide node built with Result_Type set. First
374      --  set Etype of result, as required for all Build_xxx routines
375
376      Set_Etype (Rnode, Base_Type (Result_Type));
377
378      --  Set Treat_Fixed_As_Integer if operation on fixed-point type
379      --  since this is a literal arithmetic operation, to be performed
380      --  by Gigi without any consideration of small values.
381
382      if Is_Fixed_Point_Type (Result_Type) then
383         Set_Treat_Fixed_As_Integer (Rnode);
384      end if;
385
386      --  The result is rounded if the target of the operation is decimal
387      --  and Rounded_Result is set, or if the target of the operation
388      --  is an integer type.
389
390      if Is_Integer_Type (Etype (N))
391        or else Rounded_Result_Set (N)
392      then
393         Set_Rounded_Result (Rnode);
394      end if;
395
396      return Rnode;
397   end Build_Divide;
398
399   -------------------------
400   -- Build_Double_Divide --
401   -------------------------
402
403   function Build_Double_Divide
404     (N       : Node_Id;
405      X, Y, Z : Node_Id) return Node_Id
406   is
407      Y_Size : constant Nat := UI_To_Int (Esize (Etype (Y)));
408      Z_Size : constant Nat := UI_To_Int (Esize (Etype (Z)));
409      Expr   : Node_Id;
410
411   begin
412      --  If denominator fits in 64 bits, we can build the operations directly
413      --  without causing any intermediate overflow, so that's what we do.
414
415      if Nat'Max (Y_Size, Z_Size) <= 32 then
416         return
417           Build_Divide (N, X, Build_Multiply (N, Y, Z));
418
419      --  Otherwise we use the runtime routine
420
421      --    [Qnn : Interfaces.Integer_64,
422      --     Rnn : Interfaces.Integer_64;
423      --     Double_Divide (X, Y, Z, Qnn, Rnn, Round);
424      --     Qnn]
425
426      else
427         declare
428            Loc  : constant Source_Ptr := Sloc (N);
429            Qnn  : Entity_Id;
430            Rnn  : Entity_Id;
431            Code : List_Id;
432
433            pragma Warnings (Off, Rnn);
434
435         begin
436            Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
437            Insert_Actions (N, Code);
438            Expr := New_Occurrence_Of (Qnn, Loc);
439
440            --  Set type of result in case used elsewhere (see note at start)
441
442            Set_Etype (Expr, Etype (Qnn));
443
444            --  Set result as analyzed (see note at start on build routines)
445
446            return Expr;
447         end;
448      end if;
449   end Build_Double_Divide;
450
451   ------------------------------
452   -- Build_Double_Divide_Code --
453   ------------------------------
454
455   --  If the denominator can be computed in 64-bits, we build
456
457   --    [Nnn : constant typ := typ (X);
458   --     Dnn : constant typ := typ (Y) * typ (Z)
459   --     Qnn : constant typ := Nnn / Dnn;
460   --     Rnn : constant typ := Nnn / Dnn;
461
462   --  If the numerator cannot be computed in 64 bits, we build
463
464   --    [Qnn : typ;
465   --     Rnn : typ;
466   --     Double_Divide (X, Y, Z, Qnn, Rnn, Round);]
467
468   procedure Build_Double_Divide_Code
469     (N        : Node_Id;
470      X, Y, Z  : Node_Id;
471      Qnn, Rnn : out Entity_Id;
472      Code     : out List_Id)
473   is
474      Loc    : constant Source_Ptr := Sloc (N);
475
476      X_Size : constant Nat := UI_To_Int (Esize (Etype (X)));
477      Y_Size : constant Nat := UI_To_Int (Esize (Etype (Y)));
478      Z_Size : constant Nat := UI_To_Int (Esize (Etype (Z)));
479
480      QR_Siz : Nat;
481      QR_Typ : Entity_Id;
482
483      Nnn : Entity_Id;
484      Dnn : Entity_Id;
485
486      Quo : Node_Id;
487      Rnd : Entity_Id;
488
489   begin
490      --  Find type that will allow computation of numerator
491
492      QR_Siz := Nat'Max (X_Size, 2 * Nat'Max (Y_Size, Z_Size));
493
494      if QR_Siz <= 16 then
495         QR_Typ := Standard_Integer_16;
496      elsif QR_Siz <= 32 then
497         QR_Typ := Standard_Integer_32;
498      elsif QR_Siz <= 64 then
499         QR_Typ := Standard_Integer_64;
500
501      --  For more than 64, bits, we use the 64-bit integer defined in
502      --  Interfaces, so that it can be handled by the runtime routine.
503
504      else
505         QR_Typ := RTE (RE_Integer_64);
506      end if;
507
508      --  Define quotient and remainder, and set their Etypes, so
509      --  that they can be picked up by Build_xxx routines.
510
511      Qnn := Make_Temporary (Loc, 'S');
512      Rnn := Make_Temporary (Loc, 'R');
513
514      Set_Etype (Qnn, QR_Typ);
515      Set_Etype (Rnn, QR_Typ);
516
517      --  Case that we can compute the denominator in 64 bits
518
519      if QR_Siz <= 64 then
520
521         --  Create temporaries for numerator and denominator and set Etypes,
522         --  so that New_Occurrence_Of picks them up for Build_xxx calls.
523
524         Nnn := Make_Temporary (Loc, 'N');
525         Dnn := Make_Temporary (Loc, 'D');
526
527         Set_Etype (Nnn, QR_Typ);
528         Set_Etype (Dnn, QR_Typ);
529
530         Code := New_List (
531           Make_Object_Declaration (Loc,
532             Defining_Identifier => Nnn,
533             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
534             Constant_Present    => True,
535             Expression => Build_Conversion (N, QR_Typ, X)),
536
537           Make_Object_Declaration (Loc,
538             Defining_Identifier => Dnn,
539             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
540             Constant_Present    => True,
541             Expression =>
542               Build_Multiply (N,
543                 Build_Conversion (N, QR_Typ, Y),
544                 Build_Conversion (N, QR_Typ, Z))));
545
546         Quo :=
547           Build_Divide (N,
548             New_Occurrence_Of (Nnn, Loc),
549             New_Occurrence_Of (Dnn, Loc));
550
551         Set_Rounded_Result (Quo, Rounded_Result_Set (N));
552
553         Append_To (Code,
554           Make_Object_Declaration (Loc,
555             Defining_Identifier => Qnn,
556             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
557             Constant_Present    => True,
558             Expression          => Quo));
559
560         Append_To (Code,
561           Make_Object_Declaration (Loc,
562             Defining_Identifier => Rnn,
563             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
564             Constant_Present    => True,
565             Expression =>
566               Build_Rem (N,
567                 New_Occurrence_Of (Nnn, Loc),
568                 New_Occurrence_Of (Dnn, Loc))));
569
570      --  Case where denominator does not fit in 64 bits, so we have to
571      --  call the runtime routine to compute the quotient and remainder
572
573      else
574         Rnd := Boolean_Literals (Rounded_Result_Set (N));
575
576         Code := New_List (
577           Make_Object_Declaration (Loc,
578             Defining_Identifier => Qnn,
579             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc)),
580
581           Make_Object_Declaration (Loc,
582             Defining_Identifier => Rnn,
583             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc)),
584
585           Make_Procedure_Call_Statement (Loc,
586             Name => New_Occurrence_Of (RTE (RE_Double_Divide), Loc),
587             Parameter_Associations => New_List (
588               Build_Conversion (N, QR_Typ, X),
589               Build_Conversion (N, QR_Typ, Y),
590               Build_Conversion (N, QR_Typ, Z),
591               New_Occurrence_Of (Qnn, Loc),
592               New_Occurrence_Of (Rnn, Loc),
593               New_Occurrence_Of (Rnd, Loc))));
594      end if;
595   end Build_Double_Divide_Code;
596
597   --------------------
598   -- Build_Multiply --
599   --------------------
600
601   function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is
602      Loc         : constant Source_Ptr := Sloc (N);
603      Left_Type   : constant Entity_Id  := Etype (L);
604      Right_Type  : constant Entity_Id  := Etype (R);
605      Left_Size   : Int;
606      Right_Size  : Int;
607      Rsize       : Int;
608      Result_Type : Entity_Id;
609      Rnode       : Node_Id;
610
611   begin
612      --  Deal with floating-point case first
613
614      if Is_Floating_Point_Type (Left_Type) then
615         pragma Assert (Left_Type = Universal_Real);
616         pragma Assert (Right_Type = Universal_Real);
617
618         Result_Type := Universal_Real;
619         Rnode := Make_Op_Multiply (Loc, L, R);
620
621      --  Integer and fixed-point cases
622
623      else
624         --  An optimization. If the right operand is the literal 1, then we
625         --  can just return the left hand operand. Putting the optimization
626         --  here allows us to omit the check at the call site. Similarly, if
627         --  the left operand is the integer 1 we can return the right operand.
628
629         if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
630            return L;
631         elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then
632            return R;
633         end if;
634
635         --  Otherwise we need to figure out the correct result type size
636         --  First figure out the effective sizes of the operands. Normally
637         --  the effective size of an operand is the RM_Size of the operand.
638         --  But a special case arises with operands whose size is known at
639         --  compile time. In this case, we can use the actual value of the
640         --  operand to get its size if it would fit signed in 8 or 16 bits.
641
642         Left_Size := UI_To_Int (RM_Size (Left_Type));
643
644         if Compile_Time_Known_Value (L) then
645            declare
646               Val : constant Uint := Expr_Value (L);
647            begin
648               if Val < Int'(2 ** 7) then
649                  Left_Size := 8;
650               elsif Val < Int'(2 ** 15) then
651                  Left_Size := 16;
652               end if;
653            end;
654         end if;
655
656         Right_Size := UI_To_Int (RM_Size (Right_Type));
657
658         if Compile_Time_Known_Value (R) then
659            declare
660               Val : constant Uint := Expr_Value (R);
661            begin
662               if Val <= Int'(2 ** 7) then
663                  Right_Size := 8;
664               elsif Val <= Int'(2 ** 15) then
665                  Right_Size := 16;
666               end if;
667            end;
668         end if;
669
670         --  Now the result size must be at least twice the longer of
671         --  the two sizes, to accommodate all possible results.
672
673         Rsize := 2 * Int'Max (Left_Size, Right_Size);
674
675         if Rsize <= 8 then
676            Result_Type := Standard_Integer_8;
677
678         elsif Rsize <= 16 then
679            Result_Type := Standard_Integer_16;
680
681         elsif Rsize <= 32 then
682            Result_Type := Standard_Integer_32;
683
684         else
685            Result_Type := Standard_Integer_64;
686         end if;
687
688         Rnode :=
689            Make_Op_Multiply (Loc,
690              Left_Opnd  => Build_Conversion (N, Result_Type, L),
691              Right_Opnd => Build_Conversion (N, Result_Type, R));
692      end if;
693
694      --  We now have a multiply node built with Result_Type set. First
695      --  set Etype of result, as required for all Build_xxx routines
696
697      Set_Etype (Rnode, Base_Type (Result_Type));
698
699      --  Set Treat_Fixed_As_Integer if operation on fixed-point type
700      --  since this is a literal arithmetic operation, to be performed
701      --  by Gigi without any consideration of small values.
702
703      if Is_Fixed_Point_Type (Result_Type) then
704         Set_Treat_Fixed_As_Integer (Rnode);
705      end if;
706
707      return Rnode;
708   end Build_Multiply;
709
710   ---------------
711   -- Build_Rem --
712   ---------------
713
714   function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is
715      Loc         : constant Source_Ptr := Sloc (N);
716      Left_Type   : constant Entity_Id  := Etype (L);
717      Right_Type  : constant Entity_Id  := Etype (R);
718      Result_Type : Entity_Id;
719      Rnode       : Node_Id;
720
721   begin
722      if Left_Type = Right_Type then
723         Result_Type := Left_Type;
724         Rnode :=
725           Make_Op_Rem (Loc,
726             Left_Opnd  => L,
727             Right_Opnd => R);
728
729      --  If left size is larger, we do the remainder operation using the
730      --  size of the left type (i.e. the larger of the two integer types).
731
732      elsif Esize (Left_Type) >= Esize (Right_Type) then
733         Result_Type := Left_Type;
734         Rnode :=
735           Make_Op_Rem (Loc,
736             Left_Opnd  => L,
737             Right_Opnd => Build_Conversion (N, Left_Type, R));
738
739      --  Similarly, if the right size is larger, we do the remainder
740      --  operation using the right type.
741
742      else
743         Result_Type := Right_Type;
744         Rnode :=
745           Make_Op_Rem (Loc,
746             Left_Opnd => Build_Conversion (N, Right_Type, L),
747             Right_Opnd => R);
748      end if;
749
750      --  We now have an N_Op_Rem node built with Result_Type set. First
751      --  set Etype of result, as required for all Build_xxx routines
752
753      Set_Etype (Rnode, Base_Type (Result_Type));
754
755      --  Set Treat_Fixed_As_Integer if operation on fixed-point type
756      --  since this is a literal arithmetic operation, to be performed
757      --  by Gigi without any consideration of small values.
758
759      if Is_Fixed_Point_Type (Result_Type) then
760         Set_Treat_Fixed_As_Integer (Rnode);
761      end if;
762
763      --  One more check. We did the rem operation using the larger of the
764      --  two types, which is reasonable. However, in the case where the
765      --  two types have unequal sizes, it is impossible for the result of
766      --  a remainder operation to be larger than the smaller of the two
767      --  types, so we can put a conversion round the result to keep the
768      --  evolving operation size as small as possible.
769
770      if Esize (Left_Type) >= Esize (Right_Type) then
771         Rnode := Build_Conversion (N, Right_Type, Rnode);
772      elsif Esize (Right_Type) >= Esize (Left_Type) then
773         Rnode := Build_Conversion (N, Left_Type, Rnode);
774      end if;
775
776      return Rnode;
777   end Build_Rem;
778
779   -------------------------
780   -- Build_Scaled_Divide --
781   -------------------------
782
783   function Build_Scaled_Divide
784     (N       : Node_Id;
785      X, Y, Z : Node_Id) return Node_Id
786   is
787      X_Size : constant Nat := UI_To_Int (Esize (Etype (X)));
788      Y_Size : constant Nat := UI_To_Int (Esize (Etype (Y)));
789      Expr   : Node_Id;
790
791   begin
792      --  If numerator fits in 64 bits, we can build the operations directly
793      --  without causing any intermediate overflow, so that's what we do.
794
795      if Nat'Max (X_Size, Y_Size) <= 32 then
796         return
797           Build_Divide (N, Build_Multiply (N, X, Y), Z);
798
799      --  Otherwise we use the runtime routine
800
801      --    [Qnn : Integer_64,
802      --     Rnn : Integer_64;
803      --     Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);
804      --     Qnn]
805
806      else
807         declare
808            Loc  : constant Source_Ptr := Sloc (N);
809            Qnn  : Entity_Id;
810            Rnn  : Entity_Id;
811            Code : List_Id;
812
813            pragma Warnings (Off, Rnn);
814
815         begin
816            Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
817            Insert_Actions (N, Code);
818            Expr := New_Occurrence_Of (Qnn, Loc);
819
820            --  Set type of result in case used elsewhere (see note at start)
821
822            Set_Etype (Expr, Etype (Qnn));
823            return Expr;
824         end;
825      end if;
826   end Build_Scaled_Divide;
827
828   ------------------------------
829   -- Build_Scaled_Divide_Code --
830   ------------------------------
831
832   --  If the numerator can be computed in 64-bits, we build
833
834   --    [Nnn : constant typ := typ (X) * typ (Y);
835   --     Dnn : constant typ := typ (Z)
836   --     Qnn : constant typ := Nnn / Dnn;
837   --     Rnn : constant typ := Nnn / Dnn;
838
839   --  If the numerator cannot be computed in 64 bits, we build
840
841   --    [Qnn : Interfaces.Integer_64;
842   --     Rnn : Interfaces.Integer_64;
843   --     Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);]
844
845   procedure Build_Scaled_Divide_Code
846     (N        : Node_Id;
847      X, Y, Z  : Node_Id;
848      Qnn, Rnn : out Entity_Id;
849      Code     : out List_Id)
850   is
851      Loc    : constant Source_Ptr := Sloc (N);
852
853      X_Size : constant Nat := UI_To_Int (Esize (Etype (X)));
854      Y_Size : constant Nat := UI_To_Int (Esize (Etype (Y)));
855      Z_Size : constant Nat := UI_To_Int (Esize (Etype (Z)));
856
857      QR_Siz : Nat;
858      QR_Typ : Entity_Id;
859
860      Nnn : Entity_Id;
861      Dnn : Entity_Id;
862
863      Quo : Node_Id;
864      Rnd : Entity_Id;
865
866   begin
867      --  Find type that will allow computation of numerator
868
869      QR_Siz := Nat'Max (X_Size, 2 * Nat'Max (Y_Size, Z_Size));
870
871      if QR_Siz <= 16 then
872         QR_Typ := Standard_Integer_16;
873      elsif QR_Siz <= 32 then
874         QR_Typ := Standard_Integer_32;
875      elsif QR_Siz <= 64 then
876         QR_Typ := Standard_Integer_64;
877
878      --  For more than 64, bits, we use the 64-bit integer defined in
879      --  Interfaces, so that it can be handled by the runtime routine.
880
881      else
882         QR_Typ := RTE (RE_Integer_64);
883      end if;
884
885      --  Define quotient and remainder, and set their Etypes, so
886      --  that they can be picked up by Build_xxx routines.
887
888      Qnn := Make_Temporary (Loc, 'S');
889      Rnn := Make_Temporary (Loc, 'R');
890
891      Set_Etype (Qnn, QR_Typ);
892      Set_Etype (Rnn, QR_Typ);
893
894      --  Case that we can compute the numerator in 64 bits
895
896      if QR_Siz <= 64 then
897         Nnn := Make_Temporary (Loc, 'N');
898         Dnn := Make_Temporary (Loc, 'D');
899
900         --  Set Etypes, so that they can be picked up by New_Occurrence_Of
901
902         Set_Etype (Nnn, QR_Typ);
903         Set_Etype (Dnn, QR_Typ);
904
905         Code := New_List (
906           Make_Object_Declaration (Loc,
907             Defining_Identifier => Nnn,
908             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
909             Constant_Present    => True,
910             Expression =>
911               Build_Multiply (N,
912                 Build_Conversion (N, QR_Typ, X),
913                 Build_Conversion (N, QR_Typ, Y))),
914
915           Make_Object_Declaration (Loc,
916             Defining_Identifier => Dnn,
917             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
918             Constant_Present    => True,
919             Expression => Build_Conversion (N, QR_Typ, Z)));
920
921         Quo :=
922           Build_Divide (N,
923             New_Occurrence_Of (Nnn, Loc),
924             New_Occurrence_Of (Dnn, Loc));
925
926         Append_To (Code,
927           Make_Object_Declaration (Loc,
928             Defining_Identifier => Qnn,
929             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
930             Constant_Present    => True,
931             Expression          => Quo));
932
933         Append_To (Code,
934           Make_Object_Declaration (Loc,
935             Defining_Identifier => Rnn,
936             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
937             Constant_Present    => True,
938             Expression =>
939               Build_Rem (N,
940                 New_Occurrence_Of (Nnn, Loc),
941                 New_Occurrence_Of (Dnn, Loc))));
942
943      --  Case where numerator does not fit in 64 bits, so we have to
944      --  call the runtime routine to compute the quotient and remainder
945
946      else
947         Rnd := Boolean_Literals (Rounded_Result_Set (N));
948
949         Code := New_List (
950           Make_Object_Declaration (Loc,
951             Defining_Identifier => Qnn,
952             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc)),
953
954           Make_Object_Declaration (Loc,
955             Defining_Identifier => Rnn,
956             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc)),
957
958           Make_Procedure_Call_Statement (Loc,
959             Name => New_Occurrence_Of (RTE (RE_Scaled_Divide), Loc),
960             Parameter_Associations => New_List (
961               Build_Conversion (N, QR_Typ, X),
962               Build_Conversion (N, QR_Typ, Y),
963               Build_Conversion (N, QR_Typ, Z),
964               New_Occurrence_Of (Qnn, Loc),
965               New_Occurrence_Of (Rnn, Loc),
966               New_Occurrence_Of (Rnd, Loc))));
967      end if;
968
969      --  Set type of result, for use in caller
970
971      Set_Etype (Qnn, QR_Typ);
972   end Build_Scaled_Divide_Code;
973
974   ---------------------------
975   -- Do_Divide_Fixed_Fixed --
976   ---------------------------
977
978   --  We have:
979
980   --    (Result_Value * Result_Small) =
981   --        (Left_Value * Left_Small) / (Right_Value * Right_Small)
982
983   --    Result_Value = (Left_Value / Right_Value) *
984   --                   (Left_Small / (Right_Small * Result_Small));
985
986   --  we can do the operation in integer arithmetic if this fraction is an
987   --  integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
988   --  Otherwise the result is in the close result set and our approach is to
989   --  use floating-point to compute this close result.
990
991   procedure Do_Divide_Fixed_Fixed (N : Node_Id) is
992      Left        : constant Node_Id   := Left_Opnd (N);
993      Right       : constant Node_Id   := Right_Opnd (N);
994      Left_Type   : constant Entity_Id := Etype (Left);
995      Right_Type  : constant Entity_Id := Etype (Right);
996      Result_Type : constant Entity_Id := Etype (N);
997      Right_Small : constant Ureal     := Small_Value (Right_Type);
998      Left_Small  : constant Ureal     := Small_Value (Left_Type);
999
1000      Result_Small : Ureal;
1001      Frac         : Ureal;
1002      Frac_Num     : Uint;
1003      Frac_Den     : Uint;
1004      Lit_Int      : Node_Id;
1005
1006   begin
1007      --  Rounding is required if the result is integral
1008
1009      if Is_Integer_Type (Result_Type) then
1010         Set_Rounded_Result (N);
1011      end if;
1012
1013      --  Get result small. If the result is an integer, treat it as though
1014      --  it had a small of 1.0, all other processing is identical.
1015
1016      if Is_Integer_Type (Result_Type) then
1017         Result_Small := Ureal_1;
1018      else
1019         Result_Small := Small_Value (Result_Type);
1020      end if;
1021
1022      --  Get small ratio
1023
1024      Frac     := Left_Small / (Right_Small * Result_Small);
1025      Frac_Num := Norm_Num (Frac);
1026      Frac_Den := Norm_Den (Frac);
1027
1028      --  If the fraction is an integer, then we get the result by multiplying
1029      --  the left operand by the integer, and then dividing by the right
1030      --  operand (the order is important, if we did the divide first, we
1031      --  would lose precision).
1032
1033      if Frac_Den = 1 then
1034         Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
1035
1036         if Present (Lit_Int) then
1037            Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right));
1038            return;
1039         end if;
1040
1041      --  If the fraction is the reciprocal of an integer, then we get the
1042      --  result by first multiplying the divisor by the integer, and then
1043      --  doing the division with the adjusted divisor.
1044
1045      --  Note: this is much better than doing two divisions: multiplications
1046      --  are much faster than divisions (and certainly faster than rounded
1047      --  divisions), and we don't get inaccuracies from double rounding.
1048
1049      elsif Frac_Num = 1 then
1050         Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
1051
1052         if Present (Lit_Int) then
1053            Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int));
1054            return;
1055         end if;
1056      end if;
1057
1058      --  If we fall through, we use floating-point to compute the result
1059
1060      Set_Result (N,
1061        Build_Multiply (N,
1062          Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
1063          Real_Literal (N, Frac)));
1064   end Do_Divide_Fixed_Fixed;
1065
1066   -------------------------------
1067   -- Do_Divide_Fixed_Universal --
1068   -------------------------------
1069
1070   --  We have:
1071
1072   --    (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
1073   --    Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
1074
1075   --  The result is required to be in the perfect result set if the literal
1076   --  can be factored so that the resulting small ratio is an integer or the
1077   --  reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1078   --  analysis of these RM requirements:
1079
1080   --  We must factor the literal, finding an integer K:
1081
1082   --     Lit_Value = K * Right_Small
1083   --     Right_Small = Lit_Value / K
1084
1085   --  such that the small ratio:
1086
1087   --              Left_Small
1088   --     ------------------------------
1089   --     (Lit_Value / K) * Result_Small
1090
1091   --            Left_Small
1092   --  =  ------------------------  *  K
1093   --     Lit_Value * Result_Small
1094
1095   --  is an integer or the reciprocal of an integer, and for
1096   --  implementation efficiency we need the smallest such K.
1097
1098   --  First we reduce the left fraction to lowest terms
1099
1100   --    If numerator = 1, then for K = 1, the small ratio is the reciprocal
1101   --    of an integer, and this is clearly the minimum K case, so set K = 1,
1102   --    Right_Small = Lit_Value.
1103
1104   --    If numerator > 1, then set K to the denominator of the fraction so
1105   --    that the resulting small ratio is an integer (the numerator value).
1106
1107   procedure Do_Divide_Fixed_Universal (N : Node_Id) is
1108      Left        : constant Node_Id   := Left_Opnd (N);
1109      Right       : constant Node_Id   := Right_Opnd (N);
1110      Left_Type   : constant Entity_Id := Etype (Left);
1111      Result_Type : constant Entity_Id := Etype (N);
1112      Left_Small  : constant Ureal     := Small_Value (Left_Type);
1113      Lit_Value   : constant Ureal     := Realval (Right);
1114
1115      Result_Small : Ureal;
1116      Frac         : Ureal;
1117      Frac_Num     : Uint;
1118      Frac_Den     : Uint;
1119      Lit_K        : Node_Id;
1120      Lit_Int      : Node_Id;
1121
1122   begin
1123      --  Get result small. If the result is an integer, treat it as though
1124      --  it had a small of 1.0, all other processing is identical.
1125
1126      if Is_Integer_Type (Result_Type) then
1127         Result_Small := Ureal_1;
1128      else
1129         Result_Small := Small_Value (Result_Type);
1130      end if;
1131
1132      --  Determine if literal can be rewritten successfully
1133
1134      Frac     := Left_Small / (Lit_Value * Result_Small);
1135      Frac_Num := Norm_Num (Frac);
1136      Frac_Den := Norm_Den (Frac);
1137
1138      --  Case where fraction is the reciprocal of an integer (K = 1, integer
1139      --  = denominator). If this integer is not too large, this is the case
1140      --  where the result can be obtained by dividing by this integer value.
1141
1142      if Frac_Num = 1 then
1143         Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1144
1145         if Present (Lit_Int) then
1146            Set_Result (N, Build_Divide (N, Left, Lit_Int));
1147            return;
1148         end if;
1149
1150      --  Case where we choose K to make fraction an integer (K = denominator
1151      --  of fraction, integer = numerator of fraction). If both K and the
1152      --  numerator are small enough, this is the case where the result can
1153      --  be obtained by first multiplying by the integer value and then
1154      --  dividing by K (the order is important, if we divided first, we
1155      --  would lose precision).
1156
1157      else
1158         Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1159         Lit_K   := Integer_Literal (N, Frac_Den, False);
1160
1161         if Present (Lit_Int) and then Present (Lit_K) then
1162            Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K));
1163            return;
1164         end if;
1165      end if;
1166
1167      --  Fall through if the literal cannot be successfully rewritten, or if
1168      --  the small ratio is out of range of integer arithmetic. In the former
1169      --  case it is fine to use floating-point to get the close result set,
1170      --  and in the latter case, it means that the result is zero or raises
1171      --  constraint error, and we can do that accurately in floating-point.
1172
1173      --  If we end up using floating-point, then we take the right integer
1174      --  to be one, and its small to be the value of the original right real
1175      --  literal. That way, we need only one floating-point multiplication.
1176
1177      Set_Result (N,
1178        Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
1179   end Do_Divide_Fixed_Universal;
1180
1181   -------------------------------
1182   -- Do_Divide_Universal_Fixed --
1183   -------------------------------
1184
1185   --  We have:
1186
1187   --    (Result_Value * Result_Small) =
1188   --          Lit_Value / (Right_Value * Right_Small)
1189   --    Result_Value =
1190   --          (Lit_Value / (Right_Small * Result_Small)) / Right_Value
1191
1192   --  The result is required to be in the perfect result set if the literal
1193   --  can be factored so that the resulting small ratio is an integer or the
1194   --  reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1195   --  analysis of these RM requirements:
1196
1197   --  We must factor the literal, finding an integer K:
1198
1199   --     Lit_Value = K * Left_Small
1200   --     Left_Small = Lit_Value / K
1201
1202   --  such that the small ratio:
1203
1204   --           (Lit_Value / K)
1205   --     --------------------------
1206   --     Right_Small * Result_Small
1207
1208   --              Lit_Value             1
1209   --  =  --------------------------  *  -
1210   --     Right_Small * Result_Small     K
1211
1212   --  is an integer or the reciprocal of an integer, and for
1213   --  implementation efficiency we need the smallest such K.
1214
1215   --  First we reduce the left fraction to lowest terms
1216
1217   --    If denominator = 1, then for K = 1, the small ratio is an integer
1218   --    (the numerator) and this is clearly the minimum K case, so set K = 1,
1219   --    and Left_Small = Lit_Value.
1220
1221   --    If denominator > 1, then set K to the numerator of the fraction so
1222   --    that the resulting small ratio is the reciprocal of an integer (the
1223   --    numerator value).
1224
1225   procedure Do_Divide_Universal_Fixed (N : Node_Id) is
1226      Left        : constant Node_Id   := Left_Opnd (N);
1227      Right       : constant Node_Id   := Right_Opnd (N);
1228      Right_Type  : constant Entity_Id := Etype (Right);
1229      Result_Type : constant Entity_Id := Etype (N);
1230      Right_Small : constant Ureal     := Small_Value (Right_Type);
1231      Lit_Value   : constant Ureal     := Realval (Left);
1232
1233      Result_Small : Ureal;
1234      Frac         : Ureal;
1235      Frac_Num     : Uint;
1236      Frac_Den     : Uint;
1237      Lit_K        : Node_Id;
1238      Lit_Int      : Node_Id;
1239
1240   begin
1241      --  Get result small. If the result is an integer, treat it as though
1242      --  it had a small of 1.0, all other processing is identical.
1243
1244      if Is_Integer_Type (Result_Type) then
1245         Result_Small := Ureal_1;
1246      else
1247         Result_Small := Small_Value (Result_Type);
1248      end if;
1249
1250      --  Determine if literal can be rewritten successfully
1251
1252      Frac     := Lit_Value / (Right_Small * Result_Small);
1253      Frac_Num := Norm_Num (Frac);
1254      Frac_Den := Norm_Den (Frac);
1255
1256      --  Case where fraction is an integer (K = 1, integer = numerator). If
1257      --  this integer is not too large, this is the case where the result
1258      --  can be obtained by dividing this integer by the right operand.
1259
1260      if Frac_Den = 1 then
1261         Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1262
1263         if Present (Lit_Int) then
1264            Set_Result (N, Build_Divide (N, Lit_Int, Right));
1265            return;
1266         end if;
1267
1268      --  Case where we choose K to make the fraction the reciprocal of an
1269      --  integer (K = numerator of fraction, integer = numerator of fraction).
1270      --  If both K and the integer are small enough, this is the case where
1271      --  the result can be obtained by multiplying the right operand by K
1272      --  and then dividing by the integer value. The order of the operations
1273      --  is important (if we divided first, we would lose precision).
1274
1275      else
1276         Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1277         Lit_K   := Integer_Literal (N, Frac_Num, False);
1278
1279         if Present (Lit_Int) and then Present (Lit_K) then
1280            Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int));
1281            return;
1282         end if;
1283      end if;
1284
1285      --  Fall through if the literal cannot be successfully rewritten, or if
1286      --  the small ratio is out of range of integer arithmetic. In the former
1287      --  case it is fine to use floating-point to get the close result set,
1288      --  and in the latter case, it means that the result is zero or raises
1289      --  constraint error, and we can do that accurately in floating-point.
1290
1291      --  If we end up using floating-point, then we take the right integer
1292      --  to be one, and its small to be the value of the original right real
1293      --  literal. That way, we need only one floating-point division.
1294
1295      Set_Result (N,
1296        Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right)));
1297   end Do_Divide_Universal_Fixed;
1298
1299   -----------------------------
1300   -- Do_Multiply_Fixed_Fixed --
1301   -----------------------------
1302
1303   --  We have:
1304
1305   --    (Result_Value * Result_Small) =
1306   --        (Left_Value * Left_Small) * (Right_Value * Right_Small)
1307
1308   --    Result_Value = (Left_Value * Right_Value) *
1309   --                   (Left_Small * Right_Small) / Result_Small;
1310
1311   --  we can do the operation in integer arithmetic if this fraction is an
1312   --  integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
1313   --  Otherwise the result is in the close result set and our approach is to
1314   --  use floating-point to compute this close result.
1315
1316   procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is
1317      Left  : constant Node_Id := Left_Opnd (N);
1318      Right : constant Node_Id := Right_Opnd (N);
1319
1320      Left_Type   : constant Entity_Id := Etype (Left);
1321      Right_Type  : constant Entity_Id := Etype (Right);
1322      Result_Type : constant Entity_Id := Etype (N);
1323      Right_Small : constant Ureal     := Small_Value (Right_Type);
1324      Left_Small  : constant Ureal     := Small_Value (Left_Type);
1325
1326      Result_Small : Ureal;
1327      Frac         : Ureal;
1328      Frac_Num     : Uint;
1329      Frac_Den     : Uint;
1330      Lit_Int      : Node_Id;
1331
1332   begin
1333      --  Get result small. If the result is an integer, treat it as though
1334      --  it had a small of 1.0, all other processing is identical.
1335
1336      if Is_Integer_Type (Result_Type) then
1337         Result_Small := Ureal_1;
1338      else
1339         Result_Small := Small_Value (Result_Type);
1340      end if;
1341
1342      --  Get small ratio
1343
1344      Frac     := (Left_Small * Right_Small) / Result_Small;
1345      Frac_Num := Norm_Num (Frac);
1346      Frac_Den := Norm_Den (Frac);
1347
1348      --  If the fraction is an integer, then we get the result by multiplying
1349      --  the operands, and then multiplying the result by the integer value.
1350
1351      if Frac_Den = 1 then
1352         Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
1353
1354         if Present (Lit_Int) then
1355            Set_Result (N,
1356              Build_Multiply (N, Build_Multiply (N, Left, Right),
1357                Lit_Int));
1358            return;
1359         end if;
1360
1361      --  If the fraction is the reciprocal of an integer, then we get the
1362      --  result by multiplying the operands, and then dividing the result by
1363      --  the integer value. The order of the operations is important, if we
1364      --  divided first, we would lose precision.
1365
1366      elsif Frac_Num = 1 then
1367         Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
1368
1369         if Present (Lit_Int) then
1370            Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int));
1371            return;
1372         end if;
1373      end if;
1374
1375      --  If we fall through, we use floating-point to compute the result
1376
1377      Set_Result (N,
1378        Build_Multiply (N,
1379          Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
1380          Real_Literal (N, Frac)));
1381   end Do_Multiply_Fixed_Fixed;
1382
1383   ---------------------------------
1384   -- Do_Multiply_Fixed_Universal --
1385   ---------------------------------
1386
1387   --  We have:
1388
1389   --    (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
1390   --    Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
1391
1392   --  The result is required to be in the perfect result set if the literal
1393   --  can be factored so that the resulting small ratio is an integer or the
1394   --  reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1395   --  analysis of these RM requirements:
1396
1397   --  We must factor the literal, finding an integer K:
1398
1399   --     Lit_Value = K * Right_Small
1400   --     Right_Small = Lit_Value / K
1401
1402   --  such that the small ratio:
1403
1404   --     Left_Small * (Lit_Value / K)
1405   --     ----------------------------
1406   --             Result_Small
1407
1408   --     Left_Small * Lit_Value     1
1409   --  =  ----------------------  *  -
1410   --          Result_Small          K
1411
1412   --  is an integer or the reciprocal of an integer, and for
1413   --  implementation efficiency we need the smallest such K.
1414
1415   --  First we reduce the left fraction to lowest terms
1416
1417   --    If denominator = 1, then for K = 1, the small ratio is an integer, and
1418   --    this is clearly the minimum K case, so set
1419
1420   --      K = 1, Right_Small = Lit_Value
1421
1422   --    If denominator > 1, then set K to the numerator of the fraction, so
1423   --    that the resulting small ratio is the reciprocal of the integer (the
1424   --    denominator value).
1425
1426   procedure Do_Multiply_Fixed_Universal
1427     (N           : Node_Id;
1428      Left, Right : Node_Id)
1429   is
1430      Left_Type   : constant Entity_Id := Etype (Left);
1431      Result_Type : constant Entity_Id := Etype (N);
1432      Left_Small  : constant Ureal     := Small_Value (Left_Type);
1433      Lit_Value   : constant Ureal     := Realval (Right);
1434
1435      Result_Small : Ureal;
1436      Frac         : Ureal;
1437      Frac_Num     : Uint;
1438      Frac_Den     : Uint;
1439      Lit_K        : Node_Id;
1440      Lit_Int      : Node_Id;
1441
1442   begin
1443      --  Get result small. If the result is an integer, treat it as though
1444      --  it had a small of 1.0, all other processing is identical.
1445
1446      if Is_Integer_Type (Result_Type) then
1447         Result_Small := Ureal_1;
1448      else
1449         Result_Small := Small_Value (Result_Type);
1450      end if;
1451
1452      --  Determine if literal can be rewritten successfully
1453
1454      Frac     := (Left_Small * Lit_Value) / Result_Small;
1455      Frac_Num := Norm_Num (Frac);
1456      Frac_Den := Norm_Den (Frac);
1457
1458      --  Case where fraction is an integer (K = 1, integer = numerator). If
1459      --  this integer is not too large, this is the case where the result can
1460      --  be obtained by multiplying by this integer value.
1461
1462      if Frac_Den = 1 then
1463         Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1464
1465         if Present (Lit_Int) then
1466            Set_Result (N, Build_Multiply (N, Left, Lit_Int));
1467            return;
1468         end if;
1469
1470      --  Case where we choose K to make fraction the reciprocal of an integer
1471      --  (K = numerator of fraction, integer = denominator of fraction). If
1472      --  both K and the denominator are small enough, this is the case where
1473      --  the result can be obtained by first multiplying by K, and then
1474      --  dividing by the integer value.
1475
1476      else
1477         Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1478         Lit_K   := Integer_Literal (N, Frac_Num);
1479
1480         if Present (Lit_Int) and then Present (Lit_K) then
1481            Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int));
1482            return;
1483         end if;
1484      end if;
1485
1486      --  Fall through if the literal cannot be successfully rewritten, or if
1487      --  the small ratio is out of range of integer arithmetic. In the former
1488      --  case it is fine to use floating-point to get the close result set,
1489      --  and in the latter case, it means that the result is zero or raises
1490      --  constraint error, and we can do that accurately in floating-point.
1491
1492      --  If we end up using floating-point, then we take the right integer
1493      --  to be one, and its small to be the value of the original right real
1494      --  literal. That way, we need only one floating-point multiplication.
1495
1496      Set_Result (N,
1497        Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
1498   end Do_Multiply_Fixed_Universal;
1499
1500   ---------------------------------
1501   -- Expand_Convert_Fixed_Static --
1502   ---------------------------------
1503
1504   procedure Expand_Convert_Fixed_Static (N : Node_Id) is
1505   begin
1506      Rewrite (N,
1507        Convert_To (Etype (N),
1508          Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N)))));
1509      Analyze_And_Resolve (N);
1510   end Expand_Convert_Fixed_Static;
1511
1512   -----------------------------------
1513   -- Expand_Convert_Fixed_To_Fixed --
1514   -----------------------------------
1515
1516   --  We have:
1517
1518   --    Result_Value * Result_Small = Source_Value * Source_Small
1519   --    Result_Value = Source_Value * (Source_Small / Result_Small)
1520
1521   --  If the small ratio (Source_Small / Result_Small) is a sufficiently small
1522   --  integer, then the perfect result set is obtained by a single integer
1523   --  multiplication.
1524
1525   --  If the small ratio is the reciprocal of a sufficiently small integer,
1526   --  then the perfect result set is obtained by a single integer division.
1527
1528   --  In other cases, we obtain the close result set by calculating the
1529   --  result in floating-point.
1530
1531   procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is
1532      Rng_Check   : constant Boolean   := Do_Range_Check (N);
1533      Expr        : constant Node_Id   := Expression (N);
1534      Result_Type : constant Entity_Id := Etype (N);
1535      Source_Type : constant Entity_Id := Etype (Expr);
1536      Small_Ratio : Ureal;
1537      Ratio_Num   : Uint;
1538      Ratio_Den   : Uint;
1539      Lit         : Node_Id;
1540
1541   begin
1542      if Is_OK_Static_Expression (Expr) then
1543         Expand_Convert_Fixed_Static (N);
1544         return;
1545      end if;
1546
1547      Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type);
1548      Ratio_Num   := Norm_Num (Small_Ratio);
1549      Ratio_Den   := Norm_Den (Small_Ratio);
1550
1551      if Ratio_Den = 1 then
1552         if Ratio_Num = 1 then
1553            Set_Result (N, Expr);
1554            return;
1555
1556         else
1557            Lit := Integer_Literal (N, Ratio_Num);
1558
1559            if Present (Lit) then
1560               Set_Result (N, Build_Multiply (N, Expr, Lit));
1561               return;
1562            end if;
1563         end if;
1564
1565      elsif Ratio_Num = 1 then
1566         Lit := Integer_Literal (N, Ratio_Den);
1567
1568         if Present (Lit) then
1569            Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1570            return;
1571         end if;
1572      end if;
1573
1574      --  Fall through to use floating-point for the close result set case
1575      --  either as a result of the small ratio not being an integer or the
1576      --  reciprocal of an integer, or if the integer is out of range.
1577
1578      Set_Result (N,
1579        Build_Multiply (N,
1580          Fpt_Value (Expr),
1581          Real_Literal (N, Small_Ratio)),
1582        Rng_Check);
1583   end Expand_Convert_Fixed_To_Fixed;
1584
1585   -----------------------------------
1586   -- Expand_Convert_Fixed_To_Float --
1587   -----------------------------------
1588
1589   --  If the small of the fixed type is 1.0, then we simply convert the
1590   --  integer value directly to the target floating-point type, otherwise
1591   --  we first have to multiply by the small, in Universal_Real, and then
1592   --  convert the result to the target floating-point type.
1593
1594   procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is
1595      Rng_Check   : constant Boolean    := Do_Range_Check (N);
1596      Expr        : constant Node_Id    := Expression (N);
1597      Source_Type : constant Entity_Id  := Etype (Expr);
1598      Small       : constant Ureal      := Small_Value (Source_Type);
1599
1600   begin
1601      if Is_OK_Static_Expression (Expr) then
1602         Expand_Convert_Fixed_Static (N);
1603         return;
1604      end if;
1605
1606      if Small = Ureal_1 then
1607         Set_Result (N, Expr);
1608
1609      else
1610         Set_Result (N,
1611           Build_Multiply (N,
1612             Fpt_Value (Expr),
1613             Real_Literal (N, Small)),
1614           Rng_Check);
1615      end if;
1616   end Expand_Convert_Fixed_To_Float;
1617
1618   -------------------------------------
1619   -- Expand_Convert_Fixed_To_Integer --
1620   -------------------------------------
1621
1622   --  We have:
1623
1624   --    Result_Value = Source_Value * Source_Small
1625
1626   --  If the small value is a sufficiently small integer, then the perfect
1627   --  result set is obtained by a single integer multiplication.
1628
1629   --  If the small value is the reciprocal of a sufficiently small integer,
1630   --  then the perfect result set is obtained by a single integer division.
1631
1632   --  In other cases, we obtain the close result set by calculating the
1633   --  result in floating-point.
1634
1635   procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is
1636      Rng_Check   : constant Boolean   := Do_Range_Check (N);
1637      Expr        : constant Node_Id   := Expression (N);
1638      Source_Type : constant Entity_Id := Etype (Expr);
1639      Small       : constant Ureal     := Small_Value (Source_Type);
1640      Small_Num   : constant Uint      := Norm_Num (Small);
1641      Small_Den   : constant Uint      := Norm_Den (Small);
1642      Lit         : Node_Id;
1643
1644   begin
1645      if Is_OK_Static_Expression (Expr) then
1646         Expand_Convert_Fixed_Static (N);
1647         return;
1648      end if;
1649
1650      if Small_Den = 1 then
1651         Lit := Integer_Literal (N, Small_Num);
1652
1653         if Present (Lit) then
1654            Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
1655            return;
1656         end if;
1657
1658      elsif Small_Num = 1 then
1659         Lit := Integer_Literal (N, Small_Den);
1660
1661         if Present (Lit) then
1662            Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1663            return;
1664         end if;
1665      end if;
1666
1667      --  Fall through to use floating-point for the close result set case
1668      --  either as a result of the small value not being an integer or the
1669      --  reciprocal of an integer, or if the integer is out of range.
1670
1671      Set_Result (N,
1672        Build_Multiply (N,
1673          Fpt_Value (Expr),
1674          Real_Literal (N, Small)),
1675        Rng_Check);
1676   end Expand_Convert_Fixed_To_Integer;
1677
1678   -----------------------------------
1679   -- Expand_Convert_Float_To_Fixed --
1680   -----------------------------------
1681
1682   --  We have
1683
1684   --    Result_Value * Result_Small = Operand_Value
1685
1686   --  so compute:
1687
1688   --    Result_Value = Operand_Value * (1.0 / Result_Small)
1689
1690   --  We do the small scaling in floating-point, and we do a multiplication
1691   --  rather than a division, since it is accurate enough for the perfect
1692   --  result cases, and faster.
1693
1694   procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is
1695      Expr        : constant Node_Id   := Expression (N);
1696      Orig_N      : constant Node_Id   := Original_Node (N);
1697      Result_Type : constant Entity_Id := Etype (N);
1698      Rng_Check   : constant Boolean   := Do_Range_Check (N);
1699      Small       : constant Ureal     := Small_Value (Result_Type);
1700      Truncate    : Boolean;
1701
1702   begin
1703      --  Optimize small = 1, where we can avoid the multiply completely
1704
1705      if Small = Ureal_1 then
1706         Set_Result (N, Expr, Rng_Check, Trunc => True);
1707
1708      --  Normal case where multiply is required. Rounding is truncating
1709      --  for decimal fixed point types only, see RM 4.6(29), except if the
1710      --  conversion comes from an attribute reference 'Round (RM 3.5.10 (14)):
1711      --  The attribute is implemented by means of a conversion that must
1712      --  round.
1713
1714      else
1715         if Is_Decimal_Fixed_Point_Type (Result_Type) then
1716            Truncate :=
1717              Nkind (Orig_N) /= N_Attribute_Reference
1718                or else Get_Attribute_Id
1719                          (Attribute_Name (Orig_N)) /= Attribute_Round;
1720         else
1721            Truncate := False;
1722         end if;
1723
1724         Set_Result
1725           (N     => N,
1726            Expr  =>
1727              Build_Multiply
1728                (N => N,
1729                 L => Fpt_Value (Expr),
1730                 R => Real_Literal (N, Ureal_1 / Small)),
1731            Rchk  => Rng_Check,
1732            Trunc => Truncate);
1733      end if;
1734   end Expand_Convert_Float_To_Fixed;
1735
1736   -------------------------------------
1737   -- Expand_Convert_Integer_To_Fixed --
1738   -------------------------------------
1739
1740   --  We have
1741
1742   --    Result_Value * Result_Small = Operand_Value
1743   --    Result_Value = Operand_Value / Result_Small
1744
1745   --  If the small value is a sufficiently small integer, then the perfect
1746   --  result set is obtained by a single integer division.
1747
1748   --  If the small value is the reciprocal of a sufficiently small integer,
1749   --  the perfect result set is obtained by a single integer multiplication.
1750
1751   --  In other cases, we obtain the close result set by calculating the
1752   --  result in floating-point using a multiplication by the reciprocal
1753   --  of the Result_Small.
1754
1755   procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is
1756      Rng_Check   : constant Boolean   := Do_Range_Check (N);
1757      Expr        : constant Node_Id   := Expression (N);
1758      Result_Type : constant Entity_Id := Etype (N);
1759      Small       : constant Ureal     := Small_Value (Result_Type);
1760      Small_Num   : constant Uint      := Norm_Num (Small);
1761      Small_Den   : constant Uint      := Norm_Den (Small);
1762      Lit         : Node_Id;
1763
1764   begin
1765      if Small_Den = 1 then
1766         Lit := Integer_Literal (N, Small_Num);
1767
1768         if Present (Lit) then
1769            Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1770            return;
1771         end if;
1772
1773      elsif Small_Num = 1 then
1774         Lit := Integer_Literal (N, Small_Den);
1775
1776         if Present (Lit) then
1777            Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
1778            return;
1779         end if;
1780      end if;
1781
1782      --  Fall through to use floating-point for the close result set case
1783      --  either as a result of the small value not being an integer or the
1784      --  reciprocal of an integer, or if the integer is out of range.
1785
1786      Set_Result (N,
1787        Build_Multiply (N,
1788          Fpt_Value (Expr),
1789          Real_Literal (N, Ureal_1 / Small)),
1790        Rng_Check);
1791   end Expand_Convert_Integer_To_Fixed;
1792
1793   --------------------------------
1794   -- Expand_Decimal_Divide_Call --
1795   --------------------------------
1796
1797   --  We have four operands
1798
1799   --    Dividend
1800   --    Divisor
1801   --    Quotient
1802   --    Remainder
1803
1804   --  All of which are decimal types, and which thus have associated
1805   --  decimal scales.
1806
1807   --  Computing the quotient is a similar problem to that faced by the
1808   --  normal fixed-point division, except that it is simpler, because
1809   --  we always have compatible smalls.
1810
1811   --    Quotient = (Dividend / Divisor) * 10**q
1812
1813   --      where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
1814   --      so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
1815
1816   --    For q >= 0, we compute
1817
1818   --      Numerator   := Dividend * 10 ** q
1819   --      Denominator := Divisor
1820   --      Quotient    := Numerator / Denominator
1821
1822   --    For q < 0, we compute
1823
1824   --      Numerator   := Dividend
1825   --      Denominator := Divisor * 10 ** q
1826   --      Quotient    := Numerator / Denominator
1827
1828   --  Both these divisions are done in truncated mode, and the remainder
1829   --  from these divisions is used to compute the result Remainder. This
1830   --  remainder has the effective scale of the numerator of the division,
1831
1832   --    For q >= 0, the remainder scale is Dividend'Scale + q
1833   --    For q <  0, the remainder scale is Dividend'Scale
1834
1835   --  The result Remainder is then computed by a normal truncating decimal
1836   --  conversion from this scale to the scale of the remainder, i.e. by a
1837   --  division or multiplication by the appropriate power of 10.
1838
1839   procedure Expand_Decimal_Divide_Call (N : Node_Id) is
1840      Loc : constant Source_Ptr := Sloc (N);
1841
1842      Dividend  : Node_Id := First_Actual (N);
1843      Divisor   : Node_Id := Next_Actual (Dividend);
1844      Quotient  : Node_Id := Next_Actual (Divisor);
1845      Remainder : Node_Id := Next_Actual (Quotient);
1846
1847      Dividend_Type   : constant Entity_Id := Etype (Dividend);
1848      Divisor_Type    : constant Entity_Id := Etype (Divisor);
1849      Quotient_Type   : constant Entity_Id := Etype (Quotient);
1850      Remainder_Type  : constant Entity_Id := Etype (Remainder);
1851
1852      Dividend_Scale  : constant Uint := Scale_Value (Dividend_Type);
1853      Divisor_Scale   : constant Uint := Scale_Value (Divisor_Type);
1854      Quotient_Scale  : constant Uint := Scale_Value (Quotient_Type);
1855      Remainder_Scale : constant Uint := Scale_Value (Remainder_Type);
1856
1857      Q                  : Uint;
1858      Numerator_Scale    : Uint;
1859      Stmts              : List_Id;
1860      Qnn                : Entity_Id;
1861      Rnn                : Entity_Id;
1862      Computed_Remainder : Node_Id;
1863      Adjusted_Remainder : Node_Id;
1864      Scale_Adjust       : Uint;
1865
1866   begin
1867      --  Relocate the operands, since they are now list elements, and we
1868      --  need to reference them separately as operands in the expanded code.
1869
1870      Dividend  := Relocate_Node (Dividend);
1871      Divisor   := Relocate_Node (Divisor);
1872      Quotient  := Relocate_Node (Quotient);
1873      Remainder := Relocate_Node (Remainder);
1874
1875      --  Now compute Q, the adjustment scale
1876
1877      Q := Divisor_Scale + Quotient_Scale - Dividend_Scale;
1878
1879      --  If Q is non-negative then we need a scaled divide
1880
1881      if Q >= 0 then
1882         Build_Scaled_Divide_Code
1883           (N,
1884            Dividend,
1885            Integer_Literal (N, Uint_10 ** Q),
1886            Divisor,
1887            Qnn, Rnn, Stmts);
1888
1889         Numerator_Scale := Dividend_Scale + Q;
1890
1891      --  If Q is negative, then we need a double divide
1892
1893      else
1894         Build_Double_Divide_Code
1895           (N,
1896            Dividend,
1897            Divisor,
1898            Integer_Literal (N, Uint_10 ** (-Q)),
1899            Qnn, Rnn, Stmts);
1900
1901         Numerator_Scale := Dividend_Scale;
1902      end if;
1903
1904      --  Add statement to set quotient value
1905
1906      --    Quotient := quotient-type!(Qnn);
1907
1908      Append_To (Stmts,
1909        Make_Assignment_Statement (Loc,
1910          Name => Quotient,
1911          Expression =>
1912            Unchecked_Convert_To (Quotient_Type,
1913              Build_Conversion (N, Quotient_Type,
1914                New_Occurrence_Of (Qnn, Loc)))));
1915
1916      --  Now we need to deal with computing and setting the remainder. The
1917      --  scale of the remainder is in Numerator_Scale, and the desired
1918      --  scale is the scale of the given Remainder argument. There are
1919      --  three cases:
1920
1921      --    Numerator_Scale > Remainder_Scale
1922
1923      --      in this case, there are extra digits in the computed remainder
1924      --      which must be eliminated by an extra division:
1925
1926      --        computed-remainder := Numerator rem Denominator
1927      --        scale_adjust = Numerator_Scale - Remainder_Scale
1928      --        adjusted-remainder := computed-remainder / 10 ** scale_adjust
1929
1930      --    Numerator_Scale = Remainder_Scale
1931
1932      --      in this case, the we have the remainder we need
1933
1934      --        computed-remainder := Numerator rem Denominator
1935      --        adjusted-remainder := computed-remainder
1936
1937      --    Numerator_Scale < Remainder_Scale
1938
1939      --      in this case, we have insufficient digits in the computed
1940      --      remainder, which must be eliminated by an extra multiply
1941
1942      --        computed-remainder := Numerator rem Denominator
1943      --        scale_adjust = Remainder_Scale - Numerator_Scale
1944      --        adjusted-remainder := computed-remainder * 10 ** scale_adjust
1945
1946      --  Finally we assign the adjusted-remainder to the result Remainder
1947      --  with conversions to get the proper fixed-point type representation.
1948
1949      Computed_Remainder := New_Occurrence_Of (Rnn, Loc);
1950
1951      if Numerator_Scale > Remainder_Scale then
1952         Scale_Adjust := Numerator_Scale - Remainder_Scale;
1953         Adjusted_Remainder :=
1954           Build_Divide
1955             (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
1956
1957      elsif Numerator_Scale = Remainder_Scale then
1958         Adjusted_Remainder := Computed_Remainder;
1959
1960      else -- Numerator_Scale < Remainder_Scale
1961         Scale_Adjust := Remainder_Scale - Numerator_Scale;
1962         Adjusted_Remainder :=
1963           Build_Multiply
1964             (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
1965      end if;
1966
1967      --  Assignment of remainder result
1968
1969      Append_To (Stmts,
1970        Make_Assignment_Statement (Loc,
1971          Name => Remainder,
1972          Expression =>
1973            Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder)));
1974
1975      --  Final step is to rewrite the call with a block containing the
1976      --  above sequence of constructed statements for the divide operation.
1977
1978      Rewrite (N,
1979        Make_Block_Statement (Loc,
1980          Handled_Statement_Sequence =>
1981            Make_Handled_Sequence_Of_Statements (Loc,
1982              Statements => Stmts)));
1983
1984      Analyze (N);
1985   end Expand_Decimal_Divide_Call;
1986
1987   -----------------------------------------------
1988   -- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
1989   -----------------------------------------------
1990
1991   procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
1992      Left  : constant Node_Id := Left_Opnd (N);
1993      Right : constant Node_Id := Right_Opnd (N);
1994
1995   begin
1996      --  Suppress expansion of a fixed-by-fixed division if the
1997      --  operation is supported directly by the target.
1998
1999      if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
2000         return;
2001      end if;
2002
2003      if Etype (Left) = Universal_Real then
2004         Do_Divide_Universal_Fixed (N);
2005
2006      elsif Etype (Right) = Universal_Real then
2007         Do_Divide_Fixed_Universal (N);
2008
2009      else
2010         Do_Divide_Fixed_Fixed (N);
2011
2012         --  A focused optimization: if after constant folding the
2013         --  expression is of the form:  T ((Exp * D) / D), where D is
2014         --  a static constant, return  T (Exp). This form will show up
2015         --  when D is the denominator of the static expression for the
2016         --  'small of fixed-point types involved. This transformation
2017         --  removes a division that may be expensive on some targets.
2018
2019         if Nkind (N) = N_Type_Conversion
2020           and then Nkind (Expression (N)) = N_Op_Divide
2021         then
2022            declare
2023               Num : constant Node_Id := Left_Opnd  (Expression (N));
2024               Den : constant Node_Id := Right_Opnd (Expression (N));
2025
2026            begin
2027               if Nkind (Den) = N_Integer_Literal
2028                 and then Nkind (Num) = N_Op_Multiply
2029                 and then Nkind (Right_Opnd (Num)) = N_Integer_Literal
2030                 and then Intval (Den) = Intval (Right_Opnd (Num))
2031               then
2032                  Rewrite (Expression (N), Left_Opnd (Num));
2033               end if;
2034            end;
2035         end if;
2036      end if;
2037   end Expand_Divide_Fixed_By_Fixed_Giving_Fixed;
2038
2039   -----------------------------------------------
2040   -- Expand_Divide_Fixed_By_Fixed_Giving_Float --
2041   -----------------------------------------------
2042
2043   --  The division is done in Universal_Real, and the result is multiplied
2044   --  by the small ratio, which is Small (Right) / Small (Left). Special
2045   --  treatment is required for universal operands, which represent their
2046   --  own value and do not require conversion.
2047
2048   procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
2049      Left  : constant Node_Id := Left_Opnd (N);
2050      Right : constant Node_Id := Right_Opnd (N);
2051
2052      Left_Type  : constant Entity_Id := Etype (Left);
2053      Right_Type : constant Entity_Id := Etype (Right);
2054
2055   begin
2056      --  Case of left operand is universal real, the result we want is:
2057
2058      --    Left_Value / (Right_Value * Right_Small)
2059
2060      --  so we compute this as:
2061
2062      --    (Left_Value / Right_Small) / Right_Value
2063
2064      if Left_Type = Universal_Real then
2065         Set_Result (N,
2066           Build_Divide (N,
2067             Real_Literal (N, Realval (Left) / Small_Value (Right_Type)),
2068             Fpt_Value (Right)));
2069
2070      --  Case of right operand is universal real, the result we want is
2071
2072      --    (Left_Value * Left_Small) / Right_Value
2073
2074      --  so we compute this as:
2075
2076      --    Left_Value * (Left_Small / Right_Value)
2077
2078      --  Note we invert to a multiplication since usually floating-point
2079      --  multiplication is much faster than floating-point division.
2080
2081      elsif Right_Type = Universal_Real then
2082         Set_Result (N,
2083           Build_Multiply (N,
2084             Fpt_Value (Left),
2085             Real_Literal (N, Small_Value (Left_Type) / Realval (Right))));
2086
2087      --  Both operands are fixed, so the value we want is
2088
2089      --    (Left_Value * Left_Small) / (Right_Value * Right_Small)
2090
2091      --  which we compute as:
2092
2093      --    (Left_Value / Right_Value) * (Left_Small / Right_Small)
2094
2095      else
2096         Set_Result (N,
2097           Build_Multiply (N,
2098             Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
2099             Real_Literal (N,
2100               Small_Value (Left_Type) / Small_Value (Right_Type))));
2101      end if;
2102   end Expand_Divide_Fixed_By_Fixed_Giving_Float;
2103
2104   -------------------------------------------------
2105   -- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
2106   -------------------------------------------------
2107
2108   procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
2109      Left  : constant Node_Id := Left_Opnd (N);
2110      Right : constant Node_Id := Right_Opnd (N);
2111   begin
2112      if Etype (Left) = Universal_Real then
2113         Do_Divide_Universal_Fixed (N);
2114      elsif Etype (Right) = Universal_Real then
2115         Do_Divide_Fixed_Universal (N);
2116      else
2117         Do_Divide_Fixed_Fixed (N);
2118      end if;
2119   end Expand_Divide_Fixed_By_Fixed_Giving_Integer;
2120
2121   -------------------------------------------------
2122   -- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
2123   -------------------------------------------------
2124
2125   --  Since the operand and result fixed-point type is the same, this is
2126   --  a straight divide by the right operand, the small can be ignored.
2127
2128   procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
2129      Left  : constant Node_Id := Left_Opnd (N);
2130      Right : constant Node_Id := Right_Opnd (N);
2131   begin
2132      Set_Result (N, Build_Divide (N, Left, Right));
2133   end Expand_Divide_Fixed_By_Integer_Giving_Fixed;
2134
2135   -------------------------------------------------
2136   -- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
2137   -------------------------------------------------
2138
2139   procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
2140      Left  : constant Node_Id := Left_Opnd (N);
2141      Right : constant Node_Id := Right_Opnd (N);
2142
2143      procedure Rewrite_Non_Static_Universal (Opnd : Node_Id);
2144      --  The operand may be a non-static universal value, such an
2145      --  exponentiation with a non-static exponent. In that case, treat
2146      --  as a fixed * fixed multiplication, and convert the argument to
2147      --  the target fixed type.
2148
2149      ----------------------------------
2150      -- Rewrite_Non_Static_Universal --
2151      ----------------------------------
2152
2153      procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is
2154         Loc : constant Source_Ptr := Sloc (N);
2155      begin
2156         Rewrite (Opnd,
2157           Make_Type_Conversion (Loc,
2158             Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
2159             Expression   => Expression (Opnd)));
2160         Analyze_And_Resolve (Opnd, Etype (N));
2161      end Rewrite_Non_Static_Universal;
2162
2163   --  Start of processing for Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
2164
2165   begin
2166      --  Suppress expansion of a fixed-by-fixed multiplication if the
2167      --  operation is supported directly by the target.
2168
2169      if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
2170         return;
2171      end if;
2172
2173      if Etype (Left) = Universal_Real then
2174         if Nkind (Left) = N_Real_Literal then
2175            Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
2176
2177         elsif Nkind (Left) = N_Type_Conversion then
2178            Rewrite_Non_Static_Universal (Left);
2179            Do_Multiply_Fixed_Fixed (N);
2180         end if;
2181
2182      elsif Etype (Right) = Universal_Real then
2183         if Nkind (Right) = N_Real_Literal then
2184            Do_Multiply_Fixed_Universal (N, Left, Right);
2185
2186         elsif Nkind (Right) = N_Type_Conversion then
2187            Rewrite_Non_Static_Universal (Right);
2188            Do_Multiply_Fixed_Fixed (N);
2189         end if;
2190
2191      else
2192         Do_Multiply_Fixed_Fixed (N);
2193      end if;
2194   end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed;
2195
2196   -------------------------------------------------
2197   -- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
2198   -------------------------------------------------
2199
2200   --  The multiply is done in Universal_Real, and the result is multiplied
2201   --  by the adjustment for the smalls which is Small (Right) * Small (Left).
2202   --  Special treatment is required for universal operands.
2203
2204   procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
2205      Left  : constant Node_Id := Left_Opnd (N);
2206      Right : constant Node_Id := Right_Opnd (N);
2207
2208      Left_Type  : constant Entity_Id := Etype (Left);
2209      Right_Type : constant Entity_Id := Etype (Right);
2210
2211   begin
2212      --  Case of left operand is universal real, the result we want is
2213
2214      --    Left_Value * (Right_Value * Right_Small)
2215
2216      --  so we compute this as:
2217
2218      --    (Left_Value * Right_Small) * Right_Value;
2219
2220      if Left_Type = Universal_Real then
2221         Set_Result (N,
2222           Build_Multiply (N,
2223             Real_Literal (N, Realval (Left) * Small_Value (Right_Type)),
2224             Fpt_Value (Right)));
2225
2226      --  Case of right operand is universal real, the result we want is
2227
2228      --    (Left_Value * Left_Small) * Right_Value
2229
2230      --  so we compute this as:
2231
2232      --    Left_Value * (Left_Small * Right_Value)
2233
2234      elsif Right_Type = Universal_Real then
2235         Set_Result (N,
2236           Build_Multiply (N,
2237             Fpt_Value (Left),
2238             Real_Literal (N, Small_Value (Left_Type) * Realval (Right))));
2239
2240      --  Both operands are fixed, so the value we want is
2241
2242      --    (Left_Value * Left_Small) * (Right_Value * Right_Small)
2243
2244      --  which we compute as:
2245
2246      --    (Left_Value * Right_Value) * (Right_Small * Left_Small)
2247
2248      else
2249         Set_Result (N,
2250           Build_Multiply (N,
2251             Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
2252             Real_Literal (N,
2253               Small_Value (Right_Type) * Small_Value (Left_Type))));
2254      end if;
2255   end Expand_Multiply_Fixed_By_Fixed_Giving_Float;
2256
2257   ---------------------------------------------------
2258   -- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
2259   ---------------------------------------------------
2260
2261   procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
2262      Loc   : constant Source_Ptr := Sloc (N);
2263      Left  : constant Node_Id    := Left_Opnd (N);
2264      Right : constant Node_Id    := Right_Opnd (N);
2265
2266   begin
2267      if Etype (Left) = Universal_Real then
2268         Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
2269
2270      elsif Etype (Right) = Universal_Real then
2271         Do_Multiply_Fixed_Universal (N, Left, Right);
2272
2273      --  If both types are equal and we need to avoid floating point
2274      --  instructions, it's worth introducing a temporary with the
2275      --  common type, because it may be evaluated more simply without
2276      --  the need for run-time use of floating point.
2277
2278      elsif Etype (Right) = Etype (Left)
2279        and then Restriction_Active (No_Floating_Point)
2280      then
2281         declare
2282            Temp : constant Entity_Id := Make_Temporary (Loc, 'F');
2283            Mult : constant Node_Id   := Make_Op_Multiply (Loc, Left, Right);
2284            Decl : constant Node_Id   :=
2285              Make_Object_Declaration (Loc,
2286                Defining_Identifier => Temp,
2287                Object_Definition   => New_Occurrence_Of (Etype (Right), Loc),
2288                Expression          => Mult);
2289
2290         begin
2291            Insert_Action (N, Decl);
2292            Rewrite (N,
2293              OK_Convert_To (Etype (N), New_Occurrence_Of (Temp, Loc)));
2294            Analyze_And_Resolve (N, Standard_Integer);
2295         end;
2296
2297      else
2298         Do_Multiply_Fixed_Fixed (N);
2299      end if;
2300   end Expand_Multiply_Fixed_By_Fixed_Giving_Integer;
2301
2302   ---------------------------------------------------
2303   -- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
2304   ---------------------------------------------------
2305
2306   --  Since the operand and result fixed-point type is the same, this is
2307   --  a straight multiply by the right operand, the small can be ignored.
2308
2309   procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
2310   begin
2311      Set_Result (N,
2312        Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
2313   end Expand_Multiply_Fixed_By_Integer_Giving_Fixed;
2314
2315   ---------------------------------------------------
2316   -- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
2317   ---------------------------------------------------
2318
2319   --  Since the operand and result fixed-point type is the same, this is
2320   --  a straight multiply by the right operand, the small can be ignored.
2321
2322   procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is
2323   begin
2324      Set_Result (N,
2325        Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
2326   end Expand_Multiply_Integer_By_Fixed_Giving_Fixed;
2327
2328   ---------------
2329   -- Fpt_Value --
2330   ---------------
2331
2332   function Fpt_Value (N : Node_Id) return Node_Id is
2333      Typ   : constant Entity_Id  := Etype (N);
2334
2335   begin
2336      if Is_Integer_Type (Typ)
2337        or else Is_Floating_Point_Type (Typ)
2338      then
2339         return Build_Conversion (N, Universal_Real, N);
2340
2341      --  Fixed-point case, must get integer value first
2342
2343      else
2344         return Build_Conversion (N, Universal_Real, N);
2345      end if;
2346   end Fpt_Value;
2347
2348   ---------------------
2349   -- Integer_Literal --
2350   ---------------------
2351
2352   function Integer_Literal
2353     (N        : Node_Id;
2354      V        : Uint;
2355      Negative : Boolean := False) return Node_Id
2356   is
2357      T : Entity_Id;
2358      L : Node_Id;
2359
2360   begin
2361      if V < Uint_2 ** 7 then
2362         T := Standard_Integer_8;
2363
2364      elsif V < Uint_2 ** 15 then
2365         T := Standard_Integer_16;
2366
2367      elsif V < Uint_2 ** 31 then
2368         T := Standard_Integer_32;
2369
2370      elsif V < Uint_2 ** 63 then
2371         T := Standard_Integer_64;
2372
2373      else
2374         return Empty;
2375      end if;
2376
2377      if Negative then
2378         L := Make_Integer_Literal (Sloc (N), UI_Negate (V));
2379      else
2380         L := Make_Integer_Literal (Sloc (N), V);
2381      end if;
2382
2383      --  Set type of result in case used elsewhere (see note at start)
2384
2385      Set_Etype (L, T);
2386      Set_Is_Static_Expression (L);
2387
2388      --  We really need to set Analyzed here because we may be creating a
2389      --  very strange beast, namely an integer literal typed as fixed-point
2390      --  and the analyzer won't like that. Probably we should allow the
2391      --  Treat_Fixed_As_Integer flag to appear on integer literal nodes
2392      --  and teach the analyzer how to handle them ???
2393
2394      Set_Analyzed (L);
2395      return L;
2396   end Integer_Literal;
2397
2398   ------------------
2399   -- Real_Literal --
2400   ------------------
2401
2402   function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is
2403      L : Node_Id;
2404
2405   begin
2406      L := Make_Real_Literal (Sloc (N), V);
2407
2408      --  Set type of result in case used elsewhere (see note at start)
2409
2410      Set_Etype (L, Universal_Real);
2411      return L;
2412   end Real_Literal;
2413
2414   ------------------------
2415   -- Rounded_Result_Set --
2416   ------------------------
2417
2418   function Rounded_Result_Set (N : Node_Id) return Boolean is
2419      K : constant Node_Kind := Nkind (N);
2420   begin
2421      if (K = N_Type_Conversion or else
2422          K = N_Op_Divide       or else
2423          K = N_Op_Multiply)
2424        and then
2425          (Rounded_Result (N) or else Is_Integer_Type (Etype (N)))
2426      then
2427         return True;
2428      else
2429         return False;
2430      end if;
2431   end Rounded_Result_Set;
2432
2433   ----------------
2434   -- Set_Result --
2435   ----------------
2436
2437   procedure Set_Result
2438     (N     : Node_Id;
2439      Expr  : Node_Id;
2440      Rchk  : Boolean := False;
2441      Trunc : Boolean := False)
2442   is
2443      Cnode : Node_Id;
2444
2445      Expr_Type   : constant Entity_Id := Etype (Expr);
2446      Result_Type : constant Entity_Id := Etype (N);
2447
2448   begin
2449      --  No conversion required if types match and no range check or truncate
2450
2451      if Result_Type = Expr_Type and then not (Rchk or Trunc) then
2452         Cnode := Expr;
2453
2454      --  Else perform required conversion
2455
2456      else
2457         Cnode := Build_Conversion (N, Result_Type, Expr, Rchk, Trunc);
2458      end if;
2459
2460      Rewrite (N, Cnode);
2461      Analyze_And_Resolve (N, Result_Type);
2462   end Set_Result;
2463
2464end Exp_Fixd;
2465