1 /* Vector API for GNU compiler.
2    Copyright (C) 2004-2019 Free Software Foundation, Inc.
3    Contributed by Nathan Sidwell <nathan@codesourcery.com>
4    Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24 
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26    missing.  Provide these definitions in case ggc.h has not been included.
27    This is not a problem because any code that runs before gengtype is built
28    will never need to use GC vectors.*/
29 
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
33 
34 /* Templated vector type and associated interfaces.
35 
36    The interface functions are typesafe and use inline functions,
37    sometimes backed by out-of-line generic functions.  The vectors are
38    designed to interoperate with the GTY machinery.
39 
40    There are both 'index' and 'iterate' accessors.  The index accessor
41    is implemented by operator[].  The iterator returns a boolean
42    iteration condition and updates the iteration variable passed by
43    reference.  Because the iterator will be inlined, the address-of
44    can be optimized away.
45 
46    Each operation that increases the number of active elements is
47    available in 'quick' and 'safe' variants.  The former presumes that
48    there is sufficient allocated space for the operation to succeed
49    (it dies if there is not).  The latter will reallocate the
50    vector, if needed.  Reallocation causes an exponential increase in
51    vector size.  If you know you will be adding N elements, it would
52    be more efficient to use the reserve operation before adding the
53    elements with the 'quick' operation.  This will ensure there are at
54    least as many elements as you ask for, it will exponentially
55    increase if there are too few spare slots.  If you want reserve a
56    specific number of slots, but do not want the exponential increase
57    (for instance, you know this is the last allocation), use the
58    reserve_exact operation.  You can also create a vector of a
59    specific size from the get go.
60 
61    You should prefer the push and pop operations, as they append and
62    remove from the end of the vector. If you need to remove several
63    items in one go, use the truncate operation.  The insert and remove
64    operations allow you to change elements in the middle of the
65    vector.  There are two remove operations, one which preserves the
66    element ordering 'ordered_remove', and one which does not
67    'unordered_remove'.  The latter function copies the end element
68    into the removed slot, rather than invoke a memmove operation.  The
69    'lower_bound' function will determine where to place an item in the
70    array using insert that will maintain sorted order.
71 
72    Vectors are template types with three arguments: the type of the
73    elements in the vector, the allocation strategy, and the physical
74    layout to use
75 
76    Four allocation strategies are supported:
77 
78 	- Heap: allocation is done using malloc/free.  This is the
79 	  default allocation strategy.
80 
81   	- GC: allocation is done using ggc_alloc/ggc_free.
82 
83   	- GC atomic: same as GC with the exception that the elements
84 	  themselves are assumed to be of an atomic type that does
85 	  not need to be garbage collected.  This means that marking
86 	  routines do not need to traverse the array marking the
87 	  individual elements.  This increases the performance of
88 	  GC activities.
89 
90    Two physical layouts are supported:
91 
92 	- Embedded: The vector is structured using the trailing array
93 	  idiom.  The last member of the structure is an array of size
94 	  1.  When the vector is initially allocated, a single memory
95 	  block is created to hold the vector's control data and the
96 	  array of elements.  These vectors cannot grow without
97 	  reallocation (see discussion on embeddable vectors below).
98 
99 	- Space efficient: The vector is structured as a pointer to an
100 	  embedded vector.  This is the default layout.  It means that
101 	  vectors occupy a single word of storage before initial
102 	  allocation.  Vectors are allowed to grow (the internal
103 	  pointer is reallocated but the main vector instance does not
104 	  need to relocate).
105 
106    The type, allocation and layout are specified when the vector is
107    declared.
108 
109    If you need to directly manipulate a vector, then the 'address'
110    accessor will return the address of the start of the vector.  Also
111    the 'space' predicate will tell you whether there is spare capacity
112    in the vector.  You will not normally need to use these two functions.
113 
114    Notes on the different layout strategies
115 
116    * Embeddable vectors (vec<T, A, vl_embed>)
117 
118      These vectors are suitable to be embedded in other data
119      structures so that they can be pre-allocated in a contiguous
120      memory block.
121 
122      Embeddable vectors are implemented using the trailing array
123      idiom, thus they are not resizeable without changing the address
124      of the vector object itself.  This means you cannot have
125      variables or fields of embeddable vector type -- always use a
126      pointer to a vector.  The one exception is the final field of a
127      structure, which could be a vector type.
128 
129      You will have to use the embedded_size & embedded_init calls to
130      create such objects, and they will not be resizeable (so the
131      'safe' allocation variants are not available).
132 
133      Properties of embeddable vectors:
134 
135 	  - The whole vector and control data are allocated in a single
136 	    contiguous block.  It uses the trailing-vector idiom, so
137 	    allocation must reserve enough space for all the elements
138 	    in the vector plus its control data.
139 	  - The vector cannot be re-allocated.
140 	  - The vector cannot grow nor shrink.
141 	  - No indirections needed for access/manipulation.
142 	  - It requires 2 words of storage (prior to vector allocation).
143 
144 
145    * Space efficient vector (vec<T, A, vl_ptr>)
146 
147      These vectors can grow dynamically and are allocated together
148      with their control data.  They are suited to be included in data
149      structures.  Prior to initial allocation, they only take a single
150      word of storage.
151 
152      These vectors are implemented as a pointer to embeddable vectors.
153      The semantics allow for this pointer to be NULL to represent
154      empty vectors.  This way, empty vectors occupy minimal space in
155      the structure containing them.
156 
157      Properties:
158 
159 	- The whole vector and control data are allocated in a single
160 	  contiguous block.
161   	- The whole vector may be re-allocated.
162   	- Vector data may grow and shrink.
163   	- Access and manipulation requires a pointer test and
164 	  indirection.
165   	- It requires 1 word of storage (prior to vector allocation).
166 
167    An example of their use would be,
168 
169    struct my_struct {
170      // A space-efficient vector of tree pointers in GC memory.
171      vec<tree, va_gc, vl_ptr> v;
172    };
173 
174    struct my_struct *s;
175 
176    if (s->v.length ()) { we have some contents }
177    s->v.safe_push (decl); // append some decl onto the end
178    for (ix = 0; s->v.iterate (ix, &elt); ix++)
179      { do something with elt }
180 */
181 
182 /* Support function for statistics.  */
183 extern void dump_vec_loc_statistics (void);
184 
185 /* Hashtable mapping vec addresses to descriptors.  */
186 extern htab_t vec_mem_usage_hash;
187 
188 /* Control data for vectors.  This contains the number of allocated
189    and used slots inside a vector.  */
190 
191 struct vec_prefix
192 {
193   /* FIXME - These fields should be private, but we need to cater to
194 	     compilers that have stricter notions of PODness for types.  */
195 
196   /* Memory allocation support routines in vec.c.  */
197   void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198   void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
199   static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200   static unsigned calculate_allocation_1 (unsigned, unsigned);
201 
202   /* Note that vec_prefix should be a base class for vec, but we use
203      offsetof() on vector fields of tree structures (e.g.,
204      tree_binfo::base_binfos), and offsetof only supports base types.
205 
206      To compensate, we make vec_prefix a field inside vec and make
207      vec a friend class of vec_prefix so it can access its fields.  */
208   template <typename, typename, typename> friend struct vec;
209 
210   /* The allocator types also need access to our internals.  */
211   friend struct va_gc;
212   friend struct va_gc_atomic;
213   friend struct va_heap;
214 
215   unsigned m_alloc : 31;
216   unsigned m_using_auto_storage : 1;
217   unsigned m_num;
218 };
219 
220 /* Calculate the number of slots to reserve a vector, making sure that
221    RESERVE slots are free.  If EXACT grow exactly, otherwise grow
222    exponentially.  PFX is the control data for the vector.  */
223 
224 inline unsigned
calculate_allocation(vec_prefix * pfx,unsigned reserve,bool exact)225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 				  bool exact)
227 {
228   if (exact)
229     return (pfx ? pfx->m_num : 0) + reserve;
230   else if (!pfx)
231     return MAX (4, reserve);
232   return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
233 }
234 
235 template<typename, typename, typename> struct vec;
236 
237 /* Valid vector layouts
238 
239    vl_embed	- Embeddable vector that uses the trailing array idiom.
240    vl_ptr	- Space efficient vector that uses a pointer to an
241 		  embeddable vector.  */
242 struct vl_embed { };
243 struct vl_ptr { };
244 
245 
246 /* Types of supported allocations
247 
248    va_heap	- Allocation uses malloc/free.
249    va_gc	- Allocation uses ggc_alloc.
250    va_gc_atomic	- Same as GC, but individual elements of the array
251 		  do not need to be marked during collection.  */
252 
253 /* Allocator type for heap vectors.  */
254 struct va_heap
255 {
256   /* Heap vectors are frequently regular instances, so use the vl_ptr
257      layout for them.  */
258   typedef vl_ptr default_layout;
259 
260   template<typename T>
261   static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 		       CXX_MEM_STAT_INFO);
263 
264   template<typename T>
265   static void release (vec<T, va_heap, vl_embed> *&);
266 };
267 
268 
269 /* Allocator for heap memory.  Ensure there are at least RESERVE free
270    slots in V.  If EXACT is true, grow exactly, else grow
271    exponentially.  As a special case, if the vector had not been
272    allocated and RESERVE is 0, no vector will be created.  */
273 
274 template<typename T>
275 inline void
reserve(vec<T,va_heap,vl_embed> * & v,unsigned reserve,bool exact MEM_STAT_DECL)276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 		  MEM_STAT_DECL)
278 {
279   size_t elt_size = sizeof (T);
280   unsigned alloc
281     = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
282   gcc_checking_assert (alloc);
283 
284   if (GATHER_STATISTICS && v)
285     v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
286 				  v->allocated (), false);
287 
288   size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
289   unsigned nelem = v ? v->length () : 0;
290   v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
291   v->embedded_init (alloc, nelem);
292 
293   if (GATHER_STATISTICS)
294     v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
295 }
296 
297 
298 /* Free the heap space allocated for vector V.  */
299 
300 template<typename T>
301 void
release(vec<T,va_heap,vl_embed> * & v)302 va_heap::release (vec<T, va_heap, vl_embed> *&v)
303 {
304   size_t elt_size = sizeof (T);
305   if (v == NULL)
306     return;
307 
308   if (GATHER_STATISTICS)
309     v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
310 				  v->allocated (), true);
311   ::free (v);
312   v = NULL;
313 }
314 
315 
316 /* Allocator type for GC vectors.  Notice that we need the structure
317    declaration even if GC is not enabled.  */
318 
319 struct va_gc
320 {
321   /* Use vl_embed as the default layout for GC vectors.  Due to GTY
322      limitations, GC vectors must always be pointers, so it is more
323      efficient to use a pointer to the vl_embed layout, rather than
324      using a pointer to a pointer as would be the case with vl_ptr.  */
325   typedef vl_embed default_layout;
326 
327   template<typename T, typename A>
328   static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
329 		       CXX_MEM_STAT_INFO);
330 
331   template<typename T, typename A>
332   static void release (vec<T, A, vl_embed> *&v);
333 };
334 
335 
336 /* Free GC memory used by V and reset V to NULL.  */
337 
338 template<typename T, typename A>
339 inline void
release(vec<T,A,vl_embed> * & v)340 va_gc::release (vec<T, A, vl_embed> *&v)
341 {
342   if (v)
343     ::ggc_free (v);
344   v = NULL;
345 }
346 
347 
348 /* Allocator for GC memory.  Ensure there are at least RESERVE free
349    slots in V.  If EXACT is true, grow exactly, else grow
350    exponentially.  As a special case, if the vector had not been
351    allocated and RESERVE is 0, no vector will be created.  */
352 
353 template<typename T, typename A>
354 void
reserve(vec<T,A,vl_embed> * & v,unsigned reserve,bool exact MEM_STAT_DECL)355 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
356 		MEM_STAT_DECL)
357 {
358   unsigned alloc
359     = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
360   if (!alloc)
361     {
362       ::ggc_free (v);
363       v = NULL;
364       return;
365     }
366 
367   /* Calculate the amount of space we want.  */
368   size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
369 
370   /* Ask the allocator how much space it will really give us.  */
371   size = ::ggc_round_alloc_size (size);
372 
373   /* Adjust the number of slots accordingly.  */
374   size_t vec_offset = sizeof (vec_prefix);
375   size_t elt_size = sizeof (T);
376   alloc = (size - vec_offset) / elt_size;
377 
378   /* And finally, recalculate the amount of space we ask for.  */
379   size = vec_offset + alloc * elt_size;
380 
381   unsigned nelem = v ? v->length () : 0;
382   v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
383 							       PASS_MEM_STAT));
384   v->embedded_init (alloc, nelem);
385 }
386 
387 
388 /* Allocator type for GC vectors.  This is for vectors of types
389    atomics w.r.t. collection, so allocation and deallocation is
390    completely inherited from va_gc.  */
391 struct va_gc_atomic : va_gc
392 {
393 };
394 
395 
396 /* Generic vector template.  Default values for A and L indicate the
397    most commonly used strategies.
398 
399    FIXME - Ideally, they would all be vl_ptr to encourage using regular
400            instances for vectors, but the existing GTY machinery is limited
401 	   in that it can only deal with GC objects that are pointers
402 	   themselves.
403 
404 	   This means that vector operations that need to deal with
405 	   potentially NULL pointers, must be provided as free
406 	   functions (see the vec_safe_* functions above).  */
407 template<typename T,
408          typename A = va_heap,
409          typename L = typename A::default_layout>
410 struct GTY((user)) vec
411 {
412 };
413 
414 /* Generic vec<> debug helpers.
415 
416    These need to be instantiated for each vec<TYPE> used throughout
417    the compiler like this:
418 
419     DEFINE_DEBUG_VEC (TYPE)
420 
421    The reason we have a debug_helper() is because GDB can't
422    disambiguate a plain call to debug(some_vec), and it must be called
423    like debug<TYPE>(some_vec).  */
424 
425 template<typename T>
426 void
debug_helper(vec<T> & ref)427 debug_helper (vec<T> &ref)
428 {
429   unsigned i;
430   for (i = 0; i < ref.length (); ++i)
431     {
432       fprintf (stderr, "[%d] = ", i);
433       debug_slim (ref[i]);
434       fputc ('\n', stderr);
435     }
436 }
437 
438 /* We need a separate va_gc variant here because default template
439    argument for functions cannot be used in c++-98.  Once this
440    restriction is removed, those variant should be folded with the
441    above debug_helper.  */
442 
443 template<typename T>
444 void
debug_helper(vec<T,va_gc> & ref)445 debug_helper (vec<T, va_gc> &ref)
446 {
447   unsigned i;
448   for (i = 0; i < ref.length (); ++i)
449     {
450       fprintf (stderr, "[%d] = ", i);
451       debug_slim (ref[i]);
452       fputc ('\n', stderr);
453     }
454 }
455 
456 /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
457    functions for a type T.  */
458 
459 #define DEFINE_DEBUG_VEC(T) \
460   template void debug_helper (vec<T> &);		\
461   template void debug_helper (vec<T, va_gc> &);		\
462   /* Define the vec<T> debug functions.  */		\
463   DEBUG_FUNCTION void					\
464   debug (vec<T> &ref)					\
465   {							\
466     debug_helper <T> (ref);				\
467   }							\
468   DEBUG_FUNCTION void					\
469   debug (vec<T> *ptr)					\
470   {							\
471     if (ptr)						\
472       debug (*ptr);					\
473     else						\
474       fprintf (stderr, "<nil>\n");			\
475   }							\
476   /* Define the vec<T, va_gc> debug functions.  */	\
477   DEBUG_FUNCTION void					\
478   debug (vec<T, va_gc> &ref)				\
479   {							\
480     debug_helper <T> (ref);				\
481   }							\
482   DEBUG_FUNCTION void					\
483   debug (vec<T, va_gc> *ptr)				\
484   {							\
485     if (ptr)						\
486       debug (*ptr);					\
487     else						\
488       fprintf (stderr, "<nil>\n");			\
489   }
490 
491 /* Default-construct N elements in DST.  */
492 
493 template <typename T>
494 inline void
vec_default_construct(T * dst,unsigned n)495 vec_default_construct (T *dst, unsigned n)
496 {
497 #ifdef BROKEN_VALUE_INITIALIZATION
498   /* Versions of GCC before 4.4 sometimes leave certain objects
499      uninitialized when value initialized, though if the type has
500      user defined default ctor, that ctor is invoked.  As a workaround
501      perform clearing first and then the value initialization, which
502      fixes the case when value initialization doesn't initialize due to
503      the bugs and should initialize to all zeros, but still allows
504      vectors for types with user defined default ctor that initializes
505      some or all elements to non-zero.  If T has no user defined
506      default ctor and some non-static data members have user defined
507      default ctors that initialize to non-zero the workaround will
508      still not work properly; in that case we just need to provide
509      user defined default ctor.  */
510   memset (dst, '\0', sizeof (T) * n);
511 #endif
512   for ( ; n; ++dst, --n)
513     ::new (static_cast<void*>(dst)) T ();
514 }
515 
516 /* Copy-construct N elements in DST from *SRC.  */
517 
518 template <typename T>
519 inline void
vec_copy_construct(T * dst,const T * src,unsigned n)520 vec_copy_construct (T *dst, const T *src, unsigned n)
521 {
522   for ( ; n; ++dst, ++src, --n)
523     ::new (static_cast<void*>(dst)) T (*src);
524 }
525 
526 /* Type to provide NULL values for vec<T, A, L>.  This is used to
527    provide nil initializers for vec instances.  Since vec must be
528    a POD, we cannot have proper ctor/dtor for it.  To initialize
529    a vec instance, you can assign it the value vNULL.  This isn't
530    needed for file-scope and function-local static vectors, which
531    are zero-initialized by default.  */
532 struct vnull
533 {
534   template <typename T, typename A, typename L>
535   CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); }
536 };
537 extern vnull vNULL;
538 
539 
540 /* Embeddable vector.  These vectors are suitable to be embedded
541    in other data structures so that they can be pre-allocated in a
542    contiguous memory block.
543 
544    Embeddable vectors are implemented using the trailing array idiom,
545    thus they are not resizeable without changing the address of the
546    vector object itself.  This means you cannot have variables or
547    fields of embeddable vector type -- always use a pointer to a
548    vector.  The one exception is the final field of a structure, which
549    could be a vector type.
550 
551    You will have to use the embedded_size & embedded_init calls to
552    create such objects, and they will not be resizeable (so the 'safe'
553    allocation variants are not available).
554 
555    Properties:
556 
557 	- The whole vector and control data are allocated in a single
558 	  contiguous block.  It uses the trailing-vector idiom, so
559 	  allocation must reserve enough space for all the elements
560   	  in the vector plus its control data.
561   	- The vector cannot be re-allocated.
562   	- The vector cannot grow nor shrink.
563   	- No indirections needed for access/manipulation.
564   	- It requires 2 words of storage (prior to vector allocation).  */
565 
566 template<typename T, typename A>
567 struct GTY((user)) vec<T, A, vl_embed>
568 {
569 public:
570   unsigned allocated (void) const { return m_vecpfx.m_alloc; }
571   unsigned length (void) const { return m_vecpfx.m_num; }
572   bool is_empty (void) const { return m_vecpfx.m_num == 0; }
573   T *address (void) { return m_vecdata; }
574   const T *address (void) const { return m_vecdata; }
575   T *begin () { return address (); }
576   const T *begin () const { return address (); }
577   T *end () { return address () + length (); }
578   const T *end () const { return address () + length (); }
579   const T &operator[] (unsigned) const;
580   T &operator[] (unsigned);
581   T &last (void);
582   bool space (unsigned) const;
583   bool iterate (unsigned, T *) const;
584   bool iterate (unsigned, T **) const;
585   vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
586   void splice (const vec &);
587   void splice (const vec *src);
588   T *quick_push (const T &);
589   T &pop (void);
590   void truncate (unsigned);
591   void quick_insert (unsigned, const T &);
592   void ordered_remove (unsigned);
593   void unordered_remove (unsigned);
594   void block_remove (unsigned, unsigned);
595   void qsort (int (*) (const void *, const void *));
596   T *bsearch (const void *key, int (*compar)(const void *, const void *));
597   unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
598   bool contains (const T &search) const;
599   static size_t embedded_size (unsigned);
600   void embedded_init (unsigned, unsigned = 0, unsigned = 0);
601   void quick_grow (unsigned len);
602   void quick_grow_cleared (unsigned len);
603 
604   /* vec class can access our internal data and functions.  */
605   template <typename, typename, typename> friend struct vec;
606 
607   /* The allocator types also need access to our internals.  */
608   friend struct va_gc;
609   friend struct va_gc_atomic;
610   friend struct va_heap;
611 
612   /* FIXME - These fields should be private, but we need to cater to
613 	     compilers that have stricter notions of PODness for types.  */
614   vec_prefix m_vecpfx;
615   T m_vecdata[1];
616 };
617 
618 
619 /* Convenience wrapper functions to use when dealing with pointers to
620    embedded vectors.  Some functionality for these vectors must be
621    provided via free functions for these reasons:
622 
623 	1- The pointer may be NULL (e.g., before initial allocation).
624 
625   	2- When the vector needs to grow, it must be reallocated, so
626   	   the pointer will change its value.
627 
628    Because of limitations with the current GC machinery, all vectors
629    in GC memory *must* be pointers.  */
630 
631 
632 /* If V contains no room for NELEMS elements, return false. Otherwise,
633    return true.  */
634 template<typename T, typename A>
635 inline bool
636 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
637 {
638   return v ? v->space (nelems) : nelems == 0;
639 }
640 
641 
642 /* If V is NULL, return 0.  Otherwise, return V->length().  */
643 template<typename T, typename A>
644 inline unsigned
645 vec_safe_length (const vec<T, A, vl_embed> *v)
646 {
647   return v ? v->length () : 0;
648 }
649 
650 
651 /* If V is NULL, return NULL.  Otherwise, return V->address().  */
652 template<typename T, typename A>
653 inline T *
654 vec_safe_address (vec<T, A, vl_embed> *v)
655 {
656   return v ? v->address () : NULL;
657 }
658 
659 
660 /* If V is NULL, return true.  Otherwise, return V->is_empty().  */
661 template<typename T, typename A>
662 inline bool
663 vec_safe_is_empty (vec<T, A, vl_embed> *v)
664 {
665   return v ? v->is_empty () : true;
666 }
667 
668 /* If V does not have space for NELEMS elements, call
669    V->reserve(NELEMS, EXACT).  */
670 template<typename T, typename A>
671 inline bool
672 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
673 		  CXX_MEM_STAT_INFO)
674 {
675   bool extend = nelems ? !vec_safe_space (v, nelems) : false;
676   if (extend)
677     A::reserve (v, nelems, exact PASS_MEM_STAT);
678   return extend;
679 }
680 
681 template<typename T, typename A>
682 inline bool
683 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
684 			CXX_MEM_STAT_INFO)
685 {
686   return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
687 }
688 
689 
690 /* Allocate GC memory for V with space for NELEMS slots.  If NELEMS
691    is 0, V is initialized to NULL.  */
692 
693 template<typename T, typename A>
694 inline void
695 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
696 {
697   v = NULL;
698   vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
699 }
700 
701 
702 /* Free the GC memory allocated by vector V and set it to NULL.  */
703 
704 template<typename T, typename A>
705 inline void
706 vec_free (vec<T, A, vl_embed> *&v)
707 {
708   A::release (v);
709 }
710 
711 
712 /* Grow V to length LEN.  Allocate it, if necessary.  */
713 template<typename T, typename A>
714 inline void
715 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
716 {
717   unsigned oldlen = vec_safe_length (v);
718   gcc_checking_assert (len >= oldlen);
719   vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
720   v->quick_grow (len);
721 }
722 
723 
724 /* If V is NULL, allocate it.  Call V->safe_grow_cleared(LEN).  */
725 template<typename T, typename A>
726 inline void
727 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
728 {
729   unsigned oldlen = vec_safe_length (v);
730   vec_safe_grow (v, len PASS_MEM_STAT);
731   vec_default_construct (v->address () + oldlen, len - oldlen);
732 }
733 
734 
735 /* Assume V is not NULL.  */
736 
737 template<typename T>
738 inline void
739 vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
740 		       unsigned len CXX_MEM_STAT_INFO)
741 {
742   v->safe_grow_cleared (len PASS_MEM_STAT);
743 }
744 
745 
746 /* If V is NULL return false, otherwise return V->iterate(IX, PTR).  */
747 template<typename T, typename A>
748 inline bool
749 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
750 {
751   if (v)
752     return v->iterate (ix, ptr);
753   else
754     {
755       *ptr = 0;
756       return false;
757     }
758 }
759 
760 template<typename T, typename A>
761 inline bool
762 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
763 {
764   if (v)
765     return v->iterate (ix, ptr);
766   else
767     {
768       *ptr = 0;
769       return false;
770     }
771 }
772 
773 
774 /* If V has no room for one more element, reallocate it.  Then call
775    V->quick_push(OBJ).  */
776 template<typename T, typename A>
777 inline T *
778 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
779 {
780   vec_safe_reserve (v, 1, false PASS_MEM_STAT);
781   return v->quick_push (obj);
782 }
783 
784 
785 /* if V has no room for one more element, reallocate it.  Then call
786    V->quick_insert(IX, OBJ).  */
787 template<typename T, typename A>
788 inline void
789 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
790 		 CXX_MEM_STAT_INFO)
791 {
792   vec_safe_reserve (v, 1, false PASS_MEM_STAT);
793   v->quick_insert (ix, obj);
794 }
795 
796 
797 /* If V is NULL, do nothing.  Otherwise, call V->truncate(SIZE).  */
798 template<typename T, typename A>
799 inline void
800 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
801 {
802   if (v)
803     v->truncate (size);
804 }
805 
806 
807 /* If SRC is not NULL, return a pointer to a copy of it.  */
808 template<typename T, typename A>
809 inline vec<T, A, vl_embed> *
810 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
811 {
812   return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
813 }
814 
815 /* Copy the elements from SRC to the end of DST as if by memcpy.
816    Reallocate DST, if necessary.  */
817 template<typename T, typename A>
818 inline void
819 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
820 		 CXX_MEM_STAT_INFO)
821 {
822   unsigned src_len = vec_safe_length (src);
823   if (src_len)
824     {
825       vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
826 			      PASS_MEM_STAT);
827       dst->splice (*src);
828     }
829 }
830 
831 /* Return true if SEARCH is an element of V.  Note that this is O(N) in the
832    size of the vector and so should be used with care.  */
833 
834 template<typename T, typename A>
835 inline bool
836 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
837 {
838   return v ? v->contains (search) : false;
839 }
840 
841 /* Index into vector.  Return the IX'th element.  IX must be in the
842    domain of the vector.  */
843 
844 template<typename T, typename A>
845 inline const T &
846 vec<T, A, vl_embed>::operator[] (unsigned ix) const
847 {
848   gcc_checking_assert (ix < m_vecpfx.m_num);
849   return m_vecdata[ix];
850 }
851 
852 template<typename T, typename A>
853 inline T &
854 vec<T, A, vl_embed>::operator[] (unsigned ix)
855 {
856   gcc_checking_assert (ix < m_vecpfx.m_num);
857   return m_vecdata[ix];
858 }
859 
860 
861 /* Get the final element of the vector, which must not be empty.  */
862 
863 template<typename T, typename A>
864 inline T &
865 vec<T, A, vl_embed>::last (void)
866 {
867   gcc_checking_assert (m_vecpfx.m_num > 0);
868   return (*this)[m_vecpfx.m_num - 1];
869 }
870 
871 
872 /* If this vector has space for NELEMS additional entries, return
873    true.  You usually only need to use this if you are doing your
874    own vector reallocation, for instance on an embedded vector.  This
875    returns true in exactly the same circumstances that vec::reserve
876    will.  */
877 
878 template<typename T, typename A>
879 inline bool
880 vec<T, A, vl_embed>::space (unsigned nelems) const
881 {
882   return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
883 }
884 
885 
886 /* Return iteration condition and update PTR to point to the IX'th
887    element of this vector.  Use this to iterate over the elements of a
888    vector as follows,
889 
890      for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
891        continue;  */
892 
893 template<typename T, typename A>
894 inline bool
895 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
896 {
897   if (ix < m_vecpfx.m_num)
898     {
899       *ptr = m_vecdata[ix];
900       return true;
901     }
902   else
903     {
904       *ptr = 0;
905       return false;
906     }
907 }
908 
909 
910 /* Return iteration condition and update *PTR to point to the
911    IX'th element of this vector.  Use this to iterate over the
912    elements of a vector as follows,
913 
914      for (ix = 0; v->iterate (ix, &ptr); ix++)
915        continue;
916 
917    This variant is for vectors of objects.  */
918 
919 template<typename T, typename A>
920 inline bool
921 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
922 {
923   if (ix < m_vecpfx.m_num)
924     {
925       *ptr = CONST_CAST (T *, &m_vecdata[ix]);
926       return true;
927     }
928   else
929     {
930       *ptr = 0;
931       return false;
932     }
933 }
934 
935 
936 /* Return a pointer to a copy of this vector.  */
937 
938 template<typename T, typename A>
939 inline vec<T, A, vl_embed> *
940 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
941 {
942   vec<T, A, vl_embed> *new_vec = NULL;
943   unsigned len = length ();
944   if (len)
945     {
946       vec_alloc (new_vec, len PASS_MEM_STAT);
947       new_vec->embedded_init (len, len);
948       vec_copy_construct (new_vec->address (), m_vecdata, len);
949     }
950   return new_vec;
951 }
952 
953 
954 /* Copy the elements from SRC to the end of this vector as if by memcpy.
955    The vector must have sufficient headroom available.  */
956 
957 template<typename T, typename A>
958 inline void
959 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
960 {
961   unsigned len = src.length ();
962   if (len)
963     {
964       gcc_checking_assert (space (len));
965       vec_copy_construct (end (), src.address (), len);
966       m_vecpfx.m_num += len;
967     }
968 }
969 
970 template<typename T, typename A>
971 inline void
972 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
973 {
974   if (src)
975     splice (*src);
976 }
977 
978 
979 /* Push OBJ (a new element) onto the end of the vector.  There must be
980    sufficient space in the vector.  Return a pointer to the slot
981    where OBJ was inserted.  */
982 
983 template<typename T, typename A>
984 inline T *
985 vec<T, A, vl_embed>::quick_push (const T &obj)
986 {
987   gcc_checking_assert (space (1));
988   T *slot = &m_vecdata[m_vecpfx.m_num++];
989   *slot = obj;
990   return slot;
991 }
992 
993 
994 /* Pop and return the last element off the end of the vector.  */
995 
996 template<typename T, typename A>
997 inline T &
998 vec<T, A, vl_embed>::pop (void)
999 {
1000   gcc_checking_assert (length () > 0);
1001   return m_vecdata[--m_vecpfx.m_num];
1002 }
1003 
1004 
1005 /* Set the length of the vector to SIZE.  The new length must be less
1006    than or equal to the current length.  This is an O(1) operation.  */
1007 
1008 template<typename T, typename A>
1009 inline void
1010 vec<T, A, vl_embed>::truncate (unsigned size)
1011 {
1012   gcc_checking_assert (length () >= size);
1013   m_vecpfx.m_num = size;
1014 }
1015 
1016 
1017 /* Insert an element, OBJ, at the IXth position of this vector.  There
1018    must be sufficient space.  */
1019 
1020 template<typename T, typename A>
1021 inline void
1022 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
1023 {
1024   gcc_checking_assert (length () < allocated ());
1025   gcc_checking_assert (ix <= length ());
1026   T *slot = &m_vecdata[ix];
1027   memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
1028   *slot = obj;
1029 }
1030 
1031 
1032 /* Remove an element from the IXth position of this vector.  Ordering of
1033    remaining elements is preserved.  This is an O(N) operation due to
1034    memmove.  */
1035 
1036 template<typename T, typename A>
1037 inline void
1038 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1039 {
1040   gcc_checking_assert (ix < length ());
1041   T *slot = &m_vecdata[ix];
1042   memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1043 }
1044 
1045 
1046 /* Remove elements in [START, END) from VEC for which COND holds.  Ordering of
1047    remaining elements is preserved.  This is an O(N) operation.  */
1048 
1049 #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index,	\
1050 				      elem_ptr, start, end, cond)	\
1051   {									\
1052     gcc_assert ((end) <= (vec).length ());				\
1053     for (read_index = write_index = (start); read_index < (end);	\
1054 	 ++read_index)							\
1055       {									\
1056 	elem_ptr = &(vec)[read_index];					\
1057 	bool remove_p = (cond);						\
1058 	if (remove_p)							\
1059 	  continue;							\
1060 									\
1061 	if (read_index != write_index)					\
1062 	  (vec)[write_index] = (vec)[read_index];			\
1063 									\
1064 	write_index++;							\
1065       }									\
1066 									\
1067     if (read_index - write_index > 0)					\
1068       (vec).block_remove (write_index, read_index - write_index);	\
1069   }
1070 
1071 
1072 /* Remove elements from VEC for which COND holds.  Ordering of remaining
1073    elements is preserved.  This is an O(N) operation.  */
1074 
1075 #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr,	\
1076 			      cond)					\
1077   VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index,	\
1078 				 elem_ptr, 0, (vec).length (), (cond))
1079 
1080 /* Remove an element from the IXth position of this vector.  Ordering of
1081    remaining elements is destroyed.  This is an O(1) operation.  */
1082 
1083 template<typename T, typename A>
1084 inline void
1085 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1086 {
1087   gcc_checking_assert (ix < length ());
1088   m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
1089 }
1090 
1091 
1092 /* Remove LEN elements starting at the IXth.  Ordering is retained.
1093    This is an O(N) operation due to memmove.  */
1094 
1095 template<typename T, typename A>
1096 inline void
1097 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1098 {
1099   gcc_checking_assert (ix + len <= length ());
1100   T *slot = &m_vecdata[ix];
1101   m_vecpfx.m_num -= len;
1102   memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1103 }
1104 
1105 
1106 /* Sort the contents of this vector with qsort.  CMP is the comparison
1107    function to pass to qsort.  */
1108 
1109 template<typename T, typename A>
1110 inline void
1111 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1112 {
1113   if (length () > 1)
1114     ::qsort (address (), length (), sizeof (T), cmp);
1115 }
1116 
1117 
1118 /* Search the contents of the sorted vector with a binary search.
1119    CMP is the comparison function to pass to bsearch.  */
1120 
1121 template<typename T, typename A>
1122 inline T *
1123 vec<T, A, vl_embed>::bsearch (const void *key,
1124 			      int (*compar) (const void *, const void *))
1125 {
1126   const void *base = this->address ();
1127   size_t nmemb = this->length ();
1128   size_t size = sizeof (T);
1129   /* The following is a copy of glibc stdlib-bsearch.h.  */
1130   size_t l, u, idx;
1131   const void *p;
1132   int comparison;
1133 
1134   l = 0;
1135   u = nmemb;
1136   while (l < u)
1137     {
1138       idx = (l + u) / 2;
1139       p = (const void *) (((const char *) base) + (idx * size));
1140       comparison = (*compar) (key, p);
1141       if (comparison < 0)
1142 	u = idx;
1143       else if (comparison > 0)
1144 	l = idx + 1;
1145       else
1146 	return (T *)const_cast<void *>(p);
1147     }
1148 
1149   return NULL;
1150 }
1151 
1152 /* Return true if SEARCH is an element of V.  Note that this is O(N) in the
1153    size of the vector and so should be used with care.  */
1154 
1155 template<typename T, typename A>
1156 inline bool
1157 vec<T, A, vl_embed>::contains (const T &search) const
1158 {
1159   unsigned int len = length ();
1160   for (unsigned int i = 0; i < len; i++)
1161     if ((*this)[i] == search)
1162       return true;
1163 
1164   return false;
1165 }
1166 
1167 /* Find and return the first position in which OBJ could be inserted
1168    without changing the ordering of this vector.  LESSTHAN is a
1169    function that returns true if the first argument is strictly less
1170    than the second.  */
1171 
1172 template<typename T, typename A>
1173 unsigned
1174 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1175   const
1176 {
1177   unsigned int len = length ();
1178   unsigned int half, middle;
1179   unsigned int first = 0;
1180   while (len > 0)
1181     {
1182       half = len / 2;
1183       middle = first;
1184       middle += half;
1185       T middle_elem = (*this)[middle];
1186       if (lessthan (middle_elem, obj))
1187 	{
1188 	  first = middle;
1189 	  ++first;
1190 	  len = len - half - 1;
1191 	}
1192       else
1193 	len = half;
1194     }
1195   return first;
1196 }
1197 
1198 
1199 /* Return the number of bytes needed to embed an instance of an
1200    embeddable vec inside another data structure.
1201 
1202    Use these methods to determine the required size and initialization
1203    of a vector V of type T embedded within another structure (as the
1204    final member):
1205 
1206    size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1207    void v->embedded_init (unsigned alloc, unsigned num);
1208 
1209    These allow the caller to perform the memory allocation.  */
1210 
1211 template<typename T, typename A>
1212 inline size_t
1213 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1214 {
1215   typedef vec<T, A, vl_embed> vec_embedded;
1216   return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1217 }
1218 
1219 
1220 /* Initialize the vector to contain room for ALLOC elements and
1221    NUM active elements.  */
1222 
1223 template<typename T, typename A>
1224 inline void
1225 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1226 {
1227   m_vecpfx.m_alloc = alloc;
1228   m_vecpfx.m_using_auto_storage = aut;
1229   m_vecpfx.m_num = num;
1230 }
1231 
1232 
1233 /* Grow the vector to a specific length.  LEN must be as long or longer than
1234    the current length.  The new elements are uninitialized.  */
1235 
1236 template<typename T, typename A>
1237 inline void
1238 vec<T, A, vl_embed>::quick_grow (unsigned len)
1239 {
1240   gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1241   m_vecpfx.m_num = len;
1242 }
1243 
1244 
1245 /* Grow the vector to a specific length.  LEN must be as long or longer than
1246    the current length.  The new elements are initialized to zero.  */
1247 
1248 template<typename T, typename A>
1249 inline void
1250 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1251 {
1252   unsigned oldlen = length ();
1253   size_t growby = len - oldlen;
1254   quick_grow (len);
1255   if (growby != 0)
1256     vec_default_construct (address () + oldlen, growby);
1257 }
1258 
1259 /* Garbage collection support for vec<T, A, vl_embed>.  */
1260 
1261 template<typename T>
1262 void
1263 gt_ggc_mx (vec<T, va_gc> *v)
1264 {
1265   extern void gt_ggc_mx (T &);
1266   for (unsigned i = 0; i < v->length (); i++)
1267     gt_ggc_mx ((*v)[i]);
1268 }
1269 
1270 template<typename T>
1271 void
1272 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1273 {
1274   /* Nothing to do.  Vectors of atomic types wrt GC do not need to
1275      be traversed.  */
1276 }
1277 
1278 
1279 /* PCH support for vec<T, A, vl_embed>.  */
1280 
1281 template<typename T, typename A>
1282 void
1283 gt_pch_nx (vec<T, A, vl_embed> *v)
1284 {
1285   extern void gt_pch_nx (T &);
1286   for (unsigned i = 0; i < v->length (); i++)
1287     gt_pch_nx ((*v)[i]);
1288 }
1289 
1290 template<typename T, typename A>
1291 void
1292 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1293 {
1294   for (unsigned i = 0; i < v->length (); i++)
1295     op (&((*v)[i]), cookie);
1296 }
1297 
1298 template<typename T, typename A>
1299 void
1300 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1301 {
1302   extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1303   for (unsigned i = 0; i < v->length (); i++)
1304     gt_pch_nx (&((*v)[i]), op, cookie);
1305 }
1306 
1307 
1308 /* Space efficient vector.  These vectors can grow dynamically and are
1309    allocated together with their control data.  They are suited to be
1310    included in data structures.  Prior to initial allocation, they
1311    only take a single word of storage.
1312 
1313    These vectors are implemented as a pointer to an embeddable vector.
1314    The semantics allow for this pointer to be NULL to represent empty
1315    vectors.  This way, empty vectors occupy minimal space in the
1316    structure containing them.
1317 
1318    Properties:
1319 
1320 	- The whole vector and control data are allocated in a single
1321 	  contiguous block.
1322   	- The whole vector may be re-allocated.
1323   	- Vector data may grow and shrink.
1324   	- Access and manipulation requires a pointer test and
1325 	  indirection.
1326 	- It requires 1 word of storage (prior to vector allocation).
1327 
1328 
1329    Limitations:
1330 
1331    These vectors must be PODs because they are stored in unions.
1332    (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1333    As long as we use C++03, we cannot have constructors nor
1334    destructors in classes that are stored in unions.  */
1335 
1336 template<typename T>
1337 struct vec<T, va_heap, vl_ptr>
1338 {
1339 public:
1340   /* Memory allocation and deallocation for the embedded vector.
1341      Needed because we cannot have proper ctors/dtors defined.  */
1342   void create (unsigned nelems CXX_MEM_STAT_INFO);
1343   void release (void);
1344 
1345   /* Vector operations.  */
1346   bool exists (void) const
1347   { return m_vec != NULL; }
1348 
1349   bool is_empty (void) const
1350   { return m_vec ? m_vec->is_empty () : true; }
1351 
1352   unsigned length (void) const
1353   { return m_vec ? m_vec->length () : 0; }
1354 
1355   T *address (void)
1356   { return m_vec ? m_vec->m_vecdata : NULL; }
1357 
1358   const T *address (void) const
1359   { return m_vec ? m_vec->m_vecdata : NULL; }
1360 
1361   T *begin () { return address (); }
1362   const T *begin () const { return address (); }
1363   T *end () { return begin () + length (); }
1364   const T *end () const { return begin () + length (); }
1365   const T &operator[] (unsigned ix) const
1366   { return (*m_vec)[ix]; }
1367 
1368   bool operator!=(const vec &other) const
1369   { return !(*this == other); }
1370 
1371   bool operator==(const vec &other) const
1372   { return address () == other.address (); }
1373 
1374   T &operator[] (unsigned ix)
1375   { return (*m_vec)[ix]; }
1376 
1377   T &last (void)
1378   { return m_vec->last (); }
1379 
1380   bool space (int nelems) const
1381   { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1382 
1383   bool iterate (unsigned ix, T *p) const;
1384   bool iterate (unsigned ix, T **p) const;
1385   vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1386   bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1387   bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1388   void splice (const vec &);
1389   void safe_splice (const vec & CXX_MEM_STAT_INFO);
1390   T *quick_push (const T &);
1391   T *safe_push (const T &CXX_MEM_STAT_INFO);
1392   T &pop (void);
1393   void truncate (unsigned);
1394   void safe_grow (unsigned CXX_MEM_STAT_INFO);
1395   void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1396   void quick_grow (unsigned);
1397   void quick_grow_cleared (unsigned);
1398   void quick_insert (unsigned, const T &);
1399   void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1400   void ordered_remove (unsigned);
1401   void unordered_remove (unsigned);
1402   void block_remove (unsigned, unsigned);
1403   void qsort (int (*) (const void *, const void *));
1404   T *bsearch (const void *key, int (*compar)(const void *, const void *));
1405   unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1406   bool contains (const T &search) const;
1407   void reverse (void);
1408 
1409   bool using_auto_storage () const;
1410 
1411   /* FIXME - This field should be private, but we need to cater to
1412 	     compilers that have stricter notions of PODness for types.  */
1413   vec<T, va_heap, vl_embed> *m_vec;
1414 };
1415 
1416 
1417 /* auto_vec is a subclass of vec that automatically manages creating and
1418    releasing the internal vector. If N is non zero then it has N elements of
1419    internal storage.  The default is no internal storage, and you probably only
1420    want to ask for internal storage for vectors on the stack because if the
1421    size of the vector is larger than the internal storage that space is wasted.
1422    */
1423 template<typename T, size_t N = 0>
1424 class auto_vec : public vec<T, va_heap>
1425 {
1426 public:
1427   auto_vec ()
1428   {
1429     m_auto.embedded_init (MAX (N, 2), 0, 1);
1430     this->m_vec = &m_auto;
1431   }
1432 
1433   auto_vec (size_t s)
1434   {
1435     if (s > N)
1436       {
1437 	this->create (s);
1438 	return;
1439       }
1440 
1441     m_auto.embedded_init (MAX (N, 2), 0, 1);
1442     this->m_vec = &m_auto;
1443   }
1444 
1445   ~auto_vec ()
1446   {
1447     this->release ();
1448   }
1449 
1450 private:
1451   vec<T, va_heap, vl_embed> m_auto;
1452   T m_data[MAX (N - 1, 1)];
1453 };
1454 
1455 /* auto_vec is a sub class of vec whose storage is released when it is
1456   destroyed. */
1457 template<typename T>
1458 class auto_vec<T, 0> : public vec<T, va_heap>
1459 {
1460 public:
1461   auto_vec () { this->m_vec = NULL; }
1462   auto_vec (size_t n) { this->create (n); }
1463   ~auto_vec () { this->release (); }
1464 };
1465 
1466 
1467 /* Allocate heap memory for pointer V and create the internal vector
1468    with space for NELEMS elements.  If NELEMS is 0, the internal
1469    vector is initialized to empty.  */
1470 
1471 template<typename T>
1472 inline void
1473 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1474 {
1475   v = new vec<T>;
1476   v->create (nelems PASS_MEM_STAT);
1477 }
1478 
1479 
1480 /* A subclass of auto_vec <char *> that frees all of its elements on
1481    deletion.  */
1482 
1483 class auto_string_vec : public auto_vec <char *>
1484 {
1485  public:
1486   ~auto_string_vec ();
1487 };
1488 
1489 /* Conditionally allocate heap memory for VEC and its internal vector.  */
1490 
1491 template<typename T>
1492 inline void
1493 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1494 {
1495   if (!vec)
1496     vec_alloc (vec, nelems PASS_MEM_STAT);
1497 }
1498 
1499 
1500 /* Free the heap memory allocated by vector V and set it to NULL.  */
1501 
1502 template<typename T>
1503 inline void
1504 vec_free (vec<T> *&v)
1505 {
1506   if (v == NULL)
1507     return;
1508 
1509   v->release ();
1510   delete v;
1511   v = NULL;
1512 }
1513 
1514 
1515 /* Return iteration condition and update PTR to point to the IX'th
1516    element of this vector.  Use this to iterate over the elements of a
1517    vector as follows,
1518 
1519      for (ix = 0; v.iterate (ix, &ptr); ix++)
1520        continue;  */
1521 
1522 template<typename T>
1523 inline bool
1524 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1525 {
1526   if (m_vec)
1527     return m_vec->iterate (ix, ptr);
1528   else
1529     {
1530       *ptr = 0;
1531       return false;
1532     }
1533 }
1534 
1535 
1536 /* Return iteration condition and update *PTR to point to the
1537    IX'th element of this vector.  Use this to iterate over the
1538    elements of a vector as follows,
1539 
1540      for (ix = 0; v->iterate (ix, &ptr); ix++)
1541        continue;
1542 
1543    This variant is for vectors of objects.  */
1544 
1545 template<typename T>
1546 inline bool
1547 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1548 {
1549   if (m_vec)
1550     return m_vec->iterate (ix, ptr);
1551   else
1552     {
1553       *ptr = 0;
1554       return false;
1555     }
1556 }
1557 
1558 
1559 /* Convenience macro for forward iteration.  */
1560 #define FOR_EACH_VEC_ELT(V, I, P)			\
1561   for (I = 0; (V).iterate ((I), &(P)); ++(I))
1562 
1563 #define FOR_EACH_VEC_SAFE_ELT(V, I, P)			\
1564   for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1565 
1566 /* Likewise, but start from FROM rather than 0.  */
1567 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM)		\
1568   for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1569 
1570 /* Convenience macro for reverse iteration.  */
1571 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P)		\
1572   for (I = (V).length () - 1;				\
1573        (V).iterate ((I), &(P));				\
1574        (I)--)
1575 
1576 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P)		\
1577   for (I = vec_safe_length (V) - 1;			\
1578        vec_safe_iterate ((V), (I), &(P));	\
1579        (I)--)
1580 
1581 /* auto_string_vec's dtor, freeing all contained strings, automatically
1582    chaining up to ~auto_vec <char *>, which frees the internal buffer.  */
1583 
1584 inline
1585 auto_string_vec::~auto_string_vec ()
1586 {
1587   int i;
1588   char *str;
1589   FOR_EACH_VEC_ELT (*this, i, str)
1590     free (str);
1591 }
1592 
1593 
1594 /* Return a copy of this vector.  */
1595 
1596 template<typename T>
1597 inline vec<T, va_heap, vl_ptr>
1598 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1599 {
1600   vec<T, va_heap, vl_ptr> new_vec = vNULL;
1601   if (length ())
1602     new_vec.m_vec = m_vec->copy ();
1603   return new_vec;
1604 }
1605 
1606 
1607 /* Ensure that the vector has at least RESERVE slots available (if
1608    EXACT is false), or exactly RESERVE slots available (if EXACT is
1609    true).
1610 
1611    This may create additional headroom if EXACT is false.
1612 
1613    Note that this can cause the embedded vector to be reallocated.
1614    Returns true iff reallocation actually occurred.  */
1615 
1616 template<typename T>
1617 inline bool
1618 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1619 {
1620   if (space (nelems))
1621     return false;
1622 
1623   /* For now play a game with va_heap::reserve to hide our auto storage if any,
1624      this is necessary because it doesn't have enough information to know the
1625      embedded vector is in auto storage, and so should not be freed.  */
1626   vec<T, va_heap, vl_embed> *oldvec = m_vec;
1627   unsigned int oldsize = 0;
1628   bool handle_auto_vec = m_vec && using_auto_storage ();
1629   if (handle_auto_vec)
1630     {
1631       m_vec = NULL;
1632       oldsize = oldvec->length ();
1633       nelems += oldsize;
1634     }
1635 
1636   va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1637   if (handle_auto_vec)
1638     {
1639       vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1640       m_vec->m_vecpfx.m_num = oldsize;
1641     }
1642 
1643   return true;
1644 }
1645 
1646 
1647 /* Ensure that this vector has exactly NELEMS slots available.  This
1648    will not create additional headroom.  Note this can cause the
1649    embedded vector to be reallocated.  Returns true iff reallocation
1650    actually occurred.  */
1651 
1652 template<typename T>
1653 inline bool
1654 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1655 {
1656   return reserve (nelems, true PASS_MEM_STAT);
1657 }
1658 
1659 
1660 /* Create the internal vector and reserve NELEMS for it.  This is
1661    exactly like vec::reserve, but the internal vector is
1662    unconditionally allocated from scratch.  The old one, if it
1663    existed, is lost.  */
1664 
1665 template<typename T>
1666 inline void
1667 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1668 {
1669   m_vec = NULL;
1670   if (nelems > 0)
1671     reserve_exact (nelems PASS_MEM_STAT);
1672 }
1673 
1674 
1675 /* Free the memory occupied by the embedded vector.  */
1676 
1677 template<typename T>
1678 inline void
1679 vec<T, va_heap, vl_ptr>::release (void)
1680 {
1681   if (!m_vec)
1682     return;
1683 
1684   if (using_auto_storage ())
1685     {
1686       m_vec->m_vecpfx.m_num = 0;
1687       return;
1688     }
1689 
1690   va_heap::release (m_vec);
1691 }
1692 
1693 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1694    SRC and this vector must be allocated with the same memory
1695    allocation mechanism. This vector is assumed to have sufficient
1696    headroom available.  */
1697 
1698 template<typename T>
1699 inline void
1700 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1701 {
1702   if (src.length ())
1703     m_vec->splice (*(src.m_vec));
1704 }
1705 
1706 
1707 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1708    SRC and this vector must be allocated with the same mechanism.
1709    If there is not enough headroom in this vector, it will be reallocated
1710    as needed.  */
1711 
1712 template<typename T>
1713 inline void
1714 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1715 				      MEM_STAT_DECL)
1716 {
1717   if (src.length ())
1718     {
1719       reserve_exact (src.length ());
1720       splice (src);
1721     }
1722 }
1723 
1724 
1725 /* Push OBJ (a new element) onto the end of the vector.  There must be
1726    sufficient space in the vector.  Return a pointer to the slot
1727    where OBJ was inserted.  */
1728 
1729 template<typename T>
1730 inline T *
1731 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1732 {
1733   return m_vec->quick_push (obj);
1734 }
1735 
1736 
1737 /* Push a new element OBJ onto the end of this vector.  Reallocates
1738    the embedded vector, if needed.  Return a pointer to the slot where
1739    OBJ was inserted.  */
1740 
1741 template<typename T>
1742 inline T *
1743 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1744 {
1745   reserve (1, false PASS_MEM_STAT);
1746   return quick_push (obj);
1747 }
1748 
1749 
1750 /* Pop and return the last element off the end of the vector.  */
1751 
1752 template<typename T>
1753 inline T &
1754 vec<T, va_heap, vl_ptr>::pop (void)
1755 {
1756   return m_vec->pop ();
1757 }
1758 
1759 
1760 /* Set the length of the vector to LEN.  The new length must be less
1761    than or equal to the current length.  This is an O(1) operation.  */
1762 
1763 template<typename T>
1764 inline void
1765 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1766 {
1767   if (m_vec)
1768     m_vec->truncate (size);
1769   else
1770     gcc_checking_assert (size == 0);
1771 }
1772 
1773 
1774 /* Grow the vector to a specific length.  LEN must be as long or
1775    longer than the current length.  The new elements are
1776    uninitialized.  Reallocate the internal vector, if needed.  */
1777 
1778 template<typename T>
1779 inline void
1780 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1781 {
1782   unsigned oldlen = length ();
1783   gcc_checking_assert (oldlen <= len);
1784   reserve_exact (len - oldlen PASS_MEM_STAT);
1785   if (m_vec)
1786     m_vec->quick_grow (len);
1787   else
1788     gcc_checking_assert (len == 0);
1789 }
1790 
1791 
1792 /* Grow the embedded vector to a specific length.  LEN must be as
1793    long or longer than the current length.  The new elements are
1794    initialized to zero.  Reallocate the internal vector, if needed.  */
1795 
1796 template<typename T>
1797 inline void
1798 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1799 {
1800   unsigned oldlen = length ();
1801   size_t growby = len - oldlen;
1802   safe_grow (len PASS_MEM_STAT);
1803   if (growby != 0)
1804     vec_default_construct (address () + oldlen, growby);
1805 }
1806 
1807 
1808 /* Same as vec::safe_grow but without reallocation of the internal vector.
1809    If the vector cannot be extended, a runtime assertion will be triggered.  */
1810 
1811 template<typename T>
1812 inline void
1813 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1814 {
1815   gcc_checking_assert (m_vec);
1816   m_vec->quick_grow (len);
1817 }
1818 
1819 
1820 /* Same as vec::quick_grow_cleared but without reallocation of the
1821    internal vector. If the vector cannot be extended, a runtime
1822    assertion will be triggered.  */
1823 
1824 template<typename T>
1825 inline void
1826 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1827 {
1828   gcc_checking_assert (m_vec);
1829   m_vec->quick_grow_cleared (len);
1830 }
1831 
1832 
1833 /* Insert an element, OBJ, at the IXth position of this vector.  There
1834    must be sufficient space.  */
1835 
1836 template<typename T>
1837 inline void
1838 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1839 {
1840   m_vec->quick_insert (ix, obj);
1841 }
1842 
1843 
1844 /* Insert an element, OBJ, at the IXth position of the vector.
1845    Reallocate the embedded vector, if necessary.  */
1846 
1847 template<typename T>
1848 inline void
1849 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1850 {
1851   reserve (1, false PASS_MEM_STAT);
1852   quick_insert (ix, obj);
1853 }
1854 
1855 
1856 /* Remove an element from the IXth position of this vector.  Ordering of
1857    remaining elements is preserved.  This is an O(N) operation due to
1858    a memmove.  */
1859 
1860 template<typename T>
1861 inline void
1862 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1863 {
1864   m_vec->ordered_remove (ix);
1865 }
1866 
1867 
1868 /* Remove an element from the IXth position of this vector.  Ordering
1869    of remaining elements is destroyed.  This is an O(1) operation.  */
1870 
1871 template<typename T>
1872 inline void
1873 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1874 {
1875   m_vec->unordered_remove (ix);
1876 }
1877 
1878 
1879 /* Remove LEN elements starting at the IXth.  Ordering is retained.
1880    This is an O(N) operation due to memmove.  */
1881 
1882 template<typename T>
1883 inline void
1884 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1885 {
1886   m_vec->block_remove (ix, len);
1887 }
1888 
1889 
1890 /* Sort the contents of this vector with qsort.  CMP is the comparison
1891    function to pass to qsort.  */
1892 
1893 template<typename T>
1894 inline void
1895 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1896 {
1897   if (m_vec)
1898     m_vec->qsort (cmp);
1899 }
1900 
1901 
1902 /* Search the contents of the sorted vector with a binary search.
1903    CMP is the comparison function to pass to bsearch.  */
1904 
1905 template<typename T>
1906 inline T *
1907 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1908 				  int (*cmp) (const void *, const void *))
1909 {
1910   if (m_vec)
1911     return m_vec->bsearch (key, cmp);
1912   return NULL;
1913 }
1914 
1915 
1916 /* Find and return the first position in which OBJ could be inserted
1917    without changing the ordering of this vector.  LESSTHAN is a
1918    function that returns true if the first argument is strictly less
1919    than the second.  */
1920 
1921 template<typename T>
1922 inline unsigned
1923 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1924 				      bool (*lessthan)(const T &, const T &))
1925     const
1926 {
1927   return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1928 }
1929 
1930 /* Return true if SEARCH is an element of V.  Note that this is O(N) in the
1931    size of the vector and so should be used with care.  */
1932 
1933 template<typename T>
1934 inline bool
1935 vec<T, va_heap, vl_ptr>::contains (const T &search) const
1936 {
1937   return m_vec ? m_vec->contains (search) : false;
1938 }
1939 
1940 /* Reverse content of the vector.  */
1941 
1942 template<typename T>
1943 inline void
1944 vec<T, va_heap, vl_ptr>::reverse (void)
1945 {
1946   unsigned l = length ();
1947   T *ptr = address ();
1948 
1949   for (unsigned i = 0; i < l / 2; i++)
1950     std::swap (ptr[i], ptr[l - i - 1]);
1951 }
1952 
1953 template<typename T>
1954 inline bool
1955 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1956 {
1957   return m_vec->m_vecpfx.m_using_auto_storage;
1958 }
1959 
1960 /* Release VEC and call release of all element vectors.  */
1961 
1962 template<typename T>
1963 inline void
1964 release_vec_vec (vec<vec<T> > &vec)
1965 {
1966   for (unsigned i = 0; i < vec.length (); i++)
1967     vec[i].release ();
1968 
1969   vec.release ();
1970 }
1971 
1972 #if (GCC_VERSION >= 3000)
1973 # pragma GCC poison m_vec m_vecpfx m_vecdata
1974 #endif
1975 
1976 #endif // GCC_VEC_H
1977