1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package strconv 6 7import "math/bits" 8 9const fastSmalls = true // enable fast path for small integers 10 11// FormatUint returns the string representation of i in the given base, 12// for 2 <= base <= 36. The result uses the lower-case letters 'a' to 'z' 13// for digit values >= 10. 14func FormatUint(i uint64, base int) string { 15 if fastSmalls && i < nSmalls && base == 10 { 16 return small(int(i)) 17 } 18 _, s := formatBits(nil, i, base, false, false) 19 return s 20} 21 22// FormatInt returns the string representation of i in the given base, 23// for 2 <= base <= 36. The result uses the lower-case letters 'a' to 'z' 24// for digit values >= 10. 25func FormatInt(i int64, base int) string { 26 if fastSmalls && 0 <= i && i < nSmalls && base == 10 { 27 return small(int(i)) 28 } 29 _, s := formatBits(nil, uint64(i), base, i < 0, false) 30 return s 31} 32 33// Itoa is equivalent to FormatInt(int64(i), 10). 34func Itoa(i int) string { 35 return FormatInt(int64(i), 10) 36} 37 38// AppendInt appends the string form of the integer i, 39// as generated by FormatInt, to dst and returns the extended buffer. 40func AppendInt(dst []byte, i int64, base int) []byte { 41 if fastSmalls && 0 <= i && i < nSmalls && base == 10 { 42 return append(dst, small(int(i))...) 43 } 44 dst, _ = formatBits(dst, uint64(i), base, i < 0, true) 45 return dst 46} 47 48// AppendUint appends the string form of the unsigned integer i, 49// as generated by FormatUint, to dst and returns the extended buffer. 50func AppendUint(dst []byte, i uint64, base int) []byte { 51 if fastSmalls && i < nSmalls && base == 10 { 52 return append(dst, small(int(i))...) 53 } 54 dst, _ = formatBits(dst, i, base, false, true) 55 return dst 56} 57 58// small returns the string for an i with 0 <= i < nSmalls. 59func small(i int) string { 60 if i < 10 { 61 return digits[i : i+1] 62 } 63 return smallsString[i*2 : i*2+2] 64} 65 66const nSmalls = 100 67 68const smallsString = "00010203040506070809" + 69 "10111213141516171819" + 70 "20212223242526272829" + 71 "30313233343536373839" + 72 "40414243444546474849" + 73 "50515253545556575859" + 74 "60616263646566676869" + 75 "70717273747576777879" + 76 "80818283848586878889" + 77 "90919293949596979899" 78 79const host32bit = ^uint(0)>>32 == 0 80 81const digits = "0123456789abcdefghijklmnopqrstuvwxyz" 82 83// formatBits computes the string representation of u in the given base. 84// If neg is set, u is treated as negative int64 value. If append_ is 85// set, the string is appended to dst and the resulting byte slice is 86// returned as the first result value; otherwise the string is returned 87// as the second result value. 88// 89func formatBits(dst []byte, u uint64, base int, neg, append_ bool) (d []byte, s string) { 90 if base < 2 || base > len(digits) { 91 panic("strconv: illegal AppendInt/FormatInt base") 92 } 93 // 2 <= base && base <= len(digits) 94 95 var a [64 + 1]byte // +1 for sign of 64bit value in base 2 96 i := len(a) 97 98 if neg { 99 u = -u 100 } 101 102 // convert bits 103 // We use uint values where we can because those will 104 // fit into a single register even on a 32bit machine. 105 if base == 10 { 106 // common case: use constants for / because 107 // the compiler can optimize it into a multiply+shift 108 109 if host32bit { 110 // convert the lower digits using 32bit operations 111 for u >= 1e9 { 112 // Avoid using r = a%b in addition to q = a/b 113 // since 64bit division and modulo operations 114 // are calculated by runtime functions on 32bit machines. 115 q := u / 1e9 116 us := uint(u - q*1e9) // u % 1e9 fits into a uint 117 for j := 4; j > 0; j-- { 118 is := us % 100 * 2 119 us /= 100 120 i -= 2 121 a[i+1] = smallsString[is+1] 122 a[i+0] = smallsString[is+0] 123 } 124 125 // us < 10, since it contains the last digit 126 // from the initial 9-digit us. 127 i-- 128 a[i] = smallsString[us*2+1] 129 130 u = q 131 } 132 // u < 1e9 133 } 134 135 // u guaranteed to fit into a uint 136 us := uint(u) 137 for us >= 100 { 138 is := us % 100 * 2 139 us /= 100 140 i -= 2 141 a[i+1] = smallsString[is+1] 142 a[i+0] = smallsString[is+0] 143 } 144 145 // us < 100 146 is := us * 2 147 i-- 148 a[i] = smallsString[is+1] 149 if us >= 10 { 150 i-- 151 a[i] = smallsString[is] 152 } 153 154 } else if isPowerOfTwo(base) { 155 // Use shifts and masks instead of / and %. 156 // Base is a power of 2 and 2 <= base <= len(digits) where len(digits) is 36. 157 // The largest power of 2 below or equal to 36 is 32, which is 1 << 5; 158 // i.e., the largest possible shift count is 5. By &-ind that value with 159 // the constant 7 we tell the compiler that the shift count is always 160 // less than 8 which is smaller than any register width. This allows 161 // the compiler to generate better code for the shift operation. 162 shift := uint(bits.TrailingZeros(uint(base))) & 7 163 b := uint64(base) 164 m := uint(base) - 1 // == 1<<shift - 1 165 for u >= b { 166 i-- 167 a[i] = digits[uint(u)&m] 168 u >>= shift 169 } 170 // u < base 171 i-- 172 a[i] = digits[uint(u)] 173 } else { 174 // general case 175 b := uint64(base) 176 for u >= b { 177 i-- 178 // Avoid using r = a%b in addition to q = a/b 179 // since 64bit division and modulo operations 180 // are calculated by runtime functions on 32bit machines. 181 q := u / b 182 a[i] = digits[uint(u-q*b)] 183 u = q 184 } 185 // u < base 186 i-- 187 a[i] = digits[uint(u)] 188 } 189 190 // add sign, if any 191 if neg { 192 i-- 193 a[i] = '-' 194 } 195 196 if append_ { 197 d = append(dst, a[i:]...) 198 return 199 } 200 s = string(a[i:]) 201 return 202} 203 204func isPowerOfTwo(x int) bool { 205 return x&(x-1) == 0 206} 207