1 //===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the Sanitizer Allocator.
9 //
10 //===----------------------------------------------------------------------===//
11 #ifndef SANITIZER_ALLOCATOR_H
12 #error This file must be included inside sanitizer_allocator.h
13 #endif
14 
15 template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
16 
17 // SizeClassAllocator64 -- allocator for 64-bit address space.
18 // The template parameter Params is a class containing the actual parameters.
19 //
20 // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
21 // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
22 // Otherwise SpaceBeg=kSpaceBeg (fixed address).
23 // kSpaceSize is a power of two.
24 // At the beginning the entire space is mprotect-ed, then small parts of it
25 // are mapped on demand.
26 //
27 // Region: a part of Space dedicated to a single size class.
28 // There are kNumClasses Regions of equal size.
29 //
30 // UserChunk: a piece of memory returned to user.
31 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
32 
33 // FreeArray is an array free-d chunks (stored as 4-byte offsets)
34 //
35 // A Region looks like this:
36 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
37 
38 struct SizeClassAllocator64FlagMasks {  //  Bit masks.
39   enum {
40     kRandomShuffleChunks = 1,
41   };
42 };
43 
44 template <class Params>
45 class SizeClassAllocator64 {
46  public:
47   static const uptr kSpaceBeg = Params::kSpaceBeg;
48   static const uptr kSpaceSize = Params::kSpaceSize;
49   static const uptr kMetadataSize = Params::kMetadataSize;
50   typedef typename Params::SizeClassMap SizeClassMap;
51   typedef typename Params::MapUnmapCallback MapUnmapCallback;
52 
53   static const bool kRandomShuffleChunks =
54       Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
55 
56   typedef SizeClassAllocator64<Params> ThisT;
57   typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
58 
59   // When we know the size class (the region base) we can represent a pointer
60   // as a 4-byte integer (offset from the region start shifted right by 4).
61   typedef u32 CompactPtrT;
62   static const uptr kCompactPtrScale = 4;
PointerToCompactPtr(uptr base,uptr ptr)63   CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
64     return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
65   }
CompactPtrToPointer(uptr base,CompactPtrT ptr32)66   uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
67     return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
68   }
69 
Init(s32 release_to_os_interval_ms)70   void Init(s32 release_to_os_interval_ms) {
71     uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
72     if (kUsingConstantSpaceBeg) {
73       CHECK_EQ(kSpaceBeg, address_range.Init(TotalSpaceSize,
74                                              PrimaryAllocatorName, kSpaceBeg));
75     } else {
76       NonConstSpaceBeg = address_range.Init(TotalSpaceSize,
77                                             PrimaryAllocatorName);
78       CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
79     }
80     SetReleaseToOSIntervalMs(release_to_os_interval_ms);
81     MapWithCallbackOrDie(SpaceEnd(), AdditionalSize());
82     // Check that the RegionInfo array is aligned on the CacheLine size.
83     DCHECK_EQ(SpaceEnd() % kCacheLineSize, 0);
84   }
85 
ReleaseToOSIntervalMs()86   s32 ReleaseToOSIntervalMs() const {
87     return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
88   }
89 
SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms)90   void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
91     atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
92                  memory_order_relaxed);
93   }
94 
ForceReleaseToOS()95   void ForceReleaseToOS() {
96     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
97       BlockingMutexLock l(&GetRegionInfo(class_id)->mutex);
98       MaybeReleaseToOS(class_id, true /*force*/);
99     }
100   }
101 
CanAllocate(uptr size,uptr alignment)102   static bool CanAllocate(uptr size, uptr alignment) {
103     return size <= SizeClassMap::kMaxSize &&
104       alignment <= SizeClassMap::kMaxSize;
105   }
106 
ReturnToAllocator(AllocatorStats * stat,uptr class_id,const CompactPtrT * chunks,uptr n_chunks)107   NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
108                                   const CompactPtrT *chunks, uptr n_chunks) {
109     RegionInfo *region = GetRegionInfo(class_id);
110     uptr region_beg = GetRegionBeginBySizeClass(class_id);
111     CompactPtrT *free_array = GetFreeArray(region_beg);
112 
113     BlockingMutexLock l(&region->mutex);
114     uptr old_num_chunks = region->num_freed_chunks;
115     uptr new_num_freed_chunks = old_num_chunks + n_chunks;
116     // Failure to allocate free array space while releasing memory is non
117     // recoverable.
118     if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
119                                        new_num_freed_chunks))) {
120       Report("FATAL: Internal error: %s's allocator exhausted the free list "
121              "space for size class %zd (%zd bytes).\n", SanitizerToolName,
122              class_id, ClassIdToSize(class_id));
123       Die();
124     }
125     for (uptr i = 0; i < n_chunks; i++)
126       free_array[old_num_chunks + i] = chunks[i];
127     region->num_freed_chunks = new_num_freed_chunks;
128     region->stats.n_freed += n_chunks;
129 
130     MaybeReleaseToOS(class_id, false /*force*/);
131   }
132 
GetFromAllocator(AllocatorStats * stat,uptr class_id,CompactPtrT * chunks,uptr n_chunks)133   NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
134                                  CompactPtrT *chunks, uptr n_chunks) {
135     RegionInfo *region = GetRegionInfo(class_id);
136     uptr region_beg = GetRegionBeginBySizeClass(class_id);
137     CompactPtrT *free_array = GetFreeArray(region_beg);
138 
139     BlockingMutexLock l(&region->mutex);
140     if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
141       if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
142                                       n_chunks - region->num_freed_chunks)))
143         return false;
144       CHECK_GE(region->num_freed_chunks, n_chunks);
145     }
146     region->num_freed_chunks -= n_chunks;
147     uptr base_idx = region->num_freed_chunks;
148     for (uptr i = 0; i < n_chunks; i++)
149       chunks[i] = free_array[base_idx + i];
150     region->stats.n_allocated += n_chunks;
151     return true;
152   }
153 
PointerIsMine(const void * p)154   bool PointerIsMine(const void *p) {
155     uptr P = reinterpret_cast<uptr>(p);
156     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
157       return P / kSpaceSize == kSpaceBeg / kSpaceSize;
158     return P >= SpaceBeg() && P < SpaceEnd();
159   }
160 
GetRegionBegin(const void * p)161   uptr GetRegionBegin(const void *p) {
162     if (kUsingConstantSpaceBeg)
163       return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
164     uptr space_beg = SpaceBeg();
165     return ((reinterpret_cast<uptr>(p)  - space_beg) & ~(kRegionSize - 1)) +
166         space_beg;
167   }
168 
GetRegionBeginBySizeClass(uptr class_id)169   uptr GetRegionBeginBySizeClass(uptr class_id) const {
170     return SpaceBeg() + kRegionSize * class_id;
171   }
172 
GetSizeClass(const void * p)173   uptr GetSizeClass(const void *p) {
174     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
175       return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
176     return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
177            kNumClassesRounded;
178   }
179 
GetBlockBegin(const void * p)180   void *GetBlockBegin(const void *p) {
181     uptr class_id = GetSizeClass(p);
182     uptr size = ClassIdToSize(class_id);
183     if (!size) return nullptr;
184     uptr chunk_idx = GetChunkIdx((uptr)p, size);
185     uptr reg_beg = GetRegionBegin(p);
186     uptr beg = chunk_idx * size;
187     uptr next_beg = beg + size;
188     if (class_id >= kNumClasses) return nullptr;
189     RegionInfo *region = GetRegionInfo(class_id);
190     if (region->mapped_user >= next_beg)
191       return reinterpret_cast<void*>(reg_beg + beg);
192     return nullptr;
193   }
194 
GetActuallyAllocatedSize(void * p)195   uptr GetActuallyAllocatedSize(void *p) {
196     CHECK(PointerIsMine(p));
197     return ClassIdToSize(GetSizeClass(p));
198   }
199 
ClassID(uptr size)200   uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
201 
GetMetaData(const void * p)202   void *GetMetaData(const void *p) {
203     uptr class_id = GetSizeClass(p);
204     uptr size = ClassIdToSize(class_id);
205     uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
206     uptr region_beg = GetRegionBeginBySizeClass(class_id);
207     return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
208                                     (1 + chunk_idx) * kMetadataSize);
209   }
210 
TotalMemoryUsed()211   uptr TotalMemoryUsed() {
212     uptr res = 0;
213     for (uptr i = 0; i < kNumClasses; i++)
214       res += GetRegionInfo(i)->allocated_user;
215     return res;
216   }
217 
218   // Test-only.
TestOnlyUnmap()219   void TestOnlyUnmap() {
220     UnmapWithCallbackOrDie(SpaceBeg(), kSpaceSize + AdditionalSize());
221   }
222 
FillMemoryProfile(uptr start,uptr rss,bool file,uptr * stats,uptr stats_size)223   static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
224                            uptr stats_size) {
225     for (uptr class_id = 0; class_id < stats_size; class_id++)
226       if (stats[class_id] == start)
227         stats[class_id] = rss;
228   }
229 
PrintStats(uptr class_id,uptr rss)230   void PrintStats(uptr class_id, uptr rss) {
231     RegionInfo *region = GetRegionInfo(class_id);
232     if (region->mapped_user == 0) return;
233     uptr in_use = region->stats.n_allocated - region->stats.n_freed;
234     uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
235     Printf(
236         "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
237         "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
238         "last released: %6zdK region: 0x%zx\n",
239         region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
240         region->mapped_user >> 10, region->stats.n_allocated,
241         region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
242         rss >> 10, region->rtoi.num_releases,
243         region->rtoi.last_released_bytes >> 10,
244         SpaceBeg() + kRegionSize * class_id);
245   }
246 
PrintStats()247   void PrintStats() {
248     uptr rss_stats[kNumClasses];
249     for (uptr class_id = 0; class_id < kNumClasses; class_id++)
250       rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
251     GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
252 
253     uptr total_mapped = 0;
254     uptr total_rss = 0;
255     uptr n_allocated = 0;
256     uptr n_freed = 0;
257     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
258       RegionInfo *region = GetRegionInfo(class_id);
259       if (region->mapped_user != 0) {
260         total_mapped += region->mapped_user;
261         total_rss += rss_stats[class_id];
262       }
263       n_allocated += region->stats.n_allocated;
264       n_freed += region->stats.n_freed;
265     }
266 
267     Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
268            "%zd allocations; remains %zd\n", total_mapped >> 20,
269            total_rss >> 20, n_allocated, n_allocated - n_freed);
270     for (uptr class_id = 1; class_id < kNumClasses; class_id++)
271       PrintStats(class_id, rss_stats[class_id]);
272   }
273 
274   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
275   // introspection API.
ForceLock()276   void ForceLock() {
277     for (uptr i = 0; i < kNumClasses; i++) {
278       GetRegionInfo(i)->mutex.Lock();
279     }
280   }
281 
ForceUnlock()282   void ForceUnlock() {
283     for (int i = (int)kNumClasses - 1; i >= 0; i--) {
284       GetRegionInfo(i)->mutex.Unlock();
285     }
286   }
287 
288   // Iterate over all existing chunks.
289   // The allocator must be locked when calling this function.
ForEachChunk(ForEachChunkCallback callback,void * arg)290   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
291     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
292       RegionInfo *region = GetRegionInfo(class_id);
293       uptr chunk_size = ClassIdToSize(class_id);
294       uptr region_beg = SpaceBeg() + class_id * kRegionSize;
295       for (uptr chunk = region_beg;
296            chunk < region_beg + region->allocated_user;
297            chunk += chunk_size) {
298         // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
299         callback(chunk, arg);
300       }
301     }
302   }
303 
ClassIdToSize(uptr class_id)304   static uptr ClassIdToSize(uptr class_id) {
305     return SizeClassMap::Size(class_id);
306   }
307 
AdditionalSize()308   static uptr AdditionalSize() {
309     return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
310                      GetPageSizeCached());
311   }
312 
313   typedef SizeClassMap SizeClassMapT;
314   static const uptr kNumClasses = SizeClassMap::kNumClasses;
315   static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
316 
317   // A packed array of counters. Each counter occupies 2^n bits, enough to store
318   // counter's max_value. Ctor will try to allocate the required buffer via
319   // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
320   // whether the initialization was successful by checking IsAllocated() result.
321   // For the performance sake, none of the accessors check the validity of the
322   // arguments, it is assumed that index is always in [0, n) range and the value
323   // is not incremented past max_value.
324   template<class MemoryMapperT>
325   class PackedCounterArray {
326    public:
PackedCounterArray(u64 num_counters,u64 max_value,MemoryMapperT * mapper)327     PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapperT *mapper)
328         : n(num_counters), memory_mapper(mapper) {
329       CHECK_GT(num_counters, 0);
330       CHECK_GT(max_value, 0);
331       constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
332       // Rounding counter storage size up to the power of two allows for using
333       // bit shifts calculating particular counter's index and offset.
334       uptr counter_size_bits =
335           RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
336       CHECK_LE(counter_size_bits, kMaxCounterBits);
337       counter_size_bits_log = Log2(counter_size_bits);
338       counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
339 
340       uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
341       CHECK_GT(packing_ratio, 0);
342       packing_ratio_log = Log2(packing_ratio);
343       bit_offset_mask = packing_ratio - 1;
344 
345       buffer_size =
346           (RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log) *
347           sizeof(*buffer);
348       buffer = reinterpret_cast<u64*>(
349           memory_mapper->MapPackedCounterArrayBuffer(buffer_size));
350     }
~PackedCounterArray()351     ~PackedCounterArray() {
352       if (buffer) {
353         memory_mapper->UnmapPackedCounterArrayBuffer(
354             reinterpret_cast<uptr>(buffer), buffer_size);
355       }
356     }
357 
IsAllocated()358     bool IsAllocated() const {
359       return !!buffer;
360     }
361 
GetCount()362     u64 GetCount() const {
363       return n;
364     }
365 
Get(uptr i)366     uptr Get(uptr i) const {
367       DCHECK_LT(i, n);
368       uptr index = i >> packing_ratio_log;
369       uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
370       return (buffer[index] >> bit_offset) & counter_mask;
371     }
372 
Inc(uptr i)373     void Inc(uptr i) const {
374       DCHECK_LT(Get(i), counter_mask);
375       uptr index = i >> packing_ratio_log;
376       uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
377       buffer[index] += 1ULL << bit_offset;
378     }
379 
IncRange(uptr from,uptr to)380     void IncRange(uptr from, uptr to) const {
381       DCHECK_LE(from, to);
382       for (uptr i = from; i <= to; i++)
383         Inc(i);
384     }
385 
386    private:
387     const u64 n;
388     u64 counter_size_bits_log;
389     u64 counter_mask;
390     u64 packing_ratio_log;
391     u64 bit_offset_mask;
392 
393     MemoryMapperT* const memory_mapper;
394     u64 buffer_size;
395     u64* buffer;
396   };
397 
398   template<class MemoryMapperT>
399   class FreePagesRangeTracker {
400    public:
FreePagesRangeTracker(MemoryMapperT * mapper)401     explicit FreePagesRangeTracker(MemoryMapperT* mapper)
402         : memory_mapper(mapper),
403           page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)),
404           in_the_range(false), current_page(0), current_range_start_page(0) {}
405 
NextPage(bool freed)406     void NextPage(bool freed) {
407       if (freed) {
408         if (!in_the_range) {
409           current_range_start_page = current_page;
410           in_the_range = true;
411         }
412       } else {
413         CloseOpenedRange();
414       }
415       current_page++;
416     }
417 
Done()418     void Done() {
419       CloseOpenedRange();
420     }
421 
422    private:
CloseOpenedRange()423     void CloseOpenedRange() {
424       if (in_the_range) {
425         memory_mapper->ReleasePageRangeToOS(
426             current_range_start_page << page_size_scaled_log,
427             current_page << page_size_scaled_log);
428         in_the_range = false;
429       }
430     }
431 
432     MemoryMapperT* const memory_mapper;
433     const uptr page_size_scaled_log;
434     bool in_the_range;
435     uptr current_page;
436     uptr current_range_start_page;
437   };
438 
439   // Iterates over the free_array to identify memory pages containing freed
440   // chunks only and returns these pages back to OS.
441   // allocated_pages_count is the total number of pages allocated for the
442   // current bucket.
443   template<class MemoryMapperT>
ReleaseFreeMemoryToOS(CompactPtrT * free_array,uptr free_array_count,uptr chunk_size,uptr allocated_pages_count,MemoryMapperT * memory_mapper)444   static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
445                                     uptr free_array_count, uptr chunk_size,
446                                     uptr allocated_pages_count,
447                                     MemoryMapperT *memory_mapper) {
448     const uptr page_size = GetPageSizeCached();
449 
450     // Figure out the number of chunks per page and whether we can take a fast
451     // path (the number of chunks per page is the same for all pages).
452     uptr full_pages_chunk_count_max;
453     bool same_chunk_count_per_page;
454     if (chunk_size <= page_size && page_size % chunk_size == 0) {
455       // Same number of chunks per page, no cross overs.
456       full_pages_chunk_count_max = page_size / chunk_size;
457       same_chunk_count_per_page = true;
458     } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
459         chunk_size % (page_size % chunk_size) == 0) {
460       // Some chunks are crossing page boundaries, which means that the page
461       // contains one or two partial chunks, but all pages contain the same
462       // number of chunks.
463       full_pages_chunk_count_max = page_size / chunk_size + 1;
464       same_chunk_count_per_page = true;
465     } else if (chunk_size <= page_size) {
466       // Some chunks are crossing page boundaries, which means that the page
467       // contains one or two partial chunks.
468       full_pages_chunk_count_max = page_size / chunk_size + 2;
469       same_chunk_count_per_page = false;
470     } else if (chunk_size > page_size && chunk_size % page_size == 0) {
471       // One chunk covers multiple pages, no cross overs.
472       full_pages_chunk_count_max = 1;
473       same_chunk_count_per_page = true;
474     } else if (chunk_size > page_size) {
475       // One chunk covers multiple pages, Some chunks are crossing page
476       // boundaries. Some pages contain one chunk, some contain two.
477       full_pages_chunk_count_max = 2;
478       same_chunk_count_per_page = false;
479     } else {
480       UNREACHABLE("All chunk_size/page_size ratios must be handled.");
481     }
482 
483     PackedCounterArray<MemoryMapperT> counters(allocated_pages_count,
484                                                full_pages_chunk_count_max,
485                                                memory_mapper);
486     if (!counters.IsAllocated())
487       return;
488 
489     const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
490     const uptr page_size_scaled = page_size >> kCompactPtrScale;
491     const uptr page_size_scaled_log = Log2(page_size_scaled);
492 
493     // Iterate over free chunks and count how many free chunks affect each
494     // allocated page.
495     if (chunk_size <= page_size && page_size % chunk_size == 0) {
496       // Each chunk affects one page only.
497       for (uptr i = 0; i < free_array_count; i++)
498         counters.Inc(free_array[i] >> page_size_scaled_log);
499     } else {
500       // In all other cases chunks might affect more than one page.
501       for (uptr i = 0; i < free_array_count; i++) {
502         counters.IncRange(
503             free_array[i] >> page_size_scaled_log,
504             (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
505       }
506     }
507 
508     // Iterate over pages detecting ranges of pages with chunk counters equal
509     // to the expected number of chunks for the particular page.
510     FreePagesRangeTracker<MemoryMapperT> range_tracker(memory_mapper);
511     if (same_chunk_count_per_page) {
512       // Fast path, every page has the same number of chunks affecting it.
513       for (uptr i = 0; i < counters.GetCount(); i++)
514         range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
515     } else {
516       // Show path, go through the pages keeping count how many chunks affect
517       // each page.
518       const uptr pn =
519           chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
520       const uptr pnc = pn * chunk_size_scaled;
521       // The idea is to increment the current page pointer by the first chunk
522       // size, middle portion size (the portion of the page covered by chunks
523       // except the first and the last one) and then the last chunk size, adding
524       // up the number of chunks on the current page and checking on every step
525       // whether the page boundary was crossed.
526       uptr prev_page_boundary = 0;
527       uptr current_boundary = 0;
528       for (uptr i = 0; i < counters.GetCount(); i++) {
529         uptr page_boundary = prev_page_boundary + page_size_scaled;
530         uptr chunks_per_page = pn;
531         if (current_boundary < page_boundary) {
532           if (current_boundary > prev_page_boundary)
533             chunks_per_page++;
534           current_boundary += pnc;
535           if (current_boundary < page_boundary) {
536             chunks_per_page++;
537             current_boundary += chunk_size_scaled;
538           }
539         }
540         prev_page_boundary = page_boundary;
541 
542         range_tracker.NextPage(counters.Get(i) == chunks_per_page);
543       }
544     }
545     range_tracker.Done();
546   }
547 
548  private:
549   friend class MemoryMapper;
550 
551   ReservedAddressRange address_range;
552 
553   static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
554   // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
555   // In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
556   // elements, but in reality this will not happen. For simplicity we
557   // dedicate 1/8 of the region's virtual space to FreeArray.
558   static const uptr kFreeArraySize = kRegionSize / 8;
559 
560   static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
561   uptr NonConstSpaceBeg;
SpaceBeg()562   uptr SpaceBeg() const {
563     return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
564   }
SpaceEnd()565   uptr SpaceEnd() const { return  SpaceBeg() + kSpaceSize; }
566   // kRegionSize must be >= 2^32.
567   COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
568   // kRegionSize must be <= 2^36, see CompactPtrT.
569   COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
570   // Call mmap for user memory with at least this size.
571   static const uptr kUserMapSize = 1 << 16;
572   // Call mmap for metadata memory with at least this size.
573   static const uptr kMetaMapSize = 1 << 16;
574   // Call mmap for free array memory with at least this size.
575   static const uptr kFreeArrayMapSize = 1 << 16;
576 
577   atomic_sint32_t release_to_os_interval_ms_;
578 
579   struct Stats {
580     uptr n_allocated;
581     uptr n_freed;
582   };
583 
584   struct ReleaseToOsInfo {
585     uptr n_freed_at_last_release;
586     uptr num_releases;
587     u64 last_release_at_ns;
588     u64 last_released_bytes;
589   };
590 
ALIGNED(SANITIZER_CACHE_LINE_SIZE)591   struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
592     BlockingMutex mutex;
593     uptr num_freed_chunks;  // Number of elements in the freearray.
594     uptr mapped_free_array;  // Bytes mapped for freearray.
595     uptr allocated_user;  // Bytes allocated for user memory.
596     uptr allocated_meta;  // Bytes allocated for metadata.
597     uptr mapped_user;  // Bytes mapped for user memory.
598     uptr mapped_meta;  // Bytes mapped for metadata.
599     u32 rand_state;  // Seed for random shuffle, used if kRandomShuffleChunks.
600     bool exhausted;  // Whether region is out of space for new chunks.
601     Stats stats;
602     ReleaseToOsInfo rtoi;
603   };
604   COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
605 
GetRegionInfo(uptr class_id)606   RegionInfo *GetRegionInfo(uptr class_id) const {
607     DCHECK_LT(class_id, kNumClasses);
608     RegionInfo *regions = reinterpret_cast<RegionInfo *>(SpaceEnd());
609     return &regions[class_id];
610   }
611 
GetMetadataEnd(uptr region_beg)612   uptr GetMetadataEnd(uptr region_beg) const {
613     return region_beg + kRegionSize - kFreeArraySize;
614   }
615 
GetChunkIdx(uptr chunk,uptr size)616   uptr GetChunkIdx(uptr chunk, uptr size) const {
617     if (!kUsingConstantSpaceBeg)
618       chunk -= SpaceBeg();
619 
620     uptr offset = chunk % kRegionSize;
621     // Here we divide by a non-constant. This is costly.
622     // size always fits into 32-bits. If the offset fits too, use 32-bit div.
623     if (offset >> (SANITIZER_WORDSIZE / 2))
624       return offset / size;
625     return (u32)offset / (u32)size;
626   }
627 
GetFreeArray(uptr region_beg)628   CompactPtrT *GetFreeArray(uptr region_beg) const {
629     return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
630   }
631 
MapWithCallback(uptr beg,uptr size)632   bool MapWithCallback(uptr beg, uptr size) {
633     uptr mapped = address_range.Map(beg, size);
634     if (UNLIKELY(!mapped))
635       return false;
636     CHECK_EQ(beg, mapped);
637     MapUnmapCallback().OnMap(beg, size);
638     return true;
639   }
640 
MapWithCallbackOrDie(uptr beg,uptr size)641   void MapWithCallbackOrDie(uptr beg, uptr size) {
642     CHECK_EQ(beg, address_range.MapOrDie(beg, size));
643     MapUnmapCallback().OnMap(beg, size);
644   }
645 
UnmapWithCallbackOrDie(uptr beg,uptr size)646   void UnmapWithCallbackOrDie(uptr beg, uptr size) {
647     MapUnmapCallback().OnUnmap(beg, size);
648     address_range.Unmap(beg, size);
649   }
650 
EnsureFreeArraySpace(RegionInfo * region,uptr region_beg,uptr num_freed_chunks)651   bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
652                             uptr num_freed_chunks) {
653     uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
654     if (region->mapped_free_array < needed_space) {
655       uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
656       CHECK_LE(new_mapped_free_array, kFreeArraySize);
657       uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
658                              region->mapped_free_array;
659       uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
660       if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size)))
661         return false;
662       region->mapped_free_array = new_mapped_free_array;
663     }
664     return true;
665   }
666 
667   // Check whether this size class is exhausted.
IsRegionExhausted(RegionInfo * region,uptr class_id,uptr additional_map_size)668   bool IsRegionExhausted(RegionInfo *region, uptr class_id,
669                          uptr additional_map_size) {
670     if (LIKELY(region->mapped_user + region->mapped_meta +
671                additional_map_size <= kRegionSize - kFreeArraySize))
672       return false;
673     if (!region->exhausted) {
674       region->exhausted = true;
675       Printf("%s: Out of memory. ", SanitizerToolName);
676       Printf("The process has exhausted %zuMB for size class %zu.\n",
677              kRegionSize >> 20, ClassIdToSize(class_id));
678     }
679     return true;
680   }
681 
PopulateFreeArray(AllocatorStats * stat,uptr class_id,RegionInfo * region,uptr requested_count)682   NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
683                                   RegionInfo *region, uptr requested_count) {
684     // region->mutex is held.
685     const uptr region_beg = GetRegionBeginBySizeClass(class_id);
686     const uptr size = ClassIdToSize(class_id);
687 
688     const uptr total_user_bytes =
689         region->allocated_user + requested_count * size;
690     // Map more space for chunks, if necessary.
691     if (LIKELY(total_user_bytes > region->mapped_user)) {
692       if (UNLIKELY(region->mapped_user == 0)) {
693         if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
694           // The random state is initialized from ASLR.
695           region->rand_state = static_cast<u32>(region_beg >> 12);
696         // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
697         // preventing just allocated memory from being released sooner than
698         // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
699         // for short lived processes.
700         // Do it only when the feature is turned on, to avoid a potentially
701         // extraneous syscall.
702         if (ReleaseToOSIntervalMs() >= 0)
703           region->rtoi.last_release_at_ns = MonotonicNanoTime();
704       }
705       // Do the mmap for the user memory.
706       const uptr user_map_size =
707           RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
708       if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
709         return false;
710       if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
711                                     user_map_size)))
712         return false;
713       stat->Add(AllocatorStatMapped, user_map_size);
714       region->mapped_user += user_map_size;
715     }
716     const uptr new_chunks_count =
717         (region->mapped_user - region->allocated_user) / size;
718 
719     if (kMetadataSize) {
720       // Calculate the required space for metadata.
721       const uptr total_meta_bytes =
722           region->allocated_meta + new_chunks_count * kMetadataSize;
723       const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
724           RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
725       // Map more space for metadata, if necessary.
726       if (meta_map_size) {
727         if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
728           return false;
729         if (UNLIKELY(!MapWithCallback(
730             GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
731             meta_map_size)))
732           return false;
733         region->mapped_meta += meta_map_size;
734       }
735     }
736 
737     // If necessary, allocate more space for the free array and populate it with
738     // newly allocated chunks.
739     const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
740     if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
741       return false;
742     CompactPtrT *free_array = GetFreeArray(region_beg);
743     for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
744          i++, chunk += size)
745       free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
746     if (kRandomShuffleChunks)
747       RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
748                     &region->rand_state);
749 
750     // All necessary memory is mapped and now it is safe to advance all
751     // 'allocated_*' counters.
752     region->num_freed_chunks += new_chunks_count;
753     region->allocated_user += new_chunks_count * size;
754     CHECK_LE(region->allocated_user, region->mapped_user);
755     region->allocated_meta += new_chunks_count * kMetadataSize;
756     CHECK_LE(region->allocated_meta, region->mapped_meta);
757     region->exhausted = false;
758 
759     // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
760     // MaybeReleaseToOS from releasing just allocated pages or protect these
761     // not yet used chunks some other way.
762 
763     return true;
764   }
765 
766   class MemoryMapper {
767    public:
MemoryMapper(const ThisT & base_allocator,uptr class_id)768     MemoryMapper(const ThisT& base_allocator, uptr class_id)
769         : allocator(base_allocator),
770           region_base(base_allocator.GetRegionBeginBySizeClass(class_id)),
771           released_ranges_count(0),
772           released_bytes(0) {
773     }
774 
GetReleasedRangesCount()775     uptr GetReleasedRangesCount() const {
776       return released_ranges_count;
777     }
778 
GetReleasedBytes()779     uptr GetReleasedBytes() const {
780       return released_bytes;
781     }
782 
MapPackedCounterArrayBuffer(uptr buffer_size)783     uptr MapPackedCounterArrayBuffer(uptr buffer_size) {
784       // TODO(alekseyshl): The idea to explore is to check if we have enough
785       // space between num_freed_chunks*sizeof(CompactPtrT) and
786       // mapped_free_array to fit buffer_size bytes and use that space instead
787       // of mapping a temporary one.
788       return reinterpret_cast<uptr>(
789           MmapOrDieOnFatalError(buffer_size, "ReleaseToOSPageCounters"));
790     }
791 
UnmapPackedCounterArrayBuffer(uptr buffer,uptr buffer_size)792     void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {
793       UnmapOrDie(reinterpret_cast<void *>(buffer), buffer_size);
794     }
795 
796     // Releases [from, to) range of pages back to OS.
ReleasePageRangeToOS(CompactPtrT from,CompactPtrT to)797     void ReleasePageRangeToOS(CompactPtrT from, CompactPtrT to) {
798       const uptr from_page = allocator.CompactPtrToPointer(region_base, from);
799       const uptr to_page = allocator.CompactPtrToPointer(region_base, to);
800       ReleaseMemoryPagesToOS(from_page, to_page);
801       released_ranges_count++;
802       released_bytes += to_page - from_page;
803     }
804 
805    private:
806     const ThisT& allocator;
807     const uptr region_base;
808     uptr released_ranges_count;
809     uptr released_bytes;
810   };
811 
812   // Attempts to release RAM occupied by freed chunks back to OS. The region is
813   // expected to be locked.
MaybeReleaseToOS(uptr class_id,bool force)814   void MaybeReleaseToOS(uptr class_id, bool force) {
815     RegionInfo *region = GetRegionInfo(class_id);
816     const uptr chunk_size = ClassIdToSize(class_id);
817     const uptr page_size = GetPageSizeCached();
818 
819     uptr n = region->num_freed_chunks;
820     if (n * chunk_size < page_size)
821       return;  // No chance to release anything.
822     if ((region->stats.n_freed -
823          region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
824       return;  // Nothing new to release.
825     }
826 
827     if (!force) {
828       s32 interval_ms = ReleaseToOSIntervalMs();
829       if (interval_ms < 0)
830         return;
831 
832       if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
833           MonotonicNanoTime()) {
834         return;  // Memory was returned recently.
835       }
836     }
837 
838     MemoryMapper memory_mapper(*this, class_id);
839 
840     ReleaseFreeMemoryToOS<MemoryMapper>(
841         GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
842         RoundUpTo(region->allocated_user, page_size) / page_size,
843         &memory_mapper);
844 
845     if (memory_mapper.GetReleasedRangesCount() > 0) {
846       region->rtoi.n_freed_at_last_release = region->stats.n_freed;
847       region->rtoi.num_releases += memory_mapper.GetReleasedRangesCount();
848       region->rtoi.last_released_bytes = memory_mapper.GetReleasedBytes();
849     }
850     region->rtoi.last_release_at_ns = MonotonicNanoTime();
851   }
852 };
853