1 /* Implementation of the SUM intrinsic
2 Copyright (C) 2002-2019 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27
28
29 #if defined (HAVE_GFC_COMPLEX_4) && defined (HAVE_GFC_COMPLEX_4)
30
31
32 extern void sum_c4 (gfc_array_c4 * const restrict,
33 gfc_array_c4 * const restrict, const index_type * const restrict);
34 export_proto(sum_c4);
35
36 void
sum_c4(gfc_array_c4 * const restrict retarray,gfc_array_c4 * const restrict array,const index_type * const restrict pdim)37 sum_c4 (gfc_array_c4 * const restrict retarray,
38 gfc_array_c4 * const restrict array,
39 const index_type * const restrict pdim)
40 {
41 index_type count[GFC_MAX_DIMENSIONS];
42 index_type extent[GFC_MAX_DIMENSIONS];
43 index_type sstride[GFC_MAX_DIMENSIONS];
44 index_type dstride[GFC_MAX_DIMENSIONS];
45 const GFC_COMPLEX_4 * restrict base;
46 GFC_COMPLEX_4 * restrict dest;
47 index_type rank;
48 index_type n;
49 index_type len;
50 index_type delta;
51 index_type dim;
52 int continue_loop;
53
54 /* Make dim zero based to avoid confusion. */
55 rank = GFC_DESCRIPTOR_RANK (array) - 1;
56 dim = (*pdim) - 1;
57
58 if (unlikely (dim < 0 || dim > rank))
59 {
60 runtime_error ("Dim argument incorrect in SUM intrinsic: "
61 "is %ld, should be between 1 and %ld",
62 (long int) dim + 1, (long int) rank + 1);
63 }
64
65 len = GFC_DESCRIPTOR_EXTENT(array,dim);
66 if (len < 0)
67 len = 0;
68 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
69
70 for (n = 0; n < dim; n++)
71 {
72 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
73 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
74
75 if (extent[n] < 0)
76 extent[n] = 0;
77 }
78 for (n = dim; n < rank; n++)
79 {
80 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
81 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
82
83 if (extent[n] < 0)
84 extent[n] = 0;
85 }
86
87 if (retarray->base_addr == NULL)
88 {
89 size_t alloc_size, str;
90
91 for (n = 0; n < rank; n++)
92 {
93 if (n == 0)
94 str = 1;
95 else
96 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
97
98 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
99
100 }
101
102 retarray->offset = 0;
103 retarray->dtype.rank = rank;
104
105 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
106
107 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_4));
108 if (alloc_size == 0)
109 {
110 /* Make sure we have a zero-sized array. */
111 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
112 return;
113
114 }
115 }
116 else
117 {
118 if (rank != GFC_DESCRIPTOR_RANK (retarray))
119 runtime_error ("rank of return array incorrect in"
120 " SUM intrinsic: is %ld, should be %ld",
121 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
122 (long int) rank);
123
124 if (unlikely (compile_options.bounds_check))
125 bounds_ifunction_return ((array_t *) retarray, extent,
126 "return value", "SUM");
127 }
128
129 for (n = 0; n < rank; n++)
130 {
131 count[n] = 0;
132 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
133 if (extent[n] <= 0)
134 return;
135 }
136
137 base = array->base_addr;
138 dest = retarray->base_addr;
139
140 continue_loop = 1;
141 while (continue_loop)
142 {
143 const GFC_COMPLEX_4 * restrict src;
144 GFC_COMPLEX_4 result;
145 src = base;
146 {
147
148 result = 0;
149 if (len <= 0)
150 *dest = 0;
151 else
152 {
153 #if ! defined HAVE_BACK_ARG
154 for (n = 0; n < len; n++, src += delta)
155 {
156 #endif
157
158 result += *src;
159 }
160
161 *dest = result;
162 }
163 }
164 /* Advance to the next element. */
165 count[0]++;
166 base += sstride[0];
167 dest += dstride[0];
168 n = 0;
169 while (count[n] == extent[n])
170 {
171 /* When we get to the end of a dimension, reset it and increment
172 the next dimension. */
173 count[n] = 0;
174 /* We could precalculate these products, but this is a less
175 frequently used path so probably not worth it. */
176 base -= sstride[n] * extent[n];
177 dest -= dstride[n] * extent[n];
178 n++;
179 if (n >= rank)
180 {
181 /* Break out of the loop. */
182 continue_loop = 0;
183 break;
184 }
185 else
186 {
187 count[n]++;
188 base += sstride[n];
189 dest += dstride[n];
190 }
191 }
192 }
193 }
194
195
196 extern void msum_c4 (gfc_array_c4 * const restrict,
197 gfc_array_c4 * const restrict, const index_type * const restrict,
198 gfc_array_l1 * const restrict);
199 export_proto(msum_c4);
200
201 void
msum_c4(gfc_array_c4 * const restrict retarray,gfc_array_c4 * const restrict array,const index_type * const restrict pdim,gfc_array_l1 * const restrict mask)202 msum_c4 (gfc_array_c4 * const restrict retarray,
203 gfc_array_c4 * const restrict array,
204 const index_type * const restrict pdim,
205 gfc_array_l1 * const restrict mask)
206 {
207 index_type count[GFC_MAX_DIMENSIONS];
208 index_type extent[GFC_MAX_DIMENSIONS];
209 index_type sstride[GFC_MAX_DIMENSIONS];
210 index_type dstride[GFC_MAX_DIMENSIONS];
211 index_type mstride[GFC_MAX_DIMENSIONS];
212 GFC_COMPLEX_4 * restrict dest;
213 const GFC_COMPLEX_4 * restrict base;
214 const GFC_LOGICAL_1 * restrict mbase;
215 index_type rank;
216 index_type dim;
217 index_type n;
218 index_type len;
219 index_type delta;
220 index_type mdelta;
221 int mask_kind;
222
223 if (mask == NULL)
224 {
225 #ifdef HAVE_BACK_ARG
226 sum_c4 (retarray, array, pdim, back);
227 #else
228 sum_c4 (retarray, array, pdim);
229 #endif
230 return;
231 }
232
233 dim = (*pdim) - 1;
234 rank = GFC_DESCRIPTOR_RANK (array) - 1;
235
236
237 if (unlikely (dim < 0 || dim > rank))
238 {
239 runtime_error ("Dim argument incorrect in SUM intrinsic: "
240 "is %ld, should be between 1 and %ld",
241 (long int) dim + 1, (long int) rank + 1);
242 }
243
244 len = GFC_DESCRIPTOR_EXTENT(array,dim);
245 if (len <= 0)
246 return;
247
248 mbase = mask->base_addr;
249
250 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
251
252 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
253 #ifdef HAVE_GFC_LOGICAL_16
254 || mask_kind == 16
255 #endif
256 )
257 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
258 else
259 runtime_error ("Funny sized logical array");
260
261 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
262 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
263
264 for (n = 0; n < dim; n++)
265 {
266 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
267 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
268 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
269
270 if (extent[n] < 0)
271 extent[n] = 0;
272
273 }
274 for (n = dim; n < rank; n++)
275 {
276 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
277 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
278 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
279
280 if (extent[n] < 0)
281 extent[n] = 0;
282 }
283
284 if (retarray->base_addr == NULL)
285 {
286 size_t alloc_size, str;
287
288 for (n = 0; n < rank; n++)
289 {
290 if (n == 0)
291 str = 1;
292 else
293 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
294
295 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
296
297 }
298
299 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
300
301 retarray->offset = 0;
302 retarray->dtype.rank = rank;
303
304 if (alloc_size == 0)
305 {
306 /* Make sure we have a zero-sized array. */
307 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
308 return;
309 }
310 else
311 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_4));
312
313 }
314 else
315 {
316 if (rank != GFC_DESCRIPTOR_RANK (retarray))
317 runtime_error ("rank of return array incorrect in SUM intrinsic");
318
319 if (unlikely (compile_options.bounds_check))
320 {
321 bounds_ifunction_return ((array_t *) retarray, extent,
322 "return value", "SUM");
323 bounds_equal_extents ((array_t *) mask, (array_t *) array,
324 "MASK argument", "SUM");
325 }
326 }
327
328 for (n = 0; n < rank; n++)
329 {
330 count[n] = 0;
331 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
332 if (extent[n] <= 0)
333 return;
334 }
335
336 dest = retarray->base_addr;
337 base = array->base_addr;
338
339 while (base)
340 {
341 const GFC_COMPLEX_4 * restrict src;
342 const GFC_LOGICAL_1 * restrict msrc;
343 GFC_COMPLEX_4 result;
344 src = base;
345 msrc = mbase;
346 {
347
348 result = 0;
349 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
350 {
351
352 if (*msrc)
353 result += *src;
354 }
355 *dest = result;
356 }
357 /* Advance to the next element. */
358 count[0]++;
359 base += sstride[0];
360 mbase += mstride[0];
361 dest += dstride[0];
362 n = 0;
363 while (count[n] == extent[n])
364 {
365 /* When we get to the end of a dimension, reset it and increment
366 the next dimension. */
367 count[n] = 0;
368 /* We could precalculate these products, but this is a less
369 frequently used path so probably not worth it. */
370 base -= sstride[n] * extent[n];
371 mbase -= mstride[n] * extent[n];
372 dest -= dstride[n] * extent[n];
373 n++;
374 if (n >= rank)
375 {
376 /* Break out of the loop. */
377 base = NULL;
378 break;
379 }
380 else
381 {
382 count[n]++;
383 base += sstride[n];
384 mbase += mstride[n];
385 dest += dstride[n];
386 }
387 }
388 }
389 }
390
391
392 extern void ssum_c4 (gfc_array_c4 * const restrict,
393 gfc_array_c4 * const restrict, const index_type * const restrict,
394 GFC_LOGICAL_4 *);
395 export_proto(ssum_c4);
396
397 void
ssum_c4(gfc_array_c4 * const restrict retarray,gfc_array_c4 * const restrict array,const index_type * const restrict pdim,GFC_LOGICAL_4 * mask)398 ssum_c4 (gfc_array_c4 * const restrict retarray,
399 gfc_array_c4 * const restrict array,
400 const index_type * const restrict pdim,
401 GFC_LOGICAL_4 * mask)
402 {
403 index_type count[GFC_MAX_DIMENSIONS];
404 index_type extent[GFC_MAX_DIMENSIONS];
405 index_type dstride[GFC_MAX_DIMENSIONS];
406 GFC_COMPLEX_4 * restrict dest;
407 index_type rank;
408 index_type n;
409 index_type dim;
410
411
412 if (mask == NULL || *mask)
413 {
414 #ifdef HAVE_BACK_ARG
415 sum_c4 (retarray, array, pdim, back);
416 #else
417 sum_c4 (retarray, array, pdim);
418 #endif
419 return;
420 }
421 /* Make dim zero based to avoid confusion. */
422 dim = (*pdim) - 1;
423 rank = GFC_DESCRIPTOR_RANK (array) - 1;
424
425 if (unlikely (dim < 0 || dim > rank))
426 {
427 runtime_error ("Dim argument incorrect in SUM intrinsic: "
428 "is %ld, should be between 1 and %ld",
429 (long int) dim + 1, (long int) rank + 1);
430 }
431
432 for (n = 0; n < dim; n++)
433 {
434 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
435
436 if (extent[n] <= 0)
437 extent[n] = 0;
438 }
439
440 for (n = dim; n < rank; n++)
441 {
442 extent[n] =
443 GFC_DESCRIPTOR_EXTENT(array,n + 1);
444
445 if (extent[n] <= 0)
446 extent[n] = 0;
447 }
448
449 if (retarray->base_addr == NULL)
450 {
451 size_t alloc_size, str;
452
453 for (n = 0; n < rank; n++)
454 {
455 if (n == 0)
456 str = 1;
457 else
458 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
459
460 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
461
462 }
463
464 retarray->offset = 0;
465 retarray->dtype.rank = rank;
466
467 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
468
469 if (alloc_size == 0)
470 {
471 /* Make sure we have a zero-sized array. */
472 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
473 return;
474 }
475 else
476 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_4));
477 }
478 else
479 {
480 if (rank != GFC_DESCRIPTOR_RANK (retarray))
481 runtime_error ("rank of return array incorrect in"
482 " SUM intrinsic: is %ld, should be %ld",
483 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
484 (long int) rank);
485
486 if (unlikely (compile_options.bounds_check))
487 {
488 for (n=0; n < rank; n++)
489 {
490 index_type ret_extent;
491
492 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
493 if (extent[n] != ret_extent)
494 runtime_error ("Incorrect extent in return value of"
495 " SUM intrinsic in dimension %ld:"
496 " is %ld, should be %ld", (long int) n + 1,
497 (long int) ret_extent, (long int) extent[n]);
498 }
499 }
500 }
501
502 for (n = 0; n < rank; n++)
503 {
504 count[n] = 0;
505 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
506 }
507
508 dest = retarray->base_addr;
509
510 while(1)
511 {
512 *dest = 0;
513 count[0]++;
514 dest += dstride[0];
515 n = 0;
516 while (count[n] == extent[n])
517 {
518 /* When we get to the end of a dimension, reset it and increment
519 the next dimension. */
520 count[n] = 0;
521 /* We could precalculate these products, but this is a less
522 frequently used path so probably not worth it. */
523 dest -= dstride[n] * extent[n];
524 n++;
525 if (n >= rank)
526 return;
527 else
528 {
529 count[n]++;
530 dest += dstride[n];
531 }
532 }
533 }
534 }
535
536 #endif
537