1// <future> -*- C++ -*-
2
3// Copyright (C) 2009-2019 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/future
26 *  This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_FUTURE
30#define _GLIBCXX_FUTURE 1
31
32#pragma GCC system_header
33
34#if __cplusplus < 201103L
35# include <bits/c++0x_warning.h>
36#else
37
38#include <mutex>
39#include <thread>
40#include <condition_variable>
41#include <system_error>
42#include <atomic>
43#include <bits/atomic_futex.h>
44#include <bits/functexcept.h>
45#include <bits/invoke.h>
46#include <bits/unique_ptr.h>
47#include <bits/shared_ptr.h>
48#include <bits/std_function.h>
49#include <bits/uses_allocator.h>
50#include <bits/allocated_ptr.h>
51#include <ext/aligned_buffer.h>
52
53namespace std _GLIBCXX_VISIBILITY(default)
54{
55_GLIBCXX_BEGIN_NAMESPACE_VERSION
56
57  /**
58   * @defgroup futures Futures
59   * @ingroup concurrency
60   *
61   * Classes for futures support.
62   * @{
63   */
64
65  /// Error code for futures
66  enum class future_errc
67  {
68    future_already_retrieved = 1,
69    promise_already_satisfied,
70    no_state,
71    broken_promise
72  };
73
74  /// Specialization.
75  template<>
76    struct is_error_code_enum<future_errc> : public true_type { };
77
78  /// Points to a statically-allocated object derived from error_category.
79  const error_category&
80  future_category() noexcept;
81
82  /// Overload for make_error_code.
83  inline error_code
84  make_error_code(future_errc __errc) noexcept
85  { return error_code(static_cast<int>(__errc), future_category()); }
86
87  /// Overload for make_error_condition.
88  inline error_condition
89  make_error_condition(future_errc __errc) noexcept
90  { return error_condition(static_cast<int>(__errc), future_category()); }
91
92  /**
93   *  @brief Exception type thrown by futures.
94   *  @ingroup exceptions
95   */
96  class future_error : public logic_error
97  {
98  public:
99    explicit
100    future_error(future_errc __errc)
101    : future_error(std::make_error_code(__errc))
102    { }
103
104    virtual ~future_error() noexcept;
105
106    virtual const char*
107    what() const noexcept;
108
109    const error_code&
110    code() const noexcept { return _M_code; }
111
112  private:
113    explicit
114    future_error(error_code __ec)
115    : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
116    { }
117
118    friend void __throw_future_error(int);
119
120    error_code 			_M_code;
121  };
122
123  // Forward declarations.
124  template<typename _Res>
125    class future;
126
127  template<typename _Res>
128    class shared_future;
129
130  template<typename _Signature>
131    class packaged_task;
132
133  template<typename _Res>
134    class promise;
135
136  /// Launch code for futures
137  enum class launch
138  {
139    async = 1,
140    deferred = 2
141  };
142
143  constexpr launch operator&(launch __x, launch __y)
144  {
145    return static_cast<launch>(
146	static_cast<int>(__x) & static_cast<int>(__y));
147  }
148
149  constexpr launch operator|(launch __x, launch __y)
150  {
151    return static_cast<launch>(
152	static_cast<int>(__x) | static_cast<int>(__y));
153  }
154
155  constexpr launch operator^(launch __x, launch __y)
156  {
157    return static_cast<launch>(
158	static_cast<int>(__x) ^ static_cast<int>(__y));
159  }
160
161  constexpr launch operator~(launch __x)
162  { return static_cast<launch>(~static_cast<int>(__x)); }
163
164  inline launch& operator&=(launch& __x, launch __y)
165  { return __x = __x & __y; }
166
167  inline launch& operator|=(launch& __x, launch __y)
168  { return __x = __x | __y; }
169
170  inline launch& operator^=(launch& __x, launch __y)
171  { return __x = __x ^ __y; }
172
173  /// Status code for futures
174  enum class future_status
175  {
176    ready,
177    timeout,
178    deferred
179  };
180
181  // _GLIBCXX_RESOLVE_LIB_DEFECTS
182  // 2021. Further incorrect usages of result_of
183  template<typename _Fn, typename... _Args>
184    using __async_result_of = typename __invoke_result<
185      typename decay<_Fn>::type, typename decay<_Args>::type...>::type;
186
187  template<typename _Fn, typename... _Args>
188    future<__async_result_of<_Fn, _Args...>>
189    async(launch __policy, _Fn&& __fn, _Args&&... __args);
190
191  template<typename _Fn, typename... _Args>
192    future<__async_result_of<_Fn, _Args...>>
193    async(_Fn&& __fn, _Args&&... __args);
194
195#if defined(_GLIBCXX_HAS_GTHREADS)
196
197  /// Base class and enclosing scope.
198  struct __future_base
199  {
200    /// Base class for results.
201    struct _Result_base
202    {
203      exception_ptr		_M_error;
204
205      _Result_base(const _Result_base&) = delete;
206      _Result_base& operator=(const _Result_base&) = delete;
207
208      // _M_destroy() allows derived classes to control deallocation
209      virtual void _M_destroy() = 0;
210
211      struct _Deleter
212      {
213	void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
214      };
215
216    protected:
217      _Result_base();
218      virtual ~_Result_base();
219    };
220
221    /// A unique_ptr for result objects.
222    template<typename _Res>
223      using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;
224
225    /// A result object that has storage for an object of type _Res.
226    template<typename _Res>
227      struct _Result : _Result_base
228      {
229      private:
230	__gnu_cxx::__aligned_buffer<_Res>	_M_storage;
231	bool 					_M_initialized;
232
233      public:
234	typedef _Res result_type;
235
236	_Result() noexcept : _M_initialized() { }
237
238	~_Result()
239	{
240	  if (_M_initialized)
241	    _M_value().~_Res();
242	}
243
244	// Return lvalue, future will add const or rvalue-reference
245	_Res&
246	_M_value() noexcept { return *_M_storage._M_ptr(); }
247
248	void
249	_M_set(const _Res& __res)
250	{
251	  ::new (_M_storage._M_addr()) _Res(__res);
252	  _M_initialized = true;
253	}
254
255	void
256	_M_set(_Res&& __res)
257	{
258	  ::new (_M_storage._M_addr()) _Res(std::move(__res));
259	  _M_initialized = true;
260	}
261
262      private:
263	void _M_destroy() { delete this; }
264    };
265
266    /// A result object that uses an allocator.
267    template<typename _Res, typename _Alloc>
268      struct _Result_alloc final : _Result<_Res>, _Alloc
269      {
270	using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;
271
272        explicit
273	_Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
274	{ }
275
276      private:
277	void _M_destroy()
278	{
279	  __allocator_type __a(*this);
280	  __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
281	  this->~_Result_alloc();
282	}
283      };
284
285    // Create a result object that uses an allocator.
286    template<typename _Res, typename _Allocator>
287      static _Ptr<_Result_alloc<_Res, _Allocator>>
288      _S_allocate_result(const _Allocator& __a)
289      {
290	using __result_type = _Result_alloc<_Res, _Allocator>;
291	typename __result_type::__allocator_type __a2(__a);
292	auto __guard = std::__allocate_guarded(__a2);
293	__result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
294	__guard = nullptr;
295	return _Ptr<__result_type>(__p);
296      }
297
298    // Keep it simple for std::allocator.
299    template<typename _Res, typename _Tp>
300      static _Ptr<_Result<_Res>>
301      _S_allocate_result(const std::allocator<_Tp>& __a)
302      {
303	return _Ptr<_Result<_Res>>(new _Result<_Res>);
304      }
305
306    // Base class for various types of shared state created by an
307    // asynchronous provider (such as a std::promise) and shared with one
308    // or more associated futures.
309    class _State_baseV2
310    {
311      typedef _Ptr<_Result_base> _Ptr_type;
312
313      enum _Status : unsigned {
314	__not_ready,
315	__ready
316      };
317
318      _Ptr_type			_M_result;
319      __atomic_futex_unsigned<>	_M_status;
320      atomic_flag         	_M_retrieved = ATOMIC_FLAG_INIT;
321      once_flag			_M_once;
322
323    public:
324      _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
325	{ }
326      _State_baseV2(const _State_baseV2&) = delete;
327      _State_baseV2& operator=(const _State_baseV2&) = delete;
328      virtual ~_State_baseV2() = default;
329
330      _Result_base&
331      wait()
332      {
333	// Run any deferred function or join any asynchronous thread:
334	_M_complete_async();
335	// Acquire MO makes sure this synchronizes with the thread that made
336	// the future ready.
337	_M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
338	return *_M_result;
339      }
340
341      template<typename _Rep, typename _Period>
342        future_status
343        wait_for(const chrono::duration<_Rep, _Period>& __rel)
344        {
345	  // First, check if the future has been made ready.  Use acquire MO
346	  // to synchronize with the thread that made it ready.
347	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
348	    return future_status::ready;
349	  if (_M_is_deferred_future())
350	    return future_status::deferred;
351	  if (_M_status._M_load_when_equal_for(_Status::__ready,
352	      memory_order_acquire, __rel))
353	    {
354	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
355	      // 2100.  timed waiting functions must also join
356	      // This call is a no-op by default except on an async future,
357	      // in which case the async thread is joined.  It's also not a
358	      // no-op for a deferred future, but such a future will never
359	      // reach this point because it returns future_status::deferred
360	      // instead of waiting for the future to become ready (see
361	      // above).  Async futures synchronize in this call, so we need
362	      // no further synchronization here.
363	      _M_complete_async();
364
365	      return future_status::ready;
366	    }
367	  return future_status::timeout;
368	}
369
370      template<typename _Clock, typename _Duration>
371        future_status
372        wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
373        {
374	  // First, check if the future has been made ready.  Use acquire MO
375	  // to synchronize with the thread that made it ready.
376	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
377	    return future_status::ready;
378	  if (_M_is_deferred_future())
379	    return future_status::deferred;
380	  if (_M_status._M_load_when_equal_until(_Status::__ready,
381	      memory_order_acquire, __abs))
382	    {
383	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
384	      // 2100.  timed waiting functions must also join
385	      // See wait_for(...) above.
386	      _M_complete_async();
387
388	      return future_status::ready;
389	    }
390	  return future_status::timeout;
391	}
392
393      // Provide a result to the shared state and make it ready.
394      // Calls at most once: _M_result = __res();
395      void
396      _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
397      {
398	bool __did_set = false;
399        // all calls to this function are serialized,
400        // side-effects of invoking __res only happen once
401	call_once(_M_once, &_State_baseV2::_M_do_set, this,
402		  std::__addressof(__res), std::__addressof(__did_set));
403	if (__did_set)
404	  // Use release MO to synchronize with observers of the ready state.
405	  _M_status._M_store_notify_all(_Status::__ready,
406					memory_order_release);
407	else if (!__ignore_failure)
408          __throw_future_error(int(future_errc::promise_already_satisfied));
409      }
410
411      // Provide a result to the shared state but delay making it ready
412      // until the calling thread exits.
413      // Calls at most once: _M_result = __res();
414      void
415      _M_set_delayed_result(function<_Ptr_type()> __res,
416			    weak_ptr<_State_baseV2> __self)
417      {
418	bool __did_set = false;
419	unique_ptr<_Make_ready> __mr{new _Make_ready};
420        // all calls to this function are serialized,
421        // side-effects of invoking __res only happen once
422	call_once(_M_once, &_State_baseV2::_M_do_set, this,
423		  std::__addressof(__res), std::__addressof(__did_set));
424	if (!__did_set)
425          __throw_future_error(int(future_errc::promise_already_satisfied));
426	__mr->_M_shared_state = std::move(__self);
427	__mr->_M_set();
428	__mr.release();
429      }
430
431      // Abandon this shared state.
432      void
433      _M_break_promise(_Ptr_type __res)
434      {
435	if (static_cast<bool>(__res))
436	  {
437	    __res->_M_error =
438	      make_exception_ptr(future_error(future_errc::broken_promise));
439	    // This function is only called when the last asynchronous result
440	    // provider is abandoning this shared state, so noone can be
441	    // trying to make the shared state ready at the same time, and
442	    // we can access _M_result directly instead of through call_once.
443	    _M_result.swap(__res);
444	    // Use release MO to synchronize with observers of the ready state.
445	    _M_status._M_store_notify_all(_Status::__ready,
446					  memory_order_release);
447	  }
448      }
449
450      // Called when this object is first passed to a future.
451      void
452      _M_set_retrieved_flag()
453      {
454	if (_M_retrieved.test_and_set())
455	  __throw_future_error(int(future_errc::future_already_retrieved));
456      }
457
458      template<typename _Res, typename _Arg>
459        struct _Setter;
460
461      // set lvalues
462      template<typename _Res, typename _Arg>
463        struct _Setter<_Res, _Arg&>
464        {
465          // check this is only used by promise<R>::set_value(const R&)
466          // or promise<R&>::set_value(R&)
467          static_assert(is_same<_Res, _Arg&>::value  // promise<R&>
468              || is_same<const _Res, _Arg>::value,   // promise<R>
469              "Invalid specialisation");
470
471	  // Used by std::promise to copy construct the result.
472          typename promise<_Res>::_Ptr_type operator()() const
473          {
474            _M_promise->_M_storage->_M_set(*_M_arg);
475            return std::move(_M_promise->_M_storage);
476          }
477          promise<_Res>*    _M_promise;
478          _Arg*             _M_arg;
479        };
480
481      // set rvalues
482      template<typename _Res>
483        struct _Setter<_Res, _Res&&>
484        {
485	  // Used by std::promise to move construct the result.
486          typename promise<_Res>::_Ptr_type operator()() const
487          {
488            _M_promise->_M_storage->_M_set(std::move(*_M_arg));
489            return std::move(_M_promise->_M_storage);
490          }
491          promise<_Res>*    _M_promise;
492          _Res*             _M_arg;
493        };
494
495      // set void
496      template<typename _Res>
497	struct _Setter<_Res, void>
498	{
499	  static_assert(is_void<_Res>::value, "Only used for promise<void>");
500
501	  typename promise<_Res>::_Ptr_type operator()() const
502	  { return std::move(_M_promise->_M_storage); }
503
504	  promise<_Res>*    _M_promise;
505	};
506
507      struct __exception_ptr_tag { };
508
509      // set exceptions
510      template<typename _Res>
511        struct _Setter<_Res, __exception_ptr_tag>
512        {
513	  // Used by std::promise to store an exception as the result.
514          typename promise<_Res>::_Ptr_type operator()() const
515          {
516            _M_promise->_M_storage->_M_error = *_M_ex;
517            return std::move(_M_promise->_M_storage);
518          }
519
520          promise<_Res>*   _M_promise;
521          exception_ptr*    _M_ex;
522        };
523
524      template<typename _Res, typename _Arg>
525        static _Setter<_Res, _Arg&&>
526        __setter(promise<_Res>* __prom, _Arg&& __arg)
527        {
528	  _S_check(__prom->_M_future);
529          return _Setter<_Res, _Arg&&>{ __prom, std::__addressof(__arg) };
530        }
531
532      template<typename _Res>
533        static _Setter<_Res, __exception_ptr_tag>
534        __setter(exception_ptr& __ex, promise<_Res>* __prom)
535        {
536	  _S_check(__prom->_M_future);
537          return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
538        }
539
540      template<typename _Res>
541	static _Setter<_Res, void>
542	__setter(promise<_Res>* __prom)
543	{
544	  _S_check(__prom->_M_future);
545	  return _Setter<_Res, void>{ __prom };
546	}
547
548      template<typename _Tp>
549        static void
550        _S_check(const shared_ptr<_Tp>& __p)
551        {
552          if (!static_cast<bool>(__p))
553            __throw_future_error((int)future_errc::no_state);
554        }
555
556    private:
557      // The function invoked with std::call_once(_M_once, ...).
558      void
559      _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
560      {
561        _Ptr_type __res = (*__f)();
562        // Notify the caller that we did try to set; if we do not throw an
563        // exception, the caller will be aware that it did set (e.g., see
564        // _M_set_result).
565	*__did_set = true;
566        _M_result.swap(__res); // nothrow
567      }
568
569      // Wait for completion of async function.
570      virtual void _M_complete_async() { }
571
572      // Return true if state corresponds to a deferred function.
573      virtual bool _M_is_deferred_future() const { return false; }
574
575      struct _Make_ready final : __at_thread_exit_elt
576      {
577	weak_ptr<_State_baseV2> _M_shared_state;
578	static void _S_run(void*);
579	void _M_set();
580      };
581    };
582
583#ifdef _GLIBCXX_ASYNC_ABI_COMPAT
584    class _State_base;
585    class _Async_state_common;
586#else
587    using _State_base = _State_baseV2;
588    class _Async_state_commonV2;
589#endif
590
591    template<typename _BoundFn,
592	     typename _Res = decltype(std::declval<_BoundFn&>()())>
593      class _Deferred_state;
594
595    template<typename _BoundFn,
596	     typename _Res = decltype(std::declval<_BoundFn&>()())>
597      class _Async_state_impl;
598
599    template<typename _Signature>
600      class _Task_state_base;
601
602    template<typename _Fn, typename _Alloc, typename _Signature>
603      class _Task_state;
604
605    template<typename _BoundFn>
606      static std::shared_ptr<_State_base>
607      _S_make_deferred_state(_BoundFn&& __fn);
608
609    template<typename _BoundFn>
610      static std::shared_ptr<_State_base>
611      _S_make_async_state(_BoundFn&& __fn);
612
613    template<typename _Res_ptr, typename _Fn,
614	     typename _Res = typename _Res_ptr::element_type::result_type>
615      struct _Task_setter;
616
617    template<typename _Res_ptr, typename _BoundFn>
618      static _Task_setter<_Res_ptr, _BoundFn>
619      _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
620      {
621	return { std::__addressof(__ptr), std::__addressof(__call) };
622      }
623  };
624
625  /// Partial specialization for reference types.
626  template<typename _Res>
627    struct __future_base::_Result<_Res&> : __future_base::_Result_base
628    {
629      typedef _Res& result_type;
630
631      _Result() noexcept : _M_value_ptr() { }
632
633      void
634      _M_set(_Res& __res) noexcept
635      { _M_value_ptr = std::addressof(__res); }
636
637      _Res& _M_get() noexcept { return *_M_value_ptr; }
638
639    private:
640      _Res* 			_M_value_ptr;
641
642      void _M_destroy() { delete this; }
643    };
644
645  /// Explicit specialization for void.
646  template<>
647    struct __future_base::_Result<void> : __future_base::_Result_base
648    {
649      typedef void result_type;
650
651    private:
652      void _M_destroy() { delete this; }
653    };
654
655#ifndef _GLIBCXX_ASYNC_ABI_COMPAT
656
657  // Allow _Setter objects to be stored locally in std::function
658  template<typename _Res, typename _Arg>
659    struct __is_location_invariant
660    <__future_base::_State_base::_Setter<_Res, _Arg>>
661    : true_type { };
662
663  // Allow _Task_setter objects to be stored locally in std::function
664  template<typename _Res_ptr, typename _Fn, typename _Res>
665    struct __is_location_invariant
666    <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
667    : true_type { };
668
669  /// Common implementation for future and shared_future.
670  template<typename _Res>
671    class __basic_future : public __future_base
672    {
673    protected:
674      typedef shared_ptr<_State_base>		__state_type;
675      typedef __future_base::_Result<_Res>&	__result_type;
676
677    private:
678      __state_type 		_M_state;
679
680    public:
681      // Disable copying.
682      __basic_future(const __basic_future&) = delete;
683      __basic_future& operator=(const __basic_future&) = delete;
684
685      bool
686      valid() const noexcept { return static_cast<bool>(_M_state); }
687
688      void
689      wait() const
690      {
691        _State_base::_S_check(_M_state);
692        _M_state->wait();
693      }
694
695      template<typename _Rep, typename _Period>
696        future_status
697        wait_for(const chrono::duration<_Rep, _Period>& __rel) const
698        {
699          _State_base::_S_check(_M_state);
700          return _M_state->wait_for(__rel);
701        }
702
703      template<typename _Clock, typename _Duration>
704        future_status
705        wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
706        {
707          _State_base::_S_check(_M_state);
708          return _M_state->wait_until(__abs);
709        }
710
711    protected:
712      /// Wait for the state to be ready and rethrow any stored exception
713      __result_type
714      _M_get_result() const
715      {
716        _State_base::_S_check(_M_state);
717        _Result_base& __res = _M_state->wait();
718        if (!(__res._M_error == 0))
719          rethrow_exception(__res._M_error);
720        return static_cast<__result_type>(__res);
721      }
722
723      void _M_swap(__basic_future& __that) noexcept
724      {
725        _M_state.swap(__that._M_state);
726      }
727
728      // Construction of a future by promise::get_future()
729      explicit
730      __basic_future(const __state_type& __state) : _M_state(__state)
731      {
732        _State_base::_S_check(_M_state);
733        _M_state->_M_set_retrieved_flag();
734      }
735
736      // Copy construction from a shared_future
737      explicit
738      __basic_future(const shared_future<_Res>&) noexcept;
739
740      // Move construction from a shared_future
741      explicit
742      __basic_future(shared_future<_Res>&&) noexcept;
743
744      // Move construction from a future
745      explicit
746      __basic_future(future<_Res>&&) noexcept;
747
748      constexpr __basic_future() noexcept : _M_state() { }
749
750      struct _Reset
751      {
752        explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
753        ~_Reset() { _M_fut._M_state.reset(); }
754        __basic_future& _M_fut;
755      };
756    };
757
758
759  /// Primary template for future.
760  template<typename _Res>
761    class future : public __basic_future<_Res>
762    {
763      friend class promise<_Res>;
764      template<typename> friend class packaged_task;
765      template<typename _Fn, typename... _Args>
766        friend future<__async_result_of<_Fn, _Args...>>
767        async(launch, _Fn&&, _Args&&...);
768
769      typedef __basic_future<_Res> _Base_type;
770      typedef typename _Base_type::__state_type __state_type;
771
772      explicit
773      future(const __state_type& __state) : _Base_type(__state) { }
774
775    public:
776      constexpr future() noexcept : _Base_type() { }
777
778      /// Move constructor
779      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
780
781      // Disable copying
782      future(const future&) = delete;
783      future& operator=(const future&) = delete;
784
785      future& operator=(future&& __fut) noexcept
786      {
787        future(std::move(__fut))._M_swap(*this);
788        return *this;
789      }
790
791      /// Retrieving the value
792      _Res
793      get()
794      {
795        typename _Base_type::_Reset __reset(*this);
796        return std::move(this->_M_get_result()._M_value());
797      }
798
799      shared_future<_Res> share() noexcept;
800    };
801
802  /// Partial specialization for future<R&>
803  template<typename _Res>
804    class future<_Res&> : public __basic_future<_Res&>
805    {
806      friend class promise<_Res&>;
807      template<typename> friend class packaged_task;
808      template<typename _Fn, typename... _Args>
809        friend future<__async_result_of<_Fn, _Args...>>
810        async(launch, _Fn&&, _Args&&...);
811
812      typedef __basic_future<_Res&> _Base_type;
813      typedef typename _Base_type::__state_type __state_type;
814
815      explicit
816      future(const __state_type& __state) : _Base_type(__state) { }
817
818    public:
819      constexpr future() noexcept : _Base_type() { }
820
821      /// Move constructor
822      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
823
824      // Disable copying
825      future(const future&) = delete;
826      future& operator=(const future&) = delete;
827
828      future& operator=(future&& __fut) noexcept
829      {
830        future(std::move(__fut))._M_swap(*this);
831        return *this;
832      }
833
834      /// Retrieving the value
835      _Res&
836      get()
837      {
838        typename _Base_type::_Reset __reset(*this);
839        return this->_M_get_result()._M_get();
840      }
841
842      shared_future<_Res&> share() noexcept;
843    };
844
845  /// Explicit specialization for future<void>
846  template<>
847    class future<void> : public __basic_future<void>
848    {
849      friend class promise<void>;
850      template<typename> friend class packaged_task;
851      template<typename _Fn, typename... _Args>
852        friend future<__async_result_of<_Fn, _Args...>>
853        async(launch, _Fn&&, _Args&&...);
854
855      typedef __basic_future<void> _Base_type;
856      typedef typename _Base_type::__state_type __state_type;
857
858      explicit
859      future(const __state_type& __state) : _Base_type(__state) { }
860
861    public:
862      constexpr future() noexcept : _Base_type() { }
863
864      /// Move constructor
865      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
866
867      // Disable copying
868      future(const future&) = delete;
869      future& operator=(const future&) = delete;
870
871      future& operator=(future&& __fut) noexcept
872      {
873        future(std::move(__fut))._M_swap(*this);
874        return *this;
875      }
876
877      /// Retrieving the value
878      void
879      get()
880      {
881        typename _Base_type::_Reset __reset(*this);
882        this->_M_get_result();
883      }
884
885      shared_future<void> share() noexcept;
886    };
887
888
889  /// Primary template for shared_future.
890  template<typename _Res>
891    class shared_future : public __basic_future<_Res>
892    {
893      typedef __basic_future<_Res> _Base_type;
894
895    public:
896      constexpr shared_future() noexcept : _Base_type() { }
897
898      /// Copy constructor
899      shared_future(const shared_future& __sf) noexcept : _Base_type(__sf) { }
900
901      /// Construct from a future rvalue
902      shared_future(future<_Res>&& __uf) noexcept
903      : _Base_type(std::move(__uf))
904      { }
905
906      /// Construct from a shared_future rvalue
907      shared_future(shared_future&& __sf) noexcept
908      : _Base_type(std::move(__sf))
909      { }
910
911      shared_future& operator=(const shared_future& __sf) noexcept
912      {
913        shared_future(__sf)._M_swap(*this);
914        return *this;
915      }
916
917      shared_future& operator=(shared_future&& __sf) noexcept
918      {
919        shared_future(std::move(__sf))._M_swap(*this);
920        return *this;
921      }
922
923      /// Retrieving the value
924      const _Res&
925      get() const { return this->_M_get_result()._M_value(); }
926    };
927
928  /// Partial specialization for shared_future<R&>
929  template<typename _Res>
930    class shared_future<_Res&> : public __basic_future<_Res&>
931    {
932      typedef __basic_future<_Res&>           _Base_type;
933
934    public:
935      constexpr shared_future() noexcept : _Base_type() { }
936
937      /// Copy constructor
938      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
939
940      /// Construct from a future rvalue
941      shared_future(future<_Res&>&& __uf) noexcept
942      : _Base_type(std::move(__uf))
943      { }
944
945      /// Construct from a shared_future rvalue
946      shared_future(shared_future&& __sf) noexcept
947      : _Base_type(std::move(__sf))
948      { }
949
950      shared_future& operator=(const shared_future& __sf)
951      {
952        shared_future(__sf)._M_swap(*this);
953        return *this;
954      }
955
956      shared_future& operator=(shared_future&& __sf) noexcept
957      {
958        shared_future(std::move(__sf))._M_swap(*this);
959        return *this;
960      }
961
962      /// Retrieving the value
963      _Res&
964      get() const { return this->_M_get_result()._M_get(); }
965    };
966
967  /// Explicit specialization for shared_future<void>
968  template<>
969    class shared_future<void> : public __basic_future<void>
970    {
971      typedef __basic_future<void> _Base_type;
972
973    public:
974      constexpr shared_future() noexcept : _Base_type() { }
975
976      /// Copy constructor
977      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
978
979      /// Construct from a future rvalue
980      shared_future(future<void>&& __uf) noexcept
981      : _Base_type(std::move(__uf))
982      { }
983
984      /// Construct from a shared_future rvalue
985      shared_future(shared_future&& __sf) noexcept
986      : _Base_type(std::move(__sf))
987      { }
988
989      shared_future& operator=(const shared_future& __sf)
990      {
991        shared_future(__sf)._M_swap(*this);
992        return *this;
993      }
994
995      shared_future& operator=(shared_future&& __sf) noexcept
996      {
997        shared_future(std::move(__sf))._M_swap(*this);
998        return *this;
999      }
1000
1001      // Retrieving the value
1002      void
1003      get() const { this->_M_get_result(); }
1004    };
1005
1006  // Now we can define the protected __basic_future constructors.
1007  template<typename _Res>
1008    inline __basic_future<_Res>::
1009    __basic_future(const shared_future<_Res>& __sf) noexcept
1010    : _M_state(__sf._M_state)
1011    { }
1012
1013  template<typename _Res>
1014    inline __basic_future<_Res>::
1015    __basic_future(shared_future<_Res>&& __sf) noexcept
1016    : _M_state(std::move(__sf._M_state))
1017    { }
1018
1019  template<typename _Res>
1020    inline __basic_future<_Res>::
1021    __basic_future(future<_Res>&& __uf) noexcept
1022    : _M_state(std::move(__uf._M_state))
1023    { }
1024
1025  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1026  // 2556. Wide contract for future::share()
1027  template<typename _Res>
1028    inline shared_future<_Res>
1029    future<_Res>::share() noexcept
1030    { return shared_future<_Res>(std::move(*this)); }
1031
1032  template<typename _Res>
1033    inline shared_future<_Res&>
1034    future<_Res&>::share() noexcept
1035    { return shared_future<_Res&>(std::move(*this)); }
1036
1037  inline shared_future<void>
1038  future<void>::share() noexcept
1039  { return shared_future<void>(std::move(*this)); }
1040
1041  /// Primary template for promise
1042  template<typename _Res>
1043    class promise
1044    {
1045      typedef __future_base::_State_base 	_State;
1046      typedef __future_base::_Result<_Res>	_Res_type;
1047      typedef __future_base::_Ptr<_Res_type>	_Ptr_type;
1048      template<typename, typename> friend class _State::_Setter;
1049      friend _State;
1050
1051      shared_ptr<_State>                        _M_future;
1052      _Ptr_type                                 _M_storage;
1053
1054    public:
1055      promise()
1056      : _M_future(std::make_shared<_State>()),
1057	_M_storage(new _Res_type())
1058      { }
1059
1060      promise(promise&& __rhs) noexcept
1061      : _M_future(std::move(__rhs._M_future)),
1062	_M_storage(std::move(__rhs._M_storage))
1063      { }
1064
1065      template<typename _Allocator>
1066        promise(allocator_arg_t, const _Allocator& __a)
1067        : _M_future(std::allocate_shared<_State>(__a)),
1068	  _M_storage(__future_base::_S_allocate_result<_Res>(__a))
1069        { }
1070
1071      template<typename _Allocator>
1072        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1073        : _M_future(std::move(__rhs._M_future)),
1074	  _M_storage(std::move(__rhs._M_storage))
1075        { }
1076
1077      promise(const promise&) = delete;
1078
1079      ~promise()
1080      {
1081        if (static_cast<bool>(_M_future) && !_M_future.unique())
1082          _M_future->_M_break_promise(std::move(_M_storage));
1083      }
1084
1085      // Assignment
1086      promise&
1087      operator=(promise&& __rhs) noexcept
1088      {
1089        promise(std::move(__rhs)).swap(*this);
1090        return *this;
1091      }
1092
1093      promise& operator=(const promise&) = delete;
1094
1095      void
1096      swap(promise& __rhs) noexcept
1097      {
1098        _M_future.swap(__rhs._M_future);
1099        _M_storage.swap(__rhs._M_storage);
1100      }
1101
1102      // Retrieving the result
1103      future<_Res>
1104      get_future()
1105      { return future<_Res>(_M_future); }
1106
1107      // Setting the result
1108      void
1109      set_value(const _Res& __r)
1110      { _M_future->_M_set_result(_State::__setter(this, __r)); }
1111
1112      void
1113      set_value(_Res&& __r)
1114      { _M_future->_M_set_result(_State::__setter(this, std::move(__r))); }
1115
1116      void
1117      set_exception(exception_ptr __p)
1118      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1119
1120      void
1121      set_value_at_thread_exit(const _Res& __r)
1122      {
1123	_M_future->_M_set_delayed_result(_State::__setter(this, __r),
1124					 _M_future);
1125      }
1126
1127      void
1128      set_value_at_thread_exit(_Res&& __r)
1129      {
1130	_M_future->_M_set_delayed_result(
1131	    _State::__setter(this, std::move(__r)), _M_future);
1132      }
1133
1134      void
1135      set_exception_at_thread_exit(exception_ptr __p)
1136      {
1137	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1138					 _M_future);
1139      }
1140    };
1141
1142  template<typename _Res>
1143    inline void
1144    swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
1145    { __x.swap(__y); }
1146
1147  template<typename _Res, typename _Alloc>
1148    struct uses_allocator<promise<_Res>, _Alloc>
1149    : public true_type { };
1150
1151
1152  /// Partial specialization for promise<R&>
1153  template<typename _Res>
1154    class promise<_Res&>
1155    {
1156      typedef __future_base::_State_base	_State;
1157      typedef __future_base::_Result<_Res&>	_Res_type;
1158      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
1159      template<typename, typename> friend class _State::_Setter;
1160      friend _State;
1161
1162      shared_ptr<_State>                        _M_future;
1163      _Ptr_type                                 _M_storage;
1164
1165    public:
1166      promise()
1167      : _M_future(std::make_shared<_State>()),
1168	_M_storage(new _Res_type())
1169      { }
1170
1171      promise(promise&& __rhs) noexcept
1172      : _M_future(std::move(__rhs._M_future)),
1173	_M_storage(std::move(__rhs._M_storage))
1174      { }
1175
1176      template<typename _Allocator>
1177        promise(allocator_arg_t, const _Allocator& __a)
1178        : _M_future(std::allocate_shared<_State>(__a)),
1179	  _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
1180        { }
1181
1182      template<typename _Allocator>
1183        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1184        : _M_future(std::move(__rhs._M_future)),
1185	  _M_storage(std::move(__rhs._M_storage))
1186        { }
1187
1188      promise(const promise&) = delete;
1189
1190      ~promise()
1191      {
1192        if (static_cast<bool>(_M_future) && !_M_future.unique())
1193          _M_future->_M_break_promise(std::move(_M_storage));
1194      }
1195
1196      // Assignment
1197      promise&
1198      operator=(promise&& __rhs) noexcept
1199      {
1200        promise(std::move(__rhs)).swap(*this);
1201        return *this;
1202      }
1203
1204      promise& operator=(const promise&) = delete;
1205
1206      void
1207      swap(promise& __rhs) noexcept
1208      {
1209        _M_future.swap(__rhs._M_future);
1210        _M_storage.swap(__rhs._M_storage);
1211      }
1212
1213      // Retrieving the result
1214      future<_Res&>
1215      get_future()
1216      { return future<_Res&>(_M_future); }
1217
1218      // Setting the result
1219      void
1220      set_value(_Res& __r)
1221      { _M_future->_M_set_result(_State::__setter(this, __r)); }
1222
1223      void
1224      set_exception(exception_ptr __p)
1225      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1226
1227      void
1228      set_value_at_thread_exit(_Res& __r)
1229      {
1230	_M_future->_M_set_delayed_result(_State::__setter(this, __r),
1231					 _M_future);
1232      }
1233
1234      void
1235      set_exception_at_thread_exit(exception_ptr __p)
1236      {
1237	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1238					 _M_future);
1239      }
1240    };
1241
1242  /// Explicit specialization for promise<void>
1243  template<>
1244    class promise<void>
1245    {
1246      typedef __future_base::_State_base	_State;
1247      typedef __future_base::_Result<void>	_Res_type;
1248      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
1249      template<typename, typename> friend class _State::_Setter;
1250      friend _State;
1251
1252      shared_ptr<_State>                        _M_future;
1253      _Ptr_type                                 _M_storage;
1254
1255    public:
1256      promise()
1257      : _M_future(std::make_shared<_State>()),
1258	_M_storage(new _Res_type())
1259      { }
1260
1261      promise(promise&& __rhs) noexcept
1262      : _M_future(std::move(__rhs._M_future)),
1263	_M_storage(std::move(__rhs._M_storage))
1264      { }
1265
1266      template<typename _Allocator>
1267        promise(allocator_arg_t, const _Allocator& __a)
1268        : _M_future(std::allocate_shared<_State>(__a)),
1269	  _M_storage(__future_base::_S_allocate_result<void>(__a))
1270        { }
1271
1272      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1273      // 2095.  missing constructors needed for uses-allocator construction
1274      template<typename _Allocator>
1275        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1276        : _M_future(std::move(__rhs._M_future)),
1277	  _M_storage(std::move(__rhs._M_storage))
1278        { }
1279
1280      promise(const promise&) = delete;
1281
1282      ~promise()
1283      {
1284        if (static_cast<bool>(_M_future) && !_M_future.unique())
1285          _M_future->_M_break_promise(std::move(_M_storage));
1286      }
1287
1288      // Assignment
1289      promise&
1290      operator=(promise&& __rhs) noexcept
1291      {
1292        promise(std::move(__rhs)).swap(*this);
1293        return *this;
1294      }
1295
1296      promise& operator=(const promise&) = delete;
1297
1298      void
1299      swap(promise& __rhs) noexcept
1300      {
1301        _M_future.swap(__rhs._M_future);
1302        _M_storage.swap(__rhs._M_storage);
1303      }
1304
1305      // Retrieving the result
1306      future<void>
1307      get_future()
1308      { return future<void>(_M_future); }
1309
1310      // Setting the result
1311      void
1312      set_value()
1313      { _M_future->_M_set_result(_State::__setter(this)); }
1314
1315      void
1316      set_exception(exception_ptr __p)
1317      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1318
1319      void
1320      set_value_at_thread_exit()
1321      { _M_future->_M_set_delayed_result(_State::__setter(this), _M_future); }
1322
1323      void
1324      set_exception_at_thread_exit(exception_ptr __p)
1325      {
1326	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1327					 _M_future);
1328      }
1329    };
1330
1331  template<typename _Ptr_type, typename _Fn, typename _Res>
1332    struct __future_base::_Task_setter
1333    {
1334      // Invoke the function and provide the result to the caller.
1335      _Ptr_type operator()() const
1336      {
1337	__try
1338	  {
1339	    (*_M_result)->_M_set((*_M_fn)());
1340	  }
1341	__catch(const __cxxabiv1::__forced_unwind&)
1342	  {
1343	    __throw_exception_again; // will cause broken_promise
1344	  }
1345	__catch(...)
1346	  {
1347	    (*_M_result)->_M_error = current_exception();
1348	  }
1349	return std::move(*_M_result);
1350      }
1351      _Ptr_type*	_M_result;
1352      _Fn*		_M_fn;
1353    };
1354
1355  template<typename _Ptr_type, typename _Fn>
1356    struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
1357    {
1358      _Ptr_type operator()() const
1359      {
1360	__try
1361	  {
1362	    (*_M_fn)();
1363	  }
1364	__catch(const __cxxabiv1::__forced_unwind&)
1365	  {
1366	    __throw_exception_again; // will cause broken_promise
1367	  }
1368	__catch(...)
1369	  {
1370	    (*_M_result)->_M_error = current_exception();
1371	  }
1372	return std::move(*_M_result);
1373      }
1374      _Ptr_type*	_M_result;
1375      _Fn*		_M_fn;
1376    };
1377
1378  // Holds storage for a packaged_task's result.
1379  template<typename _Res, typename... _Args>
1380    struct __future_base::_Task_state_base<_Res(_Args...)>
1381    : __future_base::_State_base
1382    {
1383      typedef _Res _Res_type;
1384
1385      template<typename _Alloc>
1386	_Task_state_base(const _Alloc& __a)
1387	: _M_result(_S_allocate_result<_Res>(__a))
1388	{ }
1389
1390      // Invoke the stored task and make the state ready.
1391      virtual void
1392      _M_run(_Args&&... __args) = 0;
1393
1394      // Invoke the stored task and make the state ready at thread exit.
1395      virtual void
1396      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;
1397
1398      virtual shared_ptr<_Task_state_base>
1399      _M_reset() = 0;
1400
1401      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1402      _Ptr_type _M_result;
1403    };
1404
1405  // Holds a packaged_task's stored task.
1406  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1407    struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
1408    : __future_base::_Task_state_base<_Res(_Args...)>
1409    {
1410      template<typename _Fn2>
1411	_Task_state(_Fn2&& __fn, const _Alloc& __a)
1412	: _Task_state_base<_Res(_Args...)>(__a),
1413	  _M_impl(std::forward<_Fn2>(__fn), __a)
1414	{ }
1415
1416    private:
1417      virtual void
1418      _M_run(_Args&&... __args)
1419      {
1420	auto __boundfn = [&] () -> typename result_of<_Fn&(_Args&&...)>::type {
1421	    return std::__invoke(_M_impl._M_fn, std::forward<_Args>(__args)...);
1422	};
1423	this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
1424      }
1425
1426      virtual void
1427      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
1428      {
1429	auto __boundfn = [&] () -> typename result_of<_Fn&(_Args&&...)>::type {
1430	    return std::__invoke(_M_impl._M_fn, std::forward<_Args>(__args)...);
1431	};
1432	this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
1433				    std::move(__self));
1434      }
1435
1436      virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
1437      _M_reset();
1438
1439      struct _Impl : _Alloc
1440      {
1441	template<typename _Fn2>
1442	  _Impl(_Fn2&& __fn, const _Alloc& __a)
1443	  : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
1444	_Fn _M_fn;
1445      } _M_impl;
1446    };
1447
1448  template<typename _Signature, typename _Fn, typename _Alloc>
1449    static shared_ptr<__future_base::_Task_state_base<_Signature>>
1450    __create_task_state(_Fn&& __fn, const _Alloc& __a)
1451    {
1452      typedef typename decay<_Fn>::type _Fn2;
1453      typedef __future_base::_Task_state<_Fn2, _Alloc, _Signature> _State;
1454      return std::allocate_shared<_State>(__a, std::forward<_Fn>(__fn), __a);
1455    }
1456
1457  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1458    shared_ptr<__future_base::_Task_state_base<_Res(_Args...)>>
1459    __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)>::_M_reset()
1460    {
1461      return __create_task_state<_Res(_Args...)>(std::move(_M_impl._M_fn),
1462						 static_cast<_Alloc&>(_M_impl));
1463    }
1464
1465  /// packaged_task
1466  template<typename _Res, typename... _ArgTypes>
1467    class packaged_task<_Res(_ArgTypes...)>
1468    {
1469      typedef __future_base::_Task_state_base<_Res(_ArgTypes...)> _State_type;
1470      shared_ptr<_State_type>                   _M_state;
1471
1472      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1473      // 3039. Unnecessary decay in thread and packaged_task
1474      template<typename _Fn, typename _Fn2 = __remove_cvref_t<_Fn>>
1475	using __not_same
1476	  = typename enable_if<!is_same<packaged_task, _Fn2>::value>::type;
1477
1478    public:
1479      // Construction and destruction
1480      packaged_task() noexcept { }
1481
1482      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1483      // 2095.  missing constructors needed for uses-allocator construction
1484      template<typename _Allocator>
1485	packaged_task(allocator_arg_t, const _Allocator& __a) noexcept
1486	{ }
1487
1488      template<typename _Fn, typename = __not_same<_Fn>>
1489	explicit
1490	packaged_task(_Fn&& __fn)
1491	: packaged_task(allocator_arg, std::allocator<int>(),
1492			std::forward<_Fn>(__fn))
1493	{ }
1494
1495      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1496      // 2097.  packaged_task constructors should be constrained
1497      // 2407. [this constructor should not be] explicit
1498      template<typename _Fn, typename _Alloc, typename = __not_same<_Fn>>
1499	packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
1500	: _M_state(__create_task_state<_Res(_ArgTypes...)>(
1501		   std::forward<_Fn>(__fn), __a))
1502	{ }
1503
1504      ~packaged_task()
1505      {
1506        if (static_cast<bool>(_M_state) && !_M_state.unique())
1507	  _M_state->_M_break_promise(std::move(_M_state->_M_result));
1508      }
1509
1510      // No copy
1511      packaged_task(const packaged_task&) = delete;
1512      packaged_task& operator=(const packaged_task&) = delete;
1513
1514      template<typename _Allocator>
1515	packaged_task(allocator_arg_t, const _Allocator&,
1516		      const packaged_task&) = delete;
1517
1518      // Move support
1519      packaged_task(packaged_task&& __other) noexcept
1520      { this->swap(__other); }
1521
1522      template<typename _Allocator>
1523	packaged_task(allocator_arg_t, const _Allocator&,
1524		      packaged_task&& __other) noexcept
1525	{ this->swap(__other); }
1526
1527      packaged_task& operator=(packaged_task&& __other) noexcept
1528      {
1529	packaged_task(std::move(__other)).swap(*this);
1530	return *this;
1531      }
1532
1533      void
1534      swap(packaged_task& __other) noexcept
1535      { _M_state.swap(__other._M_state); }
1536
1537      bool
1538      valid() const noexcept
1539      { return static_cast<bool>(_M_state); }
1540
1541      // Result retrieval
1542      future<_Res>
1543      get_future()
1544      { return future<_Res>(_M_state); }
1545
1546      // Execution
1547      void
1548      operator()(_ArgTypes... __args)
1549      {
1550	__future_base::_State_base::_S_check(_M_state);
1551	_M_state->_M_run(std::forward<_ArgTypes>(__args)...);
1552      }
1553
1554      void
1555      make_ready_at_thread_exit(_ArgTypes... __args)
1556      {
1557	__future_base::_State_base::_S_check(_M_state);
1558	_M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
1559      }
1560
1561      void
1562      reset()
1563      {
1564	__future_base::_State_base::_S_check(_M_state);
1565	packaged_task __tmp;
1566	__tmp._M_state = _M_state;
1567	_M_state = _M_state->_M_reset();
1568      }
1569    };
1570
1571  /// swap
1572  template<typename _Res, typename... _ArgTypes>
1573    inline void
1574    swap(packaged_task<_Res(_ArgTypes...)>& __x,
1575	 packaged_task<_Res(_ArgTypes...)>& __y) noexcept
1576    { __x.swap(__y); }
1577
1578  template<typename _Res, typename _Alloc>
1579    struct uses_allocator<packaged_task<_Res>, _Alloc>
1580    : public true_type { };
1581
1582
1583  // Shared state created by std::async().
1584  // Holds a deferred function and storage for its result.
1585  template<typename _BoundFn, typename _Res>
1586    class __future_base::_Deferred_state final
1587    : public __future_base::_State_base
1588    {
1589    public:
1590      explicit
1591      _Deferred_state(_BoundFn&& __fn)
1592      : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1593      { }
1594
1595    private:
1596      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1597      _Ptr_type _M_result;
1598      _BoundFn _M_fn;
1599
1600      // Run the deferred function.
1601      virtual void
1602      _M_complete_async()
1603      {
1604	// Multiple threads can call a waiting function on the future and
1605	// reach this point at the same time. The call_once in _M_set_result
1606	// ensures only the first one run the deferred function, stores the
1607	// result in _M_result, swaps that with the base _M_result and makes
1608	// the state ready. Tell _M_set_result to ignore failure so all later
1609	// calls do nothing.
1610        _M_set_result(_S_task_setter(_M_result, _M_fn), true);
1611      }
1612
1613      // Caller should check whether the state is ready first, because this
1614      // function will return true even after the deferred function has run.
1615      virtual bool _M_is_deferred_future() const { return true; }
1616    };
1617
1618  // Common functionality hoisted out of the _Async_state_impl template.
1619  class __future_base::_Async_state_commonV2
1620    : public __future_base::_State_base
1621  {
1622  protected:
1623    ~_Async_state_commonV2() = default;
1624
1625    // Make waiting functions block until the thread completes, as if joined.
1626    //
1627    // This function is used by wait() to satisfy the first requirement below
1628    // and by wait_for() / wait_until() to satisfy the second.
1629    //
1630    // [futures.async]:
1631    //
1632    // - a call to a waiting function on an asynchronous return object that
1633    // shares the shared state created by this async call shall block until
1634    // the associated thread has completed, as if joined, or else time out.
1635    //
1636    // - the associated thread completion synchronizes with the return from
1637    // the first function that successfully detects the ready status of the
1638    // shared state or with the return from the last function that releases
1639    // the shared state, whichever happens first.
1640    virtual void _M_complete_async() { _M_join(); }
1641
1642    void _M_join() { std::call_once(_M_once, &thread::join, &_M_thread); }
1643
1644    thread _M_thread;
1645    once_flag _M_once;
1646  };
1647
1648  // Shared state created by std::async().
1649  // Starts a new thread that runs a function and makes the shared state ready.
1650  template<typename _BoundFn, typename _Res>
1651    class __future_base::_Async_state_impl final
1652    : public __future_base::_Async_state_commonV2
1653    {
1654    public:
1655      explicit
1656      _Async_state_impl(_BoundFn&& __fn)
1657      : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1658      {
1659	_M_thread = std::thread{ [this] {
1660	    __try
1661	      {
1662		_M_set_result(_S_task_setter(_M_result, _M_fn));
1663	      }
1664	    __catch (const __cxxabiv1::__forced_unwind&)
1665	      {
1666		// make the shared state ready on thread cancellation
1667		if (static_cast<bool>(_M_result))
1668		  this->_M_break_promise(std::move(_M_result));
1669		__throw_exception_again;
1670	      }
1671        } };
1672      }
1673
1674      // Must not destroy _M_result and _M_fn until the thread finishes.
1675      // Call join() directly rather than through _M_join() because no other
1676      // thread can be referring to this state if it is being destroyed.
1677      ~_Async_state_impl() { if (_M_thread.joinable()) _M_thread.join(); }
1678
1679    private:
1680      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1681      _Ptr_type _M_result;
1682      _BoundFn _M_fn;
1683    };
1684
1685  template<typename _BoundFn>
1686    inline std::shared_ptr<__future_base::_State_base>
1687    __future_base::_S_make_deferred_state(_BoundFn&& __fn)
1688    {
1689      typedef typename remove_reference<_BoundFn>::type __fn_type;
1690      typedef _Deferred_state<__fn_type> __state_type;
1691      return std::make_shared<__state_type>(std::move(__fn));
1692    }
1693
1694  template<typename _BoundFn>
1695    inline std::shared_ptr<__future_base::_State_base>
1696    __future_base::_S_make_async_state(_BoundFn&& __fn)
1697    {
1698      typedef typename remove_reference<_BoundFn>::type __fn_type;
1699      typedef _Async_state_impl<__fn_type> __state_type;
1700      return std::make_shared<__state_type>(std::move(__fn));
1701    }
1702
1703
1704  /// async
1705  template<typename _Fn, typename... _Args>
1706    _GLIBCXX_NODISCARD future<__async_result_of<_Fn, _Args...>>
1707    async(launch __policy, _Fn&& __fn, _Args&&... __args)
1708    {
1709      std::shared_ptr<__future_base::_State_base> __state;
1710      if ((__policy & launch::async) == launch::async)
1711	{
1712	  __try
1713	    {
1714	      __state = __future_base::_S_make_async_state(
1715		  std::thread::__make_invoker(std::forward<_Fn>(__fn),
1716					      std::forward<_Args>(__args)...)
1717		  );
1718	    }
1719#if __cpp_exceptions
1720	  catch(const system_error& __e)
1721	    {
1722	      if (__e.code() != errc::resource_unavailable_try_again
1723		  || (__policy & launch::deferred) != launch::deferred)
1724		throw;
1725	    }
1726#endif
1727	}
1728      if (!__state)
1729	{
1730	  __state = __future_base::_S_make_deferred_state(
1731	      std::thread::__make_invoker(std::forward<_Fn>(__fn),
1732					  std::forward<_Args>(__args)...));
1733	}
1734      return future<__async_result_of<_Fn, _Args...>>(__state);
1735    }
1736
1737  /// async, potential overload
1738  template<typename _Fn, typename... _Args>
1739    _GLIBCXX_NODISCARD inline future<__async_result_of<_Fn, _Args...>>
1740    async(_Fn&& __fn, _Args&&... __args)
1741    {
1742      return std::async(launch::async|launch::deferred,
1743			std::forward<_Fn>(__fn),
1744			std::forward<_Args>(__args)...);
1745    }
1746
1747#endif // _GLIBCXX_ASYNC_ABI_COMPAT
1748#endif // _GLIBCXX_HAS_GTHREADS
1749
1750  /// @} group futures
1751_GLIBCXX_END_NAMESPACE_VERSION
1752} // namespace
1753
1754#endif // C++11
1755
1756#endif // _GLIBCXX_FUTURE
1757