1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ E V A L                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Debug;    use Debug;
30with Einfo;    use Einfo;
31with Elists;   use Elists;
32with Errout;   use Errout;
33with Eval_Fat; use Eval_Fat;
34with Exp_Util; use Exp_Util;
35with Freeze;   use Freeze;
36with Lib;      use Lib;
37with Namet;    use Namet;
38with Nmake;    use Nmake;
39with Nlists;   use Nlists;
40with Opt;      use Opt;
41with Par_SCO;  use Par_SCO;
42with Rtsfind;  use Rtsfind;
43with Sem;      use Sem;
44with Sem_Aux;  use Sem_Aux;
45with Sem_Cat;  use Sem_Cat;
46with Sem_Ch6;  use Sem_Ch6;
47with Sem_Ch8;  use Sem_Ch8;
48with Sem_Res;  use Sem_Res;
49with Sem_Util; use Sem_Util;
50with Sem_Type; use Sem_Type;
51with Sem_Warn; use Sem_Warn;
52with Sinfo;    use Sinfo;
53with Snames;   use Snames;
54with Stand;    use Stand;
55with Stringt;  use Stringt;
56with Tbuild;   use Tbuild;
57
58package body Sem_Eval is
59
60   -----------------------------------------
61   -- Handling of Compile Time Evaluation --
62   -----------------------------------------
63
64   --  The compile time evaluation of expressions is distributed over several
65   --  Eval_xxx procedures. These procedures are called immediately after
66   --  a subexpression is resolved and is therefore accomplished in a bottom
67   --  up fashion. The flags are synthesized using the following approach.
68
69   --    Is_Static_Expression is determined by following the rules in
70   --    RM-4.9. This involves testing the Is_Static_Expression flag of
71   --    the operands in many cases.
72
73   --    Raises_Constraint_Error is usually set if any of the operands have
74   --    the flag set or if an attempt to compute the value of the current
75   --    expression results in Constraint_Error.
76
77   --  The general approach is as follows. First compute Is_Static_Expression.
78   --  If the node is not static, then the flag is left off in the node and
79   --  we are all done. Otherwise for a static node, we test if any of the
80   --  operands will raise Constraint_Error, and if so, propagate the flag
81   --  Raises_Constraint_Error to the result node and we are done (since the
82   --  error was already posted at a lower level).
83
84   --  For the case of a static node whose operands do not raise constraint
85   --  error, we attempt to evaluate the node. If this evaluation succeeds,
86   --  then the node is replaced by the result of this computation. If the
87   --  evaluation raises Constraint_Error, then we rewrite the node with
88   --  Apply_Compile_Time_Constraint_Error to raise the exception and also
89   --  to post appropriate error messages.
90
91   ----------------
92   -- Local Data --
93   ----------------
94
95   type Bits is array (Nat range <>) of Boolean;
96   --  Used to convert unsigned (modular) values for folding logical ops
97
98   --  The following declarations are used to maintain a cache of nodes that
99   --  have compile-time-known values. The cache is maintained only for
100   --  discrete types (the most common case), and is populated by calls to
101   --  Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
102   --  since it is possible for the status to change (in particular it is
103   --  possible for a node to get replaced by a Constraint_Error node).
104
105   CV_Bits : constant := 5;
106   --  Number of low order bits of Node_Id value used to reference entries
107   --  in the cache table.
108
109   CV_Cache_Size : constant Nat := 2 ** CV_Bits;
110   --  Size of cache for compile time values
111
112   subtype CV_Range is Nat range 0 .. CV_Cache_Size;
113
114   type CV_Entry is record
115      N : Node_Id;
116      V : Uint;
117   end record;
118
119   type Match_Result is (Match, No_Match, Non_Static);
120   --  Result returned from functions that test for a matching result. If the
121   --  operands are not OK_Static then Non_Static will be returned. Otherwise
122   --  Match/No_Match is returned depending on whether the match succeeds.
123
124   type CV_Cache_Array is array (CV_Range) of CV_Entry;
125
126   CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
127   --  This is the actual cache, with entries consisting of node/value pairs,
128   --  and the impossible value Node_High_Bound used for unset entries.
129
130   type Range_Membership is (In_Range, Out_Of_Range, Unknown);
131   --  Range membership may either be statically known to be in range or out
132   --  of range, or not statically known. Used for Test_In_Range below.
133
134   -----------------------
135   -- Local Subprograms --
136   -----------------------
137
138   function Choice_Matches
139     (Expr   : Node_Id;
140      Choice : Node_Id) return Match_Result;
141   --  Determines whether given value Expr matches the given Choice. The Expr
142   --  can be of discrete, real, or string type and must be a compile time
143   --  known value (it is an error to make the call if these conditions are
144   --  not met). The choice can be a range, subtype name, subtype indication,
145   --  or expression. The returned result is Non_Static if Choice is not
146   --  OK_Static, otherwise either Match or No_Match is returned depending
147   --  on whether Choice matches Expr. This is used for case expression
148   --  alternatives, and also for membership tests. In each case, more
149   --  possibilities are tested than the syntax allows (e.g. membership allows
150   --  subtype indications and non-discrete types, and case allows an OTHERS
151   --  choice), but it does not matter, since we have already done a full
152   --  semantic and syntax check of the construct, so the extra possibilities
153   --  just will not arise for correct expressions.
154   --
155   --  Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
156   --  a reference to a type, one of whose bounds raises Constraint_Error, then
157   --  it also sets the Raises_Constraint_Error flag on the Choice itself.
158
159   function Choices_Match
160     (Expr    : Node_Id;
161      Choices : List_Id) return Match_Result;
162   --  This function applies Choice_Matches to each element of Choices. If the
163   --  result is No_Match, then it continues and checks the next element. If
164   --  the result is Match or Non_Static, this result is immediately given
165   --  as the result without checking the rest of the list. Expr can be of
166   --  discrete, real, or string type and must be a compile-time-known value
167   --  (it is an error to make the call if these conditions are not met).
168
169   function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
170   --  Check whether an arithmetic operation with universal operands which is a
171   --  rewritten function call with an explicit scope indication is ambiguous:
172   --  P."+" (1, 2) will be ambiguous if there is more than one visible numeric
173   --  type declared in P and the context does not impose a type on the result
174   --  (e.g. in the expression of a type conversion). If ambiguous, emit an
175   --  error and return Empty, else return the result type of the operator.
176
177   function From_Bits (B : Bits; T : Entity_Id) return Uint;
178   --  Converts a bit string of length B'Length to a Uint value to be used for
179   --  a target of type T, which is a modular type. This procedure includes the
180   --  necessary reduction by the modulus in the case of a nonbinary modulus
181   --  (for a binary modulus, the bit string is the right length any way so all
182   --  is well).
183
184   function Get_String_Val (N : Node_Id) return Node_Id;
185   --  Given a tree node for a folded string or character value, returns the
186   --  corresponding string literal or character literal (one of the two must
187   --  be available, or the operand would not have been marked as foldable in
188   --  the earlier analysis of the operation).
189
190   function Is_OK_Static_Choice (Choice : Node_Id) return Boolean;
191   --  Given a choice (from a case expression or membership test), returns
192   --  True if the choice is static and does not raise a Constraint_Error.
193
194   function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean;
195   --  Given a choice list (from a case expression or membership test), return
196   --  True if all choices are static in the sense of Is_OK_Static_Choice.
197
198   function Is_Static_Choice (Choice : Node_Id) return Boolean;
199   --  Given a choice (from a case expression or membership test), returns
200   --  True if the choice is static. No test is made for raising of constraint
201   --  error, so this function is used only for legality tests.
202
203   function Is_Static_Choice_List (Choices : List_Id) return Boolean;
204   --  Given a choice list (from a case expression or membership test), return
205   --  True if all choices are static in the sense of Is_Static_Choice.
206
207   function Is_Static_Range (N : Node_Id) return Boolean;
208   --  Determine if range is static, as defined in RM 4.9(26). The only allowed
209   --  argument is an N_Range node (but note that the semantic analysis of
210   --  equivalent range attribute references already turned them into the
211   --  equivalent range). This differs from Is_OK_Static_Range (which is what
212   --  must be used by clients) in that it does not care whether the bounds
213   --  raise Constraint_Error or not. Used for checking whether expressions are
214   --  static in the 4.9 sense (without worrying about exceptions).
215
216   function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
217   --  Bits represents the number of bits in an integer value to be computed
218   --  (but the value has not been computed yet). If this value in Bits is
219   --  reasonable, a result of True is returned, with the implication that the
220   --  caller should go ahead and complete the calculation. If the value in
221   --  Bits is unreasonably large, then an error is posted on node N, and
222   --  False is returned (and the caller skips the proposed calculation).
223
224   procedure Out_Of_Range (N : Node_Id);
225   --  This procedure is called if it is determined that node N, which appears
226   --  in a non-static context, is a compile-time-known value which is outside
227   --  its range, i.e. the range of Etype. This is used in contexts where
228   --  this is an illegality if N is static, and should generate a warning
229   --  otherwise.
230
231   function Real_Or_String_Static_Predicate_Matches
232     (Val : Node_Id;
233      Typ : Entity_Id) return Boolean;
234   --  This is the function used to evaluate real or string static predicates.
235   --  Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
236   --  represents the value to be tested against the predicate. Typ is the
237   --  type with the predicate, from which the predicate expression can be
238   --  extracted. The result returned is True if the given value satisfies
239   --  the predicate.
240
241   procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
242   --  N and Exp are nodes representing an expression, Exp is known to raise
243   --  CE. N is rewritten in term of Exp in the optimal way.
244
245   function String_Type_Len (Stype : Entity_Id) return Uint;
246   --  Given a string type, determines the length of the index type, or, if
247   --  this index type is non-static, the length of the base type of this index
248   --  type. Note that if the string type is itself static, then the index type
249   --  is static, so the second case applies only if the string type passed is
250   --  non-static.
251
252   function Test (Cond : Boolean) return Uint;
253   pragma Inline (Test);
254   --  This function simply returns the appropriate Boolean'Pos value
255   --  corresponding to the value of Cond as a universal integer. It is
256   --  used for producing the result of the static evaluation of the
257   --  logical operators
258
259   procedure Test_Expression_Is_Foldable
260     (N    : Node_Id;
261      Op1  : Node_Id;
262      Stat : out Boolean;
263      Fold : out Boolean);
264   --  Tests to see if expression N whose single operand is Op1 is foldable,
265   --  i.e. the operand value is known at compile time. If the operation is
266   --  foldable, then Fold is True on return, and Stat indicates whether the
267   --  result is static (i.e. the operand was static). Note that it is quite
268   --  possible for Fold to be True, and Stat to be False, since there are
269   --  cases in which we know the value of an operand even though it is not
270   --  technically static (e.g. the static lower bound of a range whose upper
271   --  bound is non-static).
272   --
273   --  If Stat is set False on return, then Test_Expression_Is_Foldable makes
274   --  a call to Check_Non_Static_Context on the operand. If Fold is False on
275   --  return, then all processing is complete, and the caller should return,
276   --  since there is nothing else to do.
277   --
278   --  If Stat is set True on return, then Is_Static_Expression is also set
279   --  true in node N. There are some cases where this is over-enthusiastic,
280   --  e.g. in the two operand case below, for string comparison, the result is
281   --  not static even though the two operands are static. In such cases, the
282   --  caller must reset the Is_Static_Expression flag in N.
283   --
284   --  If Fold and Stat are both set to False then this routine performs also
285   --  the following extra actions:
286   --
287   --    If either operand is Any_Type then propagate it to result to prevent
288   --    cascaded errors.
289   --
290   --    If some operand raises Constraint_Error, then replace the node N
291   --    with the raise Constraint_Error node. This replacement inherits the
292   --    Is_Static_Expression flag from the operands.
293
294   procedure Test_Expression_Is_Foldable
295     (N        : Node_Id;
296      Op1      : Node_Id;
297      Op2      : Node_Id;
298      Stat     : out Boolean;
299      Fold     : out Boolean;
300      CRT_Safe : Boolean := False);
301   --  Same processing, except applies to an expression N with two operands
302   --  Op1 and Op2. The result is static only if both operands are static. If
303   --  CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
304   --  for the tests that the two operands are known at compile time. See
305   --  spec of this routine for further details.
306
307   function Test_In_Range
308     (N            : Node_Id;
309      Typ          : Entity_Id;
310      Assume_Valid : Boolean;
311      Fixed_Int    : Boolean;
312      Int_Real     : Boolean) return Range_Membership;
313   --  Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
314   --  or Out_Of_Range if it can be guaranteed at compile time that expression
315   --  N is known to be in or out of range of the subtype Typ. If not compile
316   --  time known, Unknown is returned. See documentation of Is_In_Range for
317   --  complete description of parameters.
318
319   procedure To_Bits (U : Uint; B : out Bits);
320   --  Converts a Uint value to a bit string of length B'Length
321
322   -----------------------------------------------
323   -- Check_Expression_Against_Static_Predicate --
324   -----------------------------------------------
325
326   procedure Check_Expression_Against_Static_Predicate
327     (Expr : Node_Id;
328      Typ  : Entity_Id)
329   is
330   begin
331      --  Nothing to do if expression is not known at compile time, or the
332      --  type has no static predicate set (will be the case for all non-scalar
333      --  types, so no need to make a special test for that).
334
335      if not (Has_Static_Predicate (Typ)
336               and then Compile_Time_Known_Value (Expr))
337      then
338         return;
339      end if;
340
341      --  Here we have a static predicate (note that it could have arisen from
342      --  an explicitly specified Dynamic_Predicate whose expression met the
343      --  rules for being predicate-static). If the expression is known at
344      --  compile time and obeys the predicate, then it is static and must be
345      --  labeled as such, which matters e.g. for case statements. The original
346      --  expression may be a type conversion of a variable with a known value,
347      --  which might otherwise not be marked static.
348
349      --  Case of real static predicate
350
351      if Is_Real_Type (Typ) then
352         if Real_Or_String_Static_Predicate_Matches
353              (Val => Make_Real_Literal (Sloc (Expr), Expr_Value_R (Expr)),
354               Typ => Typ)
355         then
356            Set_Is_Static_Expression (Expr);
357            return;
358         end if;
359
360      --  Case of string static predicate
361
362      elsif Is_String_Type (Typ) then
363         if Real_Or_String_Static_Predicate_Matches
364              (Val => Expr_Value_S (Expr), Typ => Typ)
365         then
366            Set_Is_Static_Expression (Expr);
367            return;
368         end if;
369
370      --  Case of discrete static predicate
371
372      else
373         pragma Assert (Is_Discrete_Type (Typ));
374
375         --  If static predicate matches, nothing to do
376
377         if Choices_Match (Expr, Static_Discrete_Predicate (Typ)) = Match then
378            Set_Is_Static_Expression (Expr);
379            return;
380         end if;
381      end if;
382
383      --  Here we know that the predicate will fail
384
385      --  Special case of static expression failing a predicate (other than one
386      --  that was explicitly specified with a Dynamic_Predicate aspect). This
387      --  is the case where the expression is no longer considered static.
388
389      if Is_Static_Expression (Expr)
390        and then not Has_Dynamic_Predicate_Aspect (Typ)
391      then
392         Error_Msg_NE
393           ("??static expression fails static predicate check on &",
394            Expr, Typ);
395         Error_Msg_N
396           ("\??expression is no longer considered static", Expr);
397         Set_Is_Static_Expression (Expr, False);
398
399      --  In all other cases, this is just a warning that a test will fail.
400      --  It does not matter if the expression is static or not, or if the
401      --  predicate comes from a dynamic predicate aspect or not.
402
403      else
404         Error_Msg_NE
405           ("??expression fails predicate check on &", Expr, Typ);
406      end if;
407   end Check_Expression_Against_Static_Predicate;
408
409   ------------------------------
410   -- Check_Non_Static_Context --
411   ------------------------------
412
413   procedure Check_Non_Static_Context (N : Node_Id) is
414      T         : constant Entity_Id := Etype (N);
415      Checks_On : constant Boolean   :=
416                    not Index_Checks_Suppressed (T)
417                      and not Range_Checks_Suppressed (T);
418
419   begin
420      --  Ignore cases of non-scalar types, error types, or universal real
421      --  types that have no usable bounds.
422
423      if T = Any_Type
424        or else not Is_Scalar_Type (T)
425        or else T = Universal_Fixed
426        or else T = Universal_Real
427      then
428         return;
429      end if;
430
431      --  At this stage we have a scalar type. If we have an expression that
432      --  raises CE, then we already issued a warning or error msg so there is
433      --  nothing more to be done in this routine.
434
435      if Raises_Constraint_Error (N) then
436         return;
437      end if;
438
439      --  Now we have a scalar type which is not marked as raising a constraint
440      --  error exception. The main purpose of this routine is to deal with
441      --  static expressions appearing in a non-static context. That means
442      --  that if we do not have a static expression then there is not much
443      --  to do. The one case that we deal with here is that if we have a
444      --  floating-point value that is out of range, then we post a warning
445      --  that an infinity will result.
446
447      if not Is_Static_Expression (N) then
448         if Is_Floating_Point_Type (T) then
449            if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
450               Error_Msg_N
451                 ("??float value out of range, infinity will be generated", N);
452
453            --  The literal may be the result of constant-folding of a non-
454            --  static subexpression of a larger expression (e.g. a conversion
455            --  of a non-static variable whose value happens to be known). At
456            --  this point we must reduce the value of the subexpression to a
457            --  machine number (RM 4.9 (38/2)).
458
459            elsif Nkind (N) = N_Real_Literal
460              and then Nkind (Parent (N)) in N_Subexpr
461            then
462               Rewrite (N, New_Copy (N));
463               Set_Realval
464                 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
465            end if;
466         end if;
467
468         return;
469      end if;
470
471      --  Here we have the case of outer level static expression of scalar
472      --  type, where the processing of this procedure is needed.
473
474      --  For real types, this is where we convert the value to a machine
475      --  number (see RM 4.9(38)). Also see ACVC test C490001. We should only
476      --  need to do this if the parent is a constant declaration, since in
477      --  other cases, gigi should do the necessary conversion correctly, but
478      --  experimentation shows that this is not the case on all machines, in
479      --  particular if we do not convert all literals to machine values in
480      --  non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
481      --  and SGI/Irix.
482
483      --  This conversion is always done by GNATprove on real literals in
484      --  non-static expressions, by calling Check_Non_Static_Context from
485      --  gnat2why, as GNATprove cannot do the conversion later contrary
486      --  to gigi. The frontend computes the information about which
487      --  expressions are static, which is used by gnat2why to call
488      --  Check_Non_Static_Context on exactly those real literals that are
489      --  not subexpressions of static expressions.
490
491      if Nkind (N) = N_Real_Literal
492        and then not Is_Machine_Number (N)
493        and then not Is_Generic_Type (Etype (N))
494        and then Etype (N) /= Universal_Real
495      then
496         --  Check that value is in bounds before converting to machine
497         --  number, so as not to lose case where value overflows in the
498         --  least significant bit or less. See B490001.
499
500         if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
501            Out_Of_Range (N);
502            return;
503         end if;
504
505         --  Note: we have to copy the node, to avoid problems with conformance
506         --  of very similar numbers (see ACVC tests B4A010C and B63103A).
507
508         Rewrite (N, New_Copy (N));
509
510         if not Is_Floating_Point_Type (T) then
511            Set_Realval
512              (N, Corresponding_Integer_Value (N) * Small_Value (T));
513
514         elsif not UR_Is_Zero (Realval (N)) then
515
516            --  Note: even though RM 4.9(38) specifies biased rounding, this
517            --  has been modified by AI-100 in order to prevent confusing
518            --  differences in rounding between static and non-static
519            --  expressions. AI-100 specifies that the effect of such rounding
520            --  is implementation dependent, and in GNAT we round to nearest
521            --  even to match the run-time behavior. Note that this applies
522            --  to floating point literals, not fixed points ones, even though
523            --  their compiler representation is also as a universal real.
524
525            Set_Realval
526              (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
527            Set_Is_Machine_Number (N);
528         end if;
529
530      end if;
531
532      --  Check for out of range universal integer. This is a non-static
533      --  context, so the integer value must be in range of the runtime
534      --  representation of universal integers.
535
536      --  We do this only within an expression, because that is the only
537      --  case in which non-static universal integer values can occur, and
538      --  furthermore, Check_Non_Static_Context is currently (incorrectly???)
539      --  called in contexts like the expression of a number declaration where
540      --  we certainly want to allow out of range values.
541
542      --  We inhibit the warning when expansion is disabled, because the
543      --  preanalysis of a range of a 64-bit modular type may appear to
544      --  violate the constraint on non-static Universal_Integer. If there
545      --  is a true overflow it will be diagnosed during full analysis.
546
547      if Etype (N) = Universal_Integer
548        and then Nkind (N) = N_Integer_Literal
549        and then Nkind (Parent (N)) in N_Subexpr
550        and then Expander_Active
551        and then
552          (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
553             or else
554           Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
555      then
556         Apply_Compile_Time_Constraint_Error
557           (N, "non-static universal integer value out of range<<",
558            CE_Range_Check_Failed);
559
560      --  Check out of range of base type
561
562      elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
563         Out_Of_Range (N);
564
565      --  Give warning if outside subtype (where one or both of the bounds of
566      --  the subtype is static). This warning is omitted if the expression
567      --  appears in a range that could be null (warnings are handled elsewhere
568      --  for this case).
569
570      elsif T /= Base_Type (T) and then Nkind (Parent (N)) /= N_Range then
571         if Is_In_Range (N, T, Assume_Valid => True) then
572            null;
573
574         elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
575
576            --  Ignore out of range values for System.Priority in CodePeer
577            --  mode since the actual target compiler may provide a wider
578            --  range.
579
580            if CodePeer_Mode and then T = RTE (RE_Priority) then
581               Set_Do_Range_Check (N, False);
582            else
583               Apply_Compile_Time_Constraint_Error
584                 (N, "value not in range of}<<", CE_Range_Check_Failed);
585            end if;
586
587         elsif Checks_On then
588            Enable_Range_Check (N);
589
590         else
591            Set_Do_Range_Check (N, False);
592         end if;
593      end if;
594   end Check_Non_Static_Context;
595
596   ---------------------------------
597   -- Check_String_Literal_Length --
598   ---------------------------------
599
600   procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
601   begin
602      if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
603         if UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
604         then
605            Apply_Compile_Time_Constraint_Error
606              (N, "string length wrong for}??",
607               CE_Length_Check_Failed,
608               Ent => Ttype,
609               Typ => Ttype);
610         end if;
611      end if;
612   end Check_String_Literal_Length;
613
614   --------------------
615   -- Choice_Matches --
616   --------------------
617
618   function Choice_Matches
619     (Expr   : Node_Id;
620      Choice : Node_Id) return Match_Result
621   is
622      Etyp : constant Entity_Id := Etype (Expr);
623      Val  : Uint;
624      ValR : Ureal;
625      ValS : Node_Id;
626
627   begin
628      pragma Assert (Compile_Time_Known_Value (Expr));
629      pragma Assert (Is_Scalar_Type (Etyp) or else Is_String_Type (Etyp));
630
631      if not Is_OK_Static_Choice (Choice) then
632         Set_Raises_Constraint_Error (Choice);
633         return Non_Static;
634
635      --  When the choice denotes a subtype with a static predictate, check the
636      --  expression against the predicate values. Different procedures apply
637      --  to discrete and non-discrete types.
638
639      elsif (Nkind (Choice) = N_Subtype_Indication
640              or else (Is_Entity_Name (Choice)
641                        and then Is_Type (Entity (Choice))))
642        and then Has_Predicates (Etype (Choice))
643        and then Has_Static_Predicate (Etype (Choice))
644      then
645         if Is_Discrete_Type (Etype (Choice)) then
646            return
647              Choices_Match
648                (Expr, Static_Discrete_Predicate (Etype (Choice)));
649
650         elsif Real_Or_String_Static_Predicate_Matches (Expr, Etype (Choice))
651         then
652            return Match;
653
654         else
655            return No_Match;
656         end if;
657
658      --  Discrete type case only
659
660      elsif Is_Discrete_Type (Etyp) then
661         Val := Expr_Value (Expr);
662
663         if Nkind (Choice) = N_Range then
664            if Val >= Expr_Value (Low_Bound (Choice))
665                 and then
666               Val <= Expr_Value (High_Bound (Choice))
667            then
668               return Match;
669            else
670               return No_Match;
671            end if;
672
673         elsif Nkind (Choice) = N_Subtype_Indication
674           or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
675         then
676            if Val >= Expr_Value (Type_Low_Bound  (Etype (Choice)))
677                 and then
678               Val <= Expr_Value (Type_High_Bound (Etype (Choice)))
679            then
680               return Match;
681            else
682               return No_Match;
683            end if;
684
685         elsif Nkind (Choice) = N_Others_Choice then
686            return Match;
687
688         else
689            if Val = Expr_Value (Choice) then
690               return Match;
691            else
692               return No_Match;
693            end if;
694         end if;
695
696      --  Real type case
697
698      elsif Is_Real_Type (Etyp) then
699         ValR := Expr_Value_R (Expr);
700
701         if Nkind (Choice) = N_Range then
702            if ValR >= Expr_Value_R (Low_Bound  (Choice))
703                 and then
704               ValR <= Expr_Value_R (High_Bound (Choice))
705            then
706               return Match;
707            else
708               return No_Match;
709            end if;
710
711         elsif Nkind (Choice) = N_Subtype_Indication
712           or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
713         then
714            if ValR >= Expr_Value_R (Type_Low_Bound  (Etype (Choice)))
715                 and then
716               ValR <= Expr_Value_R (Type_High_Bound (Etype (Choice)))
717            then
718               return Match;
719            else
720               return No_Match;
721            end if;
722
723         else
724            if ValR = Expr_Value_R (Choice) then
725               return Match;
726            else
727               return No_Match;
728            end if;
729         end if;
730
731      --  String type cases
732
733      else
734         pragma Assert (Is_String_Type (Etyp));
735         ValS := Expr_Value_S (Expr);
736
737         if Nkind (Choice) = N_Subtype_Indication
738           or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
739         then
740            if not Is_Constrained (Etype (Choice)) then
741               return Match;
742
743            else
744               declare
745                  Typlen : constant Uint :=
746                             String_Type_Len (Etype (Choice));
747                  Strlen : constant Uint :=
748                             UI_From_Int (String_Length (Strval (ValS)));
749               begin
750                  if Typlen = Strlen then
751                     return Match;
752                  else
753                     return No_Match;
754                  end if;
755               end;
756            end if;
757
758         else
759            if String_Equal (Strval (ValS), Strval (Expr_Value_S (Choice)))
760            then
761               return Match;
762            else
763               return No_Match;
764            end if;
765         end if;
766      end if;
767   end Choice_Matches;
768
769   -------------------
770   -- Choices_Match --
771   -------------------
772
773   function Choices_Match
774     (Expr    : Node_Id;
775      Choices : List_Id) return Match_Result
776   is
777      Choice : Node_Id;
778      Result : Match_Result;
779
780   begin
781      Choice := First (Choices);
782      while Present (Choice) loop
783         Result := Choice_Matches (Expr, Choice);
784
785         if Result /= No_Match then
786            return Result;
787         end if;
788
789         Next (Choice);
790      end loop;
791
792      return No_Match;
793   end Choices_Match;
794
795   --------------------------
796   -- Compile_Time_Compare --
797   --------------------------
798
799   function Compile_Time_Compare
800     (L, R         : Node_Id;
801      Assume_Valid : Boolean) return Compare_Result
802   is
803      Discard : aliased Uint;
804   begin
805      return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
806   end Compile_Time_Compare;
807
808   function Compile_Time_Compare
809     (L, R         : Node_Id;
810      Diff         : access Uint;
811      Assume_Valid : Boolean;
812      Rec          : Boolean := False) return Compare_Result
813   is
814      Ltyp : Entity_Id := Etype (L);
815      Rtyp : Entity_Id := Etype (R);
816
817      Discard : aliased Uint;
818
819      procedure Compare_Decompose
820        (N : Node_Id;
821         R : out Node_Id;
822         V : out Uint);
823      --  This procedure decomposes the node N into an expression node and a
824      --  signed offset, so that the value of N is equal to the value of R plus
825      --  the value V (which may be negative). If no such decomposition is
826      --  possible, then on return R is a copy of N, and V is set to zero.
827
828      function Compare_Fixup (N : Node_Id) return Node_Id;
829      --  This function deals with replacing 'Last and 'First references with
830      --  their corresponding type bounds, which we then can compare. The
831      --  argument is the original node, the result is the identity, unless we
832      --  have a 'Last/'First reference in which case the value returned is the
833      --  appropriate type bound.
834
835      function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
836      --  Even if the context does not assume that values are valid, some
837      --  simple cases can be recognized.
838
839      function Is_Same_Value (L, R : Node_Id) return Boolean;
840      --  Returns True iff L and R represent expressions that definitely have
841      --  identical (but not necessarily compile-time-known) values Indeed the
842      --  caller is expected to have already dealt with the cases of compile
843      --  time known values, so these are not tested here.
844
845      -----------------------
846      -- Compare_Decompose --
847      -----------------------
848
849      procedure Compare_Decompose
850        (N : Node_Id;
851         R : out Node_Id;
852         V : out Uint)
853      is
854      begin
855         if Nkind (N) = N_Op_Add
856           and then Nkind (Right_Opnd (N)) = N_Integer_Literal
857         then
858            R := Left_Opnd (N);
859            V := Intval (Right_Opnd (N));
860            return;
861
862         elsif Nkind (N) = N_Op_Subtract
863           and then Nkind (Right_Opnd (N)) = N_Integer_Literal
864         then
865            R := Left_Opnd (N);
866            V := UI_Negate (Intval (Right_Opnd (N)));
867            return;
868
869         elsif Nkind (N) = N_Attribute_Reference then
870            if Attribute_Name (N) = Name_Succ then
871               R := First (Expressions (N));
872               V := Uint_1;
873               return;
874
875            elsif Attribute_Name (N) = Name_Pred then
876               R := First (Expressions (N));
877               V := Uint_Minus_1;
878               return;
879            end if;
880         end if;
881
882         R := N;
883         V := Uint_0;
884      end Compare_Decompose;
885
886      -------------------
887      -- Compare_Fixup --
888      -------------------
889
890      function Compare_Fixup (N : Node_Id) return Node_Id is
891         Indx : Node_Id;
892         Xtyp : Entity_Id;
893         Subs : Nat;
894
895      begin
896         --  Fixup only required for First/Last attribute reference
897
898         if Nkind (N) = N_Attribute_Reference
899           and then Nam_In (Attribute_Name (N), Name_First, Name_Last)
900         then
901            Xtyp := Etype (Prefix (N));
902
903            --  If we have no type, then just abandon the attempt to do
904            --  a fixup, this is probably the result of some other error.
905
906            if No (Xtyp) then
907               return N;
908            end if;
909
910            --  Dereference an access type
911
912            if Is_Access_Type (Xtyp) then
913               Xtyp := Designated_Type (Xtyp);
914            end if;
915
916            --  If we don't have an array type at this stage, something is
917            --  peculiar, e.g. another error, and we abandon the attempt at
918            --  a fixup.
919
920            if not Is_Array_Type (Xtyp) then
921               return N;
922            end if;
923
924            --  Ignore unconstrained array, since bounds are not meaningful
925
926            if not Is_Constrained (Xtyp) then
927               return N;
928            end if;
929
930            if Ekind (Xtyp) = E_String_Literal_Subtype then
931               if Attribute_Name (N) = Name_First then
932                  return String_Literal_Low_Bound (Xtyp);
933               else
934                  return
935                    Make_Integer_Literal (Sloc (N),
936                      Intval => Intval (String_Literal_Low_Bound (Xtyp)) +
937                                          String_Literal_Length (Xtyp));
938               end if;
939            end if;
940
941            --  Find correct index type
942
943            Indx := First_Index (Xtyp);
944
945            if Present (Expressions (N)) then
946               Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
947
948               for J in 2 .. Subs loop
949                  Indx := Next_Index (Indx);
950               end loop;
951            end if;
952
953            Xtyp := Etype (Indx);
954
955            if Attribute_Name (N) = Name_First then
956               return Type_Low_Bound (Xtyp);
957            else
958               return Type_High_Bound (Xtyp);
959            end if;
960         end if;
961
962         return N;
963      end Compare_Fixup;
964
965      ----------------------------
966      -- Is_Known_Valid_Operand --
967      ----------------------------
968
969      function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
970      begin
971         return (Is_Entity_Name (Opnd)
972                  and then
973                    (Is_Known_Valid (Entity (Opnd))
974                      or else Ekind (Entity (Opnd)) = E_In_Parameter
975                      or else
976                        (Ekind (Entity (Opnd)) in Object_Kind
977                          and then Present (Current_Value (Entity (Opnd))))))
978           or else Is_OK_Static_Expression (Opnd);
979      end Is_Known_Valid_Operand;
980
981      -------------------
982      -- Is_Same_Value --
983      -------------------
984
985      function Is_Same_Value (L, R : Node_Id) return Boolean is
986         Lf : constant Node_Id := Compare_Fixup (L);
987         Rf : constant Node_Id := Compare_Fixup (R);
988
989         function Is_Same_Subscript (L, R : List_Id) return Boolean;
990         --  L, R are the Expressions values from two attribute nodes for First
991         --  or Last attributes. Either may be set to No_List if no expressions
992         --  are present (indicating subscript 1). The result is True if both
993         --  expressions represent the same subscript (note one case is where
994         --  one subscript is missing and the other is explicitly set to 1).
995
996         -----------------------
997         -- Is_Same_Subscript --
998         -----------------------
999
1000         function Is_Same_Subscript (L, R : List_Id) return Boolean is
1001         begin
1002            if L = No_List then
1003               if R = No_List then
1004                  return True;
1005               else
1006                  return Expr_Value (First (R)) = Uint_1;
1007               end if;
1008
1009            else
1010               if R = No_List then
1011                  return Expr_Value (First (L)) = Uint_1;
1012               else
1013                  return Expr_Value (First (L)) = Expr_Value (First (R));
1014               end if;
1015            end if;
1016         end Is_Same_Subscript;
1017
1018      --  Start of processing for Is_Same_Value
1019
1020      begin
1021         --  Values are the same if they refer to the same entity and the
1022         --  entity is non-volatile. This does not however apply to Float
1023         --  types, since we may have two NaN values and they should never
1024         --  compare equal.
1025
1026         --  If the entity is a discriminant, the two expressions may be bounds
1027         --  of components of objects of the same discriminated type. The
1028         --  values of the discriminants are not static, and therefore the
1029         --  result is unknown.
1030
1031         --  It would be better to comment individual branches of this test ???
1032
1033         if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
1034           and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
1035           and then Entity (Lf) = Entity (Rf)
1036           and then Ekind (Entity (Lf)) /= E_Discriminant
1037           and then Present (Entity (Lf))
1038           and then not Is_Floating_Point_Type (Etype (L))
1039           and then not Is_Volatile_Reference (L)
1040           and then not Is_Volatile_Reference (R)
1041         then
1042            return True;
1043
1044         --  Or if they are compile-time-known and identical
1045
1046         elsif Compile_Time_Known_Value (Lf)
1047                 and then
1048               Compile_Time_Known_Value (Rf)
1049           and then Expr_Value (Lf) = Expr_Value (Rf)
1050         then
1051            return True;
1052
1053         --  False if Nkind of the two nodes is different for remaining cases
1054
1055         elsif Nkind (Lf) /= Nkind (Rf) then
1056            return False;
1057
1058         --  True if both 'First or 'Last values applying to the same entity
1059         --  (first and last don't change even if value does). Note that we
1060         --  need this even with the calls to Compare_Fixup, to handle the
1061         --  case of unconstrained array attributes where Compare_Fixup
1062         --  cannot find useful bounds.
1063
1064         elsif Nkind (Lf) = N_Attribute_Reference
1065           and then Attribute_Name (Lf) = Attribute_Name (Rf)
1066           and then Nam_In (Attribute_Name (Lf), Name_First, Name_Last)
1067           and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
1068           and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
1069           and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
1070           and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
1071         then
1072            return True;
1073
1074         --  True if the same selected component from the same record
1075
1076         elsif Nkind (Lf) = N_Selected_Component
1077           and then Selector_Name (Lf) = Selector_Name (Rf)
1078           and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
1079         then
1080            return True;
1081
1082         --  True if the same unary operator applied to the same operand
1083
1084         elsif Nkind (Lf) in N_Unary_Op
1085           and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1086         then
1087            return True;
1088
1089         --  True if the same binary operator applied to the same operands
1090
1091         elsif Nkind (Lf) in N_Binary_Op
1092           and then Is_Same_Value (Left_Opnd  (Lf), Left_Opnd  (Rf))
1093           and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1094         then
1095            return True;
1096
1097         --  All other cases, we can't tell, so return False
1098
1099         else
1100            return False;
1101         end if;
1102      end Is_Same_Value;
1103
1104   --  Start of processing for Compile_Time_Compare
1105
1106   begin
1107      Diff.all := No_Uint;
1108
1109      --  In preanalysis mode, always return Unknown unless the expression
1110      --  is static. It is too early to be thinking we know the result of a
1111      --  comparison, save that judgment for the full analysis. This is
1112      --  particularly important in the case of pre and postconditions, which
1113      --  otherwise can be prematurely collapsed into having True or False
1114      --  conditions when this is inappropriate.
1115
1116      if not (Full_Analysis
1117               or else (Is_OK_Static_Expression (L)
1118                          and then
1119                        Is_OK_Static_Expression (R)))
1120      then
1121         return Unknown;
1122      end if;
1123
1124      --  If either operand could raise Constraint_Error, then we cannot
1125      --  know the result at compile time (since CE may be raised).
1126
1127      if not (Cannot_Raise_Constraint_Error (L)
1128                and then
1129              Cannot_Raise_Constraint_Error (R))
1130      then
1131         return Unknown;
1132      end if;
1133
1134      --  Identical operands are most certainly equal
1135
1136      if L = R then
1137         return EQ;
1138      end if;
1139
1140      --  If expressions have no types, then do not attempt to determine if
1141      --  they are the same, since something funny is going on. One case in
1142      --  which this happens is during generic template analysis, when bounds
1143      --  are not fully analyzed.
1144
1145      if No (Ltyp) or else No (Rtyp) then
1146         return Unknown;
1147      end if;
1148
1149      --  These get reset to the base type for the case of entities where
1150      --  Is_Known_Valid is not set. This takes care of handling possible
1151      --  invalid representations using the value of the base type, in
1152      --  accordance with RM 13.9.1(10).
1153
1154      Ltyp := Underlying_Type (Ltyp);
1155      Rtyp := Underlying_Type (Rtyp);
1156
1157      --  Same rationale as above, but for Underlying_Type instead of Etype
1158
1159      if No (Ltyp) or else No (Rtyp) then
1160         return Unknown;
1161      end if;
1162
1163      --  We do not attempt comparisons for packed arrays represented as
1164      --  modular types, where the semantics of comparison is quite different.
1165
1166      if Is_Packed_Array_Impl_Type (Ltyp)
1167        and then Is_Modular_Integer_Type (Ltyp)
1168      then
1169         return Unknown;
1170
1171      --  For access types, the only time we know the result at compile time
1172      --  (apart from identical operands, which we handled already) is if we
1173      --  know one operand is null and the other is not, or both operands are
1174      --  known null.
1175
1176      elsif Is_Access_Type (Ltyp) then
1177         if Known_Null (L) then
1178            if Known_Null (R) then
1179               return EQ;
1180            elsif Known_Non_Null (R) then
1181               return NE;
1182            else
1183               return Unknown;
1184            end if;
1185
1186         elsif Known_Non_Null (L) and then Known_Null (R) then
1187            return NE;
1188
1189         else
1190            return Unknown;
1191         end if;
1192
1193      --  Case where comparison involves two compile-time-known values
1194
1195      elsif Compile_Time_Known_Value (L)
1196              and then
1197            Compile_Time_Known_Value (R)
1198      then
1199         --  For the floating-point case, we have to be a little careful, since
1200         --  at compile time we are dealing with universal exact values, but at
1201         --  runtime, these will be in non-exact target form. That's why the
1202         --  returned results are LE and GE below instead of LT and GT.
1203
1204         if Is_Floating_Point_Type (Ltyp)
1205              or else
1206            Is_Floating_Point_Type (Rtyp)
1207         then
1208            declare
1209               Lo : constant Ureal := Expr_Value_R (L);
1210               Hi : constant Ureal := Expr_Value_R (R);
1211            begin
1212               if Lo < Hi then
1213                  return LE;
1214               elsif Lo = Hi then
1215                  return EQ;
1216               else
1217                  return GE;
1218               end if;
1219            end;
1220
1221         --  For string types, we have two string literals and we proceed to
1222         --  compare them using the Ada style dictionary string comparison.
1223
1224         elsif not Is_Scalar_Type (Ltyp) then
1225            declare
1226               Lstring : constant String_Id := Strval (Expr_Value_S (L));
1227               Rstring : constant String_Id := Strval (Expr_Value_S (R));
1228               Llen    : constant Nat       := String_Length (Lstring);
1229               Rlen    : constant Nat       := String_Length (Rstring);
1230
1231            begin
1232               for J in 1 .. Nat'Min (Llen, Rlen) loop
1233                  declare
1234                     LC : constant Char_Code := Get_String_Char (Lstring, J);
1235                     RC : constant Char_Code := Get_String_Char (Rstring, J);
1236                  begin
1237                     if LC < RC then
1238                        return LT;
1239                     elsif LC > RC then
1240                        return GT;
1241                     end if;
1242                  end;
1243               end loop;
1244
1245               if Llen < Rlen then
1246                  return LT;
1247               elsif Llen > Rlen then
1248                  return GT;
1249               else
1250                  return EQ;
1251               end if;
1252            end;
1253
1254         --  For remaining scalar cases we know exactly (note that this does
1255         --  include the fixed-point case, where we know the run time integer
1256         --  values now).
1257
1258         else
1259            declare
1260               Lo : constant Uint := Expr_Value (L);
1261               Hi : constant Uint := Expr_Value (R);
1262            begin
1263               if Lo < Hi then
1264                  Diff.all := Hi - Lo;
1265                  return LT;
1266               elsif Lo = Hi then
1267                  return EQ;
1268               else
1269                  Diff.all := Lo - Hi;
1270                  return GT;
1271               end if;
1272            end;
1273         end if;
1274
1275      --  Cases where at least one operand is not known at compile time
1276
1277      else
1278         --  Remaining checks apply only for discrete types
1279
1280         if not Is_Discrete_Type (Ltyp)
1281              or else
1282            not Is_Discrete_Type (Rtyp)
1283         then
1284            return Unknown;
1285         end if;
1286
1287         --  Defend against generic types, or actually any expressions that
1288         --  contain a reference to a generic type from within a generic
1289         --  template. We don't want to do any range analysis of such
1290         --  expressions for two reasons. First, the bounds of a generic type
1291         --  itself are junk and cannot be used for any kind of analysis.
1292         --  Second, we may have a case where the range at run time is indeed
1293         --  known, but we don't want to do compile time analysis in the
1294         --  template based on that range since in an instance the value may be
1295         --  static, and able to be elaborated without reference to the bounds
1296         --  of types involved. As an example, consider:
1297
1298         --     (F'Pos (F'Last) + 1) > Integer'Last
1299
1300         --  The expression on the left side of > is Universal_Integer and thus
1301         --  acquires the type Integer for evaluation at run time, and at run
1302         --  time it is true that this condition is always False, but within
1303         --  an instance F may be a type with a static range greater than the
1304         --  range of Integer, and the expression statically evaluates to True.
1305
1306         if References_Generic_Formal_Type (L)
1307              or else
1308            References_Generic_Formal_Type (R)
1309         then
1310            return Unknown;
1311         end if;
1312
1313         --  Replace types by base types for the case of values which are not
1314         --  known to have valid representations. This takes care of properly
1315         --  dealing with invalid representations.
1316
1317         if not Assume_Valid then
1318            if not (Is_Entity_Name (L)
1319                     and then (Is_Known_Valid (Entity (L))
1320                                or else Assume_No_Invalid_Values))
1321            then
1322               Ltyp := Underlying_Type (Base_Type (Ltyp));
1323            end if;
1324
1325            if not (Is_Entity_Name (R)
1326                     and then (Is_Known_Valid (Entity (R))
1327                                or else Assume_No_Invalid_Values))
1328            then
1329               Rtyp := Underlying_Type (Base_Type (Rtyp));
1330            end if;
1331         end if;
1332
1333         --  First attempt is to decompose the expressions to extract a
1334         --  constant offset resulting from the use of any of the forms:
1335
1336         --     expr + literal
1337         --     expr - literal
1338         --     typ'Succ (expr)
1339         --     typ'Pred (expr)
1340
1341         --  Then we see if the two expressions are the same value, and if so
1342         --  the result is obtained by comparing the offsets.
1343
1344         --  Note: the reason we do this test first is that it returns only
1345         --  decisive results (with diff set), where other tests, like the
1346         --  range test, may not be as so decisive. Consider for example
1347         --  J .. J + 1. This code can conclude LT with a difference of 1,
1348         --  even if the range of J is not known.
1349
1350         declare
1351            Lnode : Node_Id;
1352            Loffs : Uint;
1353            Rnode : Node_Id;
1354            Roffs : Uint;
1355
1356         begin
1357            Compare_Decompose (L, Lnode, Loffs);
1358            Compare_Decompose (R, Rnode, Roffs);
1359
1360            if Is_Same_Value (Lnode, Rnode) then
1361               if Loffs = Roffs then
1362                  return EQ;
1363               end if;
1364
1365               --  When the offsets are not equal, we can go farther only if
1366               --  the types are not modular (e.g. X < X + 1 is False if X is
1367               --  the largest number).
1368
1369               if not Is_Modular_Integer_Type (Ltyp)
1370                 and then not Is_Modular_Integer_Type (Rtyp)
1371               then
1372                  if Loffs < Roffs then
1373                     Diff.all := Roffs - Loffs;
1374                     return LT;
1375                  else
1376                     Diff.all := Loffs - Roffs;
1377                     return GT;
1378                  end if;
1379               end if;
1380            end if;
1381         end;
1382
1383         --  Next, try range analysis and see if operand ranges are disjoint
1384
1385         declare
1386            LOK, ROK : Boolean;
1387            LLo, LHi : Uint;
1388            RLo, RHi : Uint;
1389
1390            Single : Boolean;
1391            --  True if each range is a single point
1392
1393         begin
1394            Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1395            Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1396
1397            if LOK and ROK then
1398               Single := (LLo = LHi) and then (RLo = RHi);
1399
1400               if LHi < RLo then
1401                  if Single and Assume_Valid then
1402                     Diff.all := RLo - LLo;
1403                  end if;
1404
1405                  return LT;
1406
1407               elsif RHi < LLo then
1408                  if Single and Assume_Valid then
1409                     Diff.all := LLo - RLo;
1410                  end if;
1411
1412                  return GT;
1413
1414               elsif Single and then LLo = RLo then
1415
1416                  --  If the range includes a single literal and we can assume
1417                  --  validity then the result is known even if an operand is
1418                  --  not static.
1419
1420                  if Assume_Valid then
1421                     return EQ;
1422                  else
1423                     return Unknown;
1424                  end if;
1425
1426               elsif LHi = RLo then
1427                  return LE;
1428
1429               elsif RHi = LLo then
1430                  return GE;
1431
1432               elsif not Is_Known_Valid_Operand (L)
1433                 and then not Assume_Valid
1434               then
1435                  if Is_Same_Value (L, R) then
1436                     return EQ;
1437                  else
1438                     return Unknown;
1439                  end if;
1440               end if;
1441
1442            --  If the range of either operand cannot be determined, nothing
1443            --  further can be inferred.
1444
1445            else
1446               return Unknown;
1447            end if;
1448         end;
1449
1450         --  Here is where we check for comparisons against maximum bounds of
1451         --  types, where we know that no value can be outside the bounds of
1452         --  the subtype. Note that this routine is allowed to assume that all
1453         --  expressions are within their subtype bounds. Callers wishing to
1454         --  deal with possibly invalid values must in any case take special
1455         --  steps (e.g. conversions to larger types) to avoid this kind of
1456         --  optimization, which is always considered to be valid. We do not
1457         --  attempt this optimization with generic types, since the type
1458         --  bounds may not be meaningful in this case.
1459
1460         --  We are in danger of an infinite recursion here. It does not seem
1461         --  useful to go more than one level deep, so the parameter Rec is
1462         --  used to protect ourselves against this infinite recursion.
1463
1464         if not Rec then
1465
1466            --  See if we can get a decisive check against one operand and a
1467            --  bound of the other operand (four possible tests here). Note
1468            --  that we avoid testing junk bounds of a generic type.
1469
1470            if not Is_Generic_Type (Rtyp) then
1471               case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1472                                          Discard'Access,
1473                                          Assume_Valid, Rec => True)
1474               is
1475                  when LT => return LT;
1476                  when LE => return LE;
1477                  when EQ => return LE;
1478                  when others => null;
1479               end case;
1480
1481               case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1482                                          Discard'Access,
1483                                          Assume_Valid, Rec => True)
1484               is
1485                  when GT => return GT;
1486                  when GE => return GE;
1487                  when EQ => return GE;
1488                  when others => null;
1489               end case;
1490            end if;
1491
1492            if not Is_Generic_Type (Ltyp) then
1493               case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1494                                          Discard'Access,
1495                                          Assume_Valid, Rec => True)
1496               is
1497                  when GT => return GT;
1498                  when GE => return GE;
1499                  when EQ => return GE;
1500                  when others => null;
1501               end case;
1502
1503               case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1504                                          Discard'Access,
1505                                          Assume_Valid, Rec => True)
1506               is
1507                  when LT => return LT;
1508                  when LE => return LE;
1509                  when EQ => return LE;
1510                  when others => null;
1511               end case;
1512            end if;
1513         end if;
1514
1515         --  Next attempt is to see if we have an entity compared with a
1516         --  compile-time-known value, where there is a current value
1517         --  conditional for the entity which can tell us the result.
1518
1519         declare
1520            Var : Node_Id;
1521            --  Entity variable (left operand)
1522
1523            Val : Uint;
1524            --  Value (right operand)
1525
1526            Inv : Boolean;
1527            --  If False, we have reversed the operands
1528
1529            Op : Node_Kind;
1530            --  Comparison operator kind from Get_Current_Value_Condition call
1531
1532            Opn : Node_Id;
1533            --  Value from Get_Current_Value_Condition call
1534
1535            Opv : Uint;
1536            --  Value of Opn
1537
1538            Result : Compare_Result;
1539            --  Known result before inversion
1540
1541         begin
1542            if Is_Entity_Name (L)
1543              and then Compile_Time_Known_Value (R)
1544            then
1545               Var := L;
1546               Val := Expr_Value (R);
1547               Inv := False;
1548
1549            elsif Is_Entity_Name (R)
1550              and then Compile_Time_Known_Value (L)
1551            then
1552               Var := R;
1553               Val := Expr_Value (L);
1554               Inv := True;
1555
1556               --  That was the last chance at finding a compile time result
1557
1558            else
1559               return Unknown;
1560            end if;
1561
1562            Get_Current_Value_Condition (Var, Op, Opn);
1563
1564            --  That was the last chance, so if we got nothing return
1565
1566            if No (Opn) then
1567               return Unknown;
1568            end if;
1569
1570            Opv := Expr_Value (Opn);
1571
1572            --  We got a comparison, so we might have something interesting
1573
1574            --  Convert LE to LT and GE to GT, just so we have fewer cases
1575
1576            if Op = N_Op_Le then
1577               Op := N_Op_Lt;
1578               Opv := Opv + 1;
1579
1580            elsif Op = N_Op_Ge then
1581               Op := N_Op_Gt;
1582               Opv := Opv - 1;
1583            end if;
1584
1585            --  Deal with equality case
1586
1587            if Op = N_Op_Eq then
1588               if Val = Opv then
1589                  Result := EQ;
1590               elsif Opv < Val then
1591                  Result := LT;
1592               else
1593                  Result := GT;
1594               end if;
1595
1596            --  Deal with inequality case
1597
1598            elsif Op = N_Op_Ne then
1599               if Val = Opv then
1600                  Result := NE;
1601               else
1602                  return Unknown;
1603               end if;
1604
1605            --  Deal with greater than case
1606
1607            elsif Op = N_Op_Gt then
1608               if Opv >= Val then
1609                  Result := GT;
1610               elsif Opv = Val - 1 then
1611                  Result := GE;
1612               else
1613                  return Unknown;
1614               end if;
1615
1616            --  Deal with less than case
1617
1618            else pragma Assert (Op = N_Op_Lt);
1619               if Opv <= Val then
1620                  Result := LT;
1621               elsif Opv = Val + 1 then
1622                  Result := LE;
1623               else
1624                  return Unknown;
1625               end if;
1626            end if;
1627
1628            --  Deal with inverting result
1629
1630            if Inv then
1631               case Result is
1632                  when GT     => return LT;
1633                  when GE     => return LE;
1634                  when LT     => return GT;
1635                  when LE     => return GE;
1636                  when others => return Result;
1637               end case;
1638            end if;
1639
1640            return Result;
1641         end;
1642      end if;
1643   end Compile_Time_Compare;
1644
1645   -------------------------------
1646   -- Compile_Time_Known_Bounds --
1647   -------------------------------
1648
1649   function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1650      Indx : Node_Id;
1651      Typ  : Entity_Id;
1652
1653   begin
1654      if T = Any_Composite or else not Is_Array_Type (T) then
1655         return False;
1656      end if;
1657
1658      Indx := First_Index (T);
1659      while Present (Indx) loop
1660         Typ := Underlying_Type (Etype (Indx));
1661
1662         --  Never look at junk bounds of a generic type
1663
1664         if Is_Generic_Type (Typ) then
1665            return False;
1666         end if;
1667
1668         --  Otherwise check bounds for compile-time-known
1669
1670         if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1671            return False;
1672         elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1673            return False;
1674         else
1675            Next_Index (Indx);
1676         end if;
1677      end loop;
1678
1679      return True;
1680   end Compile_Time_Known_Bounds;
1681
1682   ------------------------------
1683   -- Compile_Time_Known_Value --
1684   ------------------------------
1685
1686   function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1687      K      : constant Node_Kind := Nkind (Op);
1688      CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
1689
1690   begin
1691      --  Never known at compile time if bad type or raises Constraint_Error
1692      --  or empty (latter case occurs only as a result of a previous error).
1693
1694      if No (Op) then
1695         Check_Error_Detected;
1696         return False;
1697
1698      elsif Op = Error
1699        or else Etype (Op) = Any_Type
1700        or else Raises_Constraint_Error (Op)
1701      then
1702         return False;
1703      end if;
1704
1705      --  If we have an entity name, then see if it is the name of a constant
1706      --  and if so, test the corresponding constant value, or the name of an
1707      --  enumeration literal, which is always a constant.
1708
1709      if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1710         declare
1711            Ent : constant Entity_Id := Entity (Op);
1712            Val : Node_Id;
1713
1714         begin
1715            --  Never known at compile time if it is a packed array value. We
1716            --  might want to try to evaluate these at compile time one day,
1717            --  but we do not make that attempt now.
1718
1719            if Is_Packed_Array_Impl_Type (Etype (Op)) then
1720               return False;
1721
1722            elsif Ekind (Ent) = E_Enumeration_Literal then
1723               return True;
1724
1725            elsif Ekind (Ent) = E_Constant then
1726               Val := Constant_Value (Ent);
1727
1728               if Present (Val) then
1729
1730                  --  Guard against an illegal deferred constant whose full
1731                  --  view is initialized with a reference to itself. Treat
1732                  --  this case as a value not known at compile time.
1733
1734                  if Is_Entity_Name (Val) and then Entity (Val) = Ent then
1735                     return False;
1736                  else
1737                     return Compile_Time_Known_Value (Val);
1738                  end if;
1739
1740               --  Otherwise, the constant does not have a compile-time-known
1741               --  value.
1742
1743               else
1744                  return False;
1745               end if;
1746            end if;
1747         end;
1748
1749      --  We have a value, see if it is compile-time-known
1750
1751      else
1752         --  Integer literals are worth storing in the cache
1753
1754         if K = N_Integer_Literal then
1755            CV_Ent.N := Op;
1756            CV_Ent.V := Intval (Op);
1757            return True;
1758
1759         --  Other literals and NULL are known at compile time
1760
1761         elsif
1762            Nkind_In (K, N_Character_Literal,
1763                         N_Real_Literal,
1764                         N_String_Literal,
1765                         N_Null)
1766         then
1767            return True;
1768         end if;
1769      end if;
1770
1771      --  If we fall through, not known at compile time
1772
1773      return False;
1774
1775   --  If we get an exception while trying to do this test, then some error
1776   --  has occurred, and we simply say that the value is not known after all
1777
1778   exception
1779      when others =>
1780         return False;
1781   end Compile_Time_Known_Value;
1782
1783   --------------------------------------
1784   -- Compile_Time_Known_Value_Or_Aggr --
1785   --------------------------------------
1786
1787   function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1788   begin
1789      --  If we have an entity name, then see if it is the name of a constant
1790      --  and if so, test the corresponding constant value, or the name of
1791      --  an enumeration literal, which is always a constant.
1792
1793      if Is_Entity_Name (Op) then
1794         declare
1795            E : constant Entity_Id := Entity (Op);
1796            V : Node_Id;
1797
1798         begin
1799            if Ekind (E) = E_Enumeration_Literal then
1800               return True;
1801
1802            elsif Ekind (E) /= E_Constant then
1803               return False;
1804
1805            else
1806               V := Constant_Value (E);
1807               return Present (V)
1808                 and then Compile_Time_Known_Value_Or_Aggr (V);
1809            end if;
1810         end;
1811
1812      --  We have a value, see if it is compile-time-known
1813
1814      else
1815         if Compile_Time_Known_Value (Op) then
1816            return True;
1817
1818         elsif Nkind (Op) = N_Aggregate then
1819
1820            if Present (Expressions (Op)) then
1821               declare
1822                  Expr : Node_Id;
1823               begin
1824                  Expr := First (Expressions (Op));
1825                  while Present (Expr) loop
1826                     if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1827                        return False;
1828                     else
1829                        Next (Expr);
1830                     end if;
1831                  end loop;
1832               end;
1833            end if;
1834
1835            if Present (Component_Associations (Op)) then
1836               declare
1837                  Cass : Node_Id;
1838
1839               begin
1840                  Cass := First (Component_Associations (Op));
1841                  while Present (Cass) loop
1842                     if not
1843                       Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1844                     then
1845                        return False;
1846                     end if;
1847
1848                     Next (Cass);
1849                  end loop;
1850               end;
1851            end if;
1852
1853            return True;
1854
1855         elsif Nkind (Op) = N_Qualified_Expression then
1856            return Compile_Time_Known_Value_Or_Aggr (Expression (Op));
1857
1858         --  All other types of values are not known at compile time
1859
1860         else
1861            return False;
1862         end if;
1863
1864      end if;
1865   end Compile_Time_Known_Value_Or_Aggr;
1866
1867   ---------------------------------------
1868   -- CRT_Safe_Compile_Time_Known_Value --
1869   ---------------------------------------
1870
1871   function CRT_Safe_Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1872   begin
1873      if (Configurable_Run_Time_Mode or No_Run_Time_Mode)
1874        and then not Is_OK_Static_Expression (Op)
1875      then
1876         return False;
1877      else
1878         return Compile_Time_Known_Value (Op);
1879      end if;
1880   end CRT_Safe_Compile_Time_Known_Value;
1881
1882   -----------------
1883   -- Eval_Actual --
1884   -----------------
1885
1886   --  This is only called for actuals of functions that are not predefined
1887   --  operators (which have already been rewritten as operators at this
1888   --  stage), so the call can never be folded, and all that needs doing for
1889   --  the actual is to do the check for a non-static context.
1890
1891   procedure Eval_Actual (N : Node_Id) is
1892   begin
1893      Check_Non_Static_Context (N);
1894   end Eval_Actual;
1895
1896   --------------------
1897   -- Eval_Allocator --
1898   --------------------
1899
1900   --  Allocators are never static, so all we have to do is to do the
1901   --  check for a non-static context if an expression is present.
1902
1903   procedure Eval_Allocator (N : Node_Id) is
1904      Expr : constant Node_Id := Expression (N);
1905   begin
1906      if Nkind (Expr) = N_Qualified_Expression then
1907         Check_Non_Static_Context (Expression (Expr));
1908      end if;
1909   end Eval_Allocator;
1910
1911   ------------------------
1912   -- Eval_Arithmetic_Op --
1913   ------------------------
1914
1915   --  Arithmetic operations are static functions, so the result is static
1916   --  if both operands are static (RM 4.9(7), 4.9(20)).
1917
1918   procedure Eval_Arithmetic_Op (N : Node_Id) is
1919      Left  : constant Node_Id   := Left_Opnd (N);
1920      Right : constant Node_Id   := Right_Opnd (N);
1921      Ltype : constant Entity_Id := Etype (Left);
1922      Rtype : constant Entity_Id := Etype (Right);
1923      Otype : Entity_Id          := Empty;
1924      Stat  : Boolean;
1925      Fold  : Boolean;
1926
1927   begin
1928      --  If not foldable we are done
1929
1930      Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1931
1932      if not Fold then
1933         return;
1934      end if;
1935
1936      --  Otherwise attempt to fold
1937
1938      if Is_Universal_Numeric_Type (Etype (Left))
1939           and then
1940         Is_Universal_Numeric_Type (Etype (Right))
1941      then
1942         Otype := Find_Universal_Operator_Type (N);
1943      end if;
1944
1945      --  Fold for cases where both operands are of integer type
1946
1947      if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1948         declare
1949            Left_Int  : constant Uint := Expr_Value (Left);
1950            Right_Int : constant Uint := Expr_Value (Right);
1951            Result    : Uint;
1952
1953         begin
1954            case Nkind (N) is
1955               when N_Op_Add =>
1956                  Result := Left_Int + Right_Int;
1957
1958               when N_Op_Subtract =>
1959                  Result := Left_Int - Right_Int;
1960
1961               when N_Op_Multiply =>
1962                  if OK_Bits
1963                       (N, UI_From_Int
1964                             (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1965                  then
1966                     Result := Left_Int * Right_Int;
1967                  else
1968                     Result := Left_Int;
1969                  end if;
1970
1971               when N_Op_Divide =>
1972
1973                  --  The exception Constraint_Error is raised by integer
1974                  --  division, rem and mod if the right operand is zero.
1975
1976                  if Right_Int = 0 then
1977
1978                     --  When SPARK_Mode is On, force a warning instead of
1979                     --  an error in that case, as this likely corresponds
1980                     --  to deactivated code.
1981
1982                     Apply_Compile_Time_Constraint_Error
1983                       (N, "division by zero", CE_Divide_By_Zero,
1984                        Warn => not Stat or SPARK_Mode = On);
1985                     Set_Raises_Constraint_Error (N);
1986                     return;
1987
1988                  --  Otherwise we can do the division
1989
1990                  else
1991                     Result := Left_Int / Right_Int;
1992                  end if;
1993
1994               when N_Op_Mod =>
1995
1996                  --  The exception Constraint_Error is raised by integer
1997                  --  division, rem and mod if the right operand is zero.
1998
1999                  if Right_Int = 0 then
2000
2001                     --  When SPARK_Mode is On, force a warning instead of
2002                     --  an error in that case, as this likely corresponds
2003                     --  to deactivated code.
2004
2005                     Apply_Compile_Time_Constraint_Error
2006                       (N, "mod with zero divisor", CE_Divide_By_Zero,
2007                        Warn => not Stat or SPARK_Mode = On);
2008                     return;
2009
2010                  else
2011                     Result := Left_Int mod Right_Int;
2012                  end if;
2013
2014               when N_Op_Rem =>
2015
2016                  --  The exception Constraint_Error is raised by integer
2017                  --  division, rem and mod if the right operand is zero.
2018
2019                  if Right_Int = 0 then
2020
2021                     --  When SPARK_Mode is On, force a warning instead of
2022                     --  an error in that case, as this likely corresponds
2023                     --  to deactivated code.
2024
2025                     Apply_Compile_Time_Constraint_Error
2026                       (N, "rem with zero divisor", CE_Divide_By_Zero,
2027                        Warn => not Stat or SPARK_Mode = On);
2028                     return;
2029
2030                  else
2031                     Result := Left_Int rem Right_Int;
2032                  end if;
2033
2034               when others =>
2035                  raise Program_Error;
2036            end case;
2037
2038            --  Adjust the result by the modulus if the type is a modular type
2039
2040            if Is_Modular_Integer_Type (Ltype) then
2041               Result := Result mod Modulus (Ltype);
2042
2043               --  For a signed integer type, check non-static overflow
2044
2045            elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
2046               declare
2047                  BT : constant Entity_Id := Base_Type (Ltype);
2048                  Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
2049                  Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
2050               begin
2051                  if Result < Lo or else Result > Hi then
2052                     Apply_Compile_Time_Constraint_Error
2053                       (N, "value not in range of }??",
2054                        CE_Overflow_Check_Failed,
2055                        Ent => BT);
2056                     return;
2057                  end if;
2058               end;
2059            end if;
2060
2061            --  If we get here we can fold the result
2062
2063            Fold_Uint (N, Result, Stat);
2064         end;
2065
2066      --  Cases where at least one operand is a real. We handle the cases of
2067      --  both reals, or mixed/real integer cases (the latter happen only for
2068      --  divide and multiply, and the result is always real).
2069
2070      elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
2071         declare
2072            Left_Real  : Ureal;
2073            Right_Real : Ureal;
2074            Result     : Ureal;
2075
2076         begin
2077            if Is_Real_Type (Ltype) then
2078               Left_Real := Expr_Value_R (Left);
2079            else
2080               Left_Real := UR_From_Uint (Expr_Value (Left));
2081            end if;
2082
2083            if Is_Real_Type (Rtype) then
2084               Right_Real := Expr_Value_R (Right);
2085            else
2086               Right_Real := UR_From_Uint (Expr_Value (Right));
2087            end if;
2088
2089            if Nkind (N) = N_Op_Add then
2090               Result := Left_Real + Right_Real;
2091
2092            elsif Nkind (N) = N_Op_Subtract then
2093               Result := Left_Real - Right_Real;
2094
2095            elsif Nkind (N) = N_Op_Multiply then
2096               Result := Left_Real * Right_Real;
2097
2098            else pragma Assert (Nkind (N) = N_Op_Divide);
2099               if UR_Is_Zero (Right_Real) then
2100                  Apply_Compile_Time_Constraint_Error
2101                    (N, "division by zero", CE_Divide_By_Zero);
2102                  return;
2103               end if;
2104
2105               Result := Left_Real / Right_Real;
2106            end if;
2107
2108            Fold_Ureal (N, Result, Stat);
2109         end;
2110      end if;
2111
2112      --  If the operator was resolved to a specific type, make sure that type
2113      --  is frozen even if the expression is folded into a literal (which has
2114      --  a universal type).
2115
2116      if Present (Otype) then
2117         Freeze_Before (N, Otype);
2118      end if;
2119   end Eval_Arithmetic_Op;
2120
2121   ----------------------------
2122   -- Eval_Character_Literal --
2123   ----------------------------
2124
2125   --  Nothing to be done
2126
2127   procedure Eval_Character_Literal (N : Node_Id) is
2128      pragma Warnings (Off, N);
2129   begin
2130      null;
2131   end Eval_Character_Literal;
2132
2133   ---------------
2134   -- Eval_Call --
2135   ---------------
2136
2137   --  Static function calls are either calls to predefined operators
2138   --  with static arguments, or calls to functions that rename a literal.
2139   --  Only the latter case is handled here, predefined operators are
2140   --  constant-folded elsewhere.
2141
2142   --  If the function is itself inherited (see 7423-001) the literal of
2143   --  the parent type must be explicitly converted to the return type
2144   --  of the function.
2145
2146   procedure Eval_Call (N : Node_Id) is
2147      Loc : constant Source_Ptr := Sloc (N);
2148      Typ : constant Entity_Id  := Etype (N);
2149      Lit : Entity_Id;
2150
2151   begin
2152      if Nkind (N) = N_Function_Call
2153        and then No (Parameter_Associations (N))
2154        and then Is_Entity_Name (Name (N))
2155        and then Present (Alias (Entity (Name (N))))
2156        and then Is_Enumeration_Type (Base_Type (Typ))
2157      then
2158         Lit := Ultimate_Alias (Entity (Name (N)));
2159
2160         if Ekind (Lit) = E_Enumeration_Literal then
2161            if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
2162               Rewrite
2163                 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
2164            else
2165               Rewrite (N, New_Occurrence_Of (Lit, Loc));
2166            end if;
2167
2168            Resolve (N, Typ);
2169         end if;
2170      end if;
2171   end Eval_Call;
2172
2173   --------------------------
2174   -- Eval_Case_Expression --
2175   --------------------------
2176
2177   --  A conditional expression is static if all its conditions and dependent
2178   --  expressions are static. Note that we do not care if the dependent
2179   --  expressions raise CE, except for the one that will be selected.
2180
2181   procedure Eval_Case_Expression (N : Node_Id) is
2182      Alt    : Node_Id;
2183      Choice : Node_Id;
2184
2185   begin
2186      Set_Is_Static_Expression (N, False);
2187
2188      if Error_Posted (Expression (N))
2189        or else not Is_Static_Expression (Expression (N))
2190      then
2191         Check_Non_Static_Context (Expression (N));
2192         return;
2193      end if;
2194
2195      --  First loop, make sure all the alternatives are static expressions
2196      --  none of which raise Constraint_Error. We make the Constraint_Error
2197      --  check because part of the legality condition for a correct static
2198      --  case expression is that the cases are covered, like any other case
2199      --  expression. And we can't do that if any of the conditions raise an
2200      --  exception, so we don't even try to evaluate if that is the case.
2201
2202      Alt := First (Alternatives (N));
2203      while Present (Alt) loop
2204
2205         --  The expression must be static, but we don't care at this stage
2206         --  if it raises Constraint_Error (the alternative might not match,
2207         --  in which case the expression is statically unevaluated anyway).
2208
2209         if not Is_Static_Expression (Expression (Alt)) then
2210            Check_Non_Static_Context (Expression (Alt));
2211            return;
2212         end if;
2213
2214         --  The choices of a case always have to be static, and cannot raise
2215         --  an exception. If this condition is not met, then the expression
2216         --  is plain illegal, so just abandon evaluation attempts. No need
2217         --  to check non-static context when we have something illegal anyway.
2218
2219         if not Is_OK_Static_Choice_List (Discrete_Choices (Alt)) then
2220            return;
2221         end if;
2222
2223         Next (Alt);
2224      end loop;
2225
2226      --  OK, if the above loop gets through it means that all choices are OK
2227      --  static (don't raise exceptions), so the whole case is static, and we
2228      --  can find the matching alternative.
2229
2230      Set_Is_Static_Expression (N);
2231
2232      --  Now to deal with propagating a possible Constraint_Error
2233
2234      --  If the selecting expression raises CE, propagate and we are done
2235
2236      if Raises_Constraint_Error (Expression (N)) then
2237         Set_Raises_Constraint_Error (N);
2238
2239      --  Otherwise we need to check the alternatives to find the matching
2240      --  one. CE's in other than the matching one are not relevant. But we
2241      --  do need to check the matching one. Unlike the first loop, we do not
2242      --  have to go all the way through, when we find the matching one, quit.
2243
2244      else
2245         Alt := First (Alternatives (N));
2246         Search : loop
2247
2248            --  We must find a match among the alternatives. If not, this must
2249            --  be due to other errors, so just ignore, leaving as non-static.
2250
2251            if No (Alt) then
2252               Set_Is_Static_Expression (N, False);
2253               return;
2254            end if;
2255
2256            --  Otherwise loop through choices of this alternative
2257
2258            Choice := First (Discrete_Choices (Alt));
2259            while Present (Choice) loop
2260
2261               --  If we find a matching choice, then the Expression of this
2262               --  alternative replaces N (Raises_Constraint_Error flag is
2263               --  included, so we don't have to special case that).
2264
2265               if Choice_Matches (Expression (N), Choice) = Match then
2266                  Rewrite (N, Relocate_Node (Expression (Alt)));
2267                  return;
2268               end if;
2269
2270               Next (Choice);
2271            end loop;
2272
2273            Next (Alt);
2274         end loop Search;
2275      end if;
2276   end Eval_Case_Expression;
2277
2278   ------------------------
2279   -- Eval_Concatenation --
2280   ------------------------
2281
2282   --  Concatenation is a static function, so the result is static if both
2283   --  operands are static (RM 4.9(7), 4.9(21)).
2284
2285   procedure Eval_Concatenation (N : Node_Id) is
2286      Left  : constant Node_Id   := Left_Opnd (N);
2287      Right : constant Node_Id   := Right_Opnd (N);
2288      C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
2289      Stat  : Boolean;
2290      Fold  : Boolean;
2291
2292   begin
2293      --  Concatenation is never static in Ada 83, so if Ada 83 check operand
2294      --  non-static context.
2295
2296      if Ada_Version = Ada_83
2297        and then Comes_From_Source (N)
2298      then
2299         Check_Non_Static_Context (Left);
2300         Check_Non_Static_Context (Right);
2301         return;
2302      end if;
2303
2304      --  If not foldable we are done. In principle concatenation that yields
2305      --  any string type is static (i.e. an array type of character types).
2306      --  However, character types can include enumeration literals, and
2307      --  concatenation in that case cannot be described by a literal, so we
2308      --  only consider the operation static if the result is an array of
2309      --  (a descendant of) a predefined character type.
2310
2311      Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2312
2313      if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
2314         Set_Is_Static_Expression (N, False);
2315         return;
2316      end if;
2317
2318      --  Compile time string concatenation
2319
2320      --  ??? Note that operands that are aggregates can be marked as static,
2321      --  so we should attempt at a later stage to fold concatenations with
2322      --  such aggregates.
2323
2324      declare
2325         Left_Str   : constant Node_Id := Get_String_Val (Left);
2326         Left_Len   : Nat;
2327         Right_Str  : constant Node_Id := Get_String_Val (Right);
2328         Folded_Val : String_Id        := No_String;
2329
2330      begin
2331         --  Establish new string literal, and store left operand. We make
2332         --  sure to use the special Start_String that takes an operand if
2333         --  the left operand is a string literal. Since this is optimized
2334         --  in the case where that is the most recently created string
2335         --  literal, we ensure efficient time/space behavior for the
2336         --  case of a concatenation of a series of string literals.
2337
2338         if Nkind (Left_Str) = N_String_Literal then
2339            Left_Len := String_Length (Strval (Left_Str));
2340
2341            --  If the left operand is the empty string, and the right operand
2342            --  is a string literal (the case of "" & "..."), the result is the
2343            --  value of the right operand. This optimization is important when
2344            --  Is_Folded_In_Parser, to avoid copying an enormous right
2345            --  operand.
2346
2347            if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
2348               Folded_Val := Strval (Right_Str);
2349            else
2350               Start_String (Strval (Left_Str));
2351            end if;
2352
2353         else
2354            Start_String;
2355            Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
2356            Left_Len := 1;
2357         end if;
2358
2359         --  Now append the characters of the right operand, unless we
2360         --  optimized the "" & "..." case above.
2361
2362         if Nkind (Right_Str) = N_String_Literal then
2363            if Left_Len /= 0 then
2364               Store_String_Chars (Strval (Right_Str));
2365               Folded_Val := End_String;
2366            end if;
2367         else
2368            Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
2369            Folded_Val := End_String;
2370         end if;
2371
2372         Set_Is_Static_Expression (N, Stat);
2373
2374         --  If left operand is the empty string, the result is the
2375         --  right operand, including its bounds if anomalous.
2376
2377         if Left_Len = 0
2378           and then Is_Array_Type (Etype (Right))
2379           and then Etype (Right) /= Any_String
2380         then
2381            Set_Etype (N, Etype (Right));
2382         end if;
2383
2384         Fold_Str (N, Folded_Val, Static => Stat);
2385      end;
2386   end Eval_Concatenation;
2387
2388   ----------------------
2389   -- Eval_Entity_Name --
2390   ----------------------
2391
2392   --  This procedure is used for identifiers and expanded names other than
2393   --  named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
2394   --  static if they denote a static constant (RM 4.9(6)) or if the name
2395   --  denotes an enumeration literal (RM 4.9(22)).
2396
2397   procedure Eval_Entity_Name (N : Node_Id) is
2398      Def_Id : constant Entity_Id := Entity (N);
2399      Val    : Node_Id;
2400
2401   begin
2402      --  Enumeration literals are always considered to be constants
2403      --  and cannot raise Constraint_Error (RM 4.9(22)).
2404
2405      if Ekind (Def_Id) = E_Enumeration_Literal then
2406         Set_Is_Static_Expression (N);
2407         return;
2408
2409      --  A name is static if it denotes a static constant (RM 4.9(5)), and
2410      --  we also copy Raise_Constraint_Error. Notice that even if non-static,
2411      --  it does not violate 10.2.1(8) here, since this is not a variable.
2412
2413      elsif Ekind (Def_Id) = E_Constant then
2414
2415         --  Deferred constants must always be treated as nonstatic outside the
2416         --  scope of their full view.
2417
2418         if Present (Full_View (Def_Id))
2419           and then not In_Open_Scopes (Scope (Def_Id))
2420         then
2421            Val := Empty;
2422         else
2423            Val := Constant_Value (Def_Id);
2424         end if;
2425
2426         if Present (Val) then
2427            Set_Is_Static_Expression
2428              (N, Is_Static_Expression (Val)
2429                    and then Is_Static_Subtype (Etype (Def_Id)));
2430            Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
2431
2432            if not Is_Static_Expression (N)
2433              and then not Is_Generic_Type (Etype (N))
2434            then
2435               Validate_Static_Object_Name (N);
2436            end if;
2437
2438            --  Mark constant condition in SCOs
2439
2440            if Generate_SCO
2441              and then Comes_From_Source (N)
2442              and then Is_Boolean_Type (Etype (Def_Id))
2443              and then Compile_Time_Known_Value (N)
2444            then
2445               Set_SCO_Condition (N, Expr_Value_E (N) = Standard_True);
2446            end if;
2447
2448            return;
2449         end if;
2450      end if;
2451
2452      --  Fall through if the name is not static
2453
2454      Validate_Static_Object_Name (N);
2455   end Eval_Entity_Name;
2456
2457   ------------------------
2458   -- Eval_If_Expression --
2459   ------------------------
2460
2461   --  We can fold to a static expression if the condition and both dependent
2462   --  expressions are static. Otherwise, the only required processing is to do
2463   --  the check for non-static context for the then and else expressions.
2464
2465   procedure Eval_If_Expression (N : Node_Id) is
2466      Condition  : constant Node_Id := First (Expressions (N));
2467      Then_Expr  : constant Node_Id := Next (Condition);
2468      Else_Expr  : constant Node_Id := Next (Then_Expr);
2469      Result     : Node_Id;
2470      Non_Result : Node_Id;
2471
2472      Rstat : constant Boolean :=
2473                Is_Static_Expression (Condition)
2474                  and then
2475                Is_Static_Expression (Then_Expr)
2476                  and then
2477                Is_Static_Expression (Else_Expr);
2478      --  True if result is static
2479
2480   begin
2481      --  If result not static, nothing to do, otherwise set static result
2482
2483      if not Rstat then
2484         return;
2485      else
2486         Set_Is_Static_Expression (N);
2487      end if;
2488
2489      --  If any operand is Any_Type, just propagate to result and do not try
2490      --  to fold, this prevents cascaded errors.
2491
2492      if Etype (Condition) = Any_Type or else
2493         Etype (Then_Expr) = Any_Type or else
2494         Etype (Else_Expr) = Any_Type
2495      then
2496         Set_Etype (N, Any_Type);
2497         Set_Is_Static_Expression (N, False);
2498         return;
2499      end if;
2500
2501      --  If condition raises Constraint_Error then we have already signaled
2502      --  an error, and we just propagate to the result and do not fold.
2503
2504      if Raises_Constraint_Error (Condition) then
2505         Set_Raises_Constraint_Error (N);
2506         return;
2507      end if;
2508
2509      --  Static case where we can fold. Note that we don't try to fold cases
2510      --  where the condition is known at compile time, but the result is
2511      --  non-static. This avoids possible cases of infinite recursion where
2512      --  the expander puts in a redundant test and we remove it. Instead we
2513      --  deal with these cases in the expander.
2514
2515      --  Select result operand
2516
2517      if Is_True (Expr_Value (Condition)) then
2518         Result     := Then_Expr;
2519         Non_Result := Else_Expr;
2520      else
2521         Result     := Else_Expr;
2522         Non_Result := Then_Expr;
2523      end if;
2524
2525      --  Note that it does not matter if the non-result operand raises a
2526      --  Constraint_Error, but if the result raises Constraint_Error then we
2527      --  replace the node with a raise Constraint_Error. This will properly
2528      --  propagate Raises_Constraint_Error since this flag is set in Result.
2529
2530      if Raises_Constraint_Error (Result) then
2531         Rewrite_In_Raise_CE (N, Result);
2532         Check_Non_Static_Context (Non_Result);
2533
2534      --  Otherwise the result operand replaces the original node
2535
2536      else
2537         Rewrite (N, Relocate_Node (Result));
2538         Set_Is_Static_Expression (N);
2539      end if;
2540   end Eval_If_Expression;
2541
2542   ----------------------------
2543   -- Eval_Indexed_Component --
2544   ----------------------------
2545
2546   --  Indexed components are never static, so we need to perform the check
2547   --  for non-static context on the index values. Then, we check if the
2548   --  value can be obtained at compile time, even though it is non-static.
2549
2550   procedure Eval_Indexed_Component (N : Node_Id) is
2551      Expr : Node_Id;
2552
2553   begin
2554      --  Check for non-static context on index values
2555
2556      Expr := First (Expressions (N));
2557      while Present (Expr) loop
2558         Check_Non_Static_Context (Expr);
2559         Next (Expr);
2560      end loop;
2561
2562      --  If the indexed component appears in an object renaming declaration
2563      --  then we do not want to try to evaluate it, since in this case we
2564      --  need the identity of the array element.
2565
2566      if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2567         return;
2568
2569      --  Similarly if the indexed component appears as the prefix of an
2570      --  attribute we don't want to evaluate it, because at least for
2571      --  some cases of attributes we need the identify (e.g. Access, Size)
2572
2573      elsif Nkind (Parent (N)) = N_Attribute_Reference then
2574         return;
2575      end if;
2576
2577      --  Note: there are other cases, such as the left side of an assignment,
2578      --  or an OUT parameter for a call, where the replacement results in the
2579      --  illegal use of a constant, But these cases are illegal in the first
2580      --  place, so the replacement, though silly, is harmless.
2581
2582      --  Now see if this is a constant array reference
2583
2584      if List_Length (Expressions (N)) = 1
2585        and then Is_Entity_Name (Prefix (N))
2586        and then Ekind (Entity (Prefix (N))) = E_Constant
2587        and then Present (Constant_Value (Entity (Prefix (N))))
2588      then
2589         declare
2590            Loc : constant Source_Ptr := Sloc (N);
2591            Arr : constant Node_Id    := Constant_Value (Entity (Prefix (N)));
2592            Sub : constant Node_Id    := First (Expressions (N));
2593
2594            Atyp : Entity_Id;
2595            --  Type of array
2596
2597            Lin : Nat;
2598            --  Linear one's origin subscript value for array reference
2599
2600            Lbd : Node_Id;
2601            --  Lower bound of the first array index
2602
2603            Elm : Node_Id;
2604            --  Value from constant array
2605
2606         begin
2607            Atyp := Etype (Arr);
2608
2609            if Is_Access_Type (Atyp) then
2610               Atyp := Designated_Type (Atyp);
2611            end if;
2612
2613            --  If we have an array type (we should have but perhaps there are
2614            --  error cases where this is not the case), then see if we can do
2615            --  a constant evaluation of the array reference.
2616
2617            if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
2618               if Ekind (Atyp) = E_String_Literal_Subtype then
2619                  Lbd := String_Literal_Low_Bound (Atyp);
2620               else
2621                  Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2622               end if;
2623
2624               if Compile_Time_Known_Value (Sub)
2625                 and then Nkind (Arr) = N_Aggregate
2626                 and then Compile_Time_Known_Value (Lbd)
2627                 and then Is_Discrete_Type (Component_Type (Atyp))
2628               then
2629                  Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2630
2631                  if List_Length (Expressions (Arr)) >= Lin then
2632                     Elm := Pick (Expressions (Arr), Lin);
2633
2634                     --  If the resulting expression is compile-time-known,
2635                     --  then we can rewrite the indexed component with this
2636                     --  value, being sure to mark the result as non-static.
2637                     --  We also reset the Sloc, in case this generates an
2638                     --  error later on (e.g. 136'Access).
2639
2640                     if Compile_Time_Known_Value (Elm) then
2641                        Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2642                        Set_Is_Static_Expression (N, False);
2643                        Set_Sloc (N, Loc);
2644                     end if;
2645                  end if;
2646
2647               --  We can also constant-fold if the prefix is a string literal.
2648               --  This will be useful in an instantiation or an inlining.
2649
2650               elsif Compile_Time_Known_Value (Sub)
2651                 and then Nkind (Arr) = N_String_Literal
2652                 and then Compile_Time_Known_Value (Lbd)
2653                 and then Expr_Value (Lbd) = 1
2654                 and then Expr_Value (Sub) <=
2655                   String_Literal_Length (Etype (Arr))
2656               then
2657                  declare
2658                     C : constant Char_Code :=
2659                           Get_String_Char (Strval (Arr),
2660                             UI_To_Int (Expr_Value (Sub)));
2661                  begin
2662                     Set_Character_Literal_Name (C);
2663
2664                     Elm :=
2665                       Make_Character_Literal (Loc,
2666                         Chars              => Name_Find,
2667                         Char_Literal_Value => UI_From_CC (C));
2668                     Set_Etype (Elm, Component_Type (Atyp));
2669                     Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2670                     Set_Is_Static_Expression (N, False);
2671                  end;
2672               end if;
2673            end if;
2674         end;
2675      end if;
2676   end Eval_Indexed_Component;
2677
2678   --------------------------
2679   -- Eval_Integer_Literal --
2680   --------------------------
2681
2682   --  Numeric literals are static (RM 4.9(1)), and have already been marked
2683   --  as static by the analyzer. The reason we did it that early is to allow
2684   --  the possibility of turning off the Is_Static_Expression flag after
2685   --  analysis, but before resolution, when integer literals are generated in
2686   --  the expander that do not correspond to static expressions.
2687
2688   procedure Eval_Integer_Literal (N : Node_Id) is
2689      function In_Any_Integer_Context (Context : Node_Id) return Boolean;
2690      --  If the literal is resolved with a specific type in a context where
2691      --  the expected type is Any_Integer, there are no range checks on the
2692      --  literal. By the time the literal is evaluated, it carries the type
2693      --  imposed by the enclosing expression, and we must recover the context
2694      --  to determine that Any_Integer is meant.
2695
2696      ----------------------------
2697      -- In_Any_Integer_Context --
2698      ----------------------------
2699
2700      function In_Any_Integer_Context (Context : Node_Id) return Boolean is
2701      begin
2702         --  Any_Integer also appears in digits specifications for real types,
2703         --  but those have bounds smaller that those of any integer base type,
2704         --  so we can safely ignore these cases.
2705
2706         return
2707           Nkind_In (Context, N_Attribute_Definition_Clause,
2708                              N_Attribute_Reference,
2709                              N_Modular_Type_Definition,
2710                              N_Number_Declaration,
2711                              N_Signed_Integer_Type_Definition);
2712      end In_Any_Integer_Context;
2713
2714      --  Local variables
2715
2716      Par : constant Node_Id   := Parent (N);
2717      Typ : constant Entity_Id := Etype (N);
2718
2719   --  Start of processing for Eval_Integer_Literal
2720
2721   begin
2722      --  If the literal appears in a non-expression context, then it is
2723      --  certainly appearing in a non-static context, so check it. This is
2724      --  actually a redundant check, since Check_Non_Static_Context would
2725      --  check it, but it seems worthwhile to optimize out the call.
2726
2727      --  Additionally, when the literal appears within an if or case
2728      --  expression it must be checked as well. However, due to the literal
2729      --  appearing within a conditional statement, expansion greatly changes
2730      --  the nature of its context and performing some of the checks within
2731      --  Check_Non_Static_Context on an expanded literal may lead to spurious
2732      --  and misleading warnings.
2733
2734      if (Nkind_In (Par, N_Case_Expression_Alternative, N_If_Expression)
2735           or else Nkind (Parent (N)) not in N_Subexpr)
2736        and then (not Nkind_In (Par, N_Case_Expression_Alternative,
2737                                     N_If_Expression)
2738                   or else Comes_From_Source (N))
2739        and then not In_Any_Integer_Context (Par)
2740      then
2741         Check_Non_Static_Context (N);
2742      end if;
2743
2744      --  Modular integer literals must be in their base range
2745
2746      if Is_Modular_Integer_Type (Typ)
2747        and then Is_Out_Of_Range (N, Base_Type (Typ), Assume_Valid => True)
2748      then
2749         Out_Of_Range (N);
2750      end if;
2751   end Eval_Integer_Literal;
2752
2753   ---------------------
2754   -- Eval_Logical_Op --
2755   ---------------------
2756
2757   --  Logical operations are static functions, so the result is potentially
2758   --  static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2759
2760   procedure Eval_Logical_Op (N : Node_Id) is
2761      Left  : constant Node_Id := Left_Opnd (N);
2762      Right : constant Node_Id := Right_Opnd (N);
2763      Stat  : Boolean;
2764      Fold  : Boolean;
2765
2766   begin
2767      --  If not foldable we are done
2768
2769      Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2770
2771      if not Fold then
2772         return;
2773      end if;
2774
2775      --  Compile time evaluation of logical operation
2776
2777      declare
2778         Left_Int  : constant Uint := Expr_Value (Left);
2779         Right_Int : constant Uint := Expr_Value (Right);
2780
2781      begin
2782         if Is_Modular_Integer_Type (Etype (N)) then
2783            declare
2784               Left_Bits  : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2785               Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2786
2787            begin
2788               To_Bits (Left_Int, Left_Bits);
2789               To_Bits (Right_Int, Right_Bits);
2790
2791               --  Note: should really be able to use array ops instead of
2792               --  these loops, but they weren't working at the time ???
2793
2794               if Nkind (N) = N_Op_And then
2795                  for J in Left_Bits'Range loop
2796                     Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2797                  end loop;
2798
2799               elsif Nkind (N) = N_Op_Or then
2800                  for J in Left_Bits'Range loop
2801                     Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2802                  end loop;
2803
2804               else
2805                  pragma Assert (Nkind (N) = N_Op_Xor);
2806
2807                  for J in Left_Bits'Range loop
2808                     Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2809                  end loop;
2810               end if;
2811
2812               Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
2813            end;
2814
2815         else
2816            pragma Assert (Is_Boolean_Type (Etype (N)));
2817
2818            if Nkind (N) = N_Op_And then
2819               Fold_Uint (N,
2820                 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
2821
2822            elsif Nkind (N) = N_Op_Or then
2823               Fold_Uint (N,
2824                 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
2825
2826            else
2827               pragma Assert (Nkind (N) = N_Op_Xor);
2828               Fold_Uint (N,
2829                 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
2830            end if;
2831         end if;
2832      end;
2833   end Eval_Logical_Op;
2834
2835   ------------------------
2836   -- Eval_Membership_Op --
2837   ------------------------
2838
2839   --  A membership test is potentially static if the expression is static, and
2840   --  the range is a potentially static range, or is a subtype mark denoting a
2841   --  static subtype (RM 4.9(12)).
2842
2843   procedure Eval_Membership_Op (N : Node_Id) is
2844      Alts   : constant List_Id := Alternatives (N);
2845      Choice : constant Node_Id := Right_Opnd (N);
2846      Expr   : constant Node_Id := Left_Opnd (N);
2847      Result : Match_Result;
2848
2849   begin
2850      --  Ignore if error in either operand, except to make sure that Any_Type
2851      --  is properly propagated to avoid junk cascaded errors.
2852
2853      if Etype (Expr) = Any_Type
2854        or else (Present (Choice) and then Etype (Choice) = Any_Type)
2855      then
2856         Set_Etype (N, Any_Type);
2857         return;
2858      end if;
2859
2860      --  If left operand non-static, then nothing to do
2861
2862      if not Is_Static_Expression (Expr) then
2863         return;
2864      end if;
2865
2866      --  If choice is non-static, left operand is in non-static context
2867
2868      if (Present (Choice) and then not Is_Static_Choice (Choice))
2869        or else (Present (Alts) and then not Is_Static_Choice_List (Alts))
2870      then
2871         Check_Non_Static_Context (Expr);
2872         return;
2873      end if;
2874
2875      --  Otherwise we definitely have a static expression
2876
2877      Set_Is_Static_Expression (N);
2878
2879      --  If left operand raises Constraint_Error, propagate and we are done
2880
2881      if Raises_Constraint_Error (Expr) then
2882         Set_Raises_Constraint_Error (N, True);
2883
2884      --  See if we match
2885
2886      else
2887         if Present (Choice) then
2888            Result := Choice_Matches (Expr, Choice);
2889         else
2890            Result := Choices_Match (Expr, Alts);
2891         end if;
2892
2893         --  If result is Non_Static, it means that we raise Constraint_Error,
2894         --  since we already tested that the operands were themselves static.
2895
2896         if Result = Non_Static then
2897            Set_Raises_Constraint_Error (N);
2898
2899         --  Otherwise we have our result (flipped if NOT IN case)
2900
2901         else
2902            Fold_Uint
2903              (N, Test ((Result = Match) xor (Nkind (N) = N_Not_In)), True);
2904            Warn_On_Known_Condition (N);
2905         end if;
2906      end if;
2907   end Eval_Membership_Op;
2908
2909   ------------------------
2910   -- Eval_Named_Integer --
2911   ------------------------
2912
2913   procedure Eval_Named_Integer (N : Node_Id) is
2914   begin
2915      Fold_Uint (N,
2916        Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
2917   end Eval_Named_Integer;
2918
2919   ---------------------
2920   -- Eval_Named_Real --
2921   ---------------------
2922
2923   procedure Eval_Named_Real (N : Node_Id) is
2924   begin
2925      Fold_Ureal (N,
2926        Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
2927   end Eval_Named_Real;
2928
2929   -------------------
2930   -- Eval_Op_Expon --
2931   -------------------
2932
2933   --  Exponentiation is a static functions, so the result is potentially
2934   --  static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2935
2936   procedure Eval_Op_Expon (N : Node_Id) is
2937      Left  : constant Node_Id := Left_Opnd (N);
2938      Right : constant Node_Id := Right_Opnd (N);
2939      Stat  : Boolean;
2940      Fold  : Boolean;
2941
2942   begin
2943      --  If not foldable we are done
2944
2945      Test_Expression_Is_Foldable
2946        (N, Left, Right, Stat, Fold, CRT_Safe => True);
2947
2948      --  Return if not foldable
2949
2950      if not Fold then
2951         return;
2952      end if;
2953
2954      if Configurable_Run_Time_Mode and not Stat then
2955         return;
2956      end if;
2957
2958      --  Fold exponentiation operation
2959
2960      declare
2961         Right_Int : constant Uint := Expr_Value (Right);
2962
2963      begin
2964         --  Integer case
2965
2966         if Is_Integer_Type (Etype (Left)) then
2967            declare
2968               Left_Int : constant Uint := Expr_Value (Left);
2969               Result   : Uint;
2970
2971            begin
2972               --  Exponentiation of an integer raises Constraint_Error for a
2973               --  negative exponent (RM 4.5.6).
2974
2975               if Right_Int < 0 then
2976                  Apply_Compile_Time_Constraint_Error
2977                    (N, "integer exponent negative", CE_Range_Check_Failed,
2978                     Warn => not Stat);
2979                  return;
2980
2981               else
2982                  if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2983                     Result := Left_Int ** Right_Int;
2984                  else
2985                     Result := Left_Int;
2986                  end if;
2987
2988                  if Is_Modular_Integer_Type (Etype (N)) then
2989                     Result := Result mod Modulus (Etype (N));
2990                  end if;
2991
2992                  Fold_Uint (N, Result, Stat);
2993               end if;
2994            end;
2995
2996         --  Real case
2997
2998         else
2999            declare
3000               Left_Real : constant Ureal := Expr_Value_R (Left);
3001
3002            begin
3003               --  Cannot have a zero base with a negative exponent
3004
3005               if UR_Is_Zero (Left_Real) then
3006
3007                  if Right_Int < 0 then
3008                     Apply_Compile_Time_Constraint_Error
3009                       (N, "zero ** negative integer", CE_Range_Check_Failed,
3010                        Warn => not Stat);
3011                     return;
3012                  else
3013                     Fold_Ureal (N, Ureal_0, Stat);
3014                  end if;
3015
3016               else
3017                  Fold_Ureal (N, Left_Real ** Right_Int, Stat);
3018               end if;
3019            end;
3020         end if;
3021      end;
3022   end Eval_Op_Expon;
3023
3024   -----------------
3025   -- Eval_Op_Not --
3026   -----------------
3027
3028   --  The not operation is a static functions, so the result is potentially
3029   --  static if the operand is potentially static (RM 4.9(7), 4.9(20)).
3030
3031   procedure Eval_Op_Not (N : Node_Id) is
3032      Right : constant Node_Id := Right_Opnd (N);
3033      Stat  : Boolean;
3034      Fold  : Boolean;
3035
3036   begin
3037      --  If not foldable we are done
3038
3039      Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3040
3041      if not Fold then
3042         return;
3043      end if;
3044
3045      --  Fold not operation
3046
3047      declare
3048         Rint : constant Uint      := Expr_Value (Right);
3049         Typ  : constant Entity_Id := Etype (N);
3050
3051      begin
3052         --  Negation is equivalent to subtracting from the modulus minus one.
3053         --  For a binary modulus this is equivalent to the ones-complement of
3054         --  the original value. For a nonbinary modulus this is an arbitrary
3055         --  but consistent definition.
3056
3057         if Is_Modular_Integer_Type (Typ) then
3058            Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
3059         else pragma Assert (Is_Boolean_Type (Typ));
3060            Fold_Uint (N, Test (not Is_True (Rint)), Stat);
3061         end if;
3062
3063         Set_Is_Static_Expression (N, Stat);
3064      end;
3065   end Eval_Op_Not;
3066
3067   -------------------------------
3068   -- Eval_Qualified_Expression --
3069   -------------------------------
3070
3071   --  A qualified expression is potentially static if its subtype mark denotes
3072   --  a static subtype and its expression is potentially static (RM 4.9 (11)).
3073
3074   procedure Eval_Qualified_Expression (N : Node_Id) is
3075      Operand     : constant Node_Id   := Expression (N);
3076      Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
3077
3078      Stat : Boolean;
3079      Fold : Boolean;
3080      Hex  : Boolean;
3081
3082   begin
3083      --  Can only fold if target is string or scalar and subtype is static.
3084      --  Also, do not fold if our parent is an allocator (this is because the
3085      --  qualified expression is really part of the syntactic structure of an
3086      --  allocator, and we do not want to end up with something that
3087      --  corresponds to "new 1" where the 1 is the result of folding a
3088      --  qualified expression).
3089
3090      if not Is_Static_Subtype (Target_Type)
3091        or else Nkind (Parent (N)) = N_Allocator
3092      then
3093         Check_Non_Static_Context (Operand);
3094
3095         --  If operand is known to raise constraint_error, set the flag on the
3096         --  expression so it does not get optimized away.
3097
3098         if Nkind (Operand) = N_Raise_Constraint_Error then
3099            Set_Raises_Constraint_Error (N);
3100         end if;
3101
3102         return;
3103      end if;
3104
3105      --  If not foldable we are done
3106
3107      Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3108
3109      if not Fold then
3110         return;
3111
3112      --  Don't try fold if target type has Constraint_Error bounds
3113
3114      elsif not Is_OK_Static_Subtype (Target_Type) then
3115         Set_Raises_Constraint_Error (N);
3116         return;
3117      end if;
3118
3119      --  Here we will fold, save Print_In_Hex indication
3120
3121      Hex := Nkind (Operand) = N_Integer_Literal
3122               and then Print_In_Hex (Operand);
3123
3124      --  Fold the result of qualification
3125
3126      if Is_Discrete_Type (Target_Type) then
3127         Fold_Uint (N, Expr_Value (Operand), Stat);
3128
3129         --  Preserve Print_In_Hex indication
3130
3131         if Hex and then Nkind (N) = N_Integer_Literal then
3132            Set_Print_In_Hex (N);
3133         end if;
3134
3135      elsif Is_Real_Type (Target_Type) then
3136         Fold_Ureal (N, Expr_Value_R (Operand), Stat);
3137
3138      else
3139         Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
3140
3141         if not Stat then
3142            Set_Is_Static_Expression (N, False);
3143         else
3144            Check_String_Literal_Length (N, Target_Type);
3145         end if;
3146
3147         return;
3148      end if;
3149
3150      --  The expression may be foldable but not static
3151
3152      Set_Is_Static_Expression (N, Stat);
3153
3154      if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3155         Out_Of_Range (N);
3156      end if;
3157   end Eval_Qualified_Expression;
3158
3159   -----------------------
3160   -- Eval_Real_Literal --
3161   -----------------------
3162
3163   --  Numeric literals are static (RM 4.9(1)), and have already been marked
3164   --  as static by the analyzer. The reason we did it that early is to allow
3165   --  the possibility of turning off the Is_Static_Expression flag after
3166   --  analysis, but before resolution, when integer literals are generated
3167   --  in the expander that do not correspond to static expressions.
3168
3169   procedure Eval_Real_Literal (N : Node_Id) is
3170      PK : constant Node_Kind := Nkind (Parent (N));
3171
3172   begin
3173      --  If the literal appears in a non-expression context and not as part of
3174      --  a number declaration, then it is appearing in a non-static context,
3175      --  so check it.
3176
3177      if PK not in N_Subexpr and then PK /= N_Number_Declaration then
3178         Check_Non_Static_Context (N);
3179      end if;
3180   end Eval_Real_Literal;
3181
3182   ------------------------
3183   -- Eval_Relational_Op --
3184   ------------------------
3185
3186   --  Relational operations are static functions, so the result is static if
3187   --  both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
3188   --  the result is never static, even if the operands are.
3189
3190   --  However, for internally generated nodes, we allow string equality and
3191   --  inequality to be static. This is because we rewrite A in "ABC" as an
3192   --  equality test A = "ABC", and the former is definitely static.
3193
3194   procedure Eval_Relational_Op (N : Node_Id) is
3195      Left  : constant Node_Id := Left_Opnd  (N);
3196      Right : constant Node_Id := Right_Opnd (N);
3197
3198      procedure Decompose_Expr
3199        (Expr : Node_Id;
3200         Ent  : out Entity_Id;
3201         Kind : out Character;
3202         Cons : out Uint;
3203         Orig : Boolean := True);
3204      --  Given expression Expr, see if it is of the form X [+/- K]. If so, Ent
3205      --  is set to the entity in X, Kind is 'F','L','E' for 'First or 'Last or
3206      --  simple entity, and Cons is the value of K. If the expression is not
3207      --  of the required form, Ent is set to Empty.
3208      --
3209      --  Orig indicates whether Expr is the original expression to consider,
3210      --  or if we are handling a subexpression (e.g. recursive call to
3211      --  Decompose_Expr).
3212
3213      procedure Fold_General_Op (Is_Static : Boolean);
3214      --  Attempt to fold arbitrary relational operator N. Flag Is_Static must
3215      --  be set when the operator denotes a static expression.
3216
3217      procedure Fold_Static_Real_Op;
3218      --  Attempt to fold static real type relational operator N
3219
3220      function Static_Length (Expr : Node_Id) return Uint;
3221      --  If Expr is an expression for a constrained array whose length is
3222      --  known at compile time, return the non-negative length, otherwise
3223      --  return -1.
3224
3225      --------------------
3226      -- Decompose_Expr --
3227      --------------------
3228
3229      procedure Decompose_Expr
3230        (Expr : Node_Id;
3231         Ent  : out Entity_Id;
3232         Kind : out Character;
3233         Cons : out Uint;
3234         Orig : Boolean := True)
3235      is
3236         Exp : Node_Id;
3237
3238      begin
3239         --  Assume that the expression does not meet the expected form
3240
3241         Cons := No_Uint;
3242         Ent  := Empty;
3243         Kind := '?';
3244
3245         if Nkind (Expr) = N_Op_Add
3246           and then Compile_Time_Known_Value (Right_Opnd (Expr))
3247         then
3248            Exp  := Left_Opnd (Expr);
3249            Cons := Expr_Value (Right_Opnd (Expr));
3250
3251         elsif Nkind (Expr) = N_Op_Subtract
3252           and then Compile_Time_Known_Value (Right_Opnd (Expr))
3253         then
3254            Exp  := Left_Opnd (Expr);
3255            Cons := -Expr_Value (Right_Opnd (Expr));
3256
3257         --  If the bound is a constant created to remove side effects, recover
3258         --  the original expression to see if it has one of the recognizable
3259         --  forms.
3260
3261         elsif Nkind (Expr) = N_Identifier
3262           and then not Comes_From_Source (Entity (Expr))
3263           and then Ekind (Entity (Expr)) = E_Constant
3264           and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
3265         then
3266            Exp := Expression (Parent (Entity (Expr)));
3267            Decompose_Expr (Exp, Ent, Kind, Cons, Orig => False);
3268
3269            --  If original expression includes an entity, create a reference
3270            --  to it for use below.
3271
3272            if Present (Ent) then
3273               Exp := New_Occurrence_Of (Ent, Sloc (Ent));
3274            else
3275               return;
3276            end if;
3277
3278         else
3279            --  Only consider the case of X + 0 for a full expression, and
3280            --  not when recursing, otherwise we may end up with evaluating
3281            --  expressions not known at compile time to 0.
3282
3283            if Orig then
3284               Exp  := Expr;
3285               Cons := Uint_0;
3286            else
3287               return;
3288            end if;
3289         end if;
3290
3291         --  At this stage Exp is set to the potential X
3292
3293         if Nkind (Exp) = N_Attribute_Reference then
3294            if Attribute_Name (Exp) = Name_First then
3295               Kind := 'F';
3296            elsif Attribute_Name (Exp) = Name_Last then
3297               Kind := 'L';
3298            else
3299               return;
3300            end if;
3301
3302            Exp := Prefix (Exp);
3303
3304         else
3305            Kind := 'E';
3306         end if;
3307
3308         if Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
3309            Ent := Entity (Exp);
3310         end if;
3311      end Decompose_Expr;
3312
3313      ---------------------
3314      -- Fold_General_Op --
3315      ---------------------
3316
3317      procedure Fold_General_Op (Is_Static : Boolean) is
3318         CR : constant Compare_Result :=
3319                Compile_Time_Compare (Left, Right, Assume_Valid => False);
3320
3321         Result : Boolean;
3322
3323      begin
3324         if CR = Unknown then
3325            return;
3326         end if;
3327
3328         case Nkind (N) is
3329            when N_Op_Eq =>
3330               if CR = EQ then
3331                  Result := True;
3332               elsif CR = NE or else CR = GT or else CR = LT then
3333                  Result := False;
3334               else
3335                  return;
3336               end if;
3337
3338            when N_Op_Ge =>
3339               if CR = GT or else CR = EQ or else CR = GE then
3340                  Result := True;
3341               elsif CR = LT then
3342                  Result := False;
3343               else
3344                  return;
3345               end if;
3346
3347            when N_Op_Gt =>
3348               if CR = GT then
3349                  Result := True;
3350               elsif CR = EQ or else CR = LT or else CR = LE then
3351                  Result := False;
3352               else
3353                  return;
3354               end if;
3355
3356            when N_Op_Le =>
3357               if CR = LT or else CR = EQ or else CR = LE then
3358                  Result := True;
3359               elsif CR = GT then
3360                  Result := False;
3361               else
3362                  return;
3363               end if;
3364
3365            when N_Op_Lt =>
3366               if CR = LT then
3367                  Result := True;
3368               elsif CR = EQ or else CR = GT or else CR = GE then
3369                  Result := False;
3370               else
3371                  return;
3372               end if;
3373
3374            when N_Op_Ne =>
3375               if CR = NE or else CR = GT or else CR = LT then
3376                  Result := True;
3377               elsif CR = EQ then
3378                  Result := False;
3379               else
3380                  return;
3381               end if;
3382
3383            when others =>
3384               raise Program_Error;
3385         end case;
3386
3387         --  Determine the potential outcome of the relation assuming the
3388         --  operands are valid and emit a warning when the relation yields
3389         --  True or False only in the presence of invalid values.
3390
3391         Warn_On_Constant_Valid_Condition (N);
3392
3393         Fold_Uint (N, Test (Result), Is_Static);
3394      end Fold_General_Op;
3395
3396      -------------------------
3397      -- Fold_Static_Real_Op --
3398      -------------------------
3399
3400      procedure Fold_Static_Real_Op is
3401         Left_Real  : constant Ureal := Expr_Value_R (Left);
3402         Right_Real : constant Ureal := Expr_Value_R (Right);
3403         Result     : Boolean;
3404
3405      begin
3406         case Nkind (N) is
3407            when N_Op_Eq => Result := (Left_Real =  Right_Real);
3408            when N_Op_Ge => Result := (Left_Real >= Right_Real);
3409            when N_Op_Gt => Result := (Left_Real >  Right_Real);
3410            when N_Op_Le => Result := (Left_Real <= Right_Real);
3411            when N_Op_Lt => Result := (Left_Real <  Right_Real);
3412            when N_Op_Ne => Result := (Left_Real /= Right_Real);
3413            when others  => raise Program_Error;
3414         end case;
3415
3416         Fold_Uint (N, Test (Result), True);
3417      end Fold_Static_Real_Op;
3418
3419      -------------------
3420      -- Static_Length --
3421      -------------------
3422
3423      function Static_Length (Expr : Node_Id) return Uint is
3424         Cons1 : Uint;
3425         Cons2 : Uint;
3426         Ent1  : Entity_Id;
3427         Ent2  : Entity_Id;
3428         Kind1 : Character;
3429         Kind2 : Character;
3430         Typ   : Entity_Id;
3431
3432      begin
3433         --  First easy case string literal
3434
3435         if Nkind (Expr) = N_String_Literal then
3436            return UI_From_Int (String_Length (Strval (Expr)));
3437
3438         --  With frontend inlining as performed in GNATprove mode, a variable
3439         --  may be inserted that has a string literal subtype. Deal with this
3440         --  specially as for the previous case.
3441
3442         elsif Ekind (Etype (Expr)) = E_String_Literal_Subtype then
3443            return String_Literal_Length (Etype (Expr));
3444
3445         --  Second easy case, not constrained subtype, so no length
3446
3447         elsif not Is_Constrained (Etype (Expr)) then
3448            return Uint_Minus_1;
3449         end if;
3450
3451         --  General case
3452
3453         Typ := Etype (First_Index (Etype (Expr)));
3454
3455         --  The simple case, both bounds are known at compile time
3456
3457         if Is_Discrete_Type (Typ)
3458           and then Compile_Time_Known_Value (Type_Low_Bound (Typ))
3459           and then Compile_Time_Known_Value (Type_High_Bound (Typ))
3460         then
3461            return
3462              UI_Max (Uint_0, Expr_Value (Type_High_Bound (Typ)) -
3463                              Expr_Value (Type_Low_Bound  (Typ)) + 1);
3464         end if;
3465
3466         --  A more complex case, where the bounds are of the form X [+/- K1]
3467         --  .. X [+/- K2]), where X is an expression that is either A'First or
3468         --  A'Last (with A an entity name), or X is an entity name, and the
3469         --  two X's are the same and K1 and K2 are known at compile time, in
3470         --  this case, the length can also be computed at compile time, even
3471         --  though the bounds are not known. A common case of this is e.g.
3472         --  (X'First .. X'First+5).
3473
3474         Decompose_Expr
3475           (Original_Node (Type_Low_Bound  (Typ)), Ent1, Kind1, Cons1);
3476         Decompose_Expr
3477           (Original_Node (Type_High_Bound (Typ)), Ent2, Kind2, Cons2);
3478
3479         if Present (Ent1) and then Ent1 = Ent2 and then Kind1 = Kind2 then
3480            return Cons2 - Cons1 + 1;
3481         else
3482            return Uint_Minus_1;
3483         end if;
3484      end Static_Length;
3485
3486      --  Local variables
3487
3488      Left_Typ  : constant Entity_Id := Etype (Left);
3489      Right_Typ : constant Entity_Id := Etype (Right);
3490      Fold      : Boolean;
3491      Left_Len  : Uint;
3492      Op_Typ    : Entity_Id := Empty;
3493      Right_Len : Uint;
3494
3495      Is_Static_Expression : Boolean;
3496
3497   --  Start of processing for Eval_Relational_Op
3498
3499   begin
3500      --  One special case to deal with first. If we can tell that the result
3501      --  will be false because the lengths of one or more index subtypes are
3502      --  compile-time known and different, then we can replace the entire
3503      --  result by False. We only do this for one-dimensional arrays, because
3504      --  the case of multidimensional arrays is rare and too much trouble. If
3505      --  one of the operands is an illegal aggregate, its type might still be
3506      --  an arbitrary composite type, so nothing to do.
3507
3508      if Is_Array_Type (Left_Typ)
3509        and then Left_Typ /= Any_Composite
3510        and then Number_Dimensions (Left_Typ) = 1
3511        and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3512      then
3513         if Raises_Constraint_Error (Left)
3514              or else
3515            Raises_Constraint_Error (Right)
3516         then
3517            return;
3518
3519         --  OK, we have the case where we may be able to do this fold
3520
3521         else
3522            Left_Len  := Static_Length (Left);
3523            Right_Len := Static_Length (Right);
3524
3525            if Left_Len /= Uint_Minus_1
3526              and then Right_Len /= Uint_Minus_1
3527              and then Left_Len /= Right_Len
3528            then
3529               Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
3530               Warn_On_Known_Condition (N);
3531               return;
3532            end if;
3533         end if;
3534
3535      --  General case
3536
3537      else
3538         --  Initialize the value of Is_Static_Expression. The value of Fold
3539         --  returned by Test_Expression_Is_Foldable is not needed since, even
3540         --  when some operand is a variable, we can still perform the static
3541         --  evaluation of the expression in some cases (for example, for a
3542         --  variable of a subtype of Integer we statically know that any value
3543         --  stored in such variable is smaller than Integer'Last).
3544
3545         Test_Expression_Is_Foldable
3546           (N, Left, Right, Is_Static_Expression, Fold);
3547
3548         --  Only comparisons of scalars can give static results. A comparison
3549         --  of strings never yields a static result, even if both operands are
3550         --  static strings, except that as noted above, we allow equality and
3551         --  inequality for strings.
3552
3553         if Is_String_Type (Left_Typ)
3554           and then not Comes_From_Source (N)
3555           and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3556         then
3557            null;
3558
3559         elsif not Is_Scalar_Type (Left_Typ) then
3560            Is_Static_Expression := False;
3561            Set_Is_Static_Expression (N, False);
3562         end if;
3563
3564         --  For operators on universal numeric types called as functions with
3565         --  an explicit scope, determine appropriate specific numeric type,
3566         --  and diagnose possible ambiguity.
3567
3568         if Is_Universal_Numeric_Type (Left_Typ)
3569              and then
3570            Is_Universal_Numeric_Type (Right_Typ)
3571         then
3572            Op_Typ := Find_Universal_Operator_Type (N);
3573         end if;
3574
3575         --  Attempt to fold the relational operator
3576
3577         if Is_Static_Expression and then Is_Real_Type (Left_Typ) then
3578            Fold_Static_Real_Op;
3579         else
3580            Fold_General_Op (Is_Static_Expression);
3581         end if;
3582      end if;
3583
3584      --  For the case of a folded relational operator on a specific numeric
3585      --  type, freeze the operand type now.
3586
3587      if Present (Op_Typ) then
3588         Freeze_Before (N, Op_Typ);
3589      end if;
3590
3591      Warn_On_Known_Condition (N);
3592   end Eval_Relational_Op;
3593
3594   ----------------
3595   -- Eval_Shift --
3596   ----------------
3597
3598   --  Shift operations are intrinsic operations that can never be static, so
3599   --  the only processing required is to perform the required check for a non
3600   --  static context for the two operands.
3601
3602   --  Actually we could do some compile time evaluation here some time ???
3603
3604   procedure Eval_Shift (N : Node_Id) is
3605   begin
3606      Check_Non_Static_Context (Left_Opnd (N));
3607      Check_Non_Static_Context (Right_Opnd (N));
3608   end Eval_Shift;
3609
3610   ------------------------
3611   -- Eval_Short_Circuit --
3612   ------------------------
3613
3614   --  A short circuit operation is potentially static if both operands are
3615   --  potentially static (RM 4.9 (13)).
3616
3617   procedure Eval_Short_Circuit (N : Node_Id) is
3618      Kind     : constant Node_Kind := Nkind (N);
3619      Left     : constant Node_Id   := Left_Opnd (N);
3620      Right    : constant Node_Id   := Right_Opnd (N);
3621      Left_Int : Uint;
3622
3623      Rstat : constant Boolean :=
3624                Is_Static_Expression (Left)
3625                  and then
3626                Is_Static_Expression (Right);
3627
3628   begin
3629      --  Short circuit operations are never static in Ada 83
3630
3631      if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3632         Check_Non_Static_Context (Left);
3633         Check_Non_Static_Context (Right);
3634         return;
3635      end if;
3636
3637      --  Now look at the operands, we can't quite use the normal call to
3638      --  Test_Expression_Is_Foldable here because short circuit operations
3639      --  are a special case, they can still be foldable, even if the right
3640      --  operand raises Constraint_Error.
3641
3642      --  If either operand is Any_Type, just propagate to result and do not
3643      --  try to fold, this prevents cascaded errors.
3644
3645      if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3646         Set_Etype (N, Any_Type);
3647         return;
3648
3649      --  If left operand raises Constraint_Error, then replace node N with
3650      --  the raise Constraint_Error node, and we are obviously not foldable.
3651      --  Is_Static_Expression is set from the two operands in the normal way,
3652      --  and we check the right operand if it is in a non-static context.
3653
3654      elsif Raises_Constraint_Error (Left) then
3655         if not Rstat then
3656            Check_Non_Static_Context (Right);
3657         end if;
3658
3659         Rewrite_In_Raise_CE (N, Left);
3660         Set_Is_Static_Expression (N, Rstat);
3661         return;
3662
3663      --  If the result is not static, then we won't in any case fold
3664
3665      elsif not Rstat then
3666         Check_Non_Static_Context (Left);
3667         Check_Non_Static_Context (Right);
3668         return;
3669      end if;
3670
3671      --  Here the result is static, note that, unlike the normal processing
3672      --  in Test_Expression_Is_Foldable, we did *not* check above to see if
3673      --  the right operand raises Constraint_Error, that's because it is not
3674      --  significant if the left operand is decisive.
3675
3676      Set_Is_Static_Expression (N);
3677
3678      --  It does not matter if the right operand raises Constraint_Error if
3679      --  it will not be evaluated. So deal specially with the cases where
3680      --  the right operand is not evaluated. Note that we will fold these
3681      --  cases even if the right operand is non-static, which is fine, but
3682      --  of course in these cases the result is not potentially static.
3683
3684      Left_Int := Expr_Value (Left);
3685
3686      if (Kind = N_And_Then and then Is_False (Left_Int))
3687           or else
3688         (Kind = N_Or_Else  and then Is_True  (Left_Int))
3689      then
3690         Fold_Uint (N, Left_Int, Rstat);
3691         return;
3692      end if;
3693
3694      --  If first operand not decisive, then it does matter if the right
3695      --  operand raises Constraint_Error, since it will be evaluated, so
3696      --  we simply replace the node with the right operand. Note that this
3697      --  properly propagates Is_Static_Expression and Raises_Constraint_Error
3698      --  (both are set to True in Right).
3699
3700      if Raises_Constraint_Error (Right) then
3701         Rewrite_In_Raise_CE (N, Right);
3702         Check_Non_Static_Context (Left);
3703         return;
3704      end if;
3705
3706      --  Otherwise the result depends on the right operand
3707
3708      Fold_Uint (N, Expr_Value (Right), Rstat);
3709      return;
3710   end Eval_Short_Circuit;
3711
3712   ----------------
3713   -- Eval_Slice --
3714   ----------------
3715
3716   --  Slices can never be static, so the only processing required is to check
3717   --  for non-static context if an explicit range is given.
3718
3719   procedure Eval_Slice (N : Node_Id) is
3720      Drange : constant Node_Id := Discrete_Range (N);
3721
3722   begin
3723      if Nkind (Drange) = N_Range then
3724         Check_Non_Static_Context (Low_Bound (Drange));
3725         Check_Non_Static_Context (High_Bound (Drange));
3726      end if;
3727
3728      --  A slice of the form A (subtype), when the subtype is the index of
3729      --  the type of A, is redundant, the slice can be replaced with A, and
3730      --  this is worth a warning.
3731
3732      if Is_Entity_Name (Prefix (N)) then
3733         declare
3734            E : constant Entity_Id := Entity (Prefix (N));
3735            T : constant Entity_Id := Etype (E);
3736
3737         begin
3738            if Ekind (E) = E_Constant
3739              and then Is_Array_Type (T)
3740              and then Is_Entity_Name (Drange)
3741            then
3742               if Is_Entity_Name (Original_Node (First_Index (T)))
3743                 and then Entity (Original_Node (First_Index (T)))
3744                    = Entity (Drange)
3745               then
3746                  if Warn_On_Redundant_Constructs then
3747                     Error_Msg_N ("redundant slice denotes whole array?r?", N);
3748                  end if;
3749
3750                  --  The following might be a useful optimization???
3751
3752                  --  Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3753               end if;
3754            end if;
3755         end;
3756      end if;
3757   end Eval_Slice;
3758
3759   -------------------------
3760   -- Eval_String_Literal --
3761   -------------------------
3762
3763   procedure Eval_String_Literal (N : Node_Id) is
3764      Typ : constant Entity_Id := Etype (N);
3765      Bas : constant Entity_Id := Base_Type (Typ);
3766      Xtp : Entity_Id;
3767      Len : Nat;
3768      Lo  : Node_Id;
3769
3770   begin
3771      --  Nothing to do if error type (handles cases like default expressions
3772      --  or generics where we have not yet fully resolved the type).
3773
3774      if Bas = Any_Type or else Bas = Any_String then
3775         return;
3776      end if;
3777
3778      --  String literals are static if the subtype is static (RM 4.9(2)), so
3779      --  reset the static expression flag (it was set unconditionally in
3780      --  Analyze_String_Literal) if the subtype is non-static. We tell if
3781      --  the subtype is static by looking at the lower bound.
3782
3783      if Ekind (Typ) = E_String_Literal_Subtype then
3784         if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3785            Set_Is_Static_Expression (N, False);
3786            return;
3787         end if;
3788
3789      --  Here if Etype of string literal is normal Etype (not yet possible,
3790      --  but may be possible in future).
3791
3792      elsif not Is_OK_Static_Expression
3793                  (Type_Low_Bound (Etype (First_Index (Typ))))
3794      then
3795         Set_Is_Static_Expression (N, False);
3796         return;
3797      end if;
3798
3799      --  If original node was a type conversion, then result if non-static
3800
3801      if Nkind (Original_Node (N)) = N_Type_Conversion then
3802         Set_Is_Static_Expression (N, False);
3803         return;
3804      end if;
3805
3806      --  Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3807      --  if its bounds are outside the index base type and this index type is
3808      --  static. This can happen in only two ways. Either the string literal
3809      --  is too long, or it is null, and the lower bound is type'First. Either
3810      --  way it is the upper bound that is out of range of the index type.
3811
3812      if Ada_Version >= Ada_95 then
3813         if Is_Standard_String_Type (Bas) then
3814            Xtp := Standard_Positive;
3815         else
3816            Xtp := Etype (First_Index (Bas));
3817         end if;
3818
3819         if Ekind (Typ) = E_String_Literal_Subtype then
3820            Lo := String_Literal_Low_Bound (Typ);
3821         else
3822            Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3823         end if;
3824
3825         --  Check for string too long
3826
3827         Len := String_Length (Strval (N));
3828
3829         if UI_From_Int (Len) > String_Type_Len (Bas) then
3830
3831            --  Issue message. Note that this message is a warning if the
3832            --  string literal is not marked as static (happens in some cases
3833            --  of folding strings known at compile time, but not static).
3834            --  Furthermore in such cases, we reword the message, since there
3835            --  is no string literal in the source program.
3836
3837            if Is_Static_Expression (N) then
3838               Apply_Compile_Time_Constraint_Error
3839                 (N, "string literal too long for}", CE_Length_Check_Failed,
3840                  Ent => Bas,
3841                  Typ => First_Subtype (Bas));
3842            else
3843               Apply_Compile_Time_Constraint_Error
3844                 (N, "string value too long for}", CE_Length_Check_Failed,
3845                  Ent  => Bas,
3846                  Typ  => First_Subtype (Bas),
3847                  Warn => True);
3848            end if;
3849
3850         --  Test for null string not allowed
3851
3852         elsif Len = 0
3853           and then not Is_Generic_Type (Xtp)
3854           and then
3855             Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
3856         then
3857            --  Same specialization of message
3858
3859            if Is_Static_Expression (N) then
3860               Apply_Compile_Time_Constraint_Error
3861                 (N, "null string literal not allowed for}",
3862                  CE_Length_Check_Failed,
3863                  Ent => Bas,
3864                  Typ => First_Subtype (Bas));
3865            else
3866               Apply_Compile_Time_Constraint_Error
3867                 (N, "null string value not allowed for}",
3868                  CE_Length_Check_Failed,
3869                  Ent  => Bas,
3870                  Typ  => First_Subtype (Bas),
3871                  Warn => True);
3872            end if;
3873         end if;
3874      end if;
3875   end Eval_String_Literal;
3876
3877   --------------------------
3878   -- Eval_Type_Conversion --
3879   --------------------------
3880
3881   --  A type conversion is potentially static if its subtype mark is for a
3882   --  static scalar subtype, and its operand expression is potentially static
3883   --  (RM 4.9(10)).
3884
3885   procedure Eval_Type_Conversion (N : Node_Id) is
3886      Operand     : constant Node_Id   := Expression (N);
3887      Source_Type : constant Entity_Id := Etype (Operand);
3888      Target_Type : constant Entity_Id := Etype (N);
3889
3890      function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3891      --  Returns true if type T is an integer type, or if it is a fixed-point
3892      --  type to be treated as an integer (i.e. the flag Conversion_OK is set
3893      --  on the conversion node).
3894
3895      function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3896      --  Returns true if type T is a floating-point type, or if it is a
3897      --  fixed-point type that is not to be treated as an integer (i.e. the
3898      --  flag Conversion_OK is not set on the conversion node).
3899
3900      ------------------------------
3901      -- To_Be_Treated_As_Integer --
3902      ------------------------------
3903
3904      function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3905      begin
3906         return
3907           Is_Integer_Type (T)
3908             or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3909      end To_Be_Treated_As_Integer;
3910
3911      ---------------------------
3912      -- To_Be_Treated_As_Real --
3913      ---------------------------
3914
3915      function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3916      begin
3917         return
3918           Is_Floating_Point_Type (T)
3919             or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3920      end To_Be_Treated_As_Real;
3921
3922      --  Local variables
3923
3924      Fold : Boolean;
3925      Stat : Boolean;
3926
3927   --  Start of processing for Eval_Type_Conversion
3928
3929   begin
3930      --  Cannot fold if target type is non-static or if semantic error
3931
3932      if not Is_Static_Subtype (Target_Type) then
3933         Check_Non_Static_Context (Operand);
3934         return;
3935      elsif Error_Posted (N) then
3936         return;
3937      end if;
3938
3939      --  If not foldable we are done
3940
3941      Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3942
3943      if not Fold then
3944         return;
3945
3946      --  Don't try fold if target type has Constraint_Error bounds
3947
3948      elsif not Is_OK_Static_Subtype (Target_Type) then
3949         Set_Raises_Constraint_Error (N);
3950         return;
3951      end if;
3952
3953      --  Remaining processing depends on operand types. Note that in the
3954      --  following type test, fixed-point counts as real unless the flag
3955      --  Conversion_OK is set, in which case it counts as integer.
3956
3957      --  Fold conversion, case of string type. The result is not static
3958
3959      if Is_String_Type (Target_Type) then
3960         Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
3961         return;
3962
3963      --  Fold conversion, case of integer target type
3964
3965      elsif To_Be_Treated_As_Integer (Target_Type) then
3966         declare
3967            Result : Uint;
3968
3969         begin
3970            --  Integer to integer conversion
3971
3972            if To_Be_Treated_As_Integer (Source_Type) then
3973               Result := Expr_Value (Operand);
3974
3975            --  Real to integer conversion
3976
3977            else
3978               Result := UR_To_Uint (Expr_Value_R (Operand));
3979            end if;
3980
3981            --  If fixed-point type (Conversion_OK must be set), then the
3982            --  result is logically an integer, but we must replace the
3983            --  conversion with the corresponding real literal, since the
3984            --  type from a semantic point of view is still fixed-point.
3985
3986            if Is_Fixed_Point_Type (Target_Type) then
3987               Fold_Ureal
3988                 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
3989
3990            --  Otherwise result is integer literal
3991
3992            else
3993               Fold_Uint (N, Result, Stat);
3994            end if;
3995         end;
3996
3997      --  Fold conversion, case of real target type
3998
3999      elsif To_Be_Treated_As_Real (Target_Type) then
4000         declare
4001            Result : Ureal;
4002
4003         begin
4004            if To_Be_Treated_As_Real (Source_Type) then
4005               Result := Expr_Value_R (Operand);
4006            else
4007               Result := UR_From_Uint (Expr_Value (Operand));
4008            end if;
4009
4010            Fold_Ureal (N, Result, Stat);
4011         end;
4012
4013      --  Enumeration types
4014
4015      else
4016         Fold_Uint (N, Expr_Value (Operand), Stat);
4017      end if;
4018
4019      if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
4020         Out_Of_Range (N);
4021      end if;
4022
4023   end Eval_Type_Conversion;
4024
4025   -------------------
4026   -- Eval_Unary_Op --
4027   -------------------
4028
4029   --  Predefined unary operators are static functions (RM 4.9(20)) and thus
4030   --  are potentially static if the operand is potentially static (RM 4.9(7)).
4031
4032   procedure Eval_Unary_Op (N : Node_Id) is
4033      Right : constant Node_Id := Right_Opnd (N);
4034      Otype : Entity_Id := Empty;
4035      Stat  : Boolean;
4036      Fold  : Boolean;
4037
4038   begin
4039      --  If not foldable we are done
4040
4041      Test_Expression_Is_Foldable (N, Right, Stat, Fold);
4042
4043      if not Fold then
4044         return;
4045      end if;
4046
4047      if Etype (Right) = Universal_Integer
4048           or else
4049         Etype (Right) = Universal_Real
4050      then
4051         Otype := Find_Universal_Operator_Type (N);
4052      end if;
4053
4054      --  Fold for integer case
4055
4056      if Is_Integer_Type (Etype (N)) then
4057         declare
4058            Rint   : constant Uint := Expr_Value (Right);
4059            Result : Uint;
4060
4061         begin
4062            --  In the case of modular unary plus and abs there is no need
4063            --  to adjust the result of the operation since if the original
4064            --  operand was in bounds the result will be in the bounds of the
4065            --  modular type. However, in the case of modular unary minus the
4066            --  result may go out of the bounds of the modular type and needs
4067            --  adjustment.
4068
4069            if Nkind (N) = N_Op_Plus then
4070               Result := Rint;
4071
4072            elsif Nkind (N) = N_Op_Minus then
4073               if Is_Modular_Integer_Type (Etype (N)) then
4074                  Result := (-Rint) mod Modulus (Etype (N));
4075               else
4076                  Result := (-Rint);
4077               end if;
4078
4079            else
4080               pragma Assert (Nkind (N) = N_Op_Abs);
4081               Result := abs Rint;
4082            end if;
4083
4084            Fold_Uint (N, Result, Stat);
4085         end;
4086
4087      --  Fold for real case
4088
4089      elsif Is_Real_Type (Etype (N)) then
4090         declare
4091            Rreal  : constant Ureal := Expr_Value_R (Right);
4092            Result : Ureal;
4093
4094         begin
4095            if Nkind (N) = N_Op_Plus then
4096               Result := Rreal;
4097            elsif Nkind (N) = N_Op_Minus then
4098               Result := UR_Negate (Rreal);
4099            else
4100               pragma Assert (Nkind (N) = N_Op_Abs);
4101               Result := abs Rreal;
4102            end if;
4103
4104            Fold_Ureal (N, Result, Stat);
4105         end;
4106      end if;
4107
4108      --  If the operator was resolved to a specific type, make sure that type
4109      --  is frozen even if the expression is folded into a literal (which has
4110      --  a universal type).
4111
4112      if Present (Otype) then
4113         Freeze_Before (N, Otype);
4114      end if;
4115   end Eval_Unary_Op;
4116
4117   -------------------------------
4118   -- Eval_Unchecked_Conversion --
4119   -------------------------------
4120
4121   --  Unchecked conversions can never be static, so the only required
4122   --  processing is to check for a non-static context for the operand.
4123
4124   procedure Eval_Unchecked_Conversion (N : Node_Id) is
4125   begin
4126      Check_Non_Static_Context (Expression (N));
4127   end Eval_Unchecked_Conversion;
4128
4129   --------------------
4130   -- Expr_Rep_Value --
4131   --------------------
4132
4133   function Expr_Rep_Value (N : Node_Id) return Uint is
4134      Kind : constant Node_Kind := Nkind (N);
4135      Ent  : Entity_Id;
4136
4137   begin
4138      if Is_Entity_Name (N) then
4139         Ent := Entity (N);
4140
4141         --  An enumeration literal that was either in the source or created
4142         --  as a result of static evaluation.
4143
4144         if Ekind (Ent) = E_Enumeration_Literal then
4145            return Enumeration_Rep (Ent);
4146
4147         --  A user defined static constant
4148
4149         else
4150            pragma Assert (Ekind (Ent) = E_Constant);
4151            return Expr_Rep_Value (Constant_Value (Ent));
4152         end if;
4153
4154      --  An integer literal that was either in the source or created as a
4155      --  result of static evaluation.
4156
4157      elsif Kind = N_Integer_Literal then
4158         return Intval (N);
4159
4160      --  A real literal for a fixed-point type. This must be the fixed-point
4161      --  case, either the literal is of a fixed-point type, or it is a bound
4162      --  of a fixed-point type, with type universal real. In either case we
4163      --  obtain the desired value from Corresponding_Integer_Value.
4164
4165      elsif Kind = N_Real_Literal then
4166         pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4167         return Corresponding_Integer_Value (N);
4168
4169      --  Otherwise must be character literal
4170
4171      else
4172         pragma Assert (Kind = N_Character_Literal);
4173         Ent := Entity (N);
4174
4175         --  Since Character literals of type Standard.Character don't have any
4176         --  defining character literals built for them, they do not have their
4177         --  Entity set, so just use their Char code. Otherwise for user-
4178         --  defined character literals use their Pos value as usual which is
4179         --  the same as the Rep value.
4180
4181         if No (Ent) then
4182            return Char_Literal_Value (N);
4183         else
4184            return Enumeration_Rep (Ent);
4185         end if;
4186      end if;
4187   end Expr_Rep_Value;
4188
4189   ----------------
4190   -- Expr_Value --
4191   ----------------
4192
4193   function Expr_Value (N : Node_Id) return Uint is
4194      Kind   : constant Node_Kind := Nkind (N);
4195      CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
4196      Ent    : Entity_Id;
4197      Val    : Uint;
4198
4199   begin
4200      --  If already in cache, then we know it's compile-time-known and we can
4201      --  return the value that was previously stored in the cache since
4202      --  compile-time-known values cannot change.
4203
4204      if CV_Ent.N = N then
4205         return CV_Ent.V;
4206      end if;
4207
4208      --  Otherwise proceed to test value
4209
4210      if Is_Entity_Name (N) then
4211         Ent := Entity (N);
4212
4213         --  An enumeration literal that was either in the source or created as
4214         --  a result of static evaluation.
4215
4216         if Ekind (Ent) = E_Enumeration_Literal then
4217            Val := Enumeration_Pos (Ent);
4218
4219         --  A user defined static constant
4220
4221         else
4222            pragma Assert (Ekind (Ent) = E_Constant);
4223            Val := Expr_Value (Constant_Value (Ent));
4224         end if;
4225
4226      --  An integer literal that was either in the source or created as a
4227      --  result of static evaluation.
4228
4229      elsif Kind = N_Integer_Literal then
4230         Val := Intval (N);
4231
4232      --  A real literal for a fixed-point type. This must be the fixed-point
4233      --  case, either the literal is of a fixed-point type, or it is a bound
4234      --  of a fixed-point type, with type universal real. In either case we
4235      --  obtain the desired value from Corresponding_Integer_Value.
4236
4237      elsif Kind = N_Real_Literal then
4238         pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4239         Val := Corresponding_Integer_Value (N);
4240
4241      --  The NULL access value
4242
4243      elsif Kind = N_Null then
4244         pragma Assert (Is_Access_Type (Underlying_Type (Etype (N))));
4245         Val := Uint_0;
4246
4247      --  Otherwise must be character literal
4248
4249      else
4250         pragma Assert (Kind = N_Character_Literal);
4251         Ent := Entity (N);
4252
4253         --  Since Character literals of type Standard.Character don't
4254         --  have any defining character literals built for them, they
4255         --  do not have their Entity set, so just use their Char
4256         --  code. Otherwise for user-defined character literals use
4257         --  their Pos value as usual.
4258
4259         if No (Ent) then
4260            Val := Char_Literal_Value (N);
4261         else
4262            Val := Enumeration_Pos (Ent);
4263         end if;
4264      end if;
4265
4266      --  Come here with Val set to value to be returned, set cache
4267
4268      CV_Ent.N := N;
4269      CV_Ent.V := Val;
4270      return Val;
4271   end Expr_Value;
4272
4273   ------------------
4274   -- Expr_Value_E --
4275   ------------------
4276
4277   function Expr_Value_E (N : Node_Id) return Entity_Id is
4278      Ent  : constant Entity_Id := Entity (N);
4279   begin
4280      if Ekind (Ent) = E_Enumeration_Literal then
4281         return Ent;
4282      else
4283         pragma Assert (Ekind (Ent) = E_Constant);
4284         return Expr_Value_E (Constant_Value (Ent));
4285      end if;
4286   end Expr_Value_E;
4287
4288   ------------------
4289   -- Expr_Value_R --
4290   ------------------
4291
4292   function Expr_Value_R (N : Node_Id) return Ureal is
4293      Kind : constant Node_Kind := Nkind (N);
4294      Ent  : Entity_Id;
4295
4296   begin
4297      if Kind = N_Real_Literal then
4298         return Realval (N);
4299
4300      elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
4301         Ent := Entity (N);
4302         pragma Assert (Ekind (Ent) = E_Constant);
4303         return Expr_Value_R (Constant_Value (Ent));
4304
4305      elsif Kind = N_Integer_Literal then
4306         return UR_From_Uint (Expr_Value (N));
4307
4308      --  Here, we have a node that cannot be interpreted as a compile time
4309      --  constant. That is definitely an error.
4310
4311      else
4312         raise Program_Error;
4313      end if;
4314   end Expr_Value_R;
4315
4316   ------------------
4317   -- Expr_Value_S --
4318   ------------------
4319
4320   function Expr_Value_S (N : Node_Id) return Node_Id is
4321   begin
4322      if Nkind (N) = N_String_Literal then
4323         return N;
4324      else
4325         pragma Assert (Ekind (Entity (N)) = E_Constant);
4326         return Expr_Value_S (Constant_Value (Entity (N)));
4327      end if;
4328   end Expr_Value_S;
4329
4330   ----------------------------------
4331   -- Find_Universal_Operator_Type --
4332   ----------------------------------
4333
4334   function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
4335      PN     : constant Node_Id := Parent (N);
4336      Call   : constant Node_Id := Original_Node (N);
4337      Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
4338
4339      Is_Fix : constant Boolean :=
4340                 Nkind (N) in N_Binary_Op
4341                   and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
4342      --  A mixed-mode operation in this context indicates the presence of
4343      --  fixed-point type in the designated package.
4344
4345      Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
4346      --  Case where N is a relational (or membership) operator (else it is an
4347      --  arithmetic one).
4348
4349      In_Membership : constant Boolean :=
4350                        Nkind (PN) in N_Membership_Test
4351                          and then
4352                        Nkind (Right_Opnd (PN)) = N_Range
4353                          and then
4354                        Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
4355                          and then
4356                        Is_Universal_Numeric_Type
4357                          (Etype (Low_Bound (Right_Opnd (PN))))
4358                          and then
4359                        Is_Universal_Numeric_Type
4360                          (Etype (High_Bound (Right_Opnd (PN))));
4361      --  Case where N is part of a membership test with a universal range
4362
4363      E      : Entity_Id;
4364      Pack   : Entity_Id;
4365      Typ1   : Entity_Id := Empty;
4366      Priv_E : Entity_Id;
4367
4368      function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
4369      --  Check whether one operand is a mixed-mode operation that requires the
4370      --  presence of a fixed-point type. Given that all operands are universal
4371      --  and have been constant-folded, retrieve the original function call.
4372
4373      ---------------------------
4374      -- Is_Mixed_Mode_Operand --
4375      ---------------------------
4376
4377      function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
4378         Onod : constant Node_Id := Original_Node (Op);
4379      begin
4380         return Nkind (Onod) = N_Function_Call
4381           and then Present (Next_Actual (First_Actual (Onod)))
4382           and then Etype (First_Actual (Onod)) /=
4383                    Etype (Next_Actual (First_Actual (Onod)));
4384      end Is_Mixed_Mode_Operand;
4385
4386   --  Start of processing for Find_Universal_Operator_Type
4387
4388   begin
4389      if Nkind (Call) /= N_Function_Call
4390        or else Nkind (Name (Call)) /= N_Expanded_Name
4391      then
4392         return Empty;
4393
4394      --  There are several cases where the context does not imply the type of
4395      --  the operands:
4396      --     - the universal expression appears in a type conversion;
4397      --     - the expression is a relational operator applied to universal
4398      --       operands;
4399      --     - the expression is a membership test with a universal operand
4400      --       and a range with universal bounds.
4401
4402      elsif Nkind (Parent (N)) = N_Type_Conversion
4403        or else Is_Relational
4404        or else In_Membership
4405      then
4406         Pack := Entity (Prefix (Name (Call)));
4407
4408         --  If the prefix is a package declared elsewhere, iterate over its
4409         --  visible entities, otherwise iterate over all declarations in the
4410         --  designated scope.
4411
4412         if Ekind (Pack) = E_Package
4413           and then not In_Open_Scopes (Pack)
4414         then
4415            Priv_E := First_Private_Entity (Pack);
4416         else
4417            Priv_E := Empty;
4418         end if;
4419
4420         Typ1 := Empty;
4421         E := First_Entity (Pack);
4422         while Present (E) and then E /= Priv_E loop
4423            if Is_Numeric_Type (E)
4424              and then Nkind (Parent (E)) /= N_Subtype_Declaration
4425              and then Comes_From_Source (E)
4426              and then Is_Integer_Type (E) = Is_Int
4427              and then (Nkind (N) in N_Unary_Op
4428                         or else Is_Relational
4429                         or else Is_Fixed_Point_Type (E) = Is_Fix)
4430            then
4431               if No (Typ1) then
4432                  Typ1 := E;
4433
4434               --  Before emitting an error, check for the presence of a
4435               --  mixed-mode operation that specifies a fixed point type.
4436
4437               elsif Is_Relational
4438                 and then
4439                   (Is_Mixed_Mode_Operand (Left_Opnd (N))
4440                     or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
4441                 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4442
4443               then
4444                  if Is_Fixed_Point_Type (E) then
4445                     Typ1 := E;
4446                  end if;
4447
4448               else
4449                  --  More than one type of the proper class declared in P
4450
4451                  Error_Msg_N ("ambiguous operation", N);
4452                  Error_Msg_Sloc := Sloc (Typ1);
4453                  Error_Msg_N ("\possible interpretation (inherited)#", N);
4454                  Error_Msg_Sloc := Sloc (E);
4455                  Error_Msg_N ("\possible interpretation (inherited)#", N);
4456                  return Empty;
4457               end if;
4458            end if;
4459
4460            Next_Entity (E);
4461         end loop;
4462      end if;
4463
4464      return Typ1;
4465   end Find_Universal_Operator_Type;
4466
4467   --------------------------
4468   -- Flag_Non_Static_Expr --
4469   --------------------------
4470
4471   procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4472   begin
4473      if Error_Posted (Expr) and then not All_Errors_Mode then
4474         return;
4475      else
4476         Error_Msg_F (Msg, Expr);
4477         Why_Not_Static (Expr);
4478      end if;
4479   end Flag_Non_Static_Expr;
4480
4481   --------------
4482   -- Fold_Str --
4483   --------------
4484
4485   procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
4486      Loc : constant Source_Ptr := Sloc (N);
4487      Typ : constant Entity_Id  := Etype (N);
4488
4489   begin
4490      if Raises_Constraint_Error (N) then
4491         Set_Is_Static_Expression (N, Static);
4492         return;
4493      end if;
4494
4495      Rewrite (N, Make_String_Literal (Loc, Strval => Val));
4496
4497      --  We now have the literal with the right value, both the actual type
4498      --  and the expected type of this literal are taken from the expression
4499      --  that was evaluated. So now we do the Analyze and Resolve.
4500
4501      --  Note that we have to reset Is_Static_Expression both after the
4502      --  analyze step (because Resolve will evaluate the literal, which
4503      --  will cause semantic errors if it is marked as static), and after
4504      --  the Resolve step (since Resolve in some cases resets this flag).
4505
4506      Analyze (N);
4507      Set_Is_Static_Expression (N, Static);
4508      Set_Etype (N, Typ);
4509      Resolve (N);
4510      Set_Is_Static_Expression (N, Static);
4511   end Fold_Str;
4512
4513   ---------------
4514   -- Fold_Uint --
4515   ---------------
4516
4517   procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
4518      Loc : constant Source_Ptr := Sloc (N);
4519      Typ : Entity_Id  := Etype (N);
4520      Ent : Entity_Id;
4521
4522   begin
4523      if Raises_Constraint_Error (N) then
4524         Set_Is_Static_Expression (N, Static);
4525         return;
4526      end if;
4527
4528      --  If we are folding a named number, retain the entity in the literal,
4529      --  for ASIS use.
4530
4531      if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Integer then
4532         Ent := Entity (N);
4533      else
4534         Ent := Empty;
4535      end if;
4536
4537      if Is_Private_Type (Typ) then
4538         Typ := Full_View (Typ);
4539      end if;
4540
4541      --  For a result of type integer, substitute an N_Integer_Literal node
4542      --  for the result of the compile time evaluation of the expression.
4543      --  For ASIS use, set a link to the original named number when not in
4544      --  a generic context.
4545
4546      if Is_Integer_Type (Typ) then
4547         Rewrite (N, Make_Integer_Literal (Loc, Val));
4548         Set_Original_Entity (N, Ent);
4549
4550      --  Otherwise we have an enumeration type, and we substitute either
4551      --  an N_Identifier or N_Character_Literal to represent the enumeration
4552      --  literal corresponding to the given value, which must always be in
4553      --  range, because appropriate tests have already been made for this.
4554
4555      else pragma Assert (Is_Enumeration_Type (Typ));
4556         Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4557      end if;
4558
4559      --  We now have the literal with the right value, both the actual type
4560      --  and the expected type of this literal are taken from the expression
4561      --  that was evaluated. So now we do the Analyze and Resolve.
4562
4563      --  Note that we have to reset Is_Static_Expression both after the
4564      --  analyze step (because Resolve will evaluate the literal, which
4565      --  will cause semantic errors if it is marked as static), and after
4566      --  the Resolve step (since Resolve in some cases sets this flag).
4567
4568      Analyze (N);
4569      Set_Is_Static_Expression (N, Static);
4570      Set_Etype (N, Typ);
4571      Resolve (N);
4572      Set_Is_Static_Expression (N, Static);
4573   end Fold_Uint;
4574
4575   ----------------
4576   -- Fold_Ureal --
4577   ----------------
4578
4579   procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
4580      Loc : constant Source_Ptr := Sloc (N);
4581      Typ : constant Entity_Id  := Etype (N);
4582      Ent : Entity_Id;
4583
4584   begin
4585      if Raises_Constraint_Error (N) then
4586         Set_Is_Static_Expression (N, Static);
4587         return;
4588      end if;
4589
4590      --  If we are folding a named number, retain the entity in the literal,
4591      --  for ASIS use.
4592
4593      if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Real then
4594         Ent := Entity (N);
4595      else
4596         Ent := Empty;
4597      end if;
4598
4599      Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
4600
4601      --  Set link to original named number, for ASIS use
4602
4603      Set_Original_Entity (N, Ent);
4604
4605      --  We now have the literal with the right value, both the actual type
4606      --  and the expected type of this literal are taken from the expression
4607      --  that was evaluated. So now we do the Analyze and Resolve.
4608
4609      --  Note that we have to reset Is_Static_Expression both after the
4610      --  analyze step (because Resolve will evaluate the literal, which
4611      --  will cause semantic errors if it is marked as static), and after
4612      --  the Resolve step (since Resolve in some cases sets this flag).
4613
4614      Analyze (N);
4615      Set_Is_Static_Expression (N, Static);
4616      Set_Etype (N, Typ);
4617      Resolve (N);
4618      Set_Is_Static_Expression (N, Static);
4619   end Fold_Ureal;
4620
4621   ---------------
4622   -- From_Bits --
4623   ---------------
4624
4625   function From_Bits (B : Bits; T : Entity_Id) return Uint is
4626      V : Uint := Uint_0;
4627
4628   begin
4629      for J in 0 .. B'Last loop
4630         if B (J) then
4631            V := V + 2 ** J;
4632         end if;
4633      end loop;
4634
4635      if Non_Binary_Modulus (T) then
4636         V := V mod Modulus (T);
4637      end if;
4638
4639      return V;
4640   end From_Bits;
4641
4642   --------------------
4643   -- Get_String_Val --
4644   --------------------
4645
4646   function Get_String_Val (N : Node_Id) return Node_Id is
4647   begin
4648      if Nkind_In (N, N_String_Literal, N_Character_Literal) then
4649         return N;
4650      else
4651         pragma Assert (Is_Entity_Name (N));
4652         return Get_String_Val (Constant_Value (Entity (N)));
4653      end if;
4654   end Get_String_Val;
4655
4656   ----------------
4657   -- Initialize --
4658   ----------------
4659
4660   procedure Initialize is
4661   begin
4662      CV_Cache := (others => (Node_High_Bound, Uint_0));
4663   end Initialize;
4664
4665   --------------------
4666   -- In_Subrange_Of --
4667   --------------------
4668
4669   function In_Subrange_Of
4670     (T1        : Entity_Id;
4671      T2        : Entity_Id;
4672      Fixed_Int : Boolean := False) return Boolean
4673   is
4674      L1 : Node_Id;
4675      H1 : Node_Id;
4676
4677      L2 : Node_Id;
4678      H2 : Node_Id;
4679
4680   begin
4681      if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4682         return True;
4683
4684      --  Never in range if both types are not scalar. Don't know if this can
4685      --  actually happen, but just in case.
4686
4687      elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
4688         return False;
4689
4690      --  If T1 has infinities but T2 doesn't have infinities, then T1 is
4691      --  definitely not compatible with T2.
4692
4693      elsif Is_Floating_Point_Type (T1)
4694        and then Has_Infinities (T1)
4695        and then Is_Floating_Point_Type (T2)
4696        and then not Has_Infinities (T2)
4697      then
4698         return False;
4699
4700      else
4701         L1 := Type_Low_Bound  (T1);
4702         H1 := Type_High_Bound (T1);
4703
4704         L2 := Type_Low_Bound  (T2);
4705         H2 := Type_High_Bound (T2);
4706
4707         --  Check bounds to see if comparison possible at compile time
4708
4709         if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
4710              and then
4711            Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
4712         then
4713            return True;
4714         end if;
4715
4716         --  If bounds not comparable at compile time, then the bounds of T2
4717         --  must be compile-time-known or we cannot answer the query.
4718
4719         if not Compile_Time_Known_Value (L2)
4720           or else not Compile_Time_Known_Value (H2)
4721         then
4722            return False;
4723         end if;
4724
4725         --  If the bounds of T1 are know at compile time then use these
4726         --  ones, otherwise use the bounds of the base type (which are of
4727         --  course always static).
4728
4729         if not Compile_Time_Known_Value (L1) then
4730            L1 := Type_Low_Bound (Base_Type (T1));
4731         end if;
4732
4733         if not Compile_Time_Known_Value (H1) then
4734            H1 := Type_High_Bound (Base_Type (T1));
4735         end if;
4736
4737         --  Fixed point types should be considered as such only if
4738         --  flag Fixed_Int is set to False.
4739
4740         if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4741           or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4742           or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4743         then
4744            return
4745              Expr_Value_R (L2) <= Expr_Value_R (L1)
4746                and then
4747              Expr_Value_R (H2) >= Expr_Value_R (H1);
4748
4749         else
4750            return
4751              Expr_Value (L2) <= Expr_Value (L1)
4752                and then
4753              Expr_Value (H2) >= Expr_Value (H1);
4754
4755         end if;
4756      end if;
4757
4758   --  If any exception occurs, it means that we have some bug in the compiler
4759   --  possibly triggered by a previous error, or by some unforeseen peculiar
4760   --  occurrence. However, this is only an optimization attempt, so there is
4761   --  really no point in crashing the compiler. Instead we just decide, too
4762   --  bad, we can't figure out the answer in this case after all.
4763
4764   exception
4765      when others =>
4766
4767         --  Debug flag K disables this behavior (useful for debugging)
4768
4769         if Debug_Flag_K then
4770            raise;
4771         else
4772            return False;
4773         end if;
4774   end In_Subrange_Of;
4775
4776   -----------------
4777   -- Is_In_Range --
4778   -----------------
4779
4780   function Is_In_Range
4781     (N            : Node_Id;
4782      Typ          : Entity_Id;
4783      Assume_Valid : Boolean := False;
4784      Fixed_Int    : Boolean := False;
4785      Int_Real     : Boolean := False) return Boolean
4786   is
4787   begin
4788      return
4789        Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) = In_Range;
4790   end Is_In_Range;
4791
4792   -------------------
4793   -- Is_Null_Range --
4794   -------------------
4795
4796   function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4797   begin
4798      if Compile_Time_Known_Value (Lo)
4799        and then Compile_Time_Known_Value (Hi)
4800      then
4801         declare
4802            Typ : Entity_Id := Etype (Lo);
4803         begin
4804            --  When called from the frontend, as part of the analysis of
4805            --  potentially static expressions, Typ will be the full view of a
4806            --  type with all the info needed to answer this query. When called
4807            --  from the backend, for example to know whether a range of a loop
4808            --  is null, Typ might be a private type and we need to explicitly
4809            --  switch to its corresponding full view to access the same info.
4810
4811            if Is_Incomplete_Or_Private_Type (Typ)
4812              and then Present (Full_View (Typ))
4813            then
4814               Typ := Full_View (Typ);
4815            end if;
4816
4817            if Is_Discrete_Type (Typ) then
4818               return Expr_Value (Lo) > Expr_Value (Hi);
4819            else pragma Assert (Is_Real_Type (Typ));
4820               return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4821            end if;
4822         end;
4823      else
4824         return False;
4825      end if;
4826   end Is_Null_Range;
4827
4828   -------------------------
4829   -- Is_OK_Static_Choice --
4830   -------------------------
4831
4832   function Is_OK_Static_Choice (Choice : Node_Id) return Boolean is
4833   begin
4834      --  Check various possibilities for choice
4835
4836      --  Note: for membership tests, we test more cases than are possible
4837      --  (in particular subtype indication), but it doesn't matter because
4838      --  it just won't occur (we have already done a syntax check).
4839
4840      if Nkind (Choice) = N_Others_Choice then
4841         return True;
4842
4843      elsif Nkind (Choice) = N_Range then
4844         return Is_OK_Static_Range (Choice);
4845
4846      elsif Nkind (Choice) = N_Subtype_Indication
4847        or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
4848      then
4849         return Is_OK_Static_Subtype (Etype (Choice));
4850
4851      else
4852         return Is_OK_Static_Expression (Choice);
4853      end if;
4854   end Is_OK_Static_Choice;
4855
4856   ------------------------------
4857   -- Is_OK_Static_Choice_List --
4858   ------------------------------
4859
4860   function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean is
4861      Choice : Node_Id;
4862
4863   begin
4864      if not Is_Static_Choice_List (Choices) then
4865         return False;
4866      end if;
4867
4868      Choice := First (Choices);
4869      while Present (Choice) loop
4870         if not Is_OK_Static_Choice (Choice) then
4871            Set_Raises_Constraint_Error (Choice);
4872            return False;
4873         end if;
4874
4875         Next (Choice);
4876      end loop;
4877
4878      return True;
4879   end Is_OK_Static_Choice_List;
4880
4881   -----------------------------
4882   -- Is_OK_Static_Expression --
4883   -----------------------------
4884
4885   function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4886   begin
4887      return Is_Static_Expression (N) and then not Raises_Constraint_Error (N);
4888   end Is_OK_Static_Expression;
4889
4890   ------------------------
4891   -- Is_OK_Static_Range --
4892   ------------------------
4893
4894   --  A static range is a range whose bounds are static expressions, or a
4895   --  Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4896   --  We have already converted range attribute references, so we get the
4897   --  "or" part of this rule without needing a special test.
4898
4899   function Is_OK_Static_Range (N : Node_Id) return Boolean is
4900   begin
4901      return Is_OK_Static_Expression (Low_Bound (N))
4902        and then Is_OK_Static_Expression (High_Bound (N));
4903   end Is_OK_Static_Range;
4904
4905   --------------------------
4906   -- Is_OK_Static_Subtype --
4907   --------------------------
4908
4909   --  Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4910   --  neither bound raises Constraint_Error when evaluated.
4911
4912   function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4913      Base_T   : constant Entity_Id := Base_Type (Typ);
4914      Anc_Subt : Entity_Id;
4915
4916   begin
4917      --  First a quick check on the non static subtype flag. As described
4918      --  in further detail in Einfo, this flag is not decisive in all cases,
4919      --  but if it is set, then the subtype is definitely non-static.
4920
4921      if Is_Non_Static_Subtype (Typ) then
4922         return False;
4923      end if;
4924
4925      Anc_Subt := Ancestor_Subtype (Typ);
4926
4927      if Anc_Subt = Empty then
4928         Anc_Subt := Base_T;
4929      end if;
4930
4931      if Is_Generic_Type (Root_Type (Base_T))
4932        or else Is_Generic_Actual_Type (Base_T)
4933      then
4934         return False;
4935
4936      elsif Has_Dynamic_Predicate_Aspect (Typ) then
4937         return False;
4938
4939      --  String types
4940
4941      elsif Is_String_Type (Typ) then
4942         return
4943           Ekind (Typ) = E_String_Literal_Subtype
4944             or else
4945               (Is_OK_Static_Subtype (Component_Type (Typ))
4946                 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4947
4948      --  Scalar types
4949
4950      elsif Is_Scalar_Type (Typ) then
4951         if Base_T = Typ then
4952            return True;
4953
4954         else
4955            --  Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4956            --  Get_Type_{Low,High}_Bound.
4957
4958            return     Is_OK_Static_Subtype (Anc_Subt)
4959              and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4960              and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4961         end if;
4962
4963      --  Types other than string and scalar types are never static
4964
4965      else
4966         return False;
4967      end if;
4968   end Is_OK_Static_Subtype;
4969
4970   ---------------------
4971   -- Is_Out_Of_Range --
4972   ---------------------
4973
4974   function Is_Out_Of_Range
4975     (N            : Node_Id;
4976      Typ          : Entity_Id;
4977      Assume_Valid : Boolean := False;
4978      Fixed_Int    : Boolean := False;
4979      Int_Real     : Boolean := False) return Boolean
4980   is
4981   begin
4982      return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) =
4983                                                               Out_Of_Range;
4984   end Is_Out_Of_Range;
4985
4986   ----------------------
4987   -- Is_Static_Choice --
4988   ----------------------
4989
4990   function Is_Static_Choice (Choice : Node_Id) return Boolean is
4991   begin
4992      --  Check various possibilities for choice
4993
4994      --  Note: for membership tests, we test more cases than are possible
4995      --  (in particular subtype indication), but it doesn't matter because
4996      --  it just won't occur (we have already done a syntax check).
4997
4998      if Nkind (Choice) = N_Others_Choice then
4999         return True;
5000
5001      elsif Nkind (Choice) = N_Range then
5002         return Is_Static_Range (Choice);
5003
5004      elsif Nkind (Choice) = N_Subtype_Indication
5005        or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
5006      then
5007         return Is_Static_Subtype (Etype (Choice));
5008
5009      else
5010         return Is_Static_Expression (Choice);
5011      end if;
5012   end Is_Static_Choice;
5013
5014   ---------------------------
5015   -- Is_Static_Choice_List --
5016   ---------------------------
5017
5018   function Is_Static_Choice_List (Choices : List_Id) return Boolean is
5019      Choice : Node_Id;
5020
5021   begin
5022      Choice := First (Choices);
5023      while Present (Choice) loop
5024         if not Is_Static_Choice (Choice) then
5025            return False;
5026         end if;
5027
5028         Next (Choice);
5029      end loop;
5030
5031      return True;
5032   end Is_Static_Choice_List;
5033
5034   ---------------------
5035   -- Is_Static_Range --
5036   ---------------------
5037
5038   --  A static range is a range whose bounds are static expressions, or a
5039   --  Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
5040   --  We have already converted range attribute references, so we get the
5041   --  "or" part of this rule without needing a special test.
5042
5043   function Is_Static_Range (N : Node_Id) return Boolean is
5044   begin
5045      return Is_Static_Expression (Low_Bound  (N))
5046               and then
5047             Is_Static_Expression (High_Bound (N));
5048   end Is_Static_Range;
5049
5050   -----------------------
5051   -- Is_Static_Subtype --
5052   -----------------------
5053
5054   --  Determines if Typ is a static subtype as defined in (RM 4.9(26))
5055
5056   function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
5057      Base_T   : constant Entity_Id := Base_Type (Typ);
5058      Anc_Subt : Entity_Id;
5059
5060   begin
5061      --  First a quick check on the non static subtype flag. As described
5062      --  in further detail in Einfo, this flag is not decisive in all cases,
5063      --  but if it is set, then the subtype is definitely non-static.
5064
5065      if Is_Non_Static_Subtype (Typ) then
5066         return False;
5067      end if;
5068
5069      Anc_Subt := Ancestor_Subtype (Typ);
5070
5071      if Anc_Subt = Empty then
5072         Anc_Subt := Base_T;
5073      end if;
5074
5075      if Is_Generic_Type (Root_Type (Base_T))
5076        or else Is_Generic_Actual_Type (Base_T)
5077      then
5078         return False;
5079
5080      --  If there is a dynamic predicate for the type (declared or inherited)
5081      --  the expression is not static.
5082
5083      elsif Has_Dynamic_Predicate_Aspect (Typ)
5084        or else (Is_Derived_Type (Typ)
5085                  and then Has_Aspect (Typ, Aspect_Dynamic_Predicate))
5086      then
5087         return False;
5088
5089      --  String types
5090
5091      elsif Is_String_Type (Typ) then
5092         return
5093           Ekind (Typ) = E_String_Literal_Subtype
5094             or else (Is_Static_Subtype (Component_Type (Typ))
5095                       and then Is_Static_Subtype (Etype (First_Index (Typ))));
5096
5097      --  Scalar types
5098
5099      elsif Is_Scalar_Type (Typ) then
5100         if Base_T = Typ then
5101            return True;
5102
5103         else
5104            return     Is_Static_Subtype (Anc_Subt)
5105              and then Is_Static_Expression (Type_Low_Bound (Typ))
5106              and then Is_Static_Expression (Type_High_Bound (Typ));
5107         end if;
5108
5109      --  Types other than string and scalar types are never static
5110
5111      else
5112         return False;
5113      end if;
5114   end Is_Static_Subtype;
5115
5116   -------------------------------
5117   -- Is_Statically_Unevaluated --
5118   -------------------------------
5119
5120   function Is_Statically_Unevaluated (Expr : Node_Id) return Boolean is
5121      function Check_Case_Expr_Alternative
5122        (CEA : Node_Id) return Match_Result;
5123      --  We have a message emanating from the Expression of a case expression
5124      --  alternative. We examine this alternative, as follows:
5125      --
5126      --  If the selecting expression of the parent case is non-static, or
5127      --  if any of the discrete choices of the given case alternative are
5128      --  non-static or raise Constraint_Error, return Non_Static.
5129      --
5130      --  Otherwise check if the selecting expression matches any of the given
5131      --  discrete choices. If so, the alternative is executed and we return
5132      --  Match, otherwise, the alternative can never be executed, and so we
5133      --  return No_Match.
5134
5135      ---------------------------------
5136      -- Check_Case_Expr_Alternative --
5137      ---------------------------------
5138
5139      function Check_Case_Expr_Alternative
5140        (CEA : Node_Id) return Match_Result
5141      is
5142         Case_Exp : constant Node_Id := Parent (CEA);
5143         Choice   : Node_Id;
5144         Prev_CEA : Node_Id;
5145
5146      begin
5147         pragma Assert (Nkind (Case_Exp) = N_Case_Expression);
5148
5149         --  Check that selecting expression is static
5150
5151         if not Is_OK_Static_Expression (Expression (Case_Exp)) then
5152            return Non_Static;
5153         end if;
5154
5155         if not Is_OK_Static_Choice_List (Discrete_Choices (CEA)) then
5156            return Non_Static;
5157         end if;
5158
5159         --  All choices are now known to be static. Now see if alternative
5160         --  matches one of the choices.
5161
5162         Choice := First (Discrete_Choices (CEA));
5163         while Present (Choice) loop
5164
5165            --  Check various possibilities for choice, returning Match if we
5166            --  find the selecting value matches any of the choices. Note that
5167            --  we know we are the last choice, so we don't have to keep going.
5168
5169            if Nkind (Choice) = N_Others_Choice then
5170
5171               --  Others choice is a bit annoying, it matches if none of the
5172               --  previous alternatives matches (note that we know we are the
5173               --  last alternative in this case, so we can just go backwards
5174               --  from us to see if any previous one matches).
5175
5176               Prev_CEA := Prev (CEA);
5177               while Present (Prev_CEA) loop
5178                  if Check_Case_Expr_Alternative (Prev_CEA) = Match then
5179                     return No_Match;
5180                  end if;
5181
5182                  Prev (Prev_CEA);
5183               end loop;
5184
5185               return Match;
5186
5187            --  Else we have a normal static choice
5188
5189            elsif Choice_Matches (Expression (Case_Exp), Choice) = Match then
5190               return Match;
5191            end if;
5192
5193            --  If we fall through, it means that the discrete choice did not
5194            --  match the selecting expression, so continue.
5195
5196            Next (Choice);
5197         end loop;
5198
5199         --  If we get through that loop then all choices were static, and none
5200         --  of them matched the selecting expression. So return No_Match.
5201
5202         return No_Match;
5203      end Check_Case_Expr_Alternative;
5204
5205      --  Local variables
5206
5207      P      : Node_Id;
5208      OldP   : Node_Id;
5209      Choice : Node_Id;
5210
5211   --  Start of processing for Is_Statically_Unevaluated
5212
5213   begin
5214      --  The (32.x) references here are from RM section 4.9
5215
5216      --  (32.1) An expression is statically unevaluated if it is part of ...
5217
5218      --  This means we have to climb the tree looking for one of the cases
5219
5220      P := Expr;
5221      loop
5222         OldP := P;
5223         P := Parent (P);
5224
5225         --  (32.2) The right operand of a static short-circuit control form
5226         --  whose value is determined by its left operand.
5227
5228         --  AND THEN with False as left operand
5229
5230         if Nkind (P) = N_And_Then
5231           and then Compile_Time_Known_Value (Left_Opnd (P))
5232           and then Is_False (Expr_Value (Left_Opnd (P)))
5233         then
5234            return True;
5235
5236         --  OR ELSE with True as left operand
5237
5238         elsif Nkind (P) = N_Or_Else
5239           and then Compile_Time_Known_Value (Left_Opnd (P))
5240           and then Is_True (Expr_Value (Left_Opnd (P)))
5241         then
5242            return True;
5243
5244         --  (32.3) A dependent_expression of an if_expression whose associated
5245         --  condition is static and equals False.
5246
5247         elsif Nkind (P) = N_If_Expression then
5248            declare
5249               Cond : constant Node_Id := First (Expressions (P));
5250               Texp : constant Node_Id := Next (Cond);
5251               Fexp : constant Node_Id := Next (Texp);
5252
5253            begin
5254               if Compile_Time_Known_Value (Cond) then
5255
5256                  --  Condition is True and we are in the right operand
5257
5258                  if Is_True (Expr_Value (Cond)) and then OldP = Fexp then
5259                     return True;
5260
5261                  --  Condition is False and we are in the left operand
5262
5263                  elsif Is_False (Expr_Value (Cond)) and then OldP = Texp then
5264                     return True;
5265                  end if;
5266               end if;
5267            end;
5268
5269         --  (32.4) A condition or dependent_expression of an if_expression
5270         --  where the condition corresponding to at least one preceding
5271         --  dependent_expression of the if_expression is static and equals
5272         --  True.
5273
5274         --  This refers to cases like
5275
5276         --    (if True then 1 elsif 1/0=2 then 2 else 3)
5277
5278         --  But we expand elsif's out anyway, so the above looks like:
5279
5280         --    (if True then 1 else (if 1/0=2 then 2 else 3))
5281
5282         --  So for us this is caught by the above check for the 32.3 case.
5283
5284         --  (32.5) A dependent_expression of a case_expression whose
5285         --  selecting_expression is static and whose value is not covered
5286         --  by the corresponding discrete_choice_list.
5287
5288         elsif Nkind (P) = N_Case_Expression_Alternative then
5289
5290            --  First, we have to be in the expression to suppress messages.
5291            --  If we are within one of the choices, we want the message.
5292
5293            if OldP = Expression (P) then
5294
5295               --  Statically unevaluated if alternative does not match
5296
5297               if Check_Case_Expr_Alternative (P) = No_Match then
5298                  return True;
5299               end if;
5300            end if;
5301
5302         --  (32.6) A choice_expression (or a simple_expression of a range
5303         --  that occurs as a membership_choice of a membership_choice_list)
5304         --  of a static membership test that is preceded in the enclosing
5305         --  membership_choice_list by another item whose individual
5306         --  membership test (see (RM 4.5.2)) statically yields True.
5307
5308         elsif Nkind (P) in N_Membership_Test then
5309
5310            --  Only possibly unevaluated if simple expression is static
5311
5312            if not Is_OK_Static_Expression (Left_Opnd (P)) then
5313               null;
5314
5315            --  All members of the choice list must be static
5316
5317            elsif (Present (Right_Opnd (P))
5318                    and then not Is_OK_Static_Choice (Right_Opnd (P)))
5319              or else (Present (Alternatives (P))
5320                        and then
5321                          not Is_OK_Static_Choice_List (Alternatives (P)))
5322            then
5323               null;
5324
5325            --  If expression is the one and only alternative, then it is
5326            --  definitely not statically unevaluated, so we only have to
5327            --  test the case where there are alternatives present.
5328
5329            elsif Present (Alternatives (P)) then
5330
5331               --  Look for previous matching Choice
5332
5333               Choice := First (Alternatives (P));
5334               while Present (Choice) loop
5335
5336                  --  If we reached us and no previous choices matched, this
5337                  --  is not the case where we are statically unevaluated.
5338
5339                  exit when OldP = Choice;
5340
5341                  --  If a previous choice matches, then that is the case where
5342                  --  we know our choice is statically unevaluated.
5343
5344                  if Choice_Matches (Left_Opnd (P), Choice) = Match then
5345                     return True;
5346                  end if;
5347
5348                  Next (Choice);
5349               end loop;
5350
5351               --  If we fall through the loop, we were not one of the choices,
5352               --  we must have been the expression, so that is not covered by
5353               --  this rule, and we keep going.
5354
5355               null;
5356            end if;
5357         end if;
5358
5359         --  OK, not statically unevaluated at this level, see if we should
5360         --  keep climbing to look for a higher level reason.
5361
5362         --  Special case for component association in aggregates, where
5363         --  we want to keep climbing up to the parent aggregate.
5364
5365         if Nkind (P) = N_Component_Association
5366           and then Nkind (Parent (P)) = N_Aggregate
5367         then
5368            null;
5369
5370         --  All done if not still within subexpression
5371
5372         else
5373            exit when Nkind (P) not in N_Subexpr;
5374         end if;
5375      end loop;
5376
5377      --  If we fall through the loop, not one of the cases covered!
5378
5379      return False;
5380   end Is_Statically_Unevaluated;
5381
5382   --------------------
5383   -- Not_Null_Range --
5384   --------------------
5385
5386   function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
5387   begin
5388      if Compile_Time_Known_Value (Lo)
5389        and then Compile_Time_Known_Value (Hi)
5390      then
5391         declare
5392            Typ : Entity_Id := Etype (Lo);
5393         begin
5394            --  When called from the frontend, as part of the analysis of
5395            --  potentially static expressions, Typ will be the full view of a
5396            --  type with all the info needed to answer this query. When called
5397            --  from the backend, for example to know whether a range of a loop
5398            --  is null, Typ might be a private type and we need to explicitly
5399            --  switch to its corresponding full view to access the same info.
5400
5401            if Is_Incomplete_Or_Private_Type (Typ)
5402              and then Present (Full_View (Typ))
5403            then
5404               Typ := Full_View (Typ);
5405            end if;
5406
5407            if Is_Discrete_Type (Typ) then
5408               return Expr_Value (Lo) <= Expr_Value (Hi);
5409            else pragma Assert (Is_Real_Type (Typ));
5410               return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
5411            end if;
5412         end;
5413      else
5414         return False;
5415      end if;
5416
5417   end Not_Null_Range;
5418
5419   -------------
5420   -- OK_Bits --
5421   -------------
5422
5423   function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
5424   begin
5425      --  We allow a maximum of 500,000 bits which seems a reasonable limit
5426
5427      if Bits < 500_000 then
5428         return True;
5429
5430      --  Error if this maximum is exceeded
5431
5432      else
5433         Error_Msg_N ("static value too large, capacity exceeded", N);
5434         return False;
5435      end if;
5436   end OK_Bits;
5437
5438   ------------------
5439   -- Out_Of_Range --
5440   ------------------
5441
5442   procedure Out_Of_Range (N : Node_Id) is
5443   begin
5444      --  If we have the static expression case, then this is an illegality
5445      --  in Ada 95 mode, except that in an instance, we never generate an
5446      --  error (if the error is legitimate, it was already diagnosed in the
5447      --  template).
5448
5449      if Is_Static_Expression (N)
5450        and then not In_Instance
5451        and then not In_Inlined_Body
5452        and then Ada_Version >= Ada_95
5453      then
5454         --  No message if we are statically unevaluated
5455
5456         if Is_Statically_Unevaluated (N) then
5457            null;
5458
5459         --  The expression to compute the length of a packed array is attached
5460         --  to the array type itself, and deserves a separate message.
5461
5462         elsif Nkind (Parent (N)) = N_Defining_Identifier
5463           and then Is_Array_Type (Parent (N))
5464           and then Present (Packed_Array_Impl_Type (Parent (N)))
5465           and then Present (First_Rep_Item (Parent (N)))
5466         then
5467            Error_Msg_N
5468             ("length of packed array must not exceed Integer''Last",
5469              First_Rep_Item (Parent (N)));
5470            Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
5471
5472         --  All cases except the special array case.
5473         --  No message if we are dealing with System.Priority values in
5474         --  CodePeer mode where the target runtime may have more priorities.
5475
5476         elsif not CodePeer_Mode or else Etype (N) /= RTE (RE_Priority) then
5477            Apply_Compile_Time_Constraint_Error
5478              (N, "value not in range of}", CE_Range_Check_Failed);
5479         end if;
5480
5481      --  Here we generate a warning for the Ada 83 case, or when we are in an
5482      --  instance, or when we have a non-static expression case.
5483
5484      else
5485         Apply_Compile_Time_Constraint_Error
5486           (N, "value not in range of}??", CE_Range_Check_Failed);
5487      end if;
5488   end Out_Of_Range;
5489
5490   ----------------------
5491   -- Predicates_Match --
5492   ----------------------
5493
5494   function Predicates_Match (T1, T2 : Entity_Id) return Boolean is
5495      Pred1 : Node_Id;
5496      Pred2 : Node_Id;
5497
5498   begin
5499      if Ada_Version < Ada_2012 then
5500         return True;
5501
5502         --  Both types must have predicates or lack them
5503
5504      elsif Has_Predicates (T1) /= Has_Predicates (T2) then
5505         return False;
5506
5507         --  Check matching predicates
5508
5509      else
5510         Pred1 :=
5511           Get_Rep_Item
5512             (T1, Name_Static_Predicate, Check_Parents => False);
5513         Pred2 :=
5514           Get_Rep_Item
5515             (T2, Name_Static_Predicate, Check_Parents => False);
5516
5517         --  Subtypes statically match if the predicate comes from the
5518         --  same declaration, which can only happen if one is a subtype
5519         --  of the other and has no explicit predicate.
5520
5521         --  Suppress warnings on order of actuals, which is otherwise
5522         --  triggered by one of the two calls below.
5523
5524         pragma Warnings (Off);
5525         return Pred1 = Pred2
5526           or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
5527           or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
5528         pragma Warnings (On);
5529      end if;
5530   end Predicates_Match;
5531
5532   ---------------------------------------------
5533   -- Real_Or_String_Static_Predicate_Matches --
5534   ---------------------------------------------
5535
5536   function Real_Or_String_Static_Predicate_Matches
5537     (Val : Node_Id;
5538      Typ : Entity_Id) return Boolean
5539   is
5540      Expr : constant Node_Id := Static_Real_Or_String_Predicate (Typ);
5541      --  The predicate expression from the type
5542
5543      Pfun : constant Entity_Id := Predicate_Function (Typ);
5544      --  The entity for the predicate function
5545
5546      Ent_Name : constant Name_Id := Chars (First_Formal (Pfun));
5547      --  The name of the formal of the predicate function. Occurrences of the
5548      --  type name in Expr have been rewritten as references to this formal,
5549      --  and it has a unique name, so we can identify references by this name.
5550
5551      Copy : Node_Id;
5552      --  Copy of the predicate function tree
5553
5554      function Process (N : Node_Id) return Traverse_Result;
5555      --  Function used to process nodes during the traversal in which we will
5556      --  find occurrences of the entity name, and replace such occurrences
5557      --  by a real literal with the value to be tested.
5558
5559      procedure Traverse is new Traverse_Proc (Process);
5560      --  The actual traversal procedure
5561
5562      -------------
5563      -- Process --
5564      -------------
5565
5566      function Process (N : Node_Id) return Traverse_Result is
5567      begin
5568         if Nkind (N) = N_Identifier and then Chars (N) = Ent_Name then
5569            declare
5570               Nod : constant Node_Id := New_Copy (Val);
5571            begin
5572               Set_Sloc (Nod, Sloc (N));
5573               Rewrite (N, Nod);
5574               return Skip;
5575            end;
5576
5577         --  The predicate function may contain string-comparison operations
5578         --  that have been converted into calls to run-time array-comparison
5579         --  routines. To evaluate the predicate statically, we recover the
5580         --  original comparison operation and replace the occurrence of the
5581         --  formal by the static string value. The actuals of the generated
5582         --  call are of the form X'Address.
5583
5584         elsif Nkind (N) in N_Op_Compare
5585           and then Nkind (Left_Opnd (N)) = N_Function_Call
5586         then
5587            declare
5588               C : constant Node_Id := Left_Opnd (N);
5589               F : constant Node_Id := First (Parameter_Associations (C));
5590               L : constant Node_Id := Prefix (F);
5591               R : constant Node_Id := Prefix (Next (F));
5592
5593            begin
5594               --  If an operand is an entity name, it is the formal of the
5595               --  predicate function, so replace it with the string value.
5596               --  It may be either operand in the call. The other operand
5597               --  is a static string from the original predicate.
5598
5599               if Is_Entity_Name (L) then
5600                  Rewrite (Left_Opnd (N),  New_Copy (Val));
5601                  Rewrite (Right_Opnd (N), New_Copy (R));
5602
5603               else
5604                  Rewrite (Left_Opnd (N),  New_Copy (L));
5605                  Rewrite (Right_Opnd (N), New_Copy (Val));
5606               end if;
5607
5608               return Skip;
5609            end;
5610
5611         else
5612            return OK;
5613         end if;
5614      end Process;
5615
5616   --  Start of processing for Real_Or_String_Static_Predicate_Matches
5617
5618   begin
5619      --  First deal with special case of inherited predicate, where the
5620      --  predicate expression looks like:
5621
5622      --     xxPredicate (typ (Ent)) and then Expr
5623
5624      --  where Expr is the predicate expression for this level, and the
5625      --  left operand is the call to evaluate the inherited predicate.
5626
5627      if Nkind (Expr) = N_And_Then
5628        and then Nkind (Left_Opnd (Expr)) = N_Function_Call
5629        and then Is_Predicate_Function (Entity (Name (Left_Opnd (Expr))))
5630      then
5631         --  OK we have the inherited case, so make a call to evaluate the
5632         --  inherited predicate. If that fails, so do we!
5633
5634         if not
5635           Real_Or_String_Static_Predicate_Matches
5636             (Val => Val,
5637              Typ => Etype (First_Formal (Entity (Name (Left_Opnd (Expr))))))
5638         then
5639            return False;
5640         end if;
5641
5642         --  Use the right operand for the continued processing
5643
5644         Copy := Copy_Separate_Tree (Right_Opnd (Expr));
5645
5646      --  Case where call to predicate function appears on its own (this means
5647      --  that the predicate at this level is just inherited from the parent).
5648
5649      elsif Nkind (Expr) = N_Function_Call then
5650         declare
5651            Typ : constant Entity_Id :=
5652                    Etype (First_Formal (Entity (Name (Expr))));
5653
5654         begin
5655            --  If the inherited predicate is dynamic, just ignore it. We can't
5656            --  go trying to evaluate a dynamic predicate as a static one!
5657
5658            if Has_Dynamic_Predicate_Aspect (Typ) then
5659               return True;
5660
5661            --  Otherwise inherited predicate is static, check for match
5662
5663            else
5664               return Real_Or_String_Static_Predicate_Matches (Val, Typ);
5665            end if;
5666         end;
5667
5668      --  If not just an inherited predicate, copy whole expression
5669
5670      else
5671         Copy := Copy_Separate_Tree (Expr);
5672      end if;
5673
5674      --  Now we replace occurrences of the entity by the value
5675
5676      Traverse (Copy);
5677
5678      --  And analyze the resulting static expression to see if it is True
5679
5680      Analyze_And_Resolve (Copy, Standard_Boolean);
5681      return Is_True (Expr_Value (Copy));
5682   end Real_Or_String_Static_Predicate_Matches;
5683
5684   -------------------------
5685   -- Rewrite_In_Raise_CE --
5686   -------------------------
5687
5688   procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
5689      Stat : constant Boolean   := Is_Static_Expression (N);
5690      Typ  : constant Entity_Id := Etype (N);
5691
5692   begin
5693      --  If we want to raise CE in the condition of a N_Raise_CE node, we
5694      --  can just clear the condition if the reason is appropriate. We do
5695      --  not do this operation if the parent has a reason other than range
5696      --  check failed, because otherwise we would change the reason.
5697
5698      if Present (Parent (N))
5699        and then Nkind (Parent (N)) = N_Raise_Constraint_Error
5700        and then Reason (Parent (N)) =
5701                   UI_From_Int (RT_Exception_Code'Pos (CE_Range_Check_Failed))
5702      then
5703         Set_Condition (Parent (N), Empty);
5704
5705      --  Else build an explicit N_Raise_CE
5706
5707      else
5708         if Nkind (Exp) = N_Raise_Constraint_Error then
5709            Rewrite (N,
5710              Make_Raise_Constraint_Error (Sloc (Exp),
5711                Reason => Reason (Exp)));
5712         else
5713            Rewrite (N,
5714              Make_Raise_Constraint_Error (Sloc (Exp),
5715                Reason => CE_Range_Check_Failed));
5716         end if;
5717
5718         Set_Raises_Constraint_Error (N);
5719         Set_Etype (N, Typ);
5720      end if;
5721
5722      --  Set proper flags in result
5723
5724      Set_Raises_Constraint_Error (N, True);
5725      Set_Is_Static_Expression (N, Stat);
5726   end Rewrite_In_Raise_CE;
5727
5728   ---------------------
5729   -- String_Type_Len --
5730   ---------------------
5731
5732   function String_Type_Len (Stype : Entity_Id) return Uint is
5733      NT : constant Entity_Id := Etype (First_Index (Stype));
5734      T  : Entity_Id;
5735
5736   begin
5737      if Is_OK_Static_Subtype (NT) then
5738         T := NT;
5739      else
5740         T := Base_Type (NT);
5741      end if;
5742
5743      return Expr_Value (Type_High_Bound (T)) -
5744             Expr_Value (Type_Low_Bound (T)) + 1;
5745   end String_Type_Len;
5746
5747   ------------------------------------
5748   -- Subtypes_Statically_Compatible --
5749   ------------------------------------
5750
5751   function Subtypes_Statically_Compatible
5752     (T1                      : Entity_Id;
5753      T2                      : Entity_Id;
5754      Formal_Derived_Matching : Boolean := False) return Boolean
5755   is
5756   begin
5757      --  Scalar types
5758
5759      if Is_Scalar_Type (T1) then
5760
5761         --  Definitely compatible if we match
5762
5763         if Subtypes_Statically_Match (T1, T2) then
5764            return True;
5765
5766         --  If either subtype is nonstatic then they're not compatible
5767
5768         elsif not Is_OK_Static_Subtype (T1)
5769                 or else
5770               not Is_OK_Static_Subtype (T2)
5771         then
5772            return False;
5773
5774         --  Base types must match, but we don't check that (should we???) but
5775         --  we do at least check that both types are real, or both types are
5776         --  not real.
5777
5778         elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
5779            return False;
5780
5781         --  Here we check the bounds
5782
5783         else
5784            declare
5785               LB1 : constant Node_Id := Type_Low_Bound  (T1);
5786               HB1 : constant Node_Id := Type_High_Bound (T1);
5787               LB2 : constant Node_Id := Type_Low_Bound  (T2);
5788               HB2 : constant Node_Id := Type_High_Bound (T2);
5789
5790            begin
5791               if Is_Real_Type (T1) then
5792                  return
5793                    Expr_Value_R (LB1) > Expr_Value_R (HB1)
5794                      or else
5795                        (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
5796                          and then Expr_Value_R (HB1) <= Expr_Value_R (HB2));
5797
5798               else
5799                  return
5800                    Expr_Value (LB1) > Expr_Value (HB1)
5801                      or else
5802                        (Expr_Value (LB2) <= Expr_Value (LB1)
5803                          and then Expr_Value (HB1) <= Expr_Value (HB2));
5804               end if;
5805            end;
5806         end if;
5807
5808      --  Access types
5809
5810      elsif Is_Access_Type (T1) then
5811         return
5812           (not Is_Constrained (T2)
5813             or else Subtypes_Statically_Match
5814                       (Designated_Type (T1), Designated_Type (T2)))
5815           and then not (Can_Never_Be_Null (T2)
5816                          and then not Can_Never_Be_Null (T1));
5817
5818      --  All other cases
5819
5820      else
5821         return
5822           (Is_Composite_Type (T1) and then not Is_Constrained (T2))
5823             or else Subtypes_Statically_Match
5824                       (T1, T2, Formal_Derived_Matching);
5825      end if;
5826   end Subtypes_Statically_Compatible;
5827
5828   -------------------------------
5829   -- Subtypes_Statically_Match --
5830   -------------------------------
5831
5832   --  Subtypes statically match if they have statically matching constraints
5833   --  (RM 4.9.1(2)). Constraints statically match if there are none, or if
5834   --  they are the same identical constraint, or if they are static and the
5835   --  values match (RM 4.9.1(1)).
5836
5837   --  In addition, in GNAT, the object size (Esize) values of the types must
5838   --  match if they are set (unless checking an actual for a formal derived
5839   --  type). The use of 'Object_Size can cause this to be false even if the
5840   --  types would otherwise match in the RM sense.
5841
5842   function Subtypes_Statically_Match
5843     (T1                      : Entity_Id;
5844      T2                      : Entity_Id;
5845      Formal_Derived_Matching : Boolean := False) return Boolean
5846   is
5847   begin
5848      --  A type always statically matches itself
5849
5850      if T1 = T2 then
5851         return True;
5852
5853      --  No match if sizes different (from use of 'Object_Size). This test
5854      --  is excluded if Formal_Derived_Matching is True, as the base types
5855      --  can be different in that case and typically have different sizes.
5856      --  ??? Frontend_Layout_On_Target used to set Esizes but this is no
5857      --  longer the case, consider removing the last test below.
5858
5859      elsif not Formal_Derived_Matching
5860        and then Known_Static_Esize (T1)
5861        and then Known_Static_Esize (T2)
5862        and then Esize (T1) /= Esize (T2)
5863      then
5864         return False;
5865
5866      --  No match if predicates do not match
5867
5868      elsif not Predicates_Match (T1, T2) then
5869         return False;
5870
5871      --  Scalar types
5872
5873      elsif Is_Scalar_Type (T1) then
5874
5875         --  Base types must be the same
5876
5877         if Base_Type (T1) /= Base_Type (T2) then
5878            return False;
5879         end if;
5880
5881         --  A constrained numeric subtype never matches an unconstrained
5882         --  subtype, i.e. both types must be constrained or unconstrained.
5883
5884         --  To understand the requirement for this test, see RM 4.9.1(1).
5885         --  As is made clear in RM 3.5.4(11), type Integer, for example is
5886         --  a constrained subtype with constraint bounds matching the bounds
5887         --  of its corresponding unconstrained base type. In this situation,
5888         --  Integer and Integer'Base do not statically match, even though
5889         --  they have the same bounds.
5890
5891         --  We only apply this test to types in Standard and types that appear
5892         --  in user programs. That way, we do not have to be too careful about
5893         --  setting Is_Constrained right for Itypes.
5894
5895         if Is_Numeric_Type (T1)
5896           and then (Is_Constrained (T1) /= Is_Constrained (T2))
5897           and then (Scope (T1) = Standard_Standard
5898                      or else Comes_From_Source (T1))
5899           and then (Scope (T2) = Standard_Standard
5900                      or else Comes_From_Source (T2))
5901         then
5902            return False;
5903
5904         --  A generic scalar type does not statically match its base type
5905         --  (AI-311). In this case we make sure that the formals, which are
5906         --  first subtypes of their bases, are constrained.
5907
5908         elsif Is_Generic_Type (T1)
5909           and then Is_Generic_Type (T2)
5910           and then (Is_Constrained (T1) /= Is_Constrained (T2))
5911         then
5912            return False;
5913         end if;
5914
5915         --  If there was an error in either range, then just assume the types
5916         --  statically match to avoid further junk errors.
5917
5918         if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
5919           or else Error_Posted (Scalar_Range (T1))
5920           or else Error_Posted (Scalar_Range (T2))
5921         then
5922            return True;
5923         end if;
5924
5925         --  Otherwise both types have bounds that can be compared
5926
5927         declare
5928            LB1 : constant Node_Id := Type_Low_Bound  (T1);
5929            HB1 : constant Node_Id := Type_High_Bound (T1);
5930            LB2 : constant Node_Id := Type_Low_Bound  (T2);
5931            HB2 : constant Node_Id := Type_High_Bound (T2);
5932
5933         begin
5934            --  If the bounds are the same tree node, then match (common case)
5935
5936            if LB1 = LB2 and then HB1 = HB2 then
5937               return True;
5938
5939            --  Otherwise bounds must be static and identical value
5940
5941            else
5942               if not Is_OK_Static_Subtype (T1)
5943                    or else
5944                  not Is_OK_Static_Subtype (T2)
5945               then
5946                  return False;
5947
5948               elsif Is_Real_Type (T1) then
5949                  return
5950                    Expr_Value_R (LB1) = Expr_Value_R (LB2)
5951                      and then
5952                    Expr_Value_R (HB1) = Expr_Value_R (HB2);
5953
5954               else
5955                  return
5956                    Expr_Value (LB1) = Expr_Value (LB2)
5957                      and then
5958                    Expr_Value (HB1) = Expr_Value (HB2);
5959               end if;
5960            end if;
5961         end;
5962
5963      --  Type with discriminants
5964
5965      elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
5966
5967         --  Because of view exchanges in multiple instantiations, conformance
5968         --  checking might try to match a partial view of a type with no
5969         --  discriminants with a full view that has defaulted discriminants.
5970         --  In such a case, use the discriminant constraint of the full view,
5971         --  which must exist because we know that the two subtypes have the
5972         --  same base type.
5973
5974         if Has_Discriminants (T1) /= Has_Discriminants (T2) then
5975            --  A generic actual type is declared through a subtype declaration
5976            --  and may have an inconsistent indication of the presence of
5977            --  discriminants, so check the type it renames.
5978
5979            if Is_Generic_Actual_Type (T1)
5980              and then not Has_Discriminants (Etype (T1))
5981              and then not Has_Discriminants (T2)
5982            then
5983               return True;
5984
5985            elsif In_Instance then
5986               if Is_Private_Type (T2)
5987                 and then Present (Full_View (T2))
5988                 and then Has_Discriminants (Full_View (T2))
5989               then
5990                  return Subtypes_Statically_Match (T1, Full_View (T2));
5991
5992               elsif Is_Private_Type (T1)
5993                 and then Present (Full_View (T1))
5994                 and then Has_Discriminants (Full_View (T1))
5995               then
5996                  return Subtypes_Statically_Match (Full_View (T1), T2);
5997
5998               else
5999                  return False;
6000               end if;
6001            else
6002               return False;
6003            end if;
6004         end if;
6005
6006         declare
6007            DL1 : constant Elist_Id := Discriminant_Constraint (T1);
6008            DL2 : constant Elist_Id := Discriminant_Constraint (T2);
6009
6010            DA1 : Elmt_Id;
6011            DA2 : Elmt_Id;
6012
6013         begin
6014            if DL1 = DL2 then
6015               return True;
6016            elsif Is_Constrained (T1) /= Is_Constrained (T2) then
6017               return False;
6018            end if;
6019
6020            --  Now loop through the discriminant constraints
6021
6022            --  Note: the guard here seems necessary, since it is possible at
6023            --  least for DL1 to be No_Elist. Not clear this is reasonable ???
6024
6025            if Present (DL1) and then Present (DL2) then
6026               DA1 := First_Elmt (DL1);
6027               DA2 := First_Elmt (DL2);
6028               while Present (DA1) loop
6029                  declare
6030                     Expr1 : constant Node_Id := Node (DA1);
6031                     Expr2 : constant Node_Id := Node (DA2);
6032
6033                  begin
6034                     if not Is_OK_Static_Expression (Expr1)
6035                       or else not Is_OK_Static_Expression (Expr2)
6036                     then
6037                        return False;
6038
6039                        --  If either expression raised a Constraint_Error,
6040                        --  consider the expressions as matching, since this
6041                        --  helps to prevent cascading errors.
6042
6043                     elsif Raises_Constraint_Error (Expr1)
6044                       or else Raises_Constraint_Error (Expr2)
6045                     then
6046                        null;
6047
6048                     elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
6049                        return False;
6050                     end if;
6051                  end;
6052
6053                  Next_Elmt (DA1);
6054                  Next_Elmt (DA2);
6055               end loop;
6056            end if;
6057         end;
6058
6059         return True;
6060
6061      --  A definite type does not match an indefinite or classwide type.
6062      --  However, a generic type with unknown discriminants may be
6063      --  instantiated with a type with no discriminants, and conformance
6064      --  checking on an inherited operation may compare the actual with the
6065      --  subtype that renames it in the instance.
6066
6067      elsif Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
6068      then
6069         return
6070           Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
6071
6072      --  Array type
6073
6074      elsif Is_Array_Type (T1) then
6075
6076         --  If either subtype is unconstrained then both must be, and if both
6077         --  are unconstrained then no further checking is needed.
6078
6079         if not Is_Constrained (T1) or else not Is_Constrained (T2) then
6080            return not (Is_Constrained (T1) or else Is_Constrained (T2));
6081         end if;
6082
6083         --  Both subtypes are constrained, so check that the index subtypes
6084         --  statically match.
6085
6086         declare
6087            Index1 : Node_Id := First_Index (T1);
6088            Index2 : Node_Id := First_Index (T2);
6089
6090         begin
6091            while Present (Index1) loop
6092               if not
6093                 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
6094               then
6095                  return False;
6096               end if;
6097
6098               Next_Index (Index1);
6099               Next_Index (Index2);
6100            end loop;
6101
6102            return True;
6103         end;
6104
6105      elsif Is_Access_Type (T1) then
6106         if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
6107            return False;
6108
6109         elsif Ekind_In (T1, E_Access_Subprogram_Type,
6110                             E_Anonymous_Access_Subprogram_Type)
6111         then
6112            return
6113              Subtype_Conformant
6114                (Designated_Type (T1),
6115                 Designated_Type (T2));
6116         else
6117            return
6118              Subtypes_Statically_Match
6119                (Designated_Type (T1),
6120                 Designated_Type (T2))
6121              and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
6122         end if;
6123
6124      --  All other types definitely match
6125
6126      else
6127         return True;
6128      end if;
6129   end Subtypes_Statically_Match;
6130
6131   ----------
6132   -- Test --
6133   ----------
6134
6135   function Test (Cond : Boolean) return Uint is
6136   begin
6137      if Cond then
6138         return Uint_1;
6139      else
6140         return Uint_0;
6141      end if;
6142   end Test;
6143
6144   ---------------------
6145   -- Test_Comparison --
6146   ---------------------
6147
6148   procedure Test_Comparison
6149     (Op           : Node_Id;
6150      Assume_Valid : Boolean;
6151      True_Result  : out Boolean;
6152      False_Result : out Boolean)
6153   is
6154      Left     : constant Node_Id   := Left_Opnd (Op);
6155      Left_Typ : constant Entity_Id := Etype (Left);
6156      Orig_Op  : constant Node_Id   := Original_Node (Op);
6157
6158      procedure Replacement_Warning (Msg : String);
6159      --  Emit a warning on a comparison that can be replaced by '='
6160
6161      -------------------------
6162      -- Replacement_Warning --
6163      -------------------------
6164
6165      procedure Replacement_Warning (Msg : String) is
6166      begin
6167         if Constant_Condition_Warnings
6168           and then Comes_From_Source (Orig_Op)
6169           and then Is_Integer_Type (Left_Typ)
6170           and then not Error_Posted (Op)
6171           and then not Has_Warnings_Off (Left_Typ)
6172           and then not In_Instance
6173         then
6174            Error_Msg_N (Msg, Op);
6175         end if;
6176      end Replacement_Warning;
6177
6178      --  Local variables
6179
6180      Res : constant Compare_Result :=
6181              Compile_Time_Compare (Left, Right_Opnd (Op), Assume_Valid);
6182
6183   --  Start of processing for Test_Comparison
6184
6185   begin
6186      case N_Op_Compare (Nkind (Op)) is
6187         when N_Op_Eq =>
6188            True_Result  := Res = EQ;
6189            False_Result := Res = LT or else Res = GT or else Res = NE;
6190
6191         when N_Op_Ge =>
6192            True_Result  := Res in Compare_GE;
6193            False_Result := Res = LT;
6194
6195            if Res = LE and then Nkind (Orig_Op) = N_Op_Ge then
6196               Replacement_Warning
6197                 ("can never be greater than, could replace by ""'=""?c?");
6198            end if;
6199
6200         when N_Op_Gt =>
6201            True_Result  := Res = GT;
6202            False_Result := Res in Compare_LE;
6203
6204         when N_Op_Le =>
6205            True_Result  := Res in Compare_LE;
6206            False_Result := Res = GT;
6207
6208            if Res = GE and then Nkind (Orig_Op) = N_Op_Le then
6209               Replacement_Warning
6210                 ("can never be less than, could replace by ""'=""?c?");
6211            end if;
6212
6213         when N_Op_Lt =>
6214            True_Result  := Res = LT;
6215            False_Result := Res in Compare_GE;
6216
6217         when N_Op_Ne =>
6218            True_Result  := Res = NE or else Res = GT or else Res = LT;
6219            False_Result := Res = EQ;
6220      end case;
6221   end Test_Comparison;
6222
6223   ---------------------------------
6224   -- Test_Expression_Is_Foldable --
6225   ---------------------------------
6226
6227   --  One operand case
6228
6229   procedure Test_Expression_Is_Foldable
6230     (N    : Node_Id;
6231      Op1  : Node_Id;
6232      Stat : out Boolean;
6233      Fold : out Boolean)
6234   is
6235   begin
6236      Stat := False;
6237      Fold := False;
6238
6239      if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6240         return;
6241      end if;
6242
6243      --  If operand is Any_Type, just propagate to result and do not
6244      --  try to fold, this prevents cascaded errors.
6245
6246      if Etype (Op1) = Any_Type then
6247         Set_Etype (N, Any_Type);
6248         return;
6249
6250      --  If operand raises Constraint_Error, then replace node N with the
6251      --  raise Constraint_Error node, and we are obviously not foldable.
6252      --  Note that this replacement inherits the Is_Static_Expression flag
6253      --  from the operand.
6254
6255      elsif Raises_Constraint_Error (Op1) then
6256         Rewrite_In_Raise_CE (N, Op1);
6257         return;
6258
6259      --  If the operand is not static, then the result is not static, and
6260      --  all we have to do is to check the operand since it is now known
6261      --  to appear in a non-static context.
6262
6263      elsif not Is_Static_Expression (Op1) then
6264         Check_Non_Static_Context (Op1);
6265         Fold := Compile_Time_Known_Value (Op1);
6266         return;
6267
6268      --   An expression of a formal modular type is not foldable because
6269      --   the modulus is unknown.
6270
6271      elsif Is_Modular_Integer_Type (Etype (Op1))
6272        and then Is_Generic_Type (Etype (Op1))
6273      then
6274         Check_Non_Static_Context (Op1);
6275         return;
6276
6277      --  Here we have the case of an operand whose type is OK, which is
6278      --  static, and which does not raise Constraint_Error, we can fold.
6279
6280      else
6281         Set_Is_Static_Expression (N);
6282         Fold := True;
6283         Stat := True;
6284      end if;
6285   end Test_Expression_Is_Foldable;
6286
6287   --  Two operand case
6288
6289   procedure Test_Expression_Is_Foldable
6290     (N        : Node_Id;
6291      Op1      : Node_Id;
6292      Op2      : Node_Id;
6293      Stat     : out Boolean;
6294      Fold     : out Boolean;
6295      CRT_Safe : Boolean := False)
6296   is
6297      Rstat : constant Boolean := Is_Static_Expression (Op1)
6298                                    and then
6299                                  Is_Static_Expression (Op2);
6300
6301   begin
6302      Stat := False;
6303      Fold := False;
6304
6305      --  Inhibit folding if -gnatd.f flag set
6306
6307      if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6308         return;
6309      end if;
6310
6311      --  If either operand is Any_Type, just propagate to result and
6312      --  do not try to fold, this prevents cascaded errors.
6313
6314      if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
6315         Set_Etype (N, Any_Type);
6316         return;
6317
6318      --  If left operand raises Constraint_Error, then replace node N with the
6319      --  Raise_Constraint_Error node, and we are obviously not foldable.
6320      --  Is_Static_Expression is set from the two operands in the normal way,
6321      --  and we check the right operand if it is in a non-static context.
6322
6323      elsif Raises_Constraint_Error (Op1) then
6324         if not Rstat then
6325            Check_Non_Static_Context (Op2);
6326         end if;
6327
6328         Rewrite_In_Raise_CE (N, Op1);
6329         Set_Is_Static_Expression (N, Rstat);
6330         return;
6331
6332      --  Similar processing for the case of the right operand. Note that we
6333      --  don't use this routine for the short-circuit case, so we do not have
6334      --  to worry about that special case here.
6335
6336      elsif Raises_Constraint_Error (Op2) then
6337         if not Rstat then
6338            Check_Non_Static_Context (Op1);
6339         end if;
6340
6341         Rewrite_In_Raise_CE (N, Op2);
6342         Set_Is_Static_Expression (N, Rstat);
6343         return;
6344
6345      --  Exclude expressions of a generic modular type, as above
6346
6347      elsif Is_Modular_Integer_Type (Etype (Op1))
6348        and then Is_Generic_Type (Etype (Op1))
6349      then
6350         Check_Non_Static_Context (Op1);
6351         return;
6352
6353      --  If result is not static, then check non-static contexts on operands
6354      --  since one of them may be static and the other one may not be static.
6355
6356      elsif not Rstat then
6357         Check_Non_Static_Context (Op1);
6358         Check_Non_Static_Context (Op2);
6359
6360         if CRT_Safe then
6361            Fold := CRT_Safe_Compile_Time_Known_Value (Op1)
6362                      and then CRT_Safe_Compile_Time_Known_Value (Op2);
6363         else
6364            Fold := Compile_Time_Known_Value (Op1)
6365                      and then Compile_Time_Known_Value (Op2);
6366         end if;
6367
6368         return;
6369
6370      --  Else result is static and foldable. Both operands are static, and
6371      --  neither raises Constraint_Error, so we can definitely fold.
6372
6373      else
6374         Set_Is_Static_Expression (N);
6375         Fold := True;
6376         Stat := True;
6377         return;
6378      end if;
6379   end Test_Expression_Is_Foldable;
6380
6381   -------------------
6382   -- Test_In_Range --
6383   -------------------
6384
6385   function Test_In_Range
6386     (N            : Node_Id;
6387      Typ          : Entity_Id;
6388      Assume_Valid : Boolean;
6389      Fixed_Int    : Boolean;
6390      Int_Real     : Boolean) return Range_Membership
6391   is
6392      Val  : Uint;
6393      Valr : Ureal;
6394
6395      pragma Warnings (Off, Assume_Valid);
6396      --  For now Assume_Valid is unreferenced since the current implementation
6397      --  always returns Unknown if N is not a compile-time-known value, but we
6398      --  keep the parameter to allow for future enhancements in which we try
6399      --  to get the information in the variable case as well.
6400
6401   begin
6402      --  If an error was posted on expression, then return Unknown, we do not
6403      --  want cascaded errors based on some false analysis of a junk node.
6404
6405      if Error_Posted (N) then
6406         return Unknown;
6407
6408      --  Expression that raises Constraint_Error is an odd case. We certainly
6409      --  do not want to consider it to be in range. It might make sense to
6410      --  consider it always out of range, but this causes incorrect error
6411      --  messages about static expressions out of range. So we just return
6412      --  Unknown, which is always safe.
6413
6414      elsif Raises_Constraint_Error (N) then
6415         return Unknown;
6416
6417      --  Universal types have no range limits, so always in range
6418
6419      elsif Typ = Universal_Integer or else Typ = Universal_Real then
6420         return In_Range;
6421
6422      --  Never known if not scalar type. Don't know if this can actually
6423      --  happen, but our spec allows it, so we must check.
6424
6425      elsif not Is_Scalar_Type (Typ) then
6426         return Unknown;
6427
6428      --  Never known if this is a generic type, since the bounds of generic
6429      --  types are junk. Note that if we only checked for static expressions
6430      --  (instead of compile-time-known values) below, we would not need this
6431      --  check, because values of a generic type can never be static, but they
6432      --  can be known at compile time.
6433
6434      elsif Is_Generic_Type (Typ) then
6435         return Unknown;
6436
6437      --  Case of a known compile time value, where we can check if it is in
6438      --  the bounds of the given type.
6439
6440      elsif Compile_Time_Known_Value (N) then
6441         declare
6442            Lo       : Node_Id;
6443            Hi       : Node_Id;
6444
6445            LB_Known : Boolean;
6446            HB_Known : Boolean;
6447
6448         begin
6449            Lo := Type_Low_Bound  (Typ);
6450            Hi := Type_High_Bound (Typ);
6451
6452            LB_Known := Compile_Time_Known_Value (Lo);
6453            HB_Known := Compile_Time_Known_Value (Hi);
6454
6455            --  Fixed point types should be considered as such only if flag
6456            --  Fixed_Int is set to False.
6457
6458            if Is_Floating_Point_Type (Typ)
6459              or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
6460              or else Int_Real
6461            then
6462               Valr := Expr_Value_R (N);
6463
6464               if LB_Known and HB_Known then
6465                  if Valr >= Expr_Value_R (Lo)
6466                       and then
6467                     Valr <= Expr_Value_R (Hi)
6468                  then
6469                     return In_Range;
6470                  else
6471                     return Out_Of_Range;
6472                  end if;
6473
6474               elsif (LB_Known and then Valr < Expr_Value_R (Lo))
6475                       or else
6476                     (HB_Known and then Valr > Expr_Value_R (Hi))
6477               then
6478                  return Out_Of_Range;
6479
6480               else
6481                  return Unknown;
6482               end if;
6483
6484            else
6485               Val := Expr_Value (N);
6486
6487               if LB_Known and HB_Known then
6488                  if Val >= Expr_Value (Lo) and then Val <= Expr_Value (Hi)
6489                  then
6490                     return In_Range;
6491                  else
6492                     return Out_Of_Range;
6493                  end if;
6494
6495               elsif (LB_Known and then Val < Expr_Value (Lo))
6496                       or else
6497                     (HB_Known and then Val > Expr_Value (Hi))
6498               then
6499                  return Out_Of_Range;
6500
6501               else
6502                  return Unknown;
6503               end if;
6504            end if;
6505         end;
6506
6507      --  Here for value not known at compile time. Case of expression subtype
6508      --  is Typ or is a subtype of Typ, and we can assume expression is valid.
6509      --  In this case we know it is in range without knowing its value.
6510
6511      elsif Assume_Valid
6512        and then (Etype (N) = Typ or else Is_Subtype_Of (Etype (N), Typ))
6513      then
6514         return In_Range;
6515
6516      --  Another special case. For signed integer types, if the target type
6517      --  has Is_Known_Valid set, and the source type does not have a larger
6518      --  size, then the source value must be in range. We exclude biased
6519      --  types, because they bizarrely can generate out of range values.
6520
6521      elsif Is_Signed_Integer_Type (Etype (N))
6522        and then Is_Known_Valid (Typ)
6523        and then Esize (Etype (N)) <= Esize (Typ)
6524        and then not Has_Biased_Representation (Etype (N))
6525      then
6526         return In_Range;
6527
6528      --  For all other cases, result is unknown
6529
6530      else
6531         return Unknown;
6532      end if;
6533   end Test_In_Range;
6534
6535   --------------
6536   -- To_Bits --
6537   --------------
6538
6539   procedure To_Bits (U : Uint; B : out Bits) is
6540   begin
6541      for J in 0 .. B'Last loop
6542         B (J) := (U / (2 ** J)) mod 2 /= 0;
6543      end loop;
6544   end To_Bits;
6545
6546   --------------------
6547   -- Why_Not_Static --
6548   --------------------
6549
6550   procedure Why_Not_Static (Expr : Node_Id) is
6551      N   : constant Node_Id := Original_Node (Expr);
6552      Typ : Entity_Id        := Empty;
6553      E   : Entity_Id;
6554      Alt : Node_Id;
6555      Exp : Node_Id;
6556
6557      procedure Why_Not_Static_List (L : List_Id);
6558      --  A version that can be called on a list of expressions. Finds all
6559      --  non-static violations in any element of the list.
6560
6561      -------------------------
6562      -- Why_Not_Static_List --
6563      -------------------------
6564
6565      procedure Why_Not_Static_List (L : List_Id) is
6566         N : Node_Id;
6567      begin
6568         if Is_Non_Empty_List (L) then
6569            N := First (L);
6570            while Present (N) loop
6571               Why_Not_Static (N);
6572               Next (N);
6573            end loop;
6574         end if;
6575      end Why_Not_Static_List;
6576
6577   --  Start of processing for Why_Not_Static
6578
6579   begin
6580      --  Ignore call on error or empty node
6581
6582      if No (Expr) or else Nkind (Expr) = N_Error then
6583         return;
6584      end if;
6585
6586      --  Preprocessing for sub expressions
6587
6588      if Nkind (Expr) in N_Subexpr then
6589
6590         --  Nothing to do if expression is static
6591
6592         if Is_OK_Static_Expression (Expr) then
6593            return;
6594         end if;
6595
6596         --  Test for Constraint_Error raised
6597
6598         if Raises_Constraint_Error (Expr) then
6599
6600            --  Special case membership to find out which piece to flag
6601
6602            if Nkind (N) in N_Membership_Test then
6603               if Raises_Constraint_Error (Left_Opnd (N)) then
6604                  Why_Not_Static (Left_Opnd (N));
6605                  return;
6606
6607               elsif Present (Right_Opnd (N))
6608                 and then Raises_Constraint_Error (Right_Opnd (N))
6609               then
6610                  Why_Not_Static (Right_Opnd (N));
6611                  return;
6612
6613               else
6614                  pragma Assert (Present (Alternatives (N)));
6615
6616                  Alt := First (Alternatives (N));
6617                  while Present (Alt) loop
6618                     if Raises_Constraint_Error (Alt) then
6619                        Why_Not_Static (Alt);
6620                        return;
6621                     else
6622                        Next (Alt);
6623                     end if;
6624                  end loop;
6625               end if;
6626
6627            --  Special case a range to find out which bound to flag
6628
6629            elsif Nkind (N) = N_Range then
6630               if Raises_Constraint_Error (Low_Bound (N)) then
6631                  Why_Not_Static (Low_Bound (N));
6632                  return;
6633
6634               elsif Raises_Constraint_Error (High_Bound (N)) then
6635                  Why_Not_Static (High_Bound (N));
6636                  return;
6637               end if;
6638
6639            --  Special case attribute to see which part to flag
6640
6641            elsif Nkind (N) = N_Attribute_Reference then
6642               if Raises_Constraint_Error (Prefix (N)) then
6643                  Why_Not_Static (Prefix (N));
6644                  return;
6645               end if;
6646
6647               if Present (Expressions (N)) then
6648                  Exp := First (Expressions (N));
6649                  while Present (Exp) loop
6650                     if Raises_Constraint_Error (Exp) then
6651                        Why_Not_Static (Exp);
6652                        return;
6653                     end if;
6654
6655                     Next (Exp);
6656                  end loop;
6657               end if;
6658
6659            --  Special case a subtype name
6660
6661            elsif Is_Entity_Name (Expr) and then Is_Type (Entity (Expr)) then
6662               Error_Msg_NE
6663                 ("!& is not a static subtype (RM 4.9(26))", N, Entity (Expr));
6664               return;
6665            end if;
6666
6667            --  End of special cases
6668
6669            Error_Msg_N
6670              ("!expression raises exception, cannot be static (RM 4.9(34))",
6671               N);
6672            return;
6673         end if;
6674
6675         --  If no type, then something is pretty wrong, so ignore
6676
6677         Typ := Etype (Expr);
6678
6679         if No (Typ) then
6680            return;
6681         end if;
6682
6683         --  Type must be scalar or string type (but allow Bignum, since this
6684         --  is really a scalar type from our point of view in this diagnosis).
6685
6686         if not Is_Scalar_Type (Typ)
6687           and then not Is_String_Type (Typ)
6688           and then not Is_RTE (Typ, RE_Bignum)
6689         then
6690            Error_Msg_N
6691              ("!static expression must have scalar or string type " &
6692               "(RM 4.9(2))", N);
6693            return;
6694         end if;
6695      end if;
6696
6697      --  If we got through those checks, test particular node kind
6698
6699      case Nkind (N) is
6700
6701         --  Entity name
6702
6703         when N_Expanded_Name
6704            | N_Identifier
6705            | N_Operator_Symbol
6706         =>
6707            E := Entity (N);
6708
6709            if Is_Named_Number (E) then
6710               null;
6711
6712            elsif Ekind (E) = E_Constant then
6713
6714               --  One case we can give a metter message is when we have a
6715               --  string literal created by concatenating an aggregate with
6716               --  an others expression.
6717
6718               Entity_Case : declare
6719                  CV : constant Node_Id := Constant_Value (E);
6720                  CO : constant Node_Id := Original_Node (CV);
6721
6722                  function Is_Aggregate (N : Node_Id) return Boolean;
6723                  --  See if node N came from an others aggregate, if so
6724                  --  return True and set Error_Msg_Sloc to aggregate.
6725
6726                  ------------------
6727                  -- Is_Aggregate --
6728                  ------------------
6729
6730                  function Is_Aggregate (N : Node_Id) return Boolean is
6731                  begin
6732                     if Nkind (Original_Node (N)) = N_Aggregate then
6733                        Error_Msg_Sloc := Sloc (Original_Node (N));
6734                        return True;
6735
6736                     elsif Is_Entity_Name (N)
6737                       and then Ekind (Entity (N)) = E_Constant
6738                       and then
6739                         Nkind (Original_Node (Constant_Value (Entity (N)))) =
6740                                                                  N_Aggregate
6741                     then
6742                        Error_Msg_Sloc :=
6743                          Sloc (Original_Node (Constant_Value (Entity (N))));
6744                        return True;
6745
6746                     else
6747                        return False;
6748                     end if;
6749                  end Is_Aggregate;
6750
6751               --  Start of processing for Entity_Case
6752
6753               begin
6754                  if Is_Aggregate (CV)
6755                    or else (Nkind (CO) = N_Op_Concat
6756                              and then (Is_Aggregate (Left_Opnd (CO))
6757                                          or else
6758                                        Is_Aggregate (Right_Opnd (CO))))
6759                  then
6760                     Error_Msg_N ("!aggregate (#) is never static", N);
6761
6762                  elsif No (CV) or else not Is_Static_Expression (CV) then
6763                     Error_Msg_NE
6764                       ("!& is not a static constant (RM 4.9(5))", N, E);
6765                  end if;
6766               end Entity_Case;
6767
6768            elsif Is_Type (E) then
6769               Error_Msg_NE
6770                 ("!& is not a static subtype (RM 4.9(26))", N, E);
6771
6772            else
6773               Error_Msg_NE
6774                 ("!& is not static constant or named number "
6775                  & "(RM 4.9(5))", N, E);
6776            end if;
6777
6778         --  Binary operator
6779
6780         when N_Binary_Op
6781            | N_Membership_Test
6782            | N_Short_Circuit
6783         =>
6784            if Nkind (N) in N_Op_Shift then
6785               Error_Msg_N
6786                 ("!shift functions are never static (RM 4.9(6,18))", N);
6787            else
6788               Why_Not_Static (Left_Opnd (N));
6789               Why_Not_Static (Right_Opnd (N));
6790            end if;
6791
6792         --  Unary operator
6793
6794         when N_Unary_Op =>
6795            Why_Not_Static (Right_Opnd (N));
6796
6797         --  Attribute reference
6798
6799         when N_Attribute_Reference =>
6800            Why_Not_Static_List (Expressions (N));
6801
6802            E := Etype (Prefix (N));
6803
6804            if E = Standard_Void_Type then
6805               return;
6806            end if;
6807
6808            --  Special case non-scalar'Size since this is a common error
6809
6810            if Attribute_Name (N) = Name_Size then
6811               Error_Msg_N
6812                 ("!size attribute is only static for static scalar type "
6813                  & "(RM 4.9(7,8))", N);
6814
6815            --  Flag array cases
6816
6817            elsif Is_Array_Type (E) then
6818               if not Nam_In (Attribute_Name (N), Name_First,
6819                                                  Name_Last,
6820                                                  Name_Length)
6821               then
6822                  Error_Msg_N
6823                    ("!static array attribute must be Length, First, or Last "
6824                     & "(RM 4.9(8))", N);
6825
6826               --  Since we know the expression is not-static (we already
6827               --  tested for this, must mean array is not static).
6828
6829               else
6830                  Error_Msg_N
6831                    ("!prefix is non-static array (RM 4.9(8))", Prefix (N));
6832               end if;
6833
6834               return;
6835
6836            --  Special case generic types, since again this is a common source
6837            --  of confusion.
6838
6839            elsif Is_Generic_Actual_Type (E) or else Is_Generic_Type (E) then
6840               Error_Msg_N
6841                 ("!attribute of generic type is never static "
6842                  & "(RM 4.9(7,8))", N);
6843
6844            elsif Is_OK_Static_Subtype (E) then
6845               null;
6846
6847            elsif Is_Scalar_Type (E) then
6848               Error_Msg_N
6849                 ("!prefix type for attribute is not static scalar subtype "
6850                  & "(RM 4.9(7))", N);
6851
6852            else
6853               Error_Msg_N
6854                 ("!static attribute must apply to array/scalar type "
6855                  & "(RM 4.9(7,8))", N);
6856            end if;
6857
6858         --  String literal
6859
6860         when N_String_Literal =>
6861            Error_Msg_N
6862              ("!subtype of string literal is non-static (RM 4.9(4))", N);
6863
6864         --  Explicit dereference
6865
6866         when N_Explicit_Dereference =>
6867            Error_Msg_N
6868              ("!explicit dereference is never static (RM 4.9)", N);
6869
6870         --  Function call
6871
6872         when N_Function_Call =>
6873            Why_Not_Static_List (Parameter_Associations (N));
6874
6875            --  Complain about non-static function call unless we have Bignum
6876            --  which means that the underlying expression is really some
6877            --  scalar arithmetic operation.
6878
6879            if not Is_RTE (Typ, RE_Bignum) then
6880               Error_Msg_N ("!non-static function call (RM 4.9(6,18))", N);
6881            end if;
6882
6883         --  Parameter assocation (test actual parameter)
6884
6885         when N_Parameter_Association =>
6886            Why_Not_Static (Explicit_Actual_Parameter (N));
6887
6888         --  Indexed component
6889
6890         when N_Indexed_Component =>
6891            Error_Msg_N ("!indexed component is never static (RM 4.9)", N);
6892
6893         --  Procedure call
6894
6895         when N_Procedure_Call_Statement =>
6896            Error_Msg_N ("!procedure call is never static (RM 4.9)", N);
6897
6898         --  Qualified expression (test expression)
6899
6900         when N_Qualified_Expression =>
6901            Why_Not_Static (Expression (N));
6902
6903         --  Aggregate
6904
6905         when N_Aggregate
6906            | N_Extension_Aggregate
6907         =>
6908            Error_Msg_N ("!an aggregate is never static (RM 4.9)", N);
6909
6910         --  Range
6911
6912         when N_Range =>
6913            Why_Not_Static (Low_Bound (N));
6914            Why_Not_Static (High_Bound (N));
6915
6916         --  Range constraint, test range expression
6917
6918         when N_Range_Constraint =>
6919            Why_Not_Static (Range_Expression (N));
6920
6921         --  Subtype indication, test constraint
6922
6923         when N_Subtype_Indication =>
6924            Why_Not_Static (Constraint (N));
6925
6926         --  Selected component
6927
6928         when N_Selected_Component =>
6929            Error_Msg_N ("!selected component is never static (RM 4.9)", N);
6930
6931         --  Slice
6932
6933         when N_Slice =>
6934            Error_Msg_N ("!slice is never static (RM 4.9)", N);
6935
6936         when N_Type_Conversion =>
6937            Why_Not_Static (Expression (N));
6938
6939            if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
6940              or else not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
6941            then
6942               Error_Msg_N
6943                 ("!static conversion requires static scalar subtype result "
6944                  & "(RM 4.9(9))", N);
6945            end if;
6946
6947         --  Unchecked type conversion
6948
6949         when N_Unchecked_Type_Conversion =>
6950            Error_Msg_N
6951              ("!unchecked type conversion is never static (RM 4.9)", N);
6952
6953         --  All other cases, no reason to give
6954
6955         when others =>
6956            null;
6957      end case;
6958   end Why_Not_Static;
6959
6960end Sem_Eval;
6961