1;; ARM Cortex-A53 pipeline description
2;; Copyright (C) 2013-2019 Free Software Foundation, Inc.
3;;
4;; Contributed by ARM Ltd.
5;;
6;; This file is part of GCC.
7;;
8;; GCC is free software; you can redistribute it and/or modify it
9;; under the terms of the GNU General Public License as published by
10;; the Free Software Foundation; either version 3, or (at your option)
11;; any later version.
12;;
13;; GCC is distributed in the hope that it will be useful, but
14;; WITHOUT ANY WARRANTY; without even the implied warranty of
15;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16;; General Public License for more details.
17;;
18;; You should have received a copy of the GNU General Public License
19;; along with GCC; see the file COPYING3.  If not see
20;; <http://www.gnu.org/licenses/>.
21
22(define_automaton "cortex_a53")
23
24;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
25;; General-purpose functional units.
26;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
27
28;; We use slot0 and slot1 to model constraints on which instructions may
29;; dual-issue.
30
31(define_cpu_unit "cortex_a53_slot0" "cortex_a53")
32(define_cpu_unit "cortex_a53_slot1" "cortex_a53")
33(final_presence_set "cortex_a53_slot1" "cortex_a53_slot0")
34
35(define_reservation "cortex_a53_slot_any"
36		    "cortex_a53_slot0\
37		     |cortex_a53_slot1")
38
39(define_reservation "cortex_a53_single_issue"
40		    "cortex_a53_slot0\
41		     +cortex_a53_slot1")
42
43;; Used to model load and store pipelines.  Load/store instructions
44;; can dual-issue with other instructions, but two load/stores cannot
45;; simultaneously issue.
46
47(define_cpu_unit "cortex_a53_store" "cortex_a53")
48(define_cpu_unit "cortex_a53_load" "cortex_a53")
49(define_cpu_unit "cortex_a53_ls_agen" "cortex_a53")
50
51;; Used to model a branch pipeline.  Branches can dual-issue with other
52;; instructions (except when those instructions take multiple cycles
53;; to issue).
54
55(define_cpu_unit "cortex_a53_branch" "cortex_a53")
56
57;; Used to model an integer divide pipeline.
58
59(define_cpu_unit "cortex_a53_idiv" "cortex_a53")
60
61;; Used to model an integer multiply/multiply-accumulate pipeline.
62
63(define_cpu_unit "cortex_a53_imul" "cortex_a53")
64
65;; Model general structural hazards, for wherever we need them.
66
67(define_cpu_unit "cortex_a53_hazard" "cortex_a53")
68
69;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
70;; ALU instructions.
71;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
72
73(define_insn_reservation "cortex_a53_shift" 2
74  (and (eq_attr "tune" "cortexa53")
75       (eq_attr "type" "adr,shift_imm,mov_imm,mvn_imm,mov_shift"))
76  "cortex_a53_slot_any")
77
78(define_insn_reservation "cortex_a53_shift_reg" 2
79  (and (eq_attr "tune" "cortexa53")
80       (eq_attr "type" "shift_reg,mov_shift_reg"))
81  "cortex_a53_slot_any+cortex_a53_hazard")
82
83(define_insn_reservation "cortex_a53_alu" 3
84  (and (eq_attr "tune" "cortexa53")
85       (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,
86			alu_sreg,alus_sreg,logic_reg,logics_reg,
87			adc_imm,adcs_imm,adc_reg,adcs_reg,
88			csel,clz,rbit,rev,alu_dsp_reg,
89			mov_reg,mvn_reg,mrs,multiple,no_insn"))
90  "cortex_a53_slot_any")
91
92(define_insn_reservation "cortex_a53_alu_shift" 3
93  (and (eq_attr "tune" "cortexa53")
94       (eq_attr "type" "alu_shift_imm,alus_shift_imm,
95			crc,logic_shift_imm,logics_shift_imm,
96			alu_ext,alus_ext,bfm,bfx,extend,mvn_shift"))
97  "cortex_a53_slot_any")
98
99(define_insn_reservation "cortex_a53_alu_shift_reg" 3
100  (and (eq_attr "tune" "cortexa53")
101       (eq_attr "type" "alu_shift_reg,alus_shift_reg,
102			logic_shift_reg,logics_shift_reg,
103			mvn_shift_reg"))
104  "cortex_a53_slot_any+cortex_a53_hazard")
105
106(define_insn_reservation "cortex_a53_alu_extr" 3
107  (and (eq_attr "tune" "cortexa53")
108       (eq_attr "type" "rotate_imm"))
109  "cortex_a53_slot1|cortex_a53_single_issue")
110
111(define_insn_reservation "cortex_a53_mul" 4
112  (and (eq_attr "tune" "cortexa53")
113       (ior (eq_attr "mul32" "yes")
114	    (eq_attr "widen_mul64" "yes")))
115  "cortex_a53_slot_any+cortex_a53_imul")
116
117;; From the perspective of the GCC scheduling state machine, if we wish to
118;; model an instruction as serialising other instructions, we are best to do
119;; so by modelling it as taking very few cycles.  Scheduling many other
120;; instructions underneath it at the cost of freedom to pick from the
121;; ready list is likely to hurt us more than it helps.  However, we do
122;; want to model some resource and latency cost for divide instructions in
123;; order to avoid divides ending up too lumpy.
124
125(define_insn_reservation "cortex_a53_div" 4
126  (and (eq_attr "tune" "cortexa53")
127       (eq_attr "type" "udiv,sdiv"))
128  "cortex_a53_slot0,cortex_a53_idiv*2")
129
130;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
131;; Load/store instructions.
132;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
133
134;; TODO: load<n> is not prescriptive about how much data is to be loaded.
135;; This is most obvious for LDRD from AArch32 and LDP (X register) from
136;; AArch64, both are tagged load2 but LDP will load 128-bits compared to
137;; LDRD which is 64-bits.
138;;
139;; For the below, we assume AArch64 X-registers for load2, and AArch32
140;; registers for load3/load4.
141
142(define_insn_reservation "cortex_a53_load1" 4
143  (and (eq_attr "tune" "cortexa53")
144       (eq_attr "type" "load_byte,load_4,load_acq"))
145  "cortex_a53_slot_any+cortex_a53_ls_agen,
146   cortex_a53_load")
147
148(define_insn_reservation "cortex_a53_store1" 2
149  (and (eq_attr "tune" "cortexa53")
150       (eq_attr "type" "store_4,store_rel"))
151  "cortex_a53_slot_any+cortex_a53_ls_agen,
152   cortex_a53_store")
153
154;; Model AArch64-sized LDP Xm, Xn, [Xa]
155
156(define_insn_reservation "cortex_a53_load2" 4
157  (and (eq_attr "tune" "cortexa53")
158       (eq_attr "type" "load_8"))
159  "cortex_a53_single_issue+cortex_a53_ls_agen,
160   cortex_a53_load+cortex_a53_slot0,
161   cortex_a53_load")
162
163(define_insn_reservation "cortex_a53_store2" 2
164  (and (eq_attr "tune" "cortexa53")
165       (eq_attr "type" "store_8"))
166  "cortex_a53_slot_any+cortex_a53_ls_agen,
167   cortex_a53_store")
168
169;; Model AArch32-sized LDM Ra, {Rm, Rn, Ro}
170
171(define_insn_reservation "cortex_a53_load3plus" 6
172  (and (eq_attr "tune" "cortexa53")
173       (eq_attr "type" "load_12,load_16"))
174  "cortex_a53_single_issue+cortex_a53_ls_agen,
175   cortex_a53_load+cortex_a53_slot0,
176   cortex_a53_load")
177
178(define_insn_reservation "cortex_a53_store3plus" 2
179  (and (eq_attr "tune" "cortexa53")
180       (eq_attr "type" "store_12,store_16"))
181  "cortex_a53_slot_any+cortex_a53_ls_agen,
182   cortex_a53_store+cortex_a53_slot0,
183   cortex_a53_store")
184
185;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
186;; Branches.
187;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
188
189;; Model all branches as dual-issuable from either execution, which
190;; is not strictly true for all cases (indirect branches).
191
192(define_insn_reservation "cortex_a53_branch" 0
193  (and (eq_attr "tune" "cortexa53")
194       (eq_attr "type" "branch,call"))
195  "cortex_a53_slot_any+cortex_a53_branch")
196
197;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
198;; General-purpose register bypasses
199;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
200
201;; Model bypasses for ALU to ALU instructions.
202
203(define_bypass 0 "cortex_a53_shift*"
204		 "cortex_a53_alu")
205
206(define_bypass 1 "cortex_a53_shift*"
207		 "cortex_a53_shift*,cortex_a53_alu_*")
208
209(define_bypass 1 "cortex_a53_alu*"
210		 "cortex_a53_alu")
211
212(define_bypass 1 "cortex_a53_alu*"
213		 "cortex_a53_alu_shift*"
214		 "arm_no_early_alu_shift_dep")
215
216(define_bypass 2 "cortex_a53_alu*"
217		 "cortex_a53_alu_*,cortex_a53_shift*")
218
219;; Model a bypass from MUL/MLA to MLA instructions.
220
221(define_bypass 1 "cortex_a53_mul"
222		 "cortex_a53_mul"
223		 "aarch_accumulator_forwarding")
224
225;; Model a bypass from MUL/MLA to ALU instructions.
226
227(define_bypass 2 "cortex_a53_mul"
228		 "cortex_a53_alu")
229
230(define_bypass 3 "cortex_a53_mul"
231		 "cortex_a53_alu_*,cortex_a53_shift*")
232
233;; Model bypasses for loads which are to be consumed by the ALU.
234
235(define_bypass 2 "cortex_a53_load1"
236		 "cortex_a53_alu")
237
238(define_bypass 3 "cortex_a53_load1"
239		 "cortex_a53_alu_*,cortex_a53_shift*")
240
241(define_bypass 3 "cortex_a53_load2"
242		 "cortex_a53_alu")
243
244;; Model a bypass for ALU instructions feeding stores.
245
246(define_bypass 0 "cortex_a53_alu*,cortex_a53_shift*"
247		 "cortex_a53_store*"
248		 "arm_no_early_store_addr_dep")
249
250;; Model a bypass for load and multiply instructions feeding stores.
251
252(define_bypass 1 "cortex_a53_mul,
253		  cortex_a53_load*"
254		 "cortex_a53_store*"
255		 "arm_no_early_store_addr_dep")
256
257;; Model a bypass for load to load/store address.
258
259(define_bypass 3 "cortex_a53_load1"
260		 "cortex_a53_load*"
261		 "arm_early_load_addr_dep_ptr")
262
263(define_bypass 3 "cortex_a53_load1"
264		 "cortex_a53_store*"
265		 "arm_early_store_addr_dep_ptr")
266
267;; Model a GP->FP register move as similar to stores.
268
269(define_bypass 0 "cortex_a53_alu*,cortex_a53_shift*"
270		 "cortex_a53_r2f")
271
272(define_bypass 1 "cortex_a53_mul,
273		  cortex_a53_load1,
274		  cortex_a53_load2"
275		 "cortex_a53_r2f")
276
277(define_bypass 2 "cortex_a53_alu*"
278		 "cortex_a53_r2f_cvt")
279
280(define_bypass 3 "cortex_a53_mul,
281		  cortex_a53_load1,
282		  cortex_a53_load2"
283		 "cortex_a53_r2f_cvt")
284
285;; Model flag forwarding to branches.
286
287(define_bypass 0 "cortex_a53_alu*,cortex_a53_shift*"
288		 "cortex_a53_branch")
289
290;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
291;; Floating-point/Advanced SIMD.
292;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
293
294(define_automaton "cortex_a53_advsimd")
295
296;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
297;; Broad Advanced SIMD type categorisation
298;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
299
300(define_attr "cortex_a53_advsimd_type"
301  "advsimd_alu, advsimd_alu_q,
302   advsimd_mul, advsimd_mul_q,
303   advsimd_div_s, advsimd_div_s_q,
304   advsimd_div_d, advsimd_div_d_q,
305   advsimd_load_64, advsimd_store_64,
306   advsimd_load_128, advsimd_store_128,
307   advsimd_load_lots, advsimd_store_lots,
308   unknown"
309  (cond [
310    (eq_attr "type" "neon_add, neon_qadd, neon_add_halve, neon_sub, neon_qsub,\
311		     neon_sub_halve, neon_abs, neon_neg, neon_qneg,\
312		     neon_qabs, neon_abd, neon_minmax, neon_compare,\
313		     neon_compare_zero, neon_arith_acc, neon_reduc_add,\
314		     neon_reduc_add_acc, neon_reduc_minmax,\
315		     neon_logic, neon_tst, neon_shift_imm,\
316		     neon_shift_reg, neon_shift_acc, neon_sat_shift_imm,\
317		     neon_sat_shift_reg, neon_ins, neon_move,\
318		     neon_permute, neon_zip, neon_tbl1,\
319		     neon_tbl2, neon_tbl3, neon_tbl4, neon_bsl,\
320		     neon_cls, neon_cnt, neon_dup,\
321		     neon_ext, neon_rbit, neon_rev,\
322		     neon_fp_abd_s, neon_fp_abd_d,\
323		     neon_fp_abs_s, neon_fp_abs_d,\
324		     neon_fp_addsub_s, neon_fp_addsub_d, neon_fp_compare_s,\
325		     neon_fp_compare_d, neon_fp_minmax_s,\
326		     neon_fp_minmax_d, neon_fp_neg_s, neon_fp_neg_d,\
327		     neon_fp_reduc_add_s, neon_fp_reduc_add_d,\
328		     neon_fp_reduc_minmax_s, neon_fp_reduc_minmax_d,\
329		     neon_fp_cvt_widen_h, neon_fp_to_int_s,neon_fp_to_int_d,\
330		     neon_int_to_fp_s, neon_int_to_fp_d, neon_fp_round_s,\
331		     neon_fp_recpe_s, neon_fp_recpe_d, neon_fp_recps_s,\
332		     neon_fp_recps_d, neon_fp_recpx_s, neon_fp_recpx_d,\
333		     neon_fp_rsqrte_s, neon_fp_rsqrte_d, neon_fp_rsqrts_s,\
334		     neon_fp_rsqrts_d")
335      (const_string "advsimd_alu")
336    (eq_attr "type" "neon_add_q, neon_add_widen, neon_add_long,\
337		     neon_qadd_q, neon_add_halve_q, neon_add_halve_narrow_q,\
338		     neon_sub_q, neon_sub_widen, neon_sub_long,\
339		     neon_qsub_q, neon_sub_halve_q, neon_sub_halve_narrow_q,\
340		     neon_abs_q, neon_neg_q, neon_qneg_q, neon_qabs_q,\
341		     neon_abd_q, neon_abd_long, neon_minmax_q,\
342		     neon_compare_q, neon_compare_zero_q,\
343		     neon_arith_acc_q, neon_reduc_add_q,\
344		     neon_reduc_add_long, neon_reduc_add_acc_q,\
345		     neon_reduc_minmax_q, neon_logic_q, neon_tst_q,\
346		     neon_shift_imm_q, neon_shift_imm_narrow_q,\
347		     neon_shift_imm_long, neon_shift_reg_q,\
348		     neon_shift_acc_q, neon_sat_shift_imm_q,\
349		     neon_sat_shift_imm_narrow_q, neon_sat_shift_reg_q,\
350		     neon_ins_q, neon_move_q, neon_move_narrow_q,\
351		     neon_permute_q, neon_zip_q,\
352		     neon_tbl1_q, neon_tbl2_q, neon_tbl3_q,\
353		     neon_tbl4_q, neon_bsl_q, neon_cls_q, neon_cnt_q,\
354		     neon_dup_q, neon_ext_q, neon_rbit_q,\
355		     neon_rev_q, neon_fp_abd_s_q, neon_fp_abd_d_q,\
356		     neon_fp_abs_s_q, neon_fp_abs_d_q,\
357		     neon_fp_addsub_s_q, neon_fp_addsub_d_q,\
358		     neon_fp_compare_s_q, neon_fp_compare_d_q,\
359		     neon_fp_minmax_s_q, neon_fp_minmax_d_q,\
360		     neon_fp_cvt_widen_s, neon_fp_neg_s_q, neon_fp_neg_d_q,\
361		     neon_fp_reduc_add_s_q, neon_fp_reduc_add_d_q,\
362		     neon_fp_reduc_minmax_s_q, neon_fp_reduc_minmax_d_q,\
363		     neon_fp_cvt_narrow_s_q, neon_fp_cvt_narrow_d_q,\
364		     neon_fp_to_int_s_q, neon_fp_to_int_d_q,\
365		     neon_int_to_fp_s_q, neon_int_to_fp_d_q,\
366		     neon_fp_round_s_q,\
367		     neon_fp_recpe_s_q, neon_fp_recpe_d_q,\
368		     neon_fp_recps_s_q, neon_fp_recps_d_q,\
369		     neon_fp_recpx_s_q, neon_fp_recpx_d_q,\
370		     neon_fp_rsqrte_s_q, neon_fp_rsqrte_d_q,\
371		     neon_fp_rsqrts_s_q, neon_fp_rsqrts_d_q")
372      (const_string "advsimd_alu_q")
373    (eq_attr "type" "neon_mul_b, neon_mul_h, neon_mul_s,\
374		     neon_mul_h_scalar, neon_mul_s_scalar,\
375		     neon_sat_mul_b, neon_sat_mul_h, neon_sat_mul_s,\
376		     neon_sat_mul_h_scalar, neon_sat_mul_s_scalar,\
377		     neon_mla_b, neon_mla_h, neon_mla_s,\
378		     neon_mla_h_scalar, neon_mla_s_scalar,\
379		     neon_fp_mul_s, neon_fp_mul_s_scalar,\
380		     neon_fp_mul_d, neon_fp_mla_s,\
381		     neon_fp_mla_s_scalar, neon_fp_mla_d")
382      (const_string "advsimd_mul")
383    (eq_attr "type" "neon_mul_b_q, neon_mul_h_q, neon_mul_s_q,\
384		     neon_mul_b_long, neon_mul_h_long, neon_mul_s_long,\
385		     neon_mul_d_long, neon_mul_h_scalar_q,\
386		     neon_mul_s_scalar_q, neon_mul_h_scalar_long,\
387		     neon_mul_s_scalar_long, neon_sat_mul_b_q,\
388		     neon_sat_mul_h_q, neon_sat_mul_s_q,\
389		     neon_sat_mul_b_long, neon_sat_mul_h_long,\
390		     neon_sat_mul_s_long, neon_sat_mul_h_scalar_q,\
391		     neon_sat_mul_s_scalar_q, neon_sat_mul_h_scalar_long,\
392		     neon_sat_mul_s_scalar_long, crypto_pmull, neon_mla_b_q,\
393		     neon_mla_h_q, neon_mla_s_q, neon_mla_b_long,\
394		     neon_mla_h_long, neon_mla_s_long,\
395		     neon_mla_h_scalar_q, neon_mla_s_scalar_q,\
396		     neon_mla_h_scalar_long, neon_mla_s_scalar_long,\
397		     neon_sat_mla_b_long, neon_sat_mla_h_long,\
398		     neon_sat_mla_s_long, neon_sat_mla_h_scalar_long,\
399		     neon_sat_mla_s_scalar_long,\
400		     neon_fp_mul_s_q, neon_fp_mul_s_scalar_q,\
401		     neon_fp_mul_d_q, neon_fp_mul_d_scalar_q,\
402		     neon_fp_mla_s_q, neon_fp_mla_s_scalar_q,\
403		     neon_fp_mla_d_q, neon_fp_mla_d_scalar_q")
404      (const_string "advsimd_mul_q")
405    (eq_attr "type" "neon_fp_sqrt_s, neon_fp_div_s")
406      (const_string "advsimd_div_s")
407    (eq_attr "type" "neon_fp_sqrt_s_q, neon_fp_div_s_q")
408      (const_string "advsimd_div_s_q")
409    (eq_attr "type" "neon_fp_sqrt_d, neon_fp_div_d")
410      (const_string "advsimd_div_d")
411    (eq_attr "type" "neon_fp_sqrt_d_q, neon_fp_div_d_q")
412      (const_string "advsimd_div_d_q")
413    (eq_attr "type" "neon_ldr, neon_load1_1reg,\
414		     neon_load1_all_lanes, neon_load1_all_lanes_q,\
415		     neon_load1_one_lane, neon_load1_one_lane_q")
416      (const_string "advsimd_load_64")
417    (eq_attr "type" "neon_str, neon_store1_1reg,\
418		     neon_store1_one_lane,neon_store1_one_lane_q")
419      (const_string "advsimd_store_64")
420    (eq_attr "type" "neon_load1_1reg_q, neon_load1_2reg,\
421		     neon_load2_2reg,\
422		     neon_load2_all_lanes, neon_load2_all_lanes_q,\
423		     neon_load2_one_lane, neon_load2_one_lane_q")
424      (const_string "advsimd_load_128")
425    (eq_attr "type" "neon_store1_1reg_q, neon_store1_2reg,\
426		     neon_store2_2reg,\
427		     neon_store2_one_lane, neon_store2_one_lane_q")
428      (const_string "advsimd_store_128")
429    (eq_attr "type" "neon_load1_2reg_q, neon_load1_3reg, neon_load1_3reg_q,\
430		     neon_load1_4reg, neon_load1_4reg_q, \
431		     neon_load2_2reg_q, neon_load2_4reg,\
432		     neon_load2_4reg_q, neon_load3_3reg,\
433		     neon_load3_3reg_q, neon_load3_all_lanes,\
434		     neon_load3_all_lanes_q, neon_load3_one_lane,\
435		     neon_load3_one_lane_q, neon_load4_4reg,\
436		     neon_load4_4reg_q, neon_load4_all_lanes,\
437		     neon_load4_all_lanes_q, neon_load4_one_lane,\
438		     neon_load4_one_lane_q, neon_ldp, neon_ldp_q")
439      (const_string "advsimd_load_lots")
440    (eq_attr "type" "neon_store1_2reg_q, neon_store1_3reg,\
441		     neon_store1_3reg_q, neon_store1_4reg,\
442		     neon_store1_4reg_q, neon_store2_2reg_q,\
443		     neon_store2_4reg, neon_store2_4reg_q,\
444		     neon_store3_3reg, neon_store3_3reg_q,\
445		     neon_store3_one_lane, neon_store3_one_lane_q,\
446		     neon_store4_4reg, neon_store4_4reg_q,\
447		     neon_store4_one_lane, neon_store4_one_lane_q,\
448		     neon_stp, neon_stp_q")
449      (const_string "advsimd_store_lots")]
450      (const_string "unknown")))
451
452;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
453;; Floating-point/Advanced SIMD functional units.
454;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
455
456;; We model the Advanced SIMD unit as two 64-bit units, each with three
457;; pipes, FP_ALU, FP_MUL, FP_DIV.  We also give convenient reservations
458;; for 128-bit Advanced SIMD instructions, which use both units.
459
460;; The floating-point/Advanced SIMD ALU pipelines.
461
462(define_cpu_unit "cortex_a53_fp_alu_lo,\
463		  cortex_a53_fp_alu_hi"
464		 "cortex_a53_advsimd")
465
466(define_reservation "cortex_a53_fp_alu"
467		    "cortex_a53_fp_alu_lo\
468		     |cortex_a53_fp_alu_hi")
469
470(define_reservation "cortex_a53_fp_alu_q"
471		    "cortex_a53_fp_alu_lo\
472		     +cortex_a53_fp_alu_hi")
473
474;; The floating-point/Advanced SIMD multiply/multiply-accumulate
475;; pipelines.
476
477(define_cpu_unit "cortex_a53_fp_mul_lo,\
478		  cortex_a53_fp_mul_hi"
479		 "cortex_a53_advsimd")
480
481(define_reservation "cortex_a53_fp_mul"
482		    "cortex_a53_fp_mul_lo\
483		     |cortex_a53_fp_mul_hi")
484
485(define_reservation "cortex_a53_fp_mul_q"
486		    "cortex_a53_fp_mul_lo\
487		     +cortex_a53_fp_mul_hi")
488
489;; Floating-point/Advanced SIMD divide/square root.
490
491(define_cpu_unit "cortex_a53_fp_div_lo,\
492		  cortex_a53_fp_div_hi"
493		 "cortex_a53_advsimd")
494
495;; Once we choose a pipe, stick with it for three simulated cycles.
496
497(define_reservation "cortex_a53_fp_div"
498		    "(cortex_a53_fp_div_lo*3)\
499		     |(cortex_a53_fp_div_hi*3)")
500
501(define_reservation "cortex_a53_fp_div_q"
502		    "(cortex_a53_fp_div_lo*3)\
503		     +(cortex_a53_fp_div_hi*3)")
504
505;; Cryptographic extensions
506
507(define_cpu_unit "cortex_a53_crypto"
508		 "cortex_a53_advsimd")
509
510;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
511;; Floating-point arithmetic.
512;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
513
514(define_insn_reservation "cortex_a53_fpalu" 4
515  (and (eq_attr "tune" "cortexa53")
516	(eq_attr "type" "ffariths, fadds, ffarithd, faddd, fmov,
517			f_cvt, fcmps, fcmpd, fccmps, fccmpd, fcsel,
518			f_rints, f_rintd, f_minmaxs, f_minmaxd"))
519  "cortex_a53_slot_any,cortex_a53_fp_alu")
520
521(define_insn_reservation "cortex_a53_fconst" 2
522  (and (eq_attr "tune" "cortexa53")
523       (eq_attr "type" "fconsts,fconstd"))
524  "cortex_a53_slot_any,cortex_a53_fp_alu")
525
526(define_insn_reservation "cortex_a53_fpmul" 4
527  (and (eq_attr "tune" "cortexa53")
528       (eq_attr "type" "fmuls,fmuld"))
529  "cortex_a53_slot_any,cortex_a53_fp_mul")
530
531;; For multiply-accumulate, model the add (accumulate) as being issued
532;; after the multiply completes.
533
534(define_insn_reservation "cortex_a53_fpmac" 8
535  (and (eq_attr "tune" "cortexa53")
536       (eq_attr "type" "fmacs,fmacd,ffmas,ffmad"))
537  "cortex_a53_slot_any,cortex_a53_fp_mul,
538   nothing*3, cortex_a53_fp_alu")
539
540;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
541;; Floating-point to/from core transfers.
542;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
543
544(define_insn_reservation "cortex_a53_r2f" 2
545  (and (eq_attr "tune" "cortexa53")
546       (eq_attr "type" "f_mcr,f_mcrr"))
547  "cortex_a53_slot_any,cortex_a53_fp_alu")
548
549(define_insn_reservation "cortex_a53_f2r" 4
550  (and (eq_attr "tune" "cortexa53")
551       (eq_attr "type" "f_mrc,f_mrrc"))
552  "cortex_a53_slot_any,cortex_a53_fp_alu")
553
554(define_insn_reservation "cortex_a53_r2f_cvt" 4
555  (and (eq_attr "tune" "cortexa53")
556       (eq_attr "type" "f_cvti2f, neon_from_gp, neon_from_gp_q"))
557  "cortex_a53_slot_any,cortex_a53_fp_alu")
558
559(define_insn_reservation "cortex_a53_f2r_cvt" 5
560  (and (eq_attr "tune" "cortexa53")
561       (eq_attr "type" "f_cvtf2i, neon_to_gp, neon_to_gp_q"))
562  "cortex_a53_slot_any,cortex_a53_fp_alu")
563
564;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
565;; Floating-point flag transfer.
566;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
567
568(define_insn_reservation "cortex_a53_f_flags" 5
569  (and (eq_attr "tune" "cortexa53")
570       (eq_attr "type" "f_flag"))
571  "cortex_a53_slot_any")
572
573;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
574;; Floating-point load/store.
575;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
576
577(define_insn_reservation "cortex_a53_f_load_64" 3
578  (and (eq_attr "tune" "cortexa53")
579       (ior (eq_attr "type" "f_loads,f_loadd")
580	    (eq_attr "cortex_a53_advsimd_type"
581		     "advsimd_load_64")))
582  "cortex_a53_slot_any+cortex_a53_ls_agen,
583   cortex_a53_load")
584
585(define_insn_reservation "cortex_a53_f_load_many" 4
586  (and (eq_attr "tune" "cortexa53")
587       (eq_attr "cortex_a53_advsimd_type"
588		"advsimd_load_128,advsimd_load_lots"))
589  "cortex_a53_single_issue+cortex_a53_ls_agen,
590   cortex_a53_load+cortex_a53_slot0,
591   cortex_a53_load")
592
593(define_insn_reservation "cortex_a53_f_store_64" 0
594  (and (eq_attr "tune" "cortexa53")
595       (ior (eq_attr "type" "f_stores,f_stored")
596	    (eq_attr "cortex_a53_advsimd_type"
597		     "advsimd_store_64")))
598  "cortex_a53_slot_any+cortex_a53_ls_agen,
599   cortex_a53_store")
600
601(define_insn_reservation "cortex_a53_f_store_many" 0
602  (and (eq_attr "tune" "cortexa53")
603       (eq_attr "cortex_a53_advsimd_type"
604		"advsimd_store_128,advsimd_store_lots"))
605  "cortex_a53_slot_any+cortex_a53_ls_agen,
606   cortex_a53_store+cortex_a53_slot0,
607   cortex_a53_store")
608
609;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
610;; Advanced SIMD.
611;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
612
613;; Either we want to model use of the ALU pipe, the multiply pipe or the
614;; divide/sqrt pipe.  In all cases we need to check if we are a 64-bit
615;; operation (in which case we model dual-issue without penalty)
616;; or a 128-bit operation in which case we require in our model that we
617;; issue from slot 0.
618
619(define_insn_reservation "cortex_a53_advsimd_alu" 4
620  (and (eq_attr "tune" "cortexa53")
621       (eq_attr "cortex_a53_advsimd_type" "advsimd_alu"))
622  "cortex_a53_slot_any,cortex_a53_fp_alu")
623
624(define_insn_reservation "cortex_a53_advsimd_alu_q" 4
625  (and (eq_attr "tune" "cortexa53")
626       (eq_attr "cortex_a53_advsimd_type" "advsimd_alu_q"))
627  "cortex_a53_slot0,cortex_a53_fp_alu_q")
628
629(define_insn_reservation "cortex_a53_advsimd_mul" 4
630  (and (eq_attr "tune" "cortexa53")
631       (eq_attr "cortex_a53_advsimd_type" "advsimd_mul"))
632  "cortex_a53_slot_any,cortex_a53_fp_mul")
633
634(define_insn_reservation "cortex_a53_advsimd_mul_q" 4
635  (and (eq_attr "tune" "cortexa53")
636       (eq_attr "cortex_a53_advsimd_type" "advsimd_mul_q"))
637  "cortex_a53_slot0,cortex_a53_fp_mul_q")
638
639;; SIMD Dividers.
640
641(define_insn_reservation "cortex_a53_advsimd_div_s" 14
642  (and (eq_attr "tune" "cortexa53")
643       (ior (eq_attr "type" "fdivs,fsqrts")
644       (eq_attr "cortex_a53_advsimd_type" "advsimd_div_s")))
645  "cortex_a53_slot0,cortex_a53_fp_mul,
646   cortex_a53_fp_div")
647
648(define_insn_reservation "cortex_a53_advsimd_div_d" 29
649  (and (eq_attr "tune" "cortexa53")
650       (ior (eq_attr "type" "fdivd,fsqrtd")
651	    (eq_attr "cortex_a53_advsimd_type" "advsimd_div_d")))
652  "cortex_a53_slot0,cortex_a53_fp_mul,
653   cortex_a53_fp_div")
654
655(define_insn_reservation "cortex_a53_advsimd_div_s_q" 14
656  (and (eq_attr "tune" "cortexa53")
657       (eq_attr "cortex_a53_advsimd_type" "advsimd_div_s_q"))
658  "cortex_a53_single_issue,cortex_a53_fp_mul_q,
659   cortex_a53_fp_div_q")
660
661(define_insn_reservation "cortex_a53_advsimd_divd_q" 29
662  (and (eq_attr "tune" "cortexa53")
663       (eq_attr "cortex_a53_advsimd_type" "advsimd_div_d_q"))
664  "cortex_a53_single_issue,cortex_a53_fp_mul_q,
665   cortex_a53_fp_div_q")
666
667;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
668;; ARMv8-A Cryptographic extensions.
669;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
670
671;; We want AESE and AESMC to end up consecutive to one another.
672
673(define_insn_reservation "cortex_a53_crypto_aese" 3
674  (and (eq_attr "tune" "cortexa53")
675       (eq_attr "type" "crypto_aese"))
676  "cortex_a53_slot0")
677
678(define_insn_reservation "cortex_a53_crypto_aesmc" 3
679  (and (eq_attr "tune" "cortexa53")
680       (eq_attr "type" "crypto_aesmc"))
681  "cortex_a53_slot_any")
682
683;; SHA1H
684
685(define_insn_reservation "cortex_a53_crypto_sha1_fast" 3
686  (and (eq_attr "tune" "cortexa53")
687       (eq_attr "type" "crypto_sha1_fast"))
688  "cortex_a53_slot_any,cortex_a53_crypto")
689
690(define_insn_reservation "cortex_a53_crypto_sha256_fast" 3
691  (and (eq_attr "tune" "cortexa53")
692       (eq_attr "type" "crypto_sha256_fast"))
693  "cortex_a53_slot0,cortex_a53_crypto")
694
695(define_insn_reservation "cortex_a53_crypto_sha1_xor" 4
696  (and (eq_attr "tune" "cortexa53")
697       (eq_attr "type" "crypto_sha1_xor"))
698  "cortex_a53_slot0,cortex_a53_crypto")
699
700(define_insn_reservation "cortex_a53_crypto_sha_slow" 5
701  (and (eq_attr "tune" "cortexa53")
702       (eq_attr "type" "crypto_sha1_slow, crypto_sha256_slow"))
703  "cortex_a53_slot0,cortex_a53_crypto")
704
705;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
706;; Floating-point/Advanced SIMD register bypasses.
707;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
708
709;; Model the late use of the accumulator operand for floating-point
710;; multiply-accumulate operations as a bypass reducing the latency
711;; of producing instructions to near zero.
712
713(define_bypass 1 "cortex_a53_fpalu,
714		  cortex_a53_fpmul,
715		  cortex_a53_r2f,
716		  cortex_a53_r2f_cvt,
717		  cortex_a53_fconst,
718		  cortex_a53_f_load*"
719		 "cortex_a53_fpmac"
720		 "aarch_accumulator_forwarding")
721
722(define_bypass 4 "cortex_a53_fpmac"
723		 "cortex_a53_fpmac"
724		 "aarch_accumulator_forwarding")
725
726;; We want AESE and AESMC to end up consecutive to one another.
727
728(define_bypass 0 "cortex_a53_crypto_aese"
729		 "cortex_a53_crypto_aesmc"
730		 "aarch_crypto_can_dual_issue")
731
732