1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
25
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
32
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
41
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
44 rtl as an INSN list.
45
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence.
50
51
52 At a high level, the algorithm used in this file is as follows:
53
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
56
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
62
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
67
68 - Next check match_dups.
69
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
71
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
74
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
80 contain:
81
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
84
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
87
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
90
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
94
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.c code and to reduce the amount of object code in
97 insn-recog.o.
98
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
101
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
104
105 5. Write out C++ code for each function. */
106
107 #include "bconfig.h"
108 #define INCLUDE_ALGORITHM
109 #include "system.h"
110 #include "coretypes.h"
111 #include "tm.h"
112 #include "rtl.h"
113 #include "errors.h"
114 #include "read-md.h"
115 #include "gensupport.h"
116
117 #undef GENERATOR_FILE
118 enum true_rtx_doe {
119 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
120 #include "rtl.def"
121 #undef DEF_RTL_EXPR
122 FIRST_GENERATOR_RTX_CODE
123 };
124 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125 #define GENERATOR_FILE 1
126
127 /* Debugging variables to control which optimizations are performed.
128 Note that disabling merge_states_p leads to very large output. */
129 static const bool merge_states_p = true;
130 static const bool collapse_optional_decisions_p = true;
131 static const bool cse_tests_p = true;
132 static const bool simplify_tests_p = true;
133 static const bool use_operand_variables_p = true;
134 static const bool use_subroutines_p = true;
135 static const bool use_pattern_routines_p = true;
136
137 /* Whether to add comments for optional tests that we decided to keep.
138 Can be useful when debugging the generator itself but is noise when
139 debugging the generated code. */
140 static const bool mark_optional_transitions_p = false;
141
142 /* Whether pattern routines should calculate positions relative to their
143 rtx parameter rather than use absolute positions. This e.g. allows
144 a pattern routine to be shared between a plain SET and a PARALLEL
145 that includes a SET.
146
147 In principle it sounds like this should be useful, especially for
148 recog_for_combine, where the plain SET form is generated automatically
149 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
150 seem to help much and leads to slightly bigger object files. */
151 static const bool relative_patterns_p = false;
152
153 /* Whether pattern routines should be allowed to test whether pnum_clobbers
154 is null. This requires passing pnum_clobbers around as a parameter. */
155 static const bool pattern_have_num_clobbers_p = true;
156
157 /* Whether pattern routines should be allowed to test .md file C conditions.
158 This requires passing insn around as a parameter, in case the C
159 condition refers to it. In practice this tends to lead to bigger
160 object files. */
161 static const bool pattern_c_test_p = false;
162
163 /* Whether to require each parameter passed to a pattern routine to be
164 unique. Disabling this check for example allows unary operators with
165 matching modes (like NEG) and unary operators with mismatched modes
166 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
167 often have cases where the same value is passed too many times. */
168 static const bool force_unique_params_p = true;
169
170 /* The maximum (approximate) depth of block nesting that an individual
171 routine or subroutine should have. This limit is about keeping the
172 output readable rather than reducing compile time. */
173 static const unsigned int MAX_DEPTH = 6;
174
175 /* The minimum number of pseudo-statements that a state must have before
176 we split it out into a subroutine. */
177 static const unsigned int MIN_NUM_STATEMENTS = 5;
178
179 /* The number of pseudo-statements a state can have before we consider
180 splitting out substates into subroutines. This limit is about avoiding
181 compile-time problems with very big functions (and also about keeping
182 functions within --param optimization limits, etc.). */
183 static const unsigned int MAX_NUM_STATEMENTS = 200;
184
185 /* The minimum number of pseudo-statements that can be used in a pattern
186 routine. */
187 static const unsigned int MIN_COMBINE_COST = 4;
188
189 /* The maximum number of arguments that a pattern routine can have.
190 The idea is to prevent one pattern getting a ridiculous number of
191 arguments when it would be more beneficial to have a separate pattern
192 routine instead. */
193 static const unsigned int MAX_PATTERN_PARAMS = 5;
194
195 /* The maximum operand number plus one. */
196 int num_operands;
197
198 /* Ways of obtaining an rtx to be tested. */
199 enum position_type {
200 /* PATTERN (peep2_next_insn (ARG)). */
201 POS_PEEP2_INSN,
202
203 /* XEXP (BASE, ARG). */
204 POS_XEXP,
205
206 /* XVECEXP (BASE, 0, ARG). */
207 POS_XVECEXP0
208 };
209
210 /* The position of an rtx relative to X0. Each useful position is
211 represented by exactly one instance of this structure. */
212 struct position
213 {
214 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
215 struct position *base;
216
217 /* A position with the same BASE and TYPE, but with the next value
218 of ARG. */
219 struct position *next;
220
221 /* A list of all POS_XEXP positions that use this one as their base,
222 chained by NEXT fields. The first entry represents XEXP (this, 0),
223 the second represents XEXP (this, 1), and so on. */
224 struct position *xexps;
225
226 /* A list of POS_XVECEXP0 positions that use this one as their base,
227 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
228 the second represents XVECEXP (this, 0, 1), and so on. */
229 struct position *xvecexp0s;
230
231 /* The type of position. */
232 enum position_type type;
233
234 /* The argument to TYPE (shown as ARG in the position_type comments). */
235 int arg;
236
237 /* The instruction to which the position belongs. */
238 unsigned int insn_id;
239
240 /* The depth of this position relative to the instruction pattern.
241 E.g. if the instruction pattern is a SET, the SET itself has a
242 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
243 unsigned int depth;
244
245 /* A unique identifier for this position. */
246 unsigned int id;
247 };
248
249 enum routine_type {
250 SUBPATTERN, RECOG, SPLIT, PEEPHOLE2
251 };
252
253 /* The root position (x0). */
254 static struct position root_pos;
255
256 /* The number of positions created. Also one higher than the maximum
257 position id. */
258 static unsigned int num_positions = 1;
259
260 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
261 since we are given that instruction's pattern as x0. */
262 static struct position *peep2_insn_pos_list = &root_pos;
263
264 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
265 points to where the unique object that represents the position
266 should be stored. Create the object if it doesn't already exist,
267 otherwise reuse the object that is already there. */
268
269 static struct position *
next_position(struct position ** next_ptr,struct position * base,enum position_type type,int arg)270 next_position (struct position **next_ptr, struct position *base,
271 enum position_type type, int arg)
272 {
273 struct position *pos;
274
275 pos = *next_ptr;
276 if (!pos)
277 {
278 pos = XCNEW (struct position);
279 pos->type = type;
280 pos->arg = arg;
281 if (type == POS_PEEP2_INSN)
282 {
283 pos->base = 0;
284 pos->insn_id = arg;
285 pos->depth = base->depth;
286 }
287 else
288 {
289 pos->base = base;
290 pos->insn_id = base->insn_id;
291 pos->depth = base->depth + 1;
292 }
293 pos->id = num_positions++;
294 *next_ptr = pos;
295 }
296 return pos;
297 }
298
299 /* Compare positions POS1 and POS2 lexicographically. */
300
301 static int
compare_positions(struct position * pos1,struct position * pos2)302 compare_positions (struct position *pos1, struct position *pos2)
303 {
304 int diff;
305
306 diff = pos1->depth - pos2->depth;
307 if (diff < 0)
308 do
309 pos2 = pos2->base;
310 while (pos1->depth != pos2->depth);
311 else if (diff > 0)
312 do
313 pos1 = pos1->base;
314 while (pos1->depth != pos2->depth);
315 while (pos1 != pos2)
316 {
317 diff = (int) pos1->type - (int) pos2->type;
318 if (diff == 0)
319 diff = pos1->arg - pos2->arg;
320 pos1 = pos1->base;
321 pos2 = pos2->base;
322 }
323 return diff;
324 }
325
326 /* Return the most deeply-nested position that is common to both
327 POS1 and POS2. If the positions are from different instructions,
328 return the one with the lowest insn_id. */
329
330 static struct position *
common_position(struct position * pos1,struct position * pos2)331 common_position (struct position *pos1, struct position *pos2)
332 {
333 if (pos1->insn_id != pos2->insn_id)
334 return pos1->insn_id < pos2->insn_id ? pos1 : pos2;
335 if (pos1->depth > pos2->depth)
336 std::swap (pos1, pos2);
337 while (pos1->depth != pos2->depth)
338 pos2 = pos2->base;
339 while (pos1 != pos2)
340 {
341 pos1 = pos1->base;
342 pos2 = pos2->base;
343 }
344 return pos1;
345 }
346
347 /* Search for and return operand N, stop when reaching node STOP. */
348
349 static rtx
find_operand(rtx pattern,int n,rtx stop)350 find_operand (rtx pattern, int n, rtx stop)
351 {
352 const char *fmt;
353 RTX_CODE code;
354 int i, j, len;
355 rtx r;
356
357 if (pattern == stop)
358 return stop;
359
360 code = GET_CODE (pattern);
361 if ((code == MATCH_SCRATCH
362 || code == MATCH_OPERAND
363 || code == MATCH_OPERATOR
364 || code == MATCH_PARALLEL)
365 && XINT (pattern, 0) == n)
366 return pattern;
367
368 fmt = GET_RTX_FORMAT (code);
369 len = GET_RTX_LENGTH (code);
370 for (i = 0; i < len; i++)
371 {
372 switch (fmt[i])
373 {
374 case 'e': case 'u':
375 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
376 return r;
377 break;
378
379 case 'V':
380 if (! XVEC (pattern, i))
381 break;
382 /* Fall through. */
383
384 case 'E':
385 for (j = 0; j < XVECLEN (pattern, i); j++)
386 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
387 != NULL_RTX)
388 return r;
389 break;
390
391 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
392 break;
393
394 default:
395 gcc_unreachable ();
396 }
397 }
398
399 return NULL;
400 }
401
402 /* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
404
405 static rtx
find_matching_operand(rtx pattern,int n)406 find_matching_operand (rtx pattern, int n)
407 {
408 const char *fmt;
409 RTX_CODE code;
410 int i, j, len;
411 rtx r;
412
413 code = GET_CODE (pattern);
414 if (code == MATCH_OPERAND
415 && (XSTR (pattern, 2)[0] == '0' + n
416 || (XSTR (pattern, 2)[0] == '%'
417 && XSTR (pattern, 2)[1] == '0' + n)))
418 return pattern;
419
420 fmt = GET_RTX_FORMAT (code);
421 len = GET_RTX_LENGTH (code);
422 for (i = 0; i < len; i++)
423 {
424 switch (fmt[i])
425 {
426 case 'e': case 'u':
427 if ((r = find_matching_operand (XEXP (pattern, i), n)))
428 return r;
429 break;
430
431 case 'V':
432 if (! XVEC (pattern, i))
433 break;
434 /* Fall through. */
435
436 case 'E':
437 for (j = 0; j < XVECLEN (pattern, i); j++)
438 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
439 return r;
440 break;
441
442 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
443 break;
444
445 default:
446 gcc_unreachable ();
447 }
448 }
449
450 return NULL;
451 }
452
453 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454 don't use the MATCH_OPERAND constraint, only the predicate.
455 This is confusing to folks doing new ports, so help them
456 not make the mistake. */
457
458 static bool
constraints_supported_in_insn_p(rtx insn)459 constraints_supported_in_insn_p (rtx insn)
460 {
461 return !(GET_CODE (insn) == DEFINE_EXPAND
462 || GET_CODE (insn) == DEFINE_SPLIT
463 || GET_CODE (insn) == DEFINE_PEEPHOLE2);
464 }
465
466 /* Return the name of the predicate matched by MATCH_RTX. */
467
468 static const char *
predicate_name(rtx match_rtx)469 predicate_name (rtx match_rtx)
470 {
471 if (GET_CODE (match_rtx) == MATCH_SCRATCH)
472 return "scratch_operand";
473 else
474 return XSTR (match_rtx, 1);
475 }
476
477 /* Return true if OPERAND is a MATCH_OPERAND using a special predicate
478 function. */
479
480 static bool
special_predicate_operand_p(rtx operand)481 special_predicate_operand_p (rtx operand)
482 {
483 if (GET_CODE (operand) == MATCH_OPERAND)
484 {
485 const char *pred_name = predicate_name (operand);
486 if (pred_name[0] != 0)
487 {
488 const struct pred_data *pred;
489
490 pred = lookup_predicate (pred_name);
491 return pred != NULL && pred->special;
492 }
493 }
494
495 return false;
496 }
497
498 /* Check for various errors in PATTERN, which is part of INFO.
499 SET is nonnull for a destination, and is the complete set pattern.
500 SET_CODE is '=' for normal sets, and '+' within a context that
501 requires in-out constraints. */
502
503 static void
validate_pattern(rtx pattern,md_rtx_info * info,rtx set,int set_code)504 validate_pattern (rtx pattern, md_rtx_info *info, rtx set, int set_code)
505 {
506 const char *fmt;
507 RTX_CODE code;
508 size_t i, len;
509 int j;
510
511 code = GET_CODE (pattern);
512 switch (code)
513 {
514 case MATCH_SCRATCH:
515 {
516 const char constraints0 = XSTR (pattern, 1)[0];
517
518 if (!constraints_supported_in_insn_p (info->def))
519 {
520 if (constraints0)
521 {
522 error_at (info->loc, "constraints not supported in %s",
523 GET_RTX_NAME (GET_CODE (info->def)));
524 }
525 return;
526 }
527
528 /* If a MATCH_SCRATCH is used in a context requiring an write-only
529 or read/write register, validate that. */
530 if (set_code == '='
531 && constraints0
532 && constraints0 != '='
533 && constraints0 != '+')
534 {
535 error_at (info->loc, "operand %d missing output reload",
536 XINT (pattern, 0));
537 }
538 return;
539 }
540 case MATCH_DUP:
541 case MATCH_OP_DUP:
542 case MATCH_PAR_DUP:
543 if (find_operand (info->def, XINT (pattern, 0), pattern) == pattern)
544 error_at (info->loc, "operand %i duplicated before defined",
545 XINT (pattern, 0));
546 break;
547 case MATCH_OPERAND:
548 case MATCH_OPERATOR:
549 {
550 const char *pred_name = XSTR (pattern, 1);
551 const struct pred_data *pred;
552 const char *c_test;
553
554 c_test = get_c_test (info->def);
555
556 if (pred_name[0] != 0)
557 {
558 pred = lookup_predicate (pred_name);
559 if (!pred)
560 error_at (info->loc, "unknown predicate '%s'", pred_name);
561 }
562 else
563 pred = 0;
564
565 if (code == MATCH_OPERAND)
566 {
567 const char *constraints = XSTR (pattern, 2);
568 const char constraints0 = constraints[0];
569
570 if (!constraints_supported_in_insn_p (info->def))
571 {
572 if (constraints0)
573 {
574 error_at (info->loc, "constraints not supported in %s",
575 GET_RTX_NAME (GET_CODE (info->def)));
576 }
577 }
578
579 /* A MATCH_OPERAND that is a SET should have an output reload. */
580 else if (set && constraints0)
581 {
582 if (set_code == '+')
583 {
584 if (constraints0 == '+')
585 ;
586 /* If we've only got an output reload for this operand,
587 we'd better have a matching input operand. */
588 else if (constraints0 == '='
589 && find_matching_operand (info->def,
590 XINT (pattern, 0)))
591 ;
592 else
593 error_at (info->loc, "operand %d missing in-out reload",
594 XINT (pattern, 0));
595 }
596 else if (constraints0 != '=' && constraints0 != '+')
597 error_at (info->loc, "operand %d missing output reload",
598 XINT (pattern, 0));
599 }
600
601 /* For matching constraint in MATCH_OPERAND, the digit must be a
602 smaller number than the number of the operand that uses it in the
603 constraint. */
604 while (1)
605 {
606 while (constraints[0]
607 && (constraints[0] == ' ' || constraints[0] == ','))
608 constraints++;
609 if (!constraints[0])
610 break;
611
612 if (constraints[0] >= '0' && constraints[0] <= '9')
613 {
614 int val;
615
616 sscanf (constraints, "%d", &val);
617 if (val >= XINT (pattern, 0))
618 error_at (info->loc, "constraint digit %d is not"
619 " smaller than operand %d",
620 val, XINT (pattern, 0));
621 }
622
623 while (constraints[0] && constraints[0] != ',')
624 constraints++;
625 }
626 }
627
628 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
629 while not likely to occur at runtime, results in less efficient
630 code from insn-recog.c. */
631 if (set && pred && pred->allows_non_lvalue)
632 error_at (info->loc, "destination operand %d allows non-lvalue",
633 XINT (pattern, 0));
634
635 /* A modeless MATCH_OPERAND can be handy when we can check for
636 multiple modes in the c_test. In most other cases, it is a
637 mistake. Only DEFINE_INSN is eligible, since SPLIT and
638 PEEP2 can FAIL within the output pattern. Exclude special
639 predicates, which check the mode themselves. Also exclude
640 predicates that allow only constants. Exclude the SET_DEST
641 of a call instruction, as that is a common idiom. */
642
643 if (GET_MODE (pattern) == VOIDmode
644 && code == MATCH_OPERAND
645 && GET_CODE (info->def) == DEFINE_INSN
646 && pred
647 && !pred->special
648 && pred->allows_non_const
649 && strstr (c_test, "operands") == NULL
650 && ! (set
651 && GET_CODE (set) == SET
652 && GET_CODE (SET_SRC (set)) == CALL))
653 message_at (info->loc, "warning: operand %d missing mode?",
654 XINT (pattern, 0));
655 return;
656 }
657
658 case SET:
659 {
660 machine_mode dmode, smode;
661 rtx dest, src;
662
663 dest = SET_DEST (pattern);
664 src = SET_SRC (pattern);
665
666 /* STRICT_LOW_PART is a wrapper. Its argument is the real
667 destination, and it's mode should match the source. */
668 if (GET_CODE (dest) == STRICT_LOW_PART)
669 dest = XEXP (dest, 0);
670
671 /* Find the referent for a DUP. */
672
673 if (GET_CODE (dest) == MATCH_DUP
674 || GET_CODE (dest) == MATCH_OP_DUP
675 || GET_CODE (dest) == MATCH_PAR_DUP)
676 dest = find_operand (info->def, XINT (dest, 0), NULL);
677
678 if (GET_CODE (src) == MATCH_DUP
679 || GET_CODE (src) == MATCH_OP_DUP
680 || GET_CODE (src) == MATCH_PAR_DUP)
681 src = find_operand (info->def, XINT (src, 0), NULL);
682
683 dmode = GET_MODE (dest);
684 smode = GET_MODE (src);
685
686 /* Mode checking is not performed for special predicates. */
687 if (special_predicate_operand_p (src)
688 || special_predicate_operand_p (dest))
689 ;
690
691 /* The operands of a SET must have the same mode unless one
692 is VOIDmode. */
693 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
694 error_at (info->loc, "mode mismatch in set: %smode vs %smode",
695 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
696
697 /* If only one of the operands is VOIDmode, and PC or CC0 is
698 not involved, it's probably a mistake. */
699 else if (dmode != smode
700 && GET_CODE (dest) != PC
701 && GET_CODE (dest) != CC0
702 && GET_CODE (src) != PC
703 && GET_CODE (src) != CC0
704 && !CONST_INT_P (src)
705 && !CONST_WIDE_INT_P (src)
706 && GET_CODE (src) != CALL)
707 {
708 const char *which;
709 which = (dmode == VOIDmode ? "destination" : "source");
710 message_at (info->loc, "warning: %s missing a mode?", which);
711 }
712
713 if (dest != SET_DEST (pattern))
714 validate_pattern (dest, info, pattern, '=');
715 validate_pattern (SET_DEST (pattern), info, pattern, '=');
716 validate_pattern (SET_SRC (pattern), info, NULL_RTX, 0);
717 return;
718 }
719
720 case CLOBBER:
721 case CLOBBER_HIGH:
722 validate_pattern (SET_DEST (pattern), info, pattern, '=');
723 return;
724
725 case ZERO_EXTRACT:
726 validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0);
727 validate_pattern (XEXP (pattern, 1), info, NULL_RTX, 0);
728 validate_pattern (XEXP (pattern, 2), info, NULL_RTX, 0);
729 return;
730
731 case STRICT_LOW_PART:
732 validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0);
733 return;
734
735 case LABEL_REF:
736 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
737 error_at (info->loc, "operand to label_ref %smode not VOIDmode",
738 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
739 break;
740
741 case VEC_SELECT:
742 if (GET_MODE (pattern) != VOIDmode)
743 {
744 machine_mode mode = GET_MODE (pattern);
745 machine_mode imode = GET_MODE (XEXP (pattern, 0));
746 machine_mode emode
747 = VECTOR_MODE_P (mode) ? GET_MODE_INNER (mode) : mode;
748 if (GET_CODE (XEXP (pattern, 1)) == PARALLEL)
749 {
750 int expected = 1;
751 unsigned int nelems;
752 if (VECTOR_MODE_P (mode)
753 && !GET_MODE_NUNITS (mode).is_constant (&expected))
754 error_at (info->loc,
755 "vec_select with variable-sized mode %s",
756 GET_MODE_NAME (mode));
757 else if (XVECLEN (XEXP (pattern, 1), 0) != expected)
758 error_at (info->loc,
759 "vec_select parallel with %d elements, expected %d",
760 XVECLEN (XEXP (pattern, 1), 0), expected);
761 else if (VECTOR_MODE_P (imode)
762 && GET_MODE_NUNITS (imode).is_constant (&nelems))
763 {
764 int i;
765 for (i = 0; i < expected; ++i)
766 if (CONST_INT_P (XVECEXP (XEXP (pattern, 1), 0, i))
767 && (UINTVAL (XVECEXP (XEXP (pattern, 1), 0, i))
768 >= nelems))
769 error_at (info->loc,
770 "out of bounds selector %u in vec_select, "
771 "expected at most %u",
772 (unsigned)
773 UINTVAL (XVECEXP (XEXP (pattern, 1), 0, i)),
774 nelems - 1);
775 }
776 }
777 if (imode != VOIDmode && !VECTOR_MODE_P (imode))
778 error_at (info->loc, "%smode of first vec_select operand is not a "
779 "vector mode", GET_MODE_NAME (imode));
780 else if (imode != VOIDmode && GET_MODE_INNER (imode) != emode)
781 error_at (info->loc, "element mode mismatch between vec_select "
782 "%smode and its operand %smode",
783 GET_MODE_NAME (emode),
784 GET_MODE_NAME (GET_MODE_INNER (imode)));
785 }
786 break;
787
788 default:
789 break;
790 }
791
792 fmt = GET_RTX_FORMAT (code);
793 len = GET_RTX_LENGTH (code);
794 for (i = 0; i < len; i++)
795 {
796 switch (fmt[i])
797 {
798 case 'e': case 'u':
799 validate_pattern (XEXP (pattern, i), info, NULL_RTX, 0);
800 break;
801
802 case 'E':
803 for (j = 0; j < XVECLEN (pattern, i); j++)
804 validate_pattern (XVECEXP (pattern, i, j), info, NULL_RTX, 0);
805 break;
806
807 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
808 break;
809
810 default:
811 gcc_unreachable ();
812 }
813 }
814 }
815
816 /* Simple list structure for items of type T, for use when being part
817 of a list is an inherent property of T. T must have members equivalent
818 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
819 to set the parent list. */
820 template <typename T>
821 struct list_head
822 {
823 /* A range of linked items. */
824 struct range
825 {
826 range (T *);
827 range (T *, T *);
828
829 T *start, *end;
830 void set_parent (list_head *);
831 };
832
833 list_head ();
834 range release ();
835 void push_back (range);
836 range remove (range);
837 void replace (range, range);
838 T *singleton () const;
839
840 T *first, *last;
841 };
842
843 /* Create a range [START_IN, START_IN]. */
844
845 template <typename T>
range(T * start_in)846 list_head <T>::range::range (T *start_in) : start (start_in), end (start_in) {}
847
848 /* Create a range [START_IN, END_IN], linked by next and prev fields. */
849
850 template <typename T>
range(T * start_in,T * end_in)851 list_head <T>::range::range (T *start_in, T *end_in)
852 : start (start_in), end (end_in) {}
853
854 template <typename T>
855 void
set_parent(list_head<T> * owner)856 list_head <T>::range::set_parent (list_head <T> *owner)
857 {
858 for (T *item = start; item != end; item = item->next)
859 item->set_parent (owner);
860 end->set_parent (owner);
861 }
862
863 template <typename T>
list_head()864 list_head <T>::list_head () : first (0), last (0) {}
865
866 /* Add R to the end of the list. */
867
868 template <typename T>
869 void
push_back(range r)870 list_head <T>::push_back (range r)
871 {
872 if (last)
873 last->next = r.start;
874 else
875 first = r.start;
876 r.start->prev = last;
877 last = r.end;
878 r.set_parent (this);
879 }
880
881 /* Remove R from the list. R remains valid and can be inserted into
882 other lists. */
883
884 template <typename T>
885 typename list_head <T>::range
remove(range r)886 list_head <T>::remove (range r)
887 {
888 if (r.start->prev)
889 r.start->prev->next = r.end->next;
890 else
891 first = r.end->next;
892 if (r.end->next)
893 r.end->next->prev = r.start->prev;
894 else
895 last = r.start->prev;
896 r.start->prev = 0;
897 r.end->next = 0;
898 r.set_parent (0);
899 return r;
900 }
901
902 /* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
903 other lists. */
904
905 template <typename T>
906 void
replace(range oldr,range newr)907 list_head <T>::replace (range oldr, range newr)
908 {
909 newr.start->prev = oldr.start->prev;
910 newr.end->next = oldr.end->next;
911
912 oldr.start->prev = 0;
913 oldr.end->next = 0;
914 oldr.set_parent (0);
915
916 if (newr.start->prev)
917 newr.start->prev->next = newr.start;
918 else
919 first = newr.start;
920 if (newr.end->next)
921 newr.end->next->prev = newr.end;
922 else
923 last = newr.end;
924 newr.set_parent (this);
925 }
926
927 /* Empty the list and return the previous contents as a range that can
928 be inserted into other lists. */
929
930 template <typename T>
931 typename list_head <T>::range
release()932 list_head <T>::release ()
933 {
934 range r (first, last);
935 first = 0;
936 last = 0;
937 r.set_parent (0);
938 return r;
939 }
940
941 /* If the list contains a single item, return that item, otherwise return
942 null. */
943
944 template <typename T>
945 T *
singleton()946 list_head <T>::singleton () const
947 {
948 return first == last ? first : 0;
949 }
950
951 struct state;
952
953 /* Describes a possible successful return from a routine. */
954 struct acceptance_type
955 {
956 /* The type of routine we're returning from. */
957 routine_type type : 16;
958
959 /* True if this structure only really represents a partial match,
960 and if we must call a subroutine of type TYPE to complete the match.
961 In this case we'll call the subroutine and, if it succeeds, return
962 whatever the subroutine returned.
963
964 False if this structure presents a full match. */
965 unsigned int partial_p : 1;
966
967 union
968 {
969 /* If PARTIAL_P, this is the number of the subroutine to call. */
970 int subroutine_id;
971
972 /* Valid if !PARTIAL_P. */
973 struct
974 {
975 /* The identifier of the matching pattern. For SUBPATTERNs this
976 value belongs to an ad-hoc routine-specific enum. For the
977 others it's the number of an .md file pattern. */
978 int code;
979 union
980 {
981 /* For RECOG, the number of clobbers that must be added to the
982 pattern in order for it to match CODE. */
983 int num_clobbers;
984
985 /* For PEEPHOLE2, the number of additional instructions that were
986 included in the optimization. */
987 int match_len;
988 } u;
989 } full;
990 } u;
991 };
992
993 bool
994 operator == (const acceptance_type &a, const acceptance_type &b)
995 {
996 if (a.partial_p != b.partial_p)
997 return false;
998 if (a.partial_p)
999 return a.u.subroutine_id == b.u.subroutine_id;
1000 else
1001 return a.u.full.code == b.u.full.code;
1002 }
1003
1004 bool
1005 operator != (const acceptance_type &a, const acceptance_type &b)
1006 {
1007 return !operator == (a, b);
1008 }
1009
1010 /* Represents a parameter to a pattern routine. */
1011 struct parameter
1012 {
1013 /* The C type of parameter. */
1014 enum type_enum {
1015 /* Represents an invalid parameter. */
1016 UNSET,
1017
1018 /* A machine_mode parameter. */
1019 MODE,
1020
1021 /* An rtx_code parameter. */
1022 CODE,
1023
1024 /* An int parameter. */
1025 INT,
1026
1027 /* An unsigned int parameter. */
1028 UINT,
1029
1030 /* A HOST_WIDE_INT parameter. */
1031 WIDE_INT
1032 };
1033
1034 parameter ();
1035 parameter (type_enum, bool, uint64_t);
1036
1037 /* The type of the parameter. */
1038 type_enum type;
1039
1040 /* True if the value passed is variable, false if it is constant. */
1041 bool is_param;
1042
1043 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
1044 format string. If !IS_PARAM, this is the constant value passed. */
1045 uint64_t value;
1046 };
1047
parameter()1048 parameter::parameter ()
1049 : type (UNSET), is_param (false), value (0) {}
1050
parameter(type_enum type_in,bool is_param_in,uint64_t value_in)1051 parameter::parameter (type_enum type_in, bool is_param_in, uint64_t value_in)
1052 : type (type_in), is_param (is_param_in), value (value_in) {}
1053
1054 bool
1055 operator == (const parameter ¶m1, const parameter ¶m2)
1056 {
1057 return (param1.type == param2.type
1058 && param1.is_param == param2.is_param
1059 && param1.value == param2.value);
1060 }
1061
1062 bool
1063 operator != (const parameter ¶m1, const parameter ¶m2)
1064 {
1065 return !operator == (param1, param2);
1066 }
1067
1068 /* Represents a routine that matches a partial rtx pattern, returning
1069 an ad-hoc enum value on success and -1 on failure. The routine can
1070 be used by any subroutine type. The match can be parameterized by
1071 things like mode, code and UNSPEC number. */
1072 struct pattern_routine
1073 {
1074 /* The state that implements the pattern. */
1075 state *s;
1076
1077 /* The deepest root position from which S can access all the rtxes it needs.
1078 This is NULL if the pattern doesn't need an rtx input, usually because
1079 all matching is done on operands[] instead. */
1080 position *pos;
1081
1082 /* A unique identifier for the routine. */
1083 unsigned int pattern_id;
1084
1085 /* True if the routine takes pnum_clobbers as argument. */
1086 bool pnum_clobbers_p;
1087
1088 /* True if the routine takes the enclosing instruction as argument. */
1089 bool insn_p;
1090
1091 /* The types of the other parameters to the routine, if any. */
1092 auto_vec <parameter::type_enum, MAX_PATTERN_PARAMS> param_types;
1093 };
1094
1095 /* All defined patterns. */
1096 static vec <pattern_routine *> patterns;
1097
1098 /* Represents one use of a pattern routine. */
1099 struct pattern_use
1100 {
1101 /* The pattern routine to use. */
1102 pattern_routine *routine;
1103
1104 /* The values to pass as parameters. This vector has the same length
1105 as ROUTINE->PARAM_TYPES. */
1106 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
1107 };
1108
1109 /* Represents a test performed by a decision. */
1110 struct rtx_test
1111 {
1112 rtx_test ();
1113
1114 /* The types of test that can be performed. Most of them take as input
1115 an rtx X. Some also take as input a transition label LABEL; the others
1116 are booleans for which the transition label is always "true".
1117
1118 The order of the enum isn't important. */
1119 enum kind_enum {
1120 /* Check GET_CODE (X) == LABEL. */
1121 CODE,
1122
1123 /* Check GET_MODE (X) == LABEL. */
1124 MODE,
1125
1126 /* Check REGNO (X) == LABEL. */
1127 REGNO_FIELD,
1128
1129 /* Check known_eq (SUBREG_BYTE (X), LABEL). */
1130 SUBREG_FIELD,
1131
1132 /* Check XINT (X, u.opno) == LABEL. */
1133 INT_FIELD,
1134
1135 /* Check XWINT (X, u.opno) == LABEL. */
1136 WIDE_INT_FIELD,
1137
1138 /* Check XVECLEN (X, 0) == LABEL. */
1139 VECLEN,
1140
1141 /* Check peep2_current_count >= u.min_len. */
1142 PEEP2_COUNT,
1143
1144 /* Check XVECLEN (X, 0) >= u.min_len. */
1145 VECLEN_GE,
1146
1147 /* Check whether X is a cached const_int with value u.integer. */
1148 SAVED_CONST_INT,
1149
1150 /* Check u.predicate.data (X, u.predicate.mode). */
1151 PREDICATE,
1152
1153 /* Check rtx_equal_p (X, operands[u.opno]). */
1154 DUPLICATE,
1155
1156 /* Check whether X matches pattern u.pattern. */
1157 PATTERN,
1158
1159 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1160 HAVE_NUM_CLOBBERS,
1161
1162 /* Check whether general C test u.string holds. In general the condition
1163 needs access to "insn" and the full operand list. */
1164 C_TEST,
1165
1166 /* Execute operands[u.opno] = X. (Always succeeds.) */
1167 SET_OP,
1168
1169 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1170 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1171 ACCEPT
1172 };
1173
1174 /* The position of rtx X in the above description, relative to the
1175 incoming instruction "insn". The position is null if the test
1176 doesn't take an X as input. */
1177 position *pos;
1178
1179 /* Which element of operands[] already contains POS, or -1 if no element
1180 is known to hold POS. */
1181 int pos_operand;
1182
1183 /* The type of test and its parameters, as described above. */
1184 kind_enum kind;
1185 union
1186 {
1187 int opno;
1188 int min_len;
1189 struct
1190 {
1191 bool is_param;
1192 int value;
1193 } integer;
1194 struct
1195 {
1196 const struct pred_data *data;
1197 /* True if the mode is taken from a machine_mode parameter
1198 to the routine rather than a constant machine_mode. If true,
1199 MODE is the number of the parameter (for an "i%d" format string),
1200 otherwise it is the mode itself. */
1201 bool mode_is_param;
1202 unsigned int mode;
1203 } predicate;
1204 pattern_use *pattern;
1205 const char *string;
1206 acceptance_type acceptance;
1207 } u;
1208
1209 static rtx_test code (position *);
1210 static rtx_test mode (position *);
1211 static rtx_test regno_field (position *);
1212 static rtx_test subreg_field (position *);
1213 static rtx_test int_field (position *, int);
1214 static rtx_test wide_int_field (position *, int);
1215 static rtx_test veclen (position *);
1216 static rtx_test peep2_count (int);
1217 static rtx_test veclen_ge (position *, int);
1218 static rtx_test predicate (position *, const pred_data *, machine_mode);
1219 static rtx_test duplicate (position *, int);
1220 static rtx_test pattern (position *, pattern_use *);
1221 static rtx_test have_num_clobbers ();
1222 static rtx_test c_test (const char *);
1223 static rtx_test set_op (position *, int);
1224 static rtx_test accept (const acceptance_type &);
1225
1226 bool terminal_p () const;
1227 bool single_outcome_p () const;
1228
1229 private:
1230 rtx_test (position *, kind_enum);
1231 };
1232
rtx_test()1233 rtx_test::rtx_test () {}
1234
rtx_test(position * pos_in,kind_enum kind_in)1235 rtx_test::rtx_test (position *pos_in, kind_enum kind_in)
1236 : pos (pos_in), pos_operand (-1), kind (kind_in) {}
1237
1238 rtx_test
code(position * pos)1239 rtx_test::code (position *pos)
1240 {
1241 return rtx_test (pos, rtx_test::CODE);
1242 }
1243
1244 rtx_test
mode(position * pos)1245 rtx_test::mode (position *pos)
1246 {
1247 return rtx_test (pos, rtx_test::MODE);
1248 }
1249
1250 rtx_test
regno_field(position * pos)1251 rtx_test::regno_field (position *pos)
1252 {
1253 rtx_test res (pos, rtx_test::REGNO_FIELD);
1254 return res;
1255 }
1256
1257 rtx_test
subreg_field(position * pos)1258 rtx_test::subreg_field (position *pos)
1259 {
1260 rtx_test res (pos, rtx_test::SUBREG_FIELD);
1261 return res;
1262 }
1263
1264 rtx_test
int_field(position * pos,int opno)1265 rtx_test::int_field (position *pos, int opno)
1266 {
1267 rtx_test res (pos, rtx_test::INT_FIELD);
1268 res.u.opno = opno;
1269 return res;
1270 }
1271
1272 rtx_test
wide_int_field(position * pos,int opno)1273 rtx_test::wide_int_field (position *pos, int opno)
1274 {
1275 rtx_test res (pos, rtx_test::WIDE_INT_FIELD);
1276 res.u.opno = opno;
1277 return res;
1278 }
1279
1280 rtx_test
veclen(position * pos)1281 rtx_test::veclen (position *pos)
1282 {
1283 return rtx_test (pos, rtx_test::VECLEN);
1284 }
1285
1286 rtx_test
peep2_count(int min_len)1287 rtx_test::peep2_count (int min_len)
1288 {
1289 rtx_test res (0, rtx_test::PEEP2_COUNT);
1290 res.u.min_len = min_len;
1291 return res;
1292 }
1293
1294 rtx_test
veclen_ge(position * pos,int min_len)1295 rtx_test::veclen_ge (position *pos, int min_len)
1296 {
1297 rtx_test res (pos, rtx_test::VECLEN_GE);
1298 res.u.min_len = min_len;
1299 return res;
1300 }
1301
1302 rtx_test
predicate(position * pos,const struct pred_data * data,machine_mode mode)1303 rtx_test::predicate (position *pos, const struct pred_data *data,
1304 machine_mode mode)
1305 {
1306 rtx_test res (pos, rtx_test::PREDICATE);
1307 res.u.predicate.data = data;
1308 res.u.predicate.mode_is_param = false;
1309 res.u.predicate.mode = mode;
1310 return res;
1311 }
1312
1313 rtx_test
duplicate(position * pos,int opno)1314 rtx_test::duplicate (position *pos, int opno)
1315 {
1316 rtx_test res (pos, rtx_test::DUPLICATE);
1317 res.u.opno = opno;
1318 return res;
1319 }
1320
1321 rtx_test
pattern(position * pos,pattern_use * pattern)1322 rtx_test::pattern (position *pos, pattern_use *pattern)
1323 {
1324 rtx_test res (pos, rtx_test::PATTERN);
1325 res.u.pattern = pattern;
1326 return res;
1327 }
1328
1329 rtx_test
have_num_clobbers()1330 rtx_test::have_num_clobbers ()
1331 {
1332 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS);
1333 }
1334
1335 rtx_test
c_test(const char * string)1336 rtx_test::c_test (const char *string)
1337 {
1338 rtx_test res (0, rtx_test::C_TEST);
1339 res.u.string = string;
1340 return res;
1341 }
1342
1343 rtx_test
set_op(position * pos,int opno)1344 rtx_test::set_op (position *pos, int opno)
1345 {
1346 rtx_test res (pos, rtx_test::SET_OP);
1347 res.u.opno = opno;
1348 return res;
1349 }
1350
1351 rtx_test
accept(const acceptance_type & acceptance)1352 rtx_test::accept (const acceptance_type &acceptance)
1353 {
1354 rtx_test res (0, rtx_test::ACCEPT);
1355 res.u.acceptance = acceptance;
1356 return res;
1357 }
1358
1359 /* Return true if the test represents an unconditionally successful match. */
1360
1361 bool
terminal_p()1362 rtx_test::terminal_p () const
1363 {
1364 return kind == rtx_test::ACCEPT && u.acceptance.type != PEEPHOLE2;
1365 }
1366
1367 /* Return true if the test is a boolean that is always true. */
1368
1369 bool
single_outcome_p()1370 rtx_test::single_outcome_p () const
1371 {
1372 return terminal_p () || kind == rtx_test::SET_OP;
1373 }
1374
1375 bool
1376 operator == (const rtx_test &a, const rtx_test &b)
1377 {
1378 if (a.pos != b.pos || a.kind != b.kind)
1379 return false;
1380 switch (a.kind)
1381 {
1382 case rtx_test::CODE:
1383 case rtx_test::MODE:
1384 case rtx_test::REGNO_FIELD:
1385 case rtx_test::SUBREG_FIELD:
1386 case rtx_test::VECLEN:
1387 case rtx_test::HAVE_NUM_CLOBBERS:
1388 return true;
1389
1390 case rtx_test::PEEP2_COUNT:
1391 case rtx_test::VECLEN_GE:
1392 return a.u.min_len == b.u.min_len;
1393
1394 case rtx_test::INT_FIELD:
1395 case rtx_test::WIDE_INT_FIELD:
1396 case rtx_test::DUPLICATE:
1397 case rtx_test::SET_OP:
1398 return a.u.opno == b.u.opno;
1399
1400 case rtx_test::SAVED_CONST_INT:
1401 return (a.u.integer.is_param == b.u.integer.is_param
1402 && a.u.integer.value == b.u.integer.value);
1403
1404 case rtx_test::PREDICATE:
1405 return (a.u.predicate.data == b.u.predicate.data
1406 && a.u.predicate.mode_is_param == b.u.predicate.mode_is_param
1407 && a.u.predicate.mode == b.u.predicate.mode);
1408
1409 case rtx_test::PATTERN:
1410 return (a.u.pattern->routine == b.u.pattern->routine
1411 && a.u.pattern->params == b.u.pattern->params);
1412
1413 case rtx_test::C_TEST:
1414 return strcmp (a.u.string, b.u.string) == 0;
1415
1416 case rtx_test::ACCEPT:
1417 return a.u.acceptance == b.u.acceptance;
1418 }
1419 gcc_unreachable ();
1420 }
1421
1422 bool
1423 operator != (const rtx_test &a, const rtx_test &b)
1424 {
1425 return !operator == (a, b);
1426 }
1427
1428 /* A simple set of transition labels. Most transitions have a singleton
1429 label, so try to make that case as efficient as possible. */
1430 struct int_set : public auto_vec <uint64_t, 1>
1431 {
1432 typedef uint64_t *iterator;
1433
1434 int_set ();
1435 int_set (uint64_t);
1436 int_set (const int_set &);
1437
1438 int_set &operator = (const int_set &);
1439
1440 iterator begin ();
1441 iterator end ();
1442 };
1443
int_set()1444 int_set::int_set () : auto_vec<uint64_t, 1> () {}
1445
int_set(uint64_t label)1446 int_set::int_set (uint64_t label) :
1447 auto_vec<uint64_t, 1> ()
1448 {
1449 safe_push (label);
1450 }
1451
int_set(const int_set & other)1452 int_set::int_set (const int_set &other) :
1453 auto_vec<uint64_t, 1> ()
1454 {
1455 safe_splice (other);
1456 }
1457
1458 int_set &
1459 int_set::operator = (const int_set &other)
1460 {
1461 truncate (0);
1462 safe_splice (other);
1463 return *this;
1464 }
1465
1466 int_set::iterator
begin()1467 int_set::begin ()
1468 {
1469 return address ();
1470 }
1471
1472 int_set::iterator
end()1473 int_set::end ()
1474 {
1475 return address () + length ();
1476 }
1477
1478 bool
1479 operator == (const int_set &a, const int_set &b)
1480 {
1481 if (a.length () != b.length ())
1482 return false;
1483 for (unsigned int i = 0; i < a.length (); ++i)
1484 if (a[i] != b[i])
1485 return false;
1486 return true;
1487 }
1488
1489 bool
1490 operator != (const int_set &a, const int_set &b)
1491 {
1492 return !operator == (a, b);
1493 }
1494
1495 struct decision;
1496
1497 /* Represents a transition between states, dependent on the result of
1498 a test T. */
1499 struct transition
1500 {
1501 transition (const int_set &, state *, bool);
1502
1503 void set_parent (list_head <transition> *);
1504
1505 /* Links to other transitions for T. Always null for boolean tests. */
1506 transition *prev, *next;
1507
1508 /* The transition should be taken when T has one of these values.
1509 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1510 rtx_test::PREDICATE it is always a singleton "true". The labels are
1511 sorted in ascending order. */
1512 int_set labels;
1513
1514 /* The source decision. */
1515 decision *from;
1516
1517 /* The target state. */
1518 state *to;
1519
1520 /* True if TO would function correctly even if TEST wasn't performed.
1521 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1522 before calling register_operand (x1, SImode), since register_operand
1523 performs its own mode check. However, checking GET_MODE can be a cheap
1524 way of disambiguating SImode and DImode register operands. */
1525 bool optional;
1526
1527 /* True if LABELS contains parameter numbers rather than constants.
1528 E.g. if this is true for a rtx_test::CODE, the label is the number
1529 of an rtx_code parameter rather than an rtx_code itself.
1530 LABELS is always a singleton when this variable is true. */
1531 bool is_param;
1532 };
1533
1534 /* Represents a test and the action that should be taken on the result.
1535 If a transition exists for the test outcome, the machine switches
1536 to the transition's target state. If no suitable transition exists,
1537 the machine either falls through to the next decision or, if there are no
1538 more decisions to try, fails the match. */
1539 struct decision : list_head <transition>
1540 {
1541 decision (const rtx_test &);
1542
1543 void set_parent (list_head <decision> *s);
1544 bool if_statement_p (uint64_t * = 0) const;
1545
1546 /* The state to which this decision belongs. */
1547 state *s;
1548
1549 /* Links to other decisions in the same state. */
1550 decision *prev, *next;
1551
1552 /* The test to perform. */
1553 rtx_test test;
1554 };
1555
1556 /* Represents one machine state. For each state the machine tries a list
1557 of decisions, in order, and acts on the first match. It fails without
1558 further backtracking if no decisions match. */
1559 struct state : list_head <decision>
1560 {
set_parentstate1561 void set_parent (list_head <state> *) {}
1562 };
1563
transition(const int_set & labels_in,state * to_in,bool optional_in)1564 transition::transition (const int_set &labels_in, state *to_in,
1565 bool optional_in)
1566 : prev (0), next (0), labels (labels_in), from (0), to (to_in),
1567 optional (optional_in), is_param (false) {}
1568
1569 /* Set the source decision of the transition. */
1570
1571 void
set_parent(list_head<transition> * from_in)1572 transition::set_parent (list_head <transition> *from_in)
1573 {
1574 from = static_cast <decision *> (from_in);
1575 }
1576
decision(const rtx_test & test_in)1577 decision::decision (const rtx_test &test_in)
1578 : prev (0), next (0), test (test_in) {}
1579
1580 /* Set the state to which this decision belongs. */
1581
1582 void
set_parent(list_head<decision> * s_in)1583 decision::set_parent (list_head <decision> *s_in)
1584 {
1585 s = static_cast <state *> (s_in);
1586 }
1587
1588 /* Return true if the decision has a single transition with a single label.
1589 If so, return the label in *LABEL if nonnull. */
1590
1591 inline bool
if_statement_p(uint64_t * label)1592 decision::if_statement_p (uint64_t *label) const
1593 {
1594 if (singleton () && first->labels.length () == 1)
1595 {
1596 if (label)
1597 *label = first->labels[0];
1598 return true;
1599 }
1600 return false;
1601 }
1602
1603 /* Add to FROM a decision that performs TEST and has a single transition
1604 TRANS. */
1605
1606 static void
add_decision(state * from,const rtx_test & test,transition * trans)1607 add_decision (state *from, const rtx_test &test, transition *trans)
1608 {
1609 decision *d = new decision (test);
1610 from->push_back (d);
1611 d->push_back (trans);
1612 }
1613
1614 /* Add a transition from FROM to a new, empty state that is taken
1615 when TEST == LABELS. OPTIONAL says whether the new transition
1616 should be optional. Return the new state. */
1617
1618 static state *
add_decision(state * from,const rtx_test & test,int_set labels,bool optional)1619 add_decision (state *from, const rtx_test &test, int_set labels, bool optional)
1620 {
1621 state *to = new state;
1622 add_decision (from, test, new transition (labels, to, optional));
1623 return to;
1624 }
1625
1626 /* Insert a decision before decisions R to make them dependent on
1627 TEST == LABELS. OPTIONAL says whether the new transition should be
1628 optional. */
1629
1630 static decision *
insert_decision_before(state::range r,const rtx_test & test,const int_set & labels,bool optional)1631 insert_decision_before (state::range r, const rtx_test &test,
1632 const int_set &labels, bool optional)
1633 {
1634 decision *newd = new decision (test);
1635 state *news = new state;
1636 newd->push_back (new transition (labels, news, optional));
1637 r.start->s->replace (r, newd);
1638 news->push_back (r);
1639 return newd;
1640 }
1641
1642 /* Remove any optional transitions from S that turned out not to be useful. */
1643
1644 static void
collapse_optional_decisions(state * s)1645 collapse_optional_decisions (state *s)
1646 {
1647 decision *d = s->first;
1648 while (d)
1649 {
1650 decision *next = d->next;
1651 for (transition *trans = d->first; trans; trans = trans->next)
1652 collapse_optional_decisions (trans->to);
1653 /* A decision with a single optional transition doesn't help
1654 partition the potential matches and so is unlikely to be
1655 worthwhile. In particular, if the decision that performs the
1656 test is the last in the state, the best it could do is reject
1657 an invalid pattern slightly earlier. If instead the decision
1658 is not the last in the state, the condition it tests could hold
1659 even for the later decisions in the state. The best it can do
1660 is save work in some cases where only the later decisions can
1661 succeed.
1662
1663 In both cases the optional transition would add extra work to
1664 successful matches when the tested condition holds. */
1665 if (transition *trans = d->singleton ())
1666 if (trans->optional)
1667 s->replace (d, trans->to->release ());
1668 d = next;
1669 }
1670 }
1671
1672 /* Try to squash several separate tests into simpler ones. */
1673
1674 static void
simplify_tests(state * s)1675 simplify_tests (state *s)
1676 {
1677 for (decision *d = s->first; d; d = d->next)
1678 {
1679 uint64_t label;
1680 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1681 into checks for const_int_rtx[N'], if N is suitably small. */
1682 if (d->test.kind == rtx_test::CODE
1683 && d->if_statement_p (&label)
1684 && label == CONST_INT)
1685 if (decision *second = d->first->to->singleton ())
1686 if (d->test.pos == second->test.pos
1687 && second->test.kind == rtx_test::WIDE_INT_FIELD
1688 && second->test.u.opno == 0
1689 && second->if_statement_p (&label)
1690 && IN_RANGE (int64_t (label),
1691 -MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT))
1692 {
1693 d->test.kind = rtx_test::SAVED_CONST_INT;
1694 d->test.u.integer.is_param = false;
1695 d->test.u.integer.value = label;
1696 d->replace (d->first, second->release ());
1697 d->first->labels[0] = true;
1698 }
1699 /* If we have a CODE test followed by a PREDICATE test, rely on
1700 the predicate to test the code.
1701
1702 This case exists for match_operators. We initially treat the
1703 CODE test for a match_operator as non-optional so that we can
1704 safely move down to its operands. It may turn out that all
1705 paths that reach that code test require the same predicate
1706 to be true. cse_tests will then put the predicate test in
1707 series with the code test. */
1708 if (d->test.kind == rtx_test::CODE)
1709 if (transition *trans = d->singleton ())
1710 {
1711 state *s = trans->to;
1712 while (decision *d2 = s->singleton ())
1713 {
1714 if (d->test.pos != d2->test.pos)
1715 break;
1716 transition *trans2 = d2->singleton ();
1717 if (!trans2)
1718 break;
1719 if (d2->test.kind == rtx_test::PREDICATE)
1720 {
1721 d->test = d2->test;
1722 trans->labels = int_set (true);
1723 s->replace (d2, trans2->to->release ());
1724 break;
1725 }
1726 s = trans2->to;
1727 }
1728 }
1729 for (transition *trans = d->first; trans; trans = trans->next)
1730 simplify_tests (trans->to);
1731 }
1732 }
1733
1734 /* Return true if all successful returns passing through D require the
1735 condition tested by COMMON to be true.
1736
1737 When returning true, add all transitions like COMMON in D to WHERE.
1738 WHERE may contain a partial result on failure. */
1739
1740 static bool
common_test_p(decision * d,transition * common,vec<transition * > * where)1741 common_test_p (decision *d, transition *common, vec <transition *> *where)
1742 {
1743 if (d->test.kind == rtx_test::ACCEPT)
1744 /* We found a successful return that didn't require COMMON. */
1745 return false;
1746 if (d->test == common->from->test)
1747 {
1748 transition *trans = d->singleton ();
1749 if (!trans
1750 || trans->optional != common->optional
1751 || trans->labels != common->labels)
1752 return false;
1753 where->safe_push (trans);
1754 return true;
1755 }
1756 for (transition *trans = d->first; trans; trans = trans->next)
1757 for (decision *subd = trans->to->first; subd; subd = subd->next)
1758 if (!common_test_p (subd, common, where))
1759 return false;
1760 return true;
1761 }
1762
1763 /* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1764 const unsigned char TESTED_CODE = 1;
1765
1766 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1767 const unsigned char TESTED_VECLEN = 2;
1768
1769 /* Represents a set of conditions that are known to hold. */
1770 struct known_conditions
1771 {
1772 /* A mask of TESTED_ values for each position, indexed by the position's
1773 id field. */
1774 auto_vec <unsigned char> position_tests;
1775
1776 /* Index N says whether operands[N] has been set. */
1777 auto_vec <bool> set_operands;
1778
1779 /* A guranteed lower bound on the value of peep2_current_count. */
1780 int peep2_count;
1781 };
1782
1783 /* Return true if TEST can safely be performed at D, where
1784 the conditions in KC hold. TEST is known to occur along the
1785 first path from D (i.e. always following the first transition
1786 of the first decision). Any intervening tests can be used as
1787 negative proof that hoisting isn't safe, but only KC can be used
1788 as positive proof. */
1789
1790 static bool
safe_to_hoist_p(decision * d,const rtx_test & test,known_conditions * kc)1791 safe_to_hoist_p (decision *d, const rtx_test &test, known_conditions *kc)
1792 {
1793 switch (test.kind)
1794 {
1795 case rtx_test::C_TEST:
1796 /* In general, C tests require everything else to have been
1797 verified and all operands to have been set up. */
1798 return false;
1799
1800 case rtx_test::ACCEPT:
1801 /* Don't accept something before all conditions have been tested. */
1802 return false;
1803
1804 case rtx_test::PREDICATE:
1805 /* Don't move a predicate over a test for VECLEN_GE, since the
1806 predicate used in a match_parallel can legitimately expect the
1807 length to be checked first. */
1808 for (decision *subd = d;
1809 subd->test != test;
1810 subd = subd->first->to->first)
1811 if (subd->test.pos == test.pos
1812 && subd->test.kind == rtx_test::VECLEN_GE)
1813 return false;
1814 goto any_rtx;
1815
1816 case rtx_test::DUPLICATE:
1817 /* Don't test for a match_dup until the associated operand has
1818 been set. */
1819 if (!kc->set_operands[test.u.opno])
1820 return false;
1821 goto any_rtx;
1822
1823 case rtx_test::CODE:
1824 case rtx_test::MODE:
1825 case rtx_test::SAVED_CONST_INT:
1826 case rtx_test::SET_OP:
1827 any_rtx:
1828 /* Check whether it is safe to access the rtx under test. */
1829 switch (test.pos->type)
1830 {
1831 case POS_PEEP2_INSN:
1832 return test.pos->arg < kc->peep2_count;
1833
1834 case POS_XEXP:
1835 return kc->position_tests[test.pos->base->id] & TESTED_CODE;
1836
1837 case POS_XVECEXP0:
1838 return kc->position_tests[test.pos->base->id] & TESTED_VECLEN;
1839 }
1840 gcc_unreachable ();
1841
1842 case rtx_test::REGNO_FIELD:
1843 case rtx_test::SUBREG_FIELD:
1844 case rtx_test::INT_FIELD:
1845 case rtx_test::WIDE_INT_FIELD:
1846 case rtx_test::VECLEN:
1847 case rtx_test::VECLEN_GE:
1848 /* These tests access a specific part of an rtx, so are only safe
1849 once we know what the rtx is. */
1850 return kc->position_tests[test.pos->id] & TESTED_CODE;
1851
1852 case rtx_test::PEEP2_COUNT:
1853 case rtx_test::HAVE_NUM_CLOBBERS:
1854 /* These tests can be performed anywhere. */
1855 return true;
1856
1857 case rtx_test::PATTERN:
1858 gcc_unreachable ();
1859 }
1860 gcc_unreachable ();
1861 }
1862
1863 /* Look for a transition that is taken by all successful returns from a range
1864 of decisions starting at OUTER and that would be better performed by
1865 OUTER's state instead. On success, store all instances of that transition
1866 in WHERE and return the last decision in the range. The range could
1867 just be OUTER, or it could include later decisions as well.
1868
1869 WITH_POSITION_P is true if only tests with position POS should be tried,
1870 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1871 result is useful even when the range contains just a single decision
1872 with a single transition. KC are the conditions that are known to
1873 hold at OUTER. */
1874
1875 static decision *
find_common_test(decision * outer,bool with_position_p,position * pos,bool worthwhile_single_p,known_conditions * kc,vec<transition * > * where)1876 find_common_test (decision *outer, bool with_position_p,
1877 position *pos, bool worthwhile_single_p,
1878 known_conditions *kc, vec <transition *> *where)
1879 {
1880 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1881 just a single decision is useful, regardless of the number of
1882 transitions it has. */
1883 if (!outer->singleton ())
1884 worthwhile_single_p = true;
1885 /* Quick exit if we don't have enough decisions to form a worthwhile
1886 range. */
1887 if (!worthwhile_single_p && !outer->next)
1888 return 0;
1889 /* Follow the first chain down, as one example of a path that needs
1890 to contain the common test. */
1891 for (decision *d = outer; d; d = d->first->to->first)
1892 {
1893 transition *trans = d->singleton ();
1894 if (trans
1895 && (!with_position_p || d->test.pos == pos)
1896 && safe_to_hoist_p (outer, d->test, kc))
1897 {
1898 if (common_test_p (outer, trans, where))
1899 {
1900 if (!outer->next)
1901 /* We checked above whether the move is worthwhile. */
1902 return outer;
1903 /* See how many decisions in OUTER's chain could reuse
1904 the same test. */
1905 decision *outer_end = outer;
1906 do
1907 {
1908 unsigned int length = where->length ();
1909 if (!common_test_p (outer_end->next, trans, where))
1910 {
1911 where->truncate (length);
1912 break;
1913 }
1914 outer_end = outer_end->next;
1915 }
1916 while (outer_end->next);
1917 /* It is worth moving TRANS if it can be shared by more than
1918 one decision. */
1919 if (outer_end != outer || worthwhile_single_p)
1920 return outer_end;
1921 }
1922 where->truncate (0);
1923 }
1924 }
1925 return 0;
1926 }
1927
1928 /* Try to promote common subtests in S to a single, shared decision.
1929 Also try to bunch tests for the same position together. POS is the
1930 position of the rtx tested before reaching S. KC are the conditions
1931 that are known to hold on entry to S. */
1932
1933 static void
cse_tests(position * pos,state * s,known_conditions * kc)1934 cse_tests (position *pos, state *s, known_conditions *kc)
1935 {
1936 for (decision *d = s->first; d; d = d->next)
1937 {
1938 auto_vec <transition *, 16> where;
1939 if (d->test.pos)
1940 {
1941 /* Try to find conditions that don't depend on a particular rtx,
1942 such as pnum_clobbers != NULL or peep2_current_count >= X.
1943 It's usually better to check these conditions as soon as
1944 possible, so the change is worthwhile even if there is
1945 only one copy of the test. */
1946 decision *endd = find_common_test (d, true, 0, true, kc, &where);
1947 if (!endd && d->test.pos != pos)
1948 /* Try to find other conditions related to position POS
1949 before moving to the new position. Again, this is
1950 worthwhile even if there is only one copy of the test,
1951 since it means that fewer position variables are live
1952 at a given time. */
1953 endd = find_common_test (d, true, pos, true, kc, &where);
1954 if (!endd)
1955 /* Try to find any condition that is used more than once. */
1956 endd = find_common_test (d, false, 0, false, kc, &where);
1957 if (endd)
1958 {
1959 transition *common = where[0];
1960 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1961 on the common test and see the original D again next time. */
1962 d = insert_decision_before (state::range (d, endd),
1963 common->from->test,
1964 common->labels,
1965 common->optional);
1966 /* Remove the old tests. */
1967 while (!where.is_empty ())
1968 {
1969 transition *trans = where.pop ();
1970 trans->from->s->replace (trans->from, trans->to->release ());
1971 }
1972 }
1973 }
1974
1975 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1976 It should realize that D's test is safe in the current
1977 environment. */
1978 gcc_assert (d->test.kind == rtx_test::C_TEST
1979 || d->test.kind == rtx_test::ACCEPT
1980 || safe_to_hoist_p (d, d->test, kc));
1981
1982 /* D won't be changed any further by the current optimization.
1983 Recurse with the state temporarily updated to include D. */
1984 int prev = 0;
1985 switch (d->test.kind)
1986 {
1987 case rtx_test::CODE:
1988 prev = kc->position_tests[d->test.pos->id];
1989 kc->position_tests[d->test.pos->id] |= TESTED_CODE;
1990 break;
1991
1992 case rtx_test::VECLEN:
1993 case rtx_test::VECLEN_GE:
1994 prev = kc->position_tests[d->test.pos->id];
1995 kc->position_tests[d->test.pos->id] |= TESTED_VECLEN;
1996 break;
1997
1998 case rtx_test::SET_OP:
1999 prev = kc->set_operands[d->test.u.opno];
2000 gcc_assert (!prev);
2001 kc->set_operands[d->test.u.opno] = true;
2002 break;
2003
2004 case rtx_test::PEEP2_COUNT:
2005 prev = kc->peep2_count;
2006 kc->peep2_count = MAX (prev, d->test.u.min_len);
2007 break;
2008
2009 default:
2010 break;
2011 }
2012 for (transition *trans = d->first; trans; trans = trans->next)
2013 cse_tests (d->test.pos ? d->test.pos : pos, trans->to, kc);
2014 switch (d->test.kind)
2015 {
2016 case rtx_test::CODE:
2017 case rtx_test::VECLEN:
2018 case rtx_test::VECLEN_GE:
2019 kc->position_tests[d->test.pos->id] = prev;
2020 break;
2021
2022 case rtx_test::SET_OP:
2023 kc->set_operands[d->test.u.opno] = prev;
2024 break;
2025
2026 case rtx_test::PEEP2_COUNT:
2027 kc->peep2_count = prev;
2028 break;
2029
2030 default:
2031 break;
2032 }
2033 }
2034 }
2035
2036 /* Return the type of value that can be used to parameterize test KIND,
2037 or parameter::UNSET if none. */
2038
2039 parameter::type_enum
transition_parameter_type(rtx_test::kind_enum kind)2040 transition_parameter_type (rtx_test::kind_enum kind)
2041 {
2042 switch (kind)
2043 {
2044 case rtx_test::CODE:
2045 return parameter::CODE;
2046
2047 case rtx_test::MODE:
2048 return parameter::MODE;
2049
2050 case rtx_test::REGNO_FIELD:
2051 case rtx_test::SUBREG_FIELD:
2052 return parameter::UINT;
2053
2054 case rtx_test::INT_FIELD:
2055 case rtx_test::VECLEN:
2056 case rtx_test::PATTERN:
2057 return parameter::INT;
2058
2059 case rtx_test::WIDE_INT_FIELD:
2060 return parameter::WIDE_INT;
2061
2062 case rtx_test::PEEP2_COUNT:
2063 case rtx_test::VECLEN_GE:
2064 case rtx_test::SAVED_CONST_INT:
2065 case rtx_test::PREDICATE:
2066 case rtx_test::DUPLICATE:
2067 case rtx_test::HAVE_NUM_CLOBBERS:
2068 case rtx_test::C_TEST:
2069 case rtx_test::SET_OP:
2070 case rtx_test::ACCEPT:
2071 return parameter::UNSET;
2072 }
2073 gcc_unreachable ();
2074 }
2075
2076 /* Initialize the pos_operand fields of each state reachable from S.
2077 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2078 operands[OPERAND_POS[ID]] on entry to S. */
2079
2080 static void
find_operand_positions(state * s,vec<int> & operand_pos)2081 find_operand_positions (state *s, vec <int> &operand_pos)
2082 {
2083 for (decision *d = s->first; d; d = d->next)
2084 {
2085 int this_operand = (d->test.pos ? operand_pos[d->test.pos->id] : -1);
2086 if (this_operand >= 0)
2087 d->test.pos_operand = this_operand;
2088 if (d->test.kind == rtx_test::SET_OP)
2089 operand_pos[d->test.pos->id] = d->test.u.opno;
2090 for (transition *trans = d->first; trans; trans = trans->next)
2091 find_operand_positions (trans->to, operand_pos);
2092 if (d->test.kind == rtx_test::SET_OP)
2093 operand_pos[d->test.pos->id] = this_operand;
2094 }
2095 }
2096
2097 /* Statistics about a matching routine. */
2098 struct stats
2099 {
2100 stats ();
2101
2102 /* The total number of decisions in the routine, excluding trivial
2103 ones that never fail. */
2104 unsigned int num_decisions;
2105
2106 /* The number of non-trivial decisions on the longest path through
2107 the routine, and the return value that contributes most to that
2108 long path. */
2109 unsigned int longest_path;
2110 int longest_path_code;
2111
2112 /* The maximum number of times that a single call to the routine
2113 can backtrack, and the value returned at the end of that path.
2114 "Backtracking" here means failing one decision in state and
2115 going onto to the next. */
2116 unsigned int longest_backtrack;
2117 int longest_backtrack_code;
2118 };
2119
stats()2120 stats::stats ()
2121 : num_decisions (0), longest_path (0), longest_path_code (-1),
2122 longest_backtrack (0), longest_backtrack_code (-1) {}
2123
2124 /* Return statistics about S. */
2125
2126 static stats
get_stats(state * s)2127 get_stats (state *s)
2128 {
2129 stats for_s;
2130 unsigned int longest_path = 0;
2131 for (decision *d = s->first; d; d = d->next)
2132 {
2133 /* Work out the statistics for D. */
2134 stats for_d;
2135 for (transition *trans = d->first; trans; trans = trans->next)
2136 {
2137 stats for_trans = get_stats (trans->to);
2138 for_d.num_decisions += for_trans.num_decisions;
2139 /* Each transition is mutually-exclusive, so just pick the
2140 longest of the individual paths. */
2141 if (for_d.longest_path <= for_trans.longest_path)
2142 {
2143 for_d.longest_path = for_trans.longest_path;
2144 for_d.longest_path_code = for_trans.longest_path_code;
2145 }
2146 /* Likewise for backtracking. */
2147 if (for_d.longest_backtrack <= for_trans.longest_backtrack)
2148 {
2149 for_d.longest_backtrack = for_trans.longest_backtrack;
2150 for_d.longest_backtrack_code = for_trans.longest_backtrack_code;
2151 }
2152 }
2153
2154 /* Account for D's test in its statistics. */
2155 if (!d->test.single_outcome_p ())
2156 {
2157 for_d.num_decisions += 1;
2158 for_d.longest_path += 1;
2159 }
2160 if (d->test.kind == rtx_test::ACCEPT)
2161 {
2162 for_d.longest_path_code = d->test.u.acceptance.u.full.code;
2163 for_d.longest_backtrack_code = d->test.u.acceptance.u.full.code;
2164 }
2165
2166 /* Keep a running count of the number of backtracks. */
2167 if (d->prev)
2168 for_s.longest_backtrack += 1;
2169
2170 /* Accumulate D's statistics into S's. */
2171 for_s.num_decisions += for_d.num_decisions;
2172 for_s.longest_path += for_d.longest_path;
2173 for_s.longest_backtrack += for_d.longest_backtrack;
2174
2175 /* Use the code from the decision with the longest individual path,
2176 since that's more likely to be useful if trying to make the
2177 path shorter. In the event of a tie, pick the later decision,
2178 since that's closer to the end of the path. */
2179 if (longest_path <= for_d.longest_path)
2180 {
2181 longest_path = for_d.longest_path;
2182 for_s.longest_path_code = for_d.longest_path_code;
2183 }
2184
2185 /* Later decisions in a state are necessarily in a longer backtrack
2186 than earlier decisions. */
2187 for_s.longest_backtrack_code = for_d.longest_backtrack_code;
2188 }
2189 return for_s;
2190 }
2191
2192 /* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
2193
2194 static void
optimize_subroutine_group(const char * type,state * root)2195 optimize_subroutine_group (const char *type, state *root)
2196 {
2197 /* Remove optional transitions that turned out not to be worthwhile. */
2198 if (collapse_optional_decisions_p)
2199 collapse_optional_decisions (root);
2200
2201 /* Try to remove duplicated tests and to rearrange tests into a more
2202 logical order. */
2203 if (cse_tests_p)
2204 {
2205 known_conditions kc;
2206 kc.position_tests.safe_grow_cleared (num_positions);
2207 kc.set_operands.safe_grow_cleared (num_operands);
2208 kc.peep2_count = 1;
2209 cse_tests (&root_pos, root, &kc);
2210 }
2211
2212 /* Try to simplify two or more tests into one. */
2213 if (simplify_tests_p)
2214 simplify_tests (root);
2215
2216 /* Try to use operands[] instead of xN variables. */
2217 if (use_operand_variables_p)
2218 {
2219 auto_vec <int> operand_pos (num_positions);
2220 for (unsigned int i = 0; i < num_positions; ++i)
2221 operand_pos.quick_push (-1);
2222 find_operand_positions (root, operand_pos);
2223 }
2224
2225 /* Print a summary of the new state. */
2226 stats st = get_stats (root);
2227 fprintf (stderr, "Statistics for %s:\n", type);
2228 fprintf (stderr, " Number of decisions: %6d\n", st.num_decisions);
2229 fprintf (stderr, " longest path: %6d (code: %6d)\n",
2230 st.longest_path, st.longest_path_code);
2231 fprintf (stderr, " longest backtrack: %6d (code: %6d)\n",
2232 st.longest_backtrack, st.longest_backtrack_code);
2233 }
2234
2235 struct merge_pattern_info;
2236
2237 /* Represents a transition from one pattern to another. */
2238 struct merge_pattern_transition
2239 {
2240 merge_pattern_transition (merge_pattern_info *);
2241
2242 /* The target pattern. */
2243 merge_pattern_info *to;
2244
2245 /* The parameters that the source pattern passes to the target pattern.
2246 "parameter (TYPE, true, I)" represents parameter I of the source
2247 pattern. */
2248 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2249 };
2250
merge_pattern_transition(merge_pattern_info * to_in)2251 merge_pattern_transition::merge_pattern_transition (merge_pattern_info *to_in)
2252 : to (to_in)
2253 {
2254 }
2255
2256 /* Represents a pattern that can might match several states. The pattern
2257 may replace parts of the test with a parameter value. It may also
2258 replace transition labels with parameters. */
2259 struct merge_pattern_info
2260 {
2261 merge_pattern_info (unsigned int);
2262
2263 /* If PARAM_TEST_P, the state's singleton test should be generalized
2264 to use the runtime value of PARAMS[PARAM_TEST]. */
2265 unsigned int param_test : 8;
2266
2267 /* If PARAM_TRANSITION_P, the state's single transition label should
2268 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2269 unsigned int param_transition : 8;
2270
2271 /* True if we have decided to generalize the root decision's test,
2272 as per PARAM_TEST. */
2273 unsigned int param_test_p : 1;
2274
2275 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2276 unsigned int param_transition_p : 1;
2277
2278 /* True if the contents of the structure are completely filled in. */
2279 unsigned int complete_p : 1;
2280
2281 /* The number of pseudo-statements in the pattern. Used to decide
2282 whether it's big enough to break out into a subroutine. */
2283 unsigned int num_statements;
2284
2285 /* The number of states that use this pattern. */
2286 unsigned int num_users;
2287
2288 /* The number of distinct success values that the pattern returns. */
2289 unsigned int num_results;
2290
2291 /* This array has one element for each runtime parameter to the pattern.
2292 PARAMS[I] gives the default value of parameter I, which is always
2293 constant.
2294
2295 These default parameters are used in cases where we match the
2296 pattern against some state S1, then add more parameters while
2297 matching against some state S2. S1 is then left passing fewer
2298 parameters than S2. The array gives us enough informatino to
2299 construct a full parameter list for S1 (see update_parameters).
2300
2301 If we decide to create a subroutine for this pattern,
2302 PARAMS[I].type determines the C type of parameter I. */
2303 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2304
2305 /* All states that match this pattern must have the same number of
2306 transitions. TRANSITIONS[I] describes the subpattern for transition
2307 number I; it is null if transition I represents a successful return
2308 from the pattern. */
2309 auto_vec <merge_pattern_transition *, 1> transitions;
2310
2311 /* The routine associated with the pattern, or null if we haven't generated
2312 one yet. */
2313 pattern_routine *routine;
2314 };
2315
merge_pattern_info(unsigned int num_transitions)2316 merge_pattern_info::merge_pattern_info (unsigned int num_transitions)
2317 : param_test (0),
2318 param_transition (0),
2319 param_test_p (false),
2320 param_transition_p (false),
2321 complete_p (false),
2322 num_statements (0),
2323 num_users (0),
2324 num_results (0),
2325 routine (0)
2326 {
2327 transitions.safe_grow_cleared (num_transitions);
2328 }
2329
2330 /* Describes one way of matching a particular state to a particular
2331 pattern. */
2332 struct merge_state_result
2333 {
2334 merge_state_result (merge_pattern_info *, position *, merge_state_result *);
2335
2336 /* A pattern that matches the state. */
2337 merge_pattern_info *pattern;
2338
2339 /* If we decide to use this match and create a subroutine for PATTERN,
2340 the state should pass the rtx at position ROOT to the pattern's
2341 rtx parameter. A null root means that the pattern doesn't need
2342 an rtx parameter; all the rtxes it matches come from elsewhere. */
2343 position *root;
2344
2345 /* The parameters that should be passed to PATTERN for this state.
2346 If the array is shorter than PATTERN->params, the missing entries
2347 should be taken from the corresponding element of PATTERN->params. */
2348 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2349
2350 /* An earlier match for the same state, or null if none. Patterns
2351 matched by earlier entries are smaller than PATTERN. */
2352 merge_state_result *prev;
2353 };
2354
merge_state_result(merge_pattern_info * pattern_in,position * root_in,merge_state_result * prev_in)2355 merge_state_result::merge_state_result (merge_pattern_info *pattern_in,
2356 position *root_in,
2357 merge_state_result *prev_in)
2358 : pattern (pattern_in), root (root_in), prev (prev_in)
2359 {}
2360
2361 /* Information about a state, used while trying to match it against
2362 a pattern. */
2363 struct merge_state_info
2364 {
2365 merge_state_info (state *);
2366
2367 /* The state itself. */
2368 state *s;
2369
2370 /* Index I gives information about the target of transition I. */
2371 merge_state_info *to_states;
2372
2373 /* The number of transitions in S. */
2374 unsigned int num_transitions;
2375
2376 /* True if the state has been deleted in favor of a call to a
2377 pattern routine. */
2378 bool merged_p;
2379
2380 /* The previous state that might be a merge candidate for S, or null
2381 if no previous states could be merged with S. */
2382 merge_state_info *prev_same_test;
2383
2384 /* A list of pattern matches for this state. */
2385 merge_state_result *res;
2386 };
2387
merge_state_info(state * s_in)2388 merge_state_info::merge_state_info (state *s_in)
2389 : s (s_in),
2390 to_states (0),
2391 num_transitions (0),
2392 merged_p (false),
2393 prev_same_test (0),
2394 res (0) {}
2395
2396 /* True if PAT would be useful as a subroutine. */
2397
2398 static bool
useful_pattern_p(merge_pattern_info * pat)2399 useful_pattern_p (merge_pattern_info *pat)
2400 {
2401 return pat->num_statements >= MIN_COMBINE_COST;
2402 }
2403
2404 /* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2405 into PAT1's C routine. */
2406
2407 static bool
same_pattern_p(merge_pattern_info * pat1,merge_pattern_info * pat2)2408 same_pattern_p (merge_pattern_info *pat1, merge_pattern_info *pat2)
2409 {
2410 return pat1->num_users == pat2->num_users || !useful_pattern_p (pat2);
2411 }
2412
2413 /* PAT was previously matched against SINFO based on tentative matches
2414 for the target states of SINFO's state. Return true if the match
2415 still holds; that is, if the target states of SINFO's state still
2416 match the corresponding transitions of PAT. */
2417
2418 static bool
valid_result_p(merge_pattern_info * pat,merge_state_info * sinfo)2419 valid_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2420 {
2421 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2422 if (merge_pattern_transition *ptrans = pat->transitions[j])
2423 {
2424 merge_state_result *to_res = sinfo->to_states[j].res;
2425 if (!to_res || to_res->pattern != ptrans->to)
2426 return false;
2427 }
2428 return true;
2429 }
2430
2431 /* Remove any matches that are no longer valid from the head of SINFO's
2432 list of matches. */
2433
2434 static void
prune_invalid_results(merge_state_info * sinfo)2435 prune_invalid_results (merge_state_info *sinfo)
2436 {
2437 while (sinfo->res && !valid_result_p (sinfo->res->pattern, sinfo))
2438 {
2439 sinfo->res = sinfo->res->prev;
2440 gcc_assert (sinfo->res);
2441 }
2442 }
2443
2444 /* Return true if PAT represents the biggest posssible match for SINFO;
2445 that is, if the next action of SINFO's state on return from PAT will
2446 be something that cannot be merged with any other state. */
2447
2448 static bool
complete_result_p(merge_pattern_info * pat,merge_state_info * sinfo)2449 complete_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2450 {
2451 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2452 if (sinfo->to_states[j].res && !pat->transitions[j])
2453 return false;
2454 return true;
2455 }
2456
2457 /* Update TO for any parameters that have been added to FROM since TO
2458 was last set. The extra parameters in FROM will be constants or
2459 instructions to duplicate earlier parameters. */
2460
2461 static void
update_parameters(vec<parameter> & to,const vec<parameter> & from)2462 update_parameters (vec <parameter> &to, const vec <parameter> &from)
2463 {
2464 for (unsigned int i = to.length (); i < from.length (); ++i)
2465 to.quick_push (from[i]);
2466 }
2467
2468 /* Return true if A and B can be tested by a single test. If the test
2469 can be parameterised, store the parameter value for A in *PARAMA and
2470 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2471 PARAMB alone. */
2472
2473 static bool
compatible_tests_p(const rtx_test & a,const rtx_test & b,parameter * parama,parameter * paramb)2474 compatible_tests_p (const rtx_test &a, const rtx_test &b,
2475 parameter *parama, parameter *paramb)
2476 {
2477 if (a.kind != b.kind)
2478 return false;
2479 switch (a.kind)
2480 {
2481 case rtx_test::PREDICATE:
2482 if (a.u.predicate.data != b.u.predicate.data)
2483 return false;
2484 *parama = parameter (parameter::MODE, false, a.u.predicate.mode);
2485 *paramb = parameter (parameter::MODE, false, b.u.predicate.mode);
2486 return true;
2487
2488 case rtx_test::SAVED_CONST_INT:
2489 *parama = parameter (parameter::INT, false, a.u.integer.value);
2490 *paramb = parameter (parameter::INT, false, b.u.integer.value);
2491 return true;
2492
2493 default:
2494 return a == b;
2495 }
2496 }
2497
2498 /* PARAMS is an array of the parameters that a state is going to pass
2499 to a pattern routine. It is still incomplete; index I has a kind of
2500 parameter::UNSET if we don't yet know what the state will pass
2501 as parameter I. Try to make parameter ID equal VALUE, returning
2502 true on success. */
2503
2504 static bool
set_parameter(vec<parameter> & params,unsigned int id,const parameter & value)2505 set_parameter (vec <parameter> ¶ms, unsigned int id,
2506 const parameter &value)
2507 {
2508 if (params[id].type == parameter::UNSET)
2509 {
2510 if (force_unique_params_p)
2511 for (unsigned int i = 0; i < params.length (); ++i)
2512 if (params[i] == value)
2513 return false;
2514 params[id] = value;
2515 return true;
2516 }
2517 return params[id] == value;
2518 }
2519
2520 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2521 set of parameters that a particular state is going to pass to
2522 that pattern.
2523
2524 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2525 that is equal to PARAM1 for the state and has a default value of
2526 PARAM2. Parameters beginning at START were added as part of the
2527 same match and so may be reused. */
2528
2529 static bool
add_parameter(vec<parameter> & params1,vec<parameter> & params2,const parameter & param1,const parameter & param2,unsigned int start,unsigned int * res)2530 add_parameter (vec <parameter> ¶ms1, vec <parameter> ¶ms2,
2531 const parameter ¶m1, const parameter ¶m2,
2532 unsigned int start, unsigned int *res)
2533 {
2534 gcc_assert (params1.length () == params2.length ());
2535 gcc_assert (!param1.is_param && !param2.is_param);
2536
2537 for (unsigned int i = start; i < params2.length (); ++i)
2538 if (params1[i] == param1 && params2[i] == param2)
2539 {
2540 *res = i;
2541 return true;
2542 }
2543
2544 if (force_unique_params_p)
2545 for (unsigned int i = 0; i < params2.length (); ++i)
2546 if (params1[i] == param1 || params2[i] == param2)
2547 return false;
2548
2549 if (params2.length () >= MAX_PATTERN_PARAMS)
2550 return false;
2551
2552 *res = params2.length ();
2553 params1.quick_push (param1);
2554 params2.quick_push (param2);
2555 return true;
2556 }
2557
2558 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2559 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2560 is null, update it if necessary in order to make the condition hold. */
2561
2562 static bool
merge_relative_positions(position ** roota,position * a,position * rootb,position * b)2563 merge_relative_positions (position **roota, position *a,
2564 position *rootb, position *b)
2565 {
2566 if (!relative_patterns_p)
2567 {
2568 if (a != b)
2569 return false;
2570 if (!*roota)
2571 {
2572 *roota = rootb;
2573 return true;
2574 }
2575 return *roota == rootb;
2576 }
2577 /* If B does not belong to the same instruction as ROOTB, we don't
2578 start with ROOTB but instead start with a call to peep2_next_insn.
2579 In that case the sequences for B and A are identical iff B and A
2580 are themselves identical. */
2581 if (rootb->insn_id != b->insn_id)
2582 return a == b;
2583 while (rootb != b)
2584 {
2585 if (!a || b->type != a->type || b->arg != a->arg)
2586 return false;
2587 b = b->base;
2588 a = a->base;
2589 }
2590 if (!*roota)
2591 *roota = a;
2592 return *roota == a;
2593 }
2594
2595 /* A hasher of states that treats two states as "equal" if they might be
2596 merged (but trying to be more discriminating than "return true"). */
2597 struct test_pattern_hasher : nofree_ptr_hash <merge_state_info>
2598 {
2599 static inline hashval_t hash (const value_type &);
2600 static inline bool equal (const value_type &, const compare_type &);
2601 };
2602
2603 hashval_t
hash(merge_state_info * const & sinfo)2604 test_pattern_hasher::hash (merge_state_info *const &sinfo)
2605 {
2606 inchash::hash h;
2607 decision *d = sinfo->s->singleton ();
2608 h.add_int (d->test.pos_operand + 1);
2609 if (!relative_patterns_p)
2610 h.add_int (d->test.pos ? d->test.pos->id + 1 : 0);
2611 h.add_int (d->test.kind);
2612 h.add_int (sinfo->num_transitions);
2613 return h.end ();
2614 }
2615
2616 bool
equal(merge_state_info * const & sinfo1,merge_state_info * const & sinfo2)2617 test_pattern_hasher::equal (merge_state_info *const &sinfo1,
2618 merge_state_info *const &sinfo2)
2619 {
2620 decision *d1 = sinfo1->s->singleton ();
2621 decision *d2 = sinfo2->s->singleton ();
2622 gcc_assert (d1 && d2);
2623
2624 parameter new_param1, new_param2;
2625 return (d1->test.pos_operand == d2->test.pos_operand
2626 && (relative_patterns_p || d1->test.pos == d2->test.pos)
2627 && compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2)
2628 && sinfo1->num_transitions == sinfo2->num_transitions);
2629 }
2630
2631 /* Try to make the state described by SINFO1 use the same pattern as the
2632 state described by SINFO2. Return true on success.
2633
2634 SINFO1 and SINFO2 are known to have the same hash value. */
2635
2636 static bool
merge_patterns(merge_state_info * sinfo1,merge_state_info * sinfo2)2637 merge_patterns (merge_state_info *sinfo1, merge_state_info *sinfo2)
2638 {
2639 merge_state_result *res2 = sinfo2->res;
2640 merge_pattern_info *pat = res2->pattern;
2641
2642 /* Write to temporary arrays while matching, in case we have to abort
2643 half way through. */
2644 auto_vec <parameter, MAX_PATTERN_PARAMS> params1;
2645 auto_vec <parameter, MAX_PATTERN_PARAMS> params2;
2646 params1.quick_grow_cleared (pat->params.length ());
2647 params2.splice (pat->params);
2648 unsigned int start_param = params2.length ();
2649
2650 /* An array for recording changes to PAT->transitions[?].params.
2651 All changes involve replacing a constant parameter with some
2652 PAT->params[N], where N is the second element of the pending_param. */
2653 typedef std::pair <parameter *, unsigned int> pending_param;
2654 auto_vec <pending_param, 32> pending_params;
2655
2656 decision *d1 = sinfo1->s->singleton ();
2657 decision *d2 = sinfo2->s->singleton ();
2658 gcc_assert (d1 && d2);
2659
2660 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2661 as SINFO2's root relative to D2. */
2662 position *root1 = 0;
2663 position *root2 = res2->root;
2664 if (d2->test.pos_operand < 0
2665 && d1->test.pos
2666 && !merge_relative_positions (&root1, d1->test.pos,
2667 root2, d2->test.pos))
2668 return false;
2669
2670 /* Check whether the patterns have the same shape. */
2671 unsigned int num_transitions = sinfo1->num_transitions;
2672 gcc_assert (num_transitions == sinfo2->num_transitions);
2673 for (unsigned int i = 0; i < num_transitions; ++i)
2674 if (merge_pattern_transition *ptrans = pat->transitions[i])
2675 {
2676 merge_state_result *to1_res = sinfo1->to_states[i].res;
2677 merge_state_result *to2_res = sinfo2->to_states[i].res;
2678 merge_pattern_info *to_pat = ptrans->to;
2679 gcc_assert (to2_res && to2_res->pattern == to_pat);
2680 if (!to1_res || to1_res->pattern != to_pat)
2681 return false;
2682 if (to2_res->root
2683 && !merge_relative_positions (&root1, to1_res->root,
2684 root2, to2_res->root))
2685 return false;
2686 /* Match the parameters that TO1_RES passes to TO_PAT with the
2687 parameters that PAT passes to TO_PAT. */
2688 update_parameters (to1_res->params, to_pat->params);
2689 for (unsigned int j = 0; j < to1_res->params.length (); ++j)
2690 {
2691 const parameter ¶m1 = to1_res->params[j];
2692 const parameter ¶m2 = ptrans->params[j];
2693 gcc_assert (!param1.is_param);
2694 if (param2.is_param)
2695 {
2696 if (!set_parameter (params1, param2.value, param1))
2697 return false;
2698 }
2699 else if (param1 != param2)
2700 {
2701 unsigned int id;
2702 if (!add_parameter (params1, params2,
2703 param1, param2, start_param, &id))
2704 return false;
2705 /* Record that PAT should now pass parameter ID to TO_PAT,
2706 instead of the current contents of *PARAM2. We only
2707 make the change if the rest of the match succeeds. */
2708 pending_params.safe_push
2709 (pending_param (&ptrans->params[j], id));
2710 }
2711 }
2712 }
2713
2714 unsigned int param_test = pat->param_test;
2715 unsigned int param_transition = pat->param_transition;
2716 bool param_test_p = pat->param_test_p;
2717 bool param_transition_p = pat->param_transition_p;
2718
2719 /* If the tests don't match exactly, try to parameterize them. */
2720 parameter new_param1, new_param2;
2721 if (!compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2))
2722 gcc_unreachable ();
2723 if (new_param1.type != parameter::UNSET)
2724 {
2725 /* If the test has not already been parameterized, all existing
2726 matches use constant NEW_PARAM2. */
2727 if (param_test_p)
2728 {
2729 if (!set_parameter (params1, param_test, new_param1))
2730 return false;
2731 }
2732 else if (new_param1 != new_param2)
2733 {
2734 if (!add_parameter (params1, params2, new_param1, new_param2,
2735 start_param, ¶m_test))
2736 return false;
2737 param_test_p = true;
2738 }
2739 }
2740
2741 /* Match the transitions. */
2742 transition *trans1 = d1->first;
2743 transition *trans2 = d2->first;
2744 for (unsigned int i = 0; i < num_transitions; ++i)
2745 {
2746 if (param_transition_p || trans1->labels != trans2->labels)
2747 {
2748 /* We can only generalize a single transition with a single
2749 label. */
2750 if (num_transitions != 1
2751 || trans1->labels.length () != 1
2752 || trans2->labels.length () != 1)
2753 return false;
2754
2755 /* Although we can match wide-int fields, in practice it leads
2756 to some odd results for const_vectors. We end up
2757 parameterizing the first N const_ints of the vector
2758 and then (once we reach the maximum number of parameters)
2759 we go on to match the other elements exactly. */
2760 if (d1->test.kind == rtx_test::WIDE_INT_FIELD)
2761 return false;
2762
2763 /* See whether the label has a generalizable type. */
2764 parameter::type_enum param_type
2765 = transition_parameter_type (d1->test.kind);
2766 if (param_type == parameter::UNSET)
2767 return false;
2768
2769 /* Match the labels using parameters. */
2770 new_param1 = parameter (param_type, false, trans1->labels[0]);
2771 if (param_transition_p)
2772 {
2773 if (!set_parameter (params1, param_transition, new_param1))
2774 return false;
2775 }
2776 else
2777 {
2778 new_param2 = parameter (param_type, false, trans2->labels[0]);
2779 if (!add_parameter (params1, params2, new_param1, new_param2,
2780 start_param, ¶m_transition))
2781 return false;
2782 param_transition_p = true;
2783 }
2784 }
2785 trans1 = trans1->next;
2786 trans2 = trans2->next;
2787 }
2788
2789 /* Set any unset parameters to their default values. This occurs if some
2790 other state needed something to be parameterized in order to match SINFO2,
2791 but SINFO1 on its own does not. */
2792 for (unsigned int i = 0; i < params1.length (); ++i)
2793 if (params1[i].type == parameter::UNSET)
2794 params1[i] = params2[i];
2795
2796 /* The match was successful. Commit all pending changes to PAT. */
2797 update_parameters (pat->params, params2);
2798 {
2799 pending_param *pp;
2800 unsigned int i;
2801 FOR_EACH_VEC_ELT (pending_params, i, pp)
2802 *pp->first = parameter (pp->first->type, true, pp->second);
2803 }
2804 pat->param_test = param_test;
2805 pat->param_transition = param_transition;
2806 pat->param_test_p = param_test_p;
2807 pat->param_transition_p = param_transition_p;
2808
2809 /* Record the match of SINFO1. */
2810 merge_state_result *new_res1 = new merge_state_result (pat, root1,
2811 sinfo1->res);
2812 new_res1->params.splice (params1);
2813 sinfo1->res = new_res1;
2814 return true;
2815 }
2816
2817 /* The number of states that were removed by calling pattern routines. */
2818 static unsigned int pattern_use_states;
2819
2820 /* The number of states used while defining pattern routines. */
2821 static unsigned int pattern_def_states;
2822
2823 /* Information used while constructing a use or definition of a pattern
2824 routine. */
2825 struct create_pattern_info
2826 {
2827 /* The routine itself. */
2828 pattern_routine *routine;
2829
2830 /* The first unclaimed return value for this particular use or definition.
2831 We walk the substates of uses and definitions in the same order
2832 so each return value always refers to the same position within
2833 the pattern. */
2834 unsigned int next_result;
2835 };
2836
2837 static void populate_pattern_routine (create_pattern_info *,
2838 merge_state_info *, state *,
2839 const vec <parameter> &);
2840
2841 /* SINFO matches a pattern for which we've decided to create a C routine.
2842 Return a decision that performs a call to the pattern routine,
2843 but leave the caller to add the transitions to it. Initialize CPI
2844 for this purpose. Also create a definition for the pattern routine,
2845 if it doesn't already have one.
2846
2847 PARAMS are the parameters that SINFO passes to its pattern. */
2848
2849 static decision *
init_pattern_use(create_pattern_info * cpi,merge_state_info * sinfo,const vec<parameter> & params)2850 init_pattern_use (create_pattern_info *cpi, merge_state_info *sinfo,
2851 const vec <parameter> ¶ms)
2852 {
2853 state *s = sinfo->s;
2854 merge_state_result *res = sinfo->res;
2855 merge_pattern_info *pat = res->pattern;
2856 cpi->routine = pat->routine;
2857 if (!cpi->routine)
2858 {
2859 /* We haven't defined the pattern routine yet, so create
2860 a definition now. */
2861 pattern_routine *routine = new pattern_routine;
2862 pat->routine = routine;
2863 cpi->routine = routine;
2864 routine->s = new state;
2865 routine->insn_p = false;
2866 routine->pnum_clobbers_p = false;
2867
2868 /* Create an "idempotent" mapping of parameter I to parameter I.
2869 Also record the C type of each parameter to the routine. */
2870 auto_vec <parameter, MAX_PATTERN_PARAMS> def_params;
2871 for (unsigned int i = 0; i < pat->params.length (); ++i)
2872 {
2873 def_params.quick_push (parameter (pat->params[i].type, true, i));
2874 routine->param_types.quick_push (pat->params[i].type);
2875 }
2876
2877 /* Any of the states that match the pattern could be used to
2878 create the routine definition. We might as well use SINFO
2879 since it's already to hand. This means that all positions
2880 in the definition will be relative to RES->root. */
2881 routine->pos = res->root;
2882 cpi->next_result = 0;
2883 populate_pattern_routine (cpi, sinfo, routine->s, def_params);
2884 gcc_assert (cpi->next_result == pat->num_results);
2885
2886 /* Add the routine to the global list, after the subroutines
2887 that it calls. */
2888 routine->pattern_id = patterns.length ();
2889 patterns.safe_push (routine);
2890 }
2891
2892 /* Create a decision to call the routine, passing PARAMS to it. */
2893 pattern_use *use = new pattern_use;
2894 use->routine = pat->routine;
2895 use->params.splice (params);
2896 decision *d = new decision (rtx_test::pattern (res->root, use));
2897
2898 /* If the original decision could use an element of operands[] instead
2899 of an rtx variable, try to transfer it to the new decision. */
2900 if (s->first->test.pos && res->root == s->first->test.pos)
2901 d->test.pos_operand = s->first->test.pos_operand;
2902
2903 cpi->next_result = 0;
2904 return d;
2905 }
2906
2907 /* Make S return the next unclaimed pattern routine result for CPI. */
2908
2909 static void
add_pattern_acceptance(create_pattern_info * cpi,state * s)2910 add_pattern_acceptance (create_pattern_info *cpi, state *s)
2911 {
2912 acceptance_type acceptance;
2913 acceptance.type = SUBPATTERN;
2914 acceptance.partial_p = false;
2915 acceptance.u.full.code = cpi->next_result;
2916 add_decision (s, rtx_test::accept (acceptance), true, false);
2917 cpi->next_result += 1;
2918 }
2919
2920 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2921 (here referred to as "P"). P may be the top level of a pattern routine
2922 or a subpattern that should be inlined into its parent pattern's routine
2923 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2924 arbitrary; it could be any of the states that use P. The choice for
2925 subpatterns follows the choice for the parent pattern.
2926
2927 PARAMS gives the value of each parameter to P in terms of the parameters
2928 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2929 is always "parameter (TYPE, true, I)". */
2930
2931 static void
populate_pattern_routine(create_pattern_info * cpi,merge_state_info * sinfo,state * news,const vec<parameter> & params)2932 populate_pattern_routine (create_pattern_info *cpi, merge_state_info *sinfo,
2933 state *news, const vec <parameter> ¶ms)
2934 {
2935 pattern_def_states += 1;
2936
2937 decision *d = sinfo->s->singleton ();
2938 merge_pattern_info *pat = sinfo->res->pattern;
2939 pattern_routine *routine = cpi->routine;
2940
2941 /* Create a copy of D's test for the pattern routine and generalize it
2942 as appropriate. */
2943 decision *newd = new decision (d->test);
2944 gcc_assert (newd->test.pos_operand >= 0
2945 || !newd->test.pos
2946 || common_position (newd->test.pos,
2947 routine->pos) == routine->pos);
2948 if (pat->param_test_p)
2949 {
2950 const parameter ¶m = params[pat->param_test];
2951 switch (newd->test.kind)
2952 {
2953 case rtx_test::PREDICATE:
2954 newd->test.u.predicate.mode_is_param = param.is_param;
2955 newd->test.u.predicate.mode = param.value;
2956 break;
2957
2958 case rtx_test::SAVED_CONST_INT:
2959 newd->test.u.integer.is_param = param.is_param;
2960 newd->test.u.integer.value = param.value;
2961 break;
2962
2963 default:
2964 gcc_unreachable ();
2965 break;
2966 }
2967 }
2968 if (d->test.kind == rtx_test::C_TEST)
2969 routine->insn_p = true;
2970 else if (d->test.kind == rtx_test::HAVE_NUM_CLOBBERS)
2971 routine->pnum_clobbers_p = true;
2972 news->push_back (newd);
2973
2974 /* Fill in the transitions of NEWD. */
2975 unsigned int i = 0;
2976 for (transition *trans = d->first; trans; trans = trans->next)
2977 {
2978 /* Create a new state to act as the target of the new transition. */
2979 state *to_news = new state;
2980 if (merge_pattern_transition *ptrans = pat->transitions[i])
2981 {
2982 /* The pattern hasn't finished matching yet. Get the target
2983 pattern and the corresponding target state of SINFO. */
2984 merge_pattern_info *to_pat = ptrans->to;
2985 merge_state_info *to = sinfo->to_states + i;
2986 gcc_assert (to->res->pattern == to_pat);
2987 gcc_assert (ptrans->params.length () == to_pat->params.length ());
2988
2989 /* Express the parameters to TO_PAT in terms of the parameters
2990 to the top-level pattern. */
2991 auto_vec <parameter, MAX_PATTERN_PARAMS> to_params;
2992 for (unsigned int j = 0; j < ptrans->params.length (); ++j)
2993 {
2994 const parameter ¶m = ptrans->params[j];
2995 to_params.quick_push (param.is_param
2996 ? params[param.value]
2997 : param);
2998 }
2999
3000 if (same_pattern_p (pat, to_pat))
3001 /* TO_PAT is part of the current routine, so just recurse. */
3002 populate_pattern_routine (cpi, to, to_news, to_params);
3003 else
3004 {
3005 /* TO_PAT should be matched by calling a separate routine. */
3006 create_pattern_info sub_cpi;
3007 decision *subd = init_pattern_use (&sub_cpi, to, to_params);
3008 routine->insn_p |= sub_cpi.routine->insn_p;
3009 routine->pnum_clobbers_p |= sub_cpi.routine->pnum_clobbers_p;
3010
3011 /* Add the pattern routine call to the new target state. */
3012 to_news->push_back (subd);
3013
3014 /* Add a transition for each successful call result. */
3015 for (unsigned int j = 0; j < to_pat->num_results; ++j)
3016 {
3017 state *res = new state;
3018 add_pattern_acceptance (cpi, res);
3019 subd->push_back (new transition (j, res, false));
3020 }
3021 }
3022 }
3023 else
3024 /* This transition corresponds to a successful match. */
3025 add_pattern_acceptance (cpi, to_news);
3026
3027 /* Create the transition itself, generalizing as necessary. */
3028 transition *new_trans = new transition (trans->labels, to_news,
3029 trans->optional);
3030 if (pat->param_transition_p)
3031 {
3032 const parameter ¶m = params[pat->param_transition];
3033 new_trans->is_param = param.is_param;
3034 new_trans->labels[0] = param.value;
3035 }
3036 newd->push_back (new_trans);
3037 i += 1;
3038 }
3039 }
3040
3041 /* USE is a decision that calls a pattern routine and SINFO is part of the
3042 original state tree that the call is supposed to replace. Add the
3043 transitions for SINFO and its substates to USE. */
3044
3045 static void
populate_pattern_use(create_pattern_info * cpi,decision * use,merge_state_info * sinfo)3046 populate_pattern_use (create_pattern_info *cpi, decision *use,
3047 merge_state_info *sinfo)
3048 {
3049 pattern_use_states += 1;
3050 gcc_assert (!sinfo->merged_p);
3051 sinfo->merged_p = true;
3052 merge_state_result *res = sinfo->res;
3053 merge_pattern_info *pat = res->pattern;
3054 decision *d = sinfo->s->singleton ();
3055 unsigned int i = 0;
3056 for (transition *trans = d->first; trans; trans = trans->next)
3057 {
3058 if (pat->transitions[i])
3059 /* The target state is also part of the pattern. */
3060 populate_pattern_use (cpi, use, sinfo->to_states + i);
3061 else
3062 {
3063 /* The transition corresponds to a successful return from the
3064 pattern routine. */
3065 use->push_back (new transition (cpi->next_result, trans->to, false));
3066 cpi->next_result += 1;
3067 }
3068 i += 1;
3069 }
3070 }
3071
3072 /* We have decided to replace SINFO's state with a call to a pattern
3073 routine. Make the change, creating a definition of the pattern routine
3074 if it doesn't have one already. */
3075
3076 static void
use_pattern(merge_state_info * sinfo)3077 use_pattern (merge_state_info *sinfo)
3078 {
3079 merge_state_result *res = sinfo->res;
3080 merge_pattern_info *pat = res->pattern;
3081 state *s = sinfo->s;
3082
3083 /* The pattern may have acquired new parameters after it was matched
3084 against SINFO. Update the parameters that SINFO passes accordingly. */
3085 update_parameters (res->params, pat->params);
3086
3087 create_pattern_info cpi;
3088 decision *d = init_pattern_use (&cpi, sinfo, res->params);
3089 populate_pattern_use (&cpi, d, sinfo);
3090 s->release ();
3091 s->push_back (d);
3092 }
3093
3094 /* Look through the state trees in STATES for common patterns and
3095 split them into subroutines. */
3096
3097 static void
split_out_patterns(vec<merge_state_info> & states)3098 split_out_patterns (vec <merge_state_info> &states)
3099 {
3100 unsigned int first_transition = states.length ();
3101 hash_table <test_pattern_hasher> hashtab (128);
3102 /* Stage 1: Create an order in which parent states come before their child
3103 states and in which sibling states are at consecutive locations.
3104 Having consecutive sibling states allows merge_state_info to have
3105 a single to_states pointer. */
3106 for (unsigned int i = 0; i < states.length (); ++i)
3107 for (decision *d = states[i].s->first; d; d = d->next)
3108 for (transition *trans = d->first; trans; trans = trans->next)
3109 {
3110 states.safe_push (trans->to);
3111 states[i].num_transitions += 1;
3112 }
3113 /* Stage 2: Now that the addresses are stable, set up the to_states
3114 pointers. Look for states that might be merged and enter them
3115 into the hash table. */
3116 for (unsigned int i = 0; i < states.length (); ++i)
3117 {
3118 merge_state_info *sinfo = &states[i];
3119 if (sinfo->num_transitions)
3120 {
3121 sinfo->to_states = &states[first_transition];
3122 first_transition += sinfo->num_transitions;
3123 }
3124 /* For simplicity, we only try to merge states that have a single
3125 decision. This is in any case the best we can do for peephole2,
3126 since whether a peephole2 ACCEPT succeeds or not depends on the
3127 specific peephole2 pattern (which is unique to each ACCEPT
3128 and so couldn't be shared between states). */
3129 if (decision *d = sinfo->s->singleton ())
3130 /* ACCEPT states are unique, so don't even try to merge them. */
3131 if (d->test.kind != rtx_test::ACCEPT
3132 && (pattern_have_num_clobbers_p
3133 || d->test.kind != rtx_test::HAVE_NUM_CLOBBERS)
3134 && (pattern_c_test_p
3135 || d->test.kind != rtx_test::C_TEST))
3136 {
3137 merge_state_info **slot = hashtab.find_slot (sinfo, INSERT);
3138 sinfo->prev_same_test = *slot;
3139 *slot = sinfo;
3140 }
3141 }
3142 /* Stage 3: Walk backwards through the list of states and try to merge
3143 them. This is a greedy, bottom-up match; parent nodes can only start
3144 a new leaf pattern if they fail to match when combined with all child
3145 nodes that have matching patterns.
3146
3147 For each state we keep a list of potential matches, with each
3148 potential match being larger (and deeper) than the next match in
3149 the list. The final element in the list is a leaf pattern that
3150 matches just a single state.
3151
3152 Each candidate pattern created in this loop is unique -- it won't
3153 have been seen by an earlier iteration. We try to match each pattern
3154 with every state that appears earlier in STATES.
3155
3156 Because the patterns created in the loop are unique, any state
3157 that already has a match must have a final potential match that
3158 is different from any new leaf pattern. Therefore, when matching
3159 leaf patterns, we need only consider states whose list of matches
3160 is empty.
3161
3162 The non-leaf patterns that we try are as deep as possible
3163 and are an extension of the state's previous best candidate match (PB).
3164 We need only consider states whose current potential match is also PB;
3165 any states that don't match as much as PB cannnot match the new pattern,
3166 while any states that already match more than PB must be different from
3167 the new pattern. */
3168 for (unsigned int i2 = states.length (); i2-- > 0; )
3169 {
3170 merge_state_info *sinfo2 = &states[i2];
3171
3172 /* Enforce the bottom-upness of the match: remove matches with later
3173 states if SINFO2's child states ended up finding a better match. */
3174 prune_invalid_results (sinfo2);
3175
3176 /* Do nothing if the state doesn't match a later one and if there are
3177 no earlier states it could match. */
3178 if (!sinfo2->res && !sinfo2->prev_same_test)
3179 continue;
3180
3181 merge_state_result *res2 = sinfo2->res;
3182 decision *d2 = sinfo2->s->singleton ();
3183 position *root2 = (d2->test.pos_operand < 0 ? d2->test.pos : 0);
3184 unsigned int num_transitions = sinfo2->num_transitions;
3185
3186 /* If RES2 is null then SINFO2's test in isolation has not been seen
3187 before. First try matching that on its own. */
3188 if (!res2)
3189 {
3190 merge_pattern_info *new_pat
3191 = new merge_pattern_info (num_transitions);
3192 merge_state_result *new_res2
3193 = new merge_state_result (new_pat, root2, res2);
3194 sinfo2->res = new_res2;
3195
3196 new_pat->num_statements = !d2->test.single_outcome_p ();
3197 new_pat->num_results = num_transitions;
3198 bool matched_p = false;
3199 /* Look for states that don't currently match anything but
3200 can be made to match SINFO2 on its own. */
3201 for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3202 sinfo1 = sinfo1->prev_same_test)
3203 if (!sinfo1->res && merge_patterns (sinfo1, sinfo2))
3204 matched_p = true;
3205 if (!matched_p)
3206 {
3207 /* No other states match. */
3208 sinfo2->res = res2;
3209 delete new_pat;
3210 delete new_res2;
3211 continue;
3212 }
3213 else
3214 res2 = new_res2;
3215 }
3216
3217 /* Keep the existing pattern if it's as good as anything we'd
3218 create for SINFO2. */
3219 if (complete_result_p (res2->pattern, sinfo2))
3220 {
3221 res2->pattern->num_users += 1;
3222 continue;
3223 }
3224
3225 /* Create a new pattern for SINFO2. */
3226 merge_pattern_info *new_pat = new merge_pattern_info (num_transitions);
3227 merge_state_result *new_res2
3228 = new merge_state_result (new_pat, root2, res2);
3229 sinfo2->res = new_res2;
3230
3231 /* Fill in details about the pattern. */
3232 new_pat->num_statements = !d2->test.single_outcome_p ();
3233 new_pat->num_results = 0;
3234 for (unsigned int j = 0; j < num_transitions; ++j)
3235 if (merge_state_result *to_res = sinfo2->to_states[j].res)
3236 {
3237 /* Count the target state as part of this pattern.
3238 First update the root position so that it can reach
3239 the target state's root. */
3240 if (to_res->root)
3241 {
3242 if (new_res2->root)
3243 new_res2->root = common_position (new_res2->root,
3244 to_res->root);
3245 else
3246 new_res2->root = to_res->root;
3247 }
3248 merge_pattern_info *to_pat = to_res->pattern;
3249 merge_pattern_transition *ptrans
3250 = new merge_pattern_transition (to_pat);
3251
3252 /* TO_PAT may have acquired more parameters when matching
3253 states earlier in STATES than TO_RES's, but the list is
3254 now final. Make sure that TO_RES is up to date. */
3255 update_parameters (to_res->params, to_pat->params);
3256
3257 /* Start out by assuming that every user of NEW_PAT will
3258 want to pass the same (constant) parameters as TO_RES. */
3259 update_parameters (ptrans->params, to_res->params);
3260
3261 new_pat->transitions[j] = ptrans;
3262 new_pat->num_statements += to_pat->num_statements;
3263 new_pat->num_results += to_pat->num_results;
3264 }
3265 else
3266 /* The target state doesn't match anything and so is not part
3267 of the pattern. */
3268 new_pat->num_results += 1;
3269
3270 /* See if any earlier states that match RES2's pattern also match
3271 NEW_PAT. */
3272 bool matched_p = false;
3273 for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3274 sinfo1 = sinfo1->prev_same_test)
3275 {
3276 prune_invalid_results (sinfo1);
3277 if (sinfo1->res
3278 && sinfo1->res->pattern == res2->pattern
3279 && merge_patterns (sinfo1, sinfo2))
3280 matched_p = true;
3281 }
3282 if (!matched_p)
3283 {
3284 /* Nothing else matches NEW_PAT, so go back to the previous
3285 pattern (possibly just a single-state one). */
3286 sinfo2->res = res2;
3287 delete new_pat;
3288 delete new_res2;
3289 }
3290 /* Assume that SINFO2 will use RES. At this point we don't know
3291 whether earlier states that match the same pattern will use
3292 that match or a different one. */
3293 sinfo2->res->pattern->num_users += 1;
3294 }
3295 /* Step 4: Finalize the choice of pattern for each state, ignoring
3296 patterns that were only used once. Update each pattern's size
3297 so that it doesn't include subpatterns that are going to be split
3298 out into subroutines. */
3299 for (unsigned int i = 0; i < states.length (); ++i)
3300 {
3301 merge_state_info *sinfo = &states[i];
3302 merge_state_result *res = sinfo->res;
3303 /* Wind past patterns that are only used by SINFO. */
3304 while (res && res->pattern->num_users == 1)
3305 {
3306 res = res->prev;
3307 sinfo->res = res;
3308 if (res)
3309 res->pattern->num_users += 1;
3310 }
3311 if (!res)
3312 continue;
3313
3314 /* We have a shared pattern and are now committed to the match. */
3315 merge_pattern_info *pat = res->pattern;
3316 gcc_assert (valid_result_p (pat, sinfo));
3317
3318 if (!pat->complete_p)
3319 {
3320 /* Look for subpatterns that are going to be split out and remove
3321 them from the number of statements. */
3322 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
3323 if (merge_pattern_transition *ptrans = pat->transitions[j])
3324 {
3325 merge_pattern_info *to_pat = ptrans->to;
3326 if (!same_pattern_p (pat, to_pat))
3327 pat->num_statements -= to_pat->num_statements;
3328 }
3329 pat->complete_p = true;
3330 }
3331 }
3332 /* Step 5: Split out the patterns. */
3333 for (unsigned int i = 0; i < states.length (); ++i)
3334 {
3335 merge_state_info *sinfo = &states[i];
3336 merge_state_result *res = sinfo->res;
3337 if (!sinfo->merged_p && res && useful_pattern_p (res->pattern))
3338 use_pattern (sinfo);
3339 }
3340 fprintf (stderr, "Shared %d out of %d states by creating %d new states,"
3341 " saving %d\n",
3342 pattern_use_states, states.length (), pattern_def_states,
3343 pattern_use_states - pattern_def_states);
3344 }
3345
3346 /* Information about a state tree that we're considering splitting into a
3347 subroutine. */
3348 struct state_size
3349 {
3350 /* The number of pseudo-statements in the state tree. */
3351 unsigned int num_statements;
3352
3353 /* The approximate number of nested "if" and "switch" statements that
3354 would be required if control could fall through to a later state. */
3355 unsigned int depth;
3356 };
3357
3358 /* Pairs a transition with information about its target state. */
3359 typedef std::pair <transition *, state_size> subroutine_candidate;
3360
3361 /* Sort two subroutine_candidates so that the one with the largest
3362 number of statements comes last. */
3363
3364 static int
subroutine_candidate_cmp(const void * a,const void * b)3365 subroutine_candidate_cmp (const void *a, const void *b)
3366 {
3367 return int (((const subroutine_candidate *) a)->second.num_statements
3368 - ((const subroutine_candidate *) b)->second.num_statements);
3369 }
3370
3371 /* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3372 state that performs a subroutine call to S. */
3373
3374 static state *
create_subroutine(routine_type type,state * s,vec<state * > & procs)3375 create_subroutine (routine_type type, state *s, vec <state *> &procs)
3376 {
3377 procs.safe_push (s);
3378 acceptance_type acceptance;
3379 acceptance.type = type;
3380 acceptance.partial_p = true;
3381 acceptance.u.subroutine_id = procs.length ();
3382 state *news = new state;
3383 add_decision (news, rtx_test::accept (acceptance), true, false);
3384 return news;
3385 }
3386
3387 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3388 better split into subroutines. Accumulate all such subroutines in PROCS.
3389 Return the size of the new state tree (excluding subroutines). */
3390
3391 static state_size
find_subroutines(routine_type type,state * s,vec<state * > & procs)3392 find_subroutines (routine_type type, state *s, vec <state *> &procs)
3393 {
3394 auto_vec <subroutine_candidate, 16> candidates;
3395 state_size size;
3396 size.num_statements = 0;
3397 size.depth = 0;
3398 for (decision *d = s->first; d; d = d->next)
3399 {
3400 if (!d->test.single_outcome_p ())
3401 size.num_statements += 1;
3402 for (transition *trans = d->first; trans; trans = trans->next)
3403 {
3404 /* Keep chains of simple decisions together if we know that no
3405 change of position is required. We'll output this chain as a
3406 single "if" statement, so it counts as a single nesting level. */
3407 if (d->test.pos && d->if_statement_p ())
3408 for (;;)
3409 {
3410 decision *newd = trans->to->singleton ();
3411 if (!newd
3412 || (newd->test.pos
3413 && newd->test.pos_operand < 0
3414 && newd->test.pos != d->test.pos)
3415 || !newd->if_statement_p ())
3416 break;
3417 if (!newd->test.single_outcome_p ())
3418 size.num_statements += 1;
3419 trans = newd->singleton ();
3420 if (newd->test.kind == rtx_test::SET_OP
3421 || newd->test.kind == rtx_test::ACCEPT)
3422 break;
3423 }
3424 /* The target of TRANS is a subroutine candidate. First recurse
3425 on it to see how big it is after subroutines have been
3426 split out. */
3427 state_size to_size = find_subroutines (type, trans->to, procs);
3428 if (d->next && to_size.depth > MAX_DEPTH)
3429 /* Keeping the target state in the same routine would lead
3430 to an excessive nesting of "if" and "switch" statements.
3431 Split it out into a subroutine so that it can use
3432 inverted tests that return early on failure. */
3433 trans->to = create_subroutine (type, trans->to, procs);
3434 else
3435 {
3436 size.num_statements += to_size.num_statements;
3437 if (to_size.num_statements < MIN_NUM_STATEMENTS)
3438 /* The target state is too small to be worth splitting.
3439 Keep it in the same routine as S. */
3440 size.depth = MAX (size.depth, to_size.depth);
3441 else
3442 /* Assume for now that we'll keep the target state in the
3443 same routine as S, but record it as a subroutine candidate
3444 if S grows too big. */
3445 candidates.safe_push (subroutine_candidate (trans, to_size));
3446 }
3447 }
3448 }
3449 if (size.num_statements > MAX_NUM_STATEMENTS)
3450 {
3451 /* S is too big. Sort the subroutine candidates so that bigger ones
3452 are nearer the end. */
3453 candidates.qsort (subroutine_candidate_cmp);
3454 while (!candidates.is_empty ()
3455 && size.num_statements > MAX_NUM_STATEMENTS)
3456 {
3457 /* Peel off a candidate and force it into a subroutine. */
3458 subroutine_candidate cand = candidates.pop ();
3459 size.num_statements -= cand.second.num_statements;
3460 cand.first->to = create_subroutine (type, cand.first->to, procs);
3461 }
3462 }
3463 /* Update the depth for subroutine candidates that we decided not to
3464 split out. */
3465 for (unsigned int i = 0; i < candidates.length (); ++i)
3466 size.depth = MAX (size.depth, candidates[i].second.depth);
3467 size.depth += 1;
3468 return size;
3469 }
3470
3471 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3472
3473 static bool
safe_predicate_mode(const struct pred_data * pred,machine_mode mode)3474 safe_predicate_mode (const struct pred_data *pred, machine_mode mode)
3475 {
3476 /* Scalar integer constants have VOIDmode. */
3477 if (GET_MODE_CLASS (mode) == MODE_INT
3478 && (pred->codes[CONST_INT]
3479 || pred->codes[CONST_DOUBLE]
3480 || pred->codes[CONST_WIDE_INT]
3481 || pred->codes[LABEL_REF]))
3482 return false;
3483
3484 return !pred->special && mode != VOIDmode;
3485 }
3486
3487 /* Fill CODES with the set of codes that could be matched by PRED. */
3488
3489 static void
get_predicate_codes(const struct pred_data * pred,int_set * codes)3490 get_predicate_codes (const struct pred_data *pred, int_set *codes)
3491 {
3492 for (int i = 0; i < NUM_TRUE_RTX_CODE; ++i)
3493 if (!pred || pred->codes[i])
3494 codes->safe_push (i);
3495 }
3496
3497 /* Return true if the first path through D1 tests the same thing as D2. */
3498
3499 static bool
has_same_test_p(decision * d1,decision * d2)3500 has_same_test_p (decision *d1, decision *d2)
3501 {
3502 do
3503 {
3504 if (d1->test == d2->test)
3505 return true;
3506 d1 = d1->first->to->first;
3507 }
3508 while (d1);
3509 return false;
3510 }
3511
3512 /* Return true if D1 and D2 cannot match the same rtx. All states reachable
3513 from D2 have single decisions and all those decisions have single
3514 transitions. */
3515
3516 static bool
mutually_exclusive_p(decision * d1,decision * d2)3517 mutually_exclusive_p (decision *d1, decision *d2)
3518 {
3519 /* If one path through D1 fails to test the same thing as D2, assume
3520 that D2's test could be true for D1 and look for a later, more useful,
3521 test. This isn't as expensive as it looks in practice. */
3522 while (!has_same_test_p (d1, d2))
3523 {
3524 d2 = d2->singleton ()->to->singleton ();
3525 if (!d2)
3526 return false;
3527 }
3528 if (d1->test == d2->test)
3529 {
3530 /* Look for any transitions from D1 that have the same labels as
3531 the transition from D2. */
3532 transition *trans2 = d2->singleton ();
3533 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3534 {
3535 int_set::iterator i1 = trans1->labels.begin ();
3536 int_set::iterator end1 = trans1->labels.end ();
3537 int_set::iterator i2 = trans2->labels.begin ();
3538 int_set::iterator end2 = trans2->labels.end ();
3539 while (i1 != end1 && i2 != end2)
3540 if (*i1 < *i2)
3541 ++i1;
3542 else if (*i2 < *i1)
3543 ++i2;
3544 else
3545 {
3546 /* TRANS1 has some labels in common with TRANS2. Assume
3547 that D1 and D2 could match the same rtx if the target
3548 of TRANS1 could match the same rtx as D2. */
3549 for (decision *subd1 = trans1->to->first;
3550 subd1; subd1 = subd1->next)
3551 if (!mutually_exclusive_p (subd1, d2))
3552 return false;
3553 break;
3554 }
3555 }
3556 return true;
3557 }
3558 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3559 for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next)
3560 if (!mutually_exclusive_p (subd1, d2))
3561 return false;
3562 return true;
3563 }
3564
3565 /* Try to merge S2's decision into D1, given that they have the same test.
3566 Fail only if EXCLUDE is nonnull and the new transition would have the
3567 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3568 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3569 if the merge is complete. */
3570
3571 static bool
merge_into_decision(decision * d1,state * s2,const int_set * exclude,state ** next_s1,state ** next_s2,const int_set ** next_exclude)3572 merge_into_decision (decision *d1, state *s2, const int_set *exclude,
3573 state **next_s1, state **next_s2,
3574 const int_set **next_exclude)
3575 {
3576 decision *d2 = s2->singleton ();
3577 transition *trans2 = d2->singleton ();
3578
3579 /* Get a list of the transitions that intersect TRANS2. */
3580 auto_vec <transition *, 32> intersecting;
3581 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3582 {
3583 int_set::iterator i1 = trans1->labels.begin ();
3584 int_set::iterator end1 = trans1->labels.end ();
3585 int_set::iterator i2 = trans2->labels.begin ();
3586 int_set::iterator end2 = trans2->labels.end ();
3587 bool trans1_is_subset = true;
3588 bool trans2_is_subset = true;
3589 bool intersect_p = false;
3590 while (i1 != end1 && i2 != end2)
3591 if (*i1 < *i2)
3592 {
3593 trans1_is_subset = false;
3594 ++i1;
3595 }
3596 else if (*i2 < *i1)
3597 {
3598 trans2_is_subset = false;
3599 ++i2;
3600 }
3601 else
3602 {
3603 intersect_p = true;
3604 ++i1;
3605 ++i2;
3606 }
3607 if (i1 != end1)
3608 trans1_is_subset = false;
3609 if (i2 != end2)
3610 trans2_is_subset = false;
3611 if (trans1_is_subset && trans2_is_subset)
3612 {
3613 /* There's already a transition that matches exactly.
3614 Merge the target states. */
3615 trans1->optional &= trans2->optional;
3616 *next_s1 = trans1->to;
3617 *next_s2 = trans2->to;
3618 *next_exclude = 0;
3619 return true;
3620 }
3621 if (trans2_is_subset)
3622 {
3623 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3624 the target of TRANS1, but (to avoid infinite recursion)
3625 make sure that we don't end up creating another transition
3626 like TRANS1. */
3627 *next_s1 = trans1->to;
3628 *next_s2 = s2;
3629 *next_exclude = &trans1->labels;
3630 return true;
3631 }
3632 if (intersect_p)
3633 intersecting.safe_push (trans1);
3634 }
3635
3636 if (intersecting.is_empty ())
3637 {
3638 /* No existing labels intersect the new ones. We can just add
3639 TRANS2 itself. */
3640 d1->push_back (d2->release ());
3641 *next_s1 = 0;
3642 *next_s2 = 0;
3643 *next_exclude = 0;
3644 return true;
3645 }
3646
3647 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3648 result in COMBINED and use NEXT as a temporary. */
3649 int_set tmp1 = trans2->labels, tmp2;
3650 int_set *combined = &tmp1, *next = &tmp2;
3651 for (unsigned int i = 0; i < intersecting.length (); ++i)
3652 {
3653 transition *trans1 = intersecting[i];
3654 next->truncate (0);
3655 next->safe_grow (trans1->labels.length () + combined->length ());
3656 int_set::iterator end
3657 = std::set_union (trans1->labels.begin (), trans1->labels.end (),
3658 combined->begin (), combined->end (),
3659 next->begin ());
3660 next->truncate (end - next->begin ());
3661 std::swap (next, combined);
3662 }
3663
3664 /* Stop now if we've been told not to create a transition with these
3665 labels. */
3666 if (exclude && *combined == *exclude)
3667 return false;
3668
3669 /* Get the transition that should carry the new labels. */
3670 transition *new_trans = intersecting[0];
3671 if (intersecting.length () == 1)
3672 {
3673 /* We're merging with one existing transition whose labels are a
3674 subset of those required. If both transitions are optional,
3675 we can just expand the set of labels so that it's suitable
3676 for both transitions. It isn't worth preserving the original
3677 transitions since we know that they can't be merged; we would
3678 need to backtrack to S2 if TRANS1->to fails. In contrast,
3679 we might be able to merge the targets of the transitions
3680 without any backtracking.
3681
3682 If instead the existing transition is not optional, ensure that
3683 all target decisions are suitably protected. Some decisions
3684 might already have a more specific requirement than NEW_TRANS,
3685 in which case there's no point testing NEW_TRANS as well. E.g. this
3686 would have happened if a test for an (eq ...) rtx had been
3687 added to a decision that tested whether the code is suitable
3688 for comparison_operator. The original comparison_operator
3689 transition would have been non-optional and the (eq ...) test
3690 would be performed by a second decision in the target of that
3691 transition.
3692
3693 The remaining case -- keeping the original optional transition
3694 when adding a non-optional TRANS2 -- is a wash. Preserving
3695 the optional transition only helps if we later merge another
3696 state S3 that is mutually exclusive with S2 and whose labels
3697 belong to *COMBINED - TRANS1->labels. We can then test the
3698 original NEW_TRANS and S3 in the same decision. We keep the
3699 optional transition around for that case, but it occurs very
3700 rarely. */
3701 gcc_assert (new_trans->labels != *combined);
3702 if (!new_trans->optional || !trans2->optional)
3703 {
3704 decision *start = 0;
3705 for (decision *end = new_trans->to->first; end; end = end->next)
3706 {
3707 if (!start && end->test != d1->test)
3708 /* END belongs to a range of decisions that need to be
3709 protected by NEW_TRANS. */
3710 start = end;
3711 if (start && (!end->next || end->next->test == d1->test))
3712 {
3713 /* Protect [START, END] with NEW_TRANS. The decisions
3714 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3715 state *new_s = new state;
3716 decision *new_d = new decision (d1->test);
3717 new_d->push_back (new transition (new_trans->labels, new_s,
3718 new_trans->optional));
3719 state::range r (start, end);
3720 new_trans->to->replace (r, new_d);
3721 new_s->push_back (r);
3722
3723 /* Continue with an empty range. */
3724 start = 0;
3725
3726 /* Continue from the decision after NEW_D. */
3727 end = new_d;
3728 }
3729 }
3730 }
3731 new_trans->optional = true;
3732 new_trans->labels = *combined;
3733 }
3734 else
3735 {
3736 /* We're merging more than one existing transition together.
3737 Those transitions are successfully dividing the matching space
3738 and so we want to preserve them, even if they're optional.
3739
3740 Create a new transition with the union set of labels and make
3741 it go to a state that has the original transitions. */
3742 decision *new_d = new decision (d1->test);
3743 for (unsigned int i = 0; i < intersecting.length (); ++i)
3744 new_d->push_back (d1->remove (intersecting[i]));
3745
3746 state *new_s = new state;
3747 new_s->push_back (new_d);
3748
3749 new_trans = new transition (*combined, new_s, true);
3750 d1->push_back (new_trans);
3751 }
3752
3753 /* We now have an optional transition with labels *COMBINED. Decide
3754 whether we can use it as TRANS2 or whether we need to merge S2
3755 into the target of NEW_TRANS. */
3756 gcc_assert (new_trans->optional);
3757 if (new_trans->labels == trans2->labels)
3758 {
3759 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3760 new_trans->optional = trans2->optional;
3761 *next_s1 = new_trans->to;
3762 *next_s2 = trans2->to;
3763 *next_exclude = 0;
3764 }
3765 else
3766 {
3767 /* Try to merge TRANS2 into the target of the overlapping transition,
3768 but (to prevent infinite recursion or excessive redundancy) without
3769 creating another transition of the same type. */
3770 *next_s1 = new_trans->to;
3771 *next_s2 = s2;
3772 *next_exclude = &new_trans->labels;
3773 }
3774 return true;
3775 }
3776
3777 /* Make progress in merging S2 into S1, given that each state in S2
3778 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3779 transition with the same test as S2's decision and with the labels
3780 in *EXCLUDE.
3781
3782 Return true if there is still work to do. When returning true,
3783 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3784 S1, S2 and EXCLUDE should have next time round.
3785
3786 If S1 and S2 both match a particular rtx, give priority to S1. */
3787
3788 static bool
merge_into_state_1(state * s1,state * s2,const int_set * exclude,state ** next_s1,state ** next_s2,const int_set ** next_exclude)3789 merge_into_state_1 (state *s1, state *s2, const int_set *exclude,
3790 state **next_s1, state **next_s2,
3791 const int_set **next_exclude)
3792 {
3793 decision *d2 = s2->singleton ();
3794 if (decision *d1 = s1->last)
3795 {
3796 if (d1->test.terminal_p ())
3797 /* D1 is an unconditional return, so S2 can never match. This can
3798 sometimes be a bug in the .md description, but might also happen
3799 if genconditions forces some conditions to true for certain
3800 configurations. */
3801 return false;
3802
3803 /* Go backwards through the decisions in S1, stopping once we find one
3804 that could match the same thing as S2. */
3805 while (d1->prev && mutually_exclusive_p (d1, d2))
3806 d1 = d1->prev;
3807
3808 /* Search forwards from that point, merging D2 into the first
3809 decision we can. */
3810 for (; d1; d1 = d1->next)
3811 {
3812 /* If S2 performs some optional tests before testing the same thing
3813 as D1, those tests do not help to distinguish D1 and S2, so it's
3814 better to drop them. Search through such optional decisions
3815 until we find something that tests the same thing as D1. */
3816 state *sub_s2 = s2;
3817 for (;;)
3818 {
3819 decision *sub_d2 = sub_s2->singleton ();
3820 if (d1->test == sub_d2->test)
3821 {
3822 /* Only apply EXCLUDE if we're testing the same thing
3823 as D2. */
3824 const int_set *sub_exclude = (d2 == sub_d2 ? exclude : 0);
3825
3826 /* Try to merge SUB_S2 into D1. This can only fail if
3827 it would involve creating a new transition with
3828 labels SUB_EXCLUDE. */
3829 if (merge_into_decision (d1, sub_s2, sub_exclude,
3830 next_s1, next_s2, next_exclude))
3831 return *next_s2 != 0;
3832
3833 /* Can't merge with D1; try a later decision. */
3834 break;
3835 }
3836 transition *sub_trans2 = sub_d2->singleton ();
3837 if (!sub_trans2->optional)
3838 /* Can't merge with D1; try a later decision. */
3839 break;
3840 sub_s2 = sub_trans2->to;
3841 }
3842 }
3843 }
3844
3845 /* We can't merge D2 with any existing decision. Just add it to the end. */
3846 s1->push_back (s2->release ());
3847 return false;
3848 }
3849
3850 /* Merge S2 into S1. If they both match a particular rtx, give
3851 priority to S1. Each state in S2 has a single decision. */
3852
3853 static void
merge_into_state(state * s1,state * s2)3854 merge_into_state (state *s1, state *s2)
3855 {
3856 const int_set *exclude = 0;
3857 while (s2 && merge_into_state_1 (s1, s2, exclude, &s1, &s2, &exclude))
3858 continue;
3859 }
3860
3861 /* Pairs a pattern that needs to be matched with the rtx position at
3862 which the pattern should occur. */
3863 struct pattern_pos {
pattern_pospattern_pos3864 pattern_pos () {}
3865 pattern_pos (rtx, position *);
3866
3867 rtx pattern;
3868 position *pos;
3869 };
3870
pattern_pos(rtx pattern_in,position * pos_in)3871 pattern_pos::pattern_pos (rtx pattern_in, position *pos_in)
3872 : pattern (pattern_in), pos (pos_in)
3873 {}
3874
3875 /* Compare entries according to their depth-first order. There shouldn't
3876 be two entries at the same position. */
3877
3878 bool
3879 operator < (const pattern_pos &e1, const pattern_pos &e2)
3880 {
3881 int diff = compare_positions (e1.pos, e2.pos);
3882 gcc_assert (diff != 0 || e1.pattern == e2.pattern);
3883 return diff < 0;
3884 }
3885
3886 /* Add new decisions to S that check whether the rtx at position POS
3887 matches PATTERN. Return the state that is reached in that case.
3888 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3889
3890 static state *
match_pattern_2(state * s,md_rtx_info * info,position * pos,rtx pattern)3891 match_pattern_2 (state *s, md_rtx_info *info, position *pos, rtx pattern)
3892 {
3893 auto_vec <pattern_pos, 32> worklist;
3894 auto_vec <pattern_pos, 32> pred_and_mode_tests;
3895 auto_vec <pattern_pos, 32> dup_tests;
3896
3897 worklist.safe_push (pattern_pos (pattern, pos));
3898 while (!worklist.is_empty ())
3899 {
3900 pattern_pos next = worklist.pop ();
3901 pattern = next.pattern;
3902 pos = next.pos;
3903 unsigned int reverse_s = worklist.length ();
3904
3905 enum rtx_code code = GET_CODE (pattern);
3906 switch (code)
3907 {
3908 case MATCH_OP_DUP:
3909 case MATCH_DUP:
3910 case MATCH_PAR_DUP:
3911 /* Add a test that the rtx matches the earlier one, but only
3912 after the structure and predicates have been checked. */
3913 dup_tests.safe_push (pattern_pos (pattern, pos));
3914
3915 /* Use the same code check as the original operand. */
3916 pattern = find_operand (info->def, XINT (pattern, 0), NULL_RTX);
3917 /* Fall through. */
3918
3919 case MATCH_PARALLEL:
3920 case MATCH_OPERAND:
3921 case MATCH_SCRATCH:
3922 case MATCH_OPERATOR:
3923 {
3924 const char *pred_name = predicate_name (pattern);
3925 const struct pred_data *pred = 0;
3926 if (pred_name[0] != 0)
3927 {
3928 pred = lookup_predicate (pred_name);
3929 /* Only report errors once per rtx. */
3930 if (code == GET_CODE (pattern))
3931 {
3932 if (!pred)
3933 error_at (info->loc, "unknown predicate '%s' used in %s",
3934 pred_name, GET_RTX_NAME (code));
3935 else if (code == MATCH_PARALLEL
3936 && pred->singleton != PARALLEL)
3937 error_at (info->loc, "predicate '%s' used in"
3938 " match_parallel does not allow only PARALLEL",
3939 pred->name);
3940 }
3941 }
3942
3943 if (code == MATCH_PARALLEL || code == MATCH_PAR_DUP)
3944 {
3945 /* Check that we have a parallel with enough elements. */
3946 s = add_decision (s, rtx_test::code (pos), PARALLEL, false);
3947 int min_len = XVECLEN (pattern, 2);
3948 s = add_decision (s, rtx_test::veclen_ge (pos, min_len),
3949 true, false);
3950 }
3951 else
3952 {
3953 /* Check that the rtx has one of codes accepted by the
3954 predicate. This is necessary when matching suboperands
3955 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3956 call XEXP (X, N) without checking that X has at least
3957 N+1 operands. */
3958 int_set codes;
3959 get_predicate_codes (pred, &codes);
3960 bool need_codes = (pred
3961 && (code == MATCH_OPERATOR
3962 || code == MATCH_OP_DUP));
3963 s = add_decision (s, rtx_test::code (pos), codes, !need_codes);
3964 }
3965
3966 /* Postpone the predicate check until we've checked the rest
3967 of the rtx structure. */
3968 if (code == GET_CODE (pattern))
3969 pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
3970
3971 /* If we need to match suboperands, add them to the worklist. */
3972 if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
3973 {
3974 position **subpos_ptr;
3975 enum position_type pos_type;
3976 int i;
3977 if (code == MATCH_OPERATOR || code == MATCH_OP_DUP)
3978 {
3979 pos_type = POS_XEXP;
3980 subpos_ptr = &pos->xexps;
3981 i = (code == MATCH_OPERATOR ? 2 : 1);
3982 }
3983 else
3984 {
3985 pos_type = POS_XVECEXP0;
3986 subpos_ptr = &pos->xvecexp0s;
3987 i = 2;
3988 }
3989 for (int j = 0; j < XVECLEN (pattern, i); ++j)
3990 {
3991 position *subpos = next_position (subpos_ptr, pos,
3992 pos_type, j);
3993 worklist.safe_push (pattern_pos (XVECEXP (pattern, i, j),
3994 subpos));
3995 subpos_ptr = &subpos->next;
3996 }
3997 }
3998 break;
3999 }
4000
4001 default:
4002 {
4003 /* Check that the rtx has the right code. */
4004 s = add_decision (s, rtx_test::code (pos), code, false);
4005
4006 /* Queue a test for the mode if one is specified. */
4007 if (GET_MODE (pattern) != VOIDmode)
4008 pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
4009
4010 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
4011 const char *fmt = GET_RTX_FORMAT (code);
4012 position **subpos_ptr = &pos->xexps;
4013 for (size_t i = 0; fmt[i]; ++i)
4014 {
4015 position *subpos = next_position (subpos_ptr, pos,
4016 POS_XEXP, i);
4017 switch (fmt[i])
4018 {
4019 case 'e': case 'u':
4020 worklist.safe_push (pattern_pos (XEXP (pattern, i),
4021 subpos));
4022 break;
4023
4024 case 'E':
4025 {
4026 /* Make sure the vector has the right number of
4027 elements. */
4028 int length = XVECLEN (pattern, i);
4029 s = add_decision (s, rtx_test::veclen (pos),
4030 length, false);
4031
4032 position **subpos2_ptr = &pos->xvecexp0s;
4033 for (int j = 0; j < length; j++)
4034 {
4035 position *subpos2 = next_position (subpos2_ptr, pos,
4036 POS_XVECEXP0, j);
4037 rtx x = XVECEXP (pattern, i, j);
4038 worklist.safe_push (pattern_pos (x, subpos2));
4039 subpos2_ptr = &subpos2->next;
4040 }
4041 break;
4042 }
4043
4044 case 'i':
4045 /* Make sure that XINT (X, I) has the right value. */
4046 s = add_decision (s, rtx_test::int_field (pos, i),
4047 XINT (pattern, i), false);
4048 break;
4049
4050 case 'r':
4051 /* Make sure that REGNO (X) has the right value. */
4052 gcc_assert (i == 0);
4053 s = add_decision (s, rtx_test::regno_field (pos),
4054 REGNO (pattern), false);
4055 break;
4056
4057 case 'w':
4058 /* Make sure that XWINT (X, I) has the right value. */
4059 s = add_decision (s, rtx_test::wide_int_field (pos, i),
4060 XWINT (pattern, 0), false);
4061 break;
4062
4063 case 'p':
4064 /* We don't have a way of parsing polynomial offsets yet,
4065 and hopefully never will. */
4066 s = add_decision (s, rtx_test::subreg_field (pos),
4067 SUBREG_BYTE (pattern).to_constant (),
4068 false);
4069 break;
4070
4071 case '0':
4072 break;
4073
4074 default:
4075 gcc_unreachable ();
4076 }
4077 subpos_ptr = &subpos->next;
4078 }
4079 }
4080 break;
4081 }
4082 /* Operands are pushed onto the worklist so that later indices are
4083 nearer the top. That's what we want for SETs, since a SET_SRC
4084 is a better discriminator than a SET_DEST. In other cases it's
4085 usually better to match earlier indices first. This is especially
4086 true of PARALLELs, where the first element tends to be the most
4087 individual. It's also true for commutative operators, where the
4088 canonicalization rules say that the more complex operand should
4089 come first. */
4090 if (code != SET && worklist.length () > reverse_s)
4091 std::reverse (&worklist[0] + reverse_s,
4092 &worklist[0] + worklist.length ());
4093 }
4094
4095 /* Sort the predicate and mode tests so that they're in depth-first order.
4096 The main goal of this is to put SET_SRC match_operands after SET_DEST
4097 match_operands and after mode checks for the enclosing SET_SRC operators
4098 (such as the mode of a PLUS in an addition instruction). The latter
4099 two types of test can determine the mode exactly, whereas a SET_SRC
4100 match_operand often has to cope with the possibility of the operand
4101 being a modeless constant integer. E.g. something that matches
4102 register_operand (x, SImode) never matches register_operand (x, DImode),
4103 but a const_int that matches immediate_operand (x, SImode) also matches
4104 immediate_operand (x, DImode). The register_operand cases can therefore
4105 be distinguished by a switch on the mode, but the immediate_operand
4106 cases can't. */
4107 if (pred_and_mode_tests.length () > 1)
4108 std::sort (&pred_and_mode_tests[0],
4109 &pred_and_mode_tests[0] + pred_and_mode_tests.length ());
4110
4111 /* Add the mode and predicate tests. */
4112 pattern_pos *e;
4113 unsigned int i;
4114 FOR_EACH_VEC_ELT (pred_and_mode_tests, i, e)
4115 {
4116 switch (GET_CODE (e->pattern))
4117 {
4118 case MATCH_PARALLEL:
4119 case MATCH_OPERAND:
4120 case MATCH_SCRATCH:
4121 case MATCH_OPERATOR:
4122 {
4123 int opno = XINT (e->pattern, 0);
4124 num_operands = MAX (num_operands, opno + 1);
4125 const char *pred_name = predicate_name (e->pattern);
4126 if (pred_name[0])
4127 {
4128 const struct pred_data *pred = lookup_predicate (pred_name);
4129 /* Check the mode first, to distinguish things like SImode
4130 and DImode register_operands, as described above. */
4131 machine_mode mode = GET_MODE (e->pattern);
4132 if (pred && safe_predicate_mode (pred, mode))
4133 s = add_decision (s, rtx_test::mode (e->pos), mode, true);
4134
4135 /* Assign to operands[] first, so that the rtx usually doesn't
4136 need to be live across the call to the predicate.
4137
4138 This shouldn't cause a problem with dirtying the page,
4139 since we fully expect to assign to operands[] at some point,
4140 and since the caller usually writes to other parts of
4141 recog_data anyway. */
4142 s = add_decision (s, rtx_test::set_op (e->pos, opno),
4143 true, false);
4144 s = add_decision (s, rtx_test::predicate (e->pos, pred, mode),
4145 true, false);
4146 }
4147 else
4148 /* Historically we've ignored the mode when there's no
4149 predicate. Just set up operands[] unconditionally. */
4150 s = add_decision (s, rtx_test::set_op (e->pos, opno),
4151 true, false);
4152 break;
4153 }
4154
4155 default:
4156 s = add_decision (s, rtx_test::mode (e->pos),
4157 GET_MODE (e->pattern), false);
4158 break;
4159 }
4160 }
4161
4162 /* Finally add rtx_equal_p checks for duplicated operands. */
4163 FOR_EACH_VEC_ELT (dup_tests, i, e)
4164 s = add_decision (s, rtx_test::duplicate (e->pos, XINT (e->pattern, 0)),
4165 true, false);
4166 return s;
4167 }
4168
4169 /* Add new decisions to S that make it return ACCEPTANCE if:
4170
4171 (1) the rtx doesn't match anything already matched by S
4172 (2) the rtx matches TOP_PATTERN and
4173 (3) the C test required by INFO->def is true
4174
4175 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4176 to match, otherwise it is a single instruction pattern. */
4177
4178 static void
match_pattern_1(state * s,md_rtx_info * info,rtx pattern,acceptance_type acceptance)4179 match_pattern_1 (state *s, md_rtx_info *info, rtx pattern,
4180 acceptance_type acceptance)
4181 {
4182 if (acceptance.type == PEEPHOLE2)
4183 {
4184 /* Match each individual instruction. */
4185 position **subpos_ptr = &peep2_insn_pos_list;
4186 int count = 0;
4187 for (int i = 0; i < XVECLEN (pattern, 0); ++i)
4188 {
4189 rtx x = XVECEXP (pattern, 0, i);
4190 position *subpos = next_position (subpos_ptr, &root_pos,
4191 POS_PEEP2_INSN, count);
4192 if (count > 0)
4193 s = add_decision (s, rtx_test::peep2_count (count + 1),
4194 true, false);
4195 s = match_pattern_2 (s, info, subpos, x);
4196 subpos_ptr = &subpos->next;
4197 count += 1;
4198 }
4199 acceptance.u.full.u.match_len = count - 1;
4200 }
4201 else
4202 {
4203 /* Make the rtx itself. */
4204 s = match_pattern_2 (s, info, &root_pos, pattern);
4205
4206 /* If the match is only valid when extra clobbers are added,
4207 make sure we're able to pass that information to the caller. */
4208 if (acceptance.type == RECOG && acceptance.u.full.u.num_clobbers)
4209 s = add_decision (s, rtx_test::have_num_clobbers (), true, false);
4210 }
4211
4212 /* Make sure that the C test is true. */
4213 const char *c_test = get_c_test (info->def);
4214 if (maybe_eval_c_test (c_test) != 1)
4215 s = add_decision (s, rtx_test::c_test (c_test), true, false);
4216
4217 /* Accept the pattern. */
4218 add_decision (s, rtx_test::accept (acceptance), true, false);
4219 }
4220
4221 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4222 decisions with what's already in S, to reduce the amount of
4223 backtracking. */
4224
4225 static void
match_pattern(state * s,md_rtx_info * info,rtx pattern,acceptance_type acceptance)4226 match_pattern (state *s, md_rtx_info *info, rtx pattern,
4227 acceptance_type acceptance)
4228 {
4229 if (merge_states_p)
4230 {
4231 state root;
4232 /* Add the decisions to a fresh state and then merge the full tree
4233 into the existing one. */
4234 match_pattern_1 (&root, info, pattern, acceptance);
4235 merge_into_state (s, &root);
4236 }
4237 else
4238 match_pattern_1 (s, info, pattern, acceptance);
4239 }
4240
4241 /* Begin the output file. */
4242
4243 static void
write_header(void)4244 write_header (void)
4245 {
4246 puts ("\
4247 /* Generated automatically by the program `genrecog' from the target\n\
4248 machine description file. */\n\
4249 \n\
4250 #define IN_TARGET_CODE 1\n\
4251 \n\
4252 #include \"config.h\"\n\
4253 #include \"system.h\"\n\
4254 #include \"coretypes.h\"\n\
4255 #include \"backend.h\"\n\
4256 #include \"predict.h\"\n\
4257 #include \"rtl.h\"\n\
4258 #include \"memmodel.h\"\n\
4259 #include \"tm_p.h\"\n\
4260 #include \"emit-rtl.h\"\n\
4261 #include \"insn-config.h\"\n\
4262 #include \"recog.h\"\n\
4263 #include \"output.h\"\n\
4264 #include \"flags.h\"\n\
4265 #include \"df.h\"\n\
4266 #include \"resource.h\"\n\
4267 #include \"diagnostic-core.h\"\n\
4268 #include \"reload.h\"\n\
4269 #include \"regs.h\"\n\
4270 #include \"tm-constrs.h\"\n\
4271 \n");
4272
4273 puts ("\n\
4274 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4275 X0 is a valid instruction.\n\
4276 \n\
4277 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4278 returns a nonnegative number which is the insn code number for the\n\
4279 pattern that matched. This is the same as the order in the machine\n\
4280 description of the entry that matched. This number can be used as an\n\
4281 index into `insn_data' and other tables.\n");
4282 puts ("\
4283 The third parameter to recog is an optional pointer to an int. If\n\
4284 present, recog will accept a pattern if it matches except for missing\n\
4285 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4286 the optional pointer will be set to the number of CLOBBERs that need\n\
4287 to be added (it should be initialized to zero by the caller). If it");
4288 puts ("\
4289 is set nonzero, the caller should allocate a PARALLEL of the\n\
4290 appropriate size, copy the initial entries, and call add_clobbers\n\
4291 (found in insn-emit.c) to fill in the CLOBBERs.\n\
4292 ");
4293
4294 puts ("\n\
4295 The function split_insns returns 0 if the rtl could not\n\
4296 be split or the split rtl as an INSN list if it can be.\n\
4297 \n\
4298 The function peephole2_insns returns 0 if the rtl could not\n\
4299 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4300 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4301 */\n\n");
4302 }
4303
4304 /* Return the C type of a parameter with type TYPE. */
4305
4306 static const char *
parameter_type_string(parameter::type_enum type)4307 parameter_type_string (parameter::type_enum type)
4308 {
4309 switch (type)
4310 {
4311 case parameter::UNSET:
4312 break;
4313
4314 case parameter::CODE:
4315 return "rtx_code";
4316
4317 case parameter::MODE:
4318 return "machine_mode";
4319
4320 case parameter::INT:
4321 return "int";
4322
4323 case parameter::UINT:
4324 return "unsigned int";
4325
4326 case parameter::WIDE_INT:
4327 return "HOST_WIDE_INT";
4328 }
4329 gcc_unreachable ();
4330 }
4331
4332 /* Return true if ACCEPTANCE requires only a single C statement even in
4333 a backtracking context. */
4334
4335 static bool
single_statement_p(const acceptance_type & acceptance)4336 single_statement_p (const acceptance_type &acceptance)
4337 {
4338 if (acceptance.partial_p)
4339 /* We need to handle failures of the subroutine. */
4340 return false;
4341 switch (acceptance.type)
4342 {
4343 case SUBPATTERN:
4344 case SPLIT:
4345 return true;
4346
4347 case RECOG:
4348 /* False if we need to assign to pnum_clobbers. */
4349 return acceptance.u.full.u.num_clobbers == 0;
4350
4351 case PEEPHOLE2:
4352 /* We need to assign to pmatch_len_ and handle null returns from the
4353 peephole2 routine. */
4354 return false;
4355 }
4356 gcc_unreachable ();
4357 }
4358
4359 /* Return the C failure value for a routine of type TYPE. */
4360
4361 static const char *
get_failure_return(routine_type type)4362 get_failure_return (routine_type type)
4363 {
4364 switch (type)
4365 {
4366 case SUBPATTERN:
4367 case RECOG:
4368 return "-1";
4369
4370 case SPLIT:
4371 case PEEPHOLE2:
4372 return "NULL";
4373 }
4374 gcc_unreachable ();
4375 }
4376
4377 /* Indicates whether a block of code always returns or whether it can fall
4378 through. */
4379
4380 enum exit_state {
4381 ES_RETURNED,
4382 ES_FALLTHROUGH
4383 };
4384
4385 /* Information used while writing out code. */
4386
4387 struct output_state
4388 {
4389 /* The type of routine that we're generating. */
4390 routine_type type;
4391
4392 /* Maps position ids to xN variable numbers. The entry is only valid if
4393 it is less than the length of VAR_TO_ID, but this holds for every position
4394 tested by a state when writing out that state. */
4395 auto_vec <unsigned int> id_to_var;
4396
4397 /* Maps xN variable numbers to position ids. */
4398 auto_vec <unsigned int> var_to_id;
4399
4400 /* Index N is true if variable xN has already been set. */
4401 auto_vec <bool> seen_vars;
4402 };
4403
4404 /* Return true if D is a call to a pattern routine and if there is some X
4405 such that the transition for pattern result N goes to a successful return
4406 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4407 to the number of return values. (We know that every PATTERN decision has
4408 a transition for every successful return.) */
4409
4410 static bool
terminal_pattern_p(decision * d,unsigned int * base_out,unsigned int * count_out)4411 terminal_pattern_p (decision *d, unsigned int *base_out,
4412 unsigned int *count_out)
4413 {
4414 if (d->test.kind != rtx_test::PATTERN)
4415 return false;
4416 unsigned int base = 0;
4417 unsigned int count = 0;
4418 for (transition *trans = d->first; trans; trans = trans->next)
4419 {
4420 if (trans->is_param || trans->labels.length () != 1)
4421 return false;
4422 decision *subd = trans->to->singleton ();
4423 if (!subd || subd->test.kind != rtx_test::ACCEPT)
4424 return false;
4425 unsigned int this_base = (subd->test.u.acceptance.u.full.code
4426 - trans->labels[0]);
4427 if (trans == d->first)
4428 base = this_base;
4429 else if (base != this_base)
4430 return false;
4431 count += 1;
4432 }
4433 *base_out = base;
4434 *count_out = count;
4435 return true;
4436 }
4437
4438 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4439 already available in state OS. */
4440
4441 static bool
test_position_available_p(output_state * os,const rtx_test & test)4442 test_position_available_p (output_state *os, const rtx_test &test)
4443 {
4444 return (!test.pos
4445 || test.pos_operand >= 0
4446 || os->seen_vars[os->id_to_var[test.pos->id]]);
4447 }
4448
4449 /* Like printf, but print INDENT spaces at the beginning. */
4450
4451 static void ATTRIBUTE_PRINTF_2
printf_indent(unsigned int indent,const char * format,...)4452 printf_indent (unsigned int indent, const char *format, ...)
4453 {
4454 va_list ap;
4455 va_start (ap, format);
4456 printf ("%*s", indent, "");
4457 vprintf (format, ap);
4458 va_end (ap);
4459 }
4460
4461 /* Emit code to initialize the variable associated with POS, if it isn't
4462 already valid in state OS. Indent each line by INDENT spaces. Update
4463 OS with the new state. */
4464
4465 static void
change_state(output_state * os,position * pos,unsigned int indent)4466 change_state (output_state *os, position *pos, unsigned int indent)
4467 {
4468 unsigned int var = os->id_to_var[pos->id];
4469 gcc_assert (var < os->var_to_id.length () && os->var_to_id[var] == pos->id);
4470 if (os->seen_vars[var])
4471 return;
4472 switch (pos->type)
4473 {
4474 case POS_PEEP2_INSN:
4475 printf_indent (indent, "x%d = PATTERN (peep2_next_insn (%d));\n",
4476 var, pos->arg);
4477 break;
4478
4479 case POS_XEXP:
4480 change_state (os, pos->base, indent);
4481 printf_indent (indent, "x%d = XEXP (x%d, %d);\n",
4482 var, os->id_to_var[pos->base->id], pos->arg);
4483 break;
4484
4485 case POS_XVECEXP0:
4486 change_state (os, pos->base, indent);
4487 printf_indent (indent, "x%d = XVECEXP (x%d, 0, %d);\n",
4488 var, os->id_to_var[pos->base->id], pos->arg);
4489 break;
4490 }
4491 os->seen_vars[var] = true;
4492 }
4493
4494 /* Print the enumerator constant for CODE -- the upcase version of
4495 the name. */
4496
4497 static void
print_code(enum rtx_code code)4498 print_code (enum rtx_code code)
4499 {
4500 const char *p;
4501 for (p = GET_RTX_NAME (code); *p; p++)
4502 putchar (TOUPPER (*p));
4503 }
4504
4505 /* Emit a uint64_t as an integer constant expression. We need to take
4506 special care to avoid "decimal constant is so large that it is unsigned"
4507 warnings in the resulting code. */
4508
4509 static void
print_host_wide_int(uint64_t val)4510 print_host_wide_int (uint64_t val)
4511 {
4512 uint64_t min = uint64_t (1) << (HOST_BITS_PER_WIDE_INT - 1);
4513 if (val == min)
4514 printf ("(" HOST_WIDE_INT_PRINT_DEC_C " - 1)", val + 1);
4515 else
4516 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
4517 }
4518
4519 /* Print the C expression for actual parameter PARAM. */
4520
4521 static void
print_parameter_value(const parameter & param)4522 print_parameter_value (const parameter ¶m)
4523 {
4524 if (param.is_param)
4525 printf ("i%d", (int) param.value + 1);
4526 else
4527 switch (param.type)
4528 {
4529 case parameter::UNSET:
4530 gcc_unreachable ();
4531 break;
4532
4533 case parameter::CODE:
4534 print_code ((enum rtx_code) param.value);
4535 break;
4536
4537 case parameter::MODE:
4538 printf ("E_%smode", GET_MODE_NAME ((machine_mode) param.value));
4539 break;
4540
4541 case parameter::INT:
4542 printf ("%d", (int) param.value);
4543 break;
4544
4545 case parameter::UINT:
4546 printf ("%u", (unsigned int) param.value);
4547 break;
4548
4549 case parameter::WIDE_INT:
4550 print_host_wide_int (param.value);
4551 break;
4552 }
4553 }
4554
4555 /* Print the C expression for the rtx tested by TEST. */
4556
4557 static void
print_test_rtx(output_state * os,const rtx_test & test)4558 print_test_rtx (output_state *os, const rtx_test &test)
4559 {
4560 if (test.pos_operand >= 0)
4561 printf ("operands[%d]", test.pos_operand);
4562 else
4563 printf ("x%d", os->id_to_var[test.pos->id]);
4564 }
4565
4566 /* Print the C expression for non-boolean test TEST. */
4567
4568 static void
print_nonbool_test(output_state * os,const rtx_test & test)4569 print_nonbool_test (output_state *os, const rtx_test &test)
4570 {
4571 switch (test.kind)
4572 {
4573 case rtx_test::CODE:
4574 printf ("GET_CODE (");
4575 print_test_rtx (os, test);
4576 printf (")");
4577 break;
4578
4579 case rtx_test::MODE:
4580 printf ("GET_MODE (");
4581 print_test_rtx (os, test);
4582 printf (")");
4583 break;
4584
4585 case rtx_test::VECLEN:
4586 printf ("XVECLEN (");
4587 print_test_rtx (os, test);
4588 printf (", 0)");
4589 break;
4590
4591 case rtx_test::INT_FIELD:
4592 printf ("XINT (");
4593 print_test_rtx (os, test);
4594 printf (", %d)", test.u.opno);
4595 break;
4596
4597 case rtx_test::REGNO_FIELD:
4598 printf ("REGNO (");
4599 print_test_rtx (os, test);
4600 printf (")");
4601 break;
4602
4603 case rtx_test::SUBREG_FIELD:
4604 printf ("SUBREG_BYTE (");
4605 print_test_rtx (os, test);
4606 printf (")");
4607 break;
4608
4609 case rtx_test::WIDE_INT_FIELD:
4610 printf ("XWINT (");
4611 print_test_rtx (os, test);
4612 printf (", %d)", test.u.opno);
4613 break;
4614
4615 case rtx_test::PATTERN:
4616 {
4617 pattern_routine *routine = test.u.pattern->routine;
4618 printf ("pattern%d (", routine->pattern_id);
4619 const char *sep = "";
4620 if (test.pos)
4621 {
4622 print_test_rtx (os, test);
4623 sep = ", ";
4624 }
4625 if (routine->insn_p)
4626 {
4627 printf ("%sinsn", sep);
4628 sep = ", ";
4629 }
4630 if (routine->pnum_clobbers_p)
4631 {
4632 printf ("%spnum_clobbers", sep);
4633 sep = ", ";
4634 }
4635 for (unsigned int i = 0; i < test.u.pattern->params.length (); ++i)
4636 {
4637 fputs (sep, stdout);
4638 print_parameter_value (test.u.pattern->params[i]);
4639 sep = ", ";
4640 }
4641 printf (")");
4642 break;
4643 }
4644
4645 case rtx_test::PEEP2_COUNT:
4646 case rtx_test::VECLEN_GE:
4647 case rtx_test::SAVED_CONST_INT:
4648 case rtx_test::DUPLICATE:
4649 case rtx_test::PREDICATE:
4650 case rtx_test::SET_OP:
4651 case rtx_test::HAVE_NUM_CLOBBERS:
4652 case rtx_test::C_TEST:
4653 case rtx_test::ACCEPT:
4654 gcc_unreachable ();
4655 }
4656 }
4657
4658 /* IS_PARAM and LABEL are taken from a transition whose source
4659 decision performs TEST. Print the C code for the label. */
4660
4661 static void
print_label_value(const rtx_test & test,bool is_param,uint64_t value)4662 print_label_value (const rtx_test &test, bool is_param, uint64_t value)
4663 {
4664 print_parameter_value (parameter (transition_parameter_type (test.kind),
4665 is_param, value));
4666 }
4667
4668 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4669 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4670 Test for inequality if INVERT_P, otherwise test for equality. */
4671
4672 static void
print_test(output_state * os,const rtx_test & test,bool is_param,uint64_t value,bool invert_p)4673 print_test (output_state *os, const rtx_test &test, bool is_param,
4674 uint64_t value, bool invert_p)
4675 {
4676 switch (test.kind)
4677 {
4678 /* Handle the non-boolean TESTs. */
4679 case rtx_test::CODE:
4680 case rtx_test::MODE:
4681 case rtx_test::VECLEN:
4682 case rtx_test::REGNO_FIELD:
4683 case rtx_test::INT_FIELD:
4684 case rtx_test::WIDE_INT_FIELD:
4685 case rtx_test::PATTERN:
4686 print_nonbool_test (os, test);
4687 printf (" %s ", invert_p ? "!=" : "==");
4688 print_label_value (test, is_param, value);
4689 break;
4690
4691 case rtx_test::SUBREG_FIELD:
4692 printf ("%s (", invert_p ? "maybe_ne" : "known_eq");
4693 print_nonbool_test (os, test);
4694 printf (", ");
4695 print_label_value (test, is_param, value);
4696 printf (")");
4697 break;
4698
4699 case rtx_test::SAVED_CONST_INT:
4700 gcc_assert (!is_param && value == 1);
4701 print_test_rtx (os, test);
4702 printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4703 invert_p ? "!=" : "==");
4704 print_parameter_value (parameter (parameter::INT,
4705 test.u.integer.is_param,
4706 test.u.integer.value));
4707 printf ("]");
4708 break;
4709
4710 case rtx_test::PEEP2_COUNT:
4711 gcc_assert (!is_param && value == 1);
4712 printf ("peep2_current_count %s %d", invert_p ? "<" : ">=",
4713 test.u.min_len);
4714 break;
4715
4716 case rtx_test::VECLEN_GE:
4717 gcc_assert (!is_param && value == 1);
4718 printf ("XVECLEN (");
4719 print_test_rtx (os, test);
4720 printf (", 0) %s %d", invert_p ? "<" : ">=", test.u.min_len);
4721 break;
4722
4723 case rtx_test::PREDICATE:
4724 gcc_assert (!is_param && value == 1);
4725 printf ("%s%s (", invert_p ? "!" : "", test.u.predicate.data->name);
4726 print_test_rtx (os, test);
4727 printf (", ");
4728 print_parameter_value (parameter (parameter::MODE,
4729 test.u.predicate.mode_is_param,
4730 test.u.predicate.mode));
4731 printf (")");
4732 break;
4733
4734 case rtx_test::DUPLICATE:
4735 gcc_assert (!is_param && value == 1);
4736 printf ("%srtx_equal_p (", invert_p ? "!" : "");
4737 print_test_rtx (os, test);
4738 printf (", operands[%d])", test.u.opno);
4739 break;
4740
4741 case rtx_test::HAVE_NUM_CLOBBERS:
4742 gcc_assert (!is_param && value == 1);
4743 printf ("pnum_clobbers %s NULL", invert_p ? "==" : "!=");
4744 break;
4745
4746 case rtx_test::C_TEST:
4747 gcc_assert (!is_param && value == 1);
4748 if (invert_p)
4749 printf ("!");
4750 rtx_reader_ptr->print_c_condition (test.u.string);
4751 break;
4752
4753 case rtx_test::ACCEPT:
4754 case rtx_test::SET_OP:
4755 gcc_unreachable ();
4756 }
4757 }
4758
4759 static exit_state print_decision (output_state *, decision *,
4760 unsigned int, bool);
4761
4762 /* Print code to perform S, indent each line by INDENT spaces.
4763 IS_FINAL is true if there are no fallback decisions to test on failure;
4764 if the state fails then the entire routine fails. */
4765
4766 static exit_state
print_state(output_state * os,state * s,unsigned int indent,bool is_final)4767 print_state (output_state *os, state *s, unsigned int indent, bool is_final)
4768 {
4769 exit_state es = ES_FALLTHROUGH;
4770 for (decision *d = s->first; d; d = d->next)
4771 es = print_decision (os, d, indent, is_final && !d->next);
4772 if (es != ES_RETURNED && is_final)
4773 {
4774 printf_indent (indent, "return %s;\n", get_failure_return (os->type));
4775 es = ES_RETURNED;
4776 }
4777 return es;
4778 }
4779
4780 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4781 is known to be true). Return the C condition that indicates a successful
4782 match. */
4783
4784 static const char *
print_subroutine_call(const acceptance_type & acceptance)4785 print_subroutine_call (const acceptance_type &acceptance)
4786 {
4787 switch (acceptance.type)
4788 {
4789 case SUBPATTERN:
4790 gcc_unreachable ();
4791
4792 case RECOG:
4793 printf ("recog_%d (x1, insn, pnum_clobbers)",
4794 acceptance.u.subroutine_id);
4795 return ">= 0";
4796
4797 case SPLIT:
4798 printf ("split_%d (x1, insn)", acceptance.u.subroutine_id);
4799 return "!= NULL_RTX";
4800
4801 case PEEPHOLE2:
4802 printf ("peephole2_%d (x1, insn, pmatch_len_)",
4803 acceptance.u.subroutine_id);
4804 return "!= NULL_RTX";
4805 }
4806 gcc_unreachable ();
4807 }
4808
4809 /* Print code for the successful match described by ACCEPTANCE.
4810 INDENT and IS_FINAL are as for print_state. */
4811
4812 static exit_state
print_acceptance(const acceptance_type & acceptance,unsigned int indent,bool is_final)4813 print_acceptance (const acceptance_type &acceptance, unsigned int indent,
4814 bool is_final)
4815 {
4816 if (acceptance.partial_p)
4817 {
4818 /* Defer the rest of the match to a subroutine. */
4819 if (is_final)
4820 {
4821 printf_indent (indent, "return ");
4822 print_subroutine_call (acceptance);
4823 printf (";\n");
4824 return ES_RETURNED;
4825 }
4826 else
4827 {
4828 printf_indent (indent, "res = ");
4829 const char *res_test = print_subroutine_call (acceptance);
4830 printf (";\n");
4831 printf_indent (indent, "if (res %s)\n", res_test);
4832 printf_indent (indent + 2, "return res;\n");
4833 return ES_FALLTHROUGH;
4834 }
4835 }
4836 switch (acceptance.type)
4837 {
4838 case SUBPATTERN:
4839 printf_indent (indent, "return %d;\n", acceptance.u.full.code);
4840 return ES_RETURNED;
4841
4842 case RECOG:
4843 if (acceptance.u.full.u.num_clobbers != 0)
4844 printf_indent (indent, "*pnum_clobbers = %d;\n",
4845 acceptance.u.full.u.num_clobbers);
4846 printf_indent (indent, "return %d; /* %s */\n", acceptance.u.full.code,
4847 get_insn_name (acceptance.u.full.code));
4848 return ES_RETURNED;
4849
4850 case SPLIT:
4851 printf_indent (indent, "return gen_split_%d (insn, operands);\n",
4852 acceptance.u.full.code);
4853 return ES_RETURNED;
4854
4855 case PEEPHOLE2:
4856 printf_indent (indent, "*pmatch_len_ = %d;\n",
4857 acceptance.u.full.u.match_len);
4858 if (is_final)
4859 {
4860 printf_indent (indent, "return gen_peephole2_%d (insn, operands);\n",
4861 acceptance.u.full.code);
4862 return ES_RETURNED;
4863 }
4864 else
4865 {
4866 printf_indent (indent, "res = gen_peephole2_%d (insn, operands);\n",
4867 acceptance.u.full.code);
4868 printf_indent (indent, "if (res != NULL_RTX)\n");
4869 printf_indent (indent + 2, "return res;\n");
4870 return ES_FALLTHROUGH;
4871 }
4872 }
4873 gcc_unreachable ();
4874 }
4875
4876 /* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4877
4878 static exit_state
print_decision(output_state * os,decision * d,unsigned int indent,bool is_final)4879 print_decision (output_state *os, decision *d, unsigned int indent,
4880 bool is_final)
4881 {
4882 uint64_t label;
4883 unsigned int base, count;
4884
4885 /* Make sure the rtx under test is available either in operands[] or
4886 in an xN variable. */
4887 if (d->test.pos && d->test.pos_operand < 0)
4888 change_state (os, d->test.pos, indent);
4889
4890 /* Look for cases where a pattern routine P1 calls another pattern routine
4891 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4892 is true and BASE is zero we can simply use:
4893
4894 return patternN (...);
4895
4896 Otherwise we can use:
4897
4898 res = patternN (...);
4899 if (res >= 0)
4900 return res + BASE;
4901
4902 However, if BASE is nonzero and patternN only returns 0 or -1,
4903 the usual "return BASE;" is better than "return res + BASE;".
4904 If BASE is zero, "return res;" should be better than "return 0;",
4905 since no assignment to the return register is required. */
4906 if (os->type == SUBPATTERN
4907 && terminal_pattern_p (d, &base, &count)
4908 && (base == 0 || count > 1))
4909 {
4910 if (is_final && base == 0)
4911 {
4912 printf_indent (indent, "return ");
4913 print_nonbool_test (os, d->test);
4914 printf ("; /* [-1, %d] */\n", count - 1);
4915 return ES_RETURNED;
4916 }
4917 else
4918 {
4919 printf_indent (indent, "res = ");
4920 print_nonbool_test (os, d->test);
4921 printf (";\n");
4922 printf_indent (indent, "if (res >= 0)\n");
4923 printf_indent (indent + 2, "return res");
4924 if (base != 0)
4925 printf (" + %d", base);
4926 printf ("; /* [%d, %d] */\n", base, base + count - 1);
4927 return ES_FALLTHROUGH;
4928 }
4929 }
4930 else if (d->test.kind == rtx_test::ACCEPT)
4931 return print_acceptance (d->test.u.acceptance, indent, is_final);
4932 else if (d->test.kind == rtx_test::SET_OP)
4933 {
4934 printf_indent (indent, "operands[%d] = ", d->test.u.opno);
4935 print_test_rtx (os, d->test);
4936 printf (";\n");
4937 return print_state (os, d->singleton ()->to, indent, is_final);
4938 }
4939 /* Handle decisions with a single transition and a single transition
4940 label. */
4941 else if (d->if_statement_p (&label))
4942 {
4943 transition *trans = d->singleton ();
4944 if (mark_optional_transitions_p && trans->optional)
4945 printf_indent (indent, "/* OPTIONAL IF */\n");
4946
4947 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4948 so that we return immediately on failure and fall through on
4949 success. */
4950 printf_indent (indent, "if (");
4951 print_test (os, d->test, trans->is_param, label, is_final);
4952
4953 /* Look for following states that would be handled by this code
4954 on recursion. If they don't need any preparatory statements,
4955 include them in the current "if" statement rather than creating
4956 a new one. */
4957 for (;;)
4958 {
4959 d = trans->to->singleton ();
4960 if (!d
4961 || d->test.kind == rtx_test::ACCEPT
4962 || d->test.kind == rtx_test::SET_OP
4963 || !d->if_statement_p (&label)
4964 || !test_position_available_p (os, d->test))
4965 break;
4966 trans = d->first;
4967 printf ("\n");
4968 if (mark_optional_transitions_p && trans->optional)
4969 printf_indent (indent + 4, "/* OPTIONAL IF */\n");
4970 printf_indent (indent + 4, "%s ", is_final ? "||" : "&&");
4971 print_test (os, d->test, trans->is_param, label, is_final);
4972 }
4973 printf (")\n");
4974
4975 /* Print the conditional code with INDENT + 2 and the fallthrough
4976 code with indent INDENT. */
4977 state *to = trans->to;
4978 if (is_final)
4979 {
4980 /* We inverted the condition above, so return failure in the
4981 "if" body and fall through to the target of the transition. */
4982 printf_indent (indent + 2, "return %s;\n",
4983 get_failure_return (os->type));
4984 return print_state (os, to, indent, is_final);
4985 }
4986 else if (to->singleton ()
4987 && to->first->test.kind == rtx_test::ACCEPT
4988 && single_statement_p (to->first->test.u.acceptance))
4989 {
4990 /* The target of the transition is a simple "return" statement.
4991 It doesn't need any braces and doesn't fall through. */
4992 if (print_acceptance (to->first->test.u.acceptance,
4993 indent + 2, true) != ES_RETURNED)
4994 gcc_unreachable ();
4995 return ES_FALLTHROUGH;
4996 }
4997 else
4998 {
4999 /* The general case. Output code for the target of the transition
5000 in braces. This will not invalidate any of the xN variables
5001 that are already valid, but we mustn't rely on any that are
5002 set by the "if" body. */
5003 auto_vec <bool, 32> old_seen;
5004 old_seen.safe_splice (os->seen_vars);
5005
5006 printf_indent (indent + 2, "{\n");
5007 print_state (os, trans->to, indent + 4, is_final);
5008 printf_indent (indent + 2, "}\n");
5009
5010 os->seen_vars.truncate (0);
5011 os->seen_vars.splice (old_seen);
5012 return ES_FALLTHROUGH;
5013 }
5014 }
5015 else
5016 {
5017 /* Output the decision as a switch statement. */
5018 printf_indent (indent, "switch (");
5019 print_nonbool_test (os, d->test);
5020 printf (")\n");
5021
5022 /* Each case statement starts with the same set of valid variables.
5023 These are also the only variables will be valid on fallthrough. */
5024 auto_vec <bool, 32> old_seen;
5025 old_seen.safe_splice (os->seen_vars);
5026
5027 printf_indent (indent + 2, "{\n");
5028 for (transition *trans = d->first; trans; trans = trans->next)
5029 {
5030 gcc_assert (!trans->is_param);
5031 if (mark_optional_transitions_p && trans->optional)
5032 printf_indent (indent + 2, "/* OPTIONAL CASE */\n");
5033 for (int_set::iterator j = trans->labels.begin ();
5034 j != trans->labels.end (); ++j)
5035 {
5036 printf_indent (indent + 2, "case ");
5037 print_label_value (d->test, trans->is_param, *j);
5038 printf (":\n");
5039 }
5040 if (print_state (os, trans->to, indent + 4, is_final))
5041 {
5042 /* The state can fall through. Add an explicit break. */
5043 gcc_assert (!is_final);
5044 printf_indent (indent + 4, "break;\n");
5045 }
5046 printf ("\n");
5047
5048 /* Restore the original set of valid variables. */
5049 os->seen_vars.truncate (0);
5050 os->seen_vars.splice (old_seen);
5051 }
5052 /* Add a default case. */
5053 printf_indent (indent + 2, "default:\n");
5054 if (is_final)
5055 printf_indent (indent + 4, "return %s;\n",
5056 get_failure_return (os->type));
5057 else
5058 printf_indent (indent + 4, "break;\n");
5059 printf_indent (indent + 2, "}\n");
5060 return is_final ? ES_RETURNED : ES_FALLTHROUGH;
5061 }
5062 }
5063
5064 /* Make sure that OS has a position variable for POS. ROOT_P is true if
5065 POS is the root position for the routine. */
5066
5067 static void
assign_position_var(output_state * os,position * pos,bool root_p)5068 assign_position_var (output_state *os, position *pos, bool root_p)
5069 {
5070 unsigned int idx = os->id_to_var[pos->id];
5071 if (idx < os->var_to_id.length () && os->var_to_id[idx] == pos->id)
5072 return;
5073 if (!root_p && pos->type != POS_PEEP2_INSN)
5074 assign_position_var (os, pos->base, false);
5075 os->id_to_var[pos->id] = os->var_to_id.length ();
5076 os->var_to_id.safe_push (pos->id);
5077 }
5078
5079 /* Make sure that OS has the position variables required by S. */
5080
5081 static void
assign_position_vars(output_state * os,state * s)5082 assign_position_vars (output_state *os, state *s)
5083 {
5084 for (decision *d = s->first; d; d = d->next)
5085 {
5086 /* Positions associated with operands can be read from the
5087 operands[] array. */
5088 if (d->test.pos && d->test.pos_operand < 0)
5089 assign_position_var (os, d->test.pos, false);
5090 for (transition *trans = d->first; trans; trans = trans->next)
5091 assign_position_vars (os, trans->to);
5092 }
5093 }
5094
5095 /* Print the open brace and variable definitions for a routine that
5096 implements S. ROOT is the deepest rtx from which S can access all
5097 relevant parts of the first instruction it matches. Initialize OS
5098 so that every relevant position has an rtx variable xN and so that
5099 only ROOT's variable has a valid value. */
5100
5101 static void
print_subroutine_start(output_state * os,state * s,position * root)5102 print_subroutine_start (output_state *os, state *s, position *root)
5103 {
5104 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
5105 " = &recog_data.operand[0];\n");
5106 os->var_to_id.truncate (0);
5107 os->seen_vars.truncate (0);
5108 if (root)
5109 {
5110 /* Create a fake entry for position 0 so that an id_to_var of 0
5111 is always invalid. This also makes the xN variables naturally
5112 1-based rather than 0-based. */
5113 os->var_to_id.safe_push (num_positions);
5114
5115 /* Associate ROOT with x1. */
5116 assign_position_var (os, root, true);
5117
5118 /* Assign xN variables to all other relevant positions. */
5119 assign_position_vars (os, s);
5120
5121 /* Output the variable declarations (except for ROOT's, which is
5122 passed in as a parameter). */
5123 unsigned int num_vars = os->var_to_id.length ();
5124 if (num_vars > 2)
5125 {
5126 for (unsigned int i = 2; i < num_vars; ++i)
5127 /* Print 8 rtx variables to a line. */
5128 printf ("%s x%d",
5129 i == 2 ? " rtx" : (i - 2) % 8 == 0 ? ";\n rtx" : ",", i);
5130 printf (";\n");
5131 }
5132
5133 /* Say that x1 is valid and the rest aren't. */
5134 os->seen_vars.safe_grow_cleared (num_vars);
5135 os->seen_vars[1] = true;
5136 }
5137 if (os->type == SUBPATTERN || os->type == RECOG)
5138 printf (" int res ATTRIBUTE_UNUSED;\n");
5139 else
5140 printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n");
5141 }
5142
5143 /* Output the definition of pattern routine ROUTINE. */
5144
5145 static void
print_pattern(output_state * os,pattern_routine * routine)5146 print_pattern (output_state *os, pattern_routine *routine)
5147 {
5148 printf ("\nstatic int\npattern%d (", routine->pattern_id);
5149 const char *sep = "";
5150 /* Add the top-level rtx parameter, if any. */
5151 if (routine->pos)
5152 {
5153 printf ("%srtx x1", sep);
5154 sep = ", ";
5155 }
5156 /* Add the optional parameters. */
5157 if (routine->insn_p)
5158 {
5159 /* We can't easily tell whether a C condition actually reads INSN,
5160 so add an ATTRIBUTE_UNUSED just in case. */
5161 printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep);
5162 sep = ", ";
5163 }
5164 if (routine->pnum_clobbers_p)
5165 {
5166 printf ("%sint *pnum_clobbers", sep);
5167 sep = ", ";
5168 }
5169 /* Add the "i" parameters. */
5170 for (unsigned int i = 0; i < routine->param_types.length (); ++i)
5171 {
5172 printf ("%s%s i%d", sep,
5173 parameter_type_string (routine->param_types[i]), i + 1);
5174 sep = ", ";
5175 }
5176 printf (")\n");
5177 os->type = SUBPATTERN;
5178 print_subroutine_start (os, routine->s, routine->pos);
5179 print_state (os, routine->s, 2, true);
5180 printf ("}\n");
5181 }
5182
5183 /* Output a routine of type TYPE that implements S. PROC_ID is the
5184 number of the subroutine associated with S, or 0 if S is the main
5185 routine. */
5186
5187 static void
print_subroutine(output_state * os,state * s,int proc_id)5188 print_subroutine (output_state *os, state *s, int proc_id)
5189 {
5190 printf ("\n");
5191 switch (os->type)
5192 {
5193 case SUBPATTERN:
5194 gcc_unreachable ();
5195
5196 case RECOG:
5197 if (proc_id)
5198 printf ("static int\nrecog_%d", proc_id);
5199 else
5200 printf ("int\nrecog");
5201 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5202 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5203 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n");
5204 break;
5205
5206 case SPLIT:
5207 if (proc_id)
5208 printf ("static rtx_insn *\nsplit_%d", proc_id);
5209 else
5210 printf ("rtx_insn *\nsplit_insns");
5211 printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5212 break;
5213
5214 case PEEPHOLE2:
5215 if (proc_id)
5216 printf ("static rtx_insn *\npeephole2_%d", proc_id);
5217 else
5218 printf ("rtx_insn *\npeephole2_insns");
5219 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5220 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5221 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5222 break;
5223 }
5224 print_subroutine_start (os, s, &root_pos);
5225 if (proc_id == 0)
5226 {
5227 printf (" recog_data.insn = NULL;\n");
5228 }
5229 print_state (os, s, 2, true);
5230 printf ("}\n");
5231 }
5232
5233 /* Print out a routine of type TYPE that performs ROOT. */
5234
5235 static void
print_subroutine_group(output_state * os,routine_type type,state * root)5236 print_subroutine_group (output_state *os, routine_type type, state *root)
5237 {
5238 os->type = type;
5239 if (use_subroutines_p)
5240 {
5241 /* Split ROOT up into smaller pieces, both for readability and to
5242 help the compiler. */
5243 auto_vec <state *> subroutines;
5244 find_subroutines (type, root, subroutines);
5245
5246 /* Output the subroutines (but not ROOT itself). */
5247 unsigned int i;
5248 state *s;
5249 FOR_EACH_VEC_ELT (subroutines, i, s)
5250 print_subroutine (os, s, i + 1);
5251 }
5252 /* Output the main routine. */
5253 print_subroutine (os, root, 0);
5254 }
5255
5256 /* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5257
5258 static rtx
get_peephole2_pattern(md_rtx_info * info)5259 get_peephole2_pattern (md_rtx_info *info)
5260 {
5261 int i, j;
5262 rtvec vec = XVEC (info->def, 0);
5263 rtx pattern = rtx_alloc (SEQUENCE);
5264 XVEC (pattern, 0) = rtvec_alloc (GET_NUM_ELEM (vec));
5265 for (i = j = 0; i < GET_NUM_ELEM (vec); i++)
5266 {
5267 rtx x = RTVEC_ELT (vec, i);
5268 /* Ignore scratch register requirements. */
5269 if (GET_CODE (x) != MATCH_SCRATCH && GET_CODE (x) != MATCH_DUP)
5270 {
5271 XVECEXP (pattern, 0, j) = x;
5272 j++;
5273 }
5274 }
5275 XVECLEN (pattern, 0) = j;
5276 if (j == 0)
5277 error_at (info->loc, "empty define_peephole2");
5278 return pattern;
5279 }
5280
5281 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5282 rtx can be added automatically by add_clobbers. If so, update
5283 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5284 of such trailing rtxes and update *PATTERN_PTR so that it contains
5285 the pattern without those rtxes. */
5286
5287 static bool
remove_clobbers(acceptance_type * acceptance_ptr,rtx * pattern_ptr)5288 remove_clobbers (acceptance_type *acceptance_ptr, rtx *pattern_ptr)
5289 {
5290 int i;
5291 rtx new_pattern;
5292
5293 /* Find the last non-clobber in the parallel. */
5294 rtx pattern = *pattern_ptr;
5295 for (i = XVECLEN (pattern, 0); i > 0; i--)
5296 {
5297 rtx x = XVECEXP (pattern, 0, i - 1);
5298 if ((GET_CODE (x) != CLOBBER && GET_CODE (x) != CLOBBER_HIGH)
5299 || (!REG_P (XEXP (x, 0))
5300 && GET_CODE (XEXP (x, 0)) != MATCH_SCRATCH))
5301 break;
5302 }
5303
5304 if (i == XVECLEN (pattern, 0))
5305 return false;
5306
5307 /* Build a similar insn without the clobbers. */
5308 if (i == 1)
5309 new_pattern = XVECEXP (pattern, 0, 0);
5310 else
5311 {
5312 new_pattern = rtx_alloc (PARALLEL);
5313 XVEC (new_pattern, 0) = rtvec_alloc (i);
5314 for (int j = 0; j < i; ++j)
5315 XVECEXP (new_pattern, 0, j) = XVECEXP (pattern, 0, j);
5316 }
5317
5318 /* Recognize it. */
5319 acceptance_ptr->u.full.u.num_clobbers = XVECLEN (pattern, 0) - i;
5320 *pattern_ptr = new_pattern;
5321 return true;
5322 }
5323
5324 int
main(int argc,const char ** argv)5325 main (int argc, const char **argv)
5326 {
5327 state insn_root, split_root, peephole2_root;
5328
5329 progname = "genrecog";
5330
5331 if (!init_rtx_reader_args (argc, argv))
5332 return (FATAL_EXIT_CODE);
5333
5334 write_header ();
5335
5336 /* Read the machine description. */
5337
5338 md_rtx_info info;
5339 while (read_md_rtx (&info))
5340 {
5341 rtx def = info.def;
5342
5343 acceptance_type acceptance;
5344 acceptance.partial_p = false;
5345 acceptance.u.full.code = info.index;
5346
5347 rtx pattern;
5348 switch (GET_CODE (def))
5349 {
5350 case DEFINE_INSN:
5351 {
5352 /* Match the instruction in the original .md form. */
5353 acceptance.type = RECOG;
5354 acceptance.u.full.u.num_clobbers = 0;
5355 pattern = add_implicit_parallel (XVEC (def, 1));
5356 validate_pattern (pattern, &info, NULL_RTX, 0);
5357 match_pattern (&insn_root, &info, pattern, acceptance);
5358
5359 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5360 allow recog_for_combine to match without the clobbers. */
5361 if (GET_CODE (pattern) == PARALLEL
5362 && remove_clobbers (&acceptance, &pattern))
5363 match_pattern (&insn_root, &info, pattern, acceptance);
5364 break;
5365 }
5366
5367 case DEFINE_SPLIT:
5368 acceptance.type = SPLIT;
5369 pattern = add_implicit_parallel (XVEC (def, 0));
5370 validate_pattern (pattern, &info, NULL_RTX, 0);
5371 match_pattern (&split_root, &info, pattern, acceptance);
5372
5373 /* Declare the gen_split routine that we'll call if the
5374 pattern matches. The definition comes from insn-emit.c. */
5375 printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5376 info.index);
5377 break;
5378
5379 case DEFINE_PEEPHOLE2:
5380 acceptance.type = PEEPHOLE2;
5381 pattern = get_peephole2_pattern (&info);
5382 validate_pattern (pattern, &info, NULL_RTX, 0);
5383 match_pattern (&peephole2_root, &info, pattern, acceptance);
5384
5385 /* Declare the gen_peephole2 routine that we'll call if the
5386 pattern matches. The definition comes from insn-emit.c. */
5387 printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5388 info.index);
5389 break;
5390
5391 default:
5392 /* do nothing */;
5393 }
5394 }
5395
5396 if (have_error)
5397 return FATAL_EXIT_CODE;
5398
5399 puts ("\n\n");
5400
5401 /* Optimize each routine in turn. */
5402 optimize_subroutine_group ("recog", &insn_root);
5403 optimize_subroutine_group ("split_insns", &split_root);
5404 optimize_subroutine_group ("peephole2_insns", &peephole2_root);
5405
5406 output_state os;
5407 os.id_to_var.safe_grow_cleared (num_positions);
5408
5409 if (use_pattern_routines_p)
5410 {
5411 /* Look for common patterns and split them out into subroutines. */
5412 auto_vec <merge_state_info> states;
5413 states.safe_push (&insn_root);
5414 states.safe_push (&split_root);
5415 states.safe_push (&peephole2_root);
5416 split_out_patterns (states);
5417
5418 /* Print out the routines that we just created. */
5419 unsigned int i;
5420 pattern_routine *routine;
5421 FOR_EACH_VEC_ELT (patterns, i, routine)
5422 print_pattern (&os, routine);
5423 }
5424
5425 /* Print out the matching routines. */
5426 print_subroutine_group (&os, RECOG, &insn_root);
5427 print_subroutine_group (&os, SPLIT, &split_root);
5428 print_subroutine_group (&os, PEEPHOLE2, &peephole2_root);
5429
5430 fflush (stdout);
5431 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
5432 }
5433