1 /* Generate code from machine description to recognize rtl as insns.
2    Copyright (C) 1987-2019 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 
21 /* This program is used to produce insn-recog.c, which contains a
22    function called `recog' plus its subroutines.  These functions
23    contain a decision tree that recognizes whether an rtx, the
24    argument given to recog, is a valid instruction.
25 
26    recog returns -1 if the rtx is not valid.  If the rtx is valid,
27    recog returns a nonnegative number which is the insn code number
28    for the pattern that matched.  This is the same as the order in the
29    machine description of the entry that matched.  This number can be
30    used as an index into various insn_* tables, such as insn_template,
31    insn_outfun, and insn_n_operands (found in insn-output.c).
32 
33    The third argument to recog is an optional pointer to an int.  If
34    present, recog will accept a pattern if it matches except for
35    missing CLOBBER expressions at the end.  In that case, the value
36    pointed to by the optional pointer will be set to the number of
37    CLOBBERs that need to be added (it should be initialized to zero by
38    the caller).  If it is set nonzero, the caller should allocate a
39    PARALLEL of the appropriate size, copy the initial entries, and
40    call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
41 
42    This program also generates the function `split_insns', which
43    returns 0 if the rtl could not be split, or it returns the split
44    rtl as an INSN list.
45 
46    This program also generates the function `peephole2_insns', which
47    returns 0 if the rtl could not be matched.  If there was a match,
48    the new rtl is returned in an INSN list, and LAST_INSN will point
49    to the last recognized insn in the old sequence.
50 
51 
52    At a high level, the algorithm used in this file is as follows:
53 
54    1. Build up a decision tree for each routine, using the following
55       approach to matching an rtx:
56 
57       - First determine the "shape" of the rtx, based on GET_CODE,
58 	XVECLEN and XINT.  This phase examines SET_SRCs before SET_DESTs
59 	since SET_SRCs tend to be more distinctive.  It examines other
60 	operands in numerical order, since the canonicalization rules
61 	prefer putting complex operands of commutative operators first.
62 
63       - Next check modes and predicates.  This phase examines all
64 	operands in numerical order, even for SETs, since the mode of a
65 	SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 	for constant integers.
67 
68       - Next check match_dups.
69 
70       - Finally check the C condition and (where appropriate) pnum_clobbers.
71 
72    2. Try to optimize the tree by removing redundant tests, CSEing tests,
73       folding tests together, etc.
74 
75    3. Look for common subtrees and split them out into "pattern" routines.
76       These common subtrees can be identical or they can differ in mode,
77       code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78       In the latter case the users of the pattern routine pass the
79       appropriate mode, etc., as argument.  For example, if two patterns
80       contain:
81 
82          (plus:SI (match_operand:SI 1 "register_operand")
83 	          (match_operand:SI 2 "register_operand"))
84 
85       we can split the associated matching code out into a subroutine.
86       If a pattern contains:
87 
88          (minus:DI (match_operand:DI 1 "register_operand")
89 	           (match_operand:DI 2 "register_operand"))
90 
91       then we can consider using the same matching routine for both
92       the plus and minus expressions, passing PLUS and SImode in the
93       former case and MINUS and DImode in the latter case.
94 
95       The main aim of this phase is to reduce the compile time of the
96       insn-recog.c code and to reduce the amount of object code in
97       insn-recog.o.
98 
99    4. Split the matching trees into functions, trying to limit the
100       size of each function to a sensible amount.
101 
102       Again, the main aim of this phase is to reduce the compile time
103       of insn-recog.c.  (It doesn't help with the size of insn-recog.o.)
104 
105    5. Write out C++ code for each function.  */
106 
107 #include "bconfig.h"
108 #define INCLUDE_ALGORITHM
109 #include "system.h"
110 #include "coretypes.h"
111 #include "tm.h"
112 #include "rtl.h"
113 #include "errors.h"
114 #include "read-md.h"
115 #include "gensupport.h"
116 
117 #undef GENERATOR_FILE
118 enum true_rtx_doe {
119 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
120 #include "rtl.def"
121 #undef DEF_RTL_EXPR
122   FIRST_GENERATOR_RTX_CODE
123 };
124 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125 #define GENERATOR_FILE 1
126 
127 /* Debugging variables to control which optimizations are performed.
128    Note that disabling merge_states_p leads to very large output.  */
129 static const bool merge_states_p = true;
130 static const bool collapse_optional_decisions_p = true;
131 static const bool cse_tests_p = true;
132 static const bool simplify_tests_p = true;
133 static const bool use_operand_variables_p = true;
134 static const bool use_subroutines_p = true;
135 static const bool use_pattern_routines_p = true;
136 
137 /* Whether to add comments for optional tests that we decided to keep.
138    Can be useful when debugging the generator itself but is noise when
139    debugging the generated code.  */
140 static const bool mark_optional_transitions_p = false;
141 
142 /* Whether pattern routines should calculate positions relative to their
143    rtx parameter rather than use absolute positions.  This e.g. allows
144    a pattern routine to be shared between a plain SET and a PARALLEL
145    that includes a SET.
146 
147    In principle it sounds like this should be useful, especially for
148    recog_for_combine, where the plain SET form is generated automatically
149    from a PARALLEL of a single SET and some CLOBBERs.  In practice it doesn't
150    seem to help much and leads to slightly bigger object files.  */
151 static const bool relative_patterns_p = false;
152 
153 /* Whether pattern routines should be allowed to test whether pnum_clobbers
154    is null.  This requires passing pnum_clobbers around as a parameter.  */
155 static const bool pattern_have_num_clobbers_p = true;
156 
157 /* Whether pattern routines should be allowed to test .md file C conditions.
158    This requires passing insn around as a parameter, in case the C
159    condition refers to it.  In practice this tends to lead to bigger
160    object files.  */
161 static const bool pattern_c_test_p = false;
162 
163 /* Whether to require each parameter passed to a pattern routine to be
164    unique.  Disabling this check for example allows unary operators with
165    matching modes (like NEG) and unary operators with mismatched modes
166    (like ZERO_EXTEND) to be matched by a single pattern.  However, we then
167    often have cases where the same value is passed too many times.  */
168 static const bool force_unique_params_p = true;
169 
170 /* The maximum (approximate) depth of block nesting that an individual
171    routine or subroutine should have.  This limit is about keeping the
172    output readable rather than reducing compile time.  */
173 static const unsigned int MAX_DEPTH = 6;
174 
175 /* The minimum number of pseudo-statements that a state must have before
176    we split it out into a subroutine.  */
177 static const unsigned int MIN_NUM_STATEMENTS = 5;
178 
179 /* The number of pseudo-statements a state can have before we consider
180    splitting out substates into subroutines.  This limit is about avoiding
181    compile-time problems with very big functions (and also about keeping
182    functions within --param optimization limits, etc.).  */
183 static const unsigned int MAX_NUM_STATEMENTS = 200;
184 
185 /* The minimum number of pseudo-statements that can be used in a pattern
186    routine.  */
187 static const unsigned int MIN_COMBINE_COST = 4;
188 
189 /* The maximum number of arguments that a pattern routine can have.
190    The idea is to prevent one pattern getting a ridiculous number of
191    arguments when it would be more beneficial to have a separate pattern
192    routine instead.  */
193 static const unsigned int MAX_PATTERN_PARAMS = 5;
194 
195 /* The maximum operand number plus one.  */
196 int num_operands;
197 
198 /* Ways of obtaining an rtx to be tested.  */
199 enum position_type {
200   /* PATTERN (peep2_next_insn (ARG)).  */
201   POS_PEEP2_INSN,
202 
203   /* XEXP (BASE, ARG).  */
204   POS_XEXP,
205 
206   /* XVECEXP (BASE, 0, ARG).  */
207   POS_XVECEXP0
208 };
209 
210 /* The position of an rtx relative to X0.  Each useful position is
211    represented by exactly one instance of this structure.  */
212 struct position
213 {
214   /* The parent rtx.  This is the root position for POS_PEEP2_INSNs.  */
215   struct position *base;
216 
217   /* A position with the same BASE and TYPE, but with the next value
218      of ARG.  */
219   struct position *next;
220 
221   /* A list of all POS_XEXP positions that use this one as their base,
222      chained by NEXT fields.  The first entry represents XEXP (this, 0),
223      the second represents XEXP (this, 1), and so on.  */
224   struct position *xexps;
225 
226   /* A list of POS_XVECEXP0 positions that use this one as their base,
227      chained by NEXT fields.  The first entry represents XVECEXP (this, 0, 0),
228      the second represents XVECEXP (this, 0, 1), and so on.  */
229   struct position *xvecexp0s;
230 
231   /* The type of position.  */
232   enum position_type type;
233 
234   /* The argument to TYPE (shown as ARG in the position_type comments).  */
235   int arg;
236 
237   /* The instruction to which the position belongs.  */
238   unsigned int insn_id;
239 
240   /* The depth of this position relative to the instruction pattern.
241      E.g. if the instruction pattern is a SET, the SET itself has a
242      depth of 0 while the SET_DEST and SET_SRC have depths of 1.  */
243   unsigned int depth;
244 
245   /* A unique identifier for this position.  */
246   unsigned int id;
247 };
248 
249 enum routine_type {
250   SUBPATTERN, RECOG, SPLIT, PEEPHOLE2
251 };
252 
253 /* The root position (x0).  */
254 static struct position root_pos;
255 
256 /* The number of positions created.  Also one higher than the maximum
257    position id.  */
258 static unsigned int num_positions = 1;
259 
260 /* A list of all POS_PEEP2_INSNs.  The entry for insn 0 is the root position,
261    since we are given that instruction's pattern as x0.  */
262 static struct position *peep2_insn_pos_list = &root_pos;
263 
264 /* Return a position with the given BASE, TYPE and ARG.  NEXT_PTR
265    points to where the unique object that represents the position
266    should be stored.  Create the object if it doesn't already exist,
267    otherwise reuse the object that is already there.  */
268 
269 static struct position *
next_position(struct position ** next_ptr,struct position * base,enum position_type type,int arg)270 next_position (struct position **next_ptr, struct position *base,
271 	       enum position_type type, int arg)
272 {
273   struct position *pos;
274 
275   pos = *next_ptr;
276   if (!pos)
277     {
278       pos = XCNEW (struct position);
279       pos->type = type;
280       pos->arg = arg;
281       if (type == POS_PEEP2_INSN)
282 	{
283 	  pos->base = 0;
284 	  pos->insn_id = arg;
285 	  pos->depth = base->depth;
286 	}
287       else
288 	{
289 	  pos->base = base;
290 	  pos->insn_id = base->insn_id;
291 	  pos->depth = base->depth + 1;
292 	}
293       pos->id = num_positions++;
294       *next_ptr = pos;
295     }
296   return pos;
297 }
298 
299 /* Compare positions POS1 and POS2 lexicographically.  */
300 
301 static int
compare_positions(struct position * pos1,struct position * pos2)302 compare_positions (struct position *pos1, struct position *pos2)
303 {
304   int diff;
305 
306   diff = pos1->depth - pos2->depth;
307   if (diff < 0)
308     do
309       pos2 = pos2->base;
310     while (pos1->depth != pos2->depth);
311   else if (diff > 0)
312     do
313       pos1 = pos1->base;
314     while (pos1->depth != pos2->depth);
315   while (pos1 != pos2)
316     {
317       diff = (int) pos1->type - (int) pos2->type;
318       if (diff == 0)
319 	diff = pos1->arg - pos2->arg;
320       pos1 = pos1->base;
321       pos2 = pos2->base;
322     }
323   return diff;
324 }
325 
326 /* Return the most deeply-nested position that is common to both
327    POS1 and POS2.  If the positions are from different instructions,
328    return the one with the lowest insn_id.  */
329 
330 static struct position *
common_position(struct position * pos1,struct position * pos2)331 common_position (struct position *pos1, struct position *pos2)
332 {
333   if (pos1->insn_id != pos2->insn_id)
334     return pos1->insn_id < pos2->insn_id ? pos1 : pos2;
335   if (pos1->depth > pos2->depth)
336     std::swap (pos1, pos2);
337   while (pos1->depth != pos2->depth)
338     pos2 = pos2->base;
339   while (pos1 != pos2)
340     {
341       pos1 = pos1->base;
342       pos2 = pos2->base;
343     }
344   return pos1;
345 }
346 
347 /* Search for and return operand N, stop when reaching node STOP.  */
348 
349 static rtx
find_operand(rtx pattern,int n,rtx stop)350 find_operand (rtx pattern, int n, rtx stop)
351 {
352   const char *fmt;
353   RTX_CODE code;
354   int i, j, len;
355   rtx r;
356 
357   if (pattern == stop)
358     return stop;
359 
360   code = GET_CODE (pattern);
361   if ((code == MATCH_SCRATCH
362        || code == MATCH_OPERAND
363        || code == MATCH_OPERATOR
364        || code == MATCH_PARALLEL)
365       && XINT (pattern, 0) == n)
366     return pattern;
367 
368   fmt = GET_RTX_FORMAT (code);
369   len = GET_RTX_LENGTH (code);
370   for (i = 0; i < len; i++)
371     {
372       switch (fmt[i])
373 	{
374 	case 'e': case 'u':
375 	  if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
376 	    return r;
377 	  break;
378 
379 	case 'V':
380 	  if (! XVEC (pattern, i))
381 	    break;
382 	  /* Fall through.  */
383 
384 	case 'E':
385 	  for (j = 0; j < XVECLEN (pattern, i); j++)
386 	    if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
387 		!= NULL_RTX)
388 	      return r;
389 	  break;
390 
391 	case 'r': case 'p': case 'i': case 'w': case '0': case 's':
392 	  break;
393 
394 	default:
395 	  gcc_unreachable ();
396 	}
397     }
398 
399   return NULL;
400 }
401 
402 /* Search for and return operand M, such that it has a matching
403    constraint for operand N.  */
404 
405 static rtx
find_matching_operand(rtx pattern,int n)406 find_matching_operand (rtx pattern, int n)
407 {
408   const char *fmt;
409   RTX_CODE code;
410   int i, j, len;
411   rtx r;
412 
413   code = GET_CODE (pattern);
414   if (code == MATCH_OPERAND
415       && (XSTR (pattern, 2)[0] == '0' + n
416 	  || (XSTR (pattern, 2)[0] == '%'
417 	      && XSTR (pattern, 2)[1] == '0' + n)))
418     return pattern;
419 
420   fmt = GET_RTX_FORMAT (code);
421   len = GET_RTX_LENGTH (code);
422   for (i = 0; i < len; i++)
423     {
424       switch (fmt[i])
425 	{
426 	case 'e': case 'u':
427 	  if ((r = find_matching_operand (XEXP (pattern, i), n)))
428 	    return r;
429 	  break;
430 
431 	case 'V':
432 	  if (! XVEC (pattern, i))
433 	    break;
434 	  /* Fall through.  */
435 
436 	case 'E':
437 	  for (j = 0; j < XVECLEN (pattern, i); j++)
438 	    if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
439 	      return r;
440 	  break;
441 
442 	case 'r': case 'p': case 'i': case 'w': case '0': case 's':
443 	  break;
444 
445 	default:
446 	  gcc_unreachable ();
447 	}
448     }
449 
450   return NULL;
451 }
452 
453 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454    don't use the MATCH_OPERAND constraint, only the predicate.
455    This is confusing to folks doing new ports, so help them
456    not make the mistake.  */
457 
458 static bool
constraints_supported_in_insn_p(rtx insn)459 constraints_supported_in_insn_p (rtx insn)
460 {
461   return !(GET_CODE (insn) == DEFINE_EXPAND
462 	   || GET_CODE (insn) == DEFINE_SPLIT
463 	   || GET_CODE (insn) == DEFINE_PEEPHOLE2);
464 }
465 
466 /* Return the name of the predicate matched by MATCH_RTX.  */
467 
468 static const char *
predicate_name(rtx match_rtx)469 predicate_name (rtx match_rtx)
470 {
471   if (GET_CODE (match_rtx) == MATCH_SCRATCH)
472     return "scratch_operand";
473   else
474     return XSTR (match_rtx, 1);
475 }
476 
477 /* Return true if OPERAND is a MATCH_OPERAND using a special predicate
478    function.  */
479 
480 static bool
special_predicate_operand_p(rtx operand)481 special_predicate_operand_p (rtx operand)
482 {
483   if (GET_CODE (operand) == MATCH_OPERAND)
484     {
485       const char *pred_name = predicate_name (operand);
486       if (pred_name[0] != 0)
487 	{
488 	  const struct pred_data *pred;
489 
490 	  pred = lookup_predicate (pred_name);
491 	  return pred != NULL && pred->special;
492 	}
493     }
494 
495   return false;
496 }
497 
498 /* Check for various errors in PATTERN, which is part of INFO.
499    SET is nonnull for a destination, and is the complete set pattern.
500    SET_CODE is '=' for normal sets, and '+' within a context that
501    requires in-out constraints.  */
502 
503 static void
validate_pattern(rtx pattern,md_rtx_info * info,rtx set,int set_code)504 validate_pattern (rtx pattern, md_rtx_info *info, rtx set, int set_code)
505 {
506   const char *fmt;
507   RTX_CODE code;
508   size_t i, len;
509   int j;
510 
511   code = GET_CODE (pattern);
512   switch (code)
513     {
514     case MATCH_SCRATCH:
515       {
516 	const char constraints0 = XSTR (pattern, 1)[0];
517 
518 	if (!constraints_supported_in_insn_p (info->def))
519 	  {
520 	    if (constraints0)
521 	      {
522 		error_at (info->loc, "constraints not supported in %s",
523 			  GET_RTX_NAME (GET_CODE (info->def)));
524 	      }
525 	    return;
526 	  }
527 
528 	/* If a MATCH_SCRATCH is used in a context requiring an write-only
529 	   or read/write register, validate that.  */
530 	if (set_code == '='
531 	    && constraints0
532 	    && constraints0 != '='
533 	    && constraints0 != '+')
534 	  {
535 	    error_at (info->loc, "operand %d missing output reload",
536 		      XINT (pattern, 0));
537 	  }
538 	return;
539       }
540     case MATCH_DUP:
541     case MATCH_OP_DUP:
542     case MATCH_PAR_DUP:
543       if (find_operand (info->def, XINT (pattern, 0), pattern) == pattern)
544 	error_at (info->loc, "operand %i duplicated before defined",
545 		  XINT (pattern, 0));
546       break;
547     case MATCH_OPERAND:
548     case MATCH_OPERATOR:
549       {
550 	const char *pred_name = XSTR (pattern, 1);
551 	const struct pred_data *pred;
552 	const char *c_test;
553 
554 	c_test = get_c_test (info->def);
555 
556 	if (pred_name[0] != 0)
557 	  {
558 	    pred = lookup_predicate (pred_name);
559 	    if (!pred)
560 	      error_at (info->loc, "unknown predicate '%s'", pred_name);
561 	  }
562 	else
563 	  pred = 0;
564 
565 	if (code == MATCH_OPERAND)
566 	  {
567 	    const char *constraints = XSTR (pattern, 2);
568 	    const char constraints0 = constraints[0];
569 
570 	    if (!constraints_supported_in_insn_p (info->def))
571 	      {
572 		if (constraints0)
573 		  {
574 		    error_at (info->loc, "constraints not supported in %s",
575 			      GET_RTX_NAME (GET_CODE (info->def)));
576 		  }
577 	      }
578 
579 	    /* A MATCH_OPERAND that is a SET should have an output reload.  */
580 	    else if (set && constraints0)
581 	      {
582 		if (set_code == '+')
583 		  {
584 		    if (constraints0 == '+')
585 		      ;
586 		    /* If we've only got an output reload for this operand,
587 		       we'd better have a matching input operand.  */
588 		    else if (constraints0 == '='
589 			     && find_matching_operand (info->def,
590 						       XINT (pattern, 0)))
591 		      ;
592 		    else
593 		      error_at (info->loc, "operand %d missing in-out reload",
594 				XINT (pattern, 0));
595 		  }
596 		else if (constraints0 != '=' && constraints0 != '+')
597 		  error_at (info->loc, "operand %d missing output reload",
598 			    XINT (pattern, 0));
599 	      }
600 
601 	    /* For matching constraint in MATCH_OPERAND, the digit must be a
602 	       smaller number than the number of the operand that uses it in the
603 	       constraint.  */
604 	    while (1)
605 	      {
606 		while (constraints[0]
607 		       && (constraints[0] == ' ' || constraints[0] == ','))
608 		  constraints++;
609 		if (!constraints[0])
610 		  break;
611 
612 		if (constraints[0] >= '0' && constraints[0] <= '9')
613 		  {
614 		    int val;
615 
616 		    sscanf (constraints, "%d", &val);
617 		    if (val >= XINT (pattern, 0))
618 		      error_at (info->loc, "constraint digit %d is not"
619 				" smaller than operand %d",
620 				val, XINT (pattern, 0));
621 		  }
622 
623 		while (constraints[0] && constraints[0] != ',')
624 		  constraints++;
625 	      }
626 	  }
627 
628 	/* Allowing non-lvalues in destinations -- particularly CONST_INT --
629 	   while not likely to occur at runtime, results in less efficient
630 	   code from insn-recog.c.  */
631 	if (set && pred && pred->allows_non_lvalue)
632 	  error_at (info->loc, "destination operand %d allows non-lvalue",
633 		    XINT (pattern, 0));
634 
635 	/* A modeless MATCH_OPERAND can be handy when we can check for
636 	   multiple modes in the c_test.  In most other cases, it is a
637 	   mistake.  Only DEFINE_INSN is eligible, since SPLIT and
638 	   PEEP2 can FAIL within the output pattern.  Exclude special
639 	   predicates, which check the mode themselves.  Also exclude
640 	   predicates that allow only constants.  Exclude the SET_DEST
641 	   of a call instruction, as that is a common idiom.  */
642 
643 	if (GET_MODE (pattern) == VOIDmode
644 	    && code == MATCH_OPERAND
645 	    && GET_CODE (info->def) == DEFINE_INSN
646 	    && pred
647 	    && !pred->special
648 	    && pred->allows_non_const
649 	    && strstr (c_test, "operands") == NULL
650 	    && ! (set
651 		  && GET_CODE (set) == SET
652 		  && GET_CODE (SET_SRC (set)) == CALL))
653 	  message_at (info->loc, "warning: operand %d missing mode?",
654 		      XINT (pattern, 0));
655 	return;
656       }
657 
658     case SET:
659       {
660 	machine_mode dmode, smode;
661 	rtx dest, src;
662 
663 	dest = SET_DEST (pattern);
664 	src = SET_SRC (pattern);
665 
666 	/* STRICT_LOW_PART is a wrapper.  Its argument is the real
667 	   destination, and it's mode should match the source.  */
668 	if (GET_CODE (dest) == STRICT_LOW_PART)
669 	  dest = XEXP (dest, 0);
670 
671 	/* Find the referent for a DUP.  */
672 
673 	if (GET_CODE (dest) == MATCH_DUP
674 	    || GET_CODE (dest) == MATCH_OP_DUP
675 	    || GET_CODE (dest) == MATCH_PAR_DUP)
676 	  dest = find_operand (info->def, XINT (dest, 0), NULL);
677 
678 	if (GET_CODE (src) == MATCH_DUP
679 	    || GET_CODE (src) == MATCH_OP_DUP
680 	    || GET_CODE (src) == MATCH_PAR_DUP)
681 	  src = find_operand (info->def, XINT (src, 0), NULL);
682 
683 	dmode = GET_MODE (dest);
684 	smode = GET_MODE (src);
685 
686 	/* Mode checking is not performed for special predicates.  */
687 	if (special_predicate_operand_p (src)
688 	    || special_predicate_operand_p (dest))
689 	  ;
690 
691         /* The operands of a SET must have the same mode unless one
692 	   is VOIDmode.  */
693         else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
694 	  error_at (info->loc, "mode mismatch in set: %smode vs %smode",
695 		    GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
696 
697 	/* If only one of the operands is VOIDmode, and PC or CC0 is
698 	   not involved, it's probably a mistake.  */
699 	else if (dmode != smode
700 		 && GET_CODE (dest) != PC
701 		 && GET_CODE (dest) != CC0
702 		 && GET_CODE (src) != PC
703 		 && GET_CODE (src) != CC0
704 		 && !CONST_INT_P (src)
705 		 && !CONST_WIDE_INT_P (src)
706 		 && GET_CODE (src) != CALL)
707 	  {
708 	    const char *which;
709 	    which = (dmode == VOIDmode ? "destination" : "source");
710 	    message_at (info->loc, "warning: %s missing a mode?", which);
711 	  }
712 
713 	if (dest != SET_DEST (pattern))
714 	  validate_pattern (dest, info, pattern, '=');
715 	validate_pattern (SET_DEST (pattern), info, pattern, '=');
716         validate_pattern (SET_SRC (pattern), info, NULL_RTX, 0);
717         return;
718       }
719 
720     case CLOBBER:
721     case CLOBBER_HIGH:
722       validate_pattern (SET_DEST (pattern), info, pattern, '=');
723       return;
724 
725     case ZERO_EXTRACT:
726       validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0);
727       validate_pattern (XEXP (pattern, 1), info, NULL_RTX, 0);
728       validate_pattern (XEXP (pattern, 2), info, NULL_RTX, 0);
729       return;
730 
731     case STRICT_LOW_PART:
732       validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0);
733       return;
734 
735     case LABEL_REF:
736       if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
737 	error_at (info->loc, "operand to label_ref %smode not VOIDmode",
738 		  GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
739       break;
740 
741     case VEC_SELECT:
742       if (GET_MODE (pattern) != VOIDmode)
743 	{
744 	  machine_mode mode = GET_MODE (pattern);
745 	  machine_mode imode = GET_MODE (XEXP (pattern, 0));
746 	  machine_mode emode
747 	    = VECTOR_MODE_P (mode) ? GET_MODE_INNER (mode) : mode;
748 	  if (GET_CODE (XEXP (pattern, 1)) == PARALLEL)
749 	    {
750 	      int expected = 1;
751 	      unsigned int nelems;
752 	      if (VECTOR_MODE_P (mode)
753 		  && !GET_MODE_NUNITS (mode).is_constant (&expected))
754 		error_at (info->loc,
755 			  "vec_select with variable-sized mode %s",
756 			  GET_MODE_NAME (mode));
757 	      else if (XVECLEN (XEXP (pattern, 1), 0) != expected)
758 		error_at (info->loc,
759 			  "vec_select parallel with %d elements, expected %d",
760 			  XVECLEN (XEXP (pattern, 1), 0), expected);
761 	      else if (VECTOR_MODE_P (imode)
762 		       && GET_MODE_NUNITS (imode).is_constant (&nelems))
763 		{
764 		  int i;
765 		  for (i = 0; i < expected; ++i)
766 		    if (CONST_INT_P (XVECEXP (XEXP (pattern, 1), 0, i))
767 			&& (UINTVAL (XVECEXP (XEXP (pattern, 1), 0, i))
768 			    >= nelems))
769 		      error_at (info->loc,
770 				"out of bounds selector %u in vec_select, "
771 				"expected at most %u",
772 				(unsigned)
773 				UINTVAL (XVECEXP (XEXP (pattern, 1), 0, i)),
774 				nelems - 1);
775 		}
776 	    }
777 	  if (imode != VOIDmode && !VECTOR_MODE_P (imode))
778 	    error_at (info->loc, "%smode of first vec_select operand is not a "
779 				 "vector mode", GET_MODE_NAME (imode));
780 	  else if (imode != VOIDmode && GET_MODE_INNER (imode) != emode)
781 	    error_at (info->loc, "element mode mismatch between vec_select "
782 				 "%smode and its operand %smode",
783 		      GET_MODE_NAME (emode),
784 		      GET_MODE_NAME (GET_MODE_INNER (imode)));
785 	}
786       break;
787 
788     default:
789       break;
790     }
791 
792   fmt = GET_RTX_FORMAT (code);
793   len = GET_RTX_LENGTH (code);
794   for (i = 0; i < len; i++)
795     {
796       switch (fmt[i])
797 	{
798 	case 'e': case 'u':
799 	  validate_pattern (XEXP (pattern, i), info, NULL_RTX, 0);
800 	  break;
801 
802 	case 'E':
803 	  for (j = 0; j < XVECLEN (pattern, i); j++)
804 	    validate_pattern (XVECEXP (pattern, i, j), info, NULL_RTX, 0);
805 	  break;
806 
807 	case 'r': case 'p': case 'i': case 'w': case '0': case 's':
808 	  break;
809 
810 	default:
811 	  gcc_unreachable ();
812 	}
813     }
814 }
815 
816 /* Simple list structure for items of type T, for use when being part
817    of a list is an inherent property of T.  T must have members equivalent
818    to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
819    to set the parent list.  */
820 template <typename T>
821 struct list_head
822 {
823   /* A range of linked items.  */
824   struct range
825   {
826     range (T *);
827     range (T *, T *);
828 
829     T *start, *end;
830     void set_parent (list_head *);
831   };
832 
833   list_head ();
834   range release ();
835   void push_back (range);
836   range remove (range);
837   void replace (range, range);
838   T *singleton () const;
839 
840   T *first, *last;
841 };
842 
843 /* Create a range [START_IN, START_IN].  */
844 
845 template <typename T>
range(T * start_in)846 list_head <T>::range::range (T *start_in) : start (start_in), end (start_in) {}
847 
848 /* Create a range [START_IN, END_IN], linked by next and prev fields.  */
849 
850 template <typename T>
range(T * start_in,T * end_in)851 list_head <T>::range::range (T *start_in, T *end_in)
852   : start (start_in), end (end_in) {}
853 
854 template <typename T>
855 void
set_parent(list_head<T> * owner)856 list_head <T>::range::set_parent (list_head <T> *owner)
857 {
858   for (T *item = start; item != end; item = item->next)
859     item->set_parent (owner);
860   end->set_parent (owner);
861 }
862 
863 template <typename T>
list_head()864 list_head <T>::list_head () : first (0), last (0) {}
865 
866 /* Add R to the end of the list.  */
867 
868 template <typename T>
869 void
push_back(range r)870 list_head <T>::push_back (range r)
871 {
872   if (last)
873     last->next = r.start;
874   else
875     first = r.start;
876   r.start->prev = last;
877   last = r.end;
878   r.set_parent (this);
879 }
880 
881 /* Remove R from the list.  R remains valid and can be inserted into
882    other lists.  */
883 
884 template <typename T>
885 typename list_head <T>::range
remove(range r)886 list_head <T>::remove (range r)
887 {
888   if (r.start->prev)
889     r.start->prev->next = r.end->next;
890   else
891     first = r.end->next;
892   if (r.end->next)
893     r.end->next->prev = r.start->prev;
894   else
895     last = r.start->prev;
896   r.start->prev = 0;
897   r.end->next = 0;
898   r.set_parent (0);
899   return r;
900 }
901 
902 /* Replace OLDR with NEWR.  OLDR remains valid and can be inserted into
903    other lists.  */
904 
905 template <typename T>
906 void
replace(range oldr,range newr)907 list_head <T>::replace (range oldr, range newr)
908 {
909   newr.start->prev = oldr.start->prev;
910   newr.end->next = oldr.end->next;
911 
912   oldr.start->prev = 0;
913   oldr.end->next = 0;
914   oldr.set_parent (0);
915 
916   if (newr.start->prev)
917     newr.start->prev->next = newr.start;
918   else
919     first = newr.start;
920   if (newr.end->next)
921     newr.end->next->prev = newr.end;
922   else
923     last = newr.end;
924   newr.set_parent (this);
925 }
926 
927 /* Empty the list and return the previous contents as a range that can
928    be inserted into other lists.  */
929 
930 template <typename T>
931 typename list_head <T>::range
release()932 list_head <T>::release ()
933 {
934   range r (first, last);
935   first = 0;
936   last = 0;
937   r.set_parent (0);
938   return r;
939 }
940 
941 /* If the list contains a single item, return that item, otherwise return
942    null.  */
943 
944 template <typename T>
945 T *
singleton()946 list_head <T>::singleton () const
947 {
948   return first == last ? first : 0;
949 }
950 
951 struct state;
952 
953 /* Describes a possible successful return from a routine.  */
954 struct acceptance_type
955 {
956   /* The type of routine we're returning from.  */
957   routine_type type : 16;
958 
959   /* True if this structure only really represents a partial match,
960      and if we must call a subroutine of type TYPE to complete the match.
961      In this case we'll call the subroutine and, if it succeeds, return
962      whatever the subroutine returned.
963 
964      False if this structure presents a full match.  */
965   unsigned int partial_p : 1;
966 
967   union
968   {
969     /* If PARTIAL_P, this is the number of the subroutine to call.  */
970     int subroutine_id;
971 
972     /* Valid if !PARTIAL_P.  */
973     struct
974     {
975       /* The identifier of the matching pattern.  For SUBPATTERNs this
976 	 value belongs to an ad-hoc routine-specific enum.  For the
977 	 others it's the number of an .md file pattern.  */
978       int code;
979       union
980       {
981 	/* For RECOG, the number of clobbers that must be added to the
982 	   pattern in order for it to match CODE.  */
983 	int num_clobbers;
984 
985 	/* For PEEPHOLE2, the number of additional instructions that were
986 	   included in the optimization.  */
987 	int match_len;
988       } u;
989     } full;
990   } u;
991 };
992 
993 bool
994 operator == (const acceptance_type &a, const acceptance_type &b)
995 {
996   if (a.partial_p != b.partial_p)
997     return false;
998   if (a.partial_p)
999     return a.u.subroutine_id == b.u.subroutine_id;
1000   else
1001     return a.u.full.code == b.u.full.code;
1002 }
1003 
1004 bool
1005 operator != (const acceptance_type &a, const acceptance_type &b)
1006 {
1007   return !operator == (a, b);
1008 }
1009 
1010 /* Represents a parameter to a pattern routine.  */
1011 struct parameter
1012 {
1013   /* The C type of parameter.  */
1014   enum type_enum {
1015     /* Represents an invalid parameter.  */
1016     UNSET,
1017 
1018     /* A machine_mode parameter.  */
1019     MODE,
1020 
1021     /* An rtx_code parameter.  */
1022     CODE,
1023 
1024     /* An int parameter.  */
1025     INT,
1026 
1027     /* An unsigned int parameter.  */
1028     UINT,
1029 
1030     /* A HOST_WIDE_INT parameter.  */
1031     WIDE_INT
1032   };
1033 
1034   parameter ();
1035   parameter (type_enum, bool, uint64_t);
1036 
1037   /* The type of the parameter.  */
1038   type_enum type;
1039 
1040   /* True if the value passed is variable, false if it is constant.  */
1041   bool is_param;
1042 
1043   /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
1044      format string.  If !IS_PARAM, this is the constant value passed.  */
1045   uint64_t value;
1046 };
1047 
parameter()1048 parameter::parameter ()
1049   : type (UNSET), is_param (false), value (0) {}
1050 
parameter(type_enum type_in,bool is_param_in,uint64_t value_in)1051 parameter::parameter (type_enum type_in, bool is_param_in, uint64_t value_in)
1052   : type (type_in), is_param (is_param_in), value (value_in) {}
1053 
1054 bool
1055 operator == (const parameter &param1, const parameter &param2)
1056 {
1057   return (param1.type == param2.type
1058 	  && param1.is_param == param2.is_param
1059 	  && param1.value == param2.value);
1060 }
1061 
1062 bool
1063 operator != (const parameter &param1, const parameter &param2)
1064 {
1065   return !operator == (param1, param2);
1066 }
1067 
1068 /* Represents a routine that matches a partial rtx pattern, returning
1069    an ad-hoc enum value on success and -1 on failure.  The routine can
1070    be used by any subroutine type.  The match can be parameterized by
1071    things like mode, code and UNSPEC number.  */
1072 struct pattern_routine
1073 {
1074   /* The state that implements the pattern.  */
1075   state *s;
1076 
1077   /* The deepest root position from which S can access all the rtxes it needs.
1078      This is NULL if the pattern doesn't need an rtx input, usually because
1079      all matching is done on operands[] instead.  */
1080   position *pos;
1081 
1082   /* A unique identifier for the routine.  */
1083   unsigned int pattern_id;
1084 
1085   /* True if the routine takes pnum_clobbers as argument.  */
1086   bool pnum_clobbers_p;
1087 
1088   /* True if the routine takes the enclosing instruction as argument.  */
1089   bool insn_p;
1090 
1091   /* The types of the other parameters to the routine, if any.  */
1092   auto_vec <parameter::type_enum, MAX_PATTERN_PARAMS> param_types;
1093 };
1094 
1095 /* All defined patterns.  */
1096 static vec <pattern_routine *> patterns;
1097 
1098 /* Represents one use of a pattern routine.  */
1099 struct pattern_use
1100 {
1101   /* The pattern routine to use.  */
1102   pattern_routine *routine;
1103 
1104   /* The values to pass as parameters.  This vector has the same length
1105      as ROUTINE->PARAM_TYPES.  */
1106   auto_vec <parameter, MAX_PATTERN_PARAMS> params;
1107 };
1108 
1109 /* Represents a test performed by a decision.  */
1110 struct rtx_test
1111 {
1112   rtx_test ();
1113 
1114   /* The types of test that can be performed.  Most of them take as input
1115      an rtx X.  Some also take as input a transition label LABEL; the others
1116      are booleans for which the transition label is always "true".
1117 
1118      The order of the enum isn't important.  */
1119   enum kind_enum {
1120     /* Check GET_CODE (X) == LABEL.  */
1121     CODE,
1122 
1123     /* Check GET_MODE (X) == LABEL.  */
1124     MODE,
1125 
1126     /* Check REGNO (X) == LABEL.  */
1127     REGNO_FIELD,
1128 
1129     /* Check known_eq (SUBREG_BYTE (X), LABEL).  */
1130     SUBREG_FIELD,
1131 
1132     /* Check XINT (X, u.opno) == LABEL.  */
1133     INT_FIELD,
1134 
1135     /* Check XWINT (X, u.opno) == LABEL.  */
1136     WIDE_INT_FIELD,
1137 
1138     /* Check XVECLEN (X, 0) == LABEL.  */
1139     VECLEN,
1140 
1141     /* Check peep2_current_count >= u.min_len.  */
1142     PEEP2_COUNT,
1143 
1144     /* Check XVECLEN (X, 0) >= u.min_len.  */
1145     VECLEN_GE,
1146 
1147     /* Check whether X is a cached const_int with value u.integer.  */
1148     SAVED_CONST_INT,
1149 
1150     /* Check u.predicate.data (X, u.predicate.mode).  */
1151     PREDICATE,
1152 
1153     /* Check rtx_equal_p (X, operands[u.opno]).  */
1154     DUPLICATE,
1155 
1156     /* Check whether X matches pattern u.pattern.  */
1157     PATTERN,
1158 
1159     /* Check whether pnum_clobbers is nonnull (RECOG only).  */
1160     HAVE_NUM_CLOBBERS,
1161 
1162     /* Check whether general C test u.string holds.  In general the condition
1163        needs access to "insn" and the full operand list.  */
1164     C_TEST,
1165 
1166     /* Execute operands[u.opno] = X.  (Always succeeds.)  */
1167     SET_OP,
1168 
1169     /* Accept u.acceptance.  Always succeeds for SUBPATTERN, RECOG and SPLIT.
1170        May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL.  */
1171     ACCEPT
1172   };
1173 
1174   /* The position of rtx X in the above description, relative to the
1175      incoming instruction "insn".  The position is null if the test
1176      doesn't take an X as input.  */
1177   position *pos;
1178 
1179   /* Which element of operands[] already contains POS, or -1 if no element
1180      is known to hold POS.  */
1181   int pos_operand;
1182 
1183   /* The type of test and its parameters, as described above.  */
1184   kind_enum kind;
1185   union
1186   {
1187     int opno;
1188     int min_len;
1189     struct
1190     {
1191       bool is_param;
1192       int value;
1193     } integer;
1194     struct
1195     {
1196       const struct pred_data *data;
1197       /* True if the mode is taken from a machine_mode parameter
1198 	 to the routine rather than a constant machine_mode.  If true,
1199 	 MODE is the number of the parameter (for an "i%d" format string),
1200 	 otherwise it is the mode itself.  */
1201       bool mode_is_param;
1202       unsigned int mode;
1203     } predicate;
1204     pattern_use *pattern;
1205     const char *string;
1206     acceptance_type acceptance;
1207   } u;
1208 
1209   static rtx_test code (position *);
1210   static rtx_test mode (position *);
1211   static rtx_test regno_field (position *);
1212   static rtx_test subreg_field (position *);
1213   static rtx_test int_field (position *, int);
1214   static rtx_test wide_int_field (position *, int);
1215   static rtx_test veclen (position *);
1216   static rtx_test peep2_count (int);
1217   static rtx_test veclen_ge (position *, int);
1218   static rtx_test predicate (position *, const pred_data *, machine_mode);
1219   static rtx_test duplicate (position *, int);
1220   static rtx_test pattern (position *, pattern_use *);
1221   static rtx_test have_num_clobbers ();
1222   static rtx_test c_test (const char *);
1223   static rtx_test set_op (position *, int);
1224   static rtx_test accept (const acceptance_type &);
1225 
1226   bool terminal_p () const;
1227   bool single_outcome_p () const;
1228 
1229 private:
1230   rtx_test (position *, kind_enum);
1231 };
1232 
rtx_test()1233 rtx_test::rtx_test () {}
1234 
rtx_test(position * pos_in,kind_enum kind_in)1235 rtx_test::rtx_test (position *pos_in, kind_enum kind_in)
1236   : pos (pos_in), pos_operand (-1), kind (kind_in) {}
1237 
1238 rtx_test
code(position * pos)1239 rtx_test::code (position *pos)
1240 {
1241   return rtx_test (pos, rtx_test::CODE);
1242 }
1243 
1244 rtx_test
mode(position * pos)1245 rtx_test::mode (position *pos)
1246 {
1247   return rtx_test (pos, rtx_test::MODE);
1248 }
1249 
1250 rtx_test
regno_field(position * pos)1251 rtx_test::regno_field (position *pos)
1252 {
1253   rtx_test res (pos, rtx_test::REGNO_FIELD);
1254   return res;
1255 }
1256 
1257 rtx_test
subreg_field(position * pos)1258 rtx_test::subreg_field (position *pos)
1259 {
1260   rtx_test res (pos, rtx_test::SUBREG_FIELD);
1261   return res;
1262 }
1263 
1264 rtx_test
int_field(position * pos,int opno)1265 rtx_test::int_field (position *pos, int opno)
1266 {
1267   rtx_test res (pos, rtx_test::INT_FIELD);
1268   res.u.opno = opno;
1269   return res;
1270 }
1271 
1272 rtx_test
wide_int_field(position * pos,int opno)1273 rtx_test::wide_int_field (position *pos, int opno)
1274 {
1275   rtx_test res (pos, rtx_test::WIDE_INT_FIELD);
1276   res.u.opno = opno;
1277   return res;
1278 }
1279 
1280 rtx_test
veclen(position * pos)1281 rtx_test::veclen (position *pos)
1282 {
1283   return rtx_test (pos, rtx_test::VECLEN);
1284 }
1285 
1286 rtx_test
peep2_count(int min_len)1287 rtx_test::peep2_count (int min_len)
1288 {
1289   rtx_test res (0, rtx_test::PEEP2_COUNT);
1290   res.u.min_len = min_len;
1291   return res;
1292 }
1293 
1294 rtx_test
veclen_ge(position * pos,int min_len)1295 rtx_test::veclen_ge (position *pos, int min_len)
1296 {
1297   rtx_test res (pos, rtx_test::VECLEN_GE);
1298   res.u.min_len = min_len;
1299   return res;
1300 }
1301 
1302 rtx_test
predicate(position * pos,const struct pred_data * data,machine_mode mode)1303 rtx_test::predicate (position *pos, const struct pred_data *data,
1304 		     machine_mode mode)
1305 {
1306   rtx_test res (pos, rtx_test::PREDICATE);
1307   res.u.predicate.data = data;
1308   res.u.predicate.mode_is_param = false;
1309   res.u.predicate.mode = mode;
1310   return res;
1311 }
1312 
1313 rtx_test
duplicate(position * pos,int opno)1314 rtx_test::duplicate (position *pos, int opno)
1315 {
1316   rtx_test res (pos, rtx_test::DUPLICATE);
1317   res.u.opno = opno;
1318   return res;
1319 }
1320 
1321 rtx_test
pattern(position * pos,pattern_use * pattern)1322 rtx_test::pattern (position *pos, pattern_use *pattern)
1323 {
1324   rtx_test res (pos, rtx_test::PATTERN);
1325   res.u.pattern = pattern;
1326   return res;
1327 }
1328 
1329 rtx_test
have_num_clobbers()1330 rtx_test::have_num_clobbers ()
1331 {
1332   return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS);
1333 }
1334 
1335 rtx_test
c_test(const char * string)1336 rtx_test::c_test (const char *string)
1337 {
1338   rtx_test res (0, rtx_test::C_TEST);
1339   res.u.string = string;
1340   return res;
1341 }
1342 
1343 rtx_test
set_op(position * pos,int opno)1344 rtx_test::set_op (position *pos, int opno)
1345 {
1346   rtx_test res (pos, rtx_test::SET_OP);
1347   res.u.opno = opno;
1348   return res;
1349 }
1350 
1351 rtx_test
accept(const acceptance_type & acceptance)1352 rtx_test::accept (const acceptance_type &acceptance)
1353 {
1354   rtx_test res (0, rtx_test::ACCEPT);
1355   res.u.acceptance = acceptance;
1356   return res;
1357 }
1358 
1359 /* Return true if the test represents an unconditionally successful match.  */
1360 
1361 bool
terminal_p()1362 rtx_test::terminal_p () const
1363 {
1364   return kind == rtx_test::ACCEPT && u.acceptance.type != PEEPHOLE2;
1365 }
1366 
1367 /* Return true if the test is a boolean that is always true.  */
1368 
1369 bool
single_outcome_p()1370 rtx_test::single_outcome_p () const
1371 {
1372   return terminal_p () || kind == rtx_test::SET_OP;
1373 }
1374 
1375 bool
1376 operator == (const rtx_test &a, const rtx_test &b)
1377 {
1378   if (a.pos != b.pos || a.kind != b.kind)
1379     return false;
1380   switch (a.kind)
1381     {
1382     case rtx_test::CODE:
1383     case rtx_test::MODE:
1384     case rtx_test::REGNO_FIELD:
1385     case rtx_test::SUBREG_FIELD:
1386     case rtx_test::VECLEN:
1387     case rtx_test::HAVE_NUM_CLOBBERS:
1388       return true;
1389 
1390     case rtx_test::PEEP2_COUNT:
1391     case rtx_test::VECLEN_GE:
1392       return a.u.min_len == b.u.min_len;
1393 
1394     case rtx_test::INT_FIELD:
1395     case rtx_test::WIDE_INT_FIELD:
1396     case rtx_test::DUPLICATE:
1397     case rtx_test::SET_OP:
1398       return a.u.opno == b.u.opno;
1399 
1400     case rtx_test::SAVED_CONST_INT:
1401       return (a.u.integer.is_param == b.u.integer.is_param
1402 	      && a.u.integer.value == b.u.integer.value);
1403 
1404     case rtx_test::PREDICATE:
1405       return (a.u.predicate.data == b.u.predicate.data
1406 	      && a.u.predicate.mode_is_param == b.u.predicate.mode_is_param
1407 	      && a.u.predicate.mode == b.u.predicate.mode);
1408 
1409     case rtx_test::PATTERN:
1410       return (a.u.pattern->routine == b.u.pattern->routine
1411 	      && a.u.pattern->params == b.u.pattern->params);
1412 
1413     case rtx_test::C_TEST:
1414       return strcmp (a.u.string, b.u.string) == 0;
1415 
1416     case rtx_test::ACCEPT:
1417       return a.u.acceptance == b.u.acceptance;
1418     }
1419   gcc_unreachable ();
1420 }
1421 
1422 bool
1423 operator != (const rtx_test &a, const rtx_test &b)
1424 {
1425   return !operator == (a, b);
1426 }
1427 
1428 /* A simple set of transition labels.  Most transitions have a singleton
1429    label, so try to make that case as efficient as possible.  */
1430 struct int_set : public auto_vec <uint64_t, 1>
1431 {
1432   typedef uint64_t *iterator;
1433 
1434   int_set ();
1435   int_set (uint64_t);
1436   int_set (const int_set &);
1437 
1438   int_set &operator = (const int_set &);
1439 
1440   iterator begin ();
1441   iterator end ();
1442 };
1443 
int_set()1444 int_set::int_set () : auto_vec<uint64_t, 1> () {}
1445 
int_set(uint64_t label)1446 int_set::int_set (uint64_t label) :
1447   auto_vec<uint64_t, 1> ()
1448 {
1449   safe_push (label);
1450 }
1451 
int_set(const int_set & other)1452 int_set::int_set (const int_set &other) :
1453   auto_vec<uint64_t, 1> ()
1454 {
1455   safe_splice (other);
1456 }
1457 
1458 int_set &
1459 int_set::operator = (const int_set &other)
1460 {
1461   truncate (0);
1462   safe_splice (other);
1463   return *this;
1464 }
1465 
1466 int_set::iterator
begin()1467 int_set::begin ()
1468 {
1469   return address ();
1470 }
1471 
1472 int_set::iterator
end()1473 int_set::end ()
1474 {
1475   return address () + length ();
1476 }
1477 
1478 bool
1479 operator == (const int_set &a, const int_set &b)
1480 {
1481   if (a.length () != b.length ())
1482     return false;
1483   for (unsigned int i = 0; i < a.length (); ++i)
1484     if (a[i] != b[i])
1485       return false;
1486   return true;
1487 }
1488 
1489 bool
1490 operator != (const int_set &a, const int_set &b)
1491 {
1492   return !operator == (a, b);
1493 }
1494 
1495 struct decision;
1496 
1497 /* Represents a transition between states, dependent on the result of
1498    a test T.  */
1499 struct transition
1500 {
1501   transition (const int_set &, state *, bool);
1502 
1503   void set_parent (list_head <transition> *);
1504 
1505   /* Links to other transitions for T.  Always null for boolean tests.  */
1506   transition *prev, *next;
1507 
1508   /* The transition should be taken when T has one of these values.
1509      E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1510      rtx_test::PREDICATE it is always a singleton "true".  The labels are
1511      sorted in ascending order.  */
1512   int_set labels;
1513 
1514   /* The source decision.  */
1515   decision *from;
1516 
1517   /* The target state.  */
1518   state *to;
1519 
1520   /* True if TO would function correctly even if TEST wasn't performed.
1521      E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1522      before calling register_operand (x1, SImode), since register_operand
1523      performs its own mode check.  However, checking GET_MODE can be a cheap
1524      way of disambiguating SImode and DImode register operands.  */
1525   bool optional;
1526 
1527   /* True if LABELS contains parameter numbers rather than constants.
1528      E.g. if this is true for a rtx_test::CODE, the label is the number
1529      of an rtx_code parameter rather than an rtx_code itself.
1530      LABELS is always a singleton when this variable is true.  */
1531   bool is_param;
1532 };
1533 
1534 /* Represents a test and the action that should be taken on the result.
1535    If a transition exists for the test outcome, the machine switches
1536    to the transition's target state.  If no suitable transition exists,
1537    the machine either falls through to the next decision or, if there are no
1538    more decisions to try, fails the match.  */
1539 struct decision : list_head <transition>
1540 {
1541   decision (const rtx_test &);
1542 
1543   void set_parent (list_head <decision> *s);
1544   bool if_statement_p (uint64_t * = 0) const;
1545 
1546   /* The state to which this decision belongs.  */
1547   state *s;
1548 
1549   /* Links to other decisions in the same state.  */
1550   decision *prev, *next;
1551 
1552   /* The test to perform.  */
1553   rtx_test test;
1554 };
1555 
1556 /* Represents one machine state.  For each state the machine tries a list
1557    of decisions, in order, and acts on the first match.  It fails without
1558    further backtracking if no decisions match.  */
1559 struct state : list_head <decision>
1560 {
set_parentstate1561   void set_parent (list_head <state> *) {}
1562 };
1563 
transition(const int_set & labels_in,state * to_in,bool optional_in)1564 transition::transition (const int_set &labels_in, state *to_in,
1565 			bool optional_in)
1566   : prev (0), next (0), labels (labels_in), from (0), to (to_in),
1567     optional (optional_in), is_param (false) {}
1568 
1569 /* Set the source decision of the transition.  */
1570 
1571 void
set_parent(list_head<transition> * from_in)1572 transition::set_parent (list_head <transition> *from_in)
1573 {
1574   from = static_cast <decision *> (from_in);
1575 }
1576 
decision(const rtx_test & test_in)1577 decision::decision (const rtx_test &test_in)
1578   : prev (0), next (0), test (test_in) {}
1579 
1580 /* Set the state to which this decision belongs.  */
1581 
1582 void
set_parent(list_head<decision> * s_in)1583 decision::set_parent (list_head <decision> *s_in)
1584 {
1585   s = static_cast <state *> (s_in);
1586 }
1587 
1588 /* Return true if the decision has a single transition with a single label.
1589    If so, return the label in *LABEL if nonnull.  */
1590 
1591 inline bool
if_statement_p(uint64_t * label)1592 decision::if_statement_p (uint64_t *label) const
1593 {
1594   if (singleton () && first->labels.length () == 1)
1595     {
1596       if (label)
1597 	*label = first->labels[0];
1598       return true;
1599     }
1600   return false;
1601 }
1602 
1603 /* Add to FROM a decision that performs TEST and has a single transition
1604    TRANS.  */
1605 
1606 static void
add_decision(state * from,const rtx_test & test,transition * trans)1607 add_decision (state *from, const rtx_test &test, transition *trans)
1608 {
1609   decision *d = new decision (test);
1610   from->push_back (d);
1611   d->push_back (trans);
1612 }
1613 
1614 /* Add a transition from FROM to a new, empty state that is taken
1615    when TEST == LABELS.  OPTIONAL says whether the new transition
1616    should be optional.  Return the new state.  */
1617 
1618 static state *
add_decision(state * from,const rtx_test & test,int_set labels,bool optional)1619 add_decision (state *from, const rtx_test &test, int_set labels, bool optional)
1620 {
1621   state *to = new state;
1622   add_decision (from, test, new transition (labels, to, optional));
1623   return to;
1624 }
1625 
1626 /* Insert a decision before decisions R to make them dependent on
1627    TEST == LABELS.  OPTIONAL says whether the new transition should be
1628    optional.  */
1629 
1630 static decision *
insert_decision_before(state::range r,const rtx_test & test,const int_set & labels,bool optional)1631 insert_decision_before (state::range r, const rtx_test &test,
1632 			const int_set &labels, bool optional)
1633 {
1634   decision *newd = new decision (test);
1635   state *news = new state;
1636   newd->push_back (new transition (labels, news, optional));
1637   r.start->s->replace (r, newd);
1638   news->push_back (r);
1639   return newd;
1640 }
1641 
1642 /* Remove any optional transitions from S that turned out not to be useful.  */
1643 
1644 static void
collapse_optional_decisions(state * s)1645 collapse_optional_decisions (state *s)
1646 {
1647   decision *d = s->first;
1648   while (d)
1649     {
1650       decision *next = d->next;
1651       for (transition *trans = d->first; trans; trans = trans->next)
1652 	collapse_optional_decisions (trans->to);
1653       /* A decision with a single optional transition doesn't help
1654 	 partition the potential matches and so is unlikely to be
1655 	 worthwhile.  In particular, if the decision that performs the
1656 	 test is the last in the state, the best it could do is reject
1657 	 an invalid pattern slightly earlier.  If instead the decision
1658 	 is not the last in the state, the condition it tests could hold
1659 	 even for the later decisions in the state.  The best it can do
1660 	 is save work in some cases where only the later decisions can
1661 	 succeed.
1662 
1663 	 In both cases the optional transition would add extra work to
1664 	 successful matches when the tested condition holds.  */
1665       if (transition *trans = d->singleton ())
1666 	if (trans->optional)
1667 	  s->replace (d, trans->to->release ());
1668       d = next;
1669     }
1670 }
1671 
1672 /* Try to squash several separate tests into simpler ones.  */
1673 
1674 static void
simplify_tests(state * s)1675 simplify_tests (state *s)
1676 {
1677   for (decision *d = s->first; d; d = d->next)
1678     {
1679       uint64_t label;
1680       /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1681 	 into checks for const_int_rtx[N'], if N is suitably small.  */
1682       if (d->test.kind == rtx_test::CODE
1683 	  && d->if_statement_p (&label)
1684 	  && label == CONST_INT)
1685 	if (decision *second = d->first->to->singleton ())
1686 	  if (d->test.pos == second->test.pos
1687 	      && second->test.kind == rtx_test::WIDE_INT_FIELD
1688 	      && second->test.u.opno == 0
1689 	      && second->if_statement_p (&label)
1690 	      && IN_RANGE (int64_t (label),
1691 			   -MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT))
1692 	    {
1693 	      d->test.kind = rtx_test::SAVED_CONST_INT;
1694 	      d->test.u.integer.is_param = false;
1695 	      d->test.u.integer.value = label;
1696 	      d->replace (d->first, second->release ());
1697 	      d->first->labels[0] = true;
1698 	    }
1699       /* If we have a CODE test followed by a PREDICATE test, rely on
1700 	 the predicate to test the code.
1701 
1702 	 This case exists for match_operators.  We initially treat the
1703 	 CODE test for a match_operator as non-optional so that we can
1704 	 safely move down to its operands.  It may turn out that all
1705 	 paths that reach that code test require the same predicate
1706 	 to be true.  cse_tests will then put the predicate test in
1707 	 series with the code test.  */
1708       if (d->test.kind == rtx_test::CODE)
1709 	if (transition *trans = d->singleton ())
1710 	  {
1711 	    state *s = trans->to;
1712 	    while (decision *d2 = s->singleton ())
1713 	      {
1714 		if (d->test.pos != d2->test.pos)
1715 		  break;
1716 		transition *trans2 = d2->singleton ();
1717 		if (!trans2)
1718 		  break;
1719 		if (d2->test.kind == rtx_test::PREDICATE)
1720 		  {
1721 		    d->test = d2->test;
1722 		    trans->labels = int_set (true);
1723 		    s->replace (d2, trans2->to->release ());
1724 		    break;
1725 		  }
1726 		s = trans2->to;
1727 	      }
1728 	  }
1729       for (transition *trans = d->first; trans; trans = trans->next)
1730 	simplify_tests (trans->to);
1731     }
1732 }
1733 
1734 /* Return true if all successful returns passing through D require the
1735    condition tested by COMMON to be true.
1736 
1737    When returning true, add all transitions like COMMON in D to WHERE.
1738    WHERE may contain a partial result on failure.  */
1739 
1740 static bool
common_test_p(decision * d,transition * common,vec<transition * > * where)1741 common_test_p (decision *d, transition *common, vec <transition *> *where)
1742 {
1743   if (d->test.kind == rtx_test::ACCEPT)
1744     /* We found a successful return that didn't require COMMON.  */
1745     return false;
1746   if (d->test == common->from->test)
1747     {
1748       transition *trans = d->singleton ();
1749       if (!trans
1750 	  || trans->optional != common->optional
1751 	  || trans->labels != common->labels)
1752 	return false;
1753       where->safe_push (trans);
1754       return true;
1755     }
1756   for (transition *trans = d->first; trans; trans = trans->next)
1757     for (decision *subd = trans->to->first; subd; subd = subd->next)
1758       if (!common_test_p (subd, common, where))
1759 	return false;
1760   return true;
1761 }
1762 
1763 /* Indicates that we have tested GET_CODE (X) for a particular rtx X.  */
1764 const unsigned char TESTED_CODE = 1;
1765 
1766 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X.  */
1767 const unsigned char TESTED_VECLEN = 2;
1768 
1769 /* Represents a set of conditions that are known to hold.  */
1770 struct known_conditions
1771 {
1772   /* A mask of TESTED_ values for each position, indexed by the position's
1773      id field.  */
1774   auto_vec <unsigned char> position_tests;
1775 
1776   /* Index N says whether operands[N] has been set.  */
1777   auto_vec <bool> set_operands;
1778 
1779   /* A guranteed lower bound on the value of peep2_current_count.  */
1780   int peep2_count;
1781 };
1782 
1783 /* Return true if TEST can safely be performed at D, where
1784    the conditions in KC hold.  TEST is known to occur along the
1785    first path from D (i.e. always following the first transition
1786    of the first decision).  Any intervening tests can be used as
1787    negative proof that hoisting isn't safe, but only KC can be used
1788    as positive proof.  */
1789 
1790 static bool
safe_to_hoist_p(decision * d,const rtx_test & test,known_conditions * kc)1791 safe_to_hoist_p (decision *d, const rtx_test &test, known_conditions *kc)
1792 {
1793   switch (test.kind)
1794     {
1795     case rtx_test::C_TEST:
1796       /* In general, C tests require everything else to have been
1797 	 verified and all operands to have been set up.  */
1798       return false;
1799 
1800     case rtx_test::ACCEPT:
1801       /* Don't accept something before all conditions have been tested.  */
1802       return false;
1803 
1804     case rtx_test::PREDICATE:
1805       /* Don't move a predicate over a test for VECLEN_GE, since the
1806 	 predicate used in a match_parallel can legitimately expect the
1807 	 length to be checked first.  */
1808       for (decision *subd = d;
1809 	   subd->test != test;
1810 	   subd = subd->first->to->first)
1811 	if (subd->test.pos == test.pos
1812 	    && subd->test.kind == rtx_test::VECLEN_GE)
1813 	  return false;
1814       goto any_rtx;
1815 
1816     case rtx_test::DUPLICATE:
1817       /* Don't test for a match_dup until the associated operand has
1818 	 been set.  */
1819       if (!kc->set_operands[test.u.opno])
1820 	return false;
1821       goto any_rtx;
1822 
1823     case rtx_test::CODE:
1824     case rtx_test::MODE:
1825     case rtx_test::SAVED_CONST_INT:
1826     case rtx_test::SET_OP:
1827     any_rtx:
1828       /* Check whether it is safe to access the rtx under test.  */
1829       switch (test.pos->type)
1830 	{
1831 	case POS_PEEP2_INSN:
1832 	  return test.pos->arg < kc->peep2_count;
1833 
1834 	case POS_XEXP:
1835 	  return kc->position_tests[test.pos->base->id] & TESTED_CODE;
1836 
1837 	case POS_XVECEXP0:
1838 	  return kc->position_tests[test.pos->base->id] & TESTED_VECLEN;
1839 	}
1840       gcc_unreachable ();
1841 
1842     case rtx_test::REGNO_FIELD:
1843     case rtx_test::SUBREG_FIELD:
1844     case rtx_test::INT_FIELD:
1845     case rtx_test::WIDE_INT_FIELD:
1846     case rtx_test::VECLEN:
1847     case rtx_test::VECLEN_GE:
1848       /* These tests access a specific part of an rtx, so are only safe
1849 	 once we know what the rtx is.  */
1850       return kc->position_tests[test.pos->id] & TESTED_CODE;
1851 
1852     case rtx_test::PEEP2_COUNT:
1853     case rtx_test::HAVE_NUM_CLOBBERS:
1854       /* These tests can be performed anywhere.  */
1855       return true;
1856 
1857     case rtx_test::PATTERN:
1858       gcc_unreachable ();
1859     }
1860   gcc_unreachable ();
1861 }
1862 
1863 /* Look for a transition that is taken by all successful returns from a range
1864    of decisions starting at OUTER and that would be better performed by
1865    OUTER's state instead.  On success, store all instances of that transition
1866    in WHERE and return the last decision in the range.  The range could
1867    just be OUTER, or it could include later decisions as well.
1868 
1869    WITH_POSITION_P is true if only tests with position POS should be tried,
1870    false if any test should be tried.  WORTHWHILE_SINGLE_P is true if the
1871    result is useful even when the range contains just a single decision
1872    with a single transition.  KC are the conditions that are known to
1873    hold at OUTER.  */
1874 
1875 static decision *
find_common_test(decision * outer,bool with_position_p,position * pos,bool worthwhile_single_p,known_conditions * kc,vec<transition * > * where)1876 find_common_test (decision *outer, bool with_position_p,
1877 		  position *pos, bool worthwhile_single_p,
1878 		  known_conditions *kc, vec <transition *> *where)
1879 {
1880   /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1881      just a single decision is useful, regardless of the number of
1882      transitions it has.  */
1883   if (!outer->singleton ())
1884     worthwhile_single_p = true;
1885   /* Quick exit if we don't have enough decisions to form a worthwhile
1886      range.  */
1887   if (!worthwhile_single_p && !outer->next)
1888     return 0;
1889   /* Follow the first chain down, as one example of a path that needs
1890      to contain the common test.  */
1891   for (decision *d = outer; d; d = d->first->to->first)
1892     {
1893       transition *trans = d->singleton ();
1894       if (trans
1895 	  && (!with_position_p || d->test.pos == pos)
1896 	  && safe_to_hoist_p (outer, d->test, kc))
1897 	{
1898 	  if (common_test_p (outer, trans, where))
1899 	    {
1900 	      if (!outer->next)
1901 		/* We checked above whether the move is worthwhile.  */
1902 		return outer;
1903 	      /* See how many decisions in OUTER's chain could reuse
1904 		 the same test.  */
1905 	      decision *outer_end = outer;
1906 	      do
1907 		{
1908 		  unsigned int length = where->length ();
1909 		  if (!common_test_p (outer_end->next, trans, where))
1910 		    {
1911 		      where->truncate (length);
1912 		      break;
1913 		    }
1914 		  outer_end = outer_end->next;
1915 		}
1916 	      while (outer_end->next);
1917 	      /* It is worth moving TRANS if it can be shared by more than
1918 		 one decision.  */
1919 	      if (outer_end != outer || worthwhile_single_p)
1920 		return outer_end;
1921 	    }
1922 	  where->truncate (0);
1923 	}
1924     }
1925   return 0;
1926 }
1927 
1928 /* Try to promote common subtests in S to a single, shared decision.
1929    Also try to bunch tests for the same position together.  POS is the
1930    position of the rtx tested before reaching S.  KC are the conditions
1931    that are known to hold on entry to S.  */
1932 
1933 static void
cse_tests(position * pos,state * s,known_conditions * kc)1934 cse_tests (position *pos, state *s, known_conditions *kc)
1935 {
1936   for (decision *d = s->first; d; d = d->next)
1937     {
1938       auto_vec <transition *, 16> where;
1939       if (d->test.pos)
1940 	{
1941 	  /* Try to find conditions that don't depend on a particular rtx,
1942 	     such as pnum_clobbers != NULL or peep2_current_count >= X.
1943 	     It's usually better to check these conditions as soon as
1944 	     possible, so the change is worthwhile even if there is
1945 	     only one copy of the test.  */
1946 	  decision *endd = find_common_test (d, true, 0, true, kc, &where);
1947 	  if (!endd && d->test.pos != pos)
1948 	    /* Try to find other conditions related to position POS
1949 	       before moving to the new position.  Again, this is
1950 	       worthwhile even if there is only one copy of the test,
1951 	       since it means that fewer position variables are live
1952 	       at a given time.  */
1953 	    endd = find_common_test (d, true, pos, true, kc, &where);
1954 	  if (!endd)
1955 	    /* Try to find any condition that is used more than once.  */
1956 	    endd = find_common_test (d, false, 0, false, kc, &where);
1957 	  if (endd)
1958 	    {
1959 	      transition *common = where[0];
1960 	      /* Replace [D, ENDD] with a test like COMMON.  We'll recurse
1961 		 on the common test and see the original D again next time.  */
1962 	      d = insert_decision_before (state::range (d, endd),
1963 					  common->from->test,
1964 					  common->labels,
1965 					  common->optional);
1966 	      /* Remove the old tests.  */
1967 	      while (!where.is_empty ())
1968 		{
1969 		  transition *trans = where.pop ();
1970 		  trans->from->s->replace (trans->from, trans->to->release ());
1971 		}
1972 	    }
1973 	}
1974 
1975       /* Make sure that safe_to_hoist_p isn't being overly conservative.
1976 	 It should realize that D's test is safe in the current
1977 	 environment.  */
1978       gcc_assert (d->test.kind == rtx_test::C_TEST
1979 		  || d->test.kind == rtx_test::ACCEPT
1980 		  || safe_to_hoist_p (d, d->test, kc));
1981 
1982       /* D won't be changed any further by the current optimization.
1983 	 Recurse with the state temporarily updated to include D.  */
1984       int prev = 0;
1985       switch (d->test.kind)
1986 	{
1987 	case rtx_test::CODE:
1988 	  prev = kc->position_tests[d->test.pos->id];
1989 	  kc->position_tests[d->test.pos->id] |= TESTED_CODE;
1990 	  break;
1991 
1992 	case rtx_test::VECLEN:
1993 	case rtx_test::VECLEN_GE:
1994 	  prev = kc->position_tests[d->test.pos->id];
1995 	  kc->position_tests[d->test.pos->id] |= TESTED_VECLEN;
1996 	  break;
1997 
1998 	case rtx_test::SET_OP:
1999 	  prev = kc->set_operands[d->test.u.opno];
2000 	  gcc_assert (!prev);
2001 	  kc->set_operands[d->test.u.opno] = true;
2002 	  break;
2003 
2004 	case rtx_test::PEEP2_COUNT:
2005 	  prev = kc->peep2_count;
2006 	  kc->peep2_count = MAX (prev, d->test.u.min_len);
2007 	  break;
2008 
2009 	default:
2010 	  break;
2011 	}
2012       for (transition *trans = d->first; trans; trans = trans->next)
2013 	cse_tests (d->test.pos ? d->test.pos : pos, trans->to, kc);
2014       switch (d->test.kind)
2015 	{
2016 	case rtx_test::CODE:
2017 	case rtx_test::VECLEN:
2018 	case rtx_test::VECLEN_GE:
2019 	  kc->position_tests[d->test.pos->id] = prev;
2020 	  break;
2021 
2022 	case rtx_test::SET_OP:
2023 	  kc->set_operands[d->test.u.opno] = prev;
2024 	  break;
2025 
2026 	case rtx_test::PEEP2_COUNT:
2027 	  kc->peep2_count = prev;
2028 	  break;
2029 
2030 	default:
2031 	  break;
2032 	}
2033     }
2034 }
2035 
2036 /* Return the type of value that can be used to parameterize test KIND,
2037    or parameter::UNSET if none.  */
2038 
2039 parameter::type_enum
transition_parameter_type(rtx_test::kind_enum kind)2040 transition_parameter_type (rtx_test::kind_enum kind)
2041 {
2042   switch (kind)
2043     {
2044     case rtx_test::CODE:
2045       return parameter::CODE;
2046 
2047     case rtx_test::MODE:
2048       return parameter::MODE;
2049 
2050     case rtx_test::REGNO_FIELD:
2051     case rtx_test::SUBREG_FIELD:
2052       return parameter::UINT;
2053 
2054     case rtx_test::INT_FIELD:
2055     case rtx_test::VECLEN:
2056     case rtx_test::PATTERN:
2057       return parameter::INT;
2058 
2059     case rtx_test::WIDE_INT_FIELD:
2060       return parameter::WIDE_INT;
2061 
2062     case rtx_test::PEEP2_COUNT:
2063     case rtx_test::VECLEN_GE:
2064     case rtx_test::SAVED_CONST_INT:
2065     case rtx_test::PREDICATE:
2066     case rtx_test::DUPLICATE:
2067     case rtx_test::HAVE_NUM_CLOBBERS:
2068     case rtx_test::C_TEST:
2069     case rtx_test::SET_OP:
2070     case rtx_test::ACCEPT:
2071       return parameter::UNSET;
2072     }
2073   gcc_unreachable ();
2074 }
2075 
2076 /* Initialize the pos_operand fields of each state reachable from S.
2077    If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2078    operands[OPERAND_POS[ID]] on entry to S.  */
2079 
2080 static void
find_operand_positions(state * s,vec<int> & operand_pos)2081 find_operand_positions (state *s, vec <int> &operand_pos)
2082 {
2083   for (decision *d = s->first; d; d = d->next)
2084     {
2085       int this_operand = (d->test.pos ? operand_pos[d->test.pos->id] : -1);
2086       if (this_operand >= 0)
2087 	d->test.pos_operand = this_operand;
2088       if (d->test.kind == rtx_test::SET_OP)
2089 	operand_pos[d->test.pos->id] = d->test.u.opno;
2090       for (transition *trans = d->first; trans; trans = trans->next)
2091 	find_operand_positions (trans->to, operand_pos);
2092       if (d->test.kind == rtx_test::SET_OP)
2093 	operand_pos[d->test.pos->id] = this_operand;
2094     }
2095 }
2096 
2097 /* Statistics about a matching routine.  */
2098 struct stats
2099 {
2100   stats ();
2101 
2102   /* The total number of decisions in the routine, excluding trivial
2103      ones that never fail.  */
2104   unsigned int num_decisions;
2105 
2106   /* The number of non-trivial decisions on the longest path through
2107      the routine, and the return value that contributes most to that
2108      long path.  */
2109   unsigned int longest_path;
2110   int longest_path_code;
2111 
2112   /* The maximum number of times that a single call to the routine
2113      can backtrack, and the value returned at the end of that path.
2114      "Backtracking" here means failing one decision in state and
2115      going onto to the next.  */
2116   unsigned int longest_backtrack;
2117   int longest_backtrack_code;
2118 };
2119 
stats()2120 stats::stats ()
2121   : num_decisions (0), longest_path (0), longest_path_code (-1),
2122     longest_backtrack (0), longest_backtrack_code (-1) {}
2123 
2124 /* Return statistics about S.  */
2125 
2126 static stats
get_stats(state * s)2127 get_stats (state *s)
2128 {
2129   stats for_s;
2130   unsigned int longest_path = 0;
2131   for (decision *d = s->first; d; d = d->next)
2132     {
2133       /* Work out the statistics for D.  */
2134       stats for_d;
2135       for (transition *trans = d->first; trans; trans = trans->next)
2136 	{
2137 	  stats for_trans = get_stats (trans->to);
2138 	  for_d.num_decisions += for_trans.num_decisions;
2139 	  /* Each transition is mutually-exclusive, so just pick the
2140 	     longest of the individual paths.  */
2141 	  if (for_d.longest_path <= for_trans.longest_path)
2142 	    {
2143 	      for_d.longest_path = for_trans.longest_path;
2144 	      for_d.longest_path_code = for_trans.longest_path_code;
2145 	    }
2146 	  /* Likewise for backtracking.  */
2147 	  if (for_d.longest_backtrack <= for_trans.longest_backtrack)
2148 	    {
2149 	      for_d.longest_backtrack = for_trans.longest_backtrack;
2150 	      for_d.longest_backtrack_code = for_trans.longest_backtrack_code;
2151 	    }
2152 	}
2153 
2154       /* Account for D's test in its statistics.  */
2155       if (!d->test.single_outcome_p ())
2156 	{
2157 	  for_d.num_decisions += 1;
2158 	  for_d.longest_path += 1;
2159 	}
2160       if (d->test.kind == rtx_test::ACCEPT)
2161 	{
2162 	  for_d.longest_path_code = d->test.u.acceptance.u.full.code;
2163 	  for_d.longest_backtrack_code = d->test.u.acceptance.u.full.code;
2164 	}
2165 
2166       /* Keep a running count of the number of backtracks.  */
2167       if (d->prev)
2168 	for_s.longest_backtrack += 1;
2169 
2170       /* Accumulate D's statistics into S's.  */
2171       for_s.num_decisions += for_d.num_decisions;
2172       for_s.longest_path += for_d.longest_path;
2173       for_s.longest_backtrack += for_d.longest_backtrack;
2174 
2175       /* Use the code from the decision with the longest individual path,
2176 	 since that's more likely to be useful if trying to make the
2177 	 path shorter.  In the event of a tie, pick the later decision,
2178 	 since that's closer to the end of the path.  */
2179       if (longest_path <= for_d.longest_path)
2180 	{
2181 	  longest_path = for_d.longest_path;
2182 	  for_s.longest_path_code = for_d.longest_path_code;
2183 	}
2184 
2185       /* Later decisions in a state are necessarily in a longer backtrack
2186 	 than earlier decisions.  */
2187       for_s.longest_backtrack_code = for_d.longest_backtrack_code;
2188     }
2189   return for_s;
2190 }
2191 
2192 /* Optimize ROOT.  Use TYPE to describe ROOT in status messages.  */
2193 
2194 static void
optimize_subroutine_group(const char * type,state * root)2195 optimize_subroutine_group (const char *type, state *root)
2196 {
2197   /* Remove optional transitions that turned out not to be worthwhile.  */
2198   if (collapse_optional_decisions_p)
2199     collapse_optional_decisions (root);
2200 
2201   /* Try to remove duplicated tests and to rearrange tests into a more
2202      logical order.  */
2203   if (cse_tests_p)
2204     {
2205       known_conditions kc;
2206       kc.position_tests.safe_grow_cleared (num_positions);
2207       kc.set_operands.safe_grow_cleared (num_operands);
2208       kc.peep2_count = 1;
2209       cse_tests (&root_pos, root, &kc);
2210     }
2211 
2212   /* Try to simplify two or more tests into one.  */
2213   if (simplify_tests_p)
2214     simplify_tests (root);
2215 
2216   /* Try to use operands[] instead of xN variables.  */
2217   if (use_operand_variables_p)
2218     {
2219       auto_vec <int> operand_pos (num_positions);
2220       for (unsigned int i = 0; i < num_positions; ++i)
2221 	operand_pos.quick_push (-1);
2222       find_operand_positions (root, operand_pos);
2223     }
2224 
2225   /* Print a summary of the new state.  */
2226   stats st = get_stats (root);
2227   fprintf (stderr, "Statistics for %s:\n", type);
2228   fprintf (stderr, "  Number of decisions: %6d\n", st.num_decisions);
2229   fprintf (stderr, "  longest path:        %6d (code: %6d)\n",
2230 	   st.longest_path, st.longest_path_code);
2231   fprintf (stderr, "  longest backtrack:   %6d (code: %6d)\n",
2232 	   st.longest_backtrack, st.longest_backtrack_code);
2233 }
2234 
2235 struct merge_pattern_info;
2236 
2237 /* Represents a transition from one pattern to another.  */
2238 struct merge_pattern_transition
2239 {
2240   merge_pattern_transition (merge_pattern_info *);
2241 
2242   /* The target pattern.  */
2243   merge_pattern_info *to;
2244 
2245   /* The parameters that the source pattern passes to the target pattern.
2246      "parameter (TYPE, true, I)" represents parameter I of the source
2247      pattern.  */
2248   auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2249 };
2250 
merge_pattern_transition(merge_pattern_info * to_in)2251 merge_pattern_transition::merge_pattern_transition (merge_pattern_info *to_in)
2252   : to (to_in)
2253 {
2254 }
2255 
2256 /* Represents a pattern that can might match several states.  The pattern
2257    may replace parts of the test with a parameter value.  It may also
2258    replace transition labels with parameters.  */
2259 struct merge_pattern_info
2260 {
2261   merge_pattern_info (unsigned int);
2262 
2263   /* If PARAM_TEST_P, the state's singleton test should be generalized
2264      to use the runtime value of PARAMS[PARAM_TEST].  */
2265   unsigned int param_test : 8;
2266 
2267   /* If PARAM_TRANSITION_P, the state's single transition label should
2268      be replaced by the runtime value of PARAMS[PARAM_TRANSITION].  */
2269   unsigned int param_transition : 8;
2270 
2271   /* True if we have decided to generalize the root decision's test,
2272      as per PARAM_TEST.  */
2273   unsigned int param_test_p : 1;
2274 
2275   /* Likewise for the root decision's transition, as per PARAM_TRANSITION.  */
2276   unsigned int param_transition_p : 1;
2277 
2278   /* True if the contents of the structure are completely filled in.  */
2279   unsigned int complete_p : 1;
2280 
2281   /* The number of pseudo-statements in the pattern.  Used to decide
2282      whether it's big enough to break out into a subroutine.  */
2283   unsigned int num_statements;
2284 
2285   /* The number of states that use this pattern.  */
2286   unsigned int num_users;
2287 
2288   /* The number of distinct success values that the pattern returns.  */
2289   unsigned int num_results;
2290 
2291   /* This array has one element for each runtime parameter to the pattern.
2292      PARAMS[I] gives the default value of parameter I, which is always
2293      constant.
2294 
2295      These default parameters are used in cases where we match the
2296      pattern against some state S1, then add more parameters while
2297      matching against some state S2.  S1 is then left passing fewer
2298      parameters than S2.  The array gives us enough informatino to
2299      construct a full parameter list for S1 (see update_parameters).
2300 
2301      If we decide to create a subroutine for this pattern,
2302      PARAMS[I].type determines the C type of parameter I.  */
2303   auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2304 
2305   /* All states that match this pattern must have the same number of
2306      transitions.  TRANSITIONS[I] describes the subpattern for transition
2307      number I; it is null if transition I represents a successful return
2308      from the pattern.  */
2309   auto_vec <merge_pattern_transition *, 1> transitions;
2310 
2311   /* The routine associated with the pattern, or null if we haven't generated
2312      one yet.  */
2313   pattern_routine *routine;
2314 };
2315 
merge_pattern_info(unsigned int num_transitions)2316 merge_pattern_info::merge_pattern_info (unsigned int num_transitions)
2317   : param_test (0),
2318     param_transition (0),
2319     param_test_p (false),
2320     param_transition_p (false),
2321     complete_p (false),
2322     num_statements (0),
2323     num_users (0),
2324     num_results (0),
2325     routine (0)
2326 {
2327   transitions.safe_grow_cleared (num_transitions);
2328 }
2329 
2330 /* Describes one way of matching a particular state to a particular
2331    pattern.  */
2332 struct merge_state_result
2333 {
2334   merge_state_result (merge_pattern_info *, position *, merge_state_result *);
2335 
2336   /* A pattern that matches the state.  */
2337   merge_pattern_info *pattern;
2338 
2339   /* If we decide to use this match and create a subroutine for PATTERN,
2340      the state should pass the rtx at position ROOT to the pattern's
2341      rtx parameter.  A null root means that the pattern doesn't need
2342      an rtx parameter; all the rtxes it matches come from elsewhere.  */
2343   position *root;
2344 
2345   /* The parameters that should be passed to PATTERN for this state.
2346      If the array is shorter than PATTERN->params, the missing entries
2347      should be taken from the corresponding element of PATTERN->params.  */
2348   auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2349 
2350   /* An earlier match for the same state, or null if none.  Patterns
2351      matched by earlier entries are smaller than PATTERN.  */
2352   merge_state_result *prev;
2353 };
2354 
merge_state_result(merge_pattern_info * pattern_in,position * root_in,merge_state_result * prev_in)2355 merge_state_result::merge_state_result (merge_pattern_info *pattern_in,
2356 					position *root_in,
2357 					merge_state_result *prev_in)
2358   : pattern (pattern_in), root (root_in), prev (prev_in)
2359 {}
2360 
2361 /* Information about a state, used while trying to match it against
2362    a pattern.  */
2363 struct merge_state_info
2364 {
2365   merge_state_info (state *);
2366 
2367   /* The state itself.  */
2368   state *s;
2369 
2370   /* Index I gives information about the target of transition I.  */
2371   merge_state_info *to_states;
2372 
2373   /* The number of transitions in S.  */
2374   unsigned int num_transitions;
2375 
2376   /* True if the state has been deleted in favor of a call to a
2377      pattern routine.  */
2378   bool merged_p;
2379 
2380   /* The previous state that might be a merge candidate for S, or null
2381      if no previous states could be merged with S.  */
2382   merge_state_info *prev_same_test;
2383 
2384   /* A list of pattern matches for this state.  */
2385   merge_state_result *res;
2386 };
2387 
merge_state_info(state * s_in)2388 merge_state_info::merge_state_info (state *s_in)
2389   : s (s_in),
2390     to_states (0),
2391     num_transitions (0),
2392     merged_p (false),
2393     prev_same_test (0),
2394     res (0) {}
2395 
2396 /* True if PAT would be useful as a subroutine.  */
2397 
2398 static bool
useful_pattern_p(merge_pattern_info * pat)2399 useful_pattern_p (merge_pattern_info *pat)
2400 {
2401   return pat->num_statements >= MIN_COMBINE_COST;
2402 }
2403 
2404 /* PAT2 is a subpattern of PAT1.  Return true if PAT2 should be inlined
2405    into PAT1's C routine.  */
2406 
2407 static bool
same_pattern_p(merge_pattern_info * pat1,merge_pattern_info * pat2)2408 same_pattern_p (merge_pattern_info *pat1, merge_pattern_info *pat2)
2409 {
2410   return pat1->num_users == pat2->num_users || !useful_pattern_p (pat2);
2411 }
2412 
2413 /* PAT was previously matched against SINFO based on tentative matches
2414    for the target states of SINFO's state.  Return true if the match
2415    still holds; that is, if the target states of SINFO's state still
2416    match the corresponding transitions of PAT.  */
2417 
2418 static bool
valid_result_p(merge_pattern_info * pat,merge_state_info * sinfo)2419 valid_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2420 {
2421   for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2422     if (merge_pattern_transition *ptrans = pat->transitions[j])
2423       {
2424 	merge_state_result *to_res = sinfo->to_states[j].res;
2425 	if (!to_res || to_res->pattern != ptrans->to)
2426 	  return false;
2427       }
2428   return true;
2429 }
2430 
2431 /* Remove any matches that are no longer valid from the head of SINFO's
2432    list of matches.  */
2433 
2434 static void
prune_invalid_results(merge_state_info * sinfo)2435 prune_invalid_results (merge_state_info *sinfo)
2436 {
2437   while (sinfo->res && !valid_result_p (sinfo->res->pattern, sinfo))
2438     {
2439       sinfo->res = sinfo->res->prev;
2440       gcc_assert (sinfo->res);
2441     }
2442 }
2443 
2444 /* Return true if PAT represents the biggest posssible match for SINFO;
2445    that is, if the next action of SINFO's state on return from PAT will
2446    be something that cannot be merged with any other state.  */
2447 
2448 static bool
complete_result_p(merge_pattern_info * pat,merge_state_info * sinfo)2449 complete_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2450 {
2451   for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2452     if (sinfo->to_states[j].res && !pat->transitions[j])
2453       return false;
2454   return true;
2455 }
2456 
2457 /* Update TO for any parameters that have been added to FROM since TO
2458    was last set.  The extra parameters in FROM will be constants or
2459    instructions to duplicate earlier parameters.  */
2460 
2461 static void
update_parameters(vec<parameter> & to,const vec<parameter> & from)2462 update_parameters (vec <parameter> &to, const vec <parameter> &from)
2463 {
2464   for (unsigned int i = to.length (); i < from.length (); ++i)
2465     to.quick_push (from[i]);
2466 }
2467 
2468 /* Return true if A and B can be tested by a single test.  If the test
2469    can be parameterised, store the parameter value for A in *PARAMA and
2470    the parameter value for B in *PARAMB, otherwise leave PARAMA and
2471    PARAMB alone.  */
2472 
2473 static bool
compatible_tests_p(const rtx_test & a,const rtx_test & b,parameter * parama,parameter * paramb)2474 compatible_tests_p (const rtx_test &a, const rtx_test &b,
2475 		    parameter *parama, parameter *paramb)
2476 {
2477   if (a.kind != b.kind)
2478     return false;
2479   switch (a.kind)
2480     {
2481     case rtx_test::PREDICATE:
2482       if (a.u.predicate.data != b.u.predicate.data)
2483 	return false;
2484       *parama = parameter (parameter::MODE, false, a.u.predicate.mode);
2485       *paramb = parameter (parameter::MODE, false, b.u.predicate.mode);
2486       return true;
2487 
2488     case rtx_test::SAVED_CONST_INT:
2489       *parama = parameter (parameter::INT, false, a.u.integer.value);
2490       *paramb = parameter (parameter::INT, false, b.u.integer.value);
2491       return true;
2492 
2493     default:
2494       return a == b;
2495     }
2496 }
2497 
2498 /* PARAMS is an array of the parameters that a state is going to pass
2499    to a pattern routine.  It is still incomplete; index I has a kind of
2500    parameter::UNSET if we don't yet know what the state will pass
2501    as parameter I.  Try to make parameter ID equal VALUE, returning
2502    true on success.  */
2503 
2504 static bool
set_parameter(vec<parameter> & params,unsigned int id,const parameter & value)2505 set_parameter (vec <parameter> &params, unsigned int id,
2506 	       const parameter &value)
2507 {
2508   if (params[id].type == parameter::UNSET)
2509     {
2510       if (force_unique_params_p)
2511 	for (unsigned int i = 0; i < params.length (); ++i)
2512 	  if (params[i] == value)
2513 	    return false;
2514       params[id] = value;
2515       return true;
2516     }
2517   return params[id] == value;
2518 }
2519 
2520 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2521    set of parameters that a particular state is going to pass to
2522    that pattern.
2523 
2524    Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2525    that is equal to PARAM1 for the state and has a default value of
2526    PARAM2.  Parameters beginning at START were added as part of the
2527    same match and so may be reused.  */
2528 
2529 static bool
add_parameter(vec<parameter> & params1,vec<parameter> & params2,const parameter & param1,const parameter & param2,unsigned int start,unsigned int * res)2530 add_parameter (vec <parameter> &params1, vec <parameter> &params2,
2531 	       const parameter &param1, const parameter &param2,
2532 	       unsigned int start, unsigned int *res)
2533 {
2534   gcc_assert (params1.length () == params2.length ());
2535   gcc_assert (!param1.is_param && !param2.is_param);
2536 
2537   for (unsigned int i = start; i < params2.length (); ++i)
2538     if (params1[i] == param1 && params2[i] == param2)
2539       {
2540 	*res = i;
2541 	return true;
2542       }
2543 
2544   if (force_unique_params_p)
2545     for (unsigned int i = 0; i < params2.length (); ++i)
2546       if (params1[i] == param1 || params2[i] == param2)
2547 	return false;
2548 
2549   if (params2.length () >= MAX_PATTERN_PARAMS)
2550     return false;
2551 
2552   *res = params2.length ();
2553   params1.quick_push (param1);
2554   params2.quick_push (param2);
2555   return true;
2556 }
2557 
2558 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2559    required to reach A from *ROOTA as to reach B from ROOTB.  If *ROOTA
2560    is null, update it if necessary in order to make the condition hold.  */
2561 
2562 static bool
merge_relative_positions(position ** roota,position * a,position * rootb,position * b)2563 merge_relative_positions (position **roota, position *a,
2564 			  position *rootb, position *b)
2565 {
2566   if (!relative_patterns_p)
2567     {
2568       if (a != b)
2569 	return false;
2570       if (!*roota)
2571 	{
2572 	  *roota = rootb;
2573 	  return true;
2574 	}
2575       return *roota == rootb;
2576     }
2577   /* If B does not belong to the same instruction as ROOTB, we don't
2578      start with ROOTB but instead start with a call to peep2_next_insn.
2579      In that case the sequences for B and A are identical iff B and A
2580      are themselves identical.  */
2581   if (rootb->insn_id != b->insn_id)
2582     return a == b;
2583   while (rootb != b)
2584     {
2585       if (!a || b->type != a->type || b->arg != a->arg)
2586 	return false;
2587       b = b->base;
2588       a = a->base;
2589     }
2590   if (!*roota)
2591     *roota = a;
2592   return *roota == a;
2593 }
2594 
2595 /* A hasher of states that treats two states as "equal" if they might be
2596    merged (but trying to be more discriminating than "return true").  */
2597 struct test_pattern_hasher : nofree_ptr_hash <merge_state_info>
2598 {
2599   static inline hashval_t hash (const value_type &);
2600   static inline bool equal (const value_type &, const compare_type &);
2601 };
2602 
2603 hashval_t
hash(merge_state_info * const & sinfo)2604 test_pattern_hasher::hash (merge_state_info *const &sinfo)
2605 {
2606   inchash::hash h;
2607   decision *d = sinfo->s->singleton ();
2608   h.add_int (d->test.pos_operand + 1);
2609   if (!relative_patterns_p)
2610     h.add_int (d->test.pos ? d->test.pos->id + 1 : 0);
2611   h.add_int (d->test.kind);
2612   h.add_int (sinfo->num_transitions);
2613   return h.end ();
2614 }
2615 
2616 bool
equal(merge_state_info * const & sinfo1,merge_state_info * const & sinfo2)2617 test_pattern_hasher::equal (merge_state_info *const &sinfo1,
2618 			    merge_state_info *const &sinfo2)
2619 {
2620   decision *d1 = sinfo1->s->singleton ();
2621   decision *d2 = sinfo2->s->singleton ();
2622   gcc_assert (d1 && d2);
2623 
2624   parameter new_param1, new_param2;
2625   return (d1->test.pos_operand == d2->test.pos_operand
2626 	  && (relative_patterns_p || d1->test.pos == d2->test.pos)
2627 	  && compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2)
2628 	  && sinfo1->num_transitions == sinfo2->num_transitions);
2629 }
2630 
2631 /* Try to make the state described by SINFO1 use the same pattern as the
2632    state described by SINFO2.  Return true on success.
2633 
2634    SINFO1 and SINFO2 are known to have the same hash value.  */
2635 
2636 static bool
merge_patterns(merge_state_info * sinfo1,merge_state_info * sinfo2)2637 merge_patterns (merge_state_info *sinfo1, merge_state_info *sinfo2)
2638 {
2639   merge_state_result *res2 = sinfo2->res;
2640   merge_pattern_info *pat = res2->pattern;
2641 
2642   /* Write to temporary arrays while matching, in case we have to abort
2643      half way through.  */
2644   auto_vec <parameter, MAX_PATTERN_PARAMS> params1;
2645   auto_vec <parameter, MAX_PATTERN_PARAMS> params2;
2646   params1.quick_grow_cleared (pat->params.length ());
2647   params2.splice (pat->params);
2648   unsigned int start_param = params2.length ();
2649 
2650   /* An array for recording changes to PAT->transitions[?].params.
2651      All changes involve replacing a constant parameter with some
2652      PAT->params[N], where N is the second element of the pending_param.  */
2653   typedef std::pair <parameter *, unsigned int> pending_param;
2654   auto_vec <pending_param, 32> pending_params;
2655 
2656   decision *d1 = sinfo1->s->singleton ();
2657   decision *d2 = sinfo2->s->singleton ();
2658   gcc_assert (d1 && d2);
2659 
2660   /* If D2 tests a position, SINFO1's root relative to D1 is the same
2661      as SINFO2's root relative to D2.  */
2662   position *root1 = 0;
2663   position *root2 = res2->root;
2664   if (d2->test.pos_operand < 0
2665       && d1->test.pos
2666       && !merge_relative_positions (&root1, d1->test.pos,
2667 				    root2, d2->test.pos))
2668     return false;
2669 
2670   /* Check whether the patterns have the same shape.  */
2671   unsigned int num_transitions = sinfo1->num_transitions;
2672   gcc_assert (num_transitions == sinfo2->num_transitions);
2673   for (unsigned int i = 0; i < num_transitions; ++i)
2674     if (merge_pattern_transition *ptrans = pat->transitions[i])
2675       {
2676 	merge_state_result *to1_res = sinfo1->to_states[i].res;
2677 	merge_state_result *to2_res = sinfo2->to_states[i].res;
2678 	merge_pattern_info *to_pat = ptrans->to;
2679 	gcc_assert (to2_res && to2_res->pattern == to_pat);
2680 	if (!to1_res || to1_res->pattern != to_pat)
2681 	  return false;
2682 	if (to2_res->root
2683 	    && !merge_relative_positions (&root1, to1_res->root,
2684 					  root2, to2_res->root))
2685 	  return false;
2686 	/* Match the parameters that TO1_RES passes to TO_PAT with the
2687 	   parameters that PAT passes to TO_PAT.  */
2688 	update_parameters (to1_res->params, to_pat->params);
2689 	for (unsigned int j = 0; j < to1_res->params.length (); ++j)
2690 	  {
2691 	    const parameter &param1 = to1_res->params[j];
2692 	    const parameter &param2 = ptrans->params[j];
2693 	    gcc_assert (!param1.is_param);
2694 	    if (param2.is_param)
2695 	      {
2696 		if (!set_parameter (params1, param2.value, param1))
2697 		  return false;
2698 	      }
2699 	    else if (param1 != param2)
2700 	      {
2701 		unsigned int id;
2702 		if (!add_parameter (params1, params2,
2703 				    param1, param2, start_param, &id))
2704 		  return false;
2705 		/* Record that PAT should now pass parameter ID to TO_PAT,
2706 		   instead of the current contents of *PARAM2.  We only
2707 		   make the change if the rest of the match succeeds.  */
2708 		pending_params.safe_push
2709 		  (pending_param (&ptrans->params[j], id));
2710 	      }
2711 	  }
2712       }
2713 
2714   unsigned int param_test = pat->param_test;
2715   unsigned int param_transition = pat->param_transition;
2716   bool param_test_p = pat->param_test_p;
2717   bool param_transition_p = pat->param_transition_p;
2718 
2719   /* If the tests don't match exactly, try to parameterize them.  */
2720   parameter new_param1, new_param2;
2721   if (!compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2))
2722     gcc_unreachable ();
2723   if (new_param1.type != parameter::UNSET)
2724     {
2725       /* If the test has not already been parameterized, all existing
2726 	 matches use constant NEW_PARAM2.  */
2727       if (param_test_p)
2728 	{
2729 	  if (!set_parameter (params1, param_test, new_param1))
2730 	    return false;
2731 	}
2732       else if (new_param1 != new_param2)
2733 	{
2734 	  if (!add_parameter (params1, params2, new_param1, new_param2,
2735 			      start_param, &param_test))
2736 	    return false;
2737 	  param_test_p = true;
2738 	}
2739     }
2740 
2741   /* Match the transitions.  */
2742   transition *trans1 = d1->first;
2743   transition *trans2 = d2->first;
2744   for (unsigned int i = 0; i < num_transitions; ++i)
2745     {
2746       if (param_transition_p || trans1->labels != trans2->labels)
2747 	{
2748 	  /* We can only generalize a single transition with a single
2749 	     label.  */
2750 	  if (num_transitions != 1
2751 	      || trans1->labels.length () != 1
2752 	      || trans2->labels.length () != 1)
2753 	    return false;
2754 
2755 	  /* Although we can match wide-int fields, in practice it leads
2756 	     to some odd results for const_vectors.  We end up
2757 	     parameterizing the first N const_ints of the vector
2758 	     and then (once we reach the maximum number of parameters)
2759 	     we go on to match the other elements exactly.  */
2760 	  if (d1->test.kind == rtx_test::WIDE_INT_FIELD)
2761 	    return false;
2762 
2763 	  /* See whether the label has a generalizable type.  */
2764 	  parameter::type_enum param_type
2765 	    = transition_parameter_type (d1->test.kind);
2766 	  if (param_type == parameter::UNSET)
2767 	    return false;
2768 
2769 	  /* Match the labels using parameters.  */
2770 	  new_param1 = parameter (param_type, false, trans1->labels[0]);
2771 	  if (param_transition_p)
2772 	    {
2773 	      if (!set_parameter (params1, param_transition, new_param1))
2774 		return false;
2775 	    }
2776 	  else
2777 	    {
2778 	      new_param2 = parameter (param_type, false, trans2->labels[0]);
2779 	      if (!add_parameter (params1, params2, new_param1, new_param2,
2780 				  start_param, &param_transition))
2781 		return false;
2782 	      param_transition_p = true;
2783 	    }
2784 	}
2785       trans1 = trans1->next;
2786       trans2 = trans2->next;
2787     }
2788 
2789   /* Set any unset parameters to their default values.  This occurs if some
2790      other state needed something to be parameterized in order to match SINFO2,
2791      but SINFO1 on its own does not.  */
2792   for (unsigned int i = 0; i < params1.length (); ++i)
2793     if (params1[i].type == parameter::UNSET)
2794       params1[i] = params2[i];
2795 
2796   /* The match was successful.  Commit all pending changes to PAT.  */
2797   update_parameters (pat->params, params2);
2798   {
2799     pending_param *pp;
2800     unsigned int i;
2801     FOR_EACH_VEC_ELT (pending_params, i, pp)
2802       *pp->first = parameter (pp->first->type, true, pp->second);
2803   }
2804   pat->param_test = param_test;
2805   pat->param_transition = param_transition;
2806   pat->param_test_p = param_test_p;
2807   pat->param_transition_p = param_transition_p;
2808 
2809   /* Record the match of SINFO1.  */
2810   merge_state_result *new_res1 = new merge_state_result (pat, root1,
2811 							 sinfo1->res);
2812   new_res1->params.splice (params1);
2813   sinfo1->res = new_res1;
2814   return true;
2815 }
2816 
2817 /* The number of states that were removed by calling pattern routines.  */
2818 static unsigned int pattern_use_states;
2819 
2820 /* The number of states used while defining pattern routines.  */
2821 static unsigned int pattern_def_states;
2822 
2823 /* Information used while constructing a use or definition of a pattern
2824    routine.  */
2825 struct create_pattern_info
2826 {
2827   /* The routine itself.  */
2828   pattern_routine *routine;
2829 
2830   /* The first unclaimed return value for this particular use or definition.
2831      We walk the substates of uses and definitions in the same order
2832      so each return value always refers to the same position within
2833      the pattern.  */
2834   unsigned int next_result;
2835 };
2836 
2837 static void populate_pattern_routine (create_pattern_info *,
2838 				      merge_state_info *, state *,
2839 				      const vec <parameter> &);
2840 
2841 /* SINFO matches a pattern for which we've decided to create a C routine.
2842    Return a decision that performs a call to the pattern routine,
2843    but leave the caller to add the transitions to it.  Initialize CPI
2844    for this purpose.  Also create a definition for the pattern routine,
2845    if it doesn't already have one.
2846 
2847    PARAMS are the parameters that SINFO passes to its pattern.  */
2848 
2849 static decision *
init_pattern_use(create_pattern_info * cpi,merge_state_info * sinfo,const vec<parameter> & params)2850 init_pattern_use (create_pattern_info *cpi, merge_state_info *sinfo,
2851 		  const vec <parameter> &params)
2852 {
2853   state *s = sinfo->s;
2854   merge_state_result *res = sinfo->res;
2855   merge_pattern_info *pat = res->pattern;
2856   cpi->routine = pat->routine;
2857   if (!cpi->routine)
2858     {
2859       /* We haven't defined the pattern routine yet, so create
2860 	 a definition now.  */
2861       pattern_routine *routine = new pattern_routine;
2862       pat->routine = routine;
2863       cpi->routine = routine;
2864       routine->s = new state;
2865       routine->insn_p = false;
2866       routine->pnum_clobbers_p = false;
2867 
2868       /* Create an "idempotent" mapping of parameter I to parameter I.
2869 	 Also record the C type of each parameter to the routine.  */
2870       auto_vec <parameter, MAX_PATTERN_PARAMS> def_params;
2871       for (unsigned int i = 0; i < pat->params.length (); ++i)
2872 	{
2873 	  def_params.quick_push (parameter (pat->params[i].type, true, i));
2874 	  routine->param_types.quick_push (pat->params[i].type);
2875 	}
2876 
2877       /* Any of the states that match the pattern could be used to
2878 	 create the routine definition.  We might as well use SINFO
2879 	 since it's already to hand.  This means that all positions
2880 	 in the definition will be relative to RES->root.  */
2881       routine->pos = res->root;
2882       cpi->next_result = 0;
2883       populate_pattern_routine (cpi, sinfo, routine->s, def_params);
2884       gcc_assert (cpi->next_result == pat->num_results);
2885 
2886       /* Add the routine to the global list, after the subroutines
2887 	 that it calls.  */
2888       routine->pattern_id = patterns.length ();
2889       patterns.safe_push (routine);
2890     }
2891 
2892   /* Create a decision to call the routine, passing PARAMS to it.  */
2893   pattern_use *use = new pattern_use;
2894   use->routine = pat->routine;
2895   use->params.splice (params);
2896   decision *d = new decision (rtx_test::pattern (res->root, use));
2897 
2898   /* If the original decision could use an element of operands[] instead
2899      of an rtx variable, try to transfer it to the new decision.  */
2900   if (s->first->test.pos && res->root == s->first->test.pos)
2901     d->test.pos_operand = s->first->test.pos_operand;
2902 
2903   cpi->next_result = 0;
2904   return d;
2905 }
2906 
2907 /* Make S return the next unclaimed pattern routine result for CPI.  */
2908 
2909 static void
add_pattern_acceptance(create_pattern_info * cpi,state * s)2910 add_pattern_acceptance (create_pattern_info *cpi, state *s)
2911 {
2912   acceptance_type acceptance;
2913   acceptance.type = SUBPATTERN;
2914   acceptance.partial_p = false;
2915   acceptance.u.full.code = cpi->next_result;
2916   add_decision (s, rtx_test::accept (acceptance), true, false);
2917   cpi->next_result += 1;
2918 }
2919 
2920 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2921    (here referred to as "P").  P may be the top level of a pattern routine
2922    or a subpattern that should be inlined into its parent pattern's routine
2923    (as per same_pattern_p).  The choice of SINFO for a top-level pattern is
2924    arbitrary; it could be any of the states that use P.  The choice for
2925    subpatterns follows the choice for the parent pattern.
2926 
2927    PARAMS gives the value of each parameter to P in terms of the parameters
2928    to the top-level pattern.  If P itself is the top level pattern, PARAMS[I]
2929    is always "parameter (TYPE, true, I)".  */
2930 
2931 static void
populate_pattern_routine(create_pattern_info * cpi,merge_state_info * sinfo,state * news,const vec<parameter> & params)2932 populate_pattern_routine (create_pattern_info *cpi, merge_state_info *sinfo,
2933 			  state *news, const vec <parameter> &params)
2934 {
2935   pattern_def_states += 1;
2936 
2937   decision *d = sinfo->s->singleton ();
2938   merge_pattern_info *pat = sinfo->res->pattern;
2939   pattern_routine *routine = cpi->routine;
2940 
2941   /* Create a copy of D's test for the pattern routine and generalize it
2942      as appropriate.  */
2943   decision *newd = new decision (d->test);
2944   gcc_assert (newd->test.pos_operand >= 0
2945 	      || !newd->test.pos
2946 	      || common_position (newd->test.pos,
2947 				  routine->pos) == routine->pos);
2948   if (pat->param_test_p)
2949     {
2950       const parameter &param = params[pat->param_test];
2951       switch (newd->test.kind)
2952 	{
2953 	case rtx_test::PREDICATE:
2954 	  newd->test.u.predicate.mode_is_param = param.is_param;
2955 	  newd->test.u.predicate.mode = param.value;
2956 	  break;
2957 
2958 	case rtx_test::SAVED_CONST_INT:
2959 	  newd->test.u.integer.is_param = param.is_param;
2960 	  newd->test.u.integer.value = param.value;
2961 	  break;
2962 
2963 	default:
2964 	  gcc_unreachable ();
2965 	  break;
2966 	}
2967     }
2968   if (d->test.kind == rtx_test::C_TEST)
2969     routine->insn_p = true;
2970   else if (d->test.kind == rtx_test::HAVE_NUM_CLOBBERS)
2971     routine->pnum_clobbers_p = true;
2972   news->push_back (newd);
2973 
2974   /* Fill in the transitions of NEWD.  */
2975   unsigned int i = 0;
2976   for (transition *trans = d->first; trans; trans = trans->next)
2977     {
2978       /* Create a new state to act as the target of the new transition.  */
2979       state *to_news = new state;
2980       if (merge_pattern_transition *ptrans = pat->transitions[i])
2981 	{
2982 	  /* The pattern hasn't finished matching yet.  Get the target
2983 	     pattern and the corresponding target state of SINFO.  */
2984 	  merge_pattern_info *to_pat = ptrans->to;
2985 	  merge_state_info *to = sinfo->to_states + i;
2986 	  gcc_assert (to->res->pattern == to_pat);
2987 	  gcc_assert (ptrans->params.length () == to_pat->params.length ());
2988 
2989 	  /* Express the parameters to TO_PAT in terms of the parameters
2990 	     to the top-level pattern.  */
2991 	  auto_vec <parameter, MAX_PATTERN_PARAMS> to_params;
2992 	  for (unsigned int j = 0; j < ptrans->params.length (); ++j)
2993 	    {
2994 	      const parameter &param = ptrans->params[j];
2995 	      to_params.quick_push (param.is_param
2996 				    ? params[param.value]
2997 				    : param);
2998 	    }
2999 
3000 	  if (same_pattern_p (pat, to_pat))
3001 	    /* TO_PAT is part of the current routine, so just recurse.  */
3002 	    populate_pattern_routine (cpi, to, to_news, to_params);
3003 	  else
3004 	    {
3005 	      /* TO_PAT should be matched by calling a separate routine.  */
3006 	      create_pattern_info sub_cpi;
3007 	      decision *subd = init_pattern_use (&sub_cpi, to, to_params);
3008 	      routine->insn_p |= sub_cpi.routine->insn_p;
3009 	      routine->pnum_clobbers_p |= sub_cpi.routine->pnum_clobbers_p;
3010 
3011 	      /* Add the pattern routine call to the new target state.  */
3012 	      to_news->push_back (subd);
3013 
3014 	      /* Add a transition for each successful call result.  */
3015 	      for (unsigned int j = 0; j < to_pat->num_results; ++j)
3016 		{
3017 		  state *res = new state;
3018 		  add_pattern_acceptance (cpi, res);
3019 		  subd->push_back (new transition (j, res, false));
3020 		}
3021 	    }
3022 	}
3023       else
3024 	/* This transition corresponds to a successful match.  */
3025 	add_pattern_acceptance (cpi, to_news);
3026 
3027       /* Create the transition itself, generalizing as necessary.  */
3028       transition *new_trans = new transition (trans->labels, to_news,
3029 					      trans->optional);
3030       if (pat->param_transition_p)
3031 	{
3032 	  const parameter &param = params[pat->param_transition];
3033 	  new_trans->is_param = param.is_param;
3034 	  new_trans->labels[0] = param.value;
3035 	}
3036       newd->push_back (new_trans);
3037       i += 1;
3038     }
3039 }
3040 
3041 /* USE is a decision that calls a pattern routine and SINFO is part of the
3042    original state tree that the call is supposed to replace.  Add the
3043    transitions for SINFO and its substates to USE.  */
3044 
3045 static void
populate_pattern_use(create_pattern_info * cpi,decision * use,merge_state_info * sinfo)3046 populate_pattern_use (create_pattern_info *cpi, decision *use,
3047 		      merge_state_info *sinfo)
3048 {
3049   pattern_use_states += 1;
3050   gcc_assert (!sinfo->merged_p);
3051   sinfo->merged_p = true;
3052   merge_state_result *res = sinfo->res;
3053   merge_pattern_info *pat = res->pattern;
3054   decision *d = sinfo->s->singleton ();
3055   unsigned int i = 0;
3056   for (transition *trans = d->first; trans; trans = trans->next)
3057     {
3058       if (pat->transitions[i])
3059 	/* The target state is also part of the pattern.  */
3060 	populate_pattern_use (cpi, use, sinfo->to_states + i);
3061       else
3062 	{
3063 	  /* The transition corresponds to a successful return from the
3064 	     pattern routine.  */
3065 	  use->push_back (new transition (cpi->next_result, trans->to, false));
3066 	  cpi->next_result += 1;
3067 	}
3068       i += 1;
3069     }
3070 }
3071 
3072 /* We have decided to replace SINFO's state with a call to a pattern
3073    routine.  Make the change, creating a definition of the pattern routine
3074    if it doesn't have one already.  */
3075 
3076 static void
use_pattern(merge_state_info * sinfo)3077 use_pattern (merge_state_info *sinfo)
3078 {
3079   merge_state_result *res = sinfo->res;
3080   merge_pattern_info *pat = res->pattern;
3081   state *s = sinfo->s;
3082 
3083   /* The pattern may have acquired new parameters after it was matched
3084      against SINFO.  Update the parameters that SINFO passes accordingly.  */
3085   update_parameters (res->params, pat->params);
3086 
3087   create_pattern_info cpi;
3088   decision *d = init_pattern_use (&cpi, sinfo, res->params);
3089   populate_pattern_use (&cpi, d, sinfo);
3090   s->release ();
3091   s->push_back (d);
3092 }
3093 
3094 /* Look through the state trees in STATES for common patterns and
3095    split them into subroutines.  */
3096 
3097 static void
split_out_patterns(vec<merge_state_info> & states)3098 split_out_patterns (vec <merge_state_info> &states)
3099 {
3100   unsigned int first_transition = states.length ();
3101   hash_table <test_pattern_hasher> hashtab (128);
3102   /* Stage 1: Create an order in which parent states come before their child
3103      states and in which sibling states are at consecutive locations.
3104      Having consecutive sibling states allows merge_state_info to have
3105      a single to_states pointer.  */
3106   for (unsigned int i = 0; i < states.length (); ++i)
3107     for (decision *d = states[i].s->first; d; d = d->next)
3108       for (transition *trans = d->first; trans; trans = trans->next)
3109 	{
3110 	  states.safe_push (trans->to);
3111 	  states[i].num_transitions += 1;
3112 	}
3113   /* Stage 2: Now that the addresses are stable, set up the to_states
3114      pointers.  Look for states that might be merged and enter them
3115      into the hash table.  */
3116   for (unsigned int i = 0; i < states.length (); ++i)
3117     {
3118       merge_state_info *sinfo = &states[i];
3119       if (sinfo->num_transitions)
3120 	{
3121 	  sinfo->to_states = &states[first_transition];
3122 	  first_transition += sinfo->num_transitions;
3123 	}
3124       /* For simplicity, we only try to merge states that have a single
3125 	 decision.  This is in any case the best we can do for peephole2,
3126 	 since whether a peephole2 ACCEPT succeeds or not depends on the
3127 	 specific peephole2 pattern (which is unique to each ACCEPT
3128 	 and so couldn't be shared between states).  */
3129       if (decision *d = sinfo->s->singleton ())
3130 	/* ACCEPT states are unique, so don't even try to merge them.  */
3131 	if (d->test.kind != rtx_test::ACCEPT
3132 	    && (pattern_have_num_clobbers_p
3133 		|| d->test.kind != rtx_test::HAVE_NUM_CLOBBERS)
3134 	    && (pattern_c_test_p
3135 		|| d->test.kind != rtx_test::C_TEST))
3136 	  {
3137 	    merge_state_info **slot = hashtab.find_slot (sinfo, INSERT);
3138 	    sinfo->prev_same_test = *slot;
3139 	    *slot = sinfo;
3140 	  }
3141     }
3142   /* Stage 3: Walk backwards through the list of states and try to merge
3143      them.  This is a greedy, bottom-up match; parent nodes can only start
3144      a new leaf pattern if they fail to match when combined with all child
3145      nodes that have matching patterns.
3146 
3147      For each state we keep a list of potential matches, with each
3148      potential match being larger (and deeper) than the next match in
3149      the list.  The final element in the list is a leaf pattern that
3150      matches just a single state.
3151 
3152      Each candidate pattern created in this loop is unique -- it won't
3153      have been seen by an earlier iteration.  We try to match each pattern
3154      with every state that appears earlier in STATES.
3155 
3156      Because the patterns created in the loop are unique, any state
3157      that already has a match must have a final potential match that
3158      is different from any new leaf pattern.  Therefore, when matching
3159      leaf patterns, we need only consider states whose list of matches
3160      is empty.
3161 
3162      The non-leaf patterns that we try are as deep as possible
3163      and are an extension of the state's previous best candidate match (PB).
3164      We need only consider states whose current potential match is also PB;
3165      any states that don't match as much as PB cannnot match the new pattern,
3166      while any states that already match more than PB must be different from
3167      the new pattern.  */
3168   for (unsigned int i2 = states.length (); i2-- > 0; )
3169     {
3170       merge_state_info *sinfo2 = &states[i2];
3171 
3172       /* Enforce the bottom-upness of the match: remove matches with later
3173 	 states if SINFO2's child states ended up finding a better match.  */
3174       prune_invalid_results (sinfo2);
3175 
3176       /* Do nothing if the state doesn't match a later one and if there are
3177 	 no earlier states it could match.  */
3178       if (!sinfo2->res && !sinfo2->prev_same_test)
3179 	continue;
3180 
3181       merge_state_result *res2 = sinfo2->res;
3182       decision *d2 = sinfo2->s->singleton ();
3183       position *root2 = (d2->test.pos_operand < 0 ? d2->test.pos : 0);
3184       unsigned int num_transitions = sinfo2->num_transitions;
3185 
3186       /* If RES2 is null then SINFO2's test in isolation has not been seen
3187 	 before.  First try matching that on its own.  */
3188       if (!res2)
3189 	{
3190 	  merge_pattern_info *new_pat
3191 	    = new merge_pattern_info (num_transitions);
3192 	  merge_state_result *new_res2
3193 	    = new merge_state_result (new_pat, root2, res2);
3194 	  sinfo2->res = new_res2;
3195 
3196 	  new_pat->num_statements = !d2->test.single_outcome_p ();
3197 	  new_pat->num_results = num_transitions;
3198 	  bool matched_p = false;
3199 	  /* Look for states that don't currently match anything but
3200 	     can be made to match SINFO2 on its own.  */
3201 	  for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3202 	       sinfo1 = sinfo1->prev_same_test)
3203 	    if (!sinfo1->res && merge_patterns (sinfo1, sinfo2))
3204 	      matched_p = true;
3205 	  if (!matched_p)
3206 	    {
3207 	      /* No other states match.  */
3208 	      sinfo2->res = res2;
3209 	      delete new_pat;
3210 	      delete new_res2;
3211 	      continue;
3212 	    }
3213 	  else
3214 	    res2 = new_res2;
3215 	}
3216 
3217       /* Keep the existing pattern if it's as good as anything we'd
3218 	 create for SINFO2.  */
3219       if (complete_result_p (res2->pattern, sinfo2))
3220 	{
3221 	  res2->pattern->num_users += 1;
3222 	  continue;
3223 	}
3224 
3225       /* Create a new pattern for SINFO2.  */
3226       merge_pattern_info *new_pat = new merge_pattern_info (num_transitions);
3227       merge_state_result *new_res2
3228 	= new merge_state_result (new_pat, root2, res2);
3229       sinfo2->res = new_res2;
3230 
3231       /* Fill in details about the pattern.  */
3232       new_pat->num_statements = !d2->test.single_outcome_p ();
3233       new_pat->num_results = 0;
3234       for (unsigned int j = 0; j < num_transitions; ++j)
3235 	if (merge_state_result *to_res = sinfo2->to_states[j].res)
3236 	  {
3237 	    /* Count the target state as part of this pattern.
3238 	       First update the root position so that it can reach
3239 	       the target state's root.  */
3240 	    if (to_res->root)
3241 	      {
3242 		if (new_res2->root)
3243 		  new_res2->root = common_position (new_res2->root,
3244 						    to_res->root);
3245 		else
3246 		  new_res2->root = to_res->root;
3247 	      }
3248 	    merge_pattern_info *to_pat = to_res->pattern;
3249 	    merge_pattern_transition *ptrans
3250 	      = new merge_pattern_transition (to_pat);
3251 
3252 	    /* TO_PAT may have acquired more parameters when matching
3253 	       states earlier in STATES than TO_RES's, but the list is
3254 	       now final.  Make sure that TO_RES is up to date.  */
3255 	    update_parameters (to_res->params, to_pat->params);
3256 
3257 	    /* Start out by assuming that every user of NEW_PAT will
3258 	       want to pass the same (constant) parameters as TO_RES.  */
3259 	    update_parameters (ptrans->params, to_res->params);
3260 
3261 	    new_pat->transitions[j] = ptrans;
3262 	    new_pat->num_statements += to_pat->num_statements;
3263 	    new_pat->num_results += to_pat->num_results;
3264 	  }
3265 	else
3266 	  /* The target state doesn't match anything and so is not part
3267 	     of the pattern.  */
3268 	  new_pat->num_results += 1;
3269 
3270       /* See if any earlier states that match RES2's pattern also match
3271 	 NEW_PAT.  */
3272       bool matched_p = false;
3273       for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3274 	   sinfo1 = sinfo1->prev_same_test)
3275 	{
3276 	  prune_invalid_results (sinfo1);
3277 	  if (sinfo1->res
3278 	      && sinfo1->res->pattern == res2->pattern
3279 	      && merge_patterns (sinfo1, sinfo2))
3280 	    matched_p = true;
3281 	}
3282       if (!matched_p)
3283 	{
3284 	  /* Nothing else matches NEW_PAT, so go back to the previous
3285 	     pattern (possibly just a single-state one).  */
3286 	  sinfo2->res = res2;
3287 	  delete new_pat;
3288 	  delete new_res2;
3289 	}
3290       /* Assume that SINFO2 will use RES.  At this point we don't know
3291 	 whether earlier states that match the same pattern will use
3292 	 that match or a different one.  */
3293       sinfo2->res->pattern->num_users += 1;
3294     }
3295   /* Step 4: Finalize the choice of pattern for each state, ignoring
3296      patterns that were only used once.  Update each pattern's size
3297      so that it doesn't include subpatterns that are going to be split
3298      out into subroutines.  */
3299   for (unsigned int i = 0; i < states.length (); ++i)
3300     {
3301       merge_state_info *sinfo = &states[i];
3302       merge_state_result *res = sinfo->res;
3303       /* Wind past patterns that are only used by SINFO.  */
3304       while (res && res->pattern->num_users == 1)
3305 	{
3306 	  res = res->prev;
3307 	  sinfo->res = res;
3308 	  if (res)
3309 	    res->pattern->num_users += 1;
3310 	}
3311       if (!res)
3312 	continue;
3313 
3314       /* We have a shared pattern and are now committed to the match.  */
3315       merge_pattern_info *pat = res->pattern;
3316       gcc_assert (valid_result_p (pat, sinfo));
3317 
3318       if (!pat->complete_p)
3319 	{
3320 	  /* Look for subpatterns that are going to be split out and remove
3321 	     them from the number of statements.  */
3322 	  for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
3323 	    if (merge_pattern_transition *ptrans = pat->transitions[j])
3324 	      {
3325 		merge_pattern_info *to_pat = ptrans->to;
3326 		if (!same_pattern_p (pat, to_pat))
3327 		  pat->num_statements -= to_pat->num_statements;
3328 	      }
3329 	  pat->complete_p = true;
3330 	}
3331     }
3332   /* Step 5: Split out the patterns.  */
3333   for (unsigned int i = 0; i < states.length (); ++i)
3334     {
3335       merge_state_info *sinfo = &states[i];
3336       merge_state_result *res = sinfo->res;
3337       if (!sinfo->merged_p && res && useful_pattern_p (res->pattern))
3338 	use_pattern (sinfo);
3339     }
3340   fprintf (stderr, "Shared %d out of %d states by creating %d new states,"
3341 	   " saving %d\n",
3342 	   pattern_use_states, states.length (), pattern_def_states,
3343 	   pattern_use_states - pattern_def_states);
3344 }
3345 
3346 /* Information about a state tree that we're considering splitting into a
3347    subroutine.  */
3348 struct state_size
3349 {
3350   /* The number of pseudo-statements in the state tree.  */
3351   unsigned int num_statements;
3352 
3353   /* The approximate number of nested "if" and "switch" statements that
3354      would be required if control could fall through to a later state.  */
3355   unsigned int depth;
3356 };
3357 
3358 /* Pairs a transition with information about its target state.  */
3359 typedef std::pair <transition *, state_size> subroutine_candidate;
3360 
3361 /* Sort two subroutine_candidates so that the one with the largest
3362    number of statements comes last.  */
3363 
3364 static int
subroutine_candidate_cmp(const void * a,const void * b)3365 subroutine_candidate_cmp (const void *a, const void *b)
3366 {
3367   return int (((const subroutine_candidate *) a)->second.num_statements
3368 	      - ((const subroutine_candidate *) b)->second.num_statements);
3369 }
3370 
3371 /* Turn S into a subroutine of type TYPE and add it to PROCS.  Return a new
3372    state that performs a subroutine call to S.  */
3373 
3374 static state *
create_subroutine(routine_type type,state * s,vec<state * > & procs)3375 create_subroutine (routine_type type, state *s, vec <state *> &procs)
3376 {
3377   procs.safe_push (s);
3378   acceptance_type acceptance;
3379   acceptance.type = type;
3380   acceptance.partial_p = true;
3381   acceptance.u.subroutine_id = procs.length ();
3382   state *news = new state;
3383   add_decision (news, rtx_test::accept (acceptance), true, false);
3384   return news;
3385 }
3386 
3387 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3388    better split into subroutines.  Accumulate all such subroutines in PROCS.
3389    Return the size of the new state tree (excluding subroutines).  */
3390 
3391 static state_size
find_subroutines(routine_type type,state * s,vec<state * > & procs)3392 find_subroutines (routine_type type, state *s, vec <state *> &procs)
3393 {
3394   auto_vec <subroutine_candidate, 16> candidates;
3395   state_size size;
3396   size.num_statements = 0;
3397   size.depth = 0;
3398   for (decision *d = s->first; d; d = d->next)
3399     {
3400       if (!d->test.single_outcome_p ())
3401 	size.num_statements += 1;
3402       for (transition *trans = d->first; trans; trans = trans->next)
3403 	{
3404 	  /* Keep chains of simple decisions together if we know that no
3405 	     change of position is required.  We'll output this chain as a
3406 	     single "if" statement, so it counts as a single nesting level.  */
3407 	  if (d->test.pos && d->if_statement_p ())
3408 	    for (;;)
3409 	      {
3410 		decision *newd = trans->to->singleton ();
3411 		if (!newd
3412 		    || (newd->test.pos
3413 			&& newd->test.pos_operand < 0
3414 			&& newd->test.pos != d->test.pos)
3415 		    || !newd->if_statement_p ())
3416 		  break;
3417 		if (!newd->test.single_outcome_p ())
3418 		  size.num_statements += 1;
3419 		trans = newd->singleton ();
3420 		if (newd->test.kind == rtx_test::SET_OP
3421 		    || newd->test.kind == rtx_test::ACCEPT)
3422 		  break;
3423 	      }
3424 	  /* The target of TRANS is a subroutine candidate.  First recurse
3425 	     on it to see how big it is after subroutines have been
3426 	     split out.  */
3427 	  state_size to_size = find_subroutines (type, trans->to, procs);
3428 	  if (d->next && to_size.depth > MAX_DEPTH)
3429 	    /* Keeping the target state in the same routine would lead
3430 	       to an excessive nesting of "if" and "switch" statements.
3431 	       Split it out into a subroutine so that it can use
3432 	       inverted tests that return early on failure.  */
3433 	    trans->to = create_subroutine (type, trans->to, procs);
3434 	  else
3435 	    {
3436 	      size.num_statements += to_size.num_statements;
3437 	      if (to_size.num_statements < MIN_NUM_STATEMENTS)
3438 		/* The target state is too small to be worth splitting.
3439 		   Keep it in the same routine as S.  */
3440 		size.depth = MAX (size.depth, to_size.depth);
3441 	      else
3442 		/* Assume for now that we'll keep the target state in the
3443 		   same routine as S, but record it as a subroutine candidate
3444 		   if S grows too big.  */
3445 		candidates.safe_push (subroutine_candidate (trans, to_size));
3446 	    }
3447 	}
3448     }
3449   if (size.num_statements > MAX_NUM_STATEMENTS)
3450     {
3451       /* S is too big.  Sort the subroutine candidates so that bigger ones
3452 	 are nearer the end.  */
3453       candidates.qsort (subroutine_candidate_cmp);
3454       while (!candidates.is_empty ()
3455 	     && size.num_statements > MAX_NUM_STATEMENTS)
3456 	{
3457 	  /* Peel off a candidate and force it into a subroutine.  */
3458 	  subroutine_candidate cand = candidates.pop ();
3459 	  size.num_statements -= cand.second.num_statements;
3460 	  cand.first->to = create_subroutine (type, cand.first->to, procs);
3461 	}
3462     }
3463   /* Update the depth for subroutine candidates that we decided not to
3464      split out.  */
3465   for (unsigned int i = 0; i < candidates.length (); ++i)
3466     size.depth = MAX (size.depth, candidates[i].second.depth);
3467   size.depth += 1;
3468   return size;
3469 }
3470 
3471 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE.  */
3472 
3473 static bool
safe_predicate_mode(const struct pred_data * pred,machine_mode mode)3474 safe_predicate_mode (const struct pred_data *pred, machine_mode mode)
3475 {
3476   /* Scalar integer constants have VOIDmode.  */
3477   if (GET_MODE_CLASS (mode) == MODE_INT
3478       && (pred->codes[CONST_INT]
3479 	  || pred->codes[CONST_DOUBLE]
3480 	  || pred->codes[CONST_WIDE_INT]
3481 	  || pred->codes[LABEL_REF]))
3482     return false;
3483 
3484   return !pred->special && mode != VOIDmode;
3485 }
3486 
3487 /* Fill CODES with the set of codes that could be matched by PRED.  */
3488 
3489 static void
get_predicate_codes(const struct pred_data * pred,int_set * codes)3490 get_predicate_codes (const struct pred_data *pred, int_set *codes)
3491 {
3492   for (int i = 0; i < NUM_TRUE_RTX_CODE; ++i)
3493     if (!pred || pred->codes[i])
3494       codes->safe_push (i);
3495 }
3496 
3497 /* Return true if the first path through D1 tests the same thing as D2.  */
3498 
3499 static bool
has_same_test_p(decision * d1,decision * d2)3500 has_same_test_p (decision *d1, decision *d2)
3501 {
3502   do
3503     {
3504       if (d1->test == d2->test)
3505         return true;
3506       d1 = d1->first->to->first;
3507     }
3508   while (d1);
3509   return false;
3510 }
3511 
3512 /* Return true if D1 and D2 cannot match the same rtx.  All states reachable
3513    from D2 have single decisions and all those decisions have single
3514    transitions.  */
3515 
3516 static bool
mutually_exclusive_p(decision * d1,decision * d2)3517 mutually_exclusive_p (decision *d1, decision *d2)
3518 {
3519   /* If one path through D1 fails to test the same thing as D2, assume
3520      that D2's test could be true for D1 and look for a later, more useful,
3521      test.  This isn't as expensive as it looks in practice.  */
3522   while (!has_same_test_p (d1, d2))
3523     {
3524       d2 = d2->singleton ()->to->singleton ();
3525       if (!d2)
3526 	return false;
3527     }
3528   if (d1->test == d2->test)
3529     {
3530       /* Look for any transitions from D1 that have the same labels as
3531 	 the transition from D2.  */
3532       transition *trans2 = d2->singleton ();
3533       for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3534 	{
3535 	  int_set::iterator i1 = trans1->labels.begin ();
3536 	  int_set::iterator end1 = trans1->labels.end ();
3537 	  int_set::iterator i2 = trans2->labels.begin ();
3538 	  int_set::iterator end2 = trans2->labels.end ();
3539 	  while (i1 != end1 && i2 != end2)
3540 	    if (*i1 < *i2)
3541 	      ++i1;
3542 	    else if (*i2 < *i1)
3543 	      ++i2;
3544 	    else
3545 	      {
3546 		/* TRANS1 has some labels in common with TRANS2.  Assume
3547 		   that D1 and D2 could match the same rtx if the target
3548 		   of TRANS1 could match the same rtx as D2.  */
3549 		for (decision *subd1 = trans1->to->first;
3550 		     subd1; subd1 = subd1->next)
3551 		  if (!mutually_exclusive_p (subd1, d2))
3552 		    return false;
3553 		break;
3554 	      }
3555 	}
3556       return true;
3557     }
3558   for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3559     for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next)
3560       if (!mutually_exclusive_p (subd1, d2))
3561 	return false;
3562   return true;
3563 }
3564 
3565 /* Try to merge S2's decision into D1, given that they have the same test.
3566    Fail only if EXCLUDE is nonnull and the new transition would have the
3567    same labels as *EXCLUDE.  When returning true, set *NEXT_S1, *NEXT_S2
3568    and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3569    if the merge is complete.  */
3570 
3571 static bool
merge_into_decision(decision * d1,state * s2,const int_set * exclude,state ** next_s1,state ** next_s2,const int_set ** next_exclude)3572 merge_into_decision (decision *d1, state *s2, const int_set *exclude,
3573 		     state **next_s1, state **next_s2,
3574 		     const int_set **next_exclude)
3575 {
3576   decision *d2 = s2->singleton ();
3577   transition *trans2 = d2->singleton ();
3578 
3579   /* Get a list of the transitions that intersect TRANS2.  */
3580   auto_vec <transition *, 32> intersecting;
3581   for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3582     {
3583       int_set::iterator i1 = trans1->labels.begin ();
3584       int_set::iterator end1 = trans1->labels.end ();
3585       int_set::iterator i2 = trans2->labels.begin ();
3586       int_set::iterator end2 = trans2->labels.end ();
3587       bool trans1_is_subset = true;
3588       bool trans2_is_subset = true;
3589       bool intersect_p = false;
3590       while (i1 != end1 && i2 != end2)
3591 	if (*i1 < *i2)
3592 	  {
3593 	    trans1_is_subset = false;
3594 	    ++i1;
3595 	  }
3596 	else if (*i2 < *i1)
3597 	  {
3598 	    trans2_is_subset = false;
3599 	    ++i2;
3600 	  }
3601 	else
3602 	  {
3603 	    intersect_p = true;
3604 	    ++i1;
3605 	    ++i2;
3606 	  }
3607       if (i1 != end1)
3608 	trans1_is_subset = false;
3609       if (i2 != end2)
3610 	trans2_is_subset = false;
3611       if (trans1_is_subset && trans2_is_subset)
3612 	{
3613 	  /* There's already a transition that matches exactly.
3614 	     Merge the target states.  */
3615 	  trans1->optional &= trans2->optional;
3616 	  *next_s1 = trans1->to;
3617 	  *next_s2 = trans2->to;
3618 	  *next_exclude = 0;
3619 	  return true;
3620 	}
3621       if (trans2_is_subset)
3622 	{
3623 	  /* TRANS1 has all the labels that TRANS2 needs.  Merge S2 into
3624 	     the target of TRANS1, but (to avoid infinite recursion)
3625 	     make sure that we don't end up creating another transition
3626 	     like TRANS1.  */
3627 	  *next_s1 = trans1->to;
3628 	  *next_s2 = s2;
3629 	  *next_exclude = &trans1->labels;
3630 	  return true;
3631 	}
3632       if (intersect_p)
3633 	intersecting.safe_push (trans1);
3634     }
3635 
3636   if (intersecting.is_empty ())
3637     {
3638       /* No existing labels intersect the new ones.  We can just add
3639 	 TRANS2 itself.  */
3640       d1->push_back (d2->release ());
3641       *next_s1 = 0;
3642       *next_s2 = 0;
3643       *next_exclude = 0;
3644       return true;
3645     }
3646 
3647   /* Take the union of the labels in INTERSECTING and TRANS2.  Store the
3648      result in COMBINED and use NEXT as a temporary.  */
3649   int_set tmp1 = trans2->labels, tmp2;
3650   int_set *combined = &tmp1, *next = &tmp2;
3651   for (unsigned int i = 0; i < intersecting.length (); ++i)
3652     {
3653       transition *trans1 = intersecting[i];
3654       next->truncate (0);
3655       next->safe_grow (trans1->labels.length () + combined->length ());
3656       int_set::iterator end
3657 	= std::set_union (trans1->labels.begin (), trans1->labels.end (),
3658 			  combined->begin (), combined->end (),
3659 			  next->begin ());
3660       next->truncate (end - next->begin ());
3661       std::swap (next, combined);
3662     }
3663 
3664   /* Stop now if we've been told not to create a transition with these
3665      labels.  */
3666   if (exclude && *combined == *exclude)
3667     return false;
3668 
3669   /* Get the transition that should carry the new labels.  */
3670   transition *new_trans = intersecting[0];
3671   if (intersecting.length () == 1)
3672     {
3673       /* We're merging with one existing transition whose labels are a
3674 	 subset of those required.  If both transitions are optional,
3675 	 we can just expand the set of labels so that it's suitable
3676 	 for both transitions.  It isn't worth preserving the original
3677 	 transitions since we know that they can't be merged; we would
3678 	 need to backtrack to S2 if TRANS1->to fails.  In contrast,
3679 	 we might be able to merge the targets of the transitions
3680 	 without any backtracking.
3681 
3682 	 If instead the existing transition is not optional, ensure that
3683 	 all target decisions are suitably protected.  Some decisions
3684 	 might already have a more specific requirement than NEW_TRANS,
3685 	 in which case there's no point testing NEW_TRANS as well.  E.g. this
3686 	 would have happened if a test for an (eq ...) rtx had been
3687 	 added to a decision that tested whether the code is suitable
3688 	 for comparison_operator.  The original comparison_operator
3689 	 transition would have been non-optional and the (eq ...) test
3690 	 would be performed by a second decision in the target of that
3691 	 transition.
3692 
3693 	 The remaining case -- keeping the original optional transition
3694 	 when adding a non-optional TRANS2 -- is a wash.  Preserving
3695 	 the optional transition only helps if we later merge another
3696 	 state S3 that is mutually exclusive with S2 and whose labels
3697 	 belong to *COMBINED - TRANS1->labels.  We can then test the
3698 	 original NEW_TRANS and S3 in the same decision.  We keep the
3699 	 optional transition around for that case, but it occurs very
3700 	 rarely.  */
3701       gcc_assert (new_trans->labels != *combined);
3702       if (!new_trans->optional || !trans2->optional)
3703 	{
3704 	  decision *start = 0;
3705 	  for (decision *end = new_trans->to->first; end; end = end->next)
3706 	    {
3707 	      if (!start && end->test != d1->test)
3708 		/* END belongs to a range of decisions that need to be
3709 		   protected by NEW_TRANS.  */
3710 		start = end;
3711 	      if (start && (!end->next || end->next->test == d1->test))
3712 		{
3713 		  /* Protect [START, END] with NEW_TRANS.  The decisions
3714 		     move to NEW_S and NEW_D becomes part of NEW_TRANS->to.  */
3715 		  state *new_s = new state;
3716 		  decision *new_d = new decision (d1->test);
3717 		  new_d->push_back (new transition (new_trans->labels, new_s,
3718 						    new_trans->optional));
3719 		  state::range r (start, end);
3720 		  new_trans->to->replace (r, new_d);
3721 		  new_s->push_back (r);
3722 
3723 		  /* Continue with an empty range.  */
3724 		  start = 0;
3725 
3726 		  /* Continue from the decision after NEW_D.  */
3727 		  end = new_d;
3728 		}
3729 	    }
3730 	}
3731       new_trans->optional = true;
3732       new_trans->labels = *combined;
3733     }
3734   else
3735     {
3736       /* We're merging more than one existing transition together.
3737 	 Those transitions are successfully dividing the matching space
3738 	 and so we want to preserve them, even if they're optional.
3739 
3740 	 Create a new transition with the union set of labels and make
3741 	 it go to a state that has the original transitions.  */
3742       decision *new_d = new decision (d1->test);
3743       for (unsigned int i = 0; i < intersecting.length (); ++i)
3744 	new_d->push_back (d1->remove (intersecting[i]));
3745 
3746       state *new_s = new state;
3747       new_s->push_back (new_d);
3748 
3749       new_trans = new transition (*combined, new_s, true);
3750       d1->push_back (new_trans);
3751     }
3752 
3753   /* We now have an optional transition with labels *COMBINED.  Decide
3754      whether we can use it as TRANS2 or whether we need to merge S2
3755      into the target of NEW_TRANS.  */
3756   gcc_assert (new_trans->optional);
3757   if (new_trans->labels == trans2->labels)
3758     {
3759       /* NEW_TRANS matches TRANS2.  Just merge the target states.  */
3760       new_trans->optional = trans2->optional;
3761       *next_s1 = new_trans->to;
3762       *next_s2 = trans2->to;
3763       *next_exclude = 0;
3764     }
3765   else
3766     {
3767       /* Try to merge TRANS2 into the target of the overlapping transition,
3768 	 but (to prevent infinite recursion or excessive redundancy) without
3769 	 creating another transition of the same type.  */
3770       *next_s1 = new_trans->to;
3771       *next_s2 = s2;
3772       *next_exclude = &new_trans->labels;
3773     }
3774   return true;
3775 }
3776 
3777 /* Make progress in merging S2 into S1, given that each state in S2
3778    has a single decision.  If EXCLUDE is nonnull, avoid creating a new
3779    transition with the same test as S2's decision and with the labels
3780    in *EXCLUDE.
3781 
3782    Return true if there is still work to do.  When returning true,
3783    set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3784    S1, S2 and EXCLUDE should have next time round.
3785 
3786    If S1 and S2 both match a particular rtx, give priority to S1.  */
3787 
3788 static bool
merge_into_state_1(state * s1,state * s2,const int_set * exclude,state ** next_s1,state ** next_s2,const int_set ** next_exclude)3789 merge_into_state_1 (state *s1, state *s2, const int_set *exclude,
3790 		    state **next_s1, state **next_s2,
3791 		    const int_set **next_exclude)
3792 {
3793   decision *d2 = s2->singleton ();
3794   if (decision *d1 = s1->last)
3795     {
3796       if (d1->test.terminal_p ())
3797 	/* D1 is an unconditional return, so S2 can never match.  This can
3798 	   sometimes be a bug in the .md description, but might also happen
3799 	   if genconditions forces some conditions to true for certain
3800 	   configurations.  */
3801 	return false;
3802 
3803       /* Go backwards through the decisions in S1, stopping once we find one
3804 	 that could match the same thing as S2.  */
3805       while (d1->prev && mutually_exclusive_p (d1, d2))
3806 	d1 = d1->prev;
3807 
3808       /* Search forwards from that point, merging D2 into the first
3809 	 decision we can.  */
3810       for (; d1; d1 = d1->next)
3811 	{
3812 	  /* If S2 performs some optional tests before testing the same thing
3813 	     as D1, those tests do not help to distinguish D1 and S2, so it's
3814 	     better to drop them.  Search through such optional decisions
3815 	     until we find something that tests the same thing as D1.  */
3816 	  state *sub_s2 = s2;
3817 	  for (;;)
3818 	    {
3819 	      decision *sub_d2 = sub_s2->singleton ();
3820 	      if (d1->test == sub_d2->test)
3821 		{
3822 		  /* Only apply EXCLUDE if we're testing the same thing
3823 		     as D2.  */
3824 		  const int_set *sub_exclude = (d2 == sub_d2 ? exclude : 0);
3825 
3826 		  /* Try to merge SUB_S2 into D1.  This can only fail if
3827 		     it would involve creating a new transition with
3828 		     labels SUB_EXCLUDE.  */
3829 		  if (merge_into_decision (d1, sub_s2, sub_exclude,
3830 					   next_s1, next_s2, next_exclude))
3831 		    return *next_s2 != 0;
3832 
3833 		  /* Can't merge with D1; try a later decision.  */
3834 		  break;
3835 		}
3836 	      transition *sub_trans2 = sub_d2->singleton ();
3837 	      if (!sub_trans2->optional)
3838 		/* Can't merge with D1; try a later decision.  */
3839 		break;
3840 	      sub_s2 = sub_trans2->to;
3841 	    }
3842 	}
3843     }
3844 
3845   /* We can't merge D2 with any existing decision.  Just add it to the end.  */
3846   s1->push_back (s2->release ());
3847   return false;
3848 }
3849 
3850 /* Merge S2 into S1.  If they both match a particular rtx, give
3851    priority to S1.  Each state in S2 has a single decision.  */
3852 
3853 static void
merge_into_state(state * s1,state * s2)3854 merge_into_state (state *s1, state *s2)
3855 {
3856   const int_set *exclude = 0;
3857   while (s2 && merge_into_state_1 (s1, s2, exclude, &s1, &s2, &exclude))
3858     continue;
3859 }
3860 
3861 /* Pairs a pattern that needs to be matched with the rtx position at
3862    which the pattern should occur.  */
3863 struct pattern_pos {
pattern_pospattern_pos3864   pattern_pos () {}
3865   pattern_pos (rtx, position *);
3866 
3867   rtx pattern;
3868   position *pos;
3869 };
3870 
pattern_pos(rtx pattern_in,position * pos_in)3871 pattern_pos::pattern_pos (rtx pattern_in, position *pos_in)
3872   : pattern (pattern_in), pos (pos_in)
3873 {}
3874 
3875 /* Compare entries according to their depth-first order.  There shouldn't
3876    be two entries at the same position.  */
3877 
3878 bool
3879 operator < (const pattern_pos &e1, const pattern_pos &e2)
3880 {
3881   int diff = compare_positions (e1.pos, e2.pos);
3882   gcc_assert (diff != 0 || e1.pattern == e2.pattern);
3883   return diff < 0;
3884 }
3885 
3886 /* Add new decisions to S that check whether the rtx at position POS
3887    matches PATTERN.  Return the state that is reached in that case.
3888    TOP_PATTERN is the overall pattern, as passed to match_pattern_1.  */
3889 
3890 static state *
match_pattern_2(state * s,md_rtx_info * info,position * pos,rtx pattern)3891 match_pattern_2 (state *s, md_rtx_info *info, position *pos, rtx pattern)
3892 {
3893   auto_vec <pattern_pos, 32> worklist;
3894   auto_vec <pattern_pos, 32> pred_and_mode_tests;
3895   auto_vec <pattern_pos, 32> dup_tests;
3896 
3897   worklist.safe_push (pattern_pos (pattern, pos));
3898   while (!worklist.is_empty ())
3899     {
3900       pattern_pos next = worklist.pop ();
3901       pattern = next.pattern;
3902       pos = next.pos;
3903       unsigned int reverse_s = worklist.length ();
3904 
3905       enum rtx_code code = GET_CODE (pattern);
3906       switch (code)
3907 	{
3908 	case MATCH_OP_DUP:
3909 	case MATCH_DUP:
3910 	case MATCH_PAR_DUP:
3911 	  /* Add a test that the rtx matches the earlier one, but only
3912 	     after the structure and predicates have been checked.  */
3913 	  dup_tests.safe_push (pattern_pos (pattern, pos));
3914 
3915 	  /* Use the same code check as the original operand.  */
3916 	  pattern = find_operand (info->def, XINT (pattern, 0), NULL_RTX);
3917 	  /* Fall through.  */
3918 
3919 	case MATCH_PARALLEL:
3920 	case MATCH_OPERAND:
3921 	case MATCH_SCRATCH:
3922 	case MATCH_OPERATOR:
3923 	  {
3924 	    const char *pred_name = predicate_name (pattern);
3925 	    const struct pred_data *pred = 0;
3926 	    if (pred_name[0] != 0)
3927 	      {
3928 		pred = lookup_predicate (pred_name);
3929 		/* Only report errors once per rtx.  */
3930 		if (code == GET_CODE (pattern))
3931 		  {
3932 		    if (!pred)
3933 		      error_at (info->loc, "unknown predicate '%s' used in %s",
3934 				pred_name, GET_RTX_NAME (code));
3935 		    else if (code == MATCH_PARALLEL
3936 			     && pred->singleton != PARALLEL)
3937 		      error_at (info->loc, "predicate '%s' used in"
3938 				" match_parallel does not allow only PARALLEL",
3939 				pred->name);
3940 		  }
3941 	      }
3942 
3943 	    if (code == MATCH_PARALLEL || code == MATCH_PAR_DUP)
3944 	      {
3945 		/* Check that we have a parallel with enough elements.  */
3946 		s = add_decision (s, rtx_test::code (pos), PARALLEL, false);
3947 		int min_len = XVECLEN (pattern, 2);
3948 		s = add_decision (s, rtx_test::veclen_ge (pos, min_len),
3949 				  true, false);
3950 	      }
3951 	    else
3952 	      {
3953 		/* Check that the rtx has one of codes accepted by the
3954 		   predicate.  This is necessary when matching suboperands
3955 		   of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3956 		   call XEXP (X, N) without checking that X has at least
3957 		   N+1 operands.  */
3958 		int_set codes;
3959 		get_predicate_codes (pred, &codes);
3960 		bool need_codes = (pred
3961 				   && (code == MATCH_OPERATOR
3962 				       || code == MATCH_OP_DUP));
3963 		s = add_decision (s, rtx_test::code (pos), codes, !need_codes);
3964 	      }
3965 
3966 	    /* Postpone the predicate check until we've checked the rest
3967 	       of the rtx structure.  */
3968 	    if (code == GET_CODE (pattern))
3969 	      pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
3970 
3971 	    /* If we need to match suboperands, add them to the worklist.  */
3972 	    if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
3973 	      {
3974 		position **subpos_ptr;
3975 		enum position_type pos_type;
3976 		int i;
3977 		if (code == MATCH_OPERATOR || code == MATCH_OP_DUP)
3978 		  {
3979 		    pos_type = POS_XEXP;
3980 		    subpos_ptr = &pos->xexps;
3981 		    i = (code == MATCH_OPERATOR ? 2 : 1);
3982 		  }
3983 		else
3984 		  {
3985 		    pos_type = POS_XVECEXP0;
3986 		    subpos_ptr = &pos->xvecexp0s;
3987 		    i = 2;
3988 		  }
3989 		for (int j = 0; j < XVECLEN (pattern, i); ++j)
3990 		  {
3991 		    position *subpos = next_position (subpos_ptr, pos,
3992 						      pos_type, j);
3993 		    worklist.safe_push (pattern_pos (XVECEXP (pattern, i, j),
3994 					       subpos));
3995 		    subpos_ptr = &subpos->next;
3996 		  }
3997 	      }
3998 	    break;
3999 	  }
4000 
4001 	default:
4002 	  {
4003 	    /* Check that the rtx has the right code.  */
4004 	    s = add_decision (s, rtx_test::code (pos), code, false);
4005 
4006 	    /* Queue a test for the mode if one is specified.  */
4007 	    if (GET_MODE (pattern) != VOIDmode)
4008 	      pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
4009 
4010 	    /* Push subrtxes onto the worklist.  Match nonrtx operands now.  */
4011 	    const char *fmt = GET_RTX_FORMAT (code);
4012 	    position **subpos_ptr = &pos->xexps;
4013 	    for (size_t i = 0; fmt[i]; ++i)
4014 	      {
4015 		position *subpos = next_position (subpos_ptr, pos,
4016 						  POS_XEXP, i);
4017 		switch (fmt[i])
4018 		  {
4019 		  case 'e': case 'u':
4020 		    worklist.safe_push (pattern_pos (XEXP (pattern, i),
4021 						     subpos));
4022 		    break;
4023 
4024 		  case 'E':
4025 		    {
4026 		      /* Make sure the vector has the right number of
4027 			 elements.  */
4028 		      int length = XVECLEN (pattern, i);
4029 		      s = add_decision (s, rtx_test::veclen (pos),
4030 					length, false);
4031 
4032 		      position **subpos2_ptr = &pos->xvecexp0s;
4033 		      for (int j = 0; j < length; j++)
4034 			{
4035 			  position *subpos2 = next_position (subpos2_ptr, pos,
4036 							     POS_XVECEXP0, j);
4037 			  rtx x = XVECEXP (pattern, i, j);
4038 			  worklist.safe_push (pattern_pos (x, subpos2));
4039 			  subpos2_ptr = &subpos2->next;
4040 			}
4041 		      break;
4042 		    }
4043 
4044 		  case 'i':
4045 		    /* Make sure that XINT (X, I) has the right value.  */
4046 		    s = add_decision (s, rtx_test::int_field (pos, i),
4047 				      XINT (pattern, i), false);
4048 		    break;
4049 
4050 		  case 'r':
4051 		    /* Make sure that REGNO (X) has the right value.  */
4052 		    gcc_assert (i == 0);
4053 		    s = add_decision (s, rtx_test::regno_field (pos),
4054 				      REGNO (pattern), false);
4055 		    break;
4056 
4057 		  case 'w':
4058 		    /* Make sure that XWINT (X, I) has the right value.  */
4059 		    s = add_decision (s, rtx_test::wide_int_field (pos, i),
4060 				      XWINT (pattern, 0), false);
4061 		    break;
4062 
4063 		  case 'p':
4064 		    /* We don't have a way of parsing polynomial offsets yet,
4065 		       and hopefully never will.  */
4066 		    s = add_decision (s, rtx_test::subreg_field (pos),
4067 				      SUBREG_BYTE (pattern).to_constant (),
4068 				      false);
4069 		    break;
4070 
4071 		  case '0':
4072 		    break;
4073 
4074 		  default:
4075 		    gcc_unreachable ();
4076 		  }
4077 		subpos_ptr = &subpos->next;
4078 	      }
4079 	  }
4080 	  break;
4081 	}
4082       /* Operands are pushed onto the worklist so that later indices are
4083 	 nearer the top.  That's what we want for SETs, since a SET_SRC
4084 	 is a better discriminator than a SET_DEST.  In other cases it's
4085 	 usually better to match earlier indices first.  This is especially
4086 	 true of PARALLELs, where the first element tends to be the most
4087 	 individual.  It's also true for commutative operators, where the
4088 	 canonicalization rules say that the more complex operand should
4089 	 come first.  */
4090       if (code != SET && worklist.length () > reverse_s)
4091 	std::reverse (&worklist[0] + reverse_s,
4092 		      &worklist[0] + worklist.length ());
4093     }
4094 
4095   /* Sort the predicate and mode tests so that they're in depth-first order.
4096      The main goal of this is to put SET_SRC match_operands after SET_DEST
4097      match_operands and after mode checks for the enclosing SET_SRC operators
4098      (such as the mode of a PLUS in an addition instruction).  The latter
4099      two types of test can determine the mode exactly, whereas a SET_SRC
4100      match_operand often has to cope with the possibility of the operand
4101      being a modeless constant integer.  E.g. something that matches
4102      register_operand (x, SImode) never matches register_operand (x, DImode),
4103      but a const_int that matches immediate_operand (x, SImode) also matches
4104      immediate_operand (x, DImode).  The register_operand cases can therefore
4105      be distinguished by a switch on the mode, but the immediate_operand
4106      cases can't.  */
4107   if (pred_and_mode_tests.length () > 1)
4108     std::sort (&pred_and_mode_tests[0],
4109 	       &pred_and_mode_tests[0] + pred_and_mode_tests.length ());
4110 
4111   /* Add the mode and predicate tests.  */
4112   pattern_pos *e;
4113   unsigned int i;
4114   FOR_EACH_VEC_ELT (pred_and_mode_tests, i, e)
4115     {
4116       switch (GET_CODE (e->pattern))
4117 	{
4118 	case MATCH_PARALLEL:
4119 	case MATCH_OPERAND:
4120 	case MATCH_SCRATCH:
4121 	case MATCH_OPERATOR:
4122 	  {
4123 	    int opno = XINT (e->pattern, 0);
4124 	    num_operands = MAX (num_operands, opno + 1);
4125 	    const char *pred_name = predicate_name (e->pattern);
4126 	    if (pred_name[0])
4127 	      {
4128 		const struct pred_data *pred = lookup_predicate (pred_name);
4129 		/* Check the mode first, to distinguish things like SImode
4130 		   and DImode register_operands, as described above.  */
4131 		machine_mode mode = GET_MODE (e->pattern);
4132 		if (pred && safe_predicate_mode (pred, mode))
4133 		  s = add_decision (s, rtx_test::mode (e->pos), mode, true);
4134 
4135 		/* Assign to operands[] first, so that the rtx usually doesn't
4136 		   need to be live across the call to the predicate.
4137 
4138 		   This shouldn't cause a problem with dirtying the page,
4139 		   since we fully expect to assign to operands[] at some point,
4140 		   and since the caller usually writes to other parts of
4141 		   recog_data anyway.  */
4142 		s = add_decision (s, rtx_test::set_op (e->pos, opno),
4143 				  true, false);
4144 		s = add_decision (s, rtx_test::predicate (e->pos, pred, mode),
4145 				  true, false);
4146 	      }
4147 	    else
4148 	      /* Historically we've ignored the mode when there's no
4149 		 predicate.  Just set up operands[] unconditionally.  */
4150 	      s = add_decision (s, rtx_test::set_op (e->pos, opno),
4151 				true, false);
4152 	    break;
4153 	  }
4154 
4155 	default:
4156 	  s = add_decision (s, rtx_test::mode (e->pos),
4157 			    GET_MODE (e->pattern), false);
4158 	  break;
4159 	}
4160     }
4161 
4162   /* Finally add rtx_equal_p checks for duplicated operands.  */
4163   FOR_EACH_VEC_ELT (dup_tests, i, e)
4164     s = add_decision (s, rtx_test::duplicate (e->pos, XINT (e->pattern, 0)),
4165 		      true, false);
4166   return s;
4167 }
4168 
4169 /* Add new decisions to S that make it return ACCEPTANCE if:
4170 
4171    (1) the rtx doesn't match anything already matched by S
4172    (2) the rtx matches TOP_PATTERN and
4173    (3) the C test required by INFO->def is true
4174 
4175    For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4176    to match, otherwise it is a single instruction pattern.  */
4177 
4178 static void
match_pattern_1(state * s,md_rtx_info * info,rtx pattern,acceptance_type acceptance)4179 match_pattern_1 (state *s, md_rtx_info *info, rtx pattern,
4180 		 acceptance_type acceptance)
4181 {
4182   if (acceptance.type == PEEPHOLE2)
4183     {
4184       /* Match each individual instruction.  */
4185       position **subpos_ptr = &peep2_insn_pos_list;
4186       int count = 0;
4187       for (int i = 0; i < XVECLEN (pattern, 0); ++i)
4188 	{
4189 	  rtx x = XVECEXP (pattern, 0, i);
4190 	  position *subpos = next_position (subpos_ptr, &root_pos,
4191 					    POS_PEEP2_INSN, count);
4192 	  if (count > 0)
4193 	    s = add_decision (s, rtx_test::peep2_count (count + 1),
4194 			      true, false);
4195 	  s = match_pattern_2 (s, info, subpos, x);
4196 	  subpos_ptr = &subpos->next;
4197 	  count += 1;
4198 	}
4199       acceptance.u.full.u.match_len = count - 1;
4200     }
4201   else
4202     {
4203       /* Make the rtx itself.  */
4204       s = match_pattern_2 (s, info, &root_pos, pattern);
4205 
4206       /* If the match is only valid when extra clobbers are added,
4207 	 make sure we're able to pass that information to the caller.  */
4208       if (acceptance.type == RECOG && acceptance.u.full.u.num_clobbers)
4209 	s = add_decision (s, rtx_test::have_num_clobbers (), true, false);
4210     }
4211 
4212   /* Make sure that the C test is true.  */
4213   const char *c_test = get_c_test (info->def);
4214   if (maybe_eval_c_test (c_test) != 1)
4215     s = add_decision (s, rtx_test::c_test (c_test), true, false);
4216 
4217   /* Accept the pattern.  */
4218   add_decision (s, rtx_test::accept (acceptance), true, false);
4219 }
4220 
4221 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4222    decisions with what's already in S, to reduce the amount of
4223    backtracking.  */
4224 
4225 static void
match_pattern(state * s,md_rtx_info * info,rtx pattern,acceptance_type acceptance)4226 match_pattern (state *s, md_rtx_info *info, rtx pattern,
4227 	       acceptance_type acceptance)
4228 {
4229   if (merge_states_p)
4230     {
4231       state root;
4232       /* Add the decisions to a fresh state and then merge the full tree
4233 	 into the existing one.  */
4234       match_pattern_1 (&root, info, pattern, acceptance);
4235       merge_into_state (s, &root);
4236     }
4237   else
4238     match_pattern_1 (s, info, pattern, acceptance);
4239 }
4240 
4241 /* Begin the output file.  */
4242 
4243 static void
write_header(void)4244 write_header (void)
4245 {
4246   puts ("\
4247 /* Generated automatically by the program `genrecog' from the target\n\
4248    machine description file.  */\n\
4249 \n\
4250 #define IN_TARGET_CODE 1\n\
4251 \n\
4252 #include \"config.h\"\n\
4253 #include \"system.h\"\n\
4254 #include \"coretypes.h\"\n\
4255 #include \"backend.h\"\n\
4256 #include \"predict.h\"\n\
4257 #include \"rtl.h\"\n\
4258 #include \"memmodel.h\"\n\
4259 #include \"tm_p.h\"\n\
4260 #include \"emit-rtl.h\"\n\
4261 #include \"insn-config.h\"\n\
4262 #include \"recog.h\"\n\
4263 #include \"output.h\"\n\
4264 #include \"flags.h\"\n\
4265 #include \"df.h\"\n\
4266 #include \"resource.h\"\n\
4267 #include \"diagnostic-core.h\"\n\
4268 #include \"reload.h\"\n\
4269 #include \"regs.h\"\n\
4270 #include \"tm-constrs.h\"\n\
4271 \n");
4272 
4273   puts ("\n\
4274 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4275    X0 is a valid instruction.\n\
4276 \n\
4277    recog returns -1 if the rtx is not valid.  If the rtx is valid, recog\n\
4278    returns a nonnegative number which is the insn code number for the\n\
4279    pattern that matched.  This is the same as the order in the machine\n\
4280    description of the entry that matched.  This number can be used as an\n\
4281    index into `insn_data' and other tables.\n");
4282   puts ("\
4283    The third parameter to recog is an optional pointer to an int.  If\n\
4284    present, recog will accept a pattern if it matches except for missing\n\
4285    CLOBBER expressions at the end.  In that case, the value pointed to by\n\
4286    the optional pointer will be set to the number of CLOBBERs that need\n\
4287    to be added (it should be initialized to zero by the caller).  If it");
4288   puts ("\
4289    is set nonzero, the caller should allocate a PARALLEL of the\n\
4290    appropriate size, copy the initial entries, and call add_clobbers\n\
4291    (found in insn-emit.c) to fill in the CLOBBERs.\n\
4292 ");
4293 
4294   puts ("\n\
4295    The function split_insns returns 0 if the rtl could not\n\
4296    be split or the split rtl as an INSN list if it can be.\n\
4297 \n\
4298    The function peephole2_insns returns 0 if the rtl could not\n\
4299    be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4300    and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4301 */\n\n");
4302 }
4303 
4304 /* Return the C type of a parameter with type TYPE.  */
4305 
4306 static const char *
parameter_type_string(parameter::type_enum type)4307 parameter_type_string (parameter::type_enum type)
4308 {
4309   switch (type)
4310     {
4311     case parameter::UNSET:
4312       break;
4313 
4314     case parameter::CODE:
4315       return "rtx_code";
4316 
4317     case parameter::MODE:
4318       return "machine_mode";
4319 
4320     case parameter::INT:
4321       return "int";
4322 
4323     case parameter::UINT:
4324       return "unsigned int";
4325 
4326     case parameter::WIDE_INT:
4327       return "HOST_WIDE_INT";
4328     }
4329   gcc_unreachable ();
4330 }
4331 
4332 /* Return true if ACCEPTANCE requires only a single C statement even in
4333    a backtracking context.  */
4334 
4335 static bool
single_statement_p(const acceptance_type & acceptance)4336 single_statement_p (const acceptance_type &acceptance)
4337 {
4338   if (acceptance.partial_p)
4339     /* We need to handle failures of the subroutine.  */
4340     return false;
4341   switch (acceptance.type)
4342     {
4343     case SUBPATTERN:
4344     case SPLIT:
4345       return true;
4346 
4347     case RECOG:
4348       /* False if we need to assign to pnum_clobbers.  */
4349       return acceptance.u.full.u.num_clobbers == 0;
4350 
4351     case PEEPHOLE2:
4352       /* We need to assign to pmatch_len_ and handle null returns from the
4353 	 peephole2 routine.  */
4354       return false;
4355     }
4356   gcc_unreachable ();
4357 }
4358 
4359 /* Return the C failure value for a routine of type TYPE.  */
4360 
4361 static const char *
get_failure_return(routine_type type)4362 get_failure_return (routine_type type)
4363 {
4364   switch (type)
4365     {
4366     case SUBPATTERN:
4367     case RECOG:
4368       return "-1";
4369 
4370     case SPLIT:
4371     case PEEPHOLE2:
4372       return "NULL";
4373     }
4374   gcc_unreachable ();
4375 }
4376 
4377 /* Indicates whether a block of code always returns or whether it can fall
4378    through.  */
4379 
4380 enum exit_state {
4381   ES_RETURNED,
4382   ES_FALLTHROUGH
4383 };
4384 
4385 /* Information used while writing out code.  */
4386 
4387 struct output_state
4388 {
4389   /* The type of routine that we're generating.  */
4390   routine_type type;
4391 
4392   /* Maps position ids to xN variable numbers.  The entry is only valid if
4393      it is less than the length of VAR_TO_ID, but this holds for every position
4394      tested by a state when writing out that state.  */
4395   auto_vec <unsigned int> id_to_var;
4396 
4397   /* Maps xN variable numbers to position ids.  */
4398   auto_vec <unsigned int> var_to_id;
4399 
4400   /* Index N is true if variable xN has already been set.  */
4401   auto_vec <bool> seen_vars;
4402 };
4403 
4404 /* Return true if D is a call to a pattern routine and if there is some X
4405    such that the transition for pattern result N goes to a successful return
4406    with code X+N.  When returning true, set *BASE_OUT to this X and *COUNT_OUT
4407    to the number of return values.  (We know that every PATTERN decision has
4408    a transition for every successful return.)  */
4409 
4410 static bool
terminal_pattern_p(decision * d,unsigned int * base_out,unsigned int * count_out)4411 terminal_pattern_p (decision *d, unsigned int *base_out,
4412 		    unsigned int *count_out)
4413 {
4414   if (d->test.kind != rtx_test::PATTERN)
4415     return false;
4416   unsigned int base = 0;
4417   unsigned int count = 0;
4418   for (transition *trans = d->first; trans; trans = trans->next)
4419     {
4420       if (trans->is_param || trans->labels.length () != 1)
4421 	return false;
4422       decision *subd = trans->to->singleton ();
4423       if (!subd || subd->test.kind != rtx_test::ACCEPT)
4424 	return false;
4425       unsigned int this_base = (subd->test.u.acceptance.u.full.code
4426 				- trans->labels[0]);
4427       if (trans == d->first)
4428 	base = this_base;
4429       else if (base != this_base)
4430 	return false;
4431       count += 1;
4432     }
4433   *base_out = base;
4434   *count_out = count;
4435   return true;
4436 }
4437 
4438 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4439    already available in state OS.  */
4440 
4441 static bool
test_position_available_p(output_state * os,const rtx_test & test)4442 test_position_available_p (output_state *os, const rtx_test &test)
4443 {
4444   return (!test.pos
4445 	  || test.pos_operand >= 0
4446 	  || os->seen_vars[os->id_to_var[test.pos->id]]);
4447 }
4448 
4449 /* Like printf, but print INDENT spaces at the beginning.  */
4450 
4451 static void ATTRIBUTE_PRINTF_2
printf_indent(unsigned int indent,const char * format,...)4452 printf_indent (unsigned int indent, const char *format, ...)
4453 {
4454   va_list ap;
4455   va_start (ap, format);
4456   printf ("%*s", indent, "");
4457   vprintf (format, ap);
4458   va_end (ap);
4459 }
4460 
4461 /* Emit code to initialize the variable associated with POS, if it isn't
4462    already valid in state OS.  Indent each line by INDENT spaces.  Update
4463    OS with the new state.  */
4464 
4465 static void
change_state(output_state * os,position * pos,unsigned int indent)4466 change_state (output_state *os, position *pos, unsigned int indent)
4467 {
4468   unsigned int var = os->id_to_var[pos->id];
4469   gcc_assert (var < os->var_to_id.length () && os->var_to_id[var] == pos->id);
4470   if (os->seen_vars[var])
4471     return;
4472   switch (pos->type)
4473     {
4474     case POS_PEEP2_INSN:
4475       printf_indent (indent, "x%d = PATTERN (peep2_next_insn (%d));\n",
4476 		     var, pos->arg);
4477       break;
4478 
4479     case POS_XEXP:
4480       change_state (os, pos->base, indent);
4481       printf_indent (indent, "x%d = XEXP (x%d, %d);\n",
4482 		     var, os->id_to_var[pos->base->id], pos->arg);
4483       break;
4484 
4485     case POS_XVECEXP0:
4486       change_state (os, pos->base, indent);
4487       printf_indent (indent, "x%d = XVECEXP (x%d, 0, %d);\n",
4488 		     var, os->id_to_var[pos->base->id], pos->arg);
4489       break;
4490     }
4491   os->seen_vars[var] = true;
4492 }
4493 
4494 /* Print the enumerator constant for CODE -- the upcase version of
4495    the name.  */
4496 
4497 static void
print_code(enum rtx_code code)4498 print_code (enum rtx_code code)
4499 {
4500   const char *p;
4501   for (p = GET_RTX_NAME (code); *p; p++)
4502     putchar (TOUPPER (*p));
4503 }
4504 
4505 /* Emit a uint64_t as an integer constant expression.  We need to take
4506    special care to avoid "decimal constant is so large that it is unsigned"
4507    warnings in the resulting code.  */
4508 
4509 static void
print_host_wide_int(uint64_t val)4510 print_host_wide_int (uint64_t val)
4511 {
4512   uint64_t min = uint64_t (1) << (HOST_BITS_PER_WIDE_INT - 1);
4513   if (val == min)
4514     printf ("(" HOST_WIDE_INT_PRINT_DEC_C " - 1)", val + 1);
4515   else
4516     printf (HOST_WIDE_INT_PRINT_DEC_C, val);
4517 }
4518 
4519 /* Print the C expression for actual parameter PARAM.  */
4520 
4521 static void
print_parameter_value(const parameter & param)4522 print_parameter_value (const parameter &param)
4523 {
4524   if (param.is_param)
4525     printf ("i%d", (int) param.value + 1);
4526   else
4527     switch (param.type)
4528       {
4529       case parameter::UNSET:
4530 	gcc_unreachable ();
4531 	break;
4532 
4533       case parameter::CODE:
4534 	print_code ((enum rtx_code) param.value);
4535 	break;
4536 
4537       case parameter::MODE:
4538 	printf ("E_%smode", GET_MODE_NAME ((machine_mode) param.value));
4539 	break;
4540 
4541       case parameter::INT:
4542 	printf ("%d", (int) param.value);
4543 	break;
4544 
4545       case parameter::UINT:
4546 	printf ("%u", (unsigned int) param.value);
4547 	break;
4548 
4549       case parameter::WIDE_INT:
4550 	print_host_wide_int (param.value);
4551 	break;
4552       }
4553 }
4554 
4555 /* Print the C expression for the rtx tested by TEST.  */
4556 
4557 static void
print_test_rtx(output_state * os,const rtx_test & test)4558 print_test_rtx (output_state *os, const rtx_test &test)
4559 {
4560   if (test.pos_operand >= 0)
4561     printf ("operands[%d]", test.pos_operand);
4562   else
4563     printf ("x%d", os->id_to_var[test.pos->id]);
4564 }
4565 
4566 /* Print the C expression for non-boolean test TEST.  */
4567 
4568 static void
print_nonbool_test(output_state * os,const rtx_test & test)4569 print_nonbool_test (output_state *os, const rtx_test &test)
4570 {
4571   switch (test.kind)
4572     {
4573     case rtx_test::CODE:
4574       printf ("GET_CODE (");
4575       print_test_rtx (os, test);
4576       printf (")");
4577       break;
4578 
4579     case rtx_test::MODE:
4580       printf ("GET_MODE (");
4581       print_test_rtx (os, test);
4582       printf (")");
4583       break;
4584 
4585     case rtx_test::VECLEN:
4586       printf ("XVECLEN (");
4587       print_test_rtx (os, test);
4588       printf (", 0)");
4589       break;
4590 
4591     case rtx_test::INT_FIELD:
4592       printf ("XINT (");
4593       print_test_rtx (os, test);
4594       printf (", %d)", test.u.opno);
4595       break;
4596 
4597     case rtx_test::REGNO_FIELD:
4598       printf ("REGNO (");
4599       print_test_rtx (os, test);
4600       printf (")");
4601       break;
4602 
4603     case rtx_test::SUBREG_FIELD:
4604       printf ("SUBREG_BYTE (");
4605       print_test_rtx (os, test);
4606       printf (")");
4607       break;
4608 
4609     case rtx_test::WIDE_INT_FIELD:
4610       printf ("XWINT (");
4611       print_test_rtx (os, test);
4612       printf (", %d)", test.u.opno);
4613       break;
4614 
4615     case rtx_test::PATTERN:
4616       {
4617 	pattern_routine *routine = test.u.pattern->routine;
4618 	printf ("pattern%d (", routine->pattern_id);
4619 	const char *sep = "";
4620 	if (test.pos)
4621 	  {
4622 	    print_test_rtx (os, test);
4623 	    sep = ", ";
4624 	  }
4625 	if (routine->insn_p)
4626 	  {
4627 	    printf ("%sinsn", sep);
4628 	    sep = ", ";
4629 	  }
4630 	if (routine->pnum_clobbers_p)
4631 	  {
4632 	    printf ("%spnum_clobbers", sep);
4633 	    sep = ", ";
4634 	  }
4635 	for (unsigned int i = 0; i < test.u.pattern->params.length (); ++i)
4636 	  {
4637 	    fputs (sep, stdout);
4638 	    print_parameter_value (test.u.pattern->params[i]);
4639 	    sep = ", ";
4640 	  }
4641 	printf (")");
4642 	break;
4643       }
4644 
4645     case rtx_test::PEEP2_COUNT:
4646     case rtx_test::VECLEN_GE:
4647     case rtx_test::SAVED_CONST_INT:
4648     case rtx_test::DUPLICATE:
4649     case rtx_test::PREDICATE:
4650     case rtx_test::SET_OP:
4651     case rtx_test::HAVE_NUM_CLOBBERS:
4652     case rtx_test::C_TEST:
4653     case rtx_test::ACCEPT:
4654       gcc_unreachable ();
4655     }
4656 }
4657 
4658 /* IS_PARAM and LABEL are taken from a transition whose source
4659    decision performs TEST.  Print the C code for the label.  */
4660 
4661 static void
print_label_value(const rtx_test & test,bool is_param,uint64_t value)4662 print_label_value (const rtx_test &test, bool is_param, uint64_t value)
4663 {
4664   print_parameter_value (parameter (transition_parameter_type (test.kind),
4665 				    is_param, value));
4666 }
4667 
4668 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4669    If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4670    Test for inequality if INVERT_P, otherwise test for equality.  */
4671 
4672 static void
print_test(output_state * os,const rtx_test & test,bool is_param,uint64_t value,bool invert_p)4673 print_test (output_state *os, const rtx_test &test, bool is_param,
4674 	    uint64_t value, bool invert_p)
4675 {
4676   switch (test.kind)
4677     {
4678       /* Handle the non-boolean TESTs.  */
4679     case rtx_test::CODE:
4680     case rtx_test::MODE:
4681     case rtx_test::VECLEN:
4682     case rtx_test::REGNO_FIELD:
4683     case rtx_test::INT_FIELD:
4684     case rtx_test::WIDE_INT_FIELD:
4685     case rtx_test::PATTERN:
4686       print_nonbool_test (os, test);
4687       printf (" %s ", invert_p ? "!=" : "==");
4688       print_label_value (test, is_param, value);
4689       break;
4690 
4691     case rtx_test::SUBREG_FIELD:
4692       printf ("%s (", invert_p ? "maybe_ne" : "known_eq");
4693       print_nonbool_test (os, test);
4694       printf (", ");
4695       print_label_value (test, is_param, value);
4696       printf (")");
4697       break;
4698 
4699     case rtx_test::SAVED_CONST_INT:
4700       gcc_assert (!is_param && value == 1);
4701       print_test_rtx (os, test);
4702       printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4703 	      invert_p ? "!=" : "==");
4704       print_parameter_value (parameter (parameter::INT,
4705 					test.u.integer.is_param,
4706 					test.u.integer.value));
4707       printf ("]");
4708       break;
4709 
4710     case rtx_test::PEEP2_COUNT:
4711       gcc_assert (!is_param && value == 1);
4712       printf ("peep2_current_count %s %d", invert_p ? "<" : ">=",
4713 	      test.u.min_len);
4714       break;
4715 
4716     case rtx_test::VECLEN_GE:
4717       gcc_assert (!is_param && value == 1);
4718       printf ("XVECLEN (");
4719       print_test_rtx (os, test);
4720       printf (", 0) %s %d", invert_p ? "<" : ">=", test.u.min_len);
4721       break;
4722 
4723     case rtx_test::PREDICATE:
4724       gcc_assert (!is_param && value == 1);
4725       printf ("%s%s (", invert_p ? "!" : "", test.u.predicate.data->name);
4726       print_test_rtx (os, test);
4727       printf (", ");
4728       print_parameter_value (parameter (parameter::MODE,
4729 					test.u.predicate.mode_is_param,
4730 					test.u.predicate.mode));
4731       printf (")");
4732       break;
4733 
4734     case rtx_test::DUPLICATE:
4735       gcc_assert (!is_param && value == 1);
4736       printf ("%srtx_equal_p (", invert_p ? "!" : "");
4737       print_test_rtx (os, test);
4738       printf (", operands[%d])", test.u.opno);
4739       break;
4740 
4741     case rtx_test::HAVE_NUM_CLOBBERS:
4742       gcc_assert (!is_param && value == 1);
4743       printf ("pnum_clobbers %s NULL", invert_p ? "==" : "!=");
4744       break;
4745 
4746     case rtx_test::C_TEST:
4747       gcc_assert (!is_param && value == 1);
4748       if (invert_p)
4749 	printf ("!");
4750       rtx_reader_ptr->print_c_condition (test.u.string);
4751       break;
4752 
4753     case rtx_test::ACCEPT:
4754     case rtx_test::SET_OP:
4755       gcc_unreachable ();
4756     }
4757 }
4758 
4759 static exit_state print_decision (output_state *, decision *,
4760 				  unsigned int, bool);
4761 
4762 /* Print code to perform S, indent each line by INDENT spaces.
4763    IS_FINAL is true if there are no fallback decisions to test on failure;
4764    if the state fails then the entire routine fails.  */
4765 
4766 static exit_state
print_state(output_state * os,state * s,unsigned int indent,bool is_final)4767 print_state (output_state *os, state *s, unsigned int indent, bool is_final)
4768 {
4769   exit_state es = ES_FALLTHROUGH;
4770   for (decision *d = s->first; d; d = d->next)
4771     es = print_decision (os, d, indent, is_final && !d->next);
4772   if (es != ES_RETURNED && is_final)
4773     {
4774       printf_indent (indent, "return %s;\n", get_failure_return (os->type));
4775       es = ES_RETURNED;
4776     }
4777   return es;
4778 }
4779 
4780 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4781    is known to be true).  Return the C condition that indicates a successful
4782    match.  */
4783 
4784 static const char *
print_subroutine_call(const acceptance_type & acceptance)4785 print_subroutine_call (const acceptance_type &acceptance)
4786 {
4787   switch (acceptance.type)
4788     {
4789     case SUBPATTERN:
4790       gcc_unreachable ();
4791 
4792     case RECOG:
4793       printf ("recog_%d (x1, insn, pnum_clobbers)",
4794 	      acceptance.u.subroutine_id);
4795       return ">= 0";
4796 
4797     case SPLIT:
4798       printf ("split_%d (x1, insn)", acceptance.u.subroutine_id);
4799       return "!= NULL_RTX";
4800 
4801     case PEEPHOLE2:
4802       printf ("peephole2_%d (x1, insn, pmatch_len_)",
4803 	      acceptance.u.subroutine_id);
4804       return "!= NULL_RTX";
4805     }
4806   gcc_unreachable ();
4807 }
4808 
4809 /* Print code for the successful match described by ACCEPTANCE.
4810    INDENT and IS_FINAL are as for print_state.  */
4811 
4812 static exit_state
print_acceptance(const acceptance_type & acceptance,unsigned int indent,bool is_final)4813 print_acceptance (const acceptance_type &acceptance, unsigned int indent,
4814 		  bool is_final)
4815 {
4816   if (acceptance.partial_p)
4817     {
4818       /* Defer the rest of the match to a subroutine.  */
4819       if (is_final)
4820 	{
4821 	  printf_indent (indent, "return ");
4822 	  print_subroutine_call (acceptance);
4823 	  printf (";\n");
4824 	  return ES_RETURNED;
4825 	}
4826       else
4827 	{
4828 	  printf_indent (indent, "res = ");
4829 	  const char *res_test = print_subroutine_call (acceptance);
4830 	  printf (";\n");
4831 	  printf_indent (indent, "if (res %s)\n", res_test);
4832 	  printf_indent (indent + 2, "return res;\n");
4833 	  return ES_FALLTHROUGH;
4834 	}
4835     }
4836   switch (acceptance.type)
4837     {
4838     case SUBPATTERN:
4839       printf_indent (indent, "return %d;\n", acceptance.u.full.code);
4840       return ES_RETURNED;
4841 
4842     case RECOG:
4843       if (acceptance.u.full.u.num_clobbers != 0)
4844 	printf_indent (indent, "*pnum_clobbers = %d;\n",
4845 		       acceptance.u.full.u.num_clobbers);
4846       printf_indent (indent, "return %d; /* %s */\n", acceptance.u.full.code,
4847 		     get_insn_name (acceptance.u.full.code));
4848       return ES_RETURNED;
4849 
4850     case SPLIT:
4851       printf_indent (indent, "return gen_split_%d (insn, operands);\n",
4852 		     acceptance.u.full.code);
4853       return ES_RETURNED;
4854 
4855     case PEEPHOLE2:
4856       printf_indent (indent, "*pmatch_len_ = %d;\n",
4857 		     acceptance.u.full.u.match_len);
4858       if (is_final)
4859 	{
4860 	  printf_indent (indent, "return gen_peephole2_%d (insn, operands);\n",
4861 			 acceptance.u.full.code);
4862 	  return ES_RETURNED;
4863 	}
4864       else
4865 	{
4866 	  printf_indent (indent, "res = gen_peephole2_%d (insn, operands);\n",
4867 			 acceptance.u.full.code);
4868 	  printf_indent (indent, "if (res != NULL_RTX)\n");
4869 	  printf_indent (indent + 2, "return res;\n");
4870 	  return ES_FALLTHROUGH;
4871 	}
4872     }
4873   gcc_unreachable ();
4874 }
4875 
4876 /* Print code to perform D.  INDENT and IS_FINAL are as for print_state.  */
4877 
4878 static exit_state
print_decision(output_state * os,decision * d,unsigned int indent,bool is_final)4879 print_decision (output_state *os, decision *d, unsigned int indent,
4880 		bool is_final)
4881 {
4882   uint64_t label;
4883   unsigned int base, count;
4884 
4885   /* Make sure the rtx under test is available either in operands[] or
4886      in an xN variable.  */
4887   if (d->test.pos && d->test.pos_operand < 0)
4888     change_state (os, d->test.pos, indent);
4889 
4890   /* Look for cases where a pattern routine P1 calls another pattern routine
4891      P2 and where P1 returns X + BASE whenever P2 returns X.  If IS_FINAL
4892      is true and BASE is zero we can simply use:
4893 
4894         return patternN (...);
4895 
4896      Otherwise we can use:
4897 
4898         res = patternN (...);
4899 	if (res >= 0)
4900 	  return res + BASE;
4901 
4902      However, if BASE is nonzero and patternN only returns 0 or -1,
4903      the usual "return BASE;" is better than "return res + BASE;".
4904      If BASE is zero, "return res;" should be better than "return 0;",
4905      since no assignment to the return register is required.  */
4906   if (os->type == SUBPATTERN
4907       && terminal_pattern_p (d, &base, &count)
4908       && (base == 0 || count > 1))
4909     {
4910       if (is_final && base == 0)
4911 	{
4912 	  printf_indent (indent, "return ");
4913 	  print_nonbool_test (os, d->test);
4914 	  printf ("; /* [-1, %d] */\n", count - 1);
4915 	  return ES_RETURNED;
4916 	}
4917       else
4918 	{
4919 	  printf_indent (indent, "res = ");
4920 	  print_nonbool_test (os, d->test);
4921 	  printf (";\n");
4922 	  printf_indent (indent, "if (res >= 0)\n");
4923 	  printf_indent (indent + 2, "return res");
4924 	  if (base != 0)
4925 	    printf (" + %d", base);
4926 	  printf ("; /* [%d, %d] */\n", base, base + count - 1);
4927 	  return ES_FALLTHROUGH;
4928 	}
4929     }
4930   else if (d->test.kind == rtx_test::ACCEPT)
4931     return print_acceptance (d->test.u.acceptance, indent, is_final);
4932   else if (d->test.kind == rtx_test::SET_OP)
4933     {
4934       printf_indent (indent, "operands[%d] = ", d->test.u.opno);
4935       print_test_rtx (os, d->test);
4936       printf (";\n");
4937       return print_state (os, d->singleton ()->to, indent, is_final);
4938     }
4939   /* Handle decisions with a single transition and a single transition
4940      label.  */
4941   else if (d->if_statement_p (&label))
4942     {
4943       transition *trans = d->singleton ();
4944       if (mark_optional_transitions_p && trans->optional)
4945 	printf_indent (indent, "/* OPTIONAL IF */\n");
4946 
4947       /* Print the condition associated with TRANS.  Invert it if IS_FINAL,
4948 	 so that we return immediately on failure and fall through on
4949 	 success.  */
4950       printf_indent (indent, "if (");
4951       print_test (os, d->test, trans->is_param, label, is_final);
4952 
4953       /* Look for following states that would be handled by this code
4954 	 on recursion.  If they don't need any preparatory statements,
4955 	 include them in the current "if" statement rather than creating
4956 	 a new one.  */
4957       for (;;)
4958 	{
4959 	  d = trans->to->singleton ();
4960 	  if (!d
4961 	      || d->test.kind == rtx_test::ACCEPT
4962 	      || d->test.kind == rtx_test::SET_OP
4963 	      || !d->if_statement_p (&label)
4964 	      || !test_position_available_p (os, d->test))
4965 	    break;
4966 	  trans = d->first;
4967 	  printf ("\n");
4968 	  if (mark_optional_transitions_p && trans->optional)
4969 	    printf_indent (indent + 4, "/* OPTIONAL IF */\n");
4970 	  printf_indent (indent + 4, "%s ", is_final ? "||" : "&&");
4971 	  print_test (os, d->test, trans->is_param, label, is_final);
4972 	}
4973       printf (")\n");
4974 
4975       /* Print the conditional code with INDENT + 2 and the fallthrough
4976 	 code with indent INDENT.  */
4977       state *to = trans->to;
4978       if (is_final)
4979 	{
4980 	  /* We inverted the condition above, so return failure in the
4981 	     "if" body and fall through to the target of the transition.  */
4982 	  printf_indent (indent + 2, "return %s;\n",
4983 			 get_failure_return (os->type));
4984 	  return print_state (os, to, indent, is_final);
4985 	}
4986       else if (to->singleton ()
4987 	       && to->first->test.kind == rtx_test::ACCEPT
4988 	       && single_statement_p (to->first->test.u.acceptance))
4989 	{
4990 	  /* The target of the transition is a simple "return" statement.
4991 	     It doesn't need any braces and doesn't fall through.  */
4992 	  if (print_acceptance (to->first->test.u.acceptance,
4993 				indent + 2, true) != ES_RETURNED)
4994 	    gcc_unreachable ();
4995 	  return ES_FALLTHROUGH;
4996 	}
4997       else
4998 	{
4999 	  /* The general case.  Output code for the target of the transition
5000 	     in braces.  This will not invalidate any of the xN variables
5001 	     that are already valid, but we mustn't rely on any that are
5002 	     set by the "if" body.  */
5003 	  auto_vec <bool, 32> old_seen;
5004 	  old_seen.safe_splice (os->seen_vars);
5005 
5006 	  printf_indent (indent + 2, "{\n");
5007 	  print_state (os, trans->to, indent + 4, is_final);
5008 	  printf_indent (indent + 2, "}\n");
5009 
5010 	  os->seen_vars.truncate (0);
5011 	  os->seen_vars.splice (old_seen);
5012 	  return ES_FALLTHROUGH;
5013 	}
5014     }
5015   else
5016     {
5017       /* Output the decision as a switch statement.  */
5018       printf_indent (indent, "switch (");
5019       print_nonbool_test (os, d->test);
5020       printf (")\n");
5021 
5022       /* Each case statement starts with the same set of valid variables.
5023 	 These are also the only variables will be valid on fallthrough.  */
5024       auto_vec <bool, 32> old_seen;
5025       old_seen.safe_splice (os->seen_vars);
5026 
5027       printf_indent (indent + 2, "{\n");
5028       for (transition *trans = d->first; trans; trans = trans->next)
5029 	{
5030 	  gcc_assert (!trans->is_param);
5031 	  if (mark_optional_transitions_p && trans->optional)
5032 	    printf_indent (indent + 2, "/* OPTIONAL CASE */\n");
5033 	  for (int_set::iterator j = trans->labels.begin ();
5034 	       j != trans->labels.end (); ++j)
5035 	    {
5036 	      printf_indent (indent + 2, "case ");
5037 	      print_label_value (d->test, trans->is_param, *j);
5038 	      printf (":\n");
5039 	    }
5040 	  if (print_state (os, trans->to, indent + 4, is_final))
5041 	    {
5042 	      /* The state can fall through.  Add an explicit break.  */
5043 	      gcc_assert (!is_final);
5044 	      printf_indent (indent + 4, "break;\n");
5045 	    }
5046 	  printf ("\n");
5047 
5048 	  /* Restore the original set of valid variables.  */
5049 	  os->seen_vars.truncate (0);
5050 	  os->seen_vars.splice (old_seen);
5051 	}
5052       /* Add a default case.  */
5053       printf_indent (indent + 2, "default:\n");
5054       if (is_final)
5055 	printf_indent (indent + 4, "return %s;\n",
5056 		       get_failure_return (os->type));
5057       else
5058 	printf_indent (indent + 4, "break;\n");
5059       printf_indent (indent + 2, "}\n");
5060       return is_final ? ES_RETURNED : ES_FALLTHROUGH;
5061     }
5062 }
5063 
5064 /* Make sure that OS has a position variable for POS.  ROOT_P is true if
5065    POS is the root position for the routine.  */
5066 
5067 static void
assign_position_var(output_state * os,position * pos,bool root_p)5068 assign_position_var (output_state *os, position *pos, bool root_p)
5069 {
5070   unsigned int idx = os->id_to_var[pos->id];
5071   if (idx < os->var_to_id.length () && os->var_to_id[idx] == pos->id)
5072     return;
5073   if (!root_p && pos->type != POS_PEEP2_INSN)
5074     assign_position_var (os, pos->base, false);
5075   os->id_to_var[pos->id] = os->var_to_id.length ();
5076   os->var_to_id.safe_push (pos->id);
5077 }
5078 
5079 /* Make sure that OS has the position variables required by S.  */
5080 
5081 static void
assign_position_vars(output_state * os,state * s)5082 assign_position_vars (output_state *os, state *s)
5083 {
5084   for (decision *d = s->first; d; d = d->next)
5085     {
5086       /* Positions associated with operands can be read from the
5087 	 operands[] array.  */
5088       if (d->test.pos && d->test.pos_operand < 0)
5089 	assign_position_var (os, d->test.pos, false);
5090       for (transition *trans = d->first; trans; trans = trans->next)
5091 	assign_position_vars (os, trans->to);
5092     }
5093 }
5094 
5095 /* Print the open brace and variable definitions for a routine that
5096    implements S.  ROOT is the deepest rtx from which S can access all
5097    relevant parts of the first instruction it matches.  Initialize OS
5098    so that every relevant position has an rtx variable xN and so that
5099    only ROOT's variable has a valid value.  */
5100 
5101 static void
print_subroutine_start(output_state * os,state * s,position * root)5102 print_subroutine_start (output_state *os, state *s, position *root)
5103 {
5104   printf ("{\n  rtx * const operands ATTRIBUTE_UNUSED"
5105 	  " = &recog_data.operand[0];\n");
5106   os->var_to_id.truncate (0);
5107   os->seen_vars.truncate (0);
5108   if (root)
5109     {
5110       /* Create a fake entry for position 0 so that an id_to_var of 0
5111 	 is always invalid.  This also makes the xN variables naturally
5112 	 1-based rather than 0-based.  */
5113       os->var_to_id.safe_push (num_positions);
5114 
5115       /* Associate ROOT with x1.  */
5116       assign_position_var (os, root, true);
5117 
5118       /* Assign xN variables to all other relevant positions.  */
5119       assign_position_vars (os, s);
5120 
5121       /* Output the variable declarations (except for ROOT's, which is
5122 	 passed in as a parameter).  */
5123       unsigned int num_vars = os->var_to_id.length ();
5124       if (num_vars > 2)
5125 	{
5126 	  for (unsigned int i = 2; i < num_vars; ++i)
5127 	    /* Print 8 rtx variables to a line.  */
5128 	    printf ("%s x%d",
5129 		    i == 2 ? "  rtx" : (i - 2) % 8 == 0 ? ";\n  rtx" : ",", i);
5130 	  printf (";\n");
5131 	}
5132 
5133       /* Say that x1 is valid and the rest aren't.  */
5134       os->seen_vars.safe_grow_cleared (num_vars);
5135       os->seen_vars[1] = true;
5136     }
5137   if (os->type == SUBPATTERN || os->type == RECOG)
5138     printf ("  int res ATTRIBUTE_UNUSED;\n");
5139   else
5140     printf ("  rtx_insn *res ATTRIBUTE_UNUSED;\n");
5141 }
5142 
5143 /* Output the definition of pattern routine ROUTINE.  */
5144 
5145 static void
print_pattern(output_state * os,pattern_routine * routine)5146 print_pattern (output_state *os, pattern_routine *routine)
5147 {
5148   printf ("\nstatic int\npattern%d (", routine->pattern_id);
5149   const char *sep = "";
5150   /* Add the top-level rtx parameter, if any.  */
5151   if (routine->pos)
5152     {
5153       printf ("%srtx x1", sep);
5154       sep = ", ";
5155     }
5156   /* Add the optional parameters.  */
5157   if (routine->insn_p)
5158     {
5159       /* We can't easily tell whether a C condition actually reads INSN,
5160 	 so add an ATTRIBUTE_UNUSED just in case.  */
5161       printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep);
5162       sep = ", ";
5163     }
5164   if (routine->pnum_clobbers_p)
5165     {
5166       printf ("%sint *pnum_clobbers", sep);
5167       sep = ", ";
5168     }
5169   /* Add the "i" parameters.  */
5170   for (unsigned int i = 0; i < routine->param_types.length (); ++i)
5171     {
5172       printf ("%s%s i%d", sep,
5173 	      parameter_type_string (routine->param_types[i]), i + 1);
5174       sep = ", ";
5175     }
5176   printf (")\n");
5177   os->type = SUBPATTERN;
5178   print_subroutine_start (os, routine->s, routine->pos);
5179   print_state (os, routine->s, 2, true);
5180   printf ("}\n");
5181 }
5182 
5183 /* Output a routine of type TYPE that implements S.  PROC_ID is the
5184    number of the subroutine associated with S, or 0 if S is the main
5185    routine.  */
5186 
5187 static void
print_subroutine(output_state * os,state * s,int proc_id)5188 print_subroutine (output_state *os, state *s, int proc_id)
5189 {
5190   printf ("\n");
5191   switch (os->type)
5192     {
5193     case SUBPATTERN:
5194       gcc_unreachable ();
5195 
5196     case RECOG:
5197       if (proc_id)
5198 	printf ("static int\nrecog_%d", proc_id);
5199       else
5200 	printf ("int\nrecog");
5201       printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5202 	      "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5203 	      "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n");
5204       break;
5205 
5206     case SPLIT:
5207       if (proc_id)
5208 	printf ("static rtx_insn *\nsplit_%d", proc_id);
5209       else
5210 	printf ("rtx_insn *\nsplit_insns");
5211       printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5212       break;
5213 
5214     case PEEPHOLE2:
5215       if (proc_id)
5216 	printf ("static rtx_insn *\npeephole2_%d", proc_id);
5217       else
5218 	printf ("rtx_insn *\npeephole2_insns");
5219       printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5220 	      "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5221 	      "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5222       break;
5223     }
5224   print_subroutine_start (os, s, &root_pos);
5225   if (proc_id == 0)
5226     {
5227       printf ("  recog_data.insn = NULL;\n");
5228     }
5229   print_state (os, s, 2, true);
5230   printf ("}\n");
5231 }
5232 
5233 /* Print out a routine of type TYPE that performs ROOT.  */
5234 
5235 static void
print_subroutine_group(output_state * os,routine_type type,state * root)5236 print_subroutine_group (output_state *os, routine_type type, state *root)
5237 {
5238   os->type = type;
5239   if (use_subroutines_p)
5240     {
5241       /* Split ROOT up into smaller pieces, both for readability and to
5242 	 help the compiler.  */
5243       auto_vec <state *> subroutines;
5244       find_subroutines (type, root, subroutines);
5245 
5246       /* Output the subroutines (but not ROOT itself).  */
5247       unsigned int i;
5248       state *s;
5249       FOR_EACH_VEC_ELT (subroutines, i, s)
5250 	print_subroutine (os, s, i + 1);
5251     }
5252   /* Output the main routine.  */
5253   print_subroutine (os, root, 0);
5254 }
5255 
5256 /* Return the rtx pattern for the list of rtxes in a define_peephole2.  */
5257 
5258 static rtx
get_peephole2_pattern(md_rtx_info * info)5259 get_peephole2_pattern (md_rtx_info *info)
5260 {
5261   int i, j;
5262   rtvec vec = XVEC (info->def, 0);
5263   rtx pattern = rtx_alloc (SEQUENCE);
5264   XVEC (pattern, 0) = rtvec_alloc (GET_NUM_ELEM (vec));
5265   for (i = j = 0; i < GET_NUM_ELEM (vec); i++)
5266     {
5267       rtx x = RTVEC_ELT (vec, i);
5268       /* Ignore scratch register requirements.  */
5269       if (GET_CODE (x) != MATCH_SCRATCH && GET_CODE (x) != MATCH_DUP)
5270 	{
5271 	  XVECEXP (pattern, 0, j) = x;
5272 	  j++;
5273 	}
5274     }
5275   XVECLEN (pattern, 0) = j;
5276   if (j == 0)
5277     error_at (info->loc, "empty define_peephole2");
5278   return pattern;
5279 }
5280 
5281 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5282    rtx can be added automatically by add_clobbers.  If so, update
5283    *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5284    of such trailing rtxes and update *PATTERN_PTR so that it contains
5285    the pattern without those rtxes.  */
5286 
5287 static bool
remove_clobbers(acceptance_type * acceptance_ptr,rtx * pattern_ptr)5288 remove_clobbers (acceptance_type *acceptance_ptr, rtx *pattern_ptr)
5289 {
5290   int i;
5291   rtx new_pattern;
5292 
5293   /* Find the last non-clobber in the parallel.  */
5294   rtx pattern = *pattern_ptr;
5295   for (i = XVECLEN (pattern, 0); i > 0; i--)
5296     {
5297       rtx x = XVECEXP (pattern, 0, i - 1);
5298       if ((GET_CODE (x) != CLOBBER && GET_CODE (x) != CLOBBER_HIGH)
5299 	  || (!REG_P (XEXP (x, 0))
5300 	      && GET_CODE (XEXP (x, 0)) != MATCH_SCRATCH))
5301 	break;
5302     }
5303 
5304   if (i == XVECLEN (pattern, 0))
5305     return false;
5306 
5307   /* Build a similar insn without the clobbers.  */
5308   if (i == 1)
5309     new_pattern = XVECEXP (pattern, 0, 0);
5310   else
5311     {
5312       new_pattern = rtx_alloc (PARALLEL);
5313       XVEC (new_pattern, 0) = rtvec_alloc (i);
5314       for (int j = 0; j < i; ++j)
5315 	XVECEXP (new_pattern, 0, j) = XVECEXP (pattern, 0, j);
5316     }
5317 
5318   /* Recognize it.  */
5319   acceptance_ptr->u.full.u.num_clobbers = XVECLEN (pattern, 0) - i;
5320   *pattern_ptr = new_pattern;
5321   return true;
5322 }
5323 
5324 int
main(int argc,const char ** argv)5325 main (int argc, const char **argv)
5326 {
5327   state insn_root, split_root, peephole2_root;
5328 
5329   progname = "genrecog";
5330 
5331   if (!init_rtx_reader_args (argc, argv))
5332     return (FATAL_EXIT_CODE);
5333 
5334   write_header ();
5335 
5336   /* Read the machine description.  */
5337 
5338   md_rtx_info info;
5339   while (read_md_rtx (&info))
5340     {
5341       rtx def = info.def;
5342 
5343       acceptance_type acceptance;
5344       acceptance.partial_p = false;
5345       acceptance.u.full.code = info.index;
5346 
5347       rtx pattern;
5348       switch (GET_CODE (def))
5349 	{
5350 	case DEFINE_INSN:
5351 	  {
5352 	    /* Match the instruction in the original .md form.  */
5353 	    acceptance.type = RECOG;
5354 	    acceptance.u.full.u.num_clobbers = 0;
5355 	    pattern = add_implicit_parallel (XVEC (def, 1));
5356 	    validate_pattern (pattern, &info, NULL_RTX, 0);
5357 	    match_pattern (&insn_root, &info, pattern, acceptance);
5358 
5359 	    /* If the pattern is a PARALLEL with trailing CLOBBERs,
5360 	       allow recog_for_combine to match without the clobbers.  */
5361 	    if (GET_CODE (pattern) == PARALLEL
5362 		&& remove_clobbers (&acceptance, &pattern))
5363 	      match_pattern (&insn_root, &info, pattern, acceptance);
5364 	    break;
5365 	  }
5366 
5367 	case DEFINE_SPLIT:
5368 	  acceptance.type = SPLIT;
5369 	  pattern = add_implicit_parallel (XVEC (def, 0));
5370 	  validate_pattern (pattern, &info, NULL_RTX, 0);
5371 	  match_pattern (&split_root, &info, pattern, acceptance);
5372 
5373 	  /* Declare the gen_split routine that we'll call if the
5374 	     pattern matches.  The definition comes from insn-emit.c.  */
5375 	  printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5376 		  info.index);
5377 	  break;
5378 
5379 	case DEFINE_PEEPHOLE2:
5380 	  acceptance.type = PEEPHOLE2;
5381 	  pattern = get_peephole2_pattern (&info);
5382 	  validate_pattern (pattern, &info, NULL_RTX, 0);
5383 	  match_pattern (&peephole2_root, &info, pattern, acceptance);
5384 
5385 	  /* Declare the gen_peephole2 routine that we'll call if the
5386 	     pattern matches.  The definition comes from insn-emit.c.  */
5387 	  printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5388 		  info.index);
5389 	  break;
5390 
5391 	default:
5392 	  /* do nothing */;
5393 	}
5394     }
5395 
5396   if (have_error)
5397     return FATAL_EXIT_CODE;
5398 
5399   puts ("\n\n");
5400 
5401   /* Optimize each routine in turn.  */
5402   optimize_subroutine_group ("recog", &insn_root);
5403   optimize_subroutine_group ("split_insns", &split_root);
5404   optimize_subroutine_group ("peephole2_insns", &peephole2_root);
5405 
5406   output_state os;
5407   os.id_to_var.safe_grow_cleared (num_positions);
5408 
5409   if (use_pattern_routines_p)
5410     {
5411       /* Look for common patterns and split them out into subroutines.  */
5412       auto_vec <merge_state_info> states;
5413       states.safe_push (&insn_root);
5414       states.safe_push (&split_root);
5415       states.safe_push (&peephole2_root);
5416       split_out_patterns (states);
5417 
5418       /* Print out the routines that we just created.  */
5419       unsigned int i;
5420       pattern_routine *routine;
5421       FOR_EACH_VEC_ELT (patterns, i, routine)
5422 	print_pattern (&os, routine);
5423     }
5424 
5425   /* Print out the matching routines.  */
5426   print_subroutine_group (&os, RECOG, &insn_root);
5427   print_subroutine_group (&os, SPLIT, &split_root);
5428   print_subroutine_group (&os, PEEPHOLE2, &peephole2_root);
5429 
5430   fflush (stdout);
5431   return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
5432 }
5433