1 /* Lower complex number operations to scalar operations.
2    Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-dfa.h"
38 #include "tree-ssa.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
41 #include "cfgloop.h"
42 #include "cfganal.h"
43 
44 
45 /* For each complex ssa name, a lattice value.  We're interested in finding
46    out whether a complex number is degenerate in some way, having only real
47    or only complex parts.  */
48 
49 enum
50 {
51   UNINITIALIZED = 0,
52   ONLY_REAL = 1,
53   ONLY_IMAG = 2,
54   VARYING = 3
55 };
56 
57 /* The type complex_lattice_t holds combinations of the above
58    constants.  */
59 typedef int complex_lattice_t;
60 
61 #define PAIR(a, b)  ((a) << 2 | (b))
62 
63 class complex_propagate : public ssa_propagation_engine
64 {
65   enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
66   enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
67 };
68 
69 static vec<complex_lattice_t> complex_lattice_values;
70 
71 /* For each complex variable, a pair of variables for the components exists in
72    the hashtable.  */
73 static int_tree_htab_type *complex_variable_components;
74 
75 /* For each complex SSA_NAME, a pair of ssa names for the components.  */
76 static vec<tree> complex_ssa_name_components;
77 
78 /* Vector of PHI triplets (original complex PHI and corresponding real and
79    imag PHIs if real and/or imag PHIs contain temporarily
80    non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs.  */
81 static vec<gphi *> phis_to_revisit;
82 
83 /* BBs that need EH cleanup.  */
84 static bitmap need_eh_cleanup;
85 
86 /* Lookup UID in the complex_variable_components hashtable and return the
87    associated tree.  */
88 static tree
cvc_lookup(unsigned int uid)89 cvc_lookup (unsigned int uid)
90 {
91   struct int_tree_map in;
92   in.uid = uid;
93   return complex_variable_components->find_with_hash (in, uid).to;
94 }
95 
96 /* Insert the pair UID, TO into the complex_variable_components hashtable.  */
97 
98 static void
cvc_insert(unsigned int uid,tree to)99 cvc_insert (unsigned int uid, tree to)
100 {
101   int_tree_map h;
102   int_tree_map *loc;
103 
104   h.uid = uid;
105   loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
106   loc->uid = uid;
107   loc->to = to;
108 }
109 
110 /* Return true if T is not a zero constant.  In the case of real values,
111    we're only interested in +0.0.  */
112 
113 static int
some_nonzerop(tree t)114 some_nonzerop (tree t)
115 {
116   int zerop = false;
117 
118   /* Operations with real or imaginary part of a complex number zero
119      cannot be treated the same as operations with a real or imaginary
120      operand if we care about the signs of zeros in the result.  */
121   if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
122     zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
123   else if (TREE_CODE (t) == FIXED_CST)
124     zerop = fixed_zerop (t);
125   else if (TREE_CODE (t) == INTEGER_CST)
126     zerop = integer_zerop (t);
127 
128   return !zerop;
129 }
130 
131 
132 /* Compute a lattice value from the components of a complex type REAL
133    and IMAG.  */
134 
135 static complex_lattice_t
find_lattice_value_parts(tree real,tree imag)136 find_lattice_value_parts (tree real, tree imag)
137 {
138   int r, i;
139   complex_lattice_t ret;
140 
141   r = some_nonzerop (real);
142   i = some_nonzerop (imag);
143   ret = r * ONLY_REAL + i * ONLY_IMAG;
144 
145   /* ??? On occasion we could do better than mapping 0+0i to real, but we
146      certainly don't want to leave it UNINITIALIZED, which eventually gets
147      mapped to VARYING.  */
148   if (ret == UNINITIALIZED)
149     ret = ONLY_REAL;
150 
151   return ret;
152 }
153 
154 
155 /* Compute a lattice value from gimple_val T.  */
156 
157 static complex_lattice_t
find_lattice_value(tree t)158 find_lattice_value (tree t)
159 {
160   tree real, imag;
161 
162   switch (TREE_CODE (t))
163     {
164     case SSA_NAME:
165       return complex_lattice_values[SSA_NAME_VERSION (t)];
166 
167     case COMPLEX_CST:
168       real = TREE_REALPART (t);
169       imag = TREE_IMAGPART (t);
170       break;
171 
172     default:
173       gcc_unreachable ();
174     }
175 
176   return find_lattice_value_parts (real, imag);
177 }
178 
179 /* Determine if LHS is something for which we're interested in seeing
180    simulation results.  */
181 
182 static bool
is_complex_reg(tree lhs)183 is_complex_reg (tree lhs)
184 {
185   return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
186 }
187 
188 /* Mark the incoming parameters to the function as VARYING.  */
189 
190 static void
init_parameter_lattice_values(void)191 init_parameter_lattice_values (void)
192 {
193   tree parm, ssa_name;
194 
195   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
196     if (is_complex_reg (parm)
197 	&& (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
198       complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
199 }
200 
201 /* Initialize simulation state for each statement.  Return false if we
202    found no statements we want to simulate, and thus there's nothing
203    for the entire pass to do.  */
204 
205 static bool
init_dont_simulate_again(void)206 init_dont_simulate_again (void)
207 {
208   basic_block bb;
209   bool saw_a_complex_op = false;
210 
211   FOR_EACH_BB_FN (bb, cfun)
212     {
213       for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
214 	   gsi_next (&gsi))
215 	{
216 	  gphi *phi = gsi.phi ();
217 	  prop_set_simulate_again (phi,
218 				   is_complex_reg (gimple_phi_result (phi)));
219 	}
220 
221       for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
222 	   gsi_next (&gsi))
223 	{
224 	  gimple *stmt;
225 	  tree op0, op1;
226 	  bool sim_again_p;
227 
228 	  stmt = gsi_stmt (gsi);
229 	  op0 = op1 = NULL_TREE;
230 
231 	  /* Most control-altering statements must be initially
232 	     simulated, else we won't cover the entire cfg.  */
233 	  sim_again_p = stmt_ends_bb_p (stmt);
234 
235 	  switch (gimple_code (stmt))
236 	    {
237 	    case GIMPLE_CALL:
238 	      if (gimple_call_lhs (stmt))
239 	        sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
240 	      break;
241 
242 	    case GIMPLE_ASSIGN:
243 	      sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
244 	      if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
245 		  || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
246 		op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
247 	      else
248 		op0 = gimple_assign_rhs1 (stmt);
249 	      if (gimple_num_ops (stmt) > 2)
250 		op1 = gimple_assign_rhs2 (stmt);
251 	      break;
252 
253 	    case GIMPLE_COND:
254 	      op0 = gimple_cond_lhs (stmt);
255 	      op1 = gimple_cond_rhs (stmt);
256 	      break;
257 
258 	    default:
259 	      break;
260 	    }
261 
262 	  if (op0 || op1)
263 	    switch (gimple_expr_code (stmt))
264 	      {
265 	      case EQ_EXPR:
266 	      case NE_EXPR:
267 	      case PLUS_EXPR:
268 	      case MINUS_EXPR:
269 	      case MULT_EXPR:
270 	      case TRUNC_DIV_EXPR:
271 	      case CEIL_DIV_EXPR:
272 	      case FLOOR_DIV_EXPR:
273 	      case ROUND_DIV_EXPR:
274 	      case RDIV_EXPR:
275 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
276 		    || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
277 		  saw_a_complex_op = true;
278 		break;
279 
280 	      case NEGATE_EXPR:
281 	      case CONJ_EXPR:
282 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
283 		  saw_a_complex_op = true;
284 		break;
285 
286 	      case REALPART_EXPR:
287 	      case IMAGPART_EXPR:
288 		/* The total store transformation performed during
289 		  gimplification creates such uninitialized loads
290 		  and we need to lower the statement to be able
291 		  to fix things up.  */
292 		if (TREE_CODE (op0) == SSA_NAME
293 		    && ssa_undefined_value_p (op0))
294 		  saw_a_complex_op = true;
295 		break;
296 
297 	      default:
298 		break;
299 	      }
300 
301 	  prop_set_simulate_again (stmt, sim_again_p);
302 	}
303     }
304 
305   return saw_a_complex_op;
306 }
307 
308 
309 /* Evaluate statement STMT against the complex lattice defined above.  */
310 
311 enum ssa_prop_result
visit_stmt(gimple * stmt,edge * taken_edge_p ATTRIBUTE_UNUSED,tree * result_p)312 complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
313 			       tree *result_p)
314 {
315   complex_lattice_t new_l, old_l, op1_l, op2_l;
316   unsigned int ver;
317   tree lhs;
318 
319   lhs = gimple_get_lhs (stmt);
320   /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs.  */
321   if (!lhs)
322     return SSA_PROP_VARYING;
323 
324   /* These conditions should be satisfied due to the initial filter
325      set up in init_dont_simulate_again.  */
326   gcc_assert (TREE_CODE (lhs) == SSA_NAME);
327   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
328 
329   *result_p = lhs;
330   ver = SSA_NAME_VERSION (lhs);
331   old_l = complex_lattice_values[ver];
332 
333   switch (gimple_expr_code (stmt))
334     {
335     case SSA_NAME:
336     case COMPLEX_CST:
337       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
338       break;
339 
340     case COMPLEX_EXPR:
341       new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
342 				        gimple_assign_rhs2 (stmt));
343       break;
344 
345     case PLUS_EXPR:
346     case MINUS_EXPR:
347       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
348       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
349 
350       /* We've set up the lattice values such that IOR neatly
351 	 models addition.  */
352       new_l = op1_l | op2_l;
353       break;
354 
355     case MULT_EXPR:
356     case RDIV_EXPR:
357     case TRUNC_DIV_EXPR:
358     case CEIL_DIV_EXPR:
359     case FLOOR_DIV_EXPR:
360     case ROUND_DIV_EXPR:
361       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
362       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
363 
364       /* Obviously, if either varies, so does the result.  */
365       if (op1_l == VARYING || op2_l == VARYING)
366 	new_l = VARYING;
367       /* Don't prematurely promote variables if we've not yet seen
368 	 their inputs.  */
369       else if (op1_l == UNINITIALIZED)
370 	new_l = op2_l;
371       else if (op2_l == UNINITIALIZED)
372 	new_l = op1_l;
373       else
374 	{
375 	  /* At this point both numbers have only one component. If the
376 	     numbers are of opposite kind, the result is imaginary,
377 	     otherwise the result is real. The add/subtract translates
378 	     the real/imag from/to 0/1; the ^ performs the comparison.  */
379 	  new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
380 
381 	  /* Don't allow the lattice value to flip-flop indefinitely.  */
382 	  new_l |= old_l;
383 	}
384       break;
385 
386     case NEGATE_EXPR:
387     case CONJ_EXPR:
388       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
389       break;
390 
391     default:
392       new_l = VARYING;
393       break;
394     }
395 
396   /* If nothing changed this round, let the propagator know.  */
397   if (new_l == old_l)
398     return SSA_PROP_NOT_INTERESTING;
399 
400   complex_lattice_values[ver] = new_l;
401   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
402 }
403 
404 /* Evaluate a PHI node against the complex lattice defined above.  */
405 
406 enum ssa_prop_result
visit_phi(gphi * phi)407 complex_propagate::visit_phi (gphi *phi)
408 {
409   complex_lattice_t new_l, old_l;
410   unsigned int ver;
411   tree lhs;
412   int i;
413 
414   lhs = gimple_phi_result (phi);
415 
416   /* This condition should be satisfied due to the initial filter
417      set up in init_dont_simulate_again.  */
418   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
419 
420   /* We've set up the lattice values such that IOR neatly models PHI meet.  */
421   new_l = UNINITIALIZED;
422   for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
423     new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
424 
425   ver = SSA_NAME_VERSION (lhs);
426   old_l = complex_lattice_values[ver];
427 
428   if (new_l == old_l)
429     return SSA_PROP_NOT_INTERESTING;
430 
431   complex_lattice_values[ver] = new_l;
432   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
433 }
434 
435 /* Create one backing variable for a complex component of ORIG.  */
436 
437 static tree
create_one_component_var(tree type,tree orig,const char * prefix,const char * suffix,enum tree_code code)438 create_one_component_var (tree type, tree orig, const char *prefix,
439 			  const char *suffix, enum tree_code code)
440 {
441   tree r = create_tmp_var (type, prefix);
442 
443   DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
444   DECL_ARTIFICIAL (r) = 1;
445 
446   if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
447     {
448       const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
449       name = ACONCAT ((name, suffix, NULL));
450       DECL_NAME (r) = get_identifier (name);
451 
452       SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
453       DECL_HAS_DEBUG_EXPR_P (r) = 1;
454       DECL_IGNORED_P (r) = 0;
455       TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
456     }
457   else
458     {
459       DECL_IGNORED_P (r) = 1;
460       TREE_NO_WARNING (r) = 1;
461     }
462 
463   return r;
464 }
465 
466 /* Retrieve a value for a complex component of VAR.  */
467 
468 static tree
get_component_var(tree var,bool imag_p)469 get_component_var (tree var, bool imag_p)
470 {
471   size_t decl_index = DECL_UID (var) * 2 + imag_p;
472   tree ret = cvc_lookup (decl_index);
473 
474   if (ret == NULL)
475     {
476       ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
477 				      imag_p ? "CI" : "CR",
478 				      imag_p ? "$imag" : "$real",
479 				      imag_p ? IMAGPART_EXPR : REALPART_EXPR);
480       cvc_insert (decl_index, ret);
481     }
482 
483   return ret;
484 }
485 
486 /* Retrieve a value for a complex component of SSA_NAME.  */
487 
488 static tree
get_component_ssa_name(tree ssa_name,bool imag_p)489 get_component_ssa_name (tree ssa_name, bool imag_p)
490 {
491   complex_lattice_t lattice = find_lattice_value (ssa_name);
492   size_t ssa_name_index;
493   tree ret;
494 
495   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
496     {
497       tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
498       if (SCALAR_FLOAT_TYPE_P (inner_type))
499 	return build_real (inner_type, dconst0);
500       else
501 	return build_int_cst (inner_type, 0);
502     }
503 
504   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
505   ret = complex_ssa_name_components[ssa_name_index];
506   if (ret == NULL)
507     {
508       if (SSA_NAME_VAR (ssa_name))
509 	ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
510       else
511 	ret = TREE_TYPE (TREE_TYPE (ssa_name));
512       ret = make_ssa_name (ret);
513 
514       /* Copy some properties from the original.  In particular, whether it
515 	 is used in an abnormal phi, and whether it's uninitialized.  */
516       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
517 	= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
518       if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
519 	  && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
520 	{
521 	  SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
522 	  set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
523 	}
524 
525       complex_ssa_name_components[ssa_name_index] = ret;
526     }
527 
528   return ret;
529 }
530 
531 /* Set a value for a complex component of SSA_NAME, return a
532    gimple_seq of stuff that needs doing.  */
533 
534 static gimple_seq
set_component_ssa_name(tree ssa_name,bool imag_p,tree value)535 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
536 {
537   complex_lattice_t lattice = find_lattice_value (ssa_name);
538   size_t ssa_name_index;
539   tree comp;
540   gimple *last;
541   gimple_seq list;
542 
543   /* We know the value must be zero, else there's a bug in our lattice
544      analysis.  But the value may well be a variable known to contain
545      zero.  We should be safe ignoring it.  */
546   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
547     return NULL;
548 
549   /* If we've already assigned an SSA_NAME to this component, then this
550      means that our walk of the basic blocks found a use before the set.
551      This is fine.  Now we should create an initialization for the value
552      we created earlier.  */
553   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
554   comp = complex_ssa_name_components[ssa_name_index];
555   if (comp)
556     ;
557 
558   /* If we've nothing assigned, and the value we're given is already stable,
559      then install that as the value for this SSA_NAME.  This preemptively
560      copy-propagates the value, which avoids unnecessary memory allocation.  */
561   else if (is_gimple_min_invariant (value)
562 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
563     {
564       complex_ssa_name_components[ssa_name_index] = value;
565       return NULL;
566     }
567   else if (TREE_CODE (value) == SSA_NAME
568 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
569     {
570       /* Replace an anonymous base value with the variable from cvc_lookup.
571 	 This should result in better debug info.  */
572       if (SSA_NAME_VAR (ssa_name)
573 	  && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
574 	  && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
575 	{
576 	  comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
577 	  replace_ssa_name_symbol (value, comp);
578 	}
579 
580       complex_ssa_name_components[ssa_name_index] = value;
581       return NULL;
582     }
583 
584   /* Finally, we need to stabilize the result by installing the value into
585      a new ssa name.  */
586   else
587     comp = get_component_ssa_name (ssa_name, imag_p);
588 
589   /* Do all the work to assign VALUE to COMP.  */
590   list = NULL;
591   value = force_gimple_operand (value, &list, false, NULL);
592   last =  gimple_build_assign (comp, value);
593   gimple_seq_add_stmt (&list, last);
594   gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
595 
596   return list;
597 }
598 
599 /* Extract the real or imaginary part of a complex variable or constant.
600    Make sure that it's a proper gimple_val and gimplify it if not.
601    Emit any new code before gsi.  */
602 
603 static tree
604 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
605 		   bool gimple_p, bool phiarg_p = false)
606 {
607   switch (TREE_CODE (t))
608     {
609     case COMPLEX_CST:
610       return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
611 
612     case COMPLEX_EXPR:
613       gcc_unreachable ();
614 
615     case BIT_FIELD_REF:
616       {
617 	tree inner_type = TREE_TYPE (TREE_TYPE (t));
618 	t = unshare_expr (t);
619 	TREE_TYPE (t) = inner_type;
620 	TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
621 	if (imagpart_p)
622 	  TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
623 					    TYPE_SIZE (inner_type));
624 	if (gimple_p)
625 	  t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
626 					GSI_SAME_STMT);
627 	return t;
628       }
629 
630     case VAR_DECL:
631     case RESULT_DECL:
632     case PARM_DECL:
633     case COMPONENT_REF:
634     case ARRAY_REF:
635     case VIEW_CONVERT_EXPR:
636     case MEM_REF:
637       {
638 	tree inner_type = TREE_TYPE (TREE_TYPE (t));
639 
640 	t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
641 		    inner_type, unshare_expr (t));
642 
643 	if (gimple_p)
644 	  t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
645                                         GSI_SAME_STMT);
646 
647 	return t;
648       }
649 
650     case SSA_NAME:
651       t = get_component_ssa_name (t, imagpart_p);
652       if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
653 	gcc_assert (phiarg_p);
654       return t;
655 
656     default:
657       gcc_unreachable ();
658     }
659 }
660 
661 /* Update the complex components of the ssa name on the lhs of STMT.  */
662 
663 static void
update_complex_components(gimple_stmt_iterator * gsi,gimple * stmt,tree r,tree i)664 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
665 			   tree i)
666 {
667   tree lhs;
668   gimple_seq list;
669 
670   lhs = gimple_get_lhs (stmt);
671 
672   list = set_component_ssa_name (lhs, false, r);
673   if (list)
674     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
675 
676   list = set_component_ssa_name (lhs, true, i);
677   if (list)
678     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
679 }
680 
681 static void
update_complex_components_on_edge(edge e,tree lhs,tree r,tree i)682 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
683 {
684   gimple_seq list;
685 
686   list = set_component_ssa_name (lhs, false, r);
687   if (list)
688     gsi_insert_seq_on_edge (e, list);
689 
690   list = set_component_ssa_name (lhs, true, i);
691   if (list)
692     gsi_insert_seq_on_edge (e, list);
693 }
694 
695 
696 /* Update an assignment to a complex variable in place.  */
697 
698 static void
update_complex_assignment(gimple_stmt_iterator * gsi,tree r,tree i)699 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
700 {
701   gimple *old_stmt = gsi_stmt (*gsi);
702   gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
703   gimple *stmt = gsi_stmt (*gsi);
704   update_stmt (stmt);
705   if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
706     bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
707 
708   update_complex_components (gsi, gsi_stmt (*gsi), r, i);
709 }
710 
711 
712 /* Generate code at the entry point of the function to initialize the
713    component variables for a complex parameter.  */
714 
715 static void
update_parameter_components(void)716 update_parameter_components (void)
717 {
718   edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
719   tree parm;
720 
721   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
722     {
723       tree type = TREE_TYPE (parm);
724       tree ssa_name, r, i;
725 
726       if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
727 	continue;
728 
729       type = TREE_TYPE (type);
730       ssa_name = ssa_default_def (cfun, parm);
731       if (!ssa_name)
732 	continue;
733 
734       r = build1 (REALPART_EXPR, type, ssa_name);
735       i = build1 (IMAGPART_EXPR, type, ssa_name);
736       update_complex_components_on_edge (entry_edge, ssa_name, r, i);
737     }
738 }
739 
740 /* Generate code to set the component variables of a complex variable
741    to match the PHI statements in block BB.  */
742 
743 static void
update_phi_components(basic_block bb)744 update_phi_components (basic_block bb)
745 {
746   gphi_iterator gsi;
747 
748   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
749     {
750       gphi *phi = gsi.phi ();
751 
752       if (is_complex_reg (gimple_phi_result (phi)))
753 	{
754 	  gphi *p[2] = { NULL, NULL };
755 	  unsigned int i, j, n;
756 	  bool revisit_phi = false;
757 
758 	  for (j = 0; j < 2; j++)
759 	    {
760 	      tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
761 	      if (TREE_CODE (l) == SSA_NAME)
762 		p[j] = create_phi_node (l, bb);
763 	    }
764 
765 	  for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
766 	    {
767 	      tree comp, arg = gimple_phi_arg_def (phi, i);
768 	      for (j = 0; j < 2; j++)
769 		if (p[j])
770 		  {
771 		    comp = extract_component (NULL, arg, j > 0, false, true);
772 		    if (TREE_CODE (comp) == SSA_NAME
773 			&& SSA_NAME_DEF_STMT (comp) == NULL)
774 		      {
775 			/* For the benefit of any gimple simplification during
776 			   this pass that might walk SSA_NAME def stmts,
777 			   don't add SSA_NAMEs without definitions into the
778 			   PHI arguments, but put a decl in there instead
779 			   temporarily, and revisit this PHI later on.  */
780 			if (SSA_NAME_VAR (comp))
781 			  comp = SSA_NAME_VAR (comp);
782 			else
783 			  comp = create_tmp_reg (TREE_TYPE (comp),
784 						 get_name (comp));
785 			revisit_phi = true;
786 		      }
787 		    SET_PHI_ARG_DEF (p[j], i, comp);
788 		  }
789 	    }
790 
791 	  if (revisit_phi)
792 	    {
793 	      phis_to_revisit.safe_push (phi);
794 	      phis_to_revisit.safe_push (p[0]);
795 	      phis_to_revisit.safe_push (p[1]);
796 	    }
797 	}
798     }
799 }
800 
801 /* Expand a complex move to scalars.  */
802 
803 static void
expand_complex_move(gimple_stmt_iterator * gsi,tree type)804 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
805 {
806   tree inner_type = TREE_TYPE (type);
807   tree r, i, lhs, rhs;
808   gimple *stmt = gsi_stmt (*gsi);
809 
810   if (is_gimple_assign (stmt))
811     {
812       lhs = gimple_assign_lhs (stmt);
813       if (gimple_num_ops (stmt) == 2)
814 	rhs = gimple_assign_rhs1 (stmt);
815       else
816 	rhs = NULL_TREE;
817     }
818   else if (is_gimple_call (stmt))
819     {
820       lhs = gimple_call_lhs (stmt);
821       rhs = NULL_TREE;
822     }
823   else
824     gcc_unreachable ();
825 
826   if (TREE_CODE (lhs) == SSA_NAME)
827     {
828       if (is_ctrl_altering_stmt (stmt))
829 	{
830 	  edge e;
831 
832 	  /* The value is not assigned on the exception edges, so we need not
833 	     concern ourselves there.  We do need to update on the fallthru
834 	     edge.  Find it.  */
835 	  e = find_fallthru_edge (gsi_bb (*gsi)->succs);
836 	  if (!e)
837 	    gcc_unreachable ();
838 
839 	  r = build1 (REALPART_EXPR, inner_type, lhs);
840 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
841 	  update_complex_components_on_edge (e, lhs, r, i);
842 	}
843       else if (is_gimple_call (stmt)
844 	       || gimple_has_side_effects (stmt)
845 	       || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
846 	{
847 	  r = build1 (REALPART_EXPR, inner_type, lhs);
848 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
849 	  update_complex_components (gsi, stmt, r, i);
850 	}
851       else
852 	{
853 	  if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
854 	    {
855 	      r = extract_component (gsi, rhs, 0, true);
856 	      i = extract_component (gsi, rhs, 1, true);
857 	    }
858 	  else
859 	    {
860 	      r = gimple_assign_rhs1 (stmt);
861 	      i = gimple_assign_rhs2 (stmt);
862 	    }
863 	  update_complex_assignment (gsi, r, i);
864 	}
865     }
866   else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
867     {
868       tree x;
869       gimple *t;
870       location_t loc;
871 
872       loc = gimple_location (stmt);
873       r = extract_component (gsi, rhs, 0, false);
874       i = extract_component (gsi, rhs, 1, false);
875 
876       x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
877       t = gimple_build_assign (x, r);
878       gimple_set_location (t, loc);
879       gsi_insert_before (gsi, t, GSI_SAME_STMT);
880 
881       if (stmt == gsi_stmt (*gsi))
882 	{
883 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
884 	  gimple_assign_set_lhs (stmt, x);
885 	  gimple_assign_set_rhs1 (stmt, i);
886 	}
887       else
888 	{
889 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
890 	  t = gimple_build_assign (x, i);
891 	  gimple_set_location (t, loc);
892 	  gsi_insert_before (gsi, t, GSI_SAME_STMT);
893 
894 	  stmt = gsi_stmt (*gsi);
895 	  gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
896 	  gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
897 	}
898 
899       update_stmt (stmt);
900     }
901 }
902 
903 /* Expand complex addition to scalars:
904 	a + b = (ar + br) + i(ai + bi)
905 	a - b = (ar - br) + i(ai + bi)
906 */
907 
908 static void
expand_complex_addition(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,enum tree_code code,complex_lattice_t al,complex_lattice_t bl)909 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
910 			 tree ar, tree ai, tree br, tree bi,
911 			 enum tree_code code,
912 			 complex_lattice_t al, complex_lattice_t bl)
913 {
914   tree rr, ri;
915 
916   switch (PAIR (al, bl))
917     {
918     case PAIR (ONLY_REAL, ONLY_REAL):
919       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
920       ri = ai;
921       break;
922 
923     case PAIR (ONLY_REAL, ONLY_IMAG):
924       rr = ar;
925       if (code == MINUS_EXPR)
926 	ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
927       else
928 	ri = bi;
929       break;
930 
931     case PAIR (ONLY_IMAG, ONLY_REAL):
932       if (code == MINUS_EXPR)
933 	rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
934       else
935 	rr = br;
936       ri = ai;
937       break;
938 
939     case PAIR (ONLY_IMAG, ONLY_IMAG):
940       rr = ar;
941       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
942       break;
943 
944     case PAIR (VARYING, ONLY_REAL):
945       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
946       ri = ai;
947       break;
948 
949     case PAIR (VARYING, ONLY_IMAG):
950       rr = ar;
951       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
952       break;
953 
954     case PAIR (ONLY_REAL, VARYING):
955       if (code == MINUS_EXPR)
956 	goto general;
957       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
958       ri = bi;
959       break;
960 
961     case PAIR (ONLY_IMAG, VARYING):
962       if (code == MINUS_EXPR)
963 	goto general;
964       rr = br;
965       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
966       break;
967 
968     case PAIR (VARYING, VARYING):
969     general:
970       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
971       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
972       break;
973 
974     default:
975       gcc_unreachable ();
976     }
977 
978   update_complex_assignment (gsi, rr, ri);
979 }
980 
981 /* Expand a complex multiplication or division to a libcall to the c99
982    compliant routines.  TYPE is the complex type of the operation.
983    If INPLACE_P replace the statement at GSI with
984    the libcall and return NULL_TREE.  Else insert the call, assign its
985    result to an output variable and return that variable.  If INPLACE_P
986    is true then the statement being replaced should be an assignment
987    statement.  */
988 
989 static tree
expand_complex_libcall(gimple_stmt_iterator * gsi,tree type,tree ar,tree ai,tree br,tree bi,enum tree_code code,bool inplace_p)990 expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai,
991 			tree br, tree bi, enum tree_code code, bool inplace_p)
992 {
993   machine_mode mode;
994   enum built_in_function bcode;
995   tree fn, lhs;
996   gcall *stmt;
997 
998   mode = TYPE_MODE (type);
999   gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
1000 
1001   if (code == MULT_EXPR)
1002     bcode = ((enum built_in_function)
1003 	     (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1004   else if (code == RDIV_EXPR)
1005     bcode = ((enum built_in_function)
1006 	     (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1007   else
1008     gcc_unreachable ();
1009   fn = builtin_decl_explicit (bcode);
1010   stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
1011 
1012   if (inplace_p)
1013     {
1014       gimple *old_stmt = gsi_stmt (*gsi);
1015       gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt));
1016       lhs = gimple_assign_lhs (old_stmt);
1017       gimple_call_set_lhs (stmt, lhs);
1018       gsi_replace (gsi, stmt, true);
1019 
1020       type = TREE_TYPE (type);
1021       if (stmt_can_throw_internal (cfun, stmt))
1022 	{
1023 	  edge_iterator ei;
1024 	  edge e;
1025 	  FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
1026 	      if (!(e->flags & EDGE_EH))
1027 		break;
1028 	  basic_block bb = split_edge (e);
1029 	  gimple_stmt_iterator gsi2 = gsi_start_bb (bb);
1030 	  update_complex_components (&gsi2, stmt,
1031 				     build1 (REALPART_EXPR, type, lhs),
1032 				     build1 (IMAGPART_EXPR, type, lhs));
1033 	  return NULL_TREE;
1034 	}
1035       else
1036 	update_complex_components (gsi, stmt,
1037 				   build1 (REALPART_EXPR, type, lhs),
1038 				   build1 (IMAGPART_EXPR, type, lhs));
1039       SSA_NAME_DEF_STMT (lhs) = stmt;
1040       return NULL_TREE;
1041     }
1042 
1043   gimple_call_set_nothrow (stmt, true);
1044   lhs = make_ssa_name (type);
1045   gimple_call_set_lhs (stmt, lhs);
1046   gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1047 
1048   return lhs;
1049 }
1050 
1051 /* Perform a complex multiplication on two complex constants A, B represented
1052    by AR, AI, BR, BI of type TYPE.
1053    The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
1054    Insert the GIMPLE statements into GSI.  Store the real and imaginary
1055    components of the result into RR and RI.  */
1056 
1057 static void
expand_complex_multiplication_components(gimple_stmt_iterator * gsi,tree type,tree ar,tree ai,tree br,tree bi,tree * rr,tree * ri)1058 expand_complex_multiplication_components (gimple_stmt_iterator *gsi,
1059 					     tree type, tree ar, tree ai,
1060 					     tree br, tree bi,
1061 					     tree *rr, tree *ri)
1062 {
1063   tree t1, t2, t3, t4;
1064 
1065   t1 = gimplify_build2 (gsi, MULT_EXPR, type, ar, br);
1066   t2 = gimplify_build2 (gsi, MULT_EXPR, type, ai, bi);
1067   t3 = gimplify_build2 (gsi, MULT_EXPR, type, ar, bi);
1068 
1069   /* Avoid expanding redundant multiplication for the common
1070      case of squaring a complex number.  */
1071   if (ar == br && ai == bi)
1072     t4 = t3;
1073   else
1074     t4 = gimplify_build2 (gsi, MULT_EXPR, type, ai, br);
1075 
1076   *rr = gimplify_build2 (gsi, MINUS_EXPR, type, t1, t2);
1077   *ri = gimplify_build2 (gsi, PLUS_EXPR, type, t3, t4);
1078 }
1079 
1080 /* Expand complex multiplication to scalars:
1081 	a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1082 */
1083 
1084 static void
expand_complex_multiplication(gimple_stmt_iterator * gsi,tree type,tree ar,tree ai,tree br,tree bi,complex_lattice_t al,complex_lattice_t bl)1085 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type,
1086 			       tree ar, tree ai, tree br, tree bi,
1087 			       complex_lattice_t al, complex_lattice_t bl)
1088 {
1089   tree rr, ri;
1090   tree inner_type = TREE_TYPE (type);
1091 
1092   if (al < bl)
1093     {
1094       complex_lattice_t tl;
1095       rr = ar, ar = br, br = rr;
1096       ri = ai, ai = bi, bi = ri;
1097       tl = al, al = bl, bl = tl;
1098     }
1099 
1100   switch (PAIR (al, bl))
1101     {
1102     case PAIR (ONLY_REAL, ONLY_REAL):
1103       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1104       ri = ai;
1105       break;
1106 
1107     case PAIR (ONLY_IMAG, ONLY_REAL):
1108       rr = ar;
1109       if (TREE_CODE (ai) == REAL_CST
1110 	  && real_identical (&TREE_REAL_CST (ai), &dconst1))
1111 	ri = br;
1112       else
1113 	ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1114       break;
1115 
1116     case PAIR (ONLY_IMAG, ONLY_IMAG):
1117       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1118       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1119       ri = ar;
1120       break;
1121 
1122     case PAIR (VARYING, ONLY_REAL):
1123       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1124       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1125       break;
1126 
1127     case PAIR (VARYING, ONLY_IMAG):
1128       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1129       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1130       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1131       break;
1132 
1133     case PAIR (VARYING, VARYING):
1134       if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1135 	{
1136 	  /* If optimizing for size or not at all just do a libcall.
1137 	     Same if there are exception-handling edges or signaling NaNs.  */
1138 	  if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi))
1139 	     || stmt_can_throw_internal (cfun, gsi_stmt (*gsi))
1140 	     || flag_signaling_nans)
1141 	    {
1142 	      expand_complex_libcall (gsi, type, ar, ai, br, bi,
1143 				      MULT_EXPR, true);
1144 	      return;
1145 	    }
1146 
1147 	  /* Else, expand x = a * b into
1148 	     x = (ar*br - ai*bi) + i(ar*bi + br*ai);
1149 	     if (isunordered (__real__ x, __imag__ x))
1150 		x = __muldc3 (a, b);  */
1151 
1152 	  tree tmpr, tmpi;
1153 	  expand_complex_multiplication_components (gsi, inner_type, ar, ai,
1154 						     br, bi, &tmpr, &tmpi);
1155 
1156 	  gimple *check
1157 	    = gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi,
1158 				 NULL_TREE, NULL_TREE);
1159 
1160 	  basic_block orig_bb = gsi_bb (*gsi);
1161 	  /* We want to keep track of the original complex multiplication
1162 	     statement as we're going to modify it later in
1163 	     update_complex_assignment.  Make sure that insert_cond_bb leaves
1164 	     that statement in the join block.  */
1165 	  gsi_prev (gsi);
1166 	  basic_block cond_bb
1167 	    = insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check,
1168 			      profile_probability::very_unlikely ());
1169 
1170 
1171 	  gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb);
1172 	  gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT);
1173 
1174 	  tree libcall_res
1175 	    = expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br,
1176 				       bi, MULT_EXPR, false);
1177 	  tree cond_real = gimplify_build1 (&cond_bb_gsi, REALPART_EXPR,
1178 					    inner_type, libcall_res);
1179 	  tree cond_imag = gimplify_build1 (&cond_bb_gsi, IMAGPART_EXPR,
1180 					    inner_type, libcall_res);
1181 
1182 	  basic_block join_bb = single_succ_edge (cond_bb)->dest;
1183 	  *gsi = gsi_start_nondebug_after_labels_bb (join_bb);
1184 
1185 	  /* We have a conditional block with some assignments in cond_bb.
1186 	     Wire up the PHIs to wrap up.  */
1187 	  rr = make_ssa_name (inner_type);
1188 	  ri = make_ssa_name (inner_type);
1189 	  edge cond_to_join = single_succ_edge (cond_bb);
1190 	  edge orig_to_join = find_edge (orig_bb, join_bb);
1191 
1192 	  gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi));
1193 	  add_phi_arg (real_phi, cond_real, cond_to_join,
1194 			UNKNOWN_LOCATION);
1195 	  add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION);
1196 
1197 	  gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi));
1198 	  add_phi_arg (imag_phi, cond_imag, cond_to_join,
1199 			UNKNOWN_LOCATION);
1200 	  add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION);
1201 	}
1202       else
1203 	/* If we are not worrying about NaNs expand to
1204 	  (ar*br - ai*bi) + i(ar*bi + br*ai) directly.  */
1205 	expand_complex_multiplication_components (gsi, inner_type, ar, ai,
1206 						      br, bi, &rr, &ri);
1207       break;
1208 
1209     default:
1210       gcc_unreachable ();
1211     }
1212 
1213   update_complex_assignment (gsi, rr, ri);
1214 }
1215 
1216 /* Keep this algorithm in sync with fold-const.c:const_binop().
1217 
1218    Expand complex division to scalars, straightforward algorithm.
1219 	a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1220 	    t = br*br + bi*bi
1221 */
1222 
1223 static void
expand_complex_div_straight(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,enum tree_code code)1224 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1225 			     tree ar, tree ai, tree br, tree bi,
1226 			     enum tree_code code)
1227 {
1228   tree rr, ri, div, t1, t2, t3;
1229 
1230   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1231   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1232   div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1233 
1234   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1235   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1236   t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1237   rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1238 
1239   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1240   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1241   t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1242   ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1243 
1244   update_complex_assignment (gsi, rr, ri);
1245 }
1246 
1247 /* Keep this algorithm in sync with fold-const.c:const_binop().
1248 
1249    Expand complex division to scalars, modified algorithm to minimize
1250    overflow with wide input ranges.  */
1251 
1252 static void
expand_complex_div_wide(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,enum tree_code code)1253 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1254 			 tree ar, tree ai, tree br, tree bi,
1255 			 enum tree_code code)
1256 {
1257   tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1258   basic_block bb_cond, bb_true, bb_false, bb_join;
1259   gimple *stmt;
1260 
1261   /* Examine |br| < |bi|, and branch.  */
1262   t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1263   t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1264   compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1265 			     LT_EXPR, boolean_type_node, t1, t2);
1266   STRIP_NOPS (compare);
1267 
1268   bb_cond = bb_true = bb_false = bb_join = NULL;
1269   rr = ri = tr = ti = NULL;
1270   if (TREE_CODE (compare) != INTEGER_CST)
1271     {
1272       edge e;
1273       gimple *stmt;
1274       tree cond, tmp;
1275 
1276       tmp = make_ssa_name (boolean_type_node);
1277       stmt = gimple_build_assign (tmp, compare);
1278       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1279 
1280       cond = fold_build2_loc (gimple_location (stmt),
1281 			  EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1282       stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1283       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1284 
1285       /* Split the original block, and create the TRUE and FALSE blocks.  */
1286       e = split_block (gsi_bb (*gsi), stmt);
1287       bb_cond = e->src;
1288       bb_join = e->dest;
1289       bb_true = create_empty_bb (bb_cond);
1290       bb_false = create_empty_bb (bb_true);
1291       bb_true->count = bb_false->count
1292 	 = bb_cond->count.apply_probability (profile_probability::even ());
1293 
1294       /* Wire the blocks together.  */
1295       e->flags = EDGE_TRUE_VALUE;
1296       /* TODO: With value profile we could add an historgram to determine real
1297 	 branch outcome.  */
1298       e->probability = profile_probability::even ();
1299       redirect_edge_succ (e, bb_true);
1300       edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1301       e2->probability = profile_probability::even ();
1302       make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
1303       make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
1304       add_bb_to_loop (bb_true, bb_cond->loop_father);
1305       add_bb_to_loop (bb_false, bb_cond->loop_father);
1306 
1307       /* Update dominance info.  Note that bb_join's data was
1308          updated by split_block.  */
1309       if (dom_info_available_p (CDI_DOMINATORS))
1310         {
1311           set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1312           set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1313         }
1314 
1315       rr = create_tmp_reg (inner_type);
1316       ri = create_tmp_reg (inner_type);
1317     }
1318 
1319   /* In the TRUE branch, we compute
1320       ratio = br/bi;
1321       div = (br * ratio) + bi;
1322       tr = (ar * ratio) + ai;
1323       ti = (ai * ratio) - ar;
1324       tr = tr / div;
1325       ti = ti / div;  */
1326   if (bb_true || integer_nonzerop (compare))
1327     {
1328       if (bb_true)
1329 	{
1330 	  *gsi = gsi_last_bb (bb_true);
1331 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1332 	}
1333 
1334       ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1335 
1336       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1337       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1338 
1339       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1340       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1341 
1342       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1343       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1344 
1345       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1346       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1347 
1348      if (bb_true)
1349        {
1350 	 stmt = gimple_build_assign (rr, tr);
1351 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1352 	 stmt = gimple_build_assign (ri, ti);
1353 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1354 	 gsi_remove (gsi, true);
1355        }
1356     }
1357 
1358   /* In the FALSE branch, we compute
1359       ratio = d/c;
1360       divisor = (d * ratio) + c;
1361       tr = (b * ratio) + a;
1362       ti = b - (a * ratio);
1363       tr = tr / div;
1364       ti = ti / div;  */
1365   if (bb_false || integer_zerop (compare))
1366     {
1367       if (bb_false)
1368 	{
1369 	  *gsi = gsi_last_bb (bb_false);
1370 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1371 	}
1372 
1373       ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1374 
1375       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1376       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1377 
1378       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1379       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1380 
1381       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1382       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1383 
1384       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1385       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1386 
1387      if (bb_false)
1388        {
1389 	 stmt = gimple_build_assign (rr, tr);
1390 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1391 	 stmt = gimple_build_assign (ri, ti);
1392 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1393 	 gsi_remove (gsi, true);
1394        }
1395     }
1396 
1397   if (bb_join)
1398     *gsi = gsi_start_bb (bb_join);
1399   else
1400     rr = tr, ri = ti;
1401 
1402   update_complex_assignment (gsi, rr, ri);
1403 }
1404 
1405 /* Expand complex division to scalars.  */
1406 
1407 static void
expand_complex_division(gimple_stmt_iterator * gsi,tree type,tree ar,tree ai,tree br,tree bi,enum tree_code code,complex_lattice_t al,complex_lattice_t bl)1408 expand_complex_division (gimple_stmt_iterator *gsi, tree type,
1409 			 tree ar, tree ai, tree br, tree bi,
1410 			 enum tree_code code,
1411 			 complex_lattice_t al, complex_lattice_t bl)
1412 {
1413   tree rr, ri;
1414 
1415   tree inner_type = TREE_TYPE (type);
1416   switch (PAIR (al, bl))
1417     {
1418     case PAIR (ONLY_REAL, ONLY_REAL):
1419       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1420       ri = ai;
1421       break;
1422 
1423     case PAIR (ONLY_REAL, ONLY_IMAG):
1424       rr = ai;
1425       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1426       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1427       break;
1428 
1429     case PAIR (ONLY_IMAG, ONLY_REAL):
1430       rr = ar;
1431       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1432       break;
1433 
1434     case PAIR (ONLY_IMAG, ONLY_IMAG):
1435       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1436       ri = ar;
1437       break;
1438 
1439     case PAIR (VARYING, ONLY_REAL):
1440       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1441       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1442       break;
1443 
1444     case PAIR (VARYING, ONLY_IMAG):
1445       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1446       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1447       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1448       break;
1449 
1450     case PAIR (ONLY_REAL, VARYING):
1451     case PAIR (ONLY_IMAG, VARYING):
1452     case PAIR (VARYING, VARYING):
1453       switch (flag_complex_method)
1454 	{
1455 	case 0:
1456 	  /* straightforward implementation of complex divide acceptable.  */
1457 	  expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1458 	  break;
1459 
1460 	case 2:
1461 	  if (SCALAR_FLOAT_TYPE_P (inner_type))
1462 	    {
1463 	      expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true);
1464 	      break;
1465 	    }
1466 	  /* FALLTHRU */
1467 
1468 	case 1:
1469 	  /* wide ranges of inputs must work for complex divide.  */
1470 	  expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1471 	  break;
1472 
1473 	default:
1474 	  gcc_unreachable ();
1475 	}
1476       return;
1477 
1478     default:
1479       gcc_unreachable ();
1480     }
1481 
1482   update_complex_assignment (gsi, rr, ri);
1483 }
1484 
1485 /* Expand complex negation to scalars:
1486 	-a = (-ar) + i(-ai)
1487 */
1488 
1489 static void
expand_complex_negation(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai)1490 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1491 			 tree ar, tree ai)
1492 {
1493   tree rr, ri;
1494 
1495   rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1496   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1497 
1498   update_complex_assignment (gsi, rr, ri);
1499 }
1500 
1501 /* Expand complex conjugate to scalars:
1502 	~a = (ar) + i(-ai)
1503 */
1504 
1505 static void
expand_complex_conjugate(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai)1506 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1507 			  tree ar, tree ai)
1508 {
1509   tree ri;
1510 
1511   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1512 
1513   update_complex_assignment (gsi, ar, ri);
1514 }
1515 
1516 /* Expand complex comparison (EQ or NE only).  */
1517 
1518 static void
expand_complex_comparison(gimple_stmt_iterator * gsi,tree ar,tree ai,tree br,tree bi,enum tree_code code)1519 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1520 			   tree br, tree bi, enum tree_code code)
1521 {
1522   tree cr, ci, cc, type;
1523   gimple *stmt;
1524 
1525   cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1526   ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1527   cc = gimplify_build2 (gsi,
1528 			(code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1529 			boolean_type_node, cr, ci);
1530 
1531   stmt = gsi_stmt (*gsi);
1532 
1533   switch (gimple_code (stmt))
1534     {
1535     case GIMPLE_RETURN:
1536       {
1537 	greturn *return_stmt = as_a <greturn *> (stmt);
1538 	type = TREE_TYPE (gimple_return_retval (return_stmt));
1539 	gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1540       }
1541       break;
1542 
1543     case GIMPLE_ASSIGN:
1544       type = TREE_TYPE (gimple_assign_lhs (stmt));
1545       gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1546       stmt = gsi_stmt (*gsi);
1547       break;
1548 
1549     case GIMPLE_COND:
1550       {
1551 	gcond *cond_stmt = as_a <gcond *> (stmt);
1552 	gimple_cond_set_code (cond_stmt, EQ_EXPR);
1553 	gimple_cond_set_lhs (cond_stmt, cc);
1554 	gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1555       }
1556       break;
1557 
1558     default:
1559       gcc_unreachable ();
1560     }
1561 
1562   update_stmt (stmt);
1563   if (maybe_clean_eh_stmt (stmt))
1564     bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
1565 }
1566 
1567 /* Expand inline asm that sets some complex SSA_NAMEs.  */
1568 
1569 static void
expand_complex_asm(gimple_stmt_iterator * gsi)1570 expand_complex_asm (gimple_stmt_iterator *gsi)
1571 {
1572   gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1573   unsigned int i;
1574 
1575   for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1576     {
1577       tree link = gimple_asm_output_op (stmt, i);
1578       tree op = TREE_VALUE (link);
1579       if (TREE_CODE (op) == SSA_NAME
1580 	  && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1581 	{
1582 	  tree type = TREE_TYPE (op);
1583 	  tree inner_type = TREE_TYPE (type);
1584 	  tree r = build1 (REALPART_EXPR, inner_type, op);
1585 	  tree i = build1 (IMAGPART_EXPR, inner_type, op);
1586 	  gimple_seq list = set_component_ssa_name (op, false, r);
1587 
1588 	  if (list)
1589 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1590 
1591 	  list = set_component_ssa_name (op, true, i);
1592 	  if (list)
1593 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1594 	}
1595     }
1596 }
1597 
1598 /* Process one statement.  If we identify a complex operation, expand it.  */
1599 
1600 static void
expand_complex_operations_1(gimple_stmt_iterator * gsi)1601 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1602 {
1603   gimple *stmt = gsi_stmt (*gsi);
1604   tree type, inner_type, lhs;
1605   tree ac, ar, ai, bc, br, bi;
1606   complex_lattice_t al, bl;
1607   enum tree_code code;
1608 
1609   if (gimple_code (stmt) == GIMPLE_ASM)
1610     {
1611       expand_complex_asm (gsi);
1612       return;
1613     }
1614 
1615   lhs = gimple_get_lhs (stmt);
1616   if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1617     return;
1618 
1619   type = TREE_TYPE (gimple_op (stmt, 0));
1620   code = gimple_expr_code (stmt);
1621 
1622   /* Initial filter for operations we handle.  */
1623   switch (code)
1624     {
1625     case PLUS_EXPR:
1626     case MINUS_EXPR:
1627     case MULT_EXPR:
1628     case TRUNC_DIV_EXPR:
1629     case CEIL_DIV_EXPR:
1630     case FLOOR_DIV_EXPR:
1631     case ROUND_DIV_EXPR:
1632     case RDIV_EXPR:
1633     case NEGATE_EXPR:
1634     case CONJ_EXPR:
1635       if (TREE_CODE (type) != COMPLEX_TYPE)
1636 	return;
1637       inner_type = TREE_TYPE (type);
1638       break;
1639 
1640     case EQ_EXPR:
1641     case NE_EXPR:
1642       /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1643 	 subcode, so we need to access the operands using gimple_op.  */
1644       inner_type = TREE_TYPE (gimple_op (stmt, 1));
1645       if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1646 	return;
1647       break;
1648 
1649     default:
1650       {
1651 	tree rhs;
1652 
1653 	/* GIMPLE_COND may also fallthru here, but we do not need to
1654 	   do anything with it.  */
1655 	if (gimple_code (stmt) == GIMPLE_COND)
1656 	  return;
1657 
1658 	if (TREE_CODE (type) == COMPLEX_TYPE)
1659 	  expand_complex_move (gsi, type);
1660 	else if (is_gimple_assign (stmt)
1661 		 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1662 		     || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1663 		 && TREE_CODE (lhs) == SSA_NAME)
1664 	  {
1665 	    rhs = gimple_assign_rhs1 (stmt);
1666 	    rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1667 		                     gimple_assign_rhs_code (stmt)
1668 				       == IMAGPART_EXPR,
1669 				     false);
1670 	    gimple_assign_set_rhs_from_tree (gsi, rhs);
1671 	    stmt = gsi_stmt (*gsi);
1672 	    update_stmt (stmt);
1673 	  }
1674       }
1675       return;
1676     }
1677 
1678   /* Extract the components of the two complex values.  Make sure and
1679      handle the common case of the same value used twice specially.  */
1680   if (is_gimple_assign (stmt))
1681     {
1682       ac = gimple_assign_rhs1 (stmt);
1683       bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1684     }
1685   /* GIMPLE_CALL cannot get here.  */
1686   else
1687     {
1688       ac = gimple_cond_lhs (stmt);
1689       bc = gimple_cond_rhs (stmt);
1690     }
1691 
1692   ar = extract_component (gsi, ac, false, true);
1693   ai = extract_component (gsi, ac, true, true);
1694 
1695   if (ac == bc)
1696     br = ar, bi = ai;
1697   else if (bc)
1698     {
1699       br = extract_component (gsi, bc, 0, true);
1700       bi = extract_component (gsi, bc, 1, true);
1701     }
1702   else
1703     br = bi = NULL_TREE;
1704 
1705   al = find_lattice_value (ac);
1706   if (al == UNINITIALIZED)
1707     al = VARYING;
1708 
1709   if (TREE_CODE_CLASS (code) == tcc_unary)
1710     bl = UNINITIALIZED;
1711   else if (ac == bc)
1712     bl = al;
1713   else
1714     {
1715       bl = find_lattice_value (bc);
1716       if (bl == UNINITIALIZED)
1717 	bl = VARYING;
1718     }
1719 
1720   switch (code)
1721     {
1722     case PLUS_EXPR:
1723     case MINUS_EXPR:
1724       expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1725       break;
1726 
1727     case MULT_EXPR:
1728       expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl);
1729       break;
1730 
1731     case TRUNC_DIV_EXPR:
1732     case CEIL_DIV_EXPR:
1733     case FLOOR_DIV_EXPR:
1734     case ROUND_DIV_EXPR:
1735     case RDIV_EXPR:
1736       expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl);
1737       break;
1738 
1739     case NEGATE_EXPR:
1740       expand_complex_negation (gsi, inner_type, ar, ai);
1741       break;
1742 
1743     case CONJ_EXPR:
1744       expand_complex_conjugate (gsi, inner_type, ar, ai);
1745       break;
1746 
1747     case EQ_EXPR:
1748     case NE_EXPR:
1749       expand_complex_comparison (gsi, ar, ai, br, bi, code);
1750       break;
1751 
1752     default:
1753       gcc_unreachable ();
1754     }
1755 }
1756 
1757 
1758 /* Entry point for complex operation lowering during optimization.  */
1759 
1760 static unsigned int
tree_lower_complex(void)1761 tree_lower_complex (void)
1762 {
1763   gimple_stmt_iterator gsi;
1764   basic_block bb;
1765   int n_bbs, i;
1766   int *rpo;
1767 
1768   if (!init_dont_simulate_again ())
1769     return 0;
1770 
1771   complex_lattice_values.create (num_ssa_names);
1772   complex_lattice_values.safe_grow_cleared (num_ssa_names);
1773 
1774   init_parameter_lattice_values ();
1775   class complex_propagate complex_propagate;
1776   complex_propagate.ssa_propagate ();
1777 
1778   need_eh_cleanup = BITMAP_ALLOC (NULL);
1779 
1780   complex_variable_components = new int_tree_htab_type (10);
1781 
1782   complex_ssa_name_components.create (2 * num_ssa_names);
1783   complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1784 
1785   update_parameter_components ();
1786 
1787   rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1788   n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
1789   for (i = 0; i < n_bbs; i++)
1790     {
1791       bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
1792       if (!bb)
1793 	continue;
1794       update_phi_components (bb);
1795       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1796 	expand_complex_operations_1 (&gsi);
1797     }
1798 
1799   free (rpo);
1800 
1801   if (!phis_to_revisit.is_empty ())
1802     {
1803       unsigned int n = phis_to_revisit.length ();
1804       for (unsigned int j = 0; j < n; j += 3)
1805 	for (unsigned int k = 0; k < 2; k++)
1806 	  if (gphi *phi = phis_to_revisit[j + k + 1])
1807 	    {
1808 	      unsigned int m = gimple_phi_num_args (phi);
1809 	      for (unsigned int l = 0; l < m; ++l)
1810 		{
1811 		  tree op = gimple_phi_arg_def (phi, l);
1812 		  if (TREE_CODE (op) == SSA_NAME
1813 		      || is_gimple_min_invariant (op))
1814 		    continue;
1815 		  tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
1816 		  op = extract_component (NULL, arg, k > 0, false, false);
1817 		  SET_PHI_ARG_DEF (phi, l, op);
1818 		}
1819 	    }
1820       phis_to_revisit.release ();
1821     }
1822 
1823   gsi_commit_edge_inserts ();
1824 
1825   unsigned todo
1826     = gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0;
1827   BITMAP_FREE (need_eh_cleanup);
1828 
1829   delete complex_variable_components;
1830   complex_variable_components = NULL;
1831   complex_ssa_name_components.release ();
1832   complex_lattice_values.release ();
1833   return todo;
1834 }
1835 
1836 namespace {
1837 
1838 const pass_data pass_data_lower_complex =
1839 {
1840   GIMPLE_PASS, /* type */
1841   "cplxlower", /* name */
1842   OPTGROUP_NONE, /* optinfo_flags */
1843   TV_NONE, /* tv_id */
1844   PROP_ssa, /* properties_required */
1845   PROP_gimple_lcx, /* properties_provided */
1846   0, /* properties_destroyed */
1847   0, /* todo_flags_start */
1848   TODO_update_ssa, /* todo_flags_finish */
1849 };
1850 
1851 class pass_lower_complex : public gimple_opt_pass
1852 {
1853 public:
pass_lower_complex(gcc::context * ctxt)1854   pass_lower_complex (gcc::context *ctxt)
1855     : gimple_opt_pass (pass_data_lower_complex, ctxt)
1856   {}
1857 
1858   /* opt_pass methods: */
clone()1859   opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
execute(function *)1860   virtual unsigned int execute (function *) { return tree_lower_complex (); }
1861 
1862 }; // class pass_lower_complex
1863 
1864 } // anon namespace
1865 
1866 gimple_opt_pass *
make_pass_lower_complex(gcc::context * ctxt)1867 make_pass_lower_complex (gcc::context *ctxt)
1868 {
1869   return new pass_lower_complex (ctxt);
1870 }
1871 
1872 
1873 namespace {
1874 
1875 const pass_data pass_data_lower_complex_O0 =
1876 {
1877   GIMPLE_PASS, /* type */
1878   "cplxlower0", /* name */
1879   OPTGROUP_NONE, /* optinfo_flags */
1880   TV_NONE, /* tv_id */
1881   PROP_cfg, /* properties_required */
1882   PROP_gimple_lcx, /* properties_provided */
1883   0, /* properties_destroyed */
1884   0, /* todo_flags_start */
1885   TODO_update_ssa, /* todo_flags_finish */
1886 };
1887 
1888 class pass_lower_complex_O0 : public gimple_opt_pass
1889 {
1890 public:
pass_lower_complex_O0(gcc::context * ctxt)1891   pass_lower_complex_O0 (gcc::context *ctxt)
1892     : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1893   {}
1894 
1895   /* opt_pass methods: */
gate(function * fun)1896   virtual bool gate (function *fun)
1897     {
1898       /* With errors, normal optimization passes are not run.  If we don't
1899 	 lower complex operations at all, rtl expansion will abort.  */
1900       return !(fun->curr_properties & PROP_gimple_lcx);
1901     }
1902 
execute(function *)1903   virtual unsigned int execute (function *) { return tree_lower_complex (); }
1904 
1905 }; // class pass_lower_complex_O0
1906 
1907 } // anon namespace
1908 
1909 gimple_opt_pass *
make_pass_lower_complex_O0(gcc::context * ctxt)1910 make_pass_lower_complex_O0 (gcc::context *ctxt)
1911 {
1912   return new pass_lower_complex_O0 (ctxt);
1913 }
1914