1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package fmt
6
7import (
8	"strconv"
9	"unicode/utf8"
10)
11
12const (
13	ldigits = "0123456789abcdefx"
14	udigits = "0123456789ABCDEFX"
15)
16
17const (
18	signed   = true
19	unsigned = false
20)
21
22// flags placed in a separate struct for easy clearing.
23type fmtFlags struct {
24	widPresent  bool
25	precPresent bool
26	minus       bool
27	plus        bool
28	sharp       bool
29	space       bool
30	zero        bool
31
32	// For the formats %+v %#v, we set the plusV/sharpV flags
33	// and clear the plus/sharp flags since %+v and %#v are in effect
34	// different, flagless formats set at the top level.
35	plusV  bool
36	sharpV bool
37}
38
39// A fmt is the raw formatter used by Printf etc.
40// It prints into a buffer that must be set up separately.
41type fmt struct {
42	buf *buffer
43
44	fmtFlags
45
46	wid  int // width
47	prec int // precision
48
49	// intbuf is large enough to store %b of an int64 with a sign and
50	// avoids padding at the end of the struct on 32 bit architectures.
51	intbuf [68]byte
52}
53
54func (f *fmt) clearflags() {
55	f.fmtFlags = fmtFlags{}
56}
57
58func (f *fmt) init(buf *buffer) {
59	f.buf = buf
60	f.clearflags()
61}
62
63// writePadding generates n bytes of padding.
64func (f *fmt) writePadding(n int) {
65	if n <= 0 { // No padding bytes needed.
66		return
67	}
68	buf := *f.buf
69	oldLen := len(buf)
70	newLen := oldLen + n
71	// Make enough room for padding.
72	if newLen > cap(buf) {
73		buf = make(buffer, cap(buf)*2+n)
74		copy(buf, *f.buf)
75	}
76	// Decide which byte the padding should be filled with.
77	padByte := byte(' ')
78	if f.zero {
79		padByte = byte('0')
80	}
81	// Fill padding with padByte.
82	padding := buf[oldLen:newLen]
83	for i := range padding {
84		padding[i] = padByte
85	}
86	*f.buf = buf[:newLen]
87}
88
89// pad appends b to f.buf, padded on left (!f.minus) or right (f.minus).
90func (f *fmt) pad(b []byte) {
91	if !f.widPresent || f.wid == 0 {
92		f.buf.Write(b)
93		return
94	}
95	width := f.wid - utf8.RuneCount(b)
96	if !f.minus {
97		// left padding
98		f.writePadding(width)
99		f.buf.Write(b)
100	} else {
101		// right padding
102		f.buf.Write(b)
103		f.writePadding(width)
104	}
105}
106
107// padString appends s to f.buf, padded on left (!f.minus) or right (f.minus).
108func (f *fmt) padString(s string) {
109	if !f.widPresent || f.wid == 0 {
110		f.buf.WriteString(s)
111		return
112	}
113	width := f.wid - utf8.RuneCountInString(s)
114	if !f.minus {
115		// left padding
116		f.writePadding(width)
117		f.buf.WriteString(s)
118	} else {
119		// right padding
120		f.buf.WriteString(s)
121		f.writePadding(width)
122	}
123}
124
125// fmtBoolean formats a boolean.
126func (f *fmt) fmtBoolean(v bool) {
127	if v {
128		f.padString("true")
129	} else {
130		f.padString("false")
131	}
132}
133
134// fmtUnicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'".
135func (f *fmt) fmtUnicode(u uint64) {
136	buf := f.intbuf[0:]
137
138	// With default precision set the maximum needed buf length is 18
139	// for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") which fits
140	// into the already allocated intbuf with a capacity of 68 bytes.
141	prec := 4
142	if f.precPresent && f.prec > 4 {
143		prec = f.prec
144		// Compute space needed for "U+" , number, " '", character, "'".
145		width := 2 + prec + 2 + utf8.UTFMax + 1
146		if width > len(buf) {
147			buf = make([]byte, width)
148		}
149	}
150
151	// Format into buf, ending at buf[i]. Formatting numbers is easier right-to-left.
152	i := len(buf)
153
154	// For %#U we want to add a space and a quoted character at the end of the buffer.
155	if f.sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) {
156		i--
157		buf[i] = '\''
158		i -= utf8.RuneLen(rune(u))
159		utf8.EncodeRune(buf[i:], rune(u))
160		i--
161		buf[i] = '\''
162		i--
163		buf[i] = ' '
164	}
165	// Format the Unicode code point u as a hexadecimal number.
166	for u >= 16 {
167		i--
168		buf[i] = udigits[u&0xF]
169		prec--
170		u >>= 4
171	}
172	i--
173	buf[i] = udigits[u]
174	prec--
175	// Add zeros in front of the number until requested precision is reached.
176	for prec > 0 {
177		i--
178		buf[i] = '0'
179		prec--
180	}
181	// Add a leading "U+".
182	i--
183	buf[i] = '+'
184	i--
185	buf[i] = 'U'
186
187	oldZero := f.zero
188	f.zero = false
189	f.pad(buf[i:])
190	f.zero = oldZero
191}
192
193// fmtInteger formats signed and unsigned integers.
194func (f *fmt) fmtInteger(u uint64, base int, isSigned bool, digits string) {
195	negative := isSigned && int64(u) < 0
196	if negative {
197		u = -u
198	}
199
200	buf := f.intbuf[0:]
201	// The already allocated f.intbuf with a capacity of 68 bytes
202	// is large enough for integer formatting when no precision or width is set.
203	if f.widPresent || f.precPresent {
204		// Account 3 extra bytes for possible addition of a sign and "0x".
205		width := 3 + f.wid + f.prec // wid and prec are always positive.
206		if width > len(buf) {
207			// We're going to need a bigger boat.
208			buf = make([]byte, width)
209		}
210	}
211
212	// Two ways to ask for extra leading zero digits: %.3d or %03d.
213	// If both are specified the f.zero flag is ignored and
214	// padding with spaces is used instead.
215	prec := 0
216	if f.precPresent {
217		prec = f.prec
218		// Precision of 0 and value of 0 means "print nothing" but padding.
219		if prec == 0 && u == 0 {
220			oldZero := f.zero
221			f.zero = false
222			f.writePadding(f.wid)
223			f.zero = oldZero
224			return
225		}
226	} else if f.zero && f.widPresent {
227		prec = f.wid
228		if negative || f.plus || f.space {
229			prec-- // leave room for sign
230		}
231	}
232
233	// Because printing is easier right-to-left: format u into buf, ending at buf[i].
234	// We could make things marginally faster by splitting the 32-bit case out
235	// into a separate block but it's not worth the duplication, so u has 64 bits.
236	i := len(buf)
237	// Use constants for the division and modulo for more efficient code.
238	// Switch cases ordered by popularity.
239	switch base {
240	case 10:
241		for u >= 10 {
242			i--
243			next := u / 10
244			buf[i] = byte('0' + u - next*10)
245			u = next
246		}
247	case 16:
248		for u >= 16 {
249			i--
250			buf[i] = digits[u&0xF]
251			u >>= 4
252		}
253	case 8:
254		for u >= 8 {
255			i--
256			buf[i] = byte('0' + u&7)
257			u >>= 3
258		}
259	case 2:
260		for u >= 2 {
261			i--
262			buf[i] = byte('0' + u&1)
263			u >>= 1
264		}
265	default:
266		panic("fmt: unknown base; can't happen")
267	}
268	i--
269	buf[i] = digits[u]
270	for i > 0 && prec > len(buf)-i {
271		i--
272		buf[i] = '0'
273	}
274
275	// Various prefixes: 0x, -, etc.
276	if f.sharp {
277		switch base {
278		case 8:
279			if buf[i] != '0' {
280				i--
281				buf[i] = '0'
282			}
283		case 16:
284			// Add a leading 0x or 0X.
285			i--
286			buf[i] = digits[16]
287			i--
288			buf[i] = '0'
289		}
290	}
291
292	if negative {
293		i--
294		buf[i] = '-'
295	} else if f.plus {
296		i--
297		buf[i] = '+'
298	} else if f.space {
299		i--
300		buf[i] = ' '
301	}
302
303	// Left padding with zeros has already been handled like precision earlier
304	// or the f.zero flag is ignored due to an explicitly set precision.
305	oldZero := f.zero
306	f.zero = false
307	f.pad(buf[i:])
308	f.zero = oldZero
309}
310
311// truncate truncates the string s to the specified precision, if present.
312func (f *fmt) truncateString(s string) string {
313	if f.precPresent {
314		n := f.prec
315		for i := range s {
316			n--
317			if n < 0 {
318				return s[:i]
319			}
320		}
321	}
322	return s
323}
324
325// truncate truncates the byte slice b as a string of the specified precision, if present.
326func (f *fmt) truncate(b []byte) []byte {
327	if f.precPresent {
328		n := f.prec
329		for i := 0; i < len(b); {
330			n--
331			if n < 0 {
332				return b[:i]
333			}
334			wid := 1
335			if b[i] >= utf8.RuneSelf {
336				_, wid = utf8.DecodeRune(b[i:])
337			}
338			i += wid
339		}
340	}
341	return b
342}
343
344// fmtS formats a string.
345func (f *fmt) fmtS(s string) {
346	s = f.truncateString(s)
347	f.padString(s)
348}
349
350// fmtBs formats the byte slice b as if it was formatted as string with fmtS.
351func (f *fmt) fmtBs(b []byte) {
352	b = f.truncate(b)
353	f.pad(b)
354}
355
356// fmtSbx formats a string or byte slice as a hexadecimal encoding of its bytes.
357func (f *fmt) fmtSbx(s string, b []byte, digits string) {
358	length := len(b)
359	if b == nil {
360		// No byte slice present. Assume string s should be encoded.
361		length = len(s)
362	}
363	// Set length to not process more bytes than the precision demands.
364	if f.precPresent && f.prec < length {
365		length = f.prec
366	}
367	// Compute width of the encoding taking into account the f.sharp and f.space flag.
368	width := 2 * length
369	if width > 0 {
370		if f.space {
371			// Each element encoded by two hexadecimals will get a leading 0x or 0X.
372			if f.sharp {
373				width *= 2
374			}
375			// Elements will be separated by a space.
376			width += length - 1
377		} else if f.sharp {
378			// Only a leading 0x or 0X will be added for the whole string.
379			width += 2
380		}
381	} else { // The byte slice or string that should be encoded is empty.
382		if f.widPresent {
383			f.writePadding(f.wid)
384		}
385		return
386	}
387	// Handle padding to the left.
388	if f.widPresent && f.wid > width && !f.minus {
389		f.writePadding(f.wid - width)
390	}
391	// Write the encoding directly into the output buffer.
392	buf := *f.buf
393	if f.sharp {
394		// Add leading 0x or 0X.
395		buf = append(buf, '0', digits[16])
396	}
397	var c byte
398	for i := 0; i < length; i++ {
399		if f.space && i > 0 {
400			// Separate elements with a space.
401			buf = append(buf, ' ')
402			if f.sharp {
403				// Add leading 0x or 0X for each element.
404				buf = append(buf, '0', digits[16])
405			}
406		}
407		if b != nil {
408			c = b[i] // Take a byte from the input byte slice.
409		} else {
410			c = s[i] // Take a byte from the input string.
411		}
412		// Encode each byte as two hexadecimal digits.
413		buf = append(buf, digits[c>>4], digits[c&0xF])
414	}
415	*f.buf = buf
416	// Handle padding to the right.
417	if f.widPresent && f.wid > width && f.minus {
418		f.writePadding(f.wid - width)
419	}
420}
421
422// fmtSx formats a string as a hexadecimal encoding of its bytes.
423func (f *fmt) fmtSx(s, digits string) {
424	f.fmtSbx(s, nil, digits)
425}
426
427// fmtBx formats a byte slice as a hexadecimal encoding of its bytes.
428func (f *fmt) fmtBx(b []byte, digits string) {
429	f.fmtSbx("", b, digits)
430}
431
432// fmtQ formats a string as a double-quoted, escaped Go string constant.
433// If f.sharp is set a raw (backquoted) string may be returned instead
434// if the string does not contain any control characters other than tab.
435func (f *fmt) fmtQ(s string) {
436	s = f.truncateString(s)
437	if f.sharp && strconv.CanBackquote(s) {
438		f.padString("`" + s + "`")
439		return
440	}
441	buf := f.intbuf[:0]
442	if f.plus {
443		f.pad(strconv.AppendQuoteToASCII(buf, s))
444	} else {
445		f.pad(strconv.AppendQuote(buf, s))
446	}
447}
448
449// fmtC formats an integer as a Unicode character.
450// If the character is not valid Unicode, it will print '\ufffd'.
451func (f *fmt) fmtC(c uint64) {
452	r := rune(c)
453	if c > utf8.MaxRune {
454		r = utf8.RuneError
455	}
456	buf := f.intbuf[:0]
457	w := utf8.EncodeRune(buf[:utf8.UTFMax], r)
458	f.pad(buf[:w])
459}
460
461// fmtQc formats an integer as a single-quoted, escaped Go character constant.
462// If the character is not valid Unicode, it will print '\ufffd'.
463func (f *fmt) fmtQc(c uint64) {
464	r := rune(c)
465	if c > utf8.MaxRune {
466		r = utf8.RuneError
467	}
468	buf := f.intbuf[:0]
469	if f.plus {
470		f.pad(strconv.AppendQuoteRuneToASCII(buf, r))
471	} else {
472		f.pad(strconv.AppendQuoteRune(buf, r))
473	}
474}
475
476// fmtFloat formats a float64. It assumes that verb is a valid format specifier
477// for strconv.AppendFloat and therefore fits into a byte.
478func (f *fmt) fmtFloat(v float64, size int, verb rune, prec int) {
479	// Explicit precision in format specifier overrules default precision.
480	if f.precPresent {
481		prec = f.prec
482	}
483	// Format number, reserving space for leading + sign if needed.
484	num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size)
485	if num[1] == '-' || num[1] == '+' {
486		num = num[1:]
487	} else {
488		num[0] = '+'
489	}
490	// f.space means to add a leading space instead of a "+" sign unless
491	// the sign is explicitly asked for by f.plus.
492	if f.space && num[0] == '+' && !f.plus {
493		num[0] = ' '
494	}
495	// Special handling for infinities and NaN,
496	// which don't look like a number so shouldn't be padded with zeros.
497	if num[1] == 'I' || num[1] == 'N' {
498		oldZero := f.zero
499		f.zero = false
500		// Remove sign before NaN if not asked for.
501		if num[1] == 'N' && !f.space && !f.plus {
502			num = num[1:]
503		}
504		f.pad(num)
505		f.zero = oldZero
506		return
507	}
508	// The sharp flag forces printing a decimal point for non-binary formats
509	// and retains trailing zeros, which we may need to restore.
510	if f.sharp && verb != 'b' {
511		digits := 0
512		switch verb {
513		case 'v', 'g', 'G':
514			digits = prec
515			// If no precision is set explicitly use a precision of 6.
516			if digits == -1 {
517				digits = 6
518			}
519		}
520
521		// Buffer pre-allocated with enough room for
522		// exponent notations of the form "e+123".
523		var tailBuf [5]byte
524		tail := tailBuf[:0]
525
526		hasDecimalPoint := false
527		// Starting from i = 1 to skip sign at num[0].
528		for i := 1; i < len(num); i++ {
529			switch num[i] {
530			case '.':
531				hasDecimalPoint = true
532			case 'e', 'E':
533				tail = append(tail, num[i:]...)
534				num = num[:i]
535			default:
536				digits--
537			}
538		}
539		if !hasDecimalPoint {
540			num = append(num, '.')
541		}
542		for digits > 0 {
543			num = append(num, '0')
544			digits--
545		}
546		num = append(num, tail...)
547	}
548	// We want a sign if asked for and if the sign is not positive.
549	if f.plus || num[0] != '+' {
550		// If we're zero padding to the left we want the sign before the leading zeros.
551		// Achieve this by writing the sign out and then padding the unsigned number.
552		if f.zero && f.widPresent && f.wid > len(num) {
553			f.buf.WriteByte(num[0])
554			f.writePadding(f.wid - len(num))
555			f.buf.Write(num[1:])
556			return
557		}
558		f.pad(num)
559		return
560	}
561	// No sign to show and the number is positive; just print the unsigned number.
562	f.pad(num[1:])
563}
564