1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Binary to decimal floating point conversion. 6// Algorithm: 7// 1) store mantissa in multiprecision decimal 8// 2) shift decimal by exponent 9// 3) read digits out & format 10 11package strconv 12 13import "math" 14 15// TODO: move elsewhere? 16type floatInfo struct { 17 mantbits uint 18 expbits uint 19 bias int 20} 21 22var float32info = floatInfo{23, 8, -127} 23var float64info = floatInfo{52, 11, -1023} 24 25// FormatFloat converts the floating-point number f to a string, 26// according to the format fmt and precision prec. It rounds the 27// result assuming that the original was obtained from a floating-point 28// value of bitSize bits (32 for float32, 64 for float64). 29// 30// The format fmt is one of 31// 'b' (-ddddp±ddd, a binary exponent), 32// 'e' (-d.dddde±dd, a decimal exponent), 33// 'E' (-d.ddddE±dd, a decimal exponent), 34// 'f' (-ddd.dddd, no exponent), 35// 'g' ('e' for large exponents, 'f' otherwise), or 36// 'G' ('E' for large exponents, 'f' otherwise). 37// 38// The precision prec controls the number of digits (excluding the exponent) 39// printed by the 'e', 'E', 'f', 'g', and 'G' formats. 40// For 'e', 'E', and 'f' it is the number of digits after the decimal point. 41// For 'g' and 'G' it is the maximum number of significant digits (trailing 42// zeros are removed). 43// The special precision -1 uses the smallest number of digits 44// necessary such that ParseFloat will return f exactly. 45func FormatFloat(f float64, fmt byte, prec, bitSize int) string { 46 return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize)) 47} 48 49// AppendFloat appends the string form of the floating-point number f, 50// as generated by FormatFloat, to dst and returns the extended buffer. 51func AppendFloat(dst []byte, f float64, fmt byte, prec, bitSize int) []byte { 52 return genericFtoa(dst, f, fmt, prec, bitSize) 53} 54 55func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte { 56 var bits uint64 57 var flt *floatInfo 58 switch bitSize { 59 case 32: 60 bits = uint64(math.Float32bits(float32(val))) 61 flt = &float32info 62 case 64: 63 bits = math.Float64bits(val) 64 flt = &float64info 65 default: 66 panic("strconv: illegal AppendFloat/FormatFloat bitSize") 67 } 68 69 neg := bits>>(flt.expbits+flt.mantbits) != 0 70 exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1) 71 mant := bits & (uint64(1)<<flt.mantbits - 1) 72 73 switch exp { 74 case 1<<flt.expbits - 1: 75 // Inf, NaN 76 var s string 77 switch { 78 case mant != 0: 79 s = "NaN" 80 case neg: 81 s = "-Inf" 82 default: 83 s = "+Inf" 84 } 85 return append(dst, s...) 86 87 case 0: 88 // denormalized 89 exp++ 90 91 default: 92 // add implicit top bit 93 mant |= uint64(1) << flt.mantbits 94 } 95 exp += flt.bias 96 97 // Pick off easy binary format. 98 if fmt == 'b' { 99 return fmtB(dst, neg, mant, exp, flt) 100 } 101 102 if !optimize { 103 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) 104 } 105 106 var digs decimalSlice 107 ok := false 108 // Negative precision means "only as much as needed to be exact." 109 shortest := prec < 0 110 if shortest { 111 // Try Grisu3 algorithm. 112 f := new(extFloat) 113 lower, upper := f.AssignComputeBounds(mant, exp, neg, flt) 114 var buf [32]byte 115 digs.d = buf[:] 116 ok = f.ShortestDecimal(&digs, &lower, &upper) 117 if !ok { 118 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) 119 } 120 // Precision for shortest representation mode. 121 switch fmt { 122 case 'e', 'E': 123 prec = max(digs.nd-1, 0) 124 case 'f': 125 prec = max(digs.nd-digs.dp, 0) 126 case 'g', 'G': 127 prec = digs.nd 128 } 129 } else if fmt != 'f' { 130 // Fixed number of digits. 131 digits := prec 132 switch fmt { 133 case 'e', 'E': 134 digits++ 135 case 'g', 'G': 136 if prec == 0 { 137 prec = 1 138 } 139 digits = prec 140 } 141 if digits <= 15 { 142 // try fast algorithm when the number of digits is reasonable. 143 var buf [24]byte 144 digs.d = buf[:] 145 f := extFloat{mant, exp - int(flt.mantbits), neg} 146 ok = f.FixedDecimal(&digs, digits) 147 } 148 } 149 if !ok { 150 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) 151 } 152 return formatDigits(dst, shortest, neg, digs, prec, fmt) 153} 154 155// bigFtoa uses multiprecision computations to format a float. 156func bigFtoa(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { 157 d := new(decimal) 158 d.Assign(mant) 159 d.Shift(exp - int(flt.mantbits)) 160 var digs decimalSlice 161 shortest := prec < 0 162 if shortest { 163 roundShortest(d, mant, exp, flt) 164 digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} 165 // Precision for shortest representation mode. 166 switch fmt { 167 case 'e', 'E': 168 prec = digs.nd - 1 169 case 'f': 170 prec = max(digs.nd-digs.dp, 0) 171 case 'g', 'G': 172 prec = digs.nd 173 } 174 } else { 175 // Round appropriately. 176 switch fmt { 177 case 'e', 'E': 178 d.Round(prec + 1) 179 case 'f': 180 d.Round(d.dp + prec) 181 case 'g', 'G': 182 if prec == 0 { 183 prec = 1 184 } 185 d.Round(prec) 186 } 187 digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} 188 } 189 return formatDigits(dst, shortest, neg, digs, prec, fmt) 190} 191 192func formatDigits(dst []byte, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) []byte { 193 switch fmt { 194 case 'e', 'E': 195 return fmtE(dst, neg, digs, prec, fmt) 196 case 'f': 197 return fmtF(dst, neg, digs, prec) 198 case 'g', 'G': 199 // trailing fractional zeros in 'e' form will be trimmed. 200 eprec := prec 201 if eprec > digs.nd && digs.nd >= digs.dp { 202 eprec = digs.nd 203 } 204 // %e is used if the exponent from the conversion 205 // is less than -4 or greater than or equal to the precision. 206 // if precision was the shortest possible, use precision 6 for this decision. 207 if shortest { 208 eprec = 6 209 } 210 exp := digs.dp - 1 211 if exp < -4 || exp >= eprec { 212 if prec > digs.nd { 213 prec = digs.nd 214 } 215 return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g') 216 } 217 if prec > digs.dp { 218 prec = digs.nd 219 } 220 return fmtF(dst, neg, digs, max(prec-digs.dp, 0)) 221 } 222 223 // unknown format 224 return append(dst, '%', fmt) 225} 226 227// roundShortest rounds d (= mant * 2^exp) to the shortest number of digits 228// that will let the original floating point value be precisely reconstructed. 229func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { 230 // If mantissa is zero, the number is zero; stop now. 231 if mant == 0 { 232 d.nd = 0 233 return 234 } 235 236 // Compute upper and lower such that any decimal number 237 // between upper and lower (possibly inclusive) 238 // will round to the original floating point number. 239 240 // We may see at once that the number is already shortest. 241 // 242 // Suppose d is not denormal, so that 2^exp <= d < 10^dp. 243 // The closest shorter number is at least 10^(dp-nd) away. 244 // The lower/upper bounds computed below are at distance 245 // at most 2^(exp-mantbits). 246 // 247 // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits), 248 // or equivalently log2(10)*(dp-nd) > exp-mantbits. 249 // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32). 250 minexp := flt.bias + 1 // minimum possible exponent 251 if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) { 252 // The number is already shortest. 253 return 254 } 255 256 // d = mant << (exp - mantbits) 257 // Next highest floating point number is mant+1 << exp-mantbits. 258 // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1. 259 upper := new(decimal) 260 upper.Assign(mant*2 + 1) 261 upper.Shift(exp - int(flt.mantbits) - 1) 262 263 // d = mant << (exp - mantbits) 264 // Next lowest floating point number is mant-1 << exp-mantbits, 265 // unless mant-1 drops the significant bit and exp is not the minimum exp, 266 // in which case the next lowest is mant*2-1 << exp-mantbits-1. 267 // Either way, call it mantlo << explo-mantbits. 268 // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1. 269 var mantlo uint64 270 var explo int 271 if mant > 1<<flt.mantbits || exp == minexp { 272 mantlo = mant - 1 273 explo = exp 274 } else { 275 mantlo = mant*2 - 1 276 explo = exp - 1 277 } 278 lower := new(decimal) 279 lower.Assign(mantlo*2 + 1) 280 lower.Shift(explo - int(flt.mantbits) - 1) 281 282 // The upper and lower bounds are possible outputs only if 283 // the original mantissa is even, so that IEEE round-to-even 284 // would round to the original mantissa and not the neighbors. 285 inclusive := mant%2 == 0 286 287 // Now we can figure out the minimum number of digits required. 288 // Walk along until d has distinguished itself from upper and lower. 289 for i := 0; i < d.nd; i++ { 290 l := byte('0') // lower digit 291 if i < lower.nd { 292 l = lower.d[i] 293 } 294 m := d.d[i] // middle digit 295 u := byte('0') // upper digit 296 if i < upper.nd { 297 u = upper.d[i] 298 } 299 300 // Okay to round down (truncate) if lower has a different digit 301 // or if lower is inclusive and is exactly the result of rounding 302 // down (i.e., and we have reached the final digit of lower). 303 okdown := l != m || inclusive && i+1 == lower.nd 304 305 // Okay to round up if upper has a different digit and either upper 306 // is inclusive or upper is bigger than the result of rounding up. 307 okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd) 308 309 // If it's okay to do either, then round to the nearest one. 310 // If it's okay to do only one, do it. 311 switch { 312 case okdown && okup: 313 d.Round(i + 1) 314 return 315 case okdown: 316 d.RoundDown(i + 1) 317 return 318 case okup: 319 d.RoundUp(i + 1) 320 return 321 } 322 } 323} 324 325type decimalSlice struct { 326 d []byte 327 nd, dp int 328 neg bool 329} 330 331// %e: -d.ddddde±dd 332func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte { 333 // sign 334 if neg { 335 dst = append(dst, '-') 336 } 337 338 // first digit 339 ch := byte('0') 340 if d.nd != 0 { 341 ch = d.d[0] 342 } 343 dst = append(dst, ch) 344 345 // .moredigits 346 if prec > 0 { 347 dst = append(dst, '.') 348 i := 1 349 m := min(d.nd, prec+1) 350 if i < m { 351 dst = append(dst, d.d[i:m]...) 352 i = m 353 } 354 for ; i <= prec; i++ { 355 dst = append(dst, '0') 356 } 357 } 358 359 // e± 360 dst = append(dst, fmt) 361 exp := d.dp - 1 362 if d.nd == 0 { // special case: 0 has exponent 0 363 exp = 0 364 } 365 if exp < 0 { 366 ch = '-' 367 exp = -exp 368 } else { 369 ch = '+' 370 } 371 dst = append(dst, ch) 372 373 // dd or ddd 374 switch { 375 case exp < 10: 376 dst = append(dst, '0', byte(exp)+'0') 377 case exp < 100: 378 dst = append(dst, byte(exp/10)+'0', byte(exp%10)+'0') 379 default: 380 dst = append(dst, byte(exp/100)+'0', byte(exp/10)%10+'0', byte(exp%10)+'0') 381 } 382 383 return dst 384} 385 386// %f: -ddddddd.ddddd 387func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte { 388 // sign 389 if neg { 390 dst = append(dst, '-') 391 } 392 393 // integer, padded with zeros as needed. 394 if d.dp > 0 { 395 m := min(d.nd, d.dp) 396 dst = append(dst, d.d[:m]...) 397 for ; m < d.dp; m++ { 398 dst = append(dst, '0') 399 } 400 } else { 401 dst = append(dst, '0') 402 } 403 404 // fraction 405 if prec > 0 { 406 dst = append(dst, '.') 407 for i := 0; i < prec; i++ { 408 ch := byte('0') 409 if j := d.dp + i; 0 <= j && j < d.nd { 410 ch = d.d[j] 411 } 412 dst = append(dst, ch) 413 } 414 } 415 416 return dst 417} 418 419// %b: -ddddddddp±ddd 420func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { 421 // sign 422 if neg { 423 dst = append(dst, '-') 424 } 425 426 // mantissa 427 dst, _ = formatBits(dst, mant, 10, false, true) 428 429 // p 430 dst = append(dst, 'p') 431 432 // ±exponent 433 exp -= int(flt.mantbits) 434 if exp >= 0 { 435 dst = append(dst, '+') 436 } 437 dst, _ = formatBits(dst, uint64(exp), 10, exp < 0, true) 438 439 return dst 440} 441 442func min(a, b int) int { 443 if a < b { 444 return a 445 } 446 return b 447} 448 449func max(a, b int) int { 450 if a > b { 451 return a 452 } 453 return b 454} 455