1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package parse builds parse trees for templates as defined by text/template
6// and html/template. Clients should use those packages to construct templates
7// rather than this one, which provides shared internal data structures not
8// intended for general use.
9package parse
10
11import (
12	"bytes"
13	"fmt"
14	"runtime"
15	"strconv"
16	"strings"
17)
18
19// Tree is the representation of a single parsed template.
20type Tree struct {
21	Name      string    // name of the template represented by the tree.
22	ParseName string    // name of the top-level template during parsing, for error messages.
23	Root      *ListNode // top-level root of the tree.
24	text      string    // text parsed to create the template (or its parent)
25	// Parsing only; cleared after parse.
26	funcs     []map[string]interface{}
27	lex       *lexer
28	token     [3]item // three-token lookahead for parser.
29	peekCount int
30	vars      []string // variables defined at the moment.
31	treeSet   map[string]*Tree
32}
33
34// Copy returns a copy of the Tree. Any parsing state is discarded.
35func (t *Tree) Copy() *Tree {
36	if t == nil {
37		return nil
38	}
39	return &Tree{
40		Name:      t.Name,
41		ParseName: t.ParseName,
42		Root:      t.Root.CopyList(),
43		text:      t.text,
44	}
45}
46
47// Parse returns a map from template name to parse.Tree, created by parsing the
48// templates described in the argument string. The top-level template will be
49// given the specified name. If an error is encountered, parsing stops and an
50// empty map is returned with the error.
51func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (map[string]*Tree, error) {
52	treeSet := make(map[string]*Tree)
53	t := New(name)
54	t.text = text
55	_, err := t.Parse(text, leftDelim, rightDelim, treeSet, funcs...)
56	return treeSet, err
57}
58
59// next returns the next token.
60func (t *Tree) next() item {
61	if t.peekCount > 0 {
62		t.peekCount--
63	} else {
64		t.token[0] = t.lex.nextItem()
65	}
66	return t.token[t.peekCount]
67}
68
69// backup backs the input stream up one token.
70func (t *Tree) backup() {
71	t.peekCount++
72}
73
74// backup2 backs the input stream up two tokens.
75// The zeroth token is already there.
76func (t *Tree) backup2(t1 item) {
77	t.token[1] = t1
78	t.peekCount = 2
79}
80
81// backup3 backs the input stream up three tokens
82// The zeroth token is already there.
83func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back.
84	t.token[1] = t1
85	t.token[2] = t2
86	t.peekCount = 3
87}
88
89// peek returns but does not consume the next token.
90func (t *Tree) peek() item {
91	if t.peekCount > 0 {
92		return t.token[t.peekCount-1]
93	}
94	t.peekCount = 1
95	t.token[0] = t.lex.nextItem()
96	return t.token[0]
97}
98
99// nextNonSpace returns the next non-space token.
100func (t *Tree) nextNonSpace() (token item) {
101	for {
102		token = t.next()
103		if token.typ != itemSpace {
104			break
105		}
106	}
107	return token
108}
109
110// peekNonSpace returns but does not consume the next non-space token.
111func (t *Tree) peekNonSpace() (token item) {
112	for {
113		token = t.next()
114		if token.typ != itemSpace {
115			break
116		}
117	}
118	t.backup()
119	return token
120}
121
122// Parsing.
123
124// New allocates a new parse tree with the given name.
125func New(name string, funcs ...map[string]interface{}) *Tree {
126	return &Tree{
127		Name:  name,
128		funcs: funcs,
129	}
130}
131
132// ErrorContext returns a textual representation of the location of the node in the input text.
133// The receiver is only used when the node does not have a pointer to the tree inside,
134// which can occur in old code.
135func (t *Tree) ErrorContext(n Node) (location, context string) {
136	pos := int(n.Position())
137	tree := n.tree()
138	if tree == nil {
139		tree = t
140	}
141	text := tree.text[:pos]
142	byteNum := strings.LastIndex(text, "\n")
143	if byteNum == -1 {
144		byteNum = pos // On first line.
145	} else {
146		byteNum++ // After the newline.
147		byteNum = pos - byteNum
148	}
149	lineNum := 1 + strings.Count(text, "\n")
150	context = n.String()
151	return fmt.Sprintf("%s:%d:%d", tree.ParseName, lineNum, byteNum), context
152}
153
154// errorf formats the error and terminates processing.
155func (t *Tree) errorf(format string, args ...interface{}) {
156	t.Root = nil
157	format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.token[0].line, format)
158	panic(fmt.Errorf(format, args...))
159}
160
161// error terminates processing.
162func (t *Tree) error(err error) {
163	t.errorf("%s", err)
164}
165
166// expect consumes the next token and guarantees it has the required type.
167func (t *Tree) expect(expected itemType, context string) item {
168	token := t.nextNonSpace()
169	if token.typ != expected {
170		t.unexpected(token, context)
171	}
172	return token
173}
174
175// expectOneOf consumes the next token and guarantees it has one of the required types.
176func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item {
177	token := t.nextNonSpace()
178	if token.typ != expected1 && token.typ != expected2 {
179		t.unexpected(token, context)
180	}
181	return token
182}
183
184// unexpected complains about the token and terminates processing.
185func (t *Tree) unexpected(token item, context string) {
186	t.errorf("unexpected %s in %s", token, context)
187}
188
189// recover is the handler that turns panics into returns from the top level of Parse.
190func (t *Tree) recover(errp *error) {
191	e := recover()
192	if e != nil {
193		if _, ok := e.(runtime.Error); ok {
194			panic(e)
195		}
196		if t != nil {
197			t.lex.drain()
198			t.stopParse()
199		}
200		*errp = e.(error)
201	}
202}
203
204// startParse initializes the parser, using the lexer.
205func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer, treeSet map[string]*Tree) {
206	t.Root = nil
207	t.lex = lex
208	t.vars = []string{"$"}
209	t.funcs = funcs
210	t.treeSet = treeSet
211}
212
213// stopParse terminates parsing.
214func (t *Tree) stopParse() {
215	t.lex = nil
216	t.vars = nil
217	t.funcs = nil
218	t.treeSet = nil
219}
220
221// Parse parses the template definition string to construct a representation of
222// the template for execution. If either action delimiter string is empty, the
223// default ("{{" or "}}") is used. Embedded template definitions are added to
224// the treeSet map.
225func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) {
226	defer t.recover(&err)
227	t.ParseName = t.Name
228	t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim), treeSet)
229	t.text = text
230	t.parse()
231	t.add()
232	t.stopParse()
233	return t, nil
234}
235
236// add adds tree to t.treeSet.
237func (t *Tree) add() {
238	tree := t.treeSet[t.Name]
239	if tree == nil || IsEmptyTree(tree.Root) {
240		t.treeSet[t.Name] = t
241		return
242	}
243	if !IsEmptyTree(t.Root) {
244		t.errorf("template: multiple definition of template %q", t.Name)
245	}
246}
247
248// IsEmptyTree reports whether this tree (node) is empty of everything but space.
249func IsEmptyTree(n Node) bool {
250	switch n := n.(type) {
251	case nil:
252		return true
253	case *ActionNode:
254	case *IfNode:
255	case *ListNode:
256		for _, node := range n.Nodes {
257			if !IsEmptyTree(node) {
258				return false
259			}
260		}
261		return true
262	case *RangeNode:
263	case *TemplateNode:
264	case *TextNode:
265		return len(bytes.TrimSpace(n.Text)) == 0
266	case *WithNode:
267	default:
268		panic("unknown node: " + n.String())
269	}
270	return false
271}
272
273// parse is the top-level parser for a template, essentially the same
274// as itemList except it also parses {{define}} actions.
275// It runs to EOF.
276func (t *Tree) parse() {
277	t.Root = t.newList(t.peek().pos)
278	for t.peek().typ != itemEOF {
279		if t.peek().typ == itemLeftDelim {
280			delim := t.next()
281			if t.nextNonSpace().typ == itemDefine {
282				newT := New("definition") // name will be updated once we know it.
283				newT.text = t.text
284				newT.ParseName = t.ParseName
285				newT.startParse(t.funcs, t.lex, t.treeSet)
286				newT.parseDefinition()
287				continue
288			}
289			t.backup2(delim)
290		}
291		switch n := t.textOrAction(); n.Type() {
292		case nodeEnd, nodeElse:
293			t.errorf("unexpected %s", n)
294		default:
295			t.Root.append(n)
296		}
297	}
298}
299
300// parseDefinition parses a {{define}} ...  {{end}} template definition and
301// installs the definition in t.treeSet. The "define" keyword has already
302// been scanned.
303func (t *Tree) parseDefinition() {
304	const context = "define clause"
305	name := t.expectOneOf(itemString, itemRawString, context)
306	var err error
307	t.Name, err = strconv.Unquote(name.val)
308	if err != nil {
309		t.error(err)
310	}
311	t.expect(itemRightDelim, context)
312	var end Node
313	t.Root, end = t.itemList()
314	if end.Type() != nodeEnd {
315		t.errorf("unexpected %s in %s", end, context)
316	}
317	t.add()
318	t.stopParse()
319}
320
321// itemList:
322//	textOrAction*
323// Terminates at {{end}} or {{else}}, returned separately.
324func (t *Tree) itemList() (list *ListNode, next Node) {
325	list = t.newList(t.peekNonSpace().pos)
326	for t.peekNonSpace().typ != itemEOF {
327		n := t.textOrAction()
328		switch n.Type() {
329		case nodeEnd, nodeElse:
330			return list, n
331		}
332		list.append(n)
333	}
334	t.errorf("unexpected EOF")
335	return
336}
337
338// textOrAction:
339//	text | action
340func (t *Tree) textOrAction() Node {
341	switch token := t.nextNonSpace(); token.typ {
342	case itemText:
343		return t.newText(token.pos, token.val)
344	case itemLeftDelim:
345		return t.action()
346	default:
347		t.unexpected(token, "input")
348	}
349	return nil
350}
351
352// Action:
353//	control
354//	command ("|" command)*
355// Left delim is past. Now get actions.
356// First word could be a keyword such as range.
357func (t *Tree) action() (n Node) {
358	switch token := t.nextNonSpace(); token.typ {
359	case itemBlock:
360		return t.blockControl()
361	case itemElse:
362		return t.elseControl()
363	case itemEnd:
364		return t.endControl()
365	case itemIf:
366		return t.ifControl()
367	case itemRange:
368		return t.rangeControl()
369	case itemTemplate:
370		return t.templateControl()
371	case itemWith:
372		return t.withControl()
373	}
374	t.backup()
375	token := t.peek()
376	// Do not pop variables; they persist until "end".
377	return t.newAction(token.pos, token.line, t.pipeline("command"))
378}
379
380// Pipeline:
381//	declarations? command ('|' command)*
382func (t *Tree) pipeline(context string) (pipe *PipeNode) {
383	token := t.peekNonSpace()
384	pipe = t.newPipeline(token.pos, token.line, nil)
385	// Are there declarations or assignments?
386decls:
387	if v := t.peekNonSpace(); v.typ == itemVariable {
388		t.next()
389		// Since space is a token, we need 3-token look-ahead here in the worst case:
390		// in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an
391		// argument variable rather than a declaration. So remember the token
392		// adjacent to the variable so we can push it back if necessary.
393		tokenAfterVariable := t.peek()
394		next := t.peekNonSpace()
395		switch {
396		case next.typ == itemAssign, next.typ == itemDeclare:
397			pipe.IsAssign = next.typ == itemAssign
398			t.nextNonSpace()
399			pipe.Decl = append(pipe.Decl, t.newVariable(v.pos, v.val))
400			t.vars = append(t.vars, v.val)
401		case next.typ == itemChar && next.val == ",":
402			t.nextNonSpace()
403			pipe.Decl = append(pipe.Decl, t.newVariable(v.pos, v.val))
404			t.vars = append(t.vars, v.val)
405			if context == "range" && len(pipe.Decl) < 2 {
406				switch t.peekNonSpace().typ {
407				case itemVariable, itemRightDelim, itemRightParen:
408					// second initialized variable in a range pipeline
409					goto decls
410				default:
411					t.errorf("range can only initialize variables")
412				}
413			}
414			t.errorf("too many declarations in %s", context)
415		case tokenAfterVariable.typ == itemSpace:
416			t.backup3(v, tokenAfterVariable)
417		default:
418			t.backup2(v)
419		}
420	}
421	for {
422		switch token := t.nextNonSpace(); token.typ {
423		case itemRightDelim, itemRightParen:
424			// At this point, the pipeline is complete
425			t.checkPipeline(pipe, context)
426			if token.typ == itemRightParen {
427				t.backup()
428			}
429			return
430		case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier,
431			itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen:
432			t.backup()
433			pipe.append(t.command())
434		default:
435			t.unexpected(token, context)
436		}
437	}
438}
439
440func (t *Tree) checkPipeline(pipe *PipeNode, context string) {
441	// Reject empty pipelines
442	if len(pipe.Cmds) == 0 {
443		t.errorf("missing value for %s", context)
444	}
445	// Only the first command of a pipeline can start with a non executable operand
446	for i, c := range pipe.Cmds[1:] {
447		switch c.Args[0].Type() {
448		case NodeBool, NodeDot, NodeNil, NodeNumber, NodeString:
449			// With A|B|C, pipeline stage 2 is B
450			t.errorf("non executable command in pipeline stage %d", i+2)
451		}
452	}
453}
454
455func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) {
456	defer t.popVars(len(t.vars))
457	pipe = t.pipeline(context)
458	var next Node
459	list, next = t.itemList()
460	switch next.Type() {
461	case nodeEnd: //done
462	case nodeElse:
463		if allowElseIf {
464			// Special case for "else if". If the "else" is followed immediately by an "if",
465			// the elseControl will have left the "if" token pending. Treat
466			//	{{if a}}_{{else if b}}_{{end}}
467			// as
468			//	{{if a}}_{{else}}{{if b}}_{{end}}{{end}}.
469			// To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}}
470			// is assumed. This technique works even for long if-else-if chains.
471			// TODO: Should we allow else-if in with and range?
472			if t.peek().typ == itemIf {
473				t.next() // Consume the "if" token.
474				elseList = t.newList(next.Position())
475				elseList.append(t.ifControl())
476				// Do not consume the next item - only one {{end}} required.
477				break
478			}
479		}
480		elseList, next = t.itemList()
481		if next.Type() != nodeEnd {
482			t.errorf("expected end; found %s", next)
483		}
484	}
485	return pipe.Position(), pipe.Line, pipe, list, elseList
486}
487
488// If:
489//	{{if pipeline}} itemList {{end}}
490//	{{if pipeline}} itemList {{else}} itemList {{end}}
491// If keyword is past.
492func (t *Tree) ifControl() Node {
493	return t.newIf(t.parseControl(true, "if"))
494}
495
496// Range:
497//	{{range pipeline}} itemList {{end}}
498//	{{range pipeline}} itemList {{else}} itemList {{end}}
499// Range keyword is past.
500func (t *Tree) rangeControl() Node {
501	return t.newRange(t.parseControl(false, "range"))
502}
503
504// With:
505//	{{with pipeline}} itemList {{end}}
506//	{{with pipeline}} itemList {{else}} itemList {{end}}
507// If keyword is past.
508func (t *Tree) withControl() Node {
509	return t.newWith(t.parseControl(false, "with"))
510}
511
512// End:
513//	{{end}}
514// End keyword is past.
515func (t *Tree) endControl() Node {
516	return t.newEnd(t.expect(itemRightDelim, "end").pos)
517}
518
519// Else:
520//	{{else}}
521// Else keyword is past.
522func (t *Tree) elseControl() Node {
523	// Special case for "else if".
524	peek := t.peekNonSpace()
525	if peek.typ == itemIf {
526		// We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ".
527		return t.newElse(peek.pos, peek.line)
528	}
529	token := t.expect(itemRightDelim, "else")
530	return t.newElse(token.pos, token.line)
531}
532
533// Block:
534//	{{block stringValue pipeline}}
535// Block keyword is past.
536// The name must be something that can evaluate to a string.
537// The pipeline is mandatory.
538func (t *Tree) blockControl() Node {
539	const context = "block clause"
540
541	token := t.nextNonSpace()
542	name := t.parseTemplateName(token, context)
543	pipe := t.pipeline(context)
544
545	block := New(name) // name will be updated once we know it.
546	block.text = t.text
547	block.ParseName = t.ParseName
548	block.startParse(t.funcs, t.lex, t.treeSet)
549	var end Node
550	block.Root, end = block.itemList()
551	if end.Type() != nodeEnd {
552		t.errorf("unexpected %s in %s", end, context)
553	}
554	block.add()
555	block.stopParse()
556
557	return t.newTemplate(token.pos, token.line, name, pipe)
558}
559
560// Template:
561//	{{template stringValue pipeline}}
562// Template keyword is past. The name must be something that can evaluate
563// to a string.
564func (t *Tree) templateControl() Node {
565	const context = "template clause"
566	token := t.nextNonSpace()
567	name := t.parseTemplateName(token, context)
568	var pipe *PipeNode
569	if t.nextNonSpace().typ != itemRightDelim {
570		t.backup()
571		// Do not pop variables; they persist until "end".
572		pipe = t.pipeline(context)
573	}
574	return t.newTemplate(token.pos, token.line, name, pipe)
575}
576
577func (t *Tree) parseTemplateName(token item, context string) (name string) {
578	switch token.typ {
579	case itemString, itemRawString:
580		s, err := strconv.Unquote(token.val)
581		if err != nil {
582			t.error(err)
583		}
584		name = s
585	default:
586		t.unexpected(token, context)
587	}
588	return
589}
590
591// command:
592//	operand (space operand)*
593// space-separated arguments up to a pipeline character or right delimiter.
594// we consume the pipe character but leave the right delim to terminate the action.
595func (t *Tree) command() *CommandNode {
596	cmd := t.newCommand(t.peekNonSpace().pos)
597	for {
598		t.peekNonSpace() // skip leading spaces.
599		operand := t.operand()
600		if operand != nil {
601			cmd.append(operand)
602		}
603		switch token := t.next(); token.typ {
604		case itemSpace:
605			continue
606		case itemError:
607			t.errorf("%s", token.val)
608		case itemRightDelim, itemRightParen:
609			t.backup()
610		case itemPipe:
611		default:
612			t.errorf("unexpected %s in operand", token)
613		}
614		break
615	}
616	if len(cmd.Args) == 0 {
617		t.errorf("empty command")
618	}
619	return cmd
620}
621
622// operand:
623//	term .Field*
624// An operand is a space-separated component of a command,
625// a term possibly followed by field accesses.
626// A nil return means the next item is not an operand.
627func (t *Tree) operand() Node {
628	node := t.term()
629	if node == nil {
630		return nil
631	}
632	if t.peek().typ == itemField {
633		chain := t.newChain(t.peek().pos, node)
634		for t.peek().typ == itemField {
635			chain.Add(t.next().val)
636		}
637		// Compatibility with original API: If the term is of type NodeField
638		// or NodeVariable, just put more fields on the original.
639		// Otherwise, keep the Chain node.
640		// Obvious parsing errors involving literal values are detected here.
641		// More complex error cases will have to be handled at execution time.
642		switch node.Type() {
643		case NodeField:
644			node = t.newField(chain.Position(), chain.String())
645		case NodeVariable:
646			node = t.newVariable(chain.Position(), chain.String())
647		case NodeBool, NodeString, NodeNumber, NodeNil, NodeDot:
648			t.errorf("unexpected . after term %q", node.String())
649		default:
650			node = chain
651		}
652	}
653	return node
654}
655
656// term:
657//	literal (number, string, nil, boolean)
658//	function (identifier)
659//	.
660//	.Field
661//	$
662//	'(' pipeline ')'
663// A term is a simple "expression".
664// A nil return means the next item is not a term.
665func (t *Tree) term() Node {
666	switch token := t.nextNonSpace(); token.typ {
667	case itemError:
668		t.errorf("%s", token.val)
669	case itemIdentifier:
670		if !t.hasFunction(token.val) {
671			t.errorf("function %q not defined", token.val)
672		}
673		return NewIdentifier(token.val).SetTree(t).SetPos(token.pos)
674	case itemDot:
675		return t.newDot(token.pos)
676	case itemNil:
677		return t.newNil(token.pos)
678	case itemVariable:
679		return t.useVar(token.pos, token.val)
680	case itemField:
681		return t.newField(token.pos, token.val)
682	case itemBool:
683		return t.newBool(token.pos, token.val == "true")
684	case itemCharConstant, itemComplex, itemNumber:
685		number, err := t.newNumber(token.pos, token.val, token.typ)
686		if err != nil {
687			t.error(err)
688		}
689		return number
690	case itemLeftParen:
691		pipe := t.pipeline("parenthesized pipeline")
692		if token := t.next(); token.typ != itemRightParen {
693			t.errorf("unclosed right paren: unexpected %s", token)
694		}
695		return pipe
696	case itemString, itemRawString:
697		s, err := strconv.Unquote(token.val)
698		if err != nil {
699			t.error(err)
700		}
701		return t.newString(token.pos, token.val, s)
702	}
703	t.backup()
704	return nil
705}
706
707// hasFunction reports if a function name exists in the Tree's maps.
708func (t *Tree) hasFunction(name string) bool {
709	for _, funcMap := range t.funcs {
710		if funcMap == nil {
711			continue
712		}
713		if funcMap[name] != nil {
714			return true
715		}
716	}
717	return false
718}
719
720// popVars trims the variable list to the specified length
721func (t *Tree) popVars(n int) {
722	t.vars = t.vars[:n]
723}
724
725// useVar returns a node for a variable reference. It errors if the
726// variable is not defined.
727func (t *Tree) useVar(pos Pos, name string) Node {
728	v := t.newVariable(pos, name)
729	for _, varName := range t.vars {
730		if varName == v.Ident[0] {
731			return v
732		}
733	}
734	t.errorf("undefined variable %q", v.Ident[0])
735	return nil
736}
737