1 //===-- asan_allocator.cc -------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of AddressSanitizer, an address sanity checker.
9 //
10 // Implementation of ASan's memory allocator, 2-nd version.
11 // This variant uses the allocator from sanitizer_common, i.e. the one shared
12 // with ThreadSanitizer and MemorySanitizer.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "asan_allocator.h"
17 #include "asan_mapping.h"
18 #include "asan_poisoning.h"
19 #include "asan_report.h"
20 #include "asan_stack.h"
21 #include "asan_thread.h"
22 #include "sanitizer_common/sanitizer_allocator_checks.h"
23 #include "sanitizer_common/sanitizer_allocator_interface.h"
24 #include "sanitizer_common/sanitizer_errno.h"
25 #include "sanitizer_common/sanitizer_flags.h"
26 #include "sanitizer_common/sanitizer_internal_defs.h"
27 #include "sanitizer_common/sanitizer_list.h"
28 #include "sanitizer_common/sanitizer_stackdepot.h"
29 #include "sanitizer_common/sanitizer_quarantine.h"
30 #include "lsan/lsan_common.h"
31 
32 namespace __asan {
33 
34 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
35 // We use adaptive redzones: for larger allocation larger redzones are used.
RZLog2Size(u32 rz_log)36 static u32 RZLog2Size(u32 rz_log) {
37   CHECK_LT(rz_log, 8);
38   return 16 << rz_log;
39 }
40 
RZSize2Log(u32 rz_size)41 static u32 RZSize2Log(u32 rz_size) {
42   CHECK_GE(rz_size, 16);
43   CHECK_LE(rz_size, 2048);
44   CHECK(IsPowerOfTwo(rz_size));
45   u32 res = Log2(rz_size) - 4;
46   CHECK_EQ(rz_size, RZLog2Size(res));
47   return res;
48 }
49 
50 static AsanAllocator &get_allocator();
51 
52 // The memory chunk allocated from the underlying allocator looks like this:
53 // L L L L L L H H U U U U U U R R
54 //   L -- left redzone words (0 or more bytes)
55 //   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
56 //   U -- user memory.
57 //   R -- right redzone (0 or more bytes)
58 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
59 // memory.
60 
61 // If the left redzone is greater than the ChunkHeader size we store a magic
62 // value in the first uptr word of the memory block and store the address of
63 // ChunkBase in the next uptr.
64 // M B L L L L L L L L L  H H U U U U U U
65 //   |                    ^
66 //   ---------------------|
67 //   M -- magic value kAllocBegMagic
68 //   B -- address of ChunkHeader pointing to the first 'H'
69 static const uptr kAllocBegMagic = 0xCC6E96B9;
70 
71 struct ChunkHeader {
72   // 1-st 8 bytes.
73   u32 chunk_state       : 8;  // Must be first.
74   u32 alloc_tid         : 24;
75 
76   u32 free_tid          : 24;
77   u32 from_memalign     : 1;
78   u32 alloc_type        : 2;
79   u32 rz_log            : 3;
80   u32 lsan_tag          : 2;
81   // 2-nd 8 bytes
82   // This field is used for small sizes. For large sizes it is equal to
83   // SizeClassMap::kMaxSize and the actual size is stored in the
84   // SecondaryAllocator's metadata.
85   u32 user_requested_size : 29;
86   // align < 8 -> 0
87   // else      -> log2(min(align, 512)) - 2
88   u32 user_requested_alignment_log : 3;
89   u32 alloc_context_id;
90 };
91 
92 struct ChunkBase : ChunkHeader {
93   // Header2, intersects with user memory.
94   u32 free_context_id;
95 };
96 
97 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
98 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
99 COMPILER_CHECK(kChunkHeaderSize == 16);
100 COMPILER_CHECK(kChunkHeader2Size <= 16);
101 
102 // Every chunk of memory allocated by this allocator can be in one of 3 states:
103 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
104 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
105 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
106 enum {
107   CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
108   CHUNK_ALLOCATED  = 2,
109   CHUNK_QUARANTINE = 3
110 };
111 
112 struct AsanChunk: ChunkBase {
Beg__asan::AsanChunk113   uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
UsedSize__asan::AsanChunk114   uptr UsedSize(bool locked_version = false) {
115     if (user_requested_size != SizeClassMap::kMaxSize)
116       return user_requested_size;
117     return *reinterpret_cast<uptr *>(
118                get_allocator().GetMetaData(AllocBeg(locked_version)));
119   }
AllocBeg__asan::AsanChunk120   void *AllocBeg(bool locked_version = false) {
121     if (from_memalign) {
122       if (locked_version)
123         return get_allocator().GetBlockBeginFastLocked(
124             reinterpret_cast<void *>(this));
125       return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
126     }
127     return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
128   }
AddrIsInside__asan::AsanChunk129   bool AddrIsInside(uptr addr, bool locked_version = false) {
130     return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version));
131   }
132 };
133 
134 struct QuarantineCallback {
QuarantineCallback__asan::QuarantineCallback135   QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
136       : cache_(cache),
137         stack_(stack) {
138   }
139 
Recycle__asan::QuarantineCallback140   void Recycle(AsanChunk *m) {
141     CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
142     atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed);
143     CHECK_NE(m->alloc_tid, kInvalidTid);
144     CHECK_NE(m->free_tid, kInvalidTid);
145     PoisonShadow(m->Beg(),
146                  RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
147                  kAsanHeapLeftRedzoneMagic);
148     void *p = reinterpret_cast<void *>(m->AllocBeg());
149     if (p != m) {
150       uptr *alloc_magic = reinterpret_cast<uptr *>(p);
151       CHECK_EQ(alloc_magic[0], kAllocBegMagic);
152       // Clear the magic value, as allocator internals may overwrite the
153       // contents of deallocated chunk, confusing GetAsanChunk lookup.
154       alloc_magic[0] = 0;
155       CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
156     }
157 
158     // Statistics.
159     AsanStats &thread_stats = GetCurrentThreadStats();
160     thread_stats.real_frees++;
161     thread_stats.really_freed += m->UsedSize();
162 
163     get_allocator().Deallocate(cache_, p);
164   }
165 
Allocate__asan::QuarantineCallback166   void *Allocate(uptr size) {
167     void *res = get_allocator().Allocate(cache_, size, 1);
168     // TODO(alekseys): Consider making quarantine OOM-friendly.
169     if (UNLIKELY(!res))
170       ReportOutOfMemory(size, stack_);
171     return res;
172   }
173 
Deallocate__asan::QuarantineCallback174   void Deallocate(void *p) {
175     get_allocator().Deallocate(cache_, p);
176   }
177 
178  private:
179   AllocatorCache* const cache_;
180   BufferedStackTrace* const stack_;
181 };
182 
183 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
184 typedef AsanQuarantine::Cache QuarantineCache;
185 
OnMap(uptr p,uptr size) const186 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
187   PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
188   // Statistics.
189   AsanStats &thread_stats = GetCurrentThreadStats();
190   thread_stats.mmaps++;
191   thread_stats.mmaped += size;
192 }
OnUnmap(uptr p,uptr size) const193 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
194   PoisonShadow(p, size, 0);
195   // We are about to unmap a chunk of user memory.
196   // Mark the corresponding shadow memory as not needed.
197   FlushUnneededASanShadowMemory(p, size);
198   // Statistics.
199   AsanStats &thread_stats = GetCurrentThreadStats();
200   thread_stats.munmaps++;
201   thread_stats.munmaped += size;
202 }
203 
204 // We can not use THREADLOCAL because it is not supported on some of the
205 // platforms we care about (OSX 10.6, Android).
206 // static THREADLOCAL AllocatorCache cache;
GetAllocatorCache(AsanThreadLocalMallocStorage * ms)207 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
208   CHECK(ms);
209   return &ms->allocator_cache;
210 }
211 
GetQuarantineCache(AsanThreadLocalMallocStorage * ms)212 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
213   CHECK(ms);
214   CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
215   return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
216 }
217 
SetFrom(const Flags * f,const CommonFlags * cf)218 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
219   quarantine_size_mb = f->quarantine_size_mb;
220   thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
221   min_redzone = f->redzone;
222   max_redzone = f->max_redzone;
223   may_return_null = cf->allocator_may_return_null;
224   alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
225   release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
226 }
227 
CopyTo(Flags * f,CommonFlags * cf)228 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
229   f->quarantine_size_mb = quarantine_size_mb;
230   f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
231   f->redzone = min_redzone;
232   f->max_redzone = max_redzone;
233   cf->allocator_may_return_null = may_return_null;
234   f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
235   cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
236 }
237 
238 struct Allocator {
239   static const uptr kMaxAllowedMallocSize =
240       FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
241 
242   AsanAllocator allocator;
243   AsanQuarantine quarantine;
244   StaticSpinMutex fallback_mutex;
245   AllocatorCache fallback_allocator_cache;
246   QuarantineCache fallback_quarantine_cache;
247 
248   atomic_uint8_t rss_limit_exceeded;
249 
250   // ------------------- Options --------------------------
251   atomic_uint16_t min_redzone;
252   atomic_uint16_t max_redzone;
253   atomic_uint8_t alloc_dealloc_mismatch;
254 
255   // ------------------- Initialization ------------------------
Allocator__asan::Allocator256   explicit Allocator(LinkerInitialized)
257       : quarantine(LINKER_INITIALIZED),
258         fallback_quarantine_cache(LINKER_INITIALIZED) {}
259 
CheckOptions__asan::Allocator260   void CheckOptions(const AllocatorOptions &options) const {
261     CHECK_GE(options.min_redzone, 16);
262     CHECK_GE(options.max_redzone, options.min_redzone);
263     CHECK_LE(options.max_redzone, 2048);
264     CHECK(IsPowerOfTwo(options.min_redzone));
265     CHECK(IsPowerOfTwo(options.max_redzone));
266   }
267 
SharedInitCode__asan::Allocator268   void SharedInitCode(const AllocatorOptions &options) {
269     CheckOptions(options);
270     quarantine.Init((uptr)options.quarantine_size_mb << 20,
271                     (uptr)options.thread_local_quarantine_size_kb << 10);
272     atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
273                  memory_order_release);
274     atomic_store(&min_redzone, options.min_redzone, memory_order_release);
275     atomic_store(&max_redzone, options.max_redzone, memory_order_release);
276   }
277 
InitLinkerInitialized__asan::Allocator278   void InitLinkerInitialized(const AllocatorOptions &options) {
279     SetAllocatorMayReturnNull(options.may_return_null);
280     allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
281     SharedInitCode(options);
282   }
283 
RssLimitExceeded__asan::Allocator284   bool RssLimitExceeded() {
285     return atomic_load(&rss_limit_exceeded, memory_order_relaxed);
286   }
287 
SetRssLimitExceeded__asan::Allocator288   void SetRssLimitExceeded(bool limit_exceeded) {
289     atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed);
290   }
291 
RePoisonChunk__asan::Allocator292   void RePoisonChunk(uptr chunk) {
293     // This could be a user-facing chunk (with redzones), or some internal
294     // housekeeping chunk, like TransferBatch. Start by assuming the former.
295     AsanChunk *ac = GetAsanChunk((void *)chunk);
296     uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)ac);
297     uptr beg = ac->Beg();
298     uptr end = ac->Beg() + ac->UsedSize(true);
299     uptr chunk_end = chunk + allocated_size;
300     if (chunk < beg && beg < end && end <= chunk_end &&
301         ac->chunk_state == CHUNK_ALLOCATED) {
302       // Looks like a valid AsanChunk in use, poison redzones only.
303       PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
304       uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY);
305       FastPoisonShadowPartialRightRedzone(
306           end_aligned_down, end - end_aligned_down,
307           chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
308     } else {
309       // This is either not an AsanChunk or freed or quarantined AsanChunk.
310       // In either case, poison everything.
311       PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
312     }
313   }
314 
ReInitialize__asan::Allocator315   void ReInitialize(const AllocatorOptions &options) {
316     SetAllocatorMayReturnNull(options.may_return_null);
317     allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
318     SharedInitCode(options);
319 
320     // Poison all existing allocation's redzones.
321     if (CanPoisonMemory()) {
322       allocator.ForceLock();
323       allocator.ForEachChunk(
324           [](uptr chunk, void *alloc) {
325             ((Allocator *)alloc)->RePoisonChunk(chunk);
326           },
327           this);
328       allocator.ForceUnlock();
329     }
330   }
331 
GetOptions__asan::Allocator332   void GetOptions(AllocatorOptions *options) const {
333     options->quarantine_size_mb = quarantine.GetSize() >> 20;
334     options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
335     options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
336     options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
337     options->may_return_null = AllocatorMayReturnNull();
338     options->alloc_dealloc_mismatch =
339         atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
340     options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
341   }
342 
343   // -------------------- Helper methods. -------------------------
ComputeRZLog__asan::Allocator344   uptr ComputeRZLog(uptr user_requested_size) {
345     u32 rz_log =
346       user_requested_size <= 64        - 16   ? 0 :
347       user_requested_size <= 128       - 32   ? 1 :
348       user_requested_size <= 512       - 64   ? 2 :
349       user_requested_size <= 4096      - 128  ? 3 :
350       user_requested_size <= (1 << 14) - 256  ? 4 :
351       user_requested_size <= (1 << 15) - 512  ? 5 :
352       user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
353     u32 min_rz = atomic_load(&min_redzone, memory_order_acquire);
354     u32 max_rz = atomic_load(&max_redzone, memory_order_acquire);
355     return Min(Max(rz_log, RZSize2Log(min_rz)), RZSize2Log(max_rz));
356   }
357 
ComputeUserRequestedAlignmentLog__asan::Allocator358   static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
359     if (user_requested_alignment < 8)
360       return 0;
361     if (user_requested_alignment > 512)
362       user_requested_alignment = 512;
363     return Log2(user_requested_alignment) - 2;
364   }
365 
ComputeUserAlignment__asan::Allocator366   static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
367     if (user_requested_alignment_log == 0)
368       return 0;
369     return 1LL << (user_requested_alignment_log + 2);
370   }
371 
372   // We have an address between two chunks, and we want to report just one.
ChooseChunk__asan::Allocator373   AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
374                          AsanChunk *right_chunk) {
375     // Prefer an allocated chunk over freed chunk and freed chunk
376     // over available chunk.
377     if (left_chunk->chunk_state != right_chunk->chunk_state) {
378       if (left_chunk->chunk_state == CHUNK_ALLOCATED)
379         return left_chunk;
380       if (right_chunk->chunk_state == CHUNK_ALLOCATED)
381         return right_chunk;
382       if (left_chunk->chunk_state == CHUNK_QUARANTINE)
383         return left_chunk;
384       if (right_chunk->chunk_state == CHUNK_QUARANTINE)
385         return right_chunk;
386     }
387     // Same chunk_state: choose based on offset.
388     sptr l_offset = 0, r_offset = 0;
389     CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
390     CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
391     if (l_offset < r_offset)
392       return left_chunk;
393     return right_chunk;
394   }
395 
396   // -------------------- Allocation/Deallocation routines ---------------
Allocate__asan::Allocator397   void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
398                  AllocType alloc_type, bool can_fill) {
399     if (UNLIKELY(!asan_inited))
400       AsanInitFromRtl();
401     if (RssLimitExceeded()) {
402       if (AllocatorMayReturnNull())
403         return nullptr;
404       ReportRssLimitExceeded(stack);
405     }
406     Flags &fl = *flags();
407     CHECK(stack);
408     const uptr min_alignment = SHADOW_GRANULARITY;
409     const uptr user_requested_alignment_log =
410         ComputeUserRequestedAlignmentLog(alignment);
411     if (alignment < min_alignment)
412       alignment = min_alignment;
413     if (size == 0) {
414       // We'd be happy to avoid allocating memory for zero-size requests, but
415       // some programs/tests depend on this behavior and assume that malloc
416       // would not return NULL even for zero-size allocations. Moreover, it
417       // looks like operator new should never return NULL, and results of
418       // consecutive "new" calls must be different even if the allocated size
419       // is zero.
420       size = 1;
421     }
422     CHECK(IsPowerOfTwo(alignment));
423     uptr rz_log = ComputeRZLog(size);
424     uptr rz_size = RZLog2Size(rz_log);
425     uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
426     uptr needed_size = rounded_size + rz_size;
427     if (alignment > min_alignment)
428       needed_size += alignment;
429     bool using_primary_allocator = true;
430     // If we are allocating from the secondary allocator, there will be no
431     // automatic right redzone, so add the right redzone manually.
432     if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
433       needed_size += rz_size;
434       using_primary_allocator = false;
435     }
436     CHECK(IsAligned(needed_size, min_alignment));
437     if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
438       if (AllocatorMayReturnNull()) {
439         Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
440                (void*)size);
441         return nullptr;
442       }
443       ReportAllocationSizeTooBig(size, needed_size, kMaxAllowedMallocSize,
444                                  stack);
445     }
446 
447     AsanThread *t = GetCurrentThread();
448     void *allocated;
449     if (t) {
450       AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
451       allocated = allocator.Allocate(cache, needed_size, 8);
452     } else {
453       SpinMutexLock l(&fallback_mutex);
454       AllocatorCache *cache = &fallback_allocator_cache;
455       allocated = allocator.Allocate(cache, needed_size, 8);
456     }
457     if (UNLIKELY(!allocated)) {
458       SetAllocatorOutOfMemory();
459       if (AllocatorMayReturnNull())
460         return nullptr;
461       ReportOutOfMemory(size, stack);
462     }
463 
464     if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
465       // Heap poisoning is enabled, but the allocator provides an unpoisoned
466       // chunk. This is possible if CanPoisonMemory() was false for some
467       // time, for example, due to flags()->start_disabled.
468       // Anyway, poison the block before using it for anything else.
469       uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
470       PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
471     }
472 
473     uptr alloc_beg = reinterpret_cast<uptr>(allocated);
474     uptr alloc_end = alloc_beg + needed_size;
475     uptr beg_plus_redzone = alloc_beg + rz_size;
476     uptr user_beg = beg_plus_redzone;
477     if (!IsAligned(user_beg, alignment))
478       user_beg = RoundUpTo(user_beg, alignment);
479     uptr user_end = user_beg + size;
480     CHECK_LE(user_end, alloc_end);
481     uptr chunk_beg = user_beg - kChunkHeaderSize;
482     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
483     m->alloc_type = alloc_type;
484     m->rz_log = rz_log;
485     u32 alloc_tid = t ? t->tid() : 0;
486     m->alloc_tid = alloc_tid;
487     CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
488     m->free_tid = kInvalidTid;
489     m->from_memalign = user_beg != beg_plus_redzone;
490     if (alloc_beg != chunk_beg) {
491       CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
492       reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
493       reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
494     }
495     if (using_primary_allocator) {
496       CHECK(size);
497       m->user_requested_size = size;
498       CHECK(allocator.FromPrimary(allocated));
499     } else {
500       CHECK(!allocator.FromPrimary(allocated));
501       m->user_requested_size = SizeClassMap::kMaxSize;
502       uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
503       meta[0] = size;
504       meta[1] = chunk_beg;
505     }
506     m->user_requested_alignment_log = user_requested_alignment_log;
507 
508     m->alloc_context_id = StackDepotPut(*stack);
509 
510     uptr size_rounded_down_to_granularity =
511         RoundDownTo(size, SHADOW_GRANULARITY);
512     // Unpoison the bulk of the memory region.
513     if (size_rounded_down_to_granularity)
514       PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
515     // Deal with the end of the region if size is not aligned to granularity.
516     if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
517       u8 *shadow =
518           (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
519       *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
520     }
521 
522     AsanStats &thread_stats = GetCurrentThreadStats();
523     thread_stats.mallocs++;
524     thread_stats.malloced += size;
525     thread_stats.malloced_redzones += needed_size - size;
526     if (needed_size > SizeClassMap::kMaxSize)
527       thread_stats.malloc_large++;
528     else
529       thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
530 
531     void *res = reinterpret_cast<void *>(user_beg);
532     if (can_fill && fl.max_malloc_fill_size) {
533       uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
534       REAL(memset)(res, fl.malloc_fill_byte, fill_size);
535     }
536 #if CAN_SANITIZE_LEAKS
537     m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
538                                                  : __lsan::kDirectlyLeaked;
539 #endif
540     // Must be the last mutation of metadata in this function.
541     atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
542     ASAN_MALLOC_HOOK(res, size);
543     return res;
544   }
545 
546   // Set quarantine flag if chunk is allocated, issue ASan error report on
547   // available and quarantined chunks. Return true on success, false otherwise.
AtomicallySetQuarantineFlagIfAllocated__asan::Allocator548   bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
549                                    BufferedStackTrace *stack) {
550     u8 old_chunk_state = CHUNK_ALLOCATED;
551     // Flip the chunk_state atomically to avoid race on double-free.
552     if (!atomic_compare_exchange_strong((atomic_uint8_t *)m, &old_chunk_state,
553                                         CHUNK_QUARANTINE,
554                                         memory_order_acquire)) {
555       ReportInvalidFree(ptr, old_chunk_state, stack);
556       // It's not safe to push a chunk in quarantine on invalid free.
557       return false;
558     }
559     CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
560     return true;
561   }
562 
563   // Expects the chunk to already be marked as quarantined by using
564   // AtomicallySetQuarantineFlagIfAllocated.
QuarantineChunk__asan::Allocator565   void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
566     CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
567     CHECK_GE(m->alloc_tid, 0);
568     if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
569       CHECK_EQ(m->free_tid, kInvalidTid);
570     AsanThread *t = GetCurrentThread();
571     m->free_tid = t ? t->tid() : 0;
572     m->free_context_id = StackDepotPut(*stack);
573 
574     Flags &fl = *flags();
575     if (fl.max_free_fill_size > 0) {
576       // We have to skip the chunk header, it contains free_context_id.
577       uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
578       if (m->UsedSize() >= kChunkHeader2Size) {  // Skip Header2 in user area.
579         uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
580         size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
581         REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
582       }
583     }
584 
585     // Poison the region.
586     PoisonShadow(m->Beg(),
587                  RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
588                  kAsanHeapFreeMagic);
589 
590     AsanStats &thread_stats = GetCurrentThreadStats();
591     thread_stats.frees++;
592     thread_stats.freed += m->UsedSize();
593 
594     // Push into quarantine.
595     if (t) {
596       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
597       AllocatorCache *ac = GetAllocatorCache(ms);
598       quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
599                      m->UsedSize());
600     } else {
601       SpinMutexLock l(&fallback_mutex);
602       AllocatorCache *ac = &fallback_allocator_cache;
603       quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
604                      m, m->UsedSize());
605     }
606   }
607 
Deallocate__asan::Allocator608   void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
609                   BufferedStackTrace *stack, AllocType alloc_type) {
610     uptr p = reinterpret_cast<uptr>(ptr);
611     if (p == 0) return;
612 
613     uptr chunk_beg = p - kChunkHeaderSize;
614     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
615 
616     // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
617     // malloc. Don't report an invalid free in this case.
618     if (SANITIZER_WINDOWS &&
619         !get_allocator().PointerIsMine(ptr)) {
620       if (!IsSystemHeapAddress(p))
621         ReportFreeNotMalloced(p, stack);
622       return;
623     }
624 
625     ASAN_FREE_HOOK(ptr);
626 
627     // Must mark the chunk as quarantined before any changes to its metadata.
628     // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
629     if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
630 
631     if (m->alloc_type != alloc_type) {
632       if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
633         ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
634                                 (AllocType)alloc_type);
635       }
636     } else {
637       if (flags()->new_delete_type_mismatch &&
638           (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
639           ((delete_size && delete_size != m->UsedSize()) ||
640            ComputeUserRequestedAlignmentLog(delete_alignment) !=
641                m->user_requested_alignment_log)) {
642         ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
643       }
644     }
645 
646     QuarantineChunk(m, ptr, stack);
647   }
648 
Reallocate__asan::Allocator649   void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
650     CHECK(old_ptr && new_size);
651     uptr p = reinterpret_cast<uptr>(old_ptr);
652     uptr chunk_beg = p - kChunkHeaderSize;
653     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
654 
655     AsanStats &thread_stats = GetCurrentThreadStats();
656     thread_stats.reallocs++;
657     thread_stats.realloced += new_size;
658 
659     void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
660     if (new_ptr) {
661       u8 chunk_state = m->chunk_state;
662       if (chunk_state != CHUNK_ALLOCATED)
663         ReportInvalidFree(old_ptr, chunk_state, stack);
664       CHECK_NE(REAL(memcpy), nullptr);
665       uptr memcpy_size = Min(new_size, m->UsedSize());
666       // If realloc() races with free(), we may start copying freed memory.
667       // However, we will report racy double-free later anyway.
668       REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
669       Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
670     }
671     return new_ptr;
672   }
673 
Calloc__asan::Allocator674   void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
675     if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
676       if (AllocatorMayReturnNull())
677         return nullptr;
678       ReportCallocOverflow(nmemb, size, stack);
679     }
680     void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
681     // If the memory comes from the secondary allocator no need to clear it
682     // as it comes directly from mmap.
683     if (ptr && allocator.FromPrimary(ptr))
684       REAL(memset)(ptr, 0, nmemb * size);
685     return ptr;
686   }
687 
ReportInvalidFree__asan::Allocator688   void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
689     if (chunk_state == CHUNK_QUARANTINE)
690       ReportDoubleFree((uptr)ptr, stack);
691     else
692       ReportFreeNotMalloced((uptr)ptr, stack);
693   }
694 
CommitBack__asan::Allocator695   void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
696     AllocatorCache *ac = GetAllocatorCache(ms);
697     quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
698     allocator.SwallowCache(ac);
699   }
700 
701   // -------------------------- Chunk lookup ----------------------
702 
703   // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
GetAsanChunk__asan::Allocator704   AsanChunk *GetAsanChunk(void *alloc_beg) {
705     if (!alloc_beg) return nullptr;
706     if (!allocator.FromPrimary(alloc_beg)) {
707       uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
708       AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
709       return m;
710     }
711     uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
712     if (alloc_magic[0] == kAllocBegMagic)
713       return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
714     return reinterpret_cast<AsanChunk *>(alloc_beg);
715   }
716 
GetAsanChunkByAddr__asan::Allocator717   AsanChunk *GetAsanChunkByAddr(uptr p) {
718     void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
719     return GetAsanChunk(alloc_beg);
720   }
721 
722   // Allocator must be locked when this function is called.
GetAsanChunkByAddrFastLocked__asan::Allocator723   AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
724     void *alloc_beg =
725         allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
726     return GetAsanChunk(alloc_beg);
727   }
728 
AllocationSize__asan::Allocator729   uptr AllocationSize(uptr p) {
730     AsanChunk *m = GetAsanChunkByAddr(p);
731     if (!m) return 0;
732     if (m->chunk_state != CHUNK_ALLOCATED) return 0;
733     if (m->Beg() != p) return 0;
734     return m->UsedSize();
735   }
736 
FindHeapChunkByAddress__asan::Allocator737   AsanChunkView FindHeapChunkByAddress(uptr addr) {
738     AsanChunk *m1 = GetAsanChunkByAddr(addr);
739     if (!m1) return AsanChunkView(m1);
740     sptr offset = 0;
741     if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
742       // The address is in the chunk's left redzone, so maybe it is actually
743       // a right buffer overflow from the other chunk to the left.
744       // Search a bit to the left to see if there is another chunk.
745       AsanChunk *m2 = nullptr;
746       for (uptr l = 1; l < GetPageSizeCached(); l++) {
747         m2 = GetAsanChunkByAddr(addr - l);
748         if (m2 == m1) continue;  // Still the same chunk.
749         break;
750       }
751       if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
752         m1 = ChooseChunk(addr, m2, m1);
753     }
754     return AsanChunkView(m1);
755   }
756 
Purge__asan::Allocator757   void Purge(BufferedStackTrace *stack) {
758     AsanThread *t = GetCurrentThread();
759     if (t) {
760       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
761       quarantine.DrainAndRecycle(GetQuarantineCache(ms),
762                                  QuarantineCallback(GetAllocatorCache(ms),
763                                                     stack));
764     }
765     {
766       SpinMutexLock l(&fallback_mutex);
767       quarantine.DrainAndRecycle(&fallback_quarantine_cache,
768                                  QuarantineCallback(&fallback_allocator_cache,
769                                                     stack));
770     }
771 
772     allocator.ForceReleaseToOS();
773   }
774 
PrintStats__asan::Allocator775   void PrintStats() {
776     allocator.PrintStats();
777     quarantine.PrintStats();
778   }
779 
ForceLock__asan::Allocator780   void ForceLock() {
781     allocator.ForceLock();
782     fallback_mutex.Lock();
783   }
784 
ForceUnlock__asan::Allocator785   void ForceUnlock() {
786     fallback_mutex.Unlock();
787     allocator.ForceUnlock();
788   }
789 };
790 
791 static Allocator instance(LINKER_INITIALIZED);
792 
get_allocator()793 static AsanAllocator &get_allocator() {
794   return instance.allocator;
795 }
796 
IsValid() const797 bool AsanChunkView::IsValid() const {
798   return chunk_ && chunk_->chunk_state != CHUNK_AVAILABLE;
799 }
IsAllocated() const800 bool AsanChunkView::IsAllocated() const {
801   return chunk_ && chunk_->chunk_state == CHUNK_ALLOCATED;
802 }
IsQuarantined() const803 bool AsanChunkView::IsQuarantined() const {
804   return chunk_ && chunk_->chunk_state == CHUNK_QUARANTINE;
805 }
Beg() const806 uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
End() const807 uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
UsedSize() const808 uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
UserRequestedAlignment() const809 u32 AsanChunkView::UserRequestedAlignment() const {
810   return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
811 }
AllocTid() const812 uptr AsanChunkView::AllocTid() const { return chunk_->alloc_tid; }
FreeTid() const813 uptr AsanChunkView::FreeTid() const { return chunk_->free_tid; }
GetAllocType() const814 AllocType AsanChunkView::GetAllocType() const {
815   return (AllocType)chunk_->alloc_type;
816 }
817 
GetStackTraceFromId(u32 id)818 static StackTrace GetStackTraceFromId(u32 id) {
819   CHECK(id);
820   StackTrace res = StackDepotGet(id);
821   CHECK(res.trace);
822   return res;
823 }
824 
GetAllocStackId() const825 u32 AsanChunkView::GetAllocStackId() const { return chunk_->alloc_context_id; }
GetFreeStackId() const826 u32 AsanChunkView::GetFreeStackId() const { return chunk_->free_context_id; }
827 
GetAllocStack() const828 StackTrace AsanChunkView::GetAllocStack() const {
829   return GetStackTraceFromId(GetAllocStackId());
830 }
831 
GetFreeStack() const832 StackTrace AsanChunkView::GetFreeStack() const {
833   return GetStackTraceFromId(GetFreeStackId());
834 }
835 
InitializeAllocator(const AllocatorOptions & options)836 void InitializeAllocator(const AllocatorOptions &options) {
837   instance.InitLinkerInitialized(options);
838 }
839 
ReInitializeAllocator(const AllocatorOptions & options)840 void ReInitializeAllocator(const AllocatorOptions &options) {
841   instance.ReInitialize(options);
842 }
843 
GetAllocatorOptions(AllocatorOptions * options)844 void GetAllocatorOptions(AllocatorOptions *options) {
845   instance.GetOptions(options);
846 }
847 
FindHeapChunkByAddress(uptr addr)848 AsanChunkView FindHeapChunkByAddress(uptr addr) {
849   return instance.FindHeapChunkByAddress(addr);
850 }
FindHeapChunkByAllocBeg(uptr addr)851 AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
852   return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
853 }
854 
CommitBack()855 void AsanThreadLocalMallocStorage::CommitBack() {
856   GET_STACK_TRACE_MALLOC;
857   instance.CommitBack(this, &stack);
858 }
859 
PrintInternalAllocatorStats()860 void PrintInternalAllocatorStats() {
861   instance.PrintStats();
862 }
863 
asan_free(void * ptr,BufferedStackTrace * stack,AllocType alloc_type)864 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
865   instance.Deallocate(ptr, 0, 0, stack, alloc_type);
866 }
867 
asan_delete(void * ptr,uptr size,uptr alignment,BufferedStackTrace * stack,AllocType alloc_type)868 void asan_delete(void *ptr, uptr size, uptr alignment,
869                  BufferedStackTrace *stack, AllocType alloc_type) {
870   instance.Deallocate(ptr, size, alignment, stack, alloc_type);
871 }
872 
asan_malloc(uptr size,BufferedStackTrace * stack)873 void *asan_malloc(uptr size, BufferedStackTrace *stack) {
874   return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
875 }
876 
asan_calloc(uptr nmemb,uptr size,BufferedStackTrace * stack)877 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
878   return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
879 }
880 
asan_realloc(void * p,uptr size,BufferedStackTrace * stack)881 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
882   if (!p)
883     return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
884   if (size == 0) {
885     if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
886       instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
887       return nullptr;
888     }
889     // Allocate a size of 1 if we shouldn't free() on Realloc to 0
890     size = 1;
891   }
892   return SetErrnoOnNull(instance.Reallocate(p, size, stack));
893 }
894 
asan_valloc(uptr size,BufferedStackTrace * stack)895 void *asan_valloc(uptr size, BufferedStackTrace *stack) {
896   return SetErrnoOnNull(
897       instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
898 }
899 
asan_pvalloc(uptr size,BufferedStackTrace * stack)900 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
901   uptr PageSize = GetPageSizeCached();
902   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
903     errno = errno_ENOMEM;
904     if (AllocatorMayReturnNull())
905       return nullptr;
906     ReportPvallocOverflow(size, stack);
907   }
908   // pvalloc(0) should allocate one page.
909   size = size ? RoundUpTo(size, PageSize) : PageSize;
910   return SetErrnoOnNull(
911       instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
912 }
913 
asan_memalign(uptr alignment,uptr size,BufferedStackTrace * stack,AllocType alloc_type)914 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
915                     AllocType alloc_type) {
916   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
917     errno = errno_EINVAL;
918     if (AllocatorMayReturnNull())
919       return nullptr;
920     ReportInvalidAllocationAlignment(alignment, stack);
921   }
922   return SetErrnoOnNull(
923       instance.Allocate(size, alignment, stack, alloc_type, true));
924 }
925 
asan_aligned_alloc(uptr alignment,uptr size,BufferedStackTrace * stack)926 void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
927   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
928     errno = errno_EINVAL;
929     if (AllocatorMayReturnNull())
930       return nullptr;
931     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
932   }
933   return SetErrnoOnNull(
934       instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
935 }
936 
asan_posix_memalign(void ** memptr,uptr alignment,uptr size,BufferedStackTrace * stack)937 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
938                         BufferedStackTrace *stack) {
939   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
940     if (AllocatorMayReturnNull())
941       return errno_EINVAL;
942     ReportInvalidPosixMemalignAlignment(alignment, stack);
943   }
944   void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
945   if (UNLIKELY(!ptr))
946     // OOM error is already taken care of by Allocate.
947     return errno_ENOMEM;
948   CHECK(IsAligned((uptr)ptr, alignment));
949   *memptr = ptr;
950   return 0;
951 }
952 
asan_malloc_usable_size(const void * ptr,uptr pc,uptr bp)953 uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
954   if (!ptr) return 0;
955   uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
956   if (flags()->check_malloc_usable_size && (usable_size == 0)) {
957     GET_STACK_TRACE_FATAL(pc, bp);
958     ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
959   }
960   return usable_size;
961 }
962 
asan_mz_size(const void * ptr)963 uptr asan_mz_size(const void *ptr) {
964   return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
965 }
966 
asan_mz_force_lock()967 void asan_mz_force_lock() {
968   instance.ForceLock();
969 }
970 
asan_mz_force_unlock()971 void asan_mz_force_unlock() {
972   instance.ForceUnlock();
973 }
974 
AsanSoftRssLimitExceededCallback(bool limit_exceeded)975 void AsanSoftRssLimitExceededCallback(bool limit_exceeded) {
976   instance.SetRssLimitExceeded(limit_exceeded);
977 }
978 
979 } // namespace __asan
980 
981 // --- Implementation of LSan-specific functions --- {{{1
982 namespace __lsan {
LockAllocator()983 void LockAllocator() {
984   __asan::get_allocator().ForceLock();
985 }
986 
UnlockAllocator()987 void UnlockAllocator() {
988   __asan::get_allocator().ForceUnlock();
989 }
990 
GetAllocatorGlobalRange(uptr * begin,uptr * end)991 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
992   *begin = (uptr)&__asan::get_allocator();
993   *end = *begin + sizeof(__asan::get_allocator());
994 }
995 
PointsIntoChunk(void * p)996 uptr PointsIntoChunk(void* p) {
997   uptr addr = reinterpret_cast<uptr>(p);
998   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
999   if (!m) return 0;
1000   uptr chunk = m->Beg();
1001   if (m->chunk_state != __asan::CHUNK_ALLOCATED)
1002     return 0;
1003   if (m->AddrIsInside(addr, /*locked_version=*/true))
1004     return chunk;
1005   if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true),
1006                                   addr))
1007     return chunk;
1008   return 0;
1009 }
1010 
GetUserBegin(uptr chunk)1011 uptr GetUserBegin(uptr chunk) {
1012   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
1013   CHECK(m);
1014   return m->Beg();
1015 }
1016 
LsanMetadata(uptr chunk)1017 LsanMetadata::LsanMetadata(uptr chunk) {
1018   metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
1019 }
1020 
allocated() const1021 bool LsanMetadata::allocated() const {
1022   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1023   return m->chunk_state == __asan::CHUNK_ALLOCATED;
1024 }
1025 
tag() const1026 ChunkTag LsanMetadata::tag() const {
1027   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1028   return static_cast<ChunkTag>(m->lsan_tag);
1029 }
1030 
set_tag(ChunkTag value)1031 void LsanMetadata::set_tag(ChunkTag value) {
1032   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1033   m->lsan_tag = value;
1034 }
1035 
requested_size() const1036 uptr LsanMetadata::requested_size() const {
1037   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1038   return m->UsedSize(/*locked_version=*/true);
1039 }
1040 
stack_trace_id() const1041 u32 LsanMetadata::stack_trace_id() const {
1042   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1043   return m->alloc_context_id;
1044 }
1045 
ForEachChunk(ForEachChunkCallback callback,void * arg)1046 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1047   __asan::get_allocator().ForEachChunk(callback, arg);
1048 }
1049 
IgnoreObjectLocked(const void * p)1050 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
1051   uptr addr = reinterpret_cast<uptr>(p);
1052   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
1053   if (!m) return kIgnoreObjectInvalid;
1054   if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
1055     if (m->lsan_tag == kIgnored)
1056       return kIgnoreObjectAlreadyIgnored;
1057     m->lsan_tag = __lsan::kIgnored;
1058     return kIgnoreObjectSuccess;
1059   } else {
1060     return kIgnoreObjectInvalid;
1061   }
1062 }
1063 }  // namespace __lsan
1064 
1065 // ---------------------- Interface ---------------- {{{1
1066 using namespace __asan;  // NOLINT
1067 
1068 // ASan allocator doesn't reserve extra bytes, so normally we would
1069 // just return "size". We don't want to expose our redzone sizes, etc here.
__sanitizer_get_estimated_allocated_size(uptr size)1070 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
1071   return size;
1072 }
1073 
__sanitizer_get_ownership(const void * p)1074 int __sanitizer_get_ownership(const void *p) {
1075   uptr ptr = reinterpret_cast<uptr>(p);
1076   return instance.AllocationSize(ptr) > 0;
1077 }
1078 
__sanitizer_get_allocated_size(const void * p)1079 uptr __sanitizer_get_allocated_size(const void *p) {
1080   if (!p) return 0;
1081   uptr ptr = reinterpret_cast<uptr>(p);
1082   uptr allocated_size = instance.AllocationSize(ptr);
1083   // Die if p is not malloced or if it is already freed.
1084   if (allocated_size == 0) {
1085     GET_STACK_TRACE_FATAL_HERE;
1086     ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
1087   }
1088   return allocated_size;
1089 }
1090 
__sanitizer_purge_allocator()1091 void __sanitizer_purge_allocator() {
1092   GET_STACK_TRACE_MALLOC;
1093   instance.Purge(&stack);
1094 }
1095 
1096 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
1097 // Provide default (no-op) implementation of malloc hooks.
SANITIZER_INTERFACE_WEAK_DEF(void,__sanitizer_malloc_hook,void * ptr,uptr size)1098 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
1099                              void *ptr, uptr size) {
1100   (void)ptr;
1101   (void)size;
1102 }
1103 
SANITIZER_INTERFACE_WEAK_DEF(void,__sanitizer_free_hook,void * ptr)1104 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) {
1105   (void)ptr;
1106 }
1107 #endif
1108