1--
2--  (c) The University of Glasgow 2002-2006
3--
4
5-- Functions over HsSyn specialised to RdrName.
6
7{-# LANGUAGE CPP #-}
8{-# LANGUAGE FlexibleContexts #-}
9{-# LANGUAGE FlexibleInstances #-}
10{-# LANGUAGE TypeFamilies #-}
11{-# LANGUAGE MagicHash #-}
12{-# LANGUAGE ViewPatterns #-}
13{-# LANGUAGE GADTs #-}
14{-# LANGUAGE RankNTypes #-}
15{-# LANGUAGE LambdaCase #-}
16{-# LANGUAGE TypeApplications #-}
17{-# LANGUAGE GeneralizedNewtypeDeriving #-}
18
19module   RdrHsSyn (
20        mkHsOpApp,
21        mkHsIntegral, mkHsFractional, mkHsIsString,
22        mkHsDo, mkSpliceDecl,
23        mkRoleAnnotDecl,
24        mkClassDecl,
25        mkTyData, mkDataFamInst,
26        mkTySynonym, mkTyFamInstEqn,
27        mkStandaloneKindSig,
28        mkTyFamInst,
29        mkFamDecl, mkLHsSigType,
30        mkInlinePragma,
31        mkPatSynMatchGroup,
32        mkRecConstrOrUpdate, -- HsExp -> [HsFieldUpdate] -> P HsExp
33        mkTyClD, mkInstD,
34        mkRdrRecordCon, mkRdrRecordUpd,
35        setRdrNameSpace,
36        filterCTuple,
37
38        cvBindGroup,
39        cvBindsAndSigs,
40        cvTopDecls,
41        placeHolderPunRhs,
42
43        -- Stuff to do with Foreign declarations
44        mkImport,
45        parseCImport,
46        mkExport,
47        mkExtName,    -- RdrName -> CLabelString
48        mkGadtDecl,   -- [Located RdrName] -> LHsType RdrName -> ConDecl RdrName
49        mkConDeclH98,
50
51        -- Bunch of functions in the parser monad for
52        -- checking and constructing values
53        checkImportDecl,
54        checkExpBlockArguments,
55        checkPrecP,           -- Int -> P Int
56        checkContext,         -- HsType -> P HsContext
57        checkPattern,         -- HsExp -> P HsPat
58        checkPattern_msg,
59        isBangRdr,
60        isTildeRdr,
61        checkMonadComp,       -- P (HsStmtContext RdrName)
62        checkValDef,          -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
63        checkValSigLhs,
64        LRuleTyTmVar, RuleTyTmVar(..),
65        mkRuleBndrs, mkRuleTyVarBndrs,
66        checkRuleTyVarBndrNames,
67        checkRecordSyntax,
68        checkEmptyGADTs,
69        addFatalError, hintBangPat,
70        TyEl(..), mergeOps, mergeDataCon,
71
72        -- Help with processing exports
73        ImpExpSubSpec(..),
74        ImpExpQcSpec(..),
75        mkModuleImpExp,
76        mkTypeImpExp,
77        mkImpExpSubSpec,
78        checkImportSpec,
79
80        -- Token symbols
81        forallSym,
82        starSym,
83
84        -- Warnings and errors
85        warnStarIsType,
86        warnPrepositiveQualifiedModule,
87        failOpFewArgs,
88        failOpNotEnabledImportQualifiedPost,
89        failOpImportQualifiedTwice,
90
91        SumOrTuple (..),
92
93        -- Expression/command/pattern ambiguity resolution
94        PV,
95        runPV,
96        ECP(ECP, runECP_PV),
97        runECP_P,
98        DisambInfixOp(..),
99        DisambECP(..),
100        ecpFromExp,
101        ecpFromCmd,
102        PatBuilder,
103        patBuilderBang,
104
105    ) where
106
107import GhcPrelude
108import GHC.Hs           -- Lots of it
109import TyCon            ( TyCon, isTupleTyCon, tyConSingleDataCon_maybe )
110import DataCon          ( DataCon, dataConTyCon )
111import ConLike          ( ConLike(..) )
112import CoAxiom          ( Role, fsFromRole )
113import RdrName
114import Name
115import BasicTypes
116import TcEvidence       ( idHsWrapper )
117import Lexer
118import Lexeme           ( isLexCon )
119import Type             ( TyThing(..), funTyCon )
120import TysWiredIn       ( cTupleTyConName, tupleTyCon, tupleDataCon,
121                          nilDataConName, nilDataConKey,
122                          listTyConName, listTyConKey, eqTyCon_RDR,
123                          tupleTyConName, cTupleTyConNameArity_maybe )
124import ForeignCall
125import PrelNames        ( allNameStrings )
126import SrcLoc
127import Unique           ( hasKey )
128import OrdList          ( OrdList, fromOL )
129import Bag              ( emptyBag, consBag )
130import Outputable
131import FastString
132import Maybes
133import Util
134import ApiAnnotation
135import Data.List
136import DynFlags ( WarningFlag(..), DynFlags )
137import ErrUtils ( Messages )
138
139import Control.Monad
140import Text.ParserCombinators.ReadP as ReadP
141import Data.Char
142import qualified Data.Monoid as Monoid
143import Data.Data       ( dataTypeOf, fromConstr, dataTypeConstrs )
144
145#include "HsVersions.h"
146
147
148{- **********************************************************************
149
150  Construction functions for Rdr stuff
151
152  ********************************************************************* -}
153
154-- | mkClassDecl builds a RdrClassDecl, filling in the names for tycon and
155-- datacon by deriving them from the name of the class.  We fill in the names
156-- for the tycon and datacon corresponding to the class, by deriving them
157-- from the name of the class itself.  This saves recording the names in the
158-- interface file (which would be equally good).
159
160-- Similarly for mkConDecl, mkClassOpSig and default-method names.
161
162--         *** See Note [The Naming story] in GHC.Hs.Decls ****
163
164mkTyClD :: LTyClDecl (GhcPass p) -> LHsDecl (GhcPass p)
165mkTyClD (dL->L loc d) = cL loc (TyClD noExtField d)
166
167mkInstD :: LInstDecl (GhcPass p) -> LHsDecl (GhcPass p)
168mkInstD (dL->L loc d) = cL loc (InstD noExtField d)
169
170mkClassDecl :: SrcSpan
171            -> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
172            -> Located (a,[LHsFunDep GhcPs])
173            -> OrdList (LHsDecl GhcPs)
174            -> P (LTyClDecl GhcPs)
175
176mkClassDecl loc (dL->L _ (mcxt, tycl_hdr)) fds where_cls
177  = do { (binds, sigs, ats, at_defs, _, docs) <- cvBindsAndSigs where_cls
178       ; let cxt = fromMaybe (noLoc []) mcxt
179       ; (cls, tparams, fixity, ann) <- checkTyClHdr True tycl_hdr
180       ; addAnnsAt loc ann -- Add any API Annotations to the top SrcSpan
181       ; (tyvars,annst) <- checkTyVars (text "class") whereDots cls tparams
182       ; addAnnsAt loc annst -- Add any API Annotations to the top SrcSpan
183       ; return (cL loc (ClassDecl { tcdCExt = noExtField, tcdCtxt = cxt
184                                   , tcdLName = cls, tcdTyVars = tyvars
185                                   , tcdFixity = fixity
186                                   , tcdFDs = snd (unLoc fds)
187                                   , tcdSigs = mkClassOpSigs sigs
188                                   , tcdMeths = binds
189                                   , tcdATs = ats, tcdATDefs = at_defs
190                                   , tcdDocs  = docs })) }
191
192mkTyData :: SrcSpan
193         -> NewOrData
194         -> Maybe (Located CType)
195         -> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
196         -> Maybe (LHsKind GhcPs)
197         -> [LConDecl GhcPs]
198         -> HsDeriving GhcPs
199         -> P (LTyClDecl GhcPs)
200mkTyData loc new_or_data cType (dL->L _ (mcxt, tycl_hdr))
201         ksig data_cons maybe_deriv
202  = do { (tc, tparams, fixity, ann) <- checkTyClHdr False tycl_hdr
203       ; addAnnsAt loc ann -- Add any API Annotations to the top SrcSpan
204       ; (tyvars, anns) <- checkTyVars (ppr new_or_data) equalsDots tc tparams
205       ; addAnnsAt loc anns -- Add any API Annotations to the top SrcSpan
206       ; defn <- mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
207       ; return (cL loc (DataDecl { tcdDExt = noExtField,
208                                    tcdLName = tc, tcdTyVars = tyvars,
209                                    tcdFixity = fixity,
210                                    tcdDataDefn = defn })) }
211
212mkDataDefn :: NewOrData
213           -> Maybe (Located CType)
214           -> Maybe (LHsContext GhcPs)
215           -> Maybe (LHsKind GhcPs)
216           -> [LConDecl GhcPs]
217           -> HsDeriving GhcPs
218           -> P (HsDataDefn GhcPs)
219mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
220  = do { checkDatatypeContext mcxt
221       ; let cxt = fromMaybe (noLoc []) mcxt
222       ; return (HsDataDefn { dd_ext = noExtField
223                            , dd_ND = new_or_data, dd_cType = cType
224                            , dd_ctxt = cxt
225                            , dd_cons = data_cons
226                            , dd_kindSig = ksig
227                            , dd_derivs = maybe_deriv }) }
228
229
230mkTySynonym :: SrcSpan
231            -> LHsType GhcPs  -- LHS
232            -> LHsType GhcPs  -- RHS
233            -> P (LTyClDecl GhcPs)
234mkTySynonym loc lhs rhs
235  = do { (tc, tparams, fixity, ann) <- checkTyClHdr False lhs
236       ; addAnnsAt loc ann -- Add any API Annotations to the top SrcSpan
237       ; (tyvars, anns) <- checkTyVars (text "type") equalsDots tc tparams
238       ; addAnnsAt loc anns -- Add any API Annotations to the top SrcSpan
239       ; return (cL loc (SynDecl { tcdSExt = noExtField
240                                 , tcdLName = tc, tcdTyVars = tyvars
241                                 , tcdFixity = fixity
242                                 , tcdRhs = rhs })) }
243
244mkStandaloneKindSig
245  :: SrcSpan
246  -> Located [Located RdrName] -- LHS
247  -> LHsKind GhcPs             -- RHS
248  -> P (LStandaloneKindSig GhcPs)
249mkStandaloneKindSig loc lhs rhs =
250  do { vs <- mapM check_lhs_name (unLoc lhs)
251     ; v <- check_singular_lhs (reverse vs)
252     ; return $ cL loc $ StandaloneKindSig noExtField v (mkLHsSigType rhs) }
253  where
254    check_lhs_name v@(unLoc->name) =
255      if isUnqual name && isTcOcc (rdrNameOcc name)
256      then return v
257      else addFatalError (getLoc v) $
258           hang (text "Expected an unqualified type constructor:") 2 (ppr v)
259    check_singular_lhs vs =
260      case vs of
261        [] -> panic "mkStandaloneKindSig: empty left-hand side"
262        [v] -> return v
263        _ -> addFatalError (getLoc lhs) $
264             vcat [ hang (text "Standalone kind signatures do not support multiple names at the moment:")
265                       2 (pprWithCommas ppr vs)
266                  , text "See https://gitlab.haskell.org/ghc/ghc/issues/16754 for details." ]
267
268mkTyFamInstEqn :: Maybe [LHsTyVarBndr GhcPs]
269               -> LHsType GhcPs
270               -> LHsType GhcPs
271               -> P (TyFamInstEqn GhcPs,[AddAnn])
272mkTyFamInstEqn bndrs lhs rhs
273  = do { (tc, tparams, fixity, ann) <- checkTyClHdr False lhs
274       ; return (mkHsImplicitBndrs
275                  (FamEqn { feqn_ext    = noExtField
276                          , feqn_tycon  = tc
277                          , feqn_bndrs  = bndrs
278                          , feqn_pats   = tparams
279                          , feqn_fixity = fixity
280                          , feqn_rhs    = rhs }),
281                 ann) }
282
283mkDataFamInst :: SrcSpan
284              -> NewOrData
285              -> Maybe (Located CType)
286              -> (Maybe ( LHsContext GhcPs), Maybe [LHsTyVarBndr GhcPs]
287                        , LHsType GhcPs)
288              -> Maybe (LHsKind GhcPs)
289              -> [LConDecl GhcPs]
290              -> HsDeriving GhcPs
291              -> P (LInstDecl GhcPs)
292mkDataFamInst loc new_or_data cType (mcxt, bndrs, tycl_hdr)
293              ksig data_cons maybe_deriv
294  = do { (tc, tparams, fixity, ann) <- checkTyClHdr False tycl_hdr
295       ; addAnnsAt loc ann -- Add any API Annotations to the top SrcSpan
296       ; defn <- mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
297       ; return (cL loc (DataFamInstD noExtField (DataFamInstDecl (mkHsImplicitBndrs
298                  (FamEqn { feqn_ext    = noExtField
299                          , feqn_tycon  = tc
300                          , feqn_bndrs  = bndrs
301                          , feqn_pats   = tparams
302                          , feqn_fixity = fixity
303                          , feqn_rhs    = defn }))))) }
304
305mkTyFamInst :: SrcSpan
306            -> TyFamInstEqn GhcPs
307            -> P (LInstDecl GhcPs)
308mkTyFamInst loc eqn
309  = return (cL loc (TyFamInstD noExtField (TyFamInstDecl eqn)))
310
311mkFamDecl :: SrcSpan
312          -> FamilyInfo GhcPs
313          -> LHsType GhcPs                   -- LHS
314          -> Located (FamilyResultSig GhcPs) -- Optional result signature
315          -> Maybe (LInjectivityAnn GhcPs)   -- Injectivity annotation
316          -> P (LTyClDecl GhcPs)
317mkFamDecl loc info lhs ksig injAnn
318  = do { (tc, tparams, fixity, ann) <- checkTyClHdr False lhs
319       ; addAnnsAt loc ann -- Add any API Annotations to the top SrcSpan
320       ; (tyvars, anns) <- checkTyVars (ppr info) equals_or_where tc tparams
321       ; addAnnsAt loc anns -- Add any API Annotations to the top SrcSpan
322       ; return (cL loc (FamDecl noExtField (FamilyDecl
323                                           { fdExt       = noExtField
324                                           , fdInfo      = info, fdLName = tc
325                                           , fdTyVars    = tyvars
326                                           , fdFixity    = fixity
327                                           , fdResultSig = ksig
328                                           , fdInjectivityAnn = injAnn }))) }
329  where
330    equals_or_where = case info of
331                        DataFamily          -> empty
332                        OpenTypeFamily      -> empty
333                        ClosedTypeFamily {} -> whereDots
334
335mkSpliceDecl :: LHsExpr GhcPs -> HsDecl GhcPs
336-- If the user wrote
337--      [pads| ... ]   then return a QuasiQuoteD
338--      $(e)           then return a SpliceD
339-- but if she wrote, say,
340--      f x            then behave as if she'd written $(f x)
341--                     ie a SpliceD
342--
343-- Typed splices are not allowed at the top level, thus we do not represent them
344-- as spliced declaration.  See #10945
345mkSpliceDecl lexpr@(dL->L loc expr)
346  | HsSpliceE _ splice@(HsUntypedSplice {}) <- expr
347  = SpliceD noExtField (SpliceDecl noExtField (cL loc splice) ExplicitSplice)
348
349  | HsSpliceE _ splice@(HsQuasiQuote {}) <- expr
350  = SpliceD noExtField (SpliceDecl noExtField (cL loc splice) ExplicitSplice)
351
352  | otherwise
353  = SpliceD noExtField (SpliceDecl noExtField (cL loc (mkUntypedSplice NoParens lexpr))
354                              ImplicitSplice)
355
356mkRoleAnnotDecl :: SrcSpan
357                -> Located RdrName                -- type being annotated
358                -> [Located (Maybe FastString)]      -- roles
359                -> P (LRoleAnnotDecl GhcPs)
360mkRoleAnnotDecl loc tycon roles
361  = do { roles' <- mapM parse_role roles
362       ; return $ cL loc $ RoleAnnotDecl noExtField tycon roles' }
363  where
364    role_data_type = dataTypeOf (undefined :: Role)
365    all_roles = map fromConstr $ dataTypeConstrs role_data_type
366    possible_roles = [(fsFromRole role, role) | role <- all_roles]
367
368    parse_role (dL->L loc_role Nothing) = return $ cL loc_role Nothing
369    parse_role (dL->L loc_role (Just role))
370      = case lookup role possible_roles of
371          Just found_role -> return $ cL loc_role $ Just found_role
372          Nothing         ->
373            let nearby = fuzzyLookup (unpackFS role)
374                  (mapFst unpackFS possible_roles)
375            in
376            addFatalError loc_role
377              (text "Illegal role name" <+> quotes (ppr role) $$
378               suggestions nearby)
379    parse_role _ = panic "parse_role: Impossible Match"
380                                -- due to #15884
381
382    suggestions []   = empty
383    suggestions [r]  = text "Perhaps you meant" <+> quotes (ppr r)
384      -- will this last case ever happen??
385    suggestions list = hang (text "Perhaps you meant one of these:")
386                       2 (pprWithCommas (quotes . ppr) list)
387
388{- **********************************************************************
389
390  #cvBinds-etc# Converting to @HsBinds@, etc.
391
392  ********************************************************************* -}
393
394-- | Function definitions are restructured here. Each is assumed to be recursive
395-- initially, and non recursive definitions are discovered by the dependency
396-- analyser.
397
398
399--  | Groups together bindings for a single function
400cvTopDecls :: OrdList (LHsDecl GhcPs) -> [LHsDecl GhcPs]
401cvTopDecls decls = go (fromOL decls)
402  where
403    go :: [LHsDecl GhcPs] -> [LHsDecl GhcPs]
404    go []                     = []
405    go ((dL->L l (ValD x b)) : ds)
406      = cL l' (ValD x b') : go ds'
407        where (dL->L l' b', ds') = getMonoBind (cL l b) ds
408    go (d : ds)                    = d : go ds
409
410-- Declaration list may only contain value bindings and signatures.
411cvBindGroup :: OrdList (LHsDecl GhcPs) -> P (HsValBinds GhcPs)
412cvBindGroup binding
413  = do { (mbs, sigs, fam_ds, tfam_insts
414         , dfam_insts, _) <- cvBindsAndSigs binding
415       ; ASSERT( null fam_ds && null tfam_insts && null dfam_insts)
416         return $ ValBinds noExtField mbs sigs }
417
418cvBindsAndSigs :: OrdList (LHsDecl GhcPs)
419  -> P (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs]
420          , [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl])
421-- Input decls contain just value bindings and signatures
422-- and in case of class or instance declarations also
423-- associated type declarations. They might also contain Haddock comments.
424cvBindsAndSigs fb = go (fromOL fb)
425  where
426    go []              = return (emptyBag, [], [], [], [], [])
427    go ((dL->L l (ValD _ b)) : ds)
428      = do { (bs, ss, ts, tfis, dfis, docs) <- go ds'
429           ; return (b' `consBag` bs, ss, ts, tfis, dfis, docs) }
430      where
431        (b', ds') = getMonoBind (cL l b) ds
432    go ((dL->L l decl) : ds)
433      = do { (bs, ss, ts, tfis, dfis, docs) <- go ds
434           ; case decl of
435               SigD _ s
436                 -> return (bs, cL l s : ss, ts, tfis, dfis, docs)
437               TyClD _ (FamDecl _ t)
438                 -> return (bs, ss, cL l t : ts, tfis, dfis, docs)
439               InstD _ (TyFamInstD { tfid_inst = tfi })
440                 -> return (bs, ss, ts, cL l tfi : tfis, dfis, docs)
441               InstD _ (DataFamInstD { dfid_inst = dfi })
442                 -> return (bs, ss, ts, tfis, cL l dfi : dfis, docs)
443               DocD _ d
444                 -> return (bs, ss, ts, tfis, dfis, cL l d : docs)
445               SpliceD _ d
446                 -> addFatalError l $
447                    hang (text "Declaration splices are allowed only" <+>
448                          text "at the top level:")
449                       2 (ppr d)
450               _ -> pprPanic "cvBindsAndSigs" (ppr decl) }
451
452-----------------------------------------------------------------------------
453-- Group function bindings into equation groups
454
455getMonoBind :: LHsBind GhcPs -> [LHsDecl GhcPs]
456  -> (LHsBind GhcPs, [LHsDecl GhcPs])
457-- Suppose      (b',ds') = getMonoBind b ds
458--      ds is a list of parsed bindings
459--      b is a MonoBinds that has just been read off the front
460
461-- Then b' is the result of grouping more equations from ds that
462-- belong with b into a single MonoBinds, and ds' is the depleted
463-- list of parsed bindings.
464--
465-- All Haddock comments between equations inside the group are
466-- discarded.
467--
468-- No AndMonoBinds or EmptyMonoBinds here; just single equations
469
470getMonoBind (dL->L loc1 (FunBind { fun_id = fun_id1@(dL->L _ f1)
471                                 , fun_matches =
472                                   MG { mg_alts = (dL->L _ mtchs1) } }))
473            binds
474  | has_args mtchs1
475  = go mtchs1 loc1 binds []
476  where
477    go mtchs loc
478       ((dL->L loc2 (ValD _ (FunBind { fun_id = (dL->L _ f2)
479                                    , fun_matches =
480                                        MG { mg_alts = (dL->L _ mtchs2) } })))
481         : binds) _
482        | f1 == f2 = go (mtchs2 ++ mtchs)
483                        (combineSrcSpans loc loc2) binds []
484    go mtchs loc (doc_decl@(dL->L loc2 (DocD {})) : binds) doc_decls
485        = let doc_decls' = doc_decl : doc_decls
486          in go mtchs (combineSrcSpans loc loc2) binds doc_decls'
487    go mtchs loc binds doc_decls
488        = ( cL loc (makeFunBind fun_id1 (reverse mtchs))
489          , (reverse doc_decls) ++ binds)
490        -- Reverse the final matches, to get it back in the right order
491        -- Do the same thing with the trailing doc comments
492
493getMonoBind bind binds = (bind, binds)
494
495has_args :: [LMatch GhcPs (LHsExpr GhcPs)] -> Bool
496has_args []                                    = panic "RdrHsSyn:has_args"
497has_args ((dL->L _ (Match { m_pats = args })) : _) = not (null args)
498        -- Don't group together FunBinds if they have
499        -- no arguments.  This is necessary now that variable bindings
500        -- with no arguments are now treated as FunBinds rather
501        -- than pattern bindings (tests/rename/should_fail/rnfail002).
502has_args ((dL->L _ (XMatch nec)) : _) = noExtCon nec
503has_args (_ : _) = panic "has_args:Impossible Match" -- due to #15884
504
505{- **********************************************************************
506
507  #PrefixToHS-utils# Utilities for conversion
508
509  ********************************************************************* -}
510
511{- Note [Parsing data constructors is hard]
512~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
513
514The problem with parsing data constructors is that they look a lot like types.
515Compare:
516
517  (s1)   data T = C t1 t2
518  (s2)   type T = C t1 t2
519
520Syntactically, there's little difference between these declarations, except in
521(s1) 'C' is a data constructor, but in (s2) 'C' is a type constructor.
522
523This similarity would pose no problem if we knew ahead of time if we are
524parsing a type or a constructor declaration. Looking at (s1) and (s2), a simple
525(but wrong!) rule comes to mind: in 'data' declarations assume we are parsing
526data constructors, and in other contexts (e.g. 'type' declarations) assume we
527are parsing type constructors.
528
529This simple rule does not work because of two problematic cases:
530
531  (p1)   data T = C t1 t2 :+ t3
532  (p2)   data T = C t1 t2 => t3
533
534In (p1) we encounter (:+) and it turns out we are parsing an infix data
535declaration, so (C t1 t2) is a type and 'C' is a type constructor.
536In (p2) we encounter (=>) and it turns out we are parsing an existential
537context, so (C t1 t2) is a constraint and 'C' is a type constructor.
538
539As the result, in order to determine whether (C t1 t2) declares a data
540constructor, a type, or a context, we would need unlimited lookahead which
541'happy' is not so happy with.
542
543To further complicate matters, the interpretation of (!) and (~) is different
544in constructors and types:
545
546  (b1)   type T = C ! D
547  (b2)   data T = C ! D
548  (b3)   data T = C ! D => E
549
550In (b1) and (b3), (!) is a type operator with two arguments: 'C' and 'D'. At
551the same time, in (b2) it is a strictness annotation: 'C' is a data constructor
552with a single strict argument 'D'. For the programmer, these cases are usually
553easy to tell apart due to whitespace conventions:
554
555  (b2)   data T = C !D         -- no space after the bang hints that
556                               -- it is a strictness annotation
557
558For the parser, on the other hand, this whitespace does not matter. We cannot
559tell apart (b2) from (b3) until we encounter (=>), so it requires unlimited
560lookahead.
561
562The solution that accounts for all of these issues is to initially parse data
563declarations and types as a reversed list of TyEl:
564
565  data TyEl = TyElOpr RdrName
566            | TyElOpd (HsType GhcPs)
567            | TyElBang | TyElTilde
568            | ...
569
570For example, both occurences of (C ! D) in the following example are parsed
571into equal lists of TyEl:
572
573  data T = C ! D => C ! D   results in   [ TyElOpd (HsTyVar "D")
574                                         , TyElBang
575                                         , TyElOpd (HsTyVar "C") ]
576
577Note that elements are in reverse order. Also, 'C' is parsed as a type
578constructor (HsTyVar) even when it is a data constructor. We fix this in
579`tyConToDataCon`.
580
581By the time the list of TyEl is assembled, we have looked ahead enough to
582decide whether to reduce using `mergeOps` (for types) or `mergeDataCon` (for
583data constructors). These functions are where the actual job of parsing is
584done.
585
586-}
587
588-- | Reinterpret a type constructor, including type operators, as a data
589--   constructor.
590-- See Note [Parsing data constructors is hard]
591tyConToDataCon :: SrcSpan -> RdrName -> Either (SrcSpan, SDoc) (Located RdrName)
592tyConToDataCon loc tc
593  | isTcOcc occ || isDataOcc occ
594  , isLexCon (occNameFS occ)
595  = return (cL loc (setRdrNameSpace tc srcDataName))
596
597  | otherwise
598  = Left (loc, msg)
599  where
600    occ = rdrNameOcc tc
601    msg = text "Not a data constructor:" <+> quotes (ppr tc)
602
603mkPatSynMatchGroup :: Located RdrName
604                   -> Located (OrdList (LHsDecl GhcPs))
605                   -> P (MatchGroup GhcPs (LHsExpr GhcPs))
606mkPatSynMatchGroup (dL->L loc patsyn_name) (dL->L _ decls) =
607    do { matches <- mapM fromDecl (fromOL decls)
608       ; when (null matches) (wrongNumberErr loc)
609       ; return $ mkMatchGroup FromSource matches }
610  where
611    fromDecl (dL->L loc decl@(ValD _ (PatBind _
612                             pat@(dL->L _ (ConPatIn ln@(dL->L _ name) details))
613                                   rhs _))) =
614        do { unless (name == patsyn_name) $
615               wrongNameBindingErr loc decl
616           ; match <- case details of
617               PrefixCon pats -> return $ Match { m_ext = noExtField
618                                                , m_ctxt = ctxt, m_pats = pats
619                                                , m_grhss = rhs }
620                   where
621                     ctxt = FunRhs { mc_fun = ln
622                                   , mc_fixity = Prefix
623                                   , mc_strictness = NoSrcStrict }
624
625               InfixCon p1 p2 -> return $ Match { m_ext = noExtField
626                                                , m_ctxt = ctxt
627                                                , m_pats = [p1, p2]
628                                                , m_grhss = rhs }
629                   where
630                     ctxt = FunRhs { mc_fun = ln
631                                   , mc_fixity = Infix
632                                   , mc_strictness = NoSrcStrict }
633
634               RecCon{} -> recordPatSynErr loc pat
635           ; return $ cL loc match }
636    fromDecl (dL->L loc decl) = extraDeclErr loc decl
637
638    extraDeclErr loc decl =
639        addFatalError loc $
640        text "pattern synonym 'where' clause must contain a single binding:" $$
641        ppr decl
642
643    wrongNameBindingErr loc decl =
644      addFatalError loc $
645      text "pattern synonym 'where' clause must bind the pattern synonym's name"
646      <+> quotes (ppr patsyn_name) $$ ppr decl
647
648    wrongNumberErr loc =
649      addFatalError loc $
650      text "pattern synonym 'where' clause cannot be empty" $$
651      text "In the pattern synonym declaration for: " <+> ppr (patsyn_name)
652
653recordPatSynErr :: SrcSpan -> LPat GhcPs -> P a
654recordPatSynErr loc pat =
655    addFatalError loc $
656    text "record syntax not supported for pattern synonym declarations:" $$
657    ppr pat
658
659mkConDeclH98 :: Located RdrName -> Maybe [LHsTyVarBndr GhcPs]
660                -> Maybe (LHsContext GhcPs) -> HsConDeclDetails GhcPs
661                -> ConDecl GhcPs
662
663mkConDeclH98 name mb_forall mb_cxt args
664  = ConDeclH98 { con_ext    = noExtField
665               , con_name   = name
666               , con_forall = noLoc $ isJust mb_forall
667               , con_ex_tvs = mb_forall `orElse` []
668               , con_mb_cxt = mb_cxt
669               , con_args   = args
670               , con_doc    = Nothing }
671
672mkGadtDecl :: [Located RdrName]
673           -> LHsType GhcPs     -- Always a HsForAllTy
674           -> (ConDecl GhcPs, [AddAnn])
675mkGadtDecl names ty
676  = (ConDeclGADT { con_g_ext  = noExtField
677                 , con_names  = names
678                 , con_forall = cL l $ isLHsForAllTy ty'
679                 , con_qvars  = mkHsQTvs tvs
680                 , con_mb_cxt = mcxt
681                 , con_args   = args
682                 , con_res_ty = res_ty
683                 , con_doc    = Nothing }
684    , anns1 ++ anns2)
685  where
686    (ty'@(dL->L l _),anns1) = peel_parens ty []
687    (tvs, rho) = splitLHsForAllTyInvis ty'
688    (mcxt, tau, anns2) = split_rho rho []
689
690    split_rho (dL->L _ (HsQualTy { hst_ctxt = cxt, hst_body = tau })) ann
691      = (Just cxt, tau, ann)
692    split_rho (dL->L l (HsParTy _ ty)) ann
693      = split_rho ty (ann++mkParensApiAnn l)
694    split_rho tau                  ann
695      = (Nothing, tau, ann)
696
697    (args, res_ty) = split_tau tau
698
699    -- See Note [GADT abstract syntax] in GHC.Hs.Decls
700    split_tau (dL->L _ (HsFunTy _ (dL->L loc (HsRecTy _ rf)) res_ty))
701      = (RecCon (cL loc rf), res_ty)
702    split_tau tau
703      = (PrefixCon [], tau)
704
705    peel_parens (dL->L l (HsParTy _ ty)) ann = peel_parens ty
706                                                       (ann++mkParensApiAnn l)
707    peel_parens ty                   ann = (ty, ann)
708
709
710setRdrNameSpace :: RdrName -> NameSpace -> RdrName
711-- ^ This rather gruesome function is used mainly by the parser.
712-- When parsing:
713--
714-- > data T a = T | T1 Int
715--
716-- we parse the data constructors as /types/ because of parser ambiguities,
717-- so then we need to change the /type constr/ to a /data constr/
718--
719-- The exact-name case /can/ occur when parsing:
720--
721-- > data [] a = [] | a : [a]
722--
723-- For the exact-name case we return an original name.
724setRdrNameSpace (Unqual occ) ns = Unqual (setOccNameSpace ns occ)
725setRdrNameSpace (Qual m occ) ns = Qual m (setOccNameSpace ns occ)
726setRdrNameSpace (Orig m occ) ns = Orig m (setOccNameSpace ns occ)
727setRdrNameSpace (Exact n)    ns
728  | Just thing <- wiredInNameTyThing_maybe n
729  = setWiredInNameSpace thing ns
730    -- Preserve Exact Names for wired-in things,
731    -- notably tuples and lists
732
733  | isExternalName n
734  = Orig (nameModule n) occ
735
736  | otherwise   -- This can happen when quoting and then
737                -- splicing a fixity declaration for a type
738  = Exact (mkSystemNameAt (nameUnique n) occ (nameSrcSpan n))
739  where
740    occ = setOccNameSpace ns (nameOccName n)
741
742setWiredInNameSpace :: TyThing -> NameSpace -> RdrName
743setWiredInNameSpace (ATyCon tc) ns
744  | isDataConNameSpace ns
745  = ty_con_data_con tc
746  | isTcClsNameSpace ns
747  = Exact (getName tc)      -- No-op
748
749setWiredInNameSpace (AConLike (RealDataCon dc)) ns
750  | isTcClsNameSpace ns
751  = data_con_ty_con dc
752  | isDataConNameSpace ns
753  = Exact (getName dc)      -- No-op
754
755setWiredInNameSpace thing ns
756  = pprPanic "setWiredinNameSpace" (pprNameSpace ns <+> ppr thing)
757
758ty_con_data_con :: TyCon -> RdrName
759ty_con_data_con tc
760  | isTupleTyCon tc
761  , Just dc <- tyConSingleDataCon_maybe tc
762  = Exact (getName dc)
763
764  | tc `hasKey` listTyConKey
765  = Exact nilDataConName
766
767  | otherwise  -- See Note [setRdrNameSpace for wired-in names]
768  = Unqual (setOccNameSpace srcDataName (getOccName tc))
769
770data_con_ty_con :: DataCon -> RdrName
771data_con_ty_con dc
772  | let tc = dataConTyCon dc
773  , isTupleTyCon tc
774  = Exact (getName tc)
775
776  | dc `hasKey` nilDataConKey
777  = Exact listTyConName
778
779  | otherwise  -- See Note [setRdrNameSpace for wired-in names]
780  = Unqual (setOccNameSpace tcClsName (getOccName dc))
781
782-- | Replaces constraint tuple names with corresponding boxed ones.
783filterCTuple :: RdrName -> RdrName
784filterCTuple (Exact n)
785  | Just arity <- cTupleTyConNameArity_maybe n
786  = Exact $ tupleTyConName BoxedTuple arity
787filterCTuple rdr = rdr
788
789
790{- Note [setRdrNameSpace for wired-in names]
791~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
792In GHC.Types, which declares (:), we have
793  infixr 5 :
794The ambiguity about which ":" is meant is resolved by parsing it as a
795data constructor, but then using dataTcOccs to try the type constructor too;
796and that in turn calls setRdrNameSpace to change the name-space of ":" to
797tcClsName.  There isn't a corresponding ":" type constructor, but it's painful
798to make setRdrNameSpace partial, so we just make an Unqual name instead. It
799really doesn't matter!
800-}
801
802eitherToP :: Either (SrcSpan, SDoc) a -> P a
803-- Adapts the Either monad to the P monad
804eitherToP (Left (loc, doc)) = addFatalError loc doc
805eitherToP (Right thing)     = return thing
806
807checkTyVars :: SDoc -> SDoc -> Located RdrName -> [LHsTypeArg GhcPs]
808            -> P ( LHsQTyVars GhcPs  -- the synthesized type variables
809                 , [AddAnn] )        -- action which adds annotations
810-- ^ Check whether the given list of type parameters are all type variables
811-- (possibly with a kind signature).
812checkTyVars pp_what equals_or_where tc tparms
813  = do { (tvs, anns) <- fmap unzip $ mapM check tparms
814       ; return (mkHsQTvs tvs, concat anns) }
815  where
816    check (HsTypeArg _ ki@(L loc _))
817                              = addFatalError loc $
818                                      vcat [ text "Unexpected type application" <+>
819                                            text "@" <> ppr ki
820                                          , text "In the" <+> pp_what <+>
821                                            ptext (sLit "declaration for") <+> quotes (ppr tc)]
822    check (HsValArg ty) = chkParens [] ty
823    check (HsArgPar sp) = addFatalError sp $
824                          vcat [text "Malformed" <+> pp_what
825                            <+> text "declaration for" <+> quotes (ppr tc)]
826        -- Keep around an action for adjusting the annotations of extra parens
827    chkParens :: [AddAnn] -> LHsType GhcPs
828              -> P (LHsTyVarBndr GhcPs, [AddAnn])
829    chkParens acc (dL->L l (HsParTy _ ty)) = chkParens (mkParensApiAnn l
830                                                        ++ acc) ty
831    chkParens acc ty = do
832      tv <- chk ty
833      return (tv, reverse acc)
834
835        -- Check that the name space is correct!
836    chk :: LHsType GhcPs -> P (LHsTyVarBndr GhcPs)
837    chk (dL->L l (HsKindSig _ (dL->L lv (HsTyVar _ _ (dL->L _ tv))) k))
838        | isRdrTyVar tv    = return (cL l (KindedTyVar noExtField (cL lv tv) k))
839    chk (dL->L l (HsTyVar _ _ (dL->L ltv tv)))
840        | isRdrTyVar tv    = return (cL l (UserTyVar noExtField (cL ltv tv)))
841    chk t@(dL->L loc _)
842        = addFatalError loc $
843                vcat [ text "Unexpected type" <+> quotes (ppr t)
844                     , text "In the" <+> pp_what
845                       <+> ptext (sLit "declaration for") <+> quotes tc'
846                     , vcat[ (text "A" <+> pp_what
847                              <+> ptext (sLit "declaration should have form"))
848                     , nest 2
849                       (pp_what
850                        <+> tc'
851                        <+> hsep (map text (takeList tparms allNameStrings))
852                        <+> equals_or_where) ] ]
853
854    -- Avoid printing a constraint tuple in the error message. Print
855    -- a plain old tuple instead (since that's what the user probably
856    -- wrote). See #14907
857    tc' = ppr $ fmap filterCTuple tc
858
859
860
861whereDots, equalsDots :: SDoc
862-- Second argument to checkTyVars
863whereDots  = text "where ..."
864equalsDots = text "= ..."
865
866checkDatatypeContext :: Maybe (LHsContext GhcPs) -> P ()
867checkDatatypeContext Nothing = return ()
868checkDatatypeContext (Just c)
869    = do allowed <- getBit DatatypeContextsBit
870         unless allowed $
871             addError (getLoc c)
872                 (text "Illegal datatype context (use DatatypeContexts):"
873                  <+> pprLHsContext c)
874
875type LRuleTyTmVar = Located RuleTyTmVar
876data RuleTyTmVar = RuleTyTmVar (Located RdrName) (Maybe (LHsType GhcPs))
877-- ^ Essentially a wrapper for a @RuleBndr GhcPs@
878
879-- turns RuleTyTmVars into RuleBnrs - this is straightforward
880mkRuleBndrs :: [LRuleTyTmVar] -> [LRuleBndr GhcPs]
881mkRuleBndrs = fmap (fmap cvt_one)
882  where cvt_one (RuleTyTmVar v Nothing)    = RuleBndr    noExtField v
883        cvt_one (RuleTyTmVar v (Just sig)) =
884          RuleBndrSig noExtField v (mkLHsSigWcType sig)
885
886-- turns RuleTyTmVars into HsTyVarBndrs - this is more interesting
887mkRuleTyVarBndrs :: [LRuleTyTmVar] -> [LHsTyVarBndr GhcPs]
888mkRuleTyVarBndrs = fmap (fmap cvt_one)
889  where cvt_one (RuleTyTmVar v Nothing)    = UserTyVar   noExtField (fmap tm_to_ty v)
890        cvt_one (RuleTyTmVar v (Just sig))
891          = KindedTyVar noExtField (fmap tm_to_ty v) sig
892    -- takes something in namespace 'varName' to something in namespace 'tvName'
893        tm_to_ty (Unqual occ) = Unqual (setOccNameSpace tvName occ)
894        tm_to_ty _ = panic "mkRuleTyVarBndrs"
895
896-- See note [Parsing explicit foralls in Rules] in Parser.y
897checkRuleTyVarBndrNames :: [LHsTyVarBndr GhcPs] -> P ()
898checkRuleTyVarBndrNames = mapM_ (check . fmap hsTyVarName)
899  where check (dL->L loc (Unqual occ)) = do
900          when ((occNameString occ ==) `any` ["forall","family","role"])
901               (addFatalError loc (text $ "parse error on input "
902                                    ++ occNameString occ))
903        check _ = panic "checkRuleTyVarBndrNames"
904
905checkRecordSyntax :: (MonadP m, Outputable a) => Located a -> m (Located a)
906checkRecordSyntax lr@(dL->L loc r)
907    = do allowed <- getBit TraditionalRecordSyntaxBit
908         unless allowed $ addError loc $
909           text "Illegal record syntax (use TraditionalRecordSyntax):" <+> ppr r
910         return lr
911
912-- | Check if the gadt_constrlist is empty. Only raise parse error for
913-- `data T where` to avoid affecting existing error message, see #8258.
914checkEmptyGADTs :: Located ([AddAnn], [LConDecl GhcPs])
915                -> P (Located ([AddAnn], [LConDecl GhcPs]))
916checkEmptyGADTs gadts@(dL->L span (_, []))           -- Empty GADT declaration.
917    = do gadtSyntax <- getBit GadtSyntaxBit   -- GADTs implies GADTSyntax
918         unless gadtSyntax $ addError span $ vcat
919           [ text "Illegal keyword 'where' in data declaration"
920           , text "Perhaps you intended to use GADTs or a similar language"
921           , text "extension to enable syntax: data T where"
922           ]
923         return gadts
924checkEmptyGADTs gadts = return gadts              -- Ordinary GADT declaration.
925
926checkTyClHdr :: Bool               -- True  <=> class header
927                                   -- False <=> type header
928             -> LHsType GhcPs
929             -> P (Located RdrName,      -- the head symbol (type or class name)
930                   [LHsTypeArg GhcPs],      -- parameters of head symbol
931                   LexicalFixity,        -- the declaration is in infix format
932                   [AddAnn]) -- API Annotation for HsParTy when stripping parens
933-- Well-formedness check and decomposition of type and class heads.
934-- Decomposes   T ty1 .. tyn   into    (T, [ty1, ..., tyn])
935--              Int :*: Bool   into    (:*:, [Int, Bool])
936-- returning the pieces
937checkTyClHdr is_cls ty
938  = goL ty [] [] Prefix
939  where
940    goL (dL->L l ty) acc ann fix = go l ty acc ann fix
941
942    -- workaround to define '*' despite StarIsType
943    go lp (HsParTy _ (dL->L l (HsStarTy _ isUni))) acc ann fix
944      = do { warnStarBndr l
945           ; let name = mkOccName tcClsName (starSym isUni)
946           ; return (cL l (Unqual name), acc, fix, (ann ++ mkParensApiAnn lp)) }
947
948    go _ (HsTyVar _ _ ltc@(dL->L _ tc)) acc ann fix
949      | isRdrTc tc               = return (ltc, acc, fix, ann)
950    go _ (HsOpTy _ t1 ltc@(dL->L _ tc) t2) acc ann _fix
951      | isRdrTc tc               = return (ltc, HsValArg t1:HsValArg t2:acc, Infix, ann)
952    go l (HsParTy _ ty)    acc ann fix = goL ty acc (ann ++mkParensApiAnn l) fix
953    go _ (HsAppTy _ t1 t2) acc ann fix = goL t1 (HsValArg t2:acc) ann fix
954    go _ (HsAppKindTy l ty ki) acc ann fix = goL ty (HsTypeArg l ki:acc) ann fix
955    go l (HsTupleTy _ HsBoxedOrConstraintTuple ts) [] ann fix
956      = return (cL l (nameRdrName tup_name), map HsValArg ts, fix, ann)
957      where
958        arity = length ts
959        tup_name | is_cls    = cTupleTyConName arity
960                 | otherwise = getName (tupleTyCon Boxed arity)
961          -- See Note [Unit tuples] in GHC.Hs.Types  (TODO: is this still relevant?)
962    go l _ _ _ _
963      = addFatalError l (text "Malformed head of type or class declaration:"
964                          <+> ppr ty)
965
966-- | Yield a parse error if we have a function applied directly to a do block
967-- etc. and BlockArguments is not enabled.
968checkExpBlockArguments :: LHsExpr GhcPs -> PV ()
969checkCmdBlockArguments :: LHsCmd GhcPs -> PV ()
970(checkExpBlockArguments, checkCmdBlockArguments) = (checkExpr, checkCmd)
971  where
972    checkExpr :: LHsExpr GhcPs -> PV ()
973    checkExpr expr = case unLoc expr of
974      HsDo _ DoExpr _ -> check "do block" expr
975      HsDo _ MDoExpr _ -> check "mdo block" expr
976      HsLam {} -> check "lambda expression" expr
977      HsCase {} -> check "case expression" expr
978      HsLamCase {} -> check "lambda-case expression" expr
979      HsLet {} -> check "let expression" expr
980      HsIf {} -> check "if expression" expr
981      HsProc {} -> check "proc expression" expr
982      _ -> return ()
983
984    checkCmd :: LHsCmd GhcPs -> PV ()
985    checkCmd cmd = case unLoc cmd of
986      HsCmdLam {} -> check "lambda command" cmd
987      HsCmdCase {} -> check "case command" cmd
988      HsCmdIf {} -> check "if command" cmd
989      HsCmdLet {} -> check "let command" cmd
990      HsCmdDo {} -> check "do command" cmd
991      _ -> return ()
992
993    check :: (HasSrcSpan a, Outputable a) => String -> a -> PV ()
994    check element a = do
995      blockArguments <- getBit BlockArgumentsBit
996      unless blockArguments $
997        addError (getLoc a) $
998          text "Unexpected " <> text element <> text " in function application:"
999           $$ nest 4 (ppr a)
1000           $$ text "You could write it with parentheses"
1001           $$ text "Or perhaps you meant to enable BlockArguments?"
1002
1003-- | Validate the context constraints and break up a context into a list
1004-- of predicates.
1005--
1006-- @
1007--     (Eq a, Ord b)        -->  [Eq a, Ord b]
1008--     Eq a                 -->  [Eq a]
1009--     (Eq a)               -->  [Eq a]
1010--     (((Eq a)))           -->  [Eq a]
1011-- @
1012checkContext :: LHsType GhcPs -> P ([AddAnn],LHsContext GhcPs)
1013checkContext (dL->L l orig_t)
1014  = check [] (cL l orig_t)
1015 where
1016  check anns (dL->L lp (HsTupleTy _ HsBoxedOrConstraintTuple ts))
1017    -- (Eq a, Ord b) shows up as a tuple type. Only boxed tuples can
1018    -- be used as context constraints.
1019    = return (anns ++ mkParensApiAnn lp,cL l ts)                -- Ditto ()
1020
1021  check anns (dL->L lp1 (HsParTy _ ty))
1022                                  -- to be sure HsParTy doesn't get into the way
1023       = check anns' ty
1024         where anns' = if l == lp1 then anns
1025                                   else (anns ++ mkParensApiAnn lp1)
1026
1027  -- no need for anns, returning original
1028  check _anns t = checkNoDocs msg t *> return ([],cL l [cL l orig_t])
1029
1030  msg = text "data constructor context"
1031
1032-- | Check recursively if there are any 'HsDocTy's in the given type.
1033-- This only works on a subset of types produced by 'btype_no_ops'
1034checkNoDocs :: SDoc -> LHsType GhcPs -> P ()
1035checkNoDocs msg ty = go ty
1036  where
1037    go (dL->L _ (HsAppKindTy _ ty ki)) = go ty *> go ki
1038    go (dL->L _ (HsAppTy _ t1 t2)) = go t1 *> go t2
1039    go (dL->L l (HsDocTy _ t ds)) = addError l $ hsep
1040                                  [ text "Unexpected haddock", quotes (ppr ds)
1041                                  , text "on", msg, quotes (ppr t) ]
1042    go _ = pure ()
1043
1044checkImportDecl :: Maybe (Located Token)
1045                -> Maybe (Located Token)
1046                -> P ()
1047checkImportDecl mPre mPost = do
1048  let whenJust mg f = maybe (pure ()) f mg
1049
1050  importQualifiedPostEnabled <- getBit ImportQualifiedPostBit
1051
1052  -- Error if 'qualified' found in postpostive position and
1053  -- 'ImportQualifiedPost' is not in effect.
1054  whenJust mPost $ \post ->
1055    when (not importQualifiedPostEnabled) $
1056      failOpNotEnabledImportQualifiedPost (getLoc post)
1057
1058  -- Error if 'qualified' occurs in both pre and postpositive
1059  -- positions.
1060  whenJust mPost $ \post ->
1061    when (isJust mPre) $
1062      failOpImportQualifiedTwice (getLoc post)
1063
1064  -- Warn if 'qualified' found in prepositive position and
1065  -- 'Opt_WarnPrepositiveQualifiedModule' is enabled.
1066  whenJust mPre $ \pre ->
1067    warnPrepositiveQualifiedModule (getLoc pre)
1068
1069-- -------------------------------------------------------------------------
1070-- Checking Patterns.
1071
1072-- We parse patterns as expressions and check for valid patterns below,
1073-- converting the expression into a pattern at the same time.
1074
1075checkPattern :: Located (PatBuilder GhcPs) -> P (LPat GhcPs)
1076checkPattern = runPV . checkLPat
1077
1078checkPattern_msg :: SDoc -> PV (Located (PatBuilder GhcPs)) -> P (LPat GhcPs)
1079checkPattern_msg msg pp = runPV_msg msg (pp >>= checkLPat)
1080
1081checkLPat :: Located (PatBuilder GhcPs) -> PV (LPat GhcPs)
1082checkLPat e@(dL->L l _) = checkPat l e []
1083
1084checkPat :: SrcSpan -> Located (PatBuilder GhcPs) -> [LPat GhcPs]
1085         -> PV (LPat GhcPs)
1086checkPat loc (dL->L l e@(PatBuilderVar (dL->L _ c))) args
1087  | isRdrDataCon c = return (cL loc (ConPatIn (cL l c) (PrefixCon args)))
1088  | not (null args) && patIsRec c =
1089      localPV_msg (\_ -> text "Perhaps you intended to use RecursiveDo") $
1090      patFail l (ppr e)
1091checkPat loc e args     -- OK to let this happen even if bang-patterns
1092                        -- are not enabled, because there is no valid
1093                        -- non-bang-pattern parse of (C ! e)
1094  | Just (e', args') <- splitBang e
1095  = do  { args'' <- mapM checkLPat args'
1096        ; checkPat loc e' (args'' ++ args) }
1097checkPat loc (dL->L _ (PatBuilderApp f e)) args
1098  = do p <- checkLPat e
1099       checkPat loc f (p : args)
1100checkPat loc (dL->L _ e) []
1101  = do p <- checkAPat loc e
1102       return (cL loc p)
1103checkPat loc e _
1104  = patFail loc (ppr e)
1105
1106checkAPat :: SrcSpan -> PatBuilder GhcPs -> PV (Pat GhcPs)
1107checkAPat loc e0 = do
1108 nPlusKPatterns <- getBit NPlusKPatternsBit
1109 case e0 of
1110   PatBuilderPat p -> return p
1111   PatBuilderVar x -> return (VarPat noExtField x)
1112
1113   -- Overloaded numeric patterns (e.g. f 0 x = x)
1114   -- Negation is recorded separately, so that the literal is zero or +ve
1115   -- NB. Negative *primitive* literals are already handled by the lexer
1116   PatBuilderOverLit pos_lit -> return (mkNPat (cL loc pos_lit) Nothing)
1117
1118   PatBuilderBang lb e   -- (! x)
1119        -> do { hintBangPat loc e0
1120              ; e' <- checkLPat e
1121              ; addAnnotation loc AnnBang lb
1122              ; return  (BangPat noExtField e') }
1123
1124   -- n+k patterns
1125   PatBuilderOpApp
1126           (dL->L nloc (PatBuilderVar (dL->L _ n)))
1127           (dL->L _ plus)
1128           (dL->L lloc (PatBuilderOverLit lit@(OverLit {ol_val = HsIntegral {}})))
1129                      | nPlusKPatterns && (plus == plus_RDR)
1130                      -> return (mkNPlusKPat (cL nloc n) (cL lloc lit))
1131
1132   PatBuilderOpApp l (dL->L cl c) r
1133     | isRdrDataCon c -> do
1134         l <- checkLPat l
1135         r <- checkLPat r
1136         return (ConPatIn (cL cl c) (InfixCon l r))
1137
1138   PatBuilderPar e    -> checkLPat e >>= (return . (ParPat noExtField))
1139   _           -> patFail loc (ppr e0)
1140
1141placeHolderPunRhs :: DisambECP b => PV (Located b)
1142-- The RHS of a punned record field will be filled in by the renamer
1143-- It's better not to make it an error, in case we want to print it when
1144-- debugging
1145placeHolderPunRhs = mkHsVarPV (noLoc pun_RDR)
1146
1147plus_RDR, pun_RDR :: RdrName
1148plus_RDR = mkUnqual varName (fsLit "+") -- Hack
1149pun_RDR  = mkUnqual varName (fsLit "pun-right-hand-side")
1150
1151isBangRdr, isTildeRdr :: RdrName -> Bool
1152isBangRdr (Unqual occ) = occNameFS occ == fsLit "!"
1153isBangRdr _ = False
1154isTildeRdr = (==eqTyCon_RDR)
1155
1156checkPatField :: LHsRecField GhcPs (Located (PatBuilder GhcPs))
1157              -> PV (LHsRecField GhcPs (LPat GhcPs))
1158checkPatField (dL->L l fld) = do p <- checkLPat (hsRecFieldArg fld)
1159                                 return (cL l (fld { hsRecFieldArg = p }))
1160
1161patFail :: SrcSpan -> SDoc -> PV a
1162patFail loc e = addFatalError loc $ text "Parse error in pattern:" <+> ppr e
1163
1164patIsRec :: RdrName -> Bool
1165patIsRec e = e == mkUnqual varName (fsLit "rec")
1166
1167---------------------------------------------------------------------------
1168-- Check Equation Syntax
1169
1170checkValDef :: SrcStrictness
1171            -> Located (PatBuilder GhcPs)
1172            -> Maybe (LHsType GhcPs)
1173            -> Located (a,GRHSs GhcPs (LHsExpr GhcPs))
1174            -> P ([AddAnn],HsBind GhcPs)
1175
1176checkValDef _strictness lhs (Just sig) grhss
1177        -- x :: ty = rhs  parses as a *pattern* binding
1178  = do lhs' <- runPV $ mkHsTySigPV (combineLocs lhs sig) lhs sig >>= checkLPat
1179       checkPatBind lhs' grhss
1180
1181checkValDef strictness lhs Nothing g@(dL->L l (_,grhss))
1182  = do  { mb_fun <- isFunLhs lhs
1183        ; case mb_fun of
1184            Just (fun, is_infix, pats, ann) ->
1185              checkFunBind strictness ann (getLoc lhs)
1186                           fun is_infix pats (cL l grhss)
1187            Nothing -> do
1188              lhs' <- checkPattern lhs
1189              checkPatBind lhs' g }
1190
1191checkFunBind :: SrcStrictness
1192             -> [AddAnn]
1193             -> SrcSpan
1194             -> Located RdrName
1195             -> LexicalFixity
1196             -> [Located (PatBuilder GhcPs)]
1197             -> Located (GRHSs GhcPs (LHsExpr GhcPs))
1198             -> P ([AddAnn],HsBind GhcPs)
1199checkFunBind strictness ann lhs_loc fun is_infix pats (dL->L rhs_span grhss)
1200  = do  ps <- mapM checkPattern pats
1201        let match_span = combineSrcSpans lhs_loc rhs_span
1202        -- Add back the annotations stripped from any HsPar values in the lhs
1203        -- mapM_ (\a -> a match_span) ann
1204        return (ann, makeFunBind fun
1205                  [cL match_span (Match { m_ext = noExtField
1206                                        , m_ctxt = FunRhs
1207                                            { mc_fun    = fun
1208                                            , mc_fixity = is_infix
1209                                            , mc_strictness = strictness }
1210                                        , m_pats = ps
1211                                        , m_grhss = grhss })])
1212        -- The span of the match covers the entire equation.
1213        -- That isn't quite right, but it'll do for now.
1214
1215makeFunBind :: Located RdrName -> [LMatch GhcPs (LHsExpr GhcPs)]
1216            -> HsBind GhcPs
1217-- Like GHC.Hs.Utils.mkFunBind, but we need to be able to set the fixity too
1218makeFunBind fn ms
1219  = FunBind { fun_ext = noExtField,
1220              fun_id = fn,
1221              fun_matches = mkMatchGroup FromSource ms,
1222              fun_co_fn = idHsWrapper,
1223              fun_tick = [] }
1224
1225checkPatBind :: LPat GhcPs
1226             -> Located (a,GRHSs GhcPs (LHsExpr GhcPs))
1227             -> P ([AddAnn],HsBind GhcPs)
1228checkPatBind lhs (dL->L _ (_,grhss))
1229  = return ([],PatBind noExtField lhs grhss ([],[]))
1230
1231checkValSigLhs :: LHsExpr GhcPs -> P (Located RdrName)
1232checkValSigLhs (dL->L _ (HsVar _ lrdr@(dL->L _ v)))
1233  | isUnqual v
1234  , not (isDataOcc (rdrNameOcc v))
1235  = return lrdr
1236
1237checkValSigLhs lhs@(dL->L l _)
1238  = addFatalError l ((text "Invalid type signature:" <+>
1239                       ppr lhs <+> text ":: ...")
1240                      $$ text hint)
1241  where
1242    hint | foreign_RDR `looks_like` lhs
1243         = "Perhaps you meant to use ForeignFunctionInterface?"
1244         | default_RDR `looks_like` lhs
1245         = "Perhaps you meant to use DefaultSignatures?"
1246         | pattern_RDR `looks_like` lhs
1247         = "Perhaps you meant to use PatternSynonyms?"
1248         | otherwise
1249         = "Should be of form <variable> :: <type>"
1250
1251    -- A common error is to forget the ForeignFunctionInterface flag
1252    -- so check for that, and suggest.  cf #3805
1253    -- Sadly 'foreign import' still barfs 'parse error' because
1254    --  'import' is a keyword
1255    looks_like s (dL->L _ (HsVar _ (dL->L _ v))) = v == s
1256    looks_like s (dL->L _ (HsApp _ lhs _))   = looks_like s lhs
1257    looks_like _ _                       = False
1258
1259    foreign_RDR = mkUnqual varName (fsLit "foreign")
1260    default_RDR = mkUnqual varName (fsLit "default")
1261    pattern_RDR = mkUnqual varName (fsLit "pattern")
1262
1263checkDoAndIfThenElse
1264  :: (HasSrcSpan a, Outputable a, Outputable b, HasSrcSpan c, Outputable c)
1265  => a -> Bool -> b -> Bool -> c -> PV ()
1266checkDoAndIfThenElse guardExpr semiThen thenExpr semiElse elseExpr
1267 | semiThen || semiElse
1268    = do doAndIfThenElse <- getBit DoAndIfThenElseBit
1269         unless doAndIfThenElse $ do
1270             addError (combineLocs guardExpr elseExpr)
1271                            (text "Unexpected semi-colons in conditional:"
1272                          $$ nest 4 expr
1273                          $$ text "Perhaps you meant to use DoAndIfThenElse?")
1274 | otherwise            = return ()
1275    where pprOptSemi True  = semi
1276          pprOptSemi False = empty
1277          expr = text "if"   <+> ppr guardExpr <> pprOptSemi semiThen <+>
1278                 text "then" <+> ppr thenExpr  <> pprOptSemi semiElse <+>
1279                 text "else" <+> ppr elseExpr
1280
1281
1282        -- The parser left-associates, so there should
1283        -- not be any OpApps inside the e's
1284splitBang :: Located (PatBuilder GhcPs) -> Maybe (Located (PatBuilder GhcPs), [Located (PatBuilder GhcPs)])
1285-- Splits (f ! g a b) into (f, [(! g), a, b])
1286splitBang (dL->L _ (PatBuilderOpApp l_arg op r_arg))
1287  | isBangRdr (unLoc op)
1288  = Just (l_arg, cL l' (PatBuilderBang (getLoc op) arg1) : argns)
1289  where
1290    l' = combineLocs op arg1
1291    (arg1,argns) = split_bang r_arg []
1292    split_bang (dL->L _ (PatBuilderApp f e)) es = split_bang f (e:es)
1293    split_bang e                       es = (e,es)
1294splitBang _ = Nothing
1295
1296-- See Note [isFunLhs vs mergeDataCon]
1297isFunLhs :: Located (PatBuilder GhcPs)
1298      -> P (Maybe (Located RdrName, LexicalFixity, [Located (PatBuilder GhcPs)],[AddAnn]))
1299-- A variable binding is parsed as a FunBind.
1300-- Just (fun, is_infix, arg_pats) if e is a function LHS
1301--
1302-- The whole LHS is parsed as a single expression.
1303-- Any infix operators on the LHS will parse left-associatively
1304-- E.g.         f !x y !z
1305--      will parse (rather strangely) as
1306--              (f ! x y) ! z
1307--      It's up to isFunLhs to sort out the mess
1308--
1309-- a .!. !b
1310
1311isFunLhs e = go e [] []
1312 where
1313   go (dL->L loc (PatBuilderVar (dL->L _ f))) es ann
1314       | not (isRdrDataCon f)        = return (Just (cL loc f, Prefix, es, ann))
1315   go (dL->L _ (PatBuilderApp f e)) es       ann = go f (e:es) ann
1316   go (dL->L l (PatBuilderPar e))   es@(_:_) ann = go e es (ann ++ mkParensApiAnn l)
1317
1318        -- Things of the form `!x` are also FunBinds
1319        -- See Note [FunBind vs PatBind]
1320   go (dL->L _ (PatBuilderBang _ (L _ (PatBuilderVar (dL -> L l var))))) [] ann
1321        | not (isRdrDataCon var)     = return (Just (cL l var, Prefix, [], ann))
1322
1323      -- For infix function defns, there should be only one infix *function*
1324      -- (though there may be infix *datacons* involved too).  So we don't
1325      -- need fixity info to figure out which function is being defined.
1326      --      a `K1` b `op` c `K2` d
1327      -- must parse as
1328      --      (a `K1` b) `op` (c `K2` d)
1329      -- The renamer checks later that the precedences would yield such a parse.
1330      --
1331      -- There is a complication to deal with bang patterns.
1332      --
1333      -- ToDo: what about this?
1334      --              x + 1 `op` y = ...
1335
1336   go e@(L loc (PatBuilderOpApp l (dL->L loc' op) r)) es ann
1337        | Just (e',es') <- splitBang e
1338        = do { bang_on <- getBit BangPatBit
1339             ; if bang_on then go e' (es' ++ es) ann
1340               else return (Just (cL loc' op, Infix, (l:r:es), ann)) }
1341                -- No bangs; behave just like the next case
1342        | not (isRdrDataCon op)         -- We have found the function!
1343        = return (Just (cL loc' op, Infix, (l:r:es), ann))
1344        | otherwise                     -- Infix data con; keep going
1345        = do { mb_l <- go l es ann
1346             ; case mb_l of
1347                 Just (op', Infix, j : k : es', ann')
1348                   -> return (Just (op', Infix, j : op_app : es', ann'))
1349                   where
1350                     op_app = cL loc (PatBuilderOpApp k
1351                               (cL loc' op) r)
1352                 _ -> return Nothing }
1353   go _ _ _ = return Nothing
1354
1355-- | Either an operator or an operand.
1356data TyEl = TyElOpr RdrName | TyElOpd (HsType GhcPs)
1357          | TyElKindApp SrcSpan (LHsType GhcPs)
1358          -- See Note [TyElKindApp SrcSpan interpretation]
1359          | TyElTilde | TyElBang
1360          | TyElUnpackedness ([AddAnn], SourceText, SrcUnpackedness)
1361          | TyElDocPrev HsDocString
1362
1363
1364{- Note [TyElKindApp SrcSpan interpretation]
1365~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1366
1367A TyElKindApp captures type application written in haskell as
1368
1369    @ Foo
1370
1371where Foo is some type.
1372
1373The SrcSpan reflects both elements, and there are AnnAt and AnnVal API
1374Annotations attached to this SrcSpan for the specific locations of
1375each within it.
1376-}
1377
1378instance Outputable TyEl where
1379  ppr (TyElOpr name) = ppr name
1380  ppr (TyElOpd ty) = ppr ty
1381  ppr (TyElKindApp _ ki) = text "@" <> ppr ki
1382  ppr TyElTilde = text "~"
1383  ppr TyElBang = text "!"
1384  ppr (TyElUnpackedness (_, _, unpk)) = ppr unpk
1385  ppr (TyElDocPrev doc) = ppr doc
1386
1387tyElStrictness :: TyEl -> Maybe (AnnKeywordId, SrcStrictness)
1388tyElStrictness TyElTilde = Just (AnnTilde, SrcLazy)
1389tyElStrictness TyElBang = Just (AnnBang, SrcStrict)
1390tyElStrictness _ = Nothing
1391
1392-- | Extract a strictness/unpackedness annotation from the front of a reversed
1393-- 'TyEl' list.
1394pStrictMark
1395  :: [Located TyEl] -- reversed TyEl
1396  -> Maybe ( Located HsSrcBang {- a strictness/upnackedness marker -}
1397           , [AddAnn]
1398           , [Located TyEl] {- remaining TyEl -})
1399pStrictMark ((dL->L l1 x1) : (dL->L l2 x2) : xs)
1400  | Just (strAnnId, str) <- tyElStrictness x1
1401  , TyElUnpackedness (unpkAnns, prag, unpk) <- x2
1402  = Just ( cL (combineSrcSpans l1 l2) (HsSrcBang prag unpk str)
1403         , unpkAnns ++ [AddAnn strAnnId l1]
1404         , xs )
1405pStrictMark ((dL->L l x1) : xs)
1406  | Just (strAnnId, str) <- tyElStrictness x1
1407  = Just ( cL l (HsSrcBang NoSourceText NoSrcUnpack str)
1408         , [AddAnn strAnnId l]
1409         , xs )
1410pStrictMark ((dL->L l x1) : xs)
1411  | TyElUnpackedness (anns, prag, unpk) <- x1
1412  = Just ( cL l (HsSrcBang prag unpk NoSrcStrict)
1413         , anns
1414         , xs )
1415pStrictMark _ = Nothing
1416
1417pBangTy
1418  :: LHsType GhcPs  -- a type to be wrapped inside HsBangTy
1419  -> [Located TyEl] -- reversed TyEl
1420  -> ( Bool           {- has a strict mark been consumed? -}
1421     , LHsType GhcPs  {- the resulting BangTy -}
1422     , P ()           {- add annotations -}
1423     , [Located TyEl] {- remaining TyEl -})
1424pBangTy lt@(dL->L l1 _) xs =
1425  case pStrictMark xs of
1426    Nothing -> (False, lt, pure (), xs)
1427    Just (dL->L l2 strictMark, anns, xs') ->
1428      let bl = combineSrcSpans l1 l2
1429          bt = HsBangTy noExtField strictMark lt
1430      in (True, cL bl bt, addAnnsAt bl anns, xs')
1431
1432-- | Merge a /reversed/ and /non-empty/ soup of operators and operands
1433--   into a type.
1434--
1435-- User input: @F x y + G a b * X@
1436-- Input to 'mergeOps': [X, *, b, a, G, +, y, x, F]
1437-- Output corresponds to what the user wrote assuming all operators are of the
1438-- same fixity and right-associative.
1439--
1440-- It's a bit silly that we're doing it at all, as the renamer will have to
1441-- rearrange this, and it'd be easier to keep things separate.
1442--
1443-- See Note [Parsing data constructors is hard]
1444mergeOps :: [Located TyEl] -> P (LHsType GhcPs)
1445mergeOps ((dL->L l1 (TyElOpd t)) : xs)
1446  | (_, t', addAnns, xs') <- pBangTy (cL l1 t) xs
1447  , null xs' -- We accept a BangTy only when there are no preceding TyEl.
1448  = addAnns >> return t'
1449mergeOps all_xs = go (0 :: Int) [] id all_xs
1450  where
1451    -- NB. When modifying clauses in 'go', make sure that the reasoning in
1452    -- Note [Non-empty 'acc' in mergeOps clause [end]] is still correct.
1453
1454    -- clause [unpk]:
1455    -- handle (NO)UNPACK pragmas
1456    go k acc ops_acc ((dL->L l (TyElUnpackedness (anns, unpkSrc, unpk))):xs) =
1457      if not (null acc) && null xs
1458      then do { acc' <- eitherToP $ mergeOpsAcc acc
1459              ; let a = ops_acc acc'
1460                    strictMark = HsSrcBang unpkSrc unpk NoSrcStrict
1461                    bl = combineSrcSpans l (getLoc a)
1462                    bt = HsBangTy noExtField strictMark a
1463              ; addAnnsAt bl anns
1464              ; return (cL bl bt) }
1465      else addFatalError l unpkError
1466      where
1467        unpkSDoc = case unpkSrc of
1468          NoSourceText -> ppr unpk
1469          SourceText str -> text str <> text " #-}"
1470        unpkError
1471          | not (null xs) = unpkSDoc <+> text "cannot appear inside a type."
1472          | null acc && k == 0 = unpkSDoc <+> text "must be applied to a type."
1473          | otherwise =
1474              -- See Note [Impossible case in mergeOps clause [unpk]]
1475              panic "mergeOps.UNPACK: impossible position"
1476
1477    -- clause [doc]:
1478    -- we do not expect to encounter any docs
1479    go _ _ _ ((dL->L l (TyElDocPrev _)):_) =
1480      failOpDocPrev l
1481
1482    -- to improve error messages, we do a bit of guesswork to determine if the
1483    -- user intended a '!' or a '~' as a strictness annotation
1484    go k acc ops_acc ((dL->L l x) : xs)
1485      | Just (_, str) <- tyElStrictness x
1486      , let guess [] = True
1487            guess ((dL->L _ (TyElOpd _)):_) = False
1488            guess ((dL->L _ (TyElOpr _)):_) = True
1489            guess ((dL->L _ (TyElKindApp _ _)):_) = False
1490            guess ((dL->L _ (TyElTilde)):_) = True
1491            guess ((dL->L _ (TyElBang)):_) = True
1492            guess ((dL->L _ (TyElUnpackedness _)):_) = True
1493            guess ((dL->L _ (TyElDocPrev _)):xs') = guess xs'
1494            guess _ = panic "mergeOps.go.guess: Impossible Match"
1495                      -- due to #15884
1496        in guess xs
1497      = if not (null acc) && (k > 1 || length acc > 1)
1498        then do { a <- eitherToP (mergeOpsAcc acc)
1499                ; failOpStrictnessCompound (cL l str) (ops_acc a) }
1500        else failOpStrictnessPosition (cL l str)
1501
1502    -- clause [opr]:
1503    -- when we encounter an operator, we must have accumulated
1504    -- something for its rhs, and there must be something left
1505    -- to build its lhs.
1506    go k acc ops_acc ((dL->L l (TyElOpr op)):xs) =
1507      if null acc || null (filter isTyElOpd xs)
1508        then failOpFewArgs (cL l op)
1509        else do { acc' <- eitherToP (mergeOpsAcc acc)
1510                ; go (k + 1) [] (\c -> mkLHsOpTy c (cL l op) (ops_acc acc')) xs }
1511      where
1512        isTyElOpd (dL->L _ (TyElOpd _)) = True
1513        isTyElOpd _ = False
1514
1515    -- clause [opr.1]: interpret 'TyElTilde' as an operator
1516    go k acc ops_acc ((dL->L l TyElTilde):xs) =
1517      let op = eqTyCon_RDR
1518      in go k acc ops_acc (cL l (TyElOpr op):xs)
1519
1520    -- clause [opr.2]: interpret 'TyElBang' as an operator
1521    go k acc ops_acc ((dL->L l TyElBang):xs) =
1522      let op = mkUnqual tcClsName (fsLit "!")
1523      in go k acc ops_acc (cL l (TyElOpr op):xs)
1524
1525    -- clause [opd]:
1526    -- whenever an operand is encountered, it is added to the accumulator
1527    go k acc ops_acc ((dL->L l (TyElOpd a)):xs) = go k (HsValArg (cL l a):acc) ops_acc xs
1528
1529    -- clause [tyapp]:
1530    -- whenever a type application is encountered, it is added to the accumulator
1531    go k acc ops_acc ((dL->L _ (TyElKindApp l a)):xs) = go k (HsTypeArg l a:acc) ops_acc xs
1532
1533    -- clause [end]
1534    -- See Note [Non-empty 'acc' in mergeOps clause [end]]
1535    go _ acc ops_acc [] = do { acc' <- eitherToP (mergeOpsAcc acc)
1536                             ; return (ops_acc acc') }
1537
1538    go _ _ _ _ = panic "mergeOps.go: Impossible Match"
1539                        -- due to #15884
1540
1541mergeOpsAcc :: [HsArg (LHsType GhcPs) (LHsKind GhcPs)]
1542         -> Either (SrcSpan, SDoc) (LHsType GhcPs)
1543mergeOpsAcc [] = panic "mergeOpsAcc: empty input"
1544mergeOpsAcc (HsTypeArg _ (L loc ki):_)
1545  = Left (loc, text "Unexpected type application:" <+> ppr ki)
1546mergeOpsAcc (HsValArg ty : xs) = go1 ty xs
1547  where
1548    go1 :: LHsType GhcPs
1549        -> [HsArg (LHsType GhcPs) (LHsKind GhcPs)]
1550        -> Either (SrcSpan, SDoc) (LHsType GhcPs)
1551    go1 lhs []     = Right lhs
1552    go1 lhs (x:xs) = case x of
1553        HsValArg ty -> go1 (mkHsAppTy lhs ty) xs
1554        HsTypeArg loc ki -> let ty = mkHsAppKindTy loc lhs ki
1555                            in go1 ty xs
1556        HsArgPar _ -> go1 lhs xs
1557mergeOpsAcc (HsArgPar _: xs) = mergeOpsAcc xs
1558
1559{- Note [Impossible case in mergeOps clause [unpk]]
1560~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1561This case should never occur. Let us consider all possible
1562variations of 'acc', 'xs', and 'k':
1563
1564  acc          xs        k
1565==============================
1566  null   |    null       0      -- "must be applied to a type"
1567  null   |  not null     0      -- "must be applied to a type"
1568not null |    null       0      -- successful parse
1569not null |  not null     0      -- "cannot appear inside a type"
1570  null   |    null      >0      -- handled in clause [opr]
1571  null   |  not null    >0      -- "cannot appear inside a type"
1572not null |    null      >0      -- successful parse
1573not null |  not null    >0      -- "cannot appear inside a type"
1574
1575The (null acc && null xs && k>0) case is handled in clause [opr]
1576by the following check:
1577
1578    if ... || null (filter isTyElOpd xs)
1579     then failOpFewArgs (L l op)
1580
1581We know that this check has been performed because k>0, and by
1582the time we reach the end of the list (null xs), the only way
1583for (null acc) to hold is that there was not a single TyElOpd
1584between the operator and the end of the list. But this case is
1585caught by the check and reported as 'failOpFewArgs'.
1586-}
1587
1588{- Note [Non-empty 'acc' in mergeOps clause [end]]
1589~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1590In clause [end] we need to know that 'acc' is non-empty to call 'mergeAcc'
1591without a check.
1592
1593Running 'mergeOps' with an empty input list is forbidden, so we do not consider
1594this possibility. This means we'll hit at least one other clause before we
1595reach clause [end].
1596
1597* Clauses [unpk] and [doc] do not call 'go' recursively, so we cannot hit
1598  clause [end] from there.
1599* Clause [opd] makes 'acc' non-empty, so if we hit clause [end] after it, 'acc'
1600  will be non-empty.
1601* Clause [opr] checks that (filter isTyElOpd xs) is not null - so we are going
1602  to hit clause [opd] at least once before we reach clause [end], making 'acc'
1603  non-empty.
1604* There are no other clauses.
1605
1606Therefore, it is safe to omit a check for non-emptiness of 'acc' in clause
1607[end].
1608
1609-}
1610
1611pInfixSide :: [Located TyEl] -> Maybe (LHsType GhcPs, P (), [Located TyEl])
1612pInfixSide ((dL->L l (TyElOpd t)):xs)
1613  | (True, t', addAnns, xs') <- pBangTy (cL l t) xs
1614  = Just (t', addAnns, xs')
1615pInfixSide (el:xs1)
1616  | Just t1 <- pLHsTypeArg el
1617  = go [t1] xs1
1618   where
1619     go :: [HsArg (LHsType GhcPs) (LHsKind GhcPs)]
1620        -> [Located TyEl] -> Maybe (LHsType GhcPs, P (), [Located TyEl])
1621     go acc (el:xs)
1622       | Just t <- pLHsTypeArg el
1623       = go (t:acc) xs
1624     go acc xs = case mergeOpsAcc acc of
1625       Left _ -> Nothing
1626       Right acc' -> Just (acc', pure (), xs)
1627pInfixSide _ = Nothing
1628
1629pLHsTypeArg :: Located TyEl -> Maybe (HsArg (LHsType GhcPs) (LHsKind GhcPs))
1630pLHsTypeArg (dL->L l (TyElOpd a)) = Just (HsValArg (L l a))
1631pLHsTypeArg (dL->L _ (TyElKindApp l a)) = Just (HsTypeArg l a)
1632pLHsTypeArg _ = Nothing
1633
1634pDocPrev :: [Located TyEl] -> (Maybe LHsDocString, [Located TyEl])
1635pDocPrev = go Nothing
1636  where
1637    go mTrailingDoc ((dL->L l (TyElDocPrev doc)):xs) =
1638      go (mTrailingDoc `mplus` Just (cL l doc)) xs
1639    go mTrailingDoc xs = (mTrailingDoc, xs)
1640
1641orErr :: Maybe a -> b -> Either b a
1642orErr (Just a) _ = Right a
1643orErr Nothing b = Left b
1644
1645{- Note [isFunLhs vs mergeDataCon]
1646~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1647
1648When parsing a function LHS, we do not know whether to treat (!) as
1649a strictness annotation or an infix operator:
1650
1651  f ! a = ...
1652
1653Without -XBangPatterns, this parses as   (!) f a = ...
1654   with -XBangPatterns, this parses as   f (!a) = ...
1655
1656So in function declarations we opted to always parse as if -XBangPatterns
1657were off, and then rejig in 'isFunLhs'.
1658
1659There are two downsides to this approach:
1660
16611. It is not particularly elegant, as there's a point in our pipeline where
1662   the representation is awfully incorrect. For instance,
1663      f !a b !c = ...
1664   will be first parsed as
1665      (f ! a b) ! c = ...
1666
16672. There are cases that it fails to cover, for instance infix declarations:
1668      !a + !b = ...
1669   will trigger an error.
1670
1671Unfortunately, we cannot define different productions in the 'happy' grammar
1672depending on whether -XBangPatterns are enabled.
1673
1674When parsing data constructors, we face a similar issue:
1675  (a) data T1 = C ! D
1676  (b) data T2 = C ! D => ...
1677
1678In (a) the first bang is a strictness annotation, but in (b) it is a type
1679operator. A 'happy'-based parser does not have unlimited lookahead to check for
1680=>, so we must first parse (C ! D) into a common representation.
1681
1682If we tried to mirror the approach used in functions, we would parse both sides
1683of => as types, and then rejig. However, we take a different route and use an
1684intermediate data structure, a reversed list of 'TyEl'.
1685See Note [Parsing data constructors is hard] for details.
1686
1687This approach does not suffer from the issues of 'isFunLhs':
1688
16891. A sequence of 'TyEl' is a dedicated intermediate representation, not an
1690   incorrectly parsed type. Therefore, we do not have confusing states in our
1691   pipeline. (Except for representing data constructors as type variables).
1692
16932. We can handle infix data constructors with strictness annotations:
1694    data T a b = !a :+ !b
1695
1696-}
1697
1698
1699-- | Merge a /reversed/ and /non-empty/ soup of operators and operands
1700--   into a data constructor.
1701--
1702-- User input: @C !A B -- ^ doc@
1703-- Input to 'mergeDataCon': ["doc", B, !, A, C]
1704-- Output: (C, PrefixCon [!A, B], "doc")
1705--
1706-- See Note [Parsing data constructors is hard]
1707-- See Note [isFunLhs vs mergeDataCon]
1708mergeDataCon
1709      :: [Located TyEl]
1710      -> P ( Located RdrName         -- constructor name
1711           , HsConDeclDetails GhcPs  -- constructor field information
1712           , Maybe LHsDocString      -- docstring to go on the constructor
1713           )
1714mergeDataCon all_xs =
1715  do { (addAnns, a) <- eitherToP res
1716     ; addAnns
1717     ; return a }
1718  where
1719    -- We start by splitting off the trailing documentation comment,
1720    -- if any exists.
1721    (mTrailingDoc, all_xs') = pDocPrev all_xs
1722
1723    -- Determine whether the trailing documentation comment exists and is the
1724    -- only docstring in this constructor declaration.
1725    --
1726    -- When true, it means that it applies to the constructor itself:
1727    --    data T = C
1728    --             A
1729    --             B -- ^ Comment on C (singleDoc == True)
1730    --
1731    -- When false, it means that it applies to the last field:
1732    --    data T = C -- ^ Comment on C
1733    --             A -- ^ Comment on A
1734    --             B -- ^ Comment on B (singleDoc == False)
1735    singleDoc = isJust mTrailingDoc &&
1736                null [ () | (dL->L _ (TyElDocPrev _)) <- all_xs' ]
1737
1738    -- The result of merging the list of reversed TyEl into a
1739    -- data constructor, along with [AddAnn].
1740    res = goFirst all_xs'
1741
1742    -- Take the trailing docstring into account when interpreting
1743    -- the docstring near the constructor.
1744    --
1745    --    data T = C -- ^ docstring right after C
1746    --             A
1747    --             B -- ^ trailing docstring
1748    --
1749    -- 'mkConDoc' must be applied to the docstring right after C, so that it
1750    -- falls back to the trailing docstring when appropriate (see singleDoc).
1751    mkConDoc mDoc | singleDoc = mDoc `mplus` mTrailingDoc
1752                  | otherwise = mDoc
1753
1754    -- The docstring for the last field of a data constructor.
1755    trailingFieldDoc | singleDoc = Nothing
1756                     | otherwise = mTrailingDoc
1757
1758    goFirst [ dL->L l (TyElOpd (HsTyVar _ _ (dL->L _ tc))) ]
1759      = do { data_con <- tyConToDataCon l tc
1760           ; return (pure (), (data_con, PrefixCon [], mTrailingDoc)) }
1761    goFirst ((dL->L l (TyElOpd (HsRecTy _ fields))):xs)
1762      | (mConDoc, xs') <- pDocPrev xs
1763      , [ dL->L l' (TyElOpd (HsTyVar _ _ (dL->L _ tc))) ] <- xs'
1764      = do { data_con <- tyConToDataCon l' tc
1765           ; let mDoc = mTrailingDoc `mplus` mConDoc
1766           ; return (pure (), (data_con, RecCon (cL l fields), mDoc)) }
1767    goFirst [dL->L l (TyElOpd (HsTupleTy _ HsBoxedOrConstraintTuple ts))]
1768      = return ( pure ()
1769               , ( cL l (getRdrName (tupleDataCon Boxed (length ts)))
1770                 , PrefixCon ts
1771                 , mTrailingDoc ) )
1772    goFirst ((dL->L l (TyElOpd t)):xs)
1773      | (_, t', addAnns, xs') <- pBangTy (cL l t) xs
1774      = go addAnns Nothing [mkLHsDocTyMaybe t' trailingFieldDoc] xs'
1775    goFirst (L l (TyElKindApp _ _):_)
1776      = goInfix Monoid.<> Left (l, kindAppErr)
1777    goFirst xs
1778      = go (pure ()) mTrailingDoc [] xs
1779
1780    go addAnns mLastDoc ts [ dL->L l (TyElOpd (HsTyVar _ _ (dL->L _ tc))) ]
1781      = do { data_con <- tyConToDataCon l tc
1782           ; return (addAnns, (data_con, PrefixCon ts, mkConDoc mLastDoc)) }
1783    go addAnns mLastDoc ts ((dL->L l (TyElDocPrev doc)):xs) =
1784      go addAnns (mLastDoc `mplus` Just (cL l doc)) ts xs
1785    go addAnns mLastDoc ts ((dL->L l (TyElOpd t)):xs)
1786      | (_, t', addAnns', xs') <- pBangTy (cL l t) xs
1787      , t'' <- mkLHsDocTyMaybe t' mLastDoc
1788      = go (addAnns >> addAnns') Nothing (t'':ts) xs'
1789    go _ _ _ ((dL->L _ (TyElOpr _)):_) =
1790      -- Encountered an operator: backtrack to the beginning and attempt
1791      -- to parse as an infix definition.
1792      goInfix
1793    go _ _ _ (L l (TyElKindApp _ _):_) =  goInfix Monoid.<> Left (l, kindAppErr)
1794    go _ _ _ _ = Left malformedErr
1795      where
1796        malformedErr =
1797          ( foldr combineSrcSpans noSrcSpan (map getLoc all_xs')
1798          , text "Cannot parse data constructor" <+>
1799            text "in a data/newtype declaration:" $$
1800            nest 2 (hsep . reverse $ map ppr all_xs'))
1801
1802    goInfix =
1803      do { let xs0 = all_xs'
1804         ; (rhs_t, rhs_addAnns, xs1) <- pInfixSide xs0 `orErr` malformedErr
1805         ; let (mOpDoc, xs2) = pDocPrev xs1
1806         ; (op, xs3) <- case xs2 of
1807              (dL->L l (TyElOpr op)) : xs3 ->
1808                do { data_con <- tyConToDataCon l op
1809                   ; return (data_con, xs3) }
1810              _ -> Left malformedErr
1811         ; let (mLhsDoc, xs4) = pDocPrev xs3
1812         ; (lhs_t, lhs_addAnns, xs5) <- pInfixSide xs4 `orErr` malformedErr
1813         ; unless (null xs5) (Left malformedErr)
1814         ; let rhs = mkLHsDocTyMaybe rhs_t trailingFieldDoc
1815               lhs = mkLHsDocTyMaybe lhs_t mLhsDoc
1816               addAnns = lhs_addAnns >> rhs_addAnns
1817         ; return (addAnns, (op, InfixCon lhs rhs, mkConDoc mOpDoc)) }
1818      where
1819        malformedErr =
1820          ( foldr combineSrcSpans noSrcSpan (map getLoc all_xs')
1821          , text "Cannot parse an infix data constructor" <+>
1822            text "in a data/newtype declaration:" $$
1823            nest 2 (hsep . reverse $ map ppr all_xs'))
1824
1825    kindAppErr =
1826      text "Unexpected kind application" <+>
1827      text "in a data/newtype declaration:" $$
1828      nest 2 (hsep . reverse $ map ppr all_xs')
1829
1830---------------------------------------------------------------------------
1831-- | Check for monad comprehensions
1832--
1833-- If the flag MonadComprehensions is set, return a 'MonadComp' context,
1834-- otherwise use the usual 'ListComp' context
1835
1836checkMonadComp :: PV (HsStmtContext Name)
1837checkMonadComp = do
1838    monadComprehensions <- getBit MonadComprehensionsBit
1839    return $ if monadComprehensions
1840                then MonadComp
1841                else ListComp
1842
1843-- -------------------------------------------------------------------------
1844-- Expression/command/pattern ambiguity.
1845-- See Note [Ambiguous syntactic categories]
1846--
1847
1848-- See Note [Parser-Validator]
1849-- See Note [Ambiguous syntactic categories]
1850newtype ECP =
1851  ECP { runECP_PV :: forall b. DisambECP b => PV (Located b) }
1852
1853runECP_P :: DisambECP b => ECP -> P (Located b)
1854runECP_P p = runPV (runECP_PV p)
1855
1856ecpFromExp :: LHsExpr GhcPs -> ECP
1857ecpFromExp a = ECP (ecpFromExp' a)
1858
1859ecpFromCmd :: LHsCmd GhcPs -> ECP
1860ecpFromCmd a = ECP (ecpFromCmd' a)
1861
1862-- | Disambiguate infix operators.
1863-- See Note [Ambiguous syntactic categories]
1864class DisambInfixOp b where
1865  mkHsVarOpPV :: Located RdrName -> PV (Located b)
1866  mkHsConOpPV :: Located RdrName -> PV (Located b)
1867  mkHsInfixHolePV :: SrcSpan -> PV (Located b)
1868
1869instance p ~ GhcPs => DisambInfixOp (HsExpr p) where
1870  mkHsVarOpPV v = return $ cL (getLoc v) (HsVar noExtField v)
1871  mkHsConOpPV v = return $ cL (getLoc v) (HsVar noExtField v)
1872  mkHsInfixHolePV l = return $ cL l hsHoleExpr
1873
1874instance DisambInfixOp RdrName where
1875  mkHsConOpPV (dL->L l v) = return $ cL l v
1876  mkHsVarOpPV (dL->L l v) = return $ cL l v
1877  mkHsInfixHolePV l =
1878    addFatalError l $ text "Invalid infix hole, expected an infix operator"
1879
1880-- | Disambiguate constructs that may appear when we do not know ahead of time whether we are
1881-- parsing an expression, a command, or a pattern.
1882-- See Note [Ambiguous syntactic categories]
1883class b ~ (Body b) GhcPs => DisambECP b where
1884  -- | See Note [Body in DisambECP]
1885  type Body b :: * -> *
1886  -- | Return a command without ambiguity, or fail in a non-command context.
1887  ecpFromCmd' :: LHsCmd GhcPs -> PV (Located b)
1888  -- | Return an expression without ambiguity, or fail in a non-expression context.
1889  ecpFromExp' :: LHsExpr GhcPs -> PV (Located b)
1890  -- | Disambiguate "\... -> ..." (lambda)
1891  mkHsLamPV :: SrcSpan -> MatchGroup GhcPs (Located b) -> PV (Located b)
1892  -- | Disambiguate "let ... in ..."
1893  mkHsLetPV :: SrcSpan -> LHsLocalBinds GhcPs -> Located b -> PV (Located b)
1894  -- | Infix operator representation
1895  type InfixOp b
1896  -- | Bring superclass constraints on FunArg into scope.
1897  -- See Note [UndecidableSuperClasses for associated types]
1898  superInfixOp :: (DisambInfixOp (InfixOp b) => PV (Located b )) -> PV (Located b)
1899  -- | Disambiguate "f # x" (infix operator)
1900  mkHsOpAppPV :: SrcSpan -> Located b -> Located (InfixOp b) -> Located b -> PV (Located b)
1901  -- | Disambiguate "case ... of ..."
1902  mkHsCasePV :: SrcSpan -> LHsExpr GhcPs -> MatchGroup GhcPs (Located b) -> PV (Located b)
1903  -- | Function argument representation
1904  type FunArg b
1905  -- | Bring superclass constraints on FunArg into scope.
1906  -- See Note [UndecidableSuperClasses for associated types]
1907  superFunArg :: (DisambECP (FunArg b) => PV (Located b)) -> PV (Located b)
1908  -- | Disambiguate "f x" (function application)
1909  mkHsAppPV :: SrcSpan -> Located b -> Located (FunArg b) -> PV (Located b)
1910  -- | Disambiguate "if ... then ... else ..."
1911  mkHsIfPV :: SrcSpan
1912         -> LHsExpr GhcPs
1913         -> Bool  -- semicolon?
1914         -> Located b
1915         -> Bool  -- semicolon?
1916         -> Located b
1917         -> PV (Located b)
1918  -- | Disambiguate "do { ... }" (do notation)
1919  mkHsDoPV :: SrcSpan -> Located [LStmt GhcPs (Located b)] -> PV (Located b)
1920  -- | Disambiguate "( ... )" (parentheses)
1921  mkHsParPV :: SrcSpan -> Located b -> PV (Located b)
1922  -- | Disambiguate a variable "f" or a data constructor "MkF".
1923  mkHsVarPV :: Located RdrName -> PV (Located b)
1924  -- | Disambiguate a monomorphic literal
1925  mkHsLitPV :: Located (HsLit GhcPs) -> PV (Located b)
1926  -- | Disambiguate an overloaded literal
1927  mkHsOverLitPV :: Located (HsOverLit GhcPs) -> PV (Located b)
1928  -- | Disambiguate a wildcard
1929  mkHsWildCardPV :: SrcSpan -> PV (Located b)
1930  -- | Disambiguate "a :: t" (type annotation)
1931  mkHsTySigPV :: SrcSpan -> Located b -> LHsType GhcPs -> PV (Located b)
1932  -- | Disambiguate "[a,b,c]" (list syntax)
1933  mkHsExplicitListPV :: SrcSpan -> [Located b] -> PV (Located b)
1934  -- | Disambiguate "$(...)" and "[quasi|...|]" (TH splices)
1935  mkHsSplicePV :: Located (HsSplice GhcPs) -> PV (Located b)
1936  -- | Disambiguate "f { a = b, ... }" syntax (record construction and record updates)
1937  mkHsRecordPV ::
1938    SrcSpan ->
1939    SrcSpan ->
1940    Located b ->
1941    ([LHsRecField GhcPs (Located b)], Maybe SrcSpan) ->
1942    PV (Located b)
1943  -- | Disambiguate "-a" (negation)
1944  mkHsNegAppPV :: SrcSpan -> Located b -> PV (Located b)
1945  -- | Disambiguate "(# a)" (right operator section)
1946  mkHsSectionR_PV :: SrcSpan -> Located (InfixOp b) -> Located b -> PV (Located b)
1947  -- | Disambiguate "(a -> b)" (view pattern)
1948  mkHsViewPatPV :: SrcSpan -> LHsExpr GhcPs -> Located b -> PV (Located b)
1949  -- | Disambiguate "a@b" (as-pattern)
1950  mkHsAsPatPV :: SrcSpan -> Located RdrName -> Located b -> PV (Located b)
1951  -- | Disambiguate "~a" (lazy pattern)
1952  mkHsLazyPatPV :: SrcSpan -> Located b -> PV (Located b)
1953  -- | Disambiguate tuple sections and unboxed sums
1954  mkSumOrTuplePV :: SrcSpan -> Boxity -> SumOrTuple b -> PV (Located b)
1955
1956{- Note [UndecidableSuperClasses for associated types]
1957~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1958Assume we have a class C with an associated type T:
1959
1960  class C a where
1961    type T a
1962    ...
1963
1964If we want to add 'C (T a)' as a superclass, we need -XUndecidableSuperClasses:
1965
1966  {-# LANGUAGE UndecidableSuperClasses #-}
1967  class C (T a) => C a where
1968    type T a
1969    ...
1970
1971Unfortunately, -XUndecidableSuperClasses don't work all that well, sometimes
1972making GHC loop. The workaround is to bring this constraint into scope
1973manually with a helper method:
1974
1975  class C a where
1976    type T a
1977    superT :: (C (T a) => r) -> r
1978
1979In order to avoid ambiguous types, 'r' must mention 'a'.
1980
1981For consistency, we use this approach for all constraints on associated types,
1982even when -XUndecidableSuperClasses are not required.
1983-}
1984
1985{- Note [Body in DisambECP]
1986~~~~~~~~~~~~~~~~~~~~~~~~~~~
1987There are helper functions (mkBodyStmt, mkBindStmt, unguardedRHS, etc) that
1988require their argument to take a form of (body GhcPs) for some (body :: * ->
1989*). To satisfy this requirement, we say that (b ~ Body b GhcPs) in the
1990superclass constraints of DisambECP.
1991
1992The alternative is to change mkBodyStmt, mkBindStmt, unguardedRHS, etc, to drop
1993this requirement. It is possible and would allow removing the type index of
1994PatBuilder, but leads to worse type inference, breaking some code in the
1995typechecker.
1996-}
1997
1998instance p ~ GhcPs => DisambECP (HsCmd p) where
1999  type Body (HsCmd p) = HsCmd
2000  ecpFromCmd' = return
2001  ecpFromExp' (dL-> L l e) = cmdFail l (ppr e)
2002  mkHsLamPV l mg = return $ cL l (HsCmdLam noExtField mg)
2003  mkHsLetPV l bs e = return $ cL l (HsCmdLet noExtField bs e)
2004  type InfixOp (HsCmd p) = HsExpr p
2005  superInfixOp m = m
2006  mkHsOpAppPV l c1 op c2 = do
2007    let cmdArg c = cL (getLoc c) $ HsCmdTop noExtField c
2008    return $ cL l $ HsCmdArrForm noExtField op Infix Nothing [cmdArg c1, cmdArg c2]
2009  mkHsCasePV l c mg = return $ cL l (HsCmdCase noExtField c mg)
2010  type FunArg (HsCmd p) = HsExpr p
2011  superFunArg m = m
2012  mkHsAppPV l c e = do
2013    checkCmdBlockArguments c
2014    checkExpBlockArguments e
2015    return $ cL l (HsCmdApp noExtField c e)
2016  mkHsIfPV l c semi1 a semi2 b = do
2017    checkDoAndIfThenElse c semi1 a semi2 b
2018    return $ cL l (mkHsCmdIf c a b)
2019  mkHsDoPV l stmts = return $ cL l (HsCmdDo noExtField stmts)
2020  mkHsParPV l c = return $ cL l (HsCmdPar noExtField c)
2021  mkHsVarPV (dL->L l v) = cmdFail l (ppr v)
2022  mkHsLitPV (dL->L l a) = cmdFail l (ppr a)
2023  mkHsOverLitPV (dL->L l a) = cmdFail l (ppr a)
2024  mkHsWildCardPV l = cmdFail l (text "_")
2025  mkHsTySigPV l a sig = cmdFail l (ppr a <+> text "::" <+> ppr sig)
2026  mkHsExplicitListPV l xs = cmdFail l $
2027    brackets (fsep (punctuate comma (map ppr xs)))
2028  mkHsSplicePV (dL->L l sp) = cmdFail l (ppr sp)
2029  mkHsRecordPV l _ a (fbinds, ddLoc) = cmdFail l $
2030    ppr a <+> ppr (mk_rec_fields fbinds ddLoc)
2031  mkHsNegAppPV l a = cmdFail l (text "-" <> ppr a)
2032  mkHsSectionR_PV l op c = cmdFail l $
2033    let pp_op = fromMaybe (panic "cannot print infix operator")
2034                          (ppr_infix_expr (unLoc op))
2035    in pp_op <> ppr c
2036  mkHsViewPatPV l a b = cmdFail l $
2037    ppr a <+> text "->" <+> ppr b
2038  mkHsAsPatPV l v c = cmdFail l $
2039    pprPrefixOcc (unLoc v) <> text "@" <> ppr c
2040  mkHsLazyPatPV l c = cmdFail l $
2041    text "~" <> ppr c
2042  mkSumOrTuplePV l boxity a = cmdFail l (pprSumOrTuple boxity a)
2043
2044cmdFail :: SrcSpan -> SDoc -> PV a
2045cmdFail loc e = addFatalError loc $
2046  hang (text "Parse error in command:") 2 (ppr e)
2047
2048instance p ~ GhcPs => DisambECP (HsExpr p) where
2049  type Body (HsExpr p) = HsExpr
2050  ecpFromCmd' (dL -> L l c) = do
2051    addError l $ vcat
2052      [ text "Arrow command found where an expression was expected:",
2053        nest 2 (ppr c) ]
2054    return (cL l hsHoleExpr)
2055  ecpFromExp' = return
2056  mkHsLamPV l mg = return $ cL l (HsLam noExtField mg)
2057  mkHsLetPV l bs c = return $ cL l (HsLet noExtField bs c)
2058  type InfixOp (HsExpr p) = HsExpr p
2059  superInfixOp m = m
2060  mkHsOpAppPV l e1 op e2 = do
2061    return $ cL l $ OpApp noExtField e1 op e2
2062  mkHsCasePV l e mg = return $ cL l (HsCase noExtField e mg)
2063  type FunArg (HsExpr p) = HsExpr p
2064  superFunArg m = m
2065  mkHsAppPV l e1 e2 = do
2066    checkExpBlockArguments e1
2067    checkExpBlockArguments e2
2068    return $ cL l (HsApp noExtField e1 e2)
2069  mkHsIfPV l c semi1 a semi2 b = do
2070    checkDoAndIfThenElse c semi1 a semi2 b
2071    return $ cL l (mkHsIf c a b)
2072  mkHsDoPV l stmts = return $ cL l (HsDo noExtField DoExpr stmts)
2073  mkHsParPV l e = return $ cL l (HsPar noExtField e)
2074  mkHsVarPV v@(getLoc -> l) = return $ cL l (HsVar noExtField v)
2075  mkHsLitPV (dL->L l a) = return $ cL l (HsLit noExtField a)
2076  mkHsOverLitPV (dL->L l a) = return $ cL l (HsOverLit noExtField a)
2077  mkHsWildCardPV l = return $ cL l hsHoleExpr
2078  mkHsTySigPV l a sig = return $ cL l (ExprWithTySig noExtField a (mkLHsSigWcType sig))
2079  mkHsExplicitListPV l xs = return $ cL l (ExplicitList noExtField Nothing xs)
2080  mkHsSplicePV sp = return $ mapLoc (HsSpliceE noExtField) sp
2081  mkHsRecordPV l lrec a (fbinds, ddLoc) = do
2082    r <- mkRecConstrOrUpdate a lrec (fbinds, ddLoc)
2083    checkRecordSyntax (cL l r)
2084  mkHsNegAppPV l a = return $ cL l (NegApp noExtField a noSyntaxExpr)
2085  mkHsSectionR_PV l op e = return $ cL l (SectionR noExtField op e)
2086  mkHsViewPatPV l a b = patSynErr l (ppr a <+> text "->" <+> ppr b) empty
2087  mkHsAsPatPV l v e = do
2088    opt_TypeApplications <- getBit TypeApplicationsBit
2089    let msg | opt_TypeApplications
2090            = "Type application syntax requires a space before '@'"
2091            | otherwise
2092            = "Did you mean to enable TypeApplications?"
2093    patSynErr l (pprPrefixOcc (unLoc v) <> text "@" <> ppr e) (text msg)
2094  mkHsLazyPatPV l e = patSynErr l (text "~" <> ppr e) empty
2095  mkSumOrTuplePV = mkSumOrTupleExpr
2096
2097patSynErr :: SrcSpan -> SDoc -> SDoc -> PV (LHsExpr GhcPs)
2098patSynErr l e explanation =
2099  do { addError l $
2100        sep [text "Pattern syntax in expression context:",
2101             nest 4 (ppr e)] $$
2102        explanation
2103     ; return (cL l hsHoleExpr) }
2104
2105hsHoleExpr :: HsExpr (GhcPass id)
2106hsHoleExpr = HsUnboundVar noExtField (TrueExprHole (mkVarOcc "_"))
2107
2108-- | See Note [Ambiguous syntactic categories] and Note [PatBuilder]
2109data PatBuilder p
2110  = PatBuilderPat (Pat p)
2111  | PatBuilderBang SrcSpan (Located (PatBuilder p))
2112  | PatBuilderPar (Located (PatBuilder p))
2113  | PatBuilderApp (Located (PatBuilder p)) (Located (PatBuilder p))
2114  | PatBuilderOpApp (Located (PatBuilder p)) (Located RdrName) (Located (PatBuilder p))
2115  | PatBuilderVar (Located RdrName)
2116  | PatBuilderOverLit (HsOverLit GhcPs)
2117
2118patBuilderBang :: SrcSpan -> Located (PatBuilder p) -> Located (PatBuilder p)
2119patBuilderBang bang p =
2120  cL (bang `combineSrcSpans` getLoc p) $
2121  PatBuilderBang bang p
2122
2123instance Outputable (PatBuilder GhcPs) where
2124  ppr (PatBuilderPat p) = ppr p
2125  ppr (PatBuilderBang _ (L _ p)) = text "!" <+> ppr p
2126  ppr (PatBuilderPar (L _ p)) = parens (ppr p)
2127  ppr (PatBuilderApp (L _ p1) (L _ p2)) = ppr p1 <+> ppr p2
2128  ppr (PatBuilderOpApp (L _ p1) op (L _ p2)) = ppr p1 <+> ppr op <+> ppr p2
2129  ppr (PatBuilderVar v) = ppr v
2130  ppr (PatBuilderOverLit l) = ppr l
2131
2132instance DisambECP (PatBuilder GhcPs) where
2133  type Body (PatBuilder GhcPs) = PatBuilder
2134  ecpFromCmd' (dL-> L l c) =
2135    addFatalError l $
2136      text "Command syntax in pattern:" <+> ppr c
2137  ecpFromExp' (dL-> L l e) =
2138    addFatalError l $
2139      text "Expression syntax in pattern:" <+> ppr e
2140  mkHsLamPV l _ = addFatalError l $
2141    text "Lambda-syntax in pattern." $$
2142    text "Pattern matching on functions is not possible."
2143  mkHsLetPV l _ _ = addFatalError l $ text "(let ... in ...)-syntax in pattern"
2144  type InfixOp (PatBuilder GhcPs) = RdrName
2145  superInfixOp m = m
2146  mkHsOpAppPV l p1 op p2 = do
2147    warnSpaceAfterBang op (getLoc p2)
2148    return $ cL l $ PatBuilderOpApp p1 op p2
2149  mkHsCasePV l _ _ = addFatalError l $ text "(case ... of ...)-syntax in pattern"
2150  type FunArg (PatBuilder GhcPs) = PatBuilder GhcPs
2151  superFunArg m = m
2152  mkHsAppPV l p1 p2 = return $ cL l (PatBuilderApp p1 p2)
2153  mkHsIfPV l _ _ _ _ _ = addFatalError l $ text "(if ... then ... else ...)-syntax in pattern"
2154  mkHsDoPV l _ = addFatalError l $ text "do-notation in pattern"
2155  mkHsParPV l p = return $ cL l (PatBuilderPar p)
2156  mkHsVarPV v@(getLoc -> l) = return $ cL l (PatBuilderVar v)
2157  mkHsLitPV lit@(dL->L l a) = do
2158    checkUnboxedStringLitPat lit
2159    return $ cL l (PatBuilderPat (LitPat noExtField a))
2160  mkHsOverLitPV (dL->L l a) = return $ cL l (PatBuilderOverLit a)
2161  mkHsWildCardPV l = return $ cL l (PatBuilderPat (WildPat noExtField))
2162  mkHsTySigPV l b sig = do
2163    p <- checkLPat b
2164    return $ cL l (PatBuilderPat (SigPat noExtField p (mkLHsSigWcType sig)))
2165  mkHsExplicitListPV l xs = do
2166    ps <- traverse checkLPat xs
2167    return (cL l (PatBuilderPat (ListPat noExtField ps)))
2168  mkHsSplicePV (dL->L l sp) = return $ cL l (PatBuilderPat (SplicePat noExtField sp))
2169  mkHsRecordPV l _ a (fbinds, ddLoc) = do
2170    r <- mkPatRec a (mk_rec_fields fbinds ddLoc)
2171    checkRecordSyntax (cL l r)
2172  mkHsNegAppPV l (dL->L lp p) = do
2173    lit <- case p of
2174      PatBuilderOverLit pos_lit -> return (cL lp pos_lit)
2175      _ -> patFail l (text "-" <> ppr p)
2176    return $ cL l (PatBuilderPat (mkNPat lit (Just noSyntaxExpr)))
2177  mkHsSectionR_PV l op p
2178    | isBangRdr (unLoc op) = return $ cL l $ PatBuilderBang (getLoc op) p
2179    | otherwise = patFail l (pprInfixOcc (unLoc op) <> ppr p)
2180  mkHsViewPatPV l a b = do
2181    p <- checkLPat b
2182    return $ cL l (PatBuilderPat (ViewPat noExtField a p))
2183  mkHsAsPatPV l v e = do
2184    p <- checkLPat e
2185    return $ cL l (PatBuilderPat (AsPat noExtField v p))
2186  mkHsLazyPatPV l e = do
2187    p <- checkLPat e
2188    return $ cL l (PatBuilderPat (LazyPat noExtField p))
2189  mkSumOrTuplePV = mkSumOrTuplePat
2190
2191checkUnboxedStringLitPat :: Located (HsLit GhcPs) -> PV ()
2192checkUnboxedStringLitPat (dL->L loc lit) =
2193  case lit of
2194    HsStringPrim _ _  -- Trac #13260
2195      -> addFatalError loc (text "Illegal unboxed string literal in pattern:" $$ ppr lit)
2196    _ -> return ()
2197
2198mkPatRec ::
2199  Located (PatBuilder GhcPs) ->
2200  HsRecFields GhcPs (Located (PatBuilder GhcPs)) ->
2201  PV (PatBuilder GhcPs)
2202mkPatRec (unLoc -> PatBuilderVar c) (HsRecFields fs dd)
2203  | isRdrDataCon (unLoc c)
2204  = do fs <- mapM checkPatField fs
2205       return (PatBuilderPat (ConPatIn c (RecCon (HsRecFields fs dd))))
2206mkPatRec p _ =
2207  addFatalError (getLoc p) $ text "Not a record constructor:" <+> ppr p
2208
2209-- | Warn about missing space after bang
2210warnSpaceAfterBang :: Located RdrName -> SrcSpan -> PV ()
2211warnSpaceAfterBang (dL->L opLoc op) argLoc = do
2212    bang_on <- getBit BangPatBit
2213    when (not bang_on && noSpace && isBangRdr op) $
2214      addWarning Opt_WarnSpaceAfterBang span msg
2215    where
2216      span = combineSrcSpans opLoc argLoc
2217      noSpace = srcSpanEnd opLoc == srcSpanStart argLoc
2218      msg = text "Did you forget to enable BangPatterns?" $$
2219            text "If you mean to bind (!) then perhaps you want" $$
2220            text "to add a space after the bang for clarity."
2221
2222{- Note [Ambiguous syntactic categories]
2223~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2224
2225There are places in the grammar where we do not know whether we are parsing an
2226expression or a pattern without unlimited lookahead (which we do not have in
2227'happy'):
2228
2229View patterns:
2230
2231    f (Con a b     ) = ...  -- 'Con a b' is a pattern
2232    f (Con a b -> x) = ...  -- 'Con a b' is an expression
2233
2234do-notation:
2235
2236    do { Con a b <- x } -- 'Con a b' is a pattern
2237    do { Con a b }      -- 'Con a b' is an expression
2238
2239Guards:
2240
2241    x | True <- p && q = ...  -- 'True' is a pattern
2242    x | True           = ...  -- 'True' is an expression
2243
2244Top-level value/function declarations (FunBind/PatBind):
2245
2246    f !a         -- TH splice
2247    f !a = ...   -- function declaration
2248
2249    Until we encounter the = sign, we don't know if it's a top-level
2250    TemplateHaskell splice where ! is an infix operator, or if it's a function
2251    declaration where ! is a strictness annotation.
2252
2253There are also places in the grammar where we do not know whether we are
2254parsing an expression or a command:
2255
2256    proc x -> do { (stuff) -< x }   -- 'stuff' is an expression
2257    proc x -> do { (stuff) }        -- 'stuff' is a command
2258
2259    Until we encounter arrow syntax (-<) we don't know whether to parse 'stuff'
2260    as an expression or a command.
2261
2262In fact, do-notation is subject to both ambiguities:
2263
2264    proc x -> do { (stuff) -< x }        -- 'stuff' is an expression
2265    proc x -> do { (stuff) <- f -< x }   -- 'stuff' is a pattern
2266    proc x -> do { (stuff) }             -- 'stuff' is a command
2267
2268There are many possible solutions to this problem. For an overview of the ones
2269we decided against, see Note [Resolving parsing ambiguities: non-taken alternatives]
2270
2271The solution that keeps basic definitions (such as HsExpr) clean, keeps the
2272concerns local to the parser, and does not require duplication of hsSyn types,
2273or an extra pass over the entire AST, is to parse into an overloaded
2274parser-validator (a so-called tagless final encoding):
2275
2276    class DisambECP b where ...
2277    instance p ~ GhcPs => DisambECP (HsCmd p) where ...
2278    instance p ~ GhcPs => DisambECP (HsExp p) where ...
2279    instance p ~ GhcPs => DisambECP (PatBuilder p) where ...
2280
2281The 'DisambECP' class contains functions to build and validate 'b'. For example,
2282to add parentheses we have:
2283
2284  mkHsParPV :: DisambECP b => SrcSpan -> Located b -> PV (Located b)
2285
2286'mkHsParPV' will wrap the inner value in HsCmdPar for commands, HsPar for
2287expressions, and 'PatBuilderPar' for patterns (later transformed into ParPat,
2288see Note [PatBuilder]).
2289
2290Consider the 'alts' production used to parse case-of alternatives:
2291
2292  alts :: { Located ([AddAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
2293    : alts1     { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
2294    | ';' alts  { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
2295
2296We abstract over LHsExpr GhcPs, and it becomes:
2297
2298  alts :: { forall b. DisambECP b => PV (Located ([AddAnn],[LMatch GhcPs (Located b)])) }
2299    : alts1     { $1 >>= \ $1 ->
2300                  return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
2301    | ';' alts  { $2 >>= \ $2 ->
2302                  return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
2303
2304Compared to the initial definition, the added bits are:
2305
2306    forall b. DisambECP b => PV ( ... ) -- in the type signature
2307    $1 >>= \ $1 -> return $             -- in one reduction rule
2308    $2 >>= \ $2 -> return $             -- in another reduction rule
2309
2310The overhead is constant relative to the size of the rest of the reduction
2311rule, so this approach scales well to large parser productions.
2312
2313-}
2314
2315
2316{- Note [Resolving parsing ambiguities: non-taken alternatives]
2317~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2318
2319Alternative I, extra constructors in GHC.Hs.Expr
2320------------------------------------------------
2321We could add extra constructors to HsExpr to represent command-specific and
2322pattern-specific syntactic constructs. Under this scheme, we parse patterns
2323and commands as expressions and rejig later.  This is what GHC used to do, and
2324it polluted 'HsExpr' with irrelevant constructors:
2325
2326  * for commands: 'HsArrForm', 'HsArrApp'
2327  * for patterns: 'EWildPat', 'EAsPat', 'EViewPat', 'ELazyPat'
2328
2329(As of now, we still do that for patterns, but we plan to fix it).
2330
2331There are several issues with this:
2332
2333  * The implementation details of parsing are leaking into hsSyn definitions.
2334
2335  * Code that uses HsExpr has to panic on these impossible-after-parsing cases.
2336
2337  * HsExpr is arbitrarily selected as the extension basis. Why not extend
2338    HsCmd or HsPat with extra constructors instead?
2339
2340  * We cannot handle corner cases. For instance, the following function
2341    declaration LHS is not a valid expression (see #1087):
2342
2343      !a + !b = ...
2344
2345  * There are points in the pipeline where the representation was awfully
2346    incorrect. For instance,
2347
2348      f !a b !c = ...
2349
2350    is first parsed as
2351
2352      (f ! a b) ! c = ...
2353
2354
2355Alternative II, extra constructors in GHC.Hs.Expr for GhcPs
2356-----------------------------------------------------------
2357We could address some of the problems with Alternative I by using Trees That
2358Grow and extending HsExpr only in the GhcPs pass. However, GhcPs corresponds to
2359the output of parsing, not to its intermediate results, so we wouldn't want
2360them there either.
2361
2362Alternative III, extra constructors in GHC.Hs.Expr for GhcPrePs
2363---------------------------------------------------------------
2364We could introduce a new pass, GhcPrePs, to keep GhcPs pristine.
2365Unfortunately, creating a new pass would significantly bloat conversion code
2366and slow down the compiler by adding another linear-time pass over the entire
2367AST. For example, in order to build HsExpr GhcPrePs, we would need to build
2368HsLocalBinds GhcPrePs (as part of HsLet), and we never want HsLocalBinds
2369GhcPrePs.
2370
2371
2372Alternative IV, sum type and bottom-up data flow
2373------------------------------------------------
2374Expressions and commands are disjoint. There are no user inputs that could be
2375interpreted as either an expression or a command depending on outer context:
2376
2377  5        -- definitely an expression
2378  x -< y   -- definitely a command
2379
2380Even though we have both 'HsLam' and 'HsCmdLam', we can look at
2381the body to disambiguate:
2382
2383  \p -> 5        -- definitely an expression
2384  \p -> x -< y   -- definitely a command
2385
2386This means we could use a bottom-up flow of information to determine
2387whether we are parsing an expression or a command, using a sum type
2388for intermediate results:
2389
2390  Either (LHsExpr GhcPs) (LHsCmd GhcPs)
2391
2392There are two problems with this:
2393
2394  * We cannot handle the ambiguity between expressions and
2395    patterns, which are not disjoint.
2396
2397  * Bottom-up flow of information leads to poor error messages. Consider
2398
2399        if ... then 5 else (x -< y)
2400
2401    Do we report that '5' is not a valid command or that (x -< y) is not a
2402    valid expression?  It depends on whether we want the entire node to be
2403    'HsIf' or 'HsCmdIf', and this information flows top-down, from the
2404    surrounding parsing context (are we in 'proc'?)
2405
2406Alternative V, backtracking with parser combinators
2407---------------------------------------------------
2408One might think we could sidestep the issue entirely by using a backtracking
2409parser and doing something along the lines of (try pExpr <|> pPat).
2410
2411Turns out, this wouldn't work very well, as there can be patterns inside
2412expressions (e.g. via 'case', 'let', 'do') and expressions inside patterns
2413(e.g. view patterns). To handle this, we would need to backtrack while
2414backtracking, and unbound levels of backtracking lead to very fragile
2415performance.
2416
2417Alternative VI, an intermediate data type
2418-----------------------------------------
2419There are common syntactic elements of expressions, commands, and patterns
2420(e.g. all of them must have balanced parentheses), and we can capture this
2421common structure in an intermediate data type, Frame:
2422
2423data Frame
2424  = FrameVar RdrName
2425    -- ^ Identifier: Just, map, BS.length
2426  | FrameTuple [LTupArgFrame] Boxity
2427    -- ^ Tuple (section): (a,b) (a,b,c) (a,,) (,a,)
2428  | FrameTySig LFrame (LHsSigWcType GhcPs)
2429    -- ^ Type signature: x :: ty
2430  | FramePar (SrcSpan, SrcSpan) LFrame
2431    -- ^ Parentheses
2432  | FrameIf LFrame LFrame LFrame
2433    -- ^ If-expression: if p then x else y
2434  | FrameCase LFrame [LFrameMatch]
2435    -- ^ Case-expression: case x of { p1 -> e1; p2 -> e2 }
2436  | FrameDo (HsStmtContext Name) [LFrameStmt]
2437    -- ^ Do-expression: do { s1; a <- s2; s3 }
2438  ...
2439  | FrameExpr (HsExpr GhcPs)   -- unambiguously an expression
2440  | FramePat (HsPat GhcPs)     -- unambiguously a pattern
2441  | FrameCommand (HsCmd GhcPs) -- unambiguously a command
2442
2443To determine which constructors 'Frame' needs to have, we take the union of
2444intersections between HsExpr, HsCmd, and HsPat.
2445
2446The intersection between HsPat and HsExpr:
2447
2448  HsPat  =  VarPat   | TuplePat      | SigPat        | ParPat   | ...
2449  HsExpr =  HsVar    | ExplicitTuple | ExprWithTySig | HsPar    | ...
2450  -------------------------------------------------------------------
2451  Frame  =  FrameVar | FrameTuple    | FrameTySig    | FramePar | ...
2452
2453The intersection between HsCmd and HsExpr:
2454
2455  HsCmd  = HsCmdIf | HsCmdCase | HsCmdDo | HsCmdPar
2456  HsExpr = HsIf    | HsCase    | HsDo    | HsPar
2457  ------------------------------------------------
2458  Frame = FrameIf  | FrameCase | FrameDo | FramePar
2459
2460The intersection between HsCmd and HsPat:
2461
2462  HsPat  = ParPat   | ...
2463  HsCmd  = HsCmdPar | ...
2464  -----------------------
2465  Frame  = FramePar | ...
2466
2467Take the union of each intersection and this yields the final 'Frame' data
2468type. The problem with this approach is that we end up duplicating a good
2469portion of hsSyn:
2470
2471    Frame         for  HsExpr, HsPat, HsCmd
2472    TupArgFrame   for  HsTupArg
2473    FrameMatch    for  Match
2474    FrameStmt     for  StmtLR
2475    FrameGRHS     for  GRHS
2476    FrameGRHSs    for  GRHSs
2477    ...
2478
2479Alternative VII, a product type
2480-------------------------------
2481We could avoid the intermediate representation of Alternative VI by parsing
2482into a product of interpretations directly:
2483
2484    -- See Note [Parser-Validator]
2485    type ExpCmdPat = ( PV (LHsExpr GhcPs)
2486                     , PV (LHsCmd GhcPs)
2487                     , PV (LHsPat GhcPs) )
2488
2489This means that in positions where we do not know whether to produce
2490expression, a pattern, or a command, we instead produce a parser-validator for
2491each possible option.
2492
2493Then, as soon as we have parsed far enough to resolve the ambiguity, we pick
2494the appropriate component of the product, discarding the rest:
2495
2496    checkExpOf3 (e, _, _) = e  -- interpret as an expression
2497    checkCmdOf3 (_, c, _) = c  -- interpret as a command
2498    checkPatOf3 (_, _, p) = p  -- interpret as a pattern
2499
2500We can easily define ambiguities between arbitrary subsets of interpretations.
2501For example, when we know ahead of type that only an expression or a command is
2502possible, but not a pattern, we can use a smaller type:
2503
2504    -- See Note [Parser-Validator]
2505    type ExpCmd = (PV (LHsExpr GhcPs), PV (LHsCmd GhcPs))
2506
2507    checkExpOf2 (e, _) = e  -- interpret as an expression
2508    checkCmdOf2 (_, c) = c  -- interpret as a command
2509
2510However, there is a slight problem with this approach, namely code duplication
2511in parser productions. Consider the 'alts' production used to parse case-of
2512alternatives:
2513
2514  alts :: { Located ([AddAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
2515    : alts1     { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
2516    | ';' alts  { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
2517
2518Under the new scheme, we have to completely duplicate its type signature and
2519each reduction rule:
2520
2521  alts :: { ( PV (Located ([AddAnn],[LMatch GhcPs (LHsExpr GhcPs)])) -- as an expression
2522            , PV (Located ([AddAnn],[LMatch GhcPs (LHsCmd GhcPs)]))  -- as a command
2523            ) }
2524    : alts1
2525        { ( checkExpOf2 $1 >>= \ $1 ->
2526            return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1)
2527          , checkCmdOf2 $1 >>= \ $1 ->
2528            return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1)
2529          ) }
2530    | ';' alts
2531        { ( checkExpOf2 $2 >>= \ $2 ->
2532            return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2)
2533          , checkCmdOf2 $2 >>= \ $2 ->
2534            return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2)
2535          ) }
2536
2537And the same goes for other productions: 'altslist', 'alts1', 'alt', 'alt_rhs',
2538'ralt', 'gdpats', 'gdpat', 'exp', ... and so on. That is a lot of code!
2539
2540Alternative VIII, a function from a GADT
2541----------------------------------------
2542We could avoid code duplication of the Alternative VII by representing the product
2543as a function from a GADT:
2544
2545    data ExpCmdG b where
2546      ExpG :: ExpCmdG HsExpr
2547      CmdG :: ExpCmdG HsCmd
2548
2549    type ExpCmd = forall b. ExpCmdG b -> PV (Located (b GhcPs))
2550
2551    checkExp :: ExpCmd -> PV (LHsExpr GhcPs)
2552    checkCmd :: ExpCmd -> PV (LHsCmd GhcPs)
2553    checkExp f = f ExpG  -- interpret as an expression
2554    checkCmd f = f CmdG  -- interpret as a command
2555
2556Consider the 'alts' production used to parse case-of alternatives:
2557
2558  alts :: { Located ([AddAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
2559    : alts1     { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
2560    | ';' alts  { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
2561
2562We abstract over LHsExpr, and it becomes:
2563
2564  alts :: { forall b. ExpCmdG b -> PV (Located ([AddAnn],[LMatch GhcPs (Located (b GhcPs))])) }
2565    : alts1
2566        { \tag -> $1 tag >>= \ $1 ->
2567                  return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
2568    | ';' alts
2569        { \tag -> $2 tag >>= \ $2 ->
2570                  return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
2571
2572Note that 'ExpCmdG' is a singleton type, the value is completely
2573determined by the type:
2574
2575  when (b~HsExpr),  tag = ExpG
2576  when (b~HsCmd),   tag = CmdG
2577
2578This is a clear indication that we can use a class to pass this value behind
2579the scenes:
2580
2581  class    ExpCmdI b      where expCmdG :: ExpCmdG b
2582  instance ExpCmdI HsExpr where expCmdG = ExpG
2583  instance ExpCmdI HsCmd  where expCmdG = CmdG
2584
2585And now the 'alts' production is simplified, as we no longer need to
2586thread 'tag' explicitly:
2587
2588  alts :: { forall b. ExpCmdI b => PV (Located ([AddAnn],[LMatch GhcPs (Located (b GhcPs))])) }
2589    : alts1     { $1 >>= \ $1 ->
2590                  return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
2591    | ';' alts  { $2 >>= \ $2 ->
2592                  return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
2593
2594This encoding works well enough, but introduces an extra GADT unlike the
2595tagless final encoding, and there's no need for this complexity.
2596
2597-}
2598
2599{- Note [PatBuilder]
2600~~~~~~~~~~~~~~~~~~~~
2601Unlike HsExpr or HsCmd, the Pat type cannot accomodate all intermediate forms,
2602so we introduce the notion of a PatBuilder.
2603
2604Consider a pattern like this:
2605
2606  Con a b c
2607
2608We parse arguments to "Con" one at a time in the  fexp aexp  parser production,
2609building the result with mkHsAppPV, so the intermediate forms are:
2610
2611  1. Con
2612  2. Con a
2613  3. Con a b
2614  4. Con a b c
2615
2616In 'HsExpr', we have 'HsApp', so the intermediate forms are represented like
2617this (pseudocode):
2618
2619  1. "Con"
2620  2. HsApp "Con" "a"
2621  3. HsApp (HsApp "Con" "a") "b"
2622  3. HsApp (HsApp (HsApp "Con" "a") "b") "c"
2623
2624Similarly, in 'HsCmd' we have 'HsCmdApp'. In 'Pat', however, what we have
2625instead is 'ConPatIn', which is very awkward to modify and thus unsuitable for
2626the intermediate forms.
2627
2628Worse yet, some intermediate forms are not valid patterns at all. For example:
2629
2630  Con !a !b c
2631
2632This is parsed as ((Con ! a) ! (b c)) with ! as an infix operator, and then
2633rearranged in 'splitBang'. But of course, neither (b c) nor (Con ! a) are valid
2634patterns, so we cannot represent them as Pat.
2635
2636We also need an intermediate representation to postpone disambiguation between
2637FunBind and PatBind. Consider:
2638
2639  a `Con` b = ...
2640  a `fun` b = ...
2641
2642How do we know that (a `Con` b) is a PatBind but (a `fun` b) is a FunBind? We
2643learn this by inspecting an intermediate representation in 'isFunLhs' and
2644seeing that 'Con' is a data constructor but 'f' is not. We need an intermediate
2645representation capable of representing both a FunBind and a PatBind, so Pat is
2646insufficient.
2647
2648PatBuilder is an extension of Pat that is capable of representing intermediate
2649parsing results for patterns and function bindings:
2650
2651  data PatBuilder p
2652    = PatBuilderPat (Pat p)
2653    | PatBuilderApp (Located (PatBuilder p)) (Located (PatBuilder p))
2654    | PatBuilderOpApp (Located (PatBuilder p)) (Located RdrName) (Located (PatBuilder p))
2655    ...
2656
2657It can represent any pattern via 'PatBuilderPat', but it also has a variety of
2658other constructors which were added by following a simple principle: we never
2659pattern match on the pattern stored inside 'PatBuilderPat'.
2660
2661For example, in 'splitBang' we need to match on space-separated and
2662bang-separated patterns, so these are represented with dedicated constructors
2663'PatBuilderApp' and 'PatBuilderOpApp'.  In 'isFunLhs', we pattern match on
2664variables, so we have a dedicated 'PatBuilderVar' constructor for this despite
2665the existence of 'VarPat'.
2666-}
2667
2668---------------------------------------------------------------------------
2669-- Miscellaneous utilities
2670
2671-- | Check if a fixity is valid. We support bypassing the usual bound checks
2672-- for some special operators.
2673checkPrecP
2674        :: Located (SourceText,Int)             -- ^ precedence
2675        -> Located (OrdList (Located RdrName))  -- ^ operators
2676        -> P ()
2677checkPrecP (dL->L l (_,i)) (dL->L _ ol)
2678 | 0 <= i, i <= maxPrecedence = pure ()
2679 | all specialOp ol = pure ()
2680 | otherwise = addFatalError l (text ("Precedence out of range: " ++ show i))
2681  where
2682    specialOp op = unLoc op `elem` [ eqTyCon_RDR
2683                                   , getRdrName funTyCon ]
2684
2685mkRecConstrOrUpdate
2686        :: LHsExpr GhcPs
2687        -> SrcSpan
2688        -> ([LHsRecField GhcPs (LHsExpr GhcPs)], Maybe SrcSpan)
2689        -> PV (HsExpr GhcPs)
2690
2691mkRecConstrOrUpdate (dL->L l (HsVar _ (dL->L _ c))) _ (fs,dd)
2692  | isRdrDataCon c
2693  = return (mkRdrRecordCon (cL l c) (mk_rec_fields fs dd))
2694mkRecConstrOrUpdate exp _ (fs,dd)
2695  | Just dd_loc <- dd = addFatalError dd_loc (text "You cannot use `..' in a record update")
2696  | otherwise = return (mkRdrRecordUpd exp (map (fmap mk_rec_upd_field) fs))
2697
2698mkRdrRecordUpd :: LHsExpr GhcPs -> [LHsRecUpdField GhcPs] -> HsExpr GhcPs
2699mkRdrRecordUpd exp flds
2700  = RecordUpd { rupd_ext  = noExtField
2701              , rupd_expr = exp
2702              , rupd_flds = flds }
2703
2704mkRdrRecordCon :: Located RdrName -> HsRecordBinds GhcPs -> HsExpr GhcPs
2705mkRdrRecordCon con flds
2706  = RecordCon { rcon_ext = noExtField, rcon_con_name = con, rcon_flds = flds }
2707
2708mk_rec_fields :: [LHsRecField id arg] -> Maybe SrcSpan -> HsRecFields id arg
2709mk_rec_fields fs Nothing = HsRecFields { rec_flds = fs, rec_dotdot = Nothing }
2710mk_rec_fields fs (Just s)  = HsRecFields { rec_flds = fs
2711                                     , rec_dotdot = Just (cL s (length fs)) }
2712
2713mk_rec_upd_field :: HsRecField GhcPs (LHsExpr GhcPs) -> HsRecUpdField GhcPs
2714mk_rec_upd_field (HsRecField (dL->L loc (FieldOcc _ rdr)) arg pun)
2715  = HsRecField (L loc (Unambiguous noExtField rdr)) arg pun
2716mk_rec_upd_field (HsRecField (dL->L _ (XFieldOcc nec)) _ _)
2717  = noExtCon nec
2718mk_rec_upd_field (HsRecField _ _ _)
2719  = panic "mk_rec_upd_field: Impossible Match" -- due to #15884
2720
2721mkInlinePragma :: SourceText -> (InlineSpec, RuleMatchInfo) -> Maybe Activation
2722               -> InlinePragma
2723-- The (Maybe Activation) is because the user can omit
2724-- the activation spec (and usually does)
2725mkInlinePragma src (inl, match_info) mb_act
2726  = InlinePragma { inl_src = src -- Note [Pragma source text] in BasicTypes
2727                 , inl_inline = inl
2728                 , inl_sat    = Nothing
2729                 , inl_act    = act
2730                 , inl_rule   = match_info }
2731  where
2732    act = case mb_act of
2733            Just act -> act
2734            Nothing  -> -- No phase specified
2735                        case inl of
2736                          NoInline -> NeverActive
2737                          _other   -> AlwaysActive
2738
2739-----------------------------------------------------------------------------
2740-- utilities for foreign declarations
2741
2742-- construct a foreign import declaration
2743--
2744mkImport :: Located CCallConv
2745         -> Located Safety
2746         -> (Located StringLiteral, Located RdrName, LHsSigType GhcPs)
2747         -> P (HsDecl GhcPs)
2748mkImport cconv safety (L loc (StringLiteral esrc entity), v, ty) =
2749    case unLoc cconv of
2750      CCallConv          -> mkCImport
2751      CApiConv           -> mkCImport
2752      StdCallConv        -> mkCImport
2753      PrimCallConv       -> mkOtherImport
2754      JavaScriptCallConv -> mkOtherImport
2755  where
2756    -- Parse a C-like entity string of the following form:
2757    --   "[static] [chname] [&] [cid]" | "dynamic" | "wrapper"
2758    -- If 'cid' is missing, the function name 'v' is used instead as symbol
2759    -- name (cf section 8.5.1 in Haskell 2010 report).
2760    mkCImport = do
2761      let e = unpackFS entity
2762      case parseCImport cconv safety (mkExtName (unLoc v)) e (cL loc esrc) of
2763        Nothing         -> addFatalError loc (text "Malformed entity string")
2764        Just importSpec -> returnSpec importSpec
2765
2766    -- currently, all the other import conventions only support a symbol name in
2767    -- the entity string. If it is missing, we use the function name instead.
2768    mkOtherImport = returnSpec importSpec
2769      where
2770        entity'    = if nullFS entity
2771                        then mkExtName (unLoc v)
2772                        else entity
2773        funcTarget = CFunction (StaticTarget esrc entity' Nothing True)
2774        importSpec = CImport cconv safety Nothing funcTarget (cL loc esrc)
2775
2776    returnSpec spec = return $ ForD noExtField $ ForeignImport
2777          { fd_i_ext  = noExtField
2778          , fd_name   = v
2779          , fd_sig_ty = ty
2780          , fd_fi     = spec
2781          }
2782
2783
2784
2785-- the string "foo" is ambiguous: either a header or a C identifier.  The
2786-- C identifier case comes first in the alternatives below, so we pick
2787-- that one.
2788parseCImport :: Located CCallConv -> Located Safety -> FastString -> String
2789             -> Located SourceText
2790             -> Maybe ForeignImport
2791parseCImport cconv safety nm str sourceText =
2792 listToMaybe $ map fst $ filter (null.snd) $
2793     readP_to_S parse str
2794 where
2795   parse = do
2796       skipSpaces
2797       r <- choice [
2798          string "dynamic" >> return (mk Nothing (CFunction DynamicTarget)),
2799          string "wrapper" >> return (mk Nothing CWrapper),
2800          do optional (token "static" >> skipSpaces)
2801             ((mk Nothing <$> cimp nm) +++
2802              (do h <- munch1 hdr_char
2803                  skipSpaces
2804                  mk (Just (Header (SourceText h) (mkFastString h)))
2805                      <$> cimp nm))
2806         ]
2807       skipSpaces
2808       return r
2809
2810   token str = do _ <- string str
2811                  toks <- look
2812                  case toks of
2813                      c : _
2814                       | id_char c -> pfail
2815                      _            -> return ()
2816
2817   mk h n = CImport cconv safety h n sourceText
2818
2819   hdr_char c = not (isSpace c)
2820   -- header files are filenames, which can contain
2821   -- pretty much any char (depending on the platform),
2822   -- so just accept any non-space character
2823   id_first_char c = isAlpha    c || c == '_'
2824   id_char       c = isAlphaNum c || c == '_'
2825
2826   cimp nm = (ReadP.char '&' >> skipSpaces >> CLabel <$> cid)
2827             +++ (do isFun <- case unLoc cconv of
2828                               CApiConv ->
2829                                  option True
2830                                         (do token "value"
2831                                             skipSpaces
2832                                             return False)
2833                               _ -> return True
2834                     cid' <- cid
2835                     return (CFunction (StaticTarget NoSourceText cid'
2836                                        Nothing isFun)))
2837          where
2838            cid = return nm +++
2839                  (do c  <- satisfy id_first_char
2840                      cs <-  many (satisfy id_char)
2841                      return (mkFastString (c:cs)))
2842
2843
2844-- construct a foreign export declaration
2845--
2846mkExport :: Located CCallConv
2847         -> (Located StringLiteral, Located RdrName, LHsSigType GhcPs)
2848         -> P (HsDecl GhcPs)
2849mkExport (dL->L lc cconv) (dL->L le (StringLiteral esrc entity), v, ty)
2850 = return $ ForD noExtField $
2851   ForeignExport { fd_e_ext = noExtField, fd_name = v, fd_sig_ty = ty
2852                 , fd_fe = CExport (cL lc (CExportStatic esrc entity' cconv))
2853                                   (cL le esrc) }
2854  where
2855    entity' | nullFS entity = mkExtName (unLoc v)
2856            | otherwise     = entity
2857
2858-- Supplying the ext_name in a foreign decl is optional; if it
2859-- isn't there, the Haskell name is assumed. Note that no transformation
2860-- of the Haskell name is then performed, so if you foreign export (++),
2861-- it's external name will be "++". Too bad; it's important because we don't
2862-- want z-encoding (e.g. names with z's in them shouldn't be doubled)
2863--
2864mkExtName :: RdrName -> CLabelString
2865mkExtName rdrNm = mkFastString (occNameString (rdrNameOcc rdrNm))
2866
2867--------------------------------------------------------------------------------
2868-- Help with module system imports/exports
2869
2870data ImpExpSubSpec = ImpExpAbs
2871                   | ImpExpAll
2872                   | ImpExpList [Located ImpExpQcSpec]
2873                   | ImpExpAllWith [Located ImpExpQcSpec]
2874
2875data ImpExpQcSpec = ImpExpQcName (Located RdrName)
2876                  | ImpExpQcType (Located RdrName)
2877                  | ImpExpQcWildcard
2878
2879mkModuleImpExp :: Located ImpExpQcSpec -> ImpExpSubSpec -> P (IE GhcPs)
2880mkModuleImpExp (dL->L l specname) subs =
2881  case subs of
2882    ImpExpAbs
2883      | isVarNameSpace (rdrNameSpace name)
2884                       -> return $ IEVar noExtField (cL l (ieNameFromSpec specname))
2885      | otherwise      -> IEThingAbs noExtField . cL l <$> nameT
2886    ImpExpAll          -> IEThingAll noExtField . cL l <$> nameT
2887    ImpExpList xs      ->
2888      (\newName -> IEThingWith noExtField (cL l newName)
2889        NoIEWildcard (wrapped xs) []) <$> nameT
2890    ImpExpAllWith xs                       ->
2891      do allowed <- getBit PatternSynonymsBit
2892         if allowed
2893          then
2894            let withs = map unLoc xs
2895                pos   = maybe NoIEWildcard IEWildcard
2896                          (findIndex isImpExpQcWildcard withs)
2897                ies   = wrapped $ filter (not . isImpExpQcWildcard . unLoc) xs
2898            in (\newName
2899                        -> IEThingWith noExtField (cL l newName) pos ies [])
2900               <$> nameT
2901          else addFatalError l
2902            (text "Illegal export form (use PatternSynonyms to enable)")
2903  where
2904    name = ieNameVal specname
2905    nameT =
2906      if isVarNameSpace (rdrNameSpace name)
2907        then addFatalError l
2908              (text "Expecting a type constructor but found a variable,"
2909               <+> quotes (ppr name) <> text "."
2910              $$ if isSymOcc $ rdrNameOcc name
2911                   then text "If" <+> quotes (ppr name)
2912                        <+> text "is a type constructor"
2913           <+> text "then enable ExplicitNamespaces and use the 'type' keyword."
2914                   else empty)
2915        else return $ ieNameFromSpec specname
2916
2917    ieNameVal (ImpExpQcName ln)  = unLoc ln
2918    ieNameVal (ImpExpQcType ln)  = unLoc ln
2919    ieNameVal (ImpExpQcWildcard) = panic "ieNameVal got wildcard"
2920
2921    ieNameFromSpec (ImpExpQcName ln)  = IEName ln
2922    ieNameFromSpec (ImpExpQcType ln)  = IEType ln
2923    ieNameFromSpec (ImpExpQcWildcard) = panic "ieName got wildcard"
2924
2925    wrapped = map (onHasSrcSpan ieNameFromSpec)
2926
2927mkTypeImpExp :: Located RdrName   -- TcCls or Var name space
2928             -> P (Located RdrName)
2929mkTypeImpExp name =
2930  do allowed <- getBit ExplicitNamespacesBit
2931     unless allowed $ addError (getLoc name) $
2932       text "Illegal keyword 'type' (use ExplicitNamespaces to enable)"
2933     return (fmap (`setRdrNameSpace` tcClsName) name)
2934
2935checkImportSpec :: Located [LIE GhcPs] -> P (Located [LIE GhcPs])
2936checkImportSpec ie@(dL->L _ specs) =
2937    case [l | (dL->L l (IEThingWith _ _ (IEWildcard _) _ _)) <- specs] of
2938      [] -> return ie
2939      (l:_) -> importSpecError l
2940  where
2941    importSpecError l =
2942      addFatalError l
2943        (text "Illegal import form, this syntax can only be used to bundle"
2944        $+$ text "pattern synonyms with types in module exports.")
2945
2946-- In the correct order
2947mkImpExpSubSpec :: [Located ImpExpQcSpec] -> P ([AddAnn], ImpExpSubSpec)
2948mkImpExpSubSpec [] = return ([], ImpExpList [])
2949mkImpExpSubSpec [dL->L _ ImpExpQcWildcard] =
2950  return ([], ImpExpAll)
2951mkImpExpSubSpec xs =
2952  if (any (isImpExpQcWildcard . unLoc) xs)
2953    then return $ ([], ImpExpAllWith xs)
2954    else return $ ([], ImpExpList xs)
2955
2956isImpExpQcWildcard :: ImpExpQcSpec -> Bool
2957isImpExpQcWildcard ImpExpQcWildcard = True
2958isImpExpQcWildcard _                = False
2959
2960-----------------------------------------------------------------------------
2961-- Warnings and failures
2962
2963warnPrepositiveQualifiedModule :: SrcSpan -> P ()
2964warnPrepositiveQualifiedModule span =
2965  addWarning Opt_WarnPrepositiveQualifiedModule span msg
2966  where
2967    msg = text "Found" <+> quotes (text "qualified")
2968           <+> text "in prepositive position"
2969       $$ text "Suggested fix: place " <+> quotes (text "qualified")
2970           <+> text "after the module name instead."
2971
2972failOpNotEnabledImportQualifiedPost :: SrcSpan -> P ()
2973failOpNotEnabledImportQualifiedPost loc = addError loc msg
2974  where
2975    msg = text "Found" <+> quotes (text "qualified")
2976          <+> text "in postpositive position. "
2977      $$ text "To allow this, enable language extension 'ImportQualifiedPost'"
2978
2979failOpImportQualifiedTwice :: SrcSpan -> P ()
2980failOpImportQualifiedTwice loc = addError loc msg
2981  where
2982    msg = text "Multiple occurences of 'qualified'"
2983
2984warnStarIsType :: SrcSpan -> P ()
2985warnStarIsType span = addWarning Opt_WarnStarIsType span msg
2986  where
2987    msg =  text "Using" <+> quotes (text "*")
2988           <+> text "(or its Unicode variant) to mean"
2989           <+> quotes (text "Data.Kind.Type")
2990        $$ text "relies on the StarIsType extension, which will become"
2991        $$ text "deprecated in the future."
2992        $$ text "Suggested fix: use" <+> quotes (text "Type")
2993           <+> text "from" <+> quotes (text "Data.Kind") <+> text "instead."
2994
2995warnStarBndr :: SrcSpan -> P ()
2996warnStarBndr span = addWarning Opt_WarnStarBinder span msg
2997  where
2998    msg =  text "Found binding occurrence of" <+> quotes (text "*")
2999           <+> text "yet StarIsType is enabled."
3000        $$ text "NB. To use (or export) this operator in"
3001           <+> text "modules with StarIsType,"
3002        $$ text "    including the definition module, you must qualify it."
3003
3004failOpFewArgs :: Located RdrName -> P a
3005failOpFewArgs (dL->L loc op) =
3006  do { star_is_type <- getBit StarIsTypeBit
3007     ; let msg = too_few $$ starInfo star_is_type op
3008     ; addFatalError loc msg }
3009  where
3010    too_few = text "Operator applied to too few arguments:" <+> ppr op
3011
3012failOpDocPrev :: SrcSpan -> P a
3013failOpDocPrev loc = addFatalError loc msg
3014  where
3015    msg = text "Unexpected documentation comment."
3016
3017failOpStrictnessCompound :: Located SrcStrictness -> LHsType GhcPs -> P a
3018failOpStrictnessCompound (dL->L _ str) (dL->L loc ty) = addFatalError loc msg
3019  where
3020    msg = text "Strictness annotation applied to a compound type." $$
3021          text "Did you mean to add parentheses?" $$
3022          nest 2 (ppr str <> parens (ppr ty))
3023
3024failOpStrictnessPosition :: Located SrcStrictness -> P a
3025failOpStrictnessPosition (dL->L loc _) = addFatalError loc msg
3026  where
3027    msg = text "Strictness annotation cannot appear in this position."
3028
3029-----------------------------------------------------------------------------
3030-- Misc utils
3031
3032data PV_Context =
3033  PV_Context
3034    { pv_options :: ParserFlags
3035    , pv_hint :: SDoc  -- See Note [Parser-Validator Hint]
3036    }
3037
3038data PV_Accum =
3039  PV_Accum
3040    { pv_messages :: DynFlags -> Messages
3041    , pv_annotations :: [(ApiAnnKey,[SrcSpan])]
3042    , pv_comment_q :: [Located AnnotationComment]
3043    , pv_annotations_comments :: [(SrcSpan,[Located AnnotationComment])]
3044    }
3045
3046data PV_Result a = PV_Ok PV_Accum a | PV_Failed PV_Accum
3047
3048-- See Note [Parser-Validator]
3049newtype PV a = PV { unPV :: PV_Context -> PV_Accum -> PV_Result a }
3050
3051instance Functor PV where
3052  fmap = liftM
3053
3054instance Applicative PV where
3055  pure a = a `seq` PV (\_ acc -> PV_Ok acc a)
3056  (<*>) = ap
3057
3058instance Monad PV where
3059  m >>= f = PV $ \ctx acc ->
3060    case unPV m ctx acc of
3061      PV_Ok acc' a -> unPV (f a) ctx acc'
3062      PV_Failed acc' -> PV_Failed acc'
3063
3064runPV :: PV a -> P a
3065runPV = runPV_msg empty
3066
3067runPV_msg :: SDoc -> PV a -> P a
3068runPV_msg msg m =
3069  P $ \s ->
3070    let
3071      pv_ctx = PV_Context
3072        { pv_options = options s
3073        , pv_hint = msg }
3074      pv_acc = PV_Accum
3075        { pv_messages = messages s
3076        , pv_annotations = annotations s
3077        , pv_comment_q = comment_q s
3078        , pv_annotations_comments = annotations_comments s }
3079      mkPState acc' =
3080        s { messages = pv_messages acc'
3081          , annotations = pv_annotations acc'
3082          , comment_q = pv_comment_q acc'
3083          , annotations_comments = pv_annotations_comments acc' }
3084    in
3085      case unPV m pv_ctx pv_acc of
3086        PV_Ok acc' a -> POk (mkPState acc') a
3087        PV_Failed acc' -> PFailed (mkPState acc')
3088
3089localPV_msg :: (SDoc -> SDoc) -> PV a -> PV a
3090localPV_msg f m =
3091  let modifyHint ctx = ctx{pv_hint = f (pv_hint ctx)} in
3092  PV (\ctx acc -> unPV m (modifyHint ctx) acc)
3093
3094instance MonadP PV where
3095  addError srcspan msg =
3096    PV $ \ctx acc@PV_Accum{pv_messages=m} ->
3097      let msg' = msg $$ pv_hint ctx in
3098      PV_Ok acc{pv_messages=appendError srcspan msg' m} ()
3099  addWarning option srcspan warning =
3100    PV $ \PV_Context{pv_options=o} acc@PV_Accum{pv_messages=m} ->
3101      PV_Ok acc{pv_messages=appendWarning o option srcspan warning m} ()
3102  addFatalError srcspan msg =
3103    addError srcspan msg >> PV (const PV_Failed)
3104  getBit ext =
3105    PV $ \ctx acc ->
3106      let b = ext `xtest` pExtsBitmap (pv_options ctx) in
3107      PV_Ok acc $! b
3108  addAnnotation l a v =
3109    PV $ \_ acc ->
3110      let
3111        (comment_q', new_ann_comments) = allocateComments l (pv_comment_q acc)
3112        annotations_comments' = new_ann_comments ++ pv_annotations_comments acc
3113        annotations' = ((l,a), [v]) : pv_annotations acc
3114        acc' = acc
3115          { pv_annotations = annotations'
3116          , pv_comment_q = comment_q'
3117          , pv_annotations_comments = annotations_comments' }
3118      in
3119        PV_Ok acc' ()
3120
3121{- Note [Parser-Validator]
3122~~~~~~~~~~~~~~~~~~~~~~~~~~
3123
3124When resolving ambiguities, we need to postpone failure to make a choice later.
3125For example, if we have ambiguity between some A and B, our parser could be
3126
3127  abParser :: P (Maybe A, Maybe B)
3128
3129This way we can represent four possible outcomes of parsing:
3130
3131    (Just a, Nothing)       -- definitely A
3132    (Nothing, Just b)       -- definitely B
3133    (Just a, Just b)        -- either A or B
3134    (Nothing, Nothing)      -- neither A nor B
3135
3136However, if we want to report informative parse errors, accumulate warnings,
3137and add API annotations, we are better off using 'P' instead of 'Maybe':
3138
3139  abParser :: P (P A, P B)
3140
3141So we have an outer layer of P that consumes the input and builds the inner
3142layer, which validates the input.
3143
3144For clarity, we introduce the notion of a parser-validator: a parser that does
3145not consume any input, but may fail or use other effects. Thus we have:
3146
3147  abParser :: P (PV A, PV B)
3148
3149-}
3150
3151{- Note [Parser-Validator Hint]
3152~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3153A PV computation is parametrized by a hint for error messages, which can be set
3154depending on validation context. We use this in checkPattern to fix #984.
3155
3156Consider this example, where the user has forgotten a 'do':
3157
3158  f _ = do
3159    x <- computation
3160    case () of
3161      _ ->
3162        result <- computation
3163        case () of () -> undefined
3164
3165GHC parses it as follows:
3166
3167  f _ = do
3168    x <- computation
3169    (case () of
3170      _ ->
3171        result) <- computation
3172        case () of () -> undefined
3173
3174Note that this fragment is parsed as a pattern:
3175
3176  case () of
3177    _ ->
3178      result
3179
3180We attempt to detect such cases and add a hint to the error messages:
3181
3182  T984.hs:6:9:
3183    Parse error in pattern: case () of { _ -> result }
3184    Possibly caused by a missing 'do'?
3185
3186The "Possibly caused by a missing 'do'?" suggestion is the hint that is passed
3187as the 'pv_hint' field 'PV_Context'. When validating in a context other than
3188'bindpat' (a pattern to the left of <-), we set the hint to 'empty' and it has
3189no effect on the error messages.
3190
3191-}
3192
3193-- | Hint about bang patterns, assuming @BangPatterns@ is off.
3194hintBangPat :: SrcSpan -> PatBuilder GhcPs -> PV ()
3195hintBangPat span e = do
3196    bang_on <- getBit BangPatBit
3197    unless bang_on $
3198      addFatalError span
3199        (text "Illegal bang-pattern (use BangPatterns):" $$ ppr e)
3200
3201data SumOrTuple b
3202  = Sum ConTag Arity (Located b)
3203  | Tuple [Located (Maybe (Located b))]
3204
3205pprSumOrTuple :: Outputable b => Boxity -> SumOrTuple b -> SDoc
3206pprSumOrTuple boxity = \case
3207    Sum alt arity e ->
3208      parOpen <+> ppr_bars (alt - 1) <+> ppr e <+> ppr_bars (arity - alt)
3209              <+> parClose
3210    Tuple xs ->
3211      parOpen <> (fcat . punctuate comma $ map (maybe empty ppr . unLoc) xs)
3212              <> parClose
3213  where
3214    ppr_bars n = hsep (replicate n (Outputable.char '|'))
3215    (parOpen, parClose) =
3216      case boxity of
3217        Boxed -> (text "(", text ")")
3218        Unboxed -> (text "(#", text "#)")
3219
3220mkSumOrTupleExpr :: SrcSpan -> Boxity -> SumOrTuple (HsExpr GhcPs) -> PV (LHsExpr GhcPs)
3221
3222-- Tuple
3223mkSumOrTupleExpr l boxity (Tuple es) =
3224    return $ cL l (ExplicitTuple noExtField (map toTupArg es) boxity)
3225  where
3226    toTupArg :: Located (Maybe (LHsExpr GhcPs)) -> LHsTupArg GhcPs
3227    toTupArg = mapLoc (maybe missingTupArg (Present noExtField))
3228
3229-- Sum
3230mkSumOrTupleExpr l Unboxed (Sum alt arity e) =
3231    return $ cL l (ExplicitSum noExtField alt arity e)
3232mkSumOrTupleExpr l Boxed a@Sum{} =
3233    addFatalError l (hang (text "Boxed sums not supported:") 2
3234                      (pprSumOrTuple Boxed a))
3235
3236mkSumOrTuplePat :: SrcSpan -> Boxity -> SumOrTuple (PatBuilder GhcPs) -> PV (Located (PatBuilder GhcPs))
3237
3238-- Tuple
3239mkSumOrTuplePat l boxity (Tuple ps) = do
3240  ps' <- traverse toTupPat ps
3241  return $ cL l (PatBuilderPat (TuplePat noExtField ps' boxity))
3242  where
3243    toTupPat :: Located (Maybe (Located (PatBuilder GhcPs))) -> PV (LPat GhcPs)
3244    -- Ignore the element location so that the error message refers to the
3245    -- entire tuple. See #19504 (and the discussion) for details.
3246    toTupPat (dL -> L _ p) = case p of
3247      Nothing -> addFatalError l (text "Tuple section in pattern context")
3248      Just p' -> checkLPat p'
3249
3250-- Sum
3251mkSumOrTuplePat l Unboxed (Sum alt arity p) = do
3252   p' <- checkLPat p
3253   return $ cL l (PatBuilderPat (SumPat noExtField p' alt arity))
3254mkSumOrTuplePat l Boxed a@Sum{} =
3255    addFatalError l (hang (text "Boxed sums not supported:") 2
3256                      (pprSumOrTuple Boxed a))
3257
3258mkLHsOpTy :: LHsType GhcPs -> Located RdrName -> LHsType GhcPs -> LHsType GhcPs
3259mkLHsOpTy x op y =
3260  let loc = getLoc x `combineSrcSpans` getLoc op `combineSrcSpans` getLoc y
3261  in cL loc (mkHsOpTy x op y)
3262
3263mkLHsDocTy :: LHsType GhcPs -> LHsDocString -> LHsType GhcPs
3264mkLHsDocTy t doc =
3265  let loc = getLoc t `combineSrcSpans` getLoc doc
3266  in cL loc (HsDocTy noExtField t doc)
3267
3268mkLHsDocTyMaybe :: LHsType GhcPs -> Maybe LHsDocString -> LHsType GhcPs
3269mkLHsDocTyMaybe t = maybe t (mkLHsDocTy t)
3270
3271-----------------------------------------------------------------------------
3272-- Token symbols
3273
3274starSym :: Bool -> String
3275starSym True = "★"
3276starSym False = "*"
3277
3278forallSym :: Bool -> String
3279forallSym True = "∀"
3280forallSym False = "forall"
3281