1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              E X P _ C H 6                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;     use Atree;
27with Checks;    use Checks;
28with Contracts; use Contracts;
29with Debug;     use Debug;
30with Einfo;     use Einfo;
31with Errout;    use Errout;
32with Elists;    use Elists;
33with Exp_Aggr;  use Exp_Aggr;
34with Exp_Atag;  use Exp_Atag;
35with Exp_Ch2;   use Exp_Ch2;
36with Exp_Ch3;   use Exp_Ch3;
37with Exp_Ch7;   use Exp_Ch7;
38with Exp_Ch9;   use Exp_Ch9;
39with Exp_Dbug;  use Exp_Dbug;
40with Exp_Disp;  use Exp_Disp;
41with Exp_Dist;  use Exp_Dist;
42with Exp_Intr;  use Exp_Intr;
43with Exp_Pakd;  use Exp_Pakd;
44with Exp_Tss;   use Exp_Tss;
45with Exp_Unst;  use Exp_Unst;
46with Exp_Util;  use Exp_Util;
47with Freeze;    use Freeze;
48with Ghost;     use Ghost;
49with Inline;    use Inline;
50with Lib;       use Lib;
51with Namet;     use Namet;
52with Nlists;    use Nlists;
53with Nmake;     use Nmake;
54with Opt;       use Opt;
55with Restrict;  use Restrict;
56with Rident;    use Rident;
57with Rtsfind;   use Rtsfind;
58with Sem;       use Sem;
59with Sem_Aux;   use Sem_Aux;
60with Sem_Ch6;   use Sem_Ch6;
61with Sem_Ch8;   use Sem_Ch8;
62with Sem_Ch13;  use Sem_Ch13;
63with Sem_Dim;   use Sem_Dim;
64with Sem_Disp;  use Sem_Disp;
65with Sem_Dist;  use Sem_Dist;
66with Sem_Eval;  use Sem_Eval;
67with Sem_Mech;  use Sem_Mech;
68with Sem_Res;   use Sem_Res;
69with Sem_SCIL;  use Sem_SCIL;
70with Sem_Util;  use Sem_Util;
71with Sinfo;     use Sinfo;
72with Snames;    use Snames;
73with Stand;     use Stand;
74with Table;
75with Targparm;  use Targparm;
76with Tbuild;    use Tbuild;
77with Uintp;     use Uintp;
78with Validsw;   use Validsw;
79
80package body Exp_Ch6 is
81
82   -------------------------------------
83   -- Table for Unnesting Subprograms --
84   -------------------------------------
85
86   --  When we expand a subprogram body, if it has nested subprograms and if
87   --  we are in Unnest_Subprogram_Mode, then we record the subprogram entity
88   --  and the body in this table, to later be passed to Unnest_Subprogram.
89
90   --  We need this delaying mechanism, because we have to wait until all
91   --  instantiated bodies have been inserted before doing the unnesting.
92
93   type Unest_Entry is record
94      Ent : Entity_Id;
95      --  Entity for subprogram to be unnested
96
97      Bod : Node_Id;
98      --  Subprogram body to be unnested
99   end record;
100
101   package Unest_Bodies is new Table.Table (
102     Table_Component_Type => Unest_Entry,
103     Table_Index_Type     => Nat,
104     Table_Low_Bound      => 1,
105     Table_Initial        => 100,
106     Table_Increment      => 200,
107     Table_Name           => "Unest_Bodies");
108
109   -----------------------
110   -- Local Subprograms --
111   -----------------------
112
113   procedure Add_Access_Actual_To_Build_In_Place_Call
114     (Function_Call : Node_Id;
115      Function_Id   : Entity_Id;
116      Return_Object : Node_Id;
117      Is_Access     : Boolean := False);
118   --  Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
119   --  object name given by Return_Object and add the attribute to the end of
120   --  the actual parameter list associated with the build-in-place function
121   --  call denoted by Function_Call. However, if Is_Access is True, then
122   --  Return_Object is already an access expression, in which case it's passed
123   --  along directly to the build-in-place function. Finally, if Return_Object
124   --  is empty, then pass a null literal as the actual.
125
126   procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
127     (Function_Call  : Node_Id;
128      Function_Id    : Entity_Id;
129      Alloc_Form     : BIP_Allocation_Form := Unspecified;
130      Alloc_Form_Exp : Node_Id             := Empty;
131      Pool_Actual    : Node_Id             := Make_Null (No_Location));
132   --  Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
133   --  function call that returns a caller-unknown-size result (BIP_Alloc_Form
134   --  and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
135   --  otherwise pass a literal corresponding to the Alloc_Form parameter
136   --  (which must not be Unspecified in that case). Pool_Actual is the
137   --  parameter to pass to BIP_Storage_Pool.
138
139   procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
140     (Func_Call  : Node_Id;
141      Func_Id    : Entity_Id;
142      Ptr_Typ    : Entity_Id := Empty;
143      Master_Exp : Node_Id   := Empty);
144   --  Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
145   --  finalization actions, add an actual parameter which is a pointer to the
146   --  finalization master of the caller. If Master_Exp is not Empty, then that
147   --  will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
148   --  will result in an automatic "null" value for the actual.
149
150   procedure Add_Task_Actuals_To_Build_In_Place_Call
151     (Function_Call : Node_Id;
152      Function_Id   : Entity_Id;
153      Master_Actual : Node_Id;
154      Chain         : Node_Id := Empty);
155   --  Ada 2005 (AI-318-02): For a build-in-place call, if the result type
156   --  contains tasks, add two actual parameters: the master, and a pointer to
157   --  the caller's activation chain. Master_Actual is the actual parameter
158   --  expression to pass for the master. In most cases, this is the current
159   --  master (_master). The two exceptions are: If the function call is the
160   --  initialization expression for an allocator, we pass the master of the
161   --  access type. If the function call is the initialization expression for a
162   --  return object, we pass along the master passed in by the caller. In most
163   --  contexts, the activation chain to pass is the local one, which is
164   --  indicated by No (Chain). However, in an allocator, the caller passes in
165   --  the activation Chain. Note: Master_Actual can be Empty, but only if
166   --  there are no tasks.
167
168   procedure Check_Overriding_Operation (Subp : Entity_Id);
169   --  Subp is a dispatching operation. Check whether it may override an
170   --  inherited private operation, in which case its DT entry is that of
171   --  the hidden operation, not the one it may have received earlier.
172   --  This must be done before emitting the code to set the corresponding
173   --  DT to the address of the subprogram. The actual placement of Subp in
174   --  the proper place in the list of primitive operations is done in
175   --  Declare_Inherited_Private_Subprograms, which also has to deal with
176   --  implicit operations. This duplication is unavoidable for now???
177
178   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
179   --  This procedure is called only if the subprogram body N, whose spec
180   --  has the given entity Spec, contains a parameterless recursive call.
181   --  It attempts to generate runtime code to detect if this a case of
182   --  infinite recursion.
183   --
184   --  The body is scanned to determine dependencies. If the only external
185   --  dependencies are on a small set of scalar variables, then the values
186   --  of these variables are captured on entry to the subprogram, and if
187   --  the values are not changed for the call, we know immediately that
188   --  we have an infinite recursion.
189
190   procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id);
191   --  For each actual of an in-out or out parameter which is a numeric
192   --  (view) conversion of the form T (A), where A denotes a variable,
193   --  we insert the declaration:
194   --
195   --    Temp : T[ := T (A)];
196   --
197   --  prior to the call. Then we replace the actual with a reference to Temp,
198   --  and append the assignment:
199   --
200   --    A := TypeA (Temp);
201   --
202   --  after the call. Here TypeA is the actual type of variable A. For out
203   --  parameters, the initial declaration has no expression. If A is not an
204   --  entity name, we generate instead:
205   --
206   --    Var  : TypeA renames A;
207   --    Temp : T := Var;       --  omitting expression for out parameter.
208   --    ...
209   --    Var := TypeA (Temp);
210   --
211   --  For other in-out parameters, we emit the required constraint checks
212   --  before and/or after the call.
213   --
214   --  For all parameter modes, actuals that denote components and slices of
215   --  packed arrays are expanded into suitable temporaries.
216   --
217   --  For non-scalar objects that are possibly unaligned, add call by copy
218   --  code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
219   --
220   --  For OUT and IN OUT parameters, add predicate checks after the call
221   --  based on the predicates of the actual type.
222   --
223   --  The parameter N is IN OUT because in some cases, the expansion code
224   --  rewrites the call as an expression actions with the call inside. In
225   --  this case N is reset to point to the inside call so that the caller
226   --  can continue processing of this call.
227
228   procedure Expand_Ctrl_Function_Call (N : Node_Id);
229   --  N is a function call which returns a controlled object. Transform the
230   --  call into a temporary which retrieves the returned object from the
231   --  secondary stack using 'reference.
232
233   procedure Expand_Non_Function_Return (N : Node_Id);
234   --  Expand a simple return statement found in a procedure body, entry body,
235   --  accept statement, or an extended return statement. Note that all non-
236   --  function returns are simple return statements.
237
238   function Expand_Protected_Object_Reference
239     (N    : Node_Id;
240      Scop : Entity_Id) return Node_Id;
241
242   procedure Expand_Protected_Subprogram_Call
243     (N    : Node_Id;
244      Subp : Entity_Id;
245      Scop : Entity_Id);
246   --  A call to a protected subprogram within the protected object may appear
247   --  as a regular call. The list of actuals must be expanded to contain a
248   --  reference to the object itself, and the call becomes a call to the
249   --  corresponding protected subprogram.
250
251   function Has_Unconstrained_Access_Discriminants
252     (Subtyp : Entity_Id) return Boolean;
253   --  Returns True if the given subtype is unconstrained and has one
254   --  or more access discriminants.
255
256   procedure Expand_Simple_Function_Return (N : Node_Id);
257   --  Expand simple return from function. In the case where we are returning
258   --  from a function body this is called by Expand_N_Simple_Return_Statement.
259
260   procedure Rewrite_Function_Call_For_C (N : Node_Id);
261   --  When generating C code, replace a call to a function that returns an
262   --  array into the generated procedure with an additional out parameter.
263
264   procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
265   --  N is a return statement for a function that returns its result on the
266   --  secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
267   --  function and all blocks and loops that the return statement is jumping
268   --  out of. This ensures that the secondary stack is not released; otherwise
269   --  the function result would be reclaimed before returning to the caller.
270
271   ----------------------------------------------
272   -- Add_Access_Actual_To_Build_In_Place_Call --
273   ----------------------------------------------
274
275   procedure Add_Access_Actual_To_Build_In_Place_Call
276     (Function_Call : Node_Id;
277      Function_Id   : Entity_Id;
278      Return_Object : Node_Id;
279      Is_Access     : Boolean := False)
280   is
281      Loc            : constant Source_Ptr := Sloc (Function_Call);
282      Obj_Address    : Node_Id;
283      Obj_Acc_Formal : Entity_Id;
284
285   begin
286      --  Locate the implicit access parameter in the called function
287
288      Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
289
290      --  If no return object is provided, then pass null
291
292      if not Present (Return_Object) then
293         Obj_Address := Make_Null (Loc);
294         Set_Parent (Obj_Address, Function_Call);
295
296      --  If Return_Object is already an expression of an access type, then use
297      --  it directly, since it must be an access value denoting the return
298      --  object, and couldn't possibly be the return object itself.
299
300      elsif Is_Access then
301         Obj_Address := Return_Object;
302         Set_Parent (Obj_Address, Function_Call);
303
304      --  Apply Unrestricted_Access to caller's return object
305
306      else
307         Obj_Address :=
308            Make_Attribute_Reference (Loc,
309              Prefix         => Return_Object,
310              Attribute_Name => Name_Unrestricted_Access);
311
312         Set_Parent (Return_Object, Obj_Address);
313         Set_Parent (Obj_Address, Function_Call);
314      end if;
315
316      Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
317
318      --  Build the parameter association for the new actual and add it to the
319      --  end of the function's actuals.
320
321      Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
322   end Add_Access_Actual_To_Build_In_Place_Call;
323
324   ------------------------------------------------------
325   -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
326   ------------------------------------------------------
327
328   procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
329     (Function_Call  : Node_Id;
330      Function_Id    : Entity_Id;
331      Alloc_Form     : BIP_Allocation_Form := Unspecified;
332      Alloc_Form_Exp : Node_Id             := Empty;
333      Pool_Actual    : Node_Id             := Make_Null (No_Location))
334   is
335      Loc               : constant Source_Ptr := Sloc (Function_Call);
336      Alloc_Form_Actual : Node_Id;
337      Alloc_Form_Formal : Node_Id;
338      Pool_Formal       : Node_Id;
339
340   begin
341      --  The allocation form generally doesn't need to be passed in the case
342      --  of a constrained result subtype, since normally the caller performs
343      --  the allocation in that case. However this formal is still needed in
344      --  the case where the function has a tagged result, because generally
345      --  such functions can be called in a dispatching context and such calls
346      --  must be handled like calls to class-wide functions.
347
348      if Is_Constrained (Underlying_Type (Etype (Function_Id)))
349        and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
350      then
351         return;
352      end if;
353
354      --  Locate the implicit allocation form parameter in the called function.
355      --  Maybe it would be better for each implicit formal of a build-in-place
356      --  function to have a flag or a Uint attribute to identify it. ???
357
358      Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
359
360      if Present (Alloc_Form_Exp) then
361         pragma Assert (Alloc_Form = Unspecified);
362
363         Alloc_Form_Actual := Alloc_Form_Exp;
364
365      else
366         pragma Assert (Alloc_Form /= Unspecified);
367
368         Alloc_Form_Actual :=
369           Make_Integer_Literal (Loc,
370             Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
371      end if;
372
373      Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
374
375      --  Build the parameter association for the new actual and add it to the
376      --  end of the function's actuals.
377
378      Add_Extra_Actual_To_Call
379        (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
380
381      --  Pass the Storage_Pool parameter. This parameter is omitted on
382      --  ZFP as those targets do not support pools.
383
384      if RTE_Available (RE_Root_Storage_Pool_Ptr) then
385         Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
386         Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
387         Add_Extra_Actual_To_Call
388           (Function_Call, Pool_Formal, Pool_Actual);
389      end if;
390   end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
391
392   -----------------------------------------------------------
393   -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
394   -----------------------------------------------------------
395
396   procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
397     (Func_Call  : Node_Id;
398      Func_Id    : Entity_Id;
399      Ptr_Typ    : Entity_Id := Empty;
400      Master_Exp : Node_Id   := Empty)
401   is
402   begin
403      if not Needs_BIP_Finalization_Master (Func_Id) then
404         return;
405      end if;
406
407      declare
408         Formal : constant Entity_Id :=
409                    Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
410         Loc    : constant Source_Ptr := Sloc (Func_Call);
411
412         Actual    : Node_Id;
413         Desig_Typ : Entity_Id;
414
415      begin
416         --  If there is a finalization master actual, such as the implicit
417         --  finalization master of an enclosing build-in-place function,
418         --  then this must be added as an extra actual of the call.
419
420         if Present (Master_Exp) then
421            Actual := Master_Exp;
422
423         --  Case where the context does not require an actual master
424
425         elsif No (Ptr_Typ) then
426            Actual := Make_Null (Loc);
427
428         else
429            Desig_Typ := Directly_Designated_Type (Ptr_Typ);
430
431            --  Check for a library-level access type whose designated type has
432            --  supressed finalization. Such an access types lack a master.
433            --  Pass a null actual to the callee in order to signal a missing
434            --  master.
435
436            if Is_Library_Level_Entity (Ptr_Typ)
437              and then Finalize_Storage_Only (Desig_Typ)
438            then
439               Actual := Make_Null (Loc);
440
441            --  Types in need of finalization actions
442
443            elsif Needs_Finalization (Desig_Typ) then
444
445               --  The general mechanism of creating finalization masters for
446               --  anonymous access types is disabled by default, otherwise
447               --  finalization masters will pop all over the place. Such types
448               --  use context-specific masters.
449
450               if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
451                 and then No (Finalization_Master (Ptr_Typ))
452               then
453                  Build_Finalization_Master
454                    (Typ            => Ptr_Typ,
455                     For_Anonymous  => True,
456                     Context_Scope  => Scope (Ptr_Typ),
457                     Insertion_Node => Associated_Node_For_Itype (Ptr_Typ));
458               end if;
459
460               --  Access-to-controlled types should always have a master
461
462               pragma Assert (Present (Finalization_Master (Ptr_Typ)));
463
464               Actual :=
465                 Make_Attribute_Reference (Loc,
466                   Prefix =>
467                     New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
468                   Attribute_Name => Name_Unrestricted_Access);
469
470            --  Tagged types
471
472            else
473               Actual := Make_Null (Loc);
474            end if;
475         end if;
476
477         Analyze_And_Resolve (Actual, Etype (Formal));
478
479         --  Build the parameter association for the new actual and add it to
480         --  the end of the function's actuals.
481
482         Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
483      end;
484   end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
485
486   ------------------------------
487   -- Add_Extra_Actual_To_Call --
488   ------------------------------
489
490   procedure Add_Extra_Actual_To_Call
491     (Subprogram_Call : Node_Id;
492      Extra_Formal    : Entity_Id;
493      Extra_Actual    : Node_Id)
494   is
495      Loc         : constant Source_Ptr := Sloc (Subprogram_Call);
496      Param_Assoc : Node_Id;
497
498   begin
499      Param_Assoc :=
500        Make_Parameter_Association (Loc,
501          Selector_Name             => New_Occurrence_Of (Extra_Formal, Loc),
502          Explicit_Actual_Parameter => Extra_Actual);
503
504      Set_Parent (Param_Assoc, Subprogram_Call);
505      Set_Parent (Extra_Actual, Param_Assoc);
506
507      if Present (Parameter_Associations (Subprogram_Call)) then
508         if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
509              N_Parameter_Association
510         then
511
512            --  Find last named actual, and append
513
514            declare
515               L : Node_Id;
516            begin
517               L := First_Actual (Subprogram_Call);
518               while Present (L) loop
519                  if No (Next_Actual (L)) then
520                     Set_Next_Named_Actual (Parent (L), Extra_Actual);
521                     exit;
522                  end if;
523                  Next_Actual (L);
524               end loop;
525            end;
526
527         else
528            Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
529         end if;
530
531         Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
532
533      else
534         Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
535         Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
536      end if;
537   end Add_Extra_Actual_To_Call;
538
539   ---------------------------------------------
540   -- Add_Task_Actuals_To_Build_In_Place_Call --
541   ---------------------------------------------
542
543   procedure Add_Task_Actuals_To_Build_In_Place_Call
544     (Function_Call : Node_Id;
545      Function_Id   : Entity_Id;
546      Master_Actual : Node_Id;
547      Chain         : Node_Id := Empty)
548   is
549      Loc           : constant Source_Ptr := Sloc (Function_Call);
550      Result_Subt   : constant Entity_Id :=
551                        Available_View (Etype (Function_Id));
552      Actual        : Node_Id;
553      Chain_Actual  : Node_Id;
554      Chain_Formal  : Node_Id;
555      Master_Formal : Node_Id;
556
557   begin
558      --  No such extra parameters are needed if there are no tasks
559
560      if not Has_Task (Result_Subt) then
561         return;
562      end if;
563
564      Actual := Master_Actual;
565
566      --  Use a dummy _master actual in case of No_Task_Hierarchy
567
568      if Restriction_Active (No_Task_Hierarchy) then
569         Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
570
571      --  In the case where we use the master associated with an access type,
572      --  the actual is an entity and requires an explicit reference.
573
574      elsif Nkind (Actual) = N_Defining_Identifier then
575         Actual := New_Occurrence_Of (Actual, Loc);
576      end if;
577
578      --  Locate the implicit master parameter in the called function
579
580      Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
581      Analyze_And_Resolve (Actual, Etype (Master_Formal));
582
583      --  Build the parameter association for the new actual and add it to the
584      --  end of the function's actuals.
585
586      Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
587
588      --  Locate the implicit activation chain parameter in the called function
589
590      Chain_Formal :=
591        Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
592
593      --  Create the actual which is a pointer to the current activation chain
594
595      if No (Chain) then
596         Chain_Actual :=
597           Make_Attribute_Reference (Loc,
598             Prefix         => Make_Identifier (Loc, Name_uChain),
599             Attribute_Name => Name_Unrestricted_Access);
600
601      --  Allocator case; make a reference to the Chain passed in by the caller
602
603      else
604         Chain_Actual :=
605           Make_Attribute_Reference (Loc,
606             Prefix         => New_Occurrence_Of (Chain, Loc),
607             Attribute_Name => Name_Unrestricted_Access);
608      end if;
609
610      Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
611
612      --  Build the parameter association for the new actual and add it to the
613      --  end of the function's actuals.
614
615      Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
616   end Add_Task_Actuals_To_Build_In_Place_Call;
617
618   -----------------------
619   -- BIP_Formal_Suffix --
620   -----------------------
621
622   function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
623   begin
624      case Kind is
625         when BIP_Alloc_Form          =>
626            return "BIPalloc";
627         when BIP_Storage_Pool        =>
628            return "BIPstoragepool";
629         when BIP_Finalization_Master =>
630            return "BIPfinalizationmaster";
631         when BIP_Task_Master         =>
632            return "BIPtaskmaster";
633         when BIP_Activation_Chain    =>
634            return "BIPactivationchain";
635         when BIP_Object_Access       =>
636            return "BIPaccess";
637      end case;
638   end BIP_Formal_Suffix;
639
640   ---------------------------
641   -- Build_In_Place_Formal --
642   ---------------------------
643
644   function Build_In_Place_Formal
645     (Func : Entity_Id;
646      Kind : BIP_Formal_Kind) return Entity_Id
647   is
648      Formal_Name  : constant Name_Id :=
649                       New_External_Name
650                         (Chars (Func), BIP_Formal_Suffix (Kind));
651      Extra_Formal : Entity_Id := Extra_Formals (Func);
652
653   begin
654      --  Maybe it would be better for each implicit formal of a build-in-place
655      --  function to have a flag or a Uint attribute to identify it. ???
656
657      --  The return type in the function declaration may have been a limited
658      --  view, and the extra formals for the function were not generated at
659      --  that point. At the point of call the full view must be available and
660      --  the extra formals can be created.
661
662      if No (Extra_Formal) then
663         Create_Extra_Formals (Func);
664         Extra_Formal := Extra_Formals (Func);
665      end if;
666
667      loop
668         pragma Assert (Present (Extra_Formal));
669         exit when Chars (Extra_Formal) = Formal_Name;
670
671         Next_Formal_With_Extras (Extra_Formal);
672      end loop;
673
674      return Extra_Formal;
675   end Build_In_Place_Formal;
676
677   -------------------------------
678   -- Build_Procedure_Body_Form --
679   -------------------------------
680
681   function Build_Procedure_Body_Form
682     (Func_Id   : Entity_Id;
683      Func_Body : Node_Id) return Node_Id
684   is
685      Loc : constant Source_Ptr := Sloc (Func_Body);
686
687      Proc_Decl : constant Node_Id   :=
688                    Next (Unit_Declaration_Node (Func_Id));
689      --  It is assumed that the next node following the declaration of the
690      --  corresponding subprogram spec is the declaration of the procedure
691      --  form.
692
693      Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
694
695      procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
696      --  Replace each return statement found in the list Stmts with an
697      --  assignment of the return expression to parameter Param_Id.
698
699      ---------------------
700      -- Replace_Returns --
701      ---------------------
702
703      procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
704         Stmt : Node_Id;
705
706      begin
707         Stmt := First (Stmts);
708         while Present (Stmt) loop
709            if Nkind (Stmt) = N_Block_Statement then
710               Replace_Returns (Param_Id, Statements (Stmt));
711
712            elsif Nkind (Stmt) = N_Case_Statement then
713               declare
714                  Alt : Node_Id;
715               begin
716                  Alt := First (Alternatives (Stmt));
717                  while Present (Alt) loop
718                     Replace_Returns (Param_Id, Statements (Alt));
719                     Next (Alt);
720                  end loop;
721               end;
722
723            elsif Nkind (Stmt) = N_If_Statement then
724               Replace_Returns (Param_Id, Then_Statements (Stmt));
725               Replace_Returns (Param_Id, Else_Statements (Stmt));
726
727               declare
728                  Part : Node_Id;
729               begin
730                  Part := First (Elsif_Parts (Stmt));
731                  while Present (Part) loop
732                     Replace_Returns (Part, Then_Statements (Part));
733                     Next (Part);
734                  end loop;
735               end;
736
737            elsif Nkind (Stmt) = N_Loop_Statement then
738               Replace_Returns (Param_Id, Statements (Stmt));
739
740            elsif Nkind (Stmt) = N_Simple_Return_Statement then
741
742               --  Generate:
743               --    Param := Expr;
744               --    return;
745
746               Rewrite (Stmt,
747                 Make_Assignment_Statement (Sloc (Stmt),
748                   Name       => New_Occurrence_Of (Param_Id, Loc),
749                   Expression => Relocate_Node (Expression (Stmt))));
750
751               Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
752
753               --  Skip the added return
754
755               Next (Stmt);
756            end if;
757
758            Next (Stmt);
759         end loop;
760      end Replace_Returns;
761
762      --  Local variables
763
764      Stmts    : List_Id;
765      New_Body : Node_Id;
766
767   --  Start of processing for Build_Procedure_Body_Form
768
769   begin
770      --  This routine replaces the original function body:
771
772      --    function F (...) return Array_Typ is
773      --    begin
774      --       ...
775      --       return Something;
776      --    end F;
777
778      --    with the following:
779
780      --    procedure P (..., Result : out Array_Typ) is
781      --    begin
782      --       ...
783      --       Result := Something;
784      --    end P;
785
786      Stmts :=
787        Statements (Handled_Statement_Sequence (Func_Body));
788      Replace_Returns (Last_Entity (Proc_Id), Stmts);
789
790      New_Body :=
791        Make_Subprogram_Body (Loc,
792          Specification              =>
793            Copy_Subprogram_Spec (Specification (Proc_Decl)),
794          Declarations               => Declarations (Func_Body),
795          Handled_Statement_Sequence =>
796            Make_Handled_Sequence_Of_Statements (Loc,
797              Statements => Stmts));
798
799      return New_Body;
800   end Build_Procedure_Body_Form;
801
802   --------------------------------
803   -- Check_Overriding_Operation --
804   --------------------------------
805
806   procedure Check_Overriding_Operation (Subp : Entity_Id) is
807      Typ     : constant Entity_Id := Find_Dispatching_Type (Subp);
808      Op_List : constant Elist_Id  := Primitive_Operations (Typ);
809      Op_Elmt : Elmt_Id;
810      Prim_Op : Entity_Id;
811      Par_Op  : Entity_Id;
812
813   begin
814      if Is_Derived_Type (Typ)
815        and then not Is_Private_Type (Typ)
816        and then In_Open_Scopes (Scope (Etype (Typ)))
817        and then Is_Base_Type (Typ)
818      then
819         --  Subp overrides an inherited private operation if there is an
820         --  inherited operation with a different name than Subp (see
821         --  Derive_Subprogram) whose Alias is a hidden subprogram with the
822         --  same name as Subp.
823
824         Op_Elmt := First_Elmt (Op_List);
825         while Present (Op_Elmt) loop
826            Prim_Op := Node (Op_Elmt);
827            Par_Op  := Alias (Prim_Op);
828
829            if Present (Par_Op)
830              and then not Comes_From_Source (Prim_Op)
831              and then Chars (Prim_Op) /= Chars (Par_Op)
832              and then Chars (Par_Op) = Chars (Subp)
833              and then Is_Hidden (Par_Op)
834              and then Type_Conformant (Prim_Op, Subp)
835            then
836               Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
837            end if;
838
839            Next_Elmt (Op_Elmt);
840         end loop;
841      end if;
842   end Check_Overriding_Operation;
843
844   -------------------------------
845   -- Detect_Infinite_Recursion --
846   -------------------------------
847
848   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
849      Loc : constant Source_Ptr := Sloc (N);
850
851      Var_List : constant Elist_Id := New_Elmt_List;
852      --  List of globals referenced by body of procedure
853
854      Call_List : constant Elist_Id := New_Elmt_List;
855      --  List of recursive calls in body of procedure
856
857      Shad_List : constant Elist_Id := New_Elmt_List;
858      --  List of entity id's for entities created to capture the value of
859      --  referenced globals on entry to the procedure.
860
861      Scop : constant Uint := Scope_Depth (Spec);
862      --  This is used to record the scope depth of the current procedure, so
863      --  that we can identify global references.
864
865      Max_Vars : constant := 4;
866      --  Do not test more than four global variables
867
868      Count_Vars : Natural := 0;
869      --  Count variables found so far
870
871      Var  : Entity_Id;
872      Elm  : Elmt_Id;
873      Ent  : Entity_Id;
874      Call : Elmt_Id;
875      Decl : Node_Id;
876      Test : Node_Id;
877      Elm1 : Elmt_Id;
878      Elm2 : Elmt_Id;
879      Last : Node_Id;
880
881      function Process (Nod : Node_Id) return Traverse_Result;
882      --  Function to traverse the subprogram body (using Traverse_Func)
883
884      -------------
885      -- Process --
886      -------------
887
888      function Process (Nod : Node_Id) return Traverse_Result is
889      begin
890         --  Procedure call
891
892         if Nkind (Nod) = N_Procedure_Call_Statement then
893
894            --  Case of one of the detected recursive calls
895
896            if Is_Entity_Name (Name (Nod))
897              and then Has_Recursive_Call (Entity (Name (Nod)))
898              and then Entity (Name (Nod)) = Spec
899            then
900               Append_Elmt (Nod, Call_List);
901               return Skip;
902
903            --  Any other procedure call may have side effects
904
905            else
906               return Abandon;
907            end if;
908
909         --  A call to a pure function can always be ignored
910
911         elsif Nkind (Nod) = N_Function_Call
912           and then Is_Entity_Name (Name (Nod))
913           and then Is_Pure (Entity (Name (Nod)))
914         then
915            return Skip;
916
917         --  Case of an identifier reference
918
919         elsif Nkind (Nod) = N_Identifier then
920            Ent := Entity (Nod);
921
922            --  If no entity, then ignore the reference
923
924            --  Not clear why this can happen. To investigate, remove this
925            --  test and look at the crash that occurs here in 3401-004 ???
926
927            if No (Ent) then
928               return Skip;
929
930            --  Ignore entities with no Scope, again not clear how this
931            --  can happen, to investigate, look at 4108-008 ???
932
933            elsif No (Scope (Ent)) then
934               return Skip;
935
936            --  Ignore the reference if not to a more global object
937
938            elsif Scope_Depth (Scope (Ent)) >= Scop then
939               return Skip;
940
941            --  References to types, exceptions and constants are always OK
942
943            elsif Is_Type (Ent)
944              or else Ekind (Ent) = E_Exception
945              or else Ekind (Ent) = E_Constant
946            then
947               return Skip;
948
949            --  If other than a non-volatile scalar variable, we have some
950            --  kind of global reference (e.g. to a function) that we cannot
951            --  deal with so we forget the attempt.
952
953            elsif Ekind (Ent) /= E_Variable
954              or else not Is_Scalar_Type (Etype (Ent))
955              or else Treat_As_Volatile (Ent)
956            then
957               return Abandon;
958
959            --  Otherwise we have a reference to a global scalar
960
961            else
962               --  Loop through global entities already detected
963
964               Elm := First_Elmt (Var_List);
965               loop
966                  --  If not detected before, record this new global reference
967
968                  if No (Elm) then
969                     Count_Vars := Count_Vars + 1;
970
971                     if Count_Vars <= Max_Vars then
972                        Append_Elmt (Entity (Nod), Var_List);
973                     else
974                        return Abandon;
975                     end if;
976
977                     exit;
978
979                  --  If recorded before, ignore
980
981                  elsif Node (Elm) = Entity (Nod) then
982                     return Skip;
983
984                  --  Otherwise keep looking
985
986                  else
987                     Next_Elmt (Elm);
988                  end if;
989               end loop;
990
991               return Skip;
992            end if;
993
994         --  For all other node kinds, recursively visit syntactic children
995
996         else
997            return OK;
998         end if;
999      end Process;
1000
1001      function Traverse_Body is new Traverse_Func (Process);
1002
1003   --  Start of processing for Detect_Infinite_Recursion
1004
1005   begin
1006      --  Do not attempt detection in No_Implicit_Conditional mode, since we
1007      --  won't be able to generate the code to handle the recursion in any
1008      --  case.
1009
1010      if Restriction_Active (No_Implicit_Conditionals) then
1011         return;
1012      end if;
1013
1014      --  Otherwise do traversal and quit if we get abandon signal
1015
1016      if Traverse_Body (N) = Abandon then
1017         return;
1018
1019      --  We must have a call, since Has_Recursive_Call was set. If not just
1020      --  ignore (this is only an error check, so if we have a funny situation,
1021      --  due to bugs or errors, we do not want to bomb).
1022
1023      elsif Is_Empty_Elmt_List (Call_List) then
1024         return;
1025      end if;
1026
1027      --  Here is the case where we detect recursion at compile time
1028
1029      --  Push our current scope for analyzing the declarations and code that
1030      --  we will insert for the checking.
1031
1032      Push_Scope (Spec);
1033
1034      --  This loop builds temporary variables for each of the referenced
1035      --  globals, so that at the end of the loop the list Shad_List contains
1036      --  these temporaries in one-to-one correspondence with the elements in
1037      --  Var_List.
1038
1039      Last := Empty;
1040      Elm := First_Elmt (Var_List);
1041      while Present (Elm) loop
1042         Var := Node (Elm);
1043         Ent := Make_Temporary (Loc, 'S');
1044         Append_Elmt (Ent, Shad_List);
1045
1046         --  Insert a declaration for this temporary at the start of the
1047         --  declarations for the procedure. The temporaries are declared as
1048         --  constant objects initialized to the current values of the
1049         --  corresponding temporaries.
1050
1051         Decl :=
1052           Make_Object_Declaration (Loc,
1053             Defining_Identifier => Ent,
1054             Object_Definition   => New_Occurrence_Of (Etype (Var), Loc),
1055             Constant_Present    => True,
1056             Expression          => New_Occurrence_Of (Var, Loc));
1057
1058         if No (Last) then
1059            Prepend (Decl, Declarations (N));
1060         else
1061            Insert_After (Last, Decl);
1062         end if;
1063
1064         Last := Decl;
1065         Analyze (Decl);
1066         Next_Elmt (Elm);
1067      end loop;
1068
1069      --  Loop through calls
1070
1071      Call := First_Elmt (Call_List);
1072      while Present (Call) loop
1073
1074         --  Build a predicate expression of the form
1075
1076         --    True
1077         --      and then global1 = temp1
1078         --      and then global2 = temp2
1079         --      ...
1080
1081         --  This predicate determines if any of the global values
1082         --  referenced by the procedure have changed since the
1083         --  current call, if not an infinite recursion is assured.
1084
1085         Test := New_Occurrence_Of (Standard_True, Loc);
1086
1087         Elm1 := First_Elmt (Var_List);
1088         Elm2 := First_Elmt (Shad_List);
1089         while Present (Elm1) loop
1090            Test :=
1091              Make_And_Then (Loc,
1092                Left_Opnd  => Test,
1093                Right_Opnd =>
1094                  Make_Op_Eq (Loc,
1095                    Left_Opnd  => New_Occurrence_Of (Node (Elm1), Loc),
1096                    Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1097
1098            Next_Elmt (Elm1);
1099            Next_Elmt (Elm2);
1100         end loop;
1101
1102         --  Now we replace the call with the sequence
1103
1104         --    if no-changes (see above) then
1105         --       raise Storage_Error;
1106         --    else
1107         --       original-call
1108         --    end if;
1109
1110         Rewrite (Node (Call),
1111           Make_If_Statement (Loc,
1112             Condition       => Test,
1113             Then_Statements => New_List (
1114               Make_Raise_Storage_Error (Loc,
1115                 Reason => SE_Infinite_Recursion)),
1116
1117             Else_Statements => New_List (
1118               Relocate_Node (Node (Call)))));
1119
1120         Analyze (Node (Call));
1121
1122         Next_Elmt (Call);
1123      end loop;
1124
1125      --  Remove temporary scope stack entry used for analysis
1126
1127      Pop_Scope;
1128   end Detect_Infinite_Recursion;
1129
1130   --------------------
1131   -- Expand_Actuals --
1132   --------------------
1133
1134   procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id) is
1135      Loc       : constant Source_Ptr := Sloc (N);
1136      Actual    : Node_Id;
1137      Formal    : Entity_Id;
1138      N_Node    : Node_Id;
1139      Post_Call : List_Id;
1140      E_Actual  : Entity_Id;
1141      E_Formal  : Entity_Id;
1142
1143      procedure Add_Call_By_Copy_Code;
1144      --  For cases where the parameter must be passed by copy, this routine
1145      --  generates a temporary variable into which the actual is copied and
1146      --  then passes this as the parameter. For an OUT or IN OUT parameter,
1147      --  an assignment is also generated to copy the result back. The call
1148      --  also takes care of any constraint checks required for the type
1149      --  conversion case (on both the way in and the way out).
1150
1151      procedure Add_Simple_Call_By_Copy_Code;
1152      --  This is similar to the above, but is used in cases where we know
1153      --  that all that is needed is to simply create a temporary and copy
1154      --  the value in and out of the temporary.
1155
1156      procedure Check_Fortran_Logical;
1157      --  A value of type Logical that is passed through a formal parameter
1158      --  must be normalized because .TRUE. usually does not have the same
1159      --  representation as True. We assume that .FALSE. = False = 0.
1160      --  What about functions that return a logical type ???
1161
1162      function Is_Legal_Copy return Boolean;
1163      --  Check that an actual can be copied before generating the temporary
1164      --  to be used in the call. If the actual is of a by_reference type then
1165      --  the program is illegal (this can only happen in the presence of
1166      --  rep. clauses that force an incorrect alignment). If the formal is
1167      --  a by_reference parameter imposed by a DEC pragma, emit a warning to
1168      --  the effect that this might lead to unaligned arguments.
1169
1170      function Make_Var (Actual : Node_Id) return Entity_Id;
1171      --  Returns an entity that refers to the given actual parameter, Actual
1172      --  (not including any type conversion). If Actual is an entity name,
1173      --  then this entity is returned unchanged, otherwise a renaming is
1174      --  created to provide an entity for the actual.
1175
1176      procedure Reset_Packed_Prefix;
1177      --  The expansion of a packed array component reference is delayed in
1178      --  the context of a call. Now we need to complete the expansion, so we
1179      --  unmark the analyzed bits in all prefixes.
1180
1181      ---------------------------
1182      -- Add_Call_By_Copy_Code --
1183      ---------------------------
1184
1185      procedure Add_Call_By_Copy_Code is
1186         Expr  : Node_Id;
1187         Init  : Node_Id;
1188         Temp  : Entity_Id;
1189         Indic : Node_Id;
1190         Var   : Entity_Id;
1191         F_Typ : constant Entity_Id := Etype (Formal);
1192         V_Typ : Entity_Id;
1193         Crep  : Boolean;
1194
1195      begin
1196         if not Is_Legal_Copy then
1197            return;
1198         end if;
1199
1200         Temp := Make_Temporary (Loc, 'T', Actual);
1201
1202         --  Use formal type for temp, unless formal type is an unconstrained
1203         --  array, in which case we don't have to worry about bounds checks,
1204         --  and we use the actual type, since that has appropriate bounds.
1205
1206         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1207            Indic := New_Occurrence_Of (Etype (Actual), Loc);
1208         else
1209            Indic := New_Occurrence_Of (Etype (Formal), Loc);
1210         end if;
1211
1212         if Nkind (Actual) = N_Type_Conversion then
1213            V_Typ := Etype (Expression (Actual));
1214
1215            --  If the formal is an (in-)out parameter, capture the name
1216            --  of the variable in order to build the post-call assignment.
1217
1218            Var := Make_Var (Expression (Actual));
1219
1220            Crep := not Same_Representation
1221                          (F_Typ, Etype (Expression (Actual)));
1222
1223         else
1224            V_Typ := Etype (Actual);
1225            Var   := Make_Var (Actual);
1226            Crep  := False;
1227         end if;
1228
1229         --  Setup initialization for case of in out parameter, or an out
1230         --  parameter where the formal is an unconstrained array (in the
1231         --  latter case, we have to pass in an object with bounds).
1232
1233         --  If this is an out parameter, the initial copy is wasteful, so as
1234         --  an optimization for the one-dimensional case we extract the
1235         --  bounds of the actual and build an uninitialized temporary of the
1236         --  right size.
1237
1238         if Ekind (Formal) = E_In_Out_Parameter
1239           or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1240         then
1241            if Nkind (Actual) = N_Type_Conversion then
1242               if Conversion_OK (Actual) then
1243                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1244               else
1245                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1246               end if;
1247
1248            elsif Ekind (Formal) = E_Out_Parameter
1249              and then Is_Array_Type (F_Typ)
1250              and then Number_Dimensions (F_Typ) = 1
1251              and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1252            then
1253               --  Actual is a one-dimensional array or slice, and the type
1254               --  requires no initialization. Create a temporary of the
1255               --  right size, but do not copy actual into it (optimization).
1256
1257               Init := Empty;
1258               Indic :=
1259                 Make_Subtype_Indication (Loc,
1260                   Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1261                   Constraint   =>
1262                     Make_Index_Or_Discriminant_Constraint (Loc,
1263                       Constraints => New_List (
1264                         Make_Range (Loc,
1265                           Low_Bound  =>
1266                             Make_Attribute_Reference (Loc,
1267                               Prefix         => New_Occurrence_Of (Var, Loc),
1268                               Attribute_Name => Name_First),
1269                           High_Bound =>
1270                             Make_Attribute_Reference (Loc,
1271                               Prefix         => New_Occurrence_Of (Var, Loc),
1272                               Attribute_Name => Name_Last)))));
1273
1274            else
1275               Init := New_Occurrence_Of (Var, Loc);
1276            end if;
1277
1278         --  An initialization is created for packed conversions as
1279         --  actuals for out parameters to enable Make_Object_Declaration
1280         --  to determine the proper subtype for N_Node. Note that this
1281         --  is wasteful because the extra copying on the call side is
1282         --  not required for such out parameters. ???
1283
1284         elsif Ekind (Formal) = E_Out_Parameter
1285           and then Nkind (Actual) = N_Type_Conversion
1286           and then (Is_Bit_Packed_Array (F_Typ)
1287                       or else
1288                     Is_Bit_Packed_Array (Etype (Expression (Actual))))
1289         then
1290            if Conversion_OK (Actual) then
1291               Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1292            else
1293               Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1294            end if;
1295
1296         elsif Ekind (Formal) = E_In_Parameter then
1297
1298            --  Handle the case in which the actual is a type conversion
1299
1300            if Nkind (Actual) = N_Type_Conversion then
1301               if Conversion_OK (Actual) then
1302                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1303               else
1304                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1305               end if;
1306            else
1307               Init := New_Occurrence_Of (Var, Loc);
1308            end if;
1309
1310         else
1311            Init := Empty;
1312         end if;
1313
1314         N_Node :=
1315           Make_Object_Declaration (Loc,
1316             Defining_Identifier => Temp,
1317             Object_Definition   => Indic,
1318             Expression          => Init);
1319         Set_Assignment_OK (N_Node);
1320         Insert_Action (N, N_Node);
1321
1322         --  Now, normally the deal here is that we use the defining
1323         --  identifier created by that object declaration. There is
1324         --  one exception to this. In the change of representation case
1325         --  the above declaration will end up looking like:
1326
1327         --    temp : type := identifier;
1328
1329         --  And in this case we might as well use the identifier directly
1330         --  and eliminate the temporary. Note that the analysis of the
1331         --  declaration was not a waste of time in that case, since it is
1332         --  what generated the necessary change of representation code. If
1333         --  the change of representation introduced additional code, as in
1334         --  a fixed-integer conversion, the expression is not an identifier
1335         --  and must be kept.
1336
1337         if Crep
1338           and then Present (Expression (N_Node))
1339           and then Is_Entity_Name (Expression (N_Node))
1340         then
1341            Temp := Entity (Expression (N_Node));
1342            Rewrite (N_Node, Make_Null_Statement (Loc));
1343         end if;
1344
1345         --  For IN parameter, all we do is to replace the actual
1346
1347         if Ekind (Formal) = E_In_Parameter then
1348            Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1349            Analyze (Actual);
1350
1351         --  Processing for OUT or IN OUT parameter
1352
1353         else
1354            --  Kill current value indications for the temporary variable we
1355            --  created, since we just passed it as an OUT parameter.
1356
1357            Kill_Current_Values (Temp);
1358            Set_Is_Known_Valid (Temp, False);
1359
1360            --  If type conversion, use reverse conversion on exit
1361
1362            if Nkind (Actual) = N_Type_Conversion then
1363               if Conversion_OK (Actual) then
1364                  Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1365               else
1366                  Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1367               end if;
1368            else
1369               Expr := New_Occurrence_Of (Temp, Loc);
1370            end if;
1371
1372            Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1373            Analyze (Actual);
1374
1375            --  If the actual is a conversion of a packed reference, it may
1376            --  already have been expanded by Remove_Side_Effects, and the
1377            --  resulting variable is a temporary which does not designate
1378            --  the proper out-parameter, which may not be addressable. In
1379            --  that case, generate an assignment to the original expression
1380            --  (before expansion of the packed reference) so that the proper
1381            --  expansion of assignment to a packed component can take place.
1382
1383            declare
1384               Obj : Node_Id;
1385               Lhs : Node_Id;
1386
1387            begin
1388               if Is_Renaming_Of_Object (Var)
1389                 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1390                 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1391                   = N_Indexed_Component
1392                 and then
1393                   Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1394               then
1395                  Obj := Renamed_Object (Var);
1396                  Lhs :=
1397                    Make_Selected_Component (Loc,
1398                      Prefix        =>
1399                        New_Copy_Tree (Original_Node (Prefix (Obj))),
1400                      Selector_Name => New_Copy (Selector_Name (Obj)));
1401                  Reset_Analyzed_Flags (Lhs);
1402
1403               else
1404                  Lhs := New_Occurrence_Of (Var, Loc);
1405               end if;
1406
1407               Set_Assignment_OK (Lhs);
1408
1409               if Is_Access_Type (E_Formal)
1410                 and then Is_Entity_Name (Lhs)
1411                 and then
1412                   Present (Effective_Extra_Accessibility (Entity (Lhs)))
1413               then
1414                  --  Copyback target is an Ada 2012 stand-alone object of an
1415                  --  anonymous access type.
1416
1417                  pragma Assert (Ada_Version >= Ada_2012);
1418
1419                  if Type_Access_Level (E_Formal) >
1420                     Object_Access_Level (Lhs)
1421                  then
1422                     Append_To (Post_Call,
1423                       Make_Raise_Program_Error (Loc,
1424                         Reason => PE_Accessibility_Check_Failed));
1425                  end if;
1426
1427                  Append_To (Post_Call,
1428                    Make_Assignment_Statement (Loc,
1429                      Name       => Lhs,
1430                      Expression => Expr));
1431
1432                  --  We would like to somehow suppress generation of the
1433                  --  extra_accessibility assignment generated by the expansion
1434                  --  of the above assignment statement. It's not a correctness
1435                  --  issue because the following assignment renders it dead,
1436                  --  but generating back-to-back assignments to the same
1437                  --  target is undesirable. ???
1438
1439                  Append_To (Post_Call,
1440                    Make_Assignment_Statement (Loc,
1441                      Name       => New_Occurrence_Of (
1442                        Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1443                      Expression => Make_Integer_Literal (Loc,
1444                        Type_Access_Level (E_Formal))));
1445
1446               else
1447                  Append_To (Post_Call,
1448                    Make_Assignment_Statement (Loc,
1449                      Name       => Lhs,
1450                      Expression => Expr));
1451               end if;
1452            end;
1453         end if;
1454      end Add_Call_By_Copy_Code;
1455
1456      ----------------------------------
1457      -- Add_Simple_Call_By_Copy_Code --
1458      ----------------------------------
1459
1460      procedure Add_Simple_Call_By_Copy_Code is
1461         Temp   : Entity_Id;
1462         Decl   : Node_Id;
1463         Incod  : Node_Id;
1464         Outcod : Node_Id;
1465         Lhs    : Node_Id;
1466         Rhs    : Node_Id;
1467         Indic  : Node_Id;
1468         F_Typ  : constant Entity_Id := Etype (Formal);
1469
1470      begin
1471         if not Is_Legal_Copy then
1472            return;
1473         end if;
1474
1475         --  Use formal type for temp, unless formal type is an unconstrained
1476         --  array, in which case we don't have to worry about bounds checks,
1477         --  and we use the actual type, since that has appropriate bounds.
1478
1479         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1480            Indic := New_Occurrence_Of (Etype (Actual), Loc);
1481         else
1482            Indic := New_Occurrence_Of (Etype (Formal), Loc);
1483         end if;
1484
1485         --  Prepare to generate code
1486
1487         Reset_Packed_Prefix;
1488
1489         Temp := Make_Temporary (Loc, 'T', Actual);
1490         Incod  := Relocate_Node (Actual);
1491         Outcod := New_Copy_Tree (Incod);
1492
1493         --  Generate declaration of temporary variable, initializing it
1494         --  with the input parameter unless we have an OUT formal or
1495         --  this is an initialization call.
1496
1497         --  If the formal is an out parameter with discriminants, the
1498         --  discriminants must be captured even if the rest of the object
1499         --  is in principle uninitialized, because the discriminants may
1500         --  be read by the called subprogram.
1501
1502         if Ekind (Formal) = E_Out_Parameter then
1503            Incod := Empty;
1504
1505            if Has_Discriminants (Etype (Formal)) then
1506               Indic := New_Occurrence_Of (Etype (Actual), Loc);
1507            end if;
1508
1509         elsif Inside_Init_Proc then
1510
1511            --  Could use a comment here to match comment below ???
1512
1513            if Nkind (Actual) /= N_Selected_Component
1514              or else
1515                not Has_Discriminant_Dependent_Constraint
1516                  (Entity (Selector_Name (Actual)))
1517            then
1518               Incod := Empty;
1519
1520            --  Otherwise, keep the component in order to generate the proper
1521            --  actual subtype, that depends on enclosing discriminants.
1522
1523            else
1524               null;
1525            end if;
1526         end if;
1527
1528         Decl :=
1529           Make_Object_Declaration (Loc,
1530             Defining_Identifier => Temp,
1531             Object_Definition   => Indic,
1532             Expression          => Incod);
1533
1534         if Inside_Init_Proc
1535           and then No (Incod)
1536         then
1537            --  If the call is to initialize a component of a composite type,
1538            --  and the component does not depend on discriminants, use the
1539            --  actual type of the component. This is required in case the
1540            --  component is constrained, because in general the formal of the
1541            --  initialization procedure will be unconstrained. Note that if
1542            --  the component being initialized is constrained by an enclosing
1543            --  discriminant, the presence of the initialization in the
1544            --  declaration will generate an expression for the actual subtype.
1545
1546            Set_No_Initialization (Decl);
1547            Set_Object_Definition (Decl,
1548              New_Occurrence_Of (Etype (Actual), Loc));
1549         end if;
1550
1551         Insert_Action (N, Decl);
1552
1553         --  The actual is simply a reference to the temporary
1554
1555         Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1556
1557         --  Generate copy out if OUT or IN OUT parameter
1558
1559         if Ekind (Formal) /= E_In_Parameter then
1560            Lhs := Outcod;
1561            Rhs := New_Occurrence_Of (Temp, Loc);
1562
1563            --  Deal with conversion
1564
1565            if Nkind (Lhs) = N_Type_Conversion then
1566               Lhs := Expression (Lhs);
1567               Rhs := Convert_To (Etype (Actual), Rhs);
1568            end if;
1569
1570            Append_To (Post_Call,
1571              Make_Assignment_Statement (Loc,
1572                Name       => Lhs,
1573                Expression => Rhs));
1574            Set_Assignment_OK (Name (Last (Post_Call)));
1575         end if;
1576      end Add_Simple_Call_By_Copy_Code;
1577
1578      ---------------------------
1579      -- Check_Fortran_Logical --
1580      ---------------------------
1581
1582      procedure Check_Fortran_Logical is
1583         Logical : constant Entity_Id := Etype (Formal);
1584         Var     : Entity_Id;
1585
1586      --  Note: this is very incomplete, e.g. it does not handle arrays
1587      --  of logical values. This is really not the right approach at all???)
1588
1589      begin
1590         if Convention (Subp) = Convention_Fortran
1591           and then Root_Type (Etype (Formal)) = Standard_Boolean
1592           and then Ekind (Formal) /= E_In_Parameter
1593         then
1594            Var := Make_Var (Actual);
1595            Append_To (Post_Call,
1596              Make_Assignment_Statement (Loc,
1597                Name => New_Occurrence_Of (Var, Loc),
1598                Expression =>
1599                  Unchecked_Convert_To (
1600                    Logical,
1601                    Make_Op_Ne (Loc,
1602                      Left_Opnd  => New_Occurrence_Of (Var, Loc),
1603                      Right_Opnd =>
1604                        Unchecked_Convert_To (
1605                          Logical,
1606                          New_Occurrence_Of (Standard_False, Loc))))));
1607         end if;
1608      end Check_Fortran_Logical;
1609
1610      -------------------
1611      -- Is_Legal_Copy --
1612      -------------------
1613
1614      function Is_Legal_Copy return Boolean is
1615      begin
1616         --  An attempt to copy a value of such a type can only occur if
1617         --  representation clauses give the actual a misaligned address.
1618
1619         if Is_By_Reference_Type (Etype (Formal)) then
1620
1621            --  If the front-end does not perform full type layout, the actual
1622            --  may in fact be properly aligned but there is not enough front-
1623            --  end information to determine this. In that case gigi will emit
1624            --  an error if a copy is not legal, or generate the proper code.
1625            --  For other backends we report the error now.
1626
1627            --  Seems wrong to be issuing an error in the expander, since it
1628            --  will be missed in -gnatc mode ???
1629
1630            if Frontend_Layout_On_Target then
1631               Error_Msg_N
1632                 ("misaligned actual cannot be passed by reference", Actual);
1633            end if;
1634
1635            return False;
1636
1637         --  For users of Starlet, we assume that the specification of by-
1638         --  reference mechanism is mandatory. This may lead to unaligned
1639         --  objects but at least for DEC legacy code it is known to work.
1640         --  The warning will alert users of this code that a problem may
1641         --  be lurking.
1642
1643         elsif Mechanism (Formal) = By_Reference
1644           and then Is_Valued_Procedure (Scope (Formal))
1645         then
1646            Error_Msg_N
1647              ("by_reference actual may be misaligned??", Actual);
1648            return False;
1649
1650         else
1651            return True;
1652         end if;
1653      end Is_Legal_Copy;
1654
1655      --------------
1656      -- Make_Var --
1657      --------------
1658
1659      function Make_Var (Actual : Node_Id) return Entity_Id is
1660         Var : Entity_Id;
1661
1662      begin
1663         if Is_Entity_Name (Actual) then
1664            return Entity (Actual);
1665
1666         else
1667            Var := Make_Temporary (Loc, 'T', Actual);
1668
1669            N_Node :=
1670              Make_Object_Renaming_Declaration (Loc,
1671                Defining_Identifier => Var,
1672                Subtype_Mark        =>
1673                  New_Occurrence_Of (Etype (Actual), Loc),
1674                Name                => Relocate_Node (Actual));
1675
1676            Insert_Action (N, N_Node);
1677            return Var;
1678         end if;
1679      end Make_Var;
1680
1681      -------------------------
1682      -- Reset_Packed_Prefix --
1683      -------------------------
1684
1685      procedure Reset_Packed_Prefix is
1686         Pfx : Node_Id := Actual;
1687      begin
1688         loop
1689            Set_Analyzed (Pfx, False);
1690            exit when
1691              not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1692            Pfx := Prefix (Pfx);
1693         end loop;
1694      end Reset_Packed_Prefix;
1695
1696   --  Start of processing for Expand_Actuals
1697
1698   begin
1699      Post_Call := New_List;
1700
1701      Formal := First_Formal (Subp);
1702      Actual := First_Actual (N);
1703      while Present (Formal) loop
1704         E_Formal := Etype (Formal);
1705         E_Actual := Etype (Actual);
1706
1707         if Is_Scalar_Type (E_Formal)
1708           or else Nkind (Actual) = N_Slice
1709         then
1710            Check_Fortran_Logical;
1711
1712         --  RM 6.4.1 (11)
1713
1714         elsif Ekind (Formal) /= E_Out_Parameter then
1715
1716            --  The unusual case of the current instance of a protected type
1717            --  requires special handling. This can only occur in the context
1718            --  of a call within the body of a protected operation.
1719
1720            if Is_Entity_Name (Actual)
1721              and then Ekind (Entity (Actual)) = E_Protected_Type
1722              and then In_Open_Scopes (Entity (Actual))
1723            then
1724               if Scope (Subp) /= Entity (Actual) then
1725                  Error_Msg_N
1726                    ("operation outside protected type may not "
1727                     & "call back its protected operations??", Actual);
1728               end if;
1729
1730               Rewrite (Actual,
1731                 Expand_Protected_Object_Reference (N, Entity (Actual)));
1732            end if;
1733
1734            --  Ada 2005 (AI-318-02): If the actual parameter is a call to a
1735            --  build-in-place function, then a temporary return object needs
1736            --  to be created and access to it must be passed to the function.
1737            --  Currently we limit such functions to those with inherently
1738            --  limited result subtypes, but eventually we plan to expand the
1739            --  functions that are treated as build-in-place to include other
1740            --  composite result types.
1741
1742            if Is_Build_In_Place_Function_Call (Actual) then
1743               Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1744            end if;
1745
1746            Apply_Constraint_Check (Actual, E_Formal);
1747
1748         --  Out parameter case. No constraint checks on access type
1749         --  RM 6.4.1 (13)
1750
1751         elsif Is_Access_Type (E_Formal) then
1752            null;
1753
1754         --  RM 6.4.1 (14)
1755
1756         elsif Has_Discriminants (Base_Type (E_Formal))
1757           or else Has_Non_Null_Base_Init_Proc (E_Formal)
1758         then
1759            Apply_Constraint_Check (Actual, E_Formal);
1760
1761         --  RM 6.4.1 (15)
1762
1763         else
1764            Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1765         end if;
1766
1767         --  Processing for IN-OUT and OUT parameters
1768
1769         if Ekind (Formal) /= E_In_Parameter then
1770
1771            --  For type conversions of arrays, apply length/range checks
1772
1773            if Is_Array_Type (E_Formal)
1774              and then Nkind (Actual) = N_Type_Conversion
1775            then
1776               if Is_Constrained (E_Formal) then
1777                  Apply_Length_Check (Expression (Actual), E_Formal);
1778               else
1779                  Apply_Range_Check (Expression (Actual), E_Formal);
1780               end if;
1781            end if;
1782
1783            --  If argument is a type conversion for a type that is passed
1784            --  by copy, then we must pass the parameter by copy.
1785
1786            if Nkind (Actual) = N_Type_Conversion
1787              and then
1788                (Is_Numeric_Type (E_Formal)
1789                  or else Is_Access_Type (E_Formal)
1790                  or else Is_Enumeration_Type (E_Formal)
1791                  or else Is_Bit_Packed_Array (Etype (Formal))
1792                  or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1793
1794                  --  Also pass by copy if change of representation
1795
1796                  or else not Same_Representation
1797                                (Etype (Formal),
1798                                 Etype (Expression (Actual))))
1799            then
1800               Add_Call_By_Copy_Code;
1801
1802            --  References to components of bit packed arrays are expanded
1803            --  at this point, rather than at the point of analysis of the
1804            --  actuals, to handle the expansion of the assignment to
1805            --  [in] out parameters.
1806
1807            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1808               Add_Simple_Call_By_Copy_Code;
1809
1810            --  If a non-scalar actual is possibly bit-aligned, we need a copy
1811            --  because the back-end cannot cope with such objects. In other
1812            --  cases where alignment forces a copy, the back-end generates
1813            --  it properly. It should not be generated unconditionally in the
1814            --  front-end because it does not know precisely the alignment
1815            --  requirements of the target, and makes too conservative an
1816            --  estimate, leading to superfluous copies or spurious errors
1817            --  on by-reference parameters.
1818
1819            elsif Nkind (Actual) = N_Selected_Component
1820              and then
1821                Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
1822              and then not Represented_As_Scalar (Etype (Formal))
1823            then
1824               Add_Simple_Call_By_Copy_Code;
1825
1826            --  References to slices of bit packed arrays are expanded
1827
1828            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1829               Add_Call_By_Copy_Code;
1830
1831            --  References to possibly unaligned slices of arrays are expanded
1832
1833            elsif Is_Possibly_Unaligned_Slice (Actual) then
1834               Add_Call_By_Copy_Code;
1835
1836            --  Deal with access types where the actual subtype and the
1837            --  formal subtype are not the same, requiring a check.
1838
1839            --  It is necessary to exclude tagged types because of "downward
1840            --  conversion" errors.
1841
1842            elsif Is_Access_Type (E_Formal)
1843              and then not Same_Type (E_Formal, E_Actual)
1844              and then not Is_Tagged_Type (Designated_Type (E_Formal))
1845            then
1846               Add_Call_By_Copy_Code;
1847
1848            --  If the actual is not a scalar and is marked for volatile
1849            --  treatment, whereas the formal is not volatile, then pass
1850            --  by copy unless it is a by-reference type.
1851
1852            --  Note: we use Is_Volatile here rather than Treat_As_Volatile,
1853            --  because this is the enforcement of a language rule that applies
1854            --  only to "real" volatile variables, not e.g. to the address
1855            --  clause overlay case.
1856
1857            elsif Is_Entity_Name (Actual)
1858              and then Is_Volatile (Entity (Actual))
1859              and then not Is_By_Reference_Type (E_Actual)
1860              and then not Is_Scalar_Type (Etype (Entity (Actual)))
1861              and then not Is_Volatile (E_Formal)
1862            then
1863               Add_Call_By_Copy_Code;
1864
1865            elsif Nkind (Actual) = N_Indexed_Component
1866              and then Is_Entity_Name (Prefix (Actual))
1867              and then Has_Volatile_Components (Entity (Prefix (Actual)))
1868            then
1869               Add_Call_By_Copy_Code;
1870
1871            --  Add call-by-copy code for the case of scalar out parameters
1872            --  when it is not known at compile time that the subtype of the
1873            --  formal is a subrange of the subtype of the actual (or vice
1874            --  versa for in out parameters), in order to get range checks
1875            --  on such actuals. (Maybe this case should be handled earlier
1876            --  in the if statement???)
1877
1878            elsif Is_Scalar_Type (E_Formal)
1879              and then
1880                (not In_Subrange_Of (E_Formal, E_Actual)
1881                  or else
1882                    (Ekind (Formal) = E_In_Out_Parameter
1883                      and then not In_Subrange_Of (E_Actual, E_Formal)))
1884            then
1885               --  Perhaps the setting back to False should be done within
1886               --  Add_Call_By_Copy_Code, since it could get set on other
1887               --  cases occurring above???
1888
1889               if Do_Range_Check (Actual) then
1890                  Set_Do_Range_Check (Actual, False);
1891               end if;
1892
1893               Add_Call_By_Copy_Code;
1894            end if;
1895
1896            --  RM 3.2.4 (23/3): A predicate is checked on in-out and out
1897            --  by-reference parameters on exit from the call. If the actual
1898            --  is a derived type and the operation is inherited, the body
1899            --  of the operation will not contain a call to the predicate
1900            --  function, so it must be done explicitly after the call. Ditto
1901            --  if the actual is an entity of a predicated subtype.
1902
1903            --  The rule refers to by-reference types, but a check is needed
1904            --  for by-copy types as well. That check is subsumed by the rule
1905            --  for subtype conversion on assignment, but we can generate the
1906            --  required check now.
1907
1908            --  Note also that Subp may be either a subprogram entity for
1909            --  direct calls, or a type entity for indirect calls, which must
1910            --  be handled separately because the name does not denote an
1911            --  overloadable entity.
1912
1913            By_Ref_Predicate_Check : declare
1914               Aund : constant Entity_Id := Underlying_Type (E_Actual);
1915               Atyp : Entity_Id;
1916
1917               function Is_Public_Subp return Boolean;
1918               --  Check whether the subprogram being called is a visible
1919               --  operation of the type of the actual. Used to determine
1920               --  whether an invariant check must be generated on the
1921               --  caller side.
1922
1923               ---------------------
1924               --  Is_Public_Subp --
1925               ---------------------
1926
1927               function Is_Public_Subp return Boolean is
1928                  Pack      : constant Entity_Id := Scope (Subp);
1929                  Subp_Decl : Node_Id;
1930
1931               begin
1932                  if not Is_Subprogram (Subp) then
1933                     return False;
1934
1935                  --  The operation may be inherited, or a primitive of the
1936                  --  root type.
1937
1938                  elsif
1939                    Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
1940                                             N_Full_Type_Declaration)
1941                  then
1942                     Subp_Decl := Parent (Subp);
1943
1944                  else
1945                     Subp_Decl := Unit_Declaration_Node (Subp);
1946                  end if;
1947
1948                  return Ekind (Pack) = E_Package
1949                    and then
1950                      List_Containing (Subp_Decl) =
1951                        Visible_Declarations
1952                          (Specification (Unit_Declaration_Node (Pack)));
1953               end Is_Public_Subp;
1954
1955            --  Start of processing for By_Ref_Predicate_Check
1956
1957            begin
1958               if No (Aund) then
1959                  Atyp := E_Actual;
1960               else
1961                  Atyp := Aund;
1962               end if;
1963
1964               if Has_Predicates (Atyp)
1965                 and then Present (Predicate_Function (Atyp))
1966
1967                 --  Skip predicate checks for special cases
1968
1969                 and then Predicate_Tests_On_Arguments (Subp)
1970               then
1971                  Append_To (Post_Call,
1972                    Make_Predicate_Check (Atyp, Actual));
1973               end if;
1974
1975               --  We generated caller-side invariant checks in two cases:
1976
1977               --  a) when calling an inherited operation, where there is an
1978               --  implicit view conversion of the actual to the parent type.
1979
1980               --  b) When the conversion is explicit
1981
1982               --  We treat these cases separately because the required
1983               --  conversion for a) is added later when expanding the call.
1984
1985               if Has_Invariants (Etype (Actual))
1986                  and then
1987                    Nkind (Parent (Subp)) = N_Private_Extension_Declaration
1988               then
1989                  if Comes_From_Source (N) and then Is_Public_Subp then
1990                     Append_To (Post_Call, Make_Invariant_Call (Actual));
1991                  end if;
1992
1993               elsif Nkind (Actual) = N_Type_Conversion
1994                 and then Has_Invariants (Etype (Expression (Actual)))
1995               then
1996                  if Comes_From_Source (N) and then Is_Public_Subp then
1997                     Append_To (Post_Call,
1998                       Make_Invariant_Call (Expression (Actual)));
1999                  end if;
2000               end if;
2001            end By_Ref_Predicate_Check;
2002
2003         --  Processing for IN parameters
2004
2005         else
2006            --  For IN parameters is in the packed array case, we expand an
2007            --  indexed component (the circuit in Exp_Ch4 deliberately left
2008            --  indexed components appearing as actuals untouched, so that
2009            --  the special processing above for the OUT and IN OUT cases
2010            --  could be performed. We could make the test in Exp_Ch4 more
2011            --  complex and have it detect the parameter mode, but it is
2012            --  easier simply to handle all cases here.)
2013
2014            if Nkind (Actual) = N_Indexed_Component
2015              and then Is_Packed (Etype (Prefix (Actual)))
2016            then
2017               Reset_Packed_Prefix;
2018               Expand_Packed_Element_Reference (Actual);
2019
2020            --  If we have a reference to a bit packed array, we copy it, since
2021            --  the actual must be byte aligned.
2022
2023            --  Is this really necessary in all cases???
2024
2025            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2026               Add_Simple_Call_By_Copy_Code;
2027
2028            --  If a non-scalar actual is possibly unaligned, we need a copy
2029
2030            elsif Is_Possibly_Unaligned_Object (Actual)
2031              and then not Represented_As_Scalar (Etype (Formal))
2032            then
2033               Add_Simple_Call_By_Copy_Code;
2034
2035            --  Similarly, we have to expand slices of packed arrays here
2036            --  because the result must be byte aligned.
2037
2038            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2039               Add_Call_By_Copy_Code;
2040
2041            --  Only processing remaining is to pass by copy if this is a
2042            --  reference to a possibly unaligned slice, since the caller
2043            --  expects an appropriately aligned argument.
2044
2045            elsif Is_Possibly_Unaligned_Slice (Actual) then
2046               Add_Call_By_Copy_Code;
2047
2048            --  An unusual case: a current instance of an enclosing task can be
2049            --  an actual, and must be replaced by a reference to self.
2050
2051            elsif Is_Entity_Name (Actual)
2052              and then Is_Task_Type (Entity (Actual))
2053            then
2054               if In_Open_Scopes (Entity (Actual)) then
2055                  Rewrite (Actual,
2056                    (Make_Function_Call (Loc,
2057                       Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
2058                  Analyze (Actual);
2059
2060               --  A task type cannot otherwise appear as an actual
2061
2062               else
2063                  raise Program_Error;
2064               end if;
2065            end if;
2066         end if;
2067
2068         Next_Formal (Formal);
2069         Next_Actual (Actual);
2070      end loop;
2071
2072      --  Find right place to put post call stuff if it is present
2073
2074      if not Is_Empty_List (Post_Call) then
2075
2076         --  Cases where the call is not a member of a statement list
2077
2078         if not Is_List_Member (N) then
2079
2080            --  In Ada 2012 the call may be a function call in an expression
2081            --  (since OUT and IN OUT parameters are now allowed for such
2082            --  calls). The write-back of (in)-out parameters is handled
2083            --  by the back-end, but the constraint checks generated when
2084            --  subtypes of formal and actual don't match must be inserted
2085            --  in the form of assignments.
2086
2087            if Ada_Version >= Ada_2012
2088              and then Nkind (N) = N_Function_Call
2089            then
2090               --  We used to just do handle this by climbing up parents to
2091               --  a non-statement/declaration and then simply making a call
2092               --  to Insert_Actions_After (P, Post_Call), but that doesn't
2093               --  work. If we are in the middle of an expression, e.g. the
2094               --  condition of an IF, this call would insert after the IF
2095               --  statement, which is much too late to be doing the write
2096               --  back. For example:
2097
2098               --     if Clobber (X) then
2099               --        Put_Line (X'Img);
2100               --     else
2101               --        goto Junk
2102               --     end if;
2103
2104               --  Now assume Clobber changes X, if we put the write back
2105               --  after the IF, the Put_Line gets the wrong value and the
2106               --  goto causes the write back to be skipped completely.
2107
2108               --  To deal with this, we replace the call by
2109
2110               --    do
2111               --       Tnnn : constant function-result-type := function-call;
2112               --       Post_Call actions
2113               --    in
2114               --       Tnnn;
2115               --    end;
2116
2117               declare
2118                  Tnnn  : constant Entity_Id := Make_Temporary (Loc, 'T');
2119                  FRTyp : constant Entity_Id := Etype (N);
2120                  Name  : constant Node_Id   := Relocate_Node (N);
2121
2122               begin
2123                  Prepend_To (Post_Call,
2124                    Make_Object_Declaration (Loc,
2125                      Defining_Identifier => Tnnn,
2126                      Object_Definition   => New_Occurrence_Of (FRTyp, Loc),
2127                      Constant_Present    => True,
2128                      Expression          => Name));
2129
2130                  Rewrite (N,
2131                    Make_Expression_With_Actions (Loc,
2132                      Actions    => Post_Call,
2133                      Expression => New_Occurrence_Of (Tnnn, Loc)));
2134
2135                  --  We don't want to just blindly call Analyze_And_Resolve
2136                  --  because that would cause unwanted recursion on the call.
2137                  --  So for a moment set the call as analyzed to prevent that
2138                  --  recursion, and get the rest analyzed properly, then reset
2139                  --  the analyzed flag, so our caller can continue.
2140
2141                  Set_Analyzed (Name, True);
2142                  Analyze_And_Resolve (N, FRTyp);
2143                  Set_Analyzed (Name, False);
2144
2145                  --  Reset calling argument to point to function call inside
2146                  --  the expression with actions so the caller can continue
2147                  --  to process the call. In spite of the fact that it is
2148                  --  marked Analyzed above, it may be rewritten by Remove_
2149                  --  Side_Effects if validity checks are present, so go back
2150                  --  to original call.
2151
2152                  N := Original_Node (Name);
2153               end;
2154
2155            --  If not the special Ada 2012 case of a function call, then
2156            --  we must have the triggering statement of a triggering
2157            --  alternative or an entry call alternative, and we can add
2158            --  the post call stuff to the corresponding statement list.
2159
2160            else
2161               declare
2162                  P : Node_Id;
2163
2164               begin
2165                  P := Parent (N);
2166                  pragma Assert (Nkind_In (P, N_Triggering_Alternative,
2167                                              N_Entry_Call_Alternative));
2168
2169                  if Is_Non_Empty_List (Statements (P)) then
2170                     Insert_List_Before_And_Analyze
2171                       (First (Statements (P)), Post_Call);
2172                  else
2173                     Set_Statements (P, Post_Call);
2174                  end if;
2175
2176                  return;
2177               end;
2178            end if;
2179
2180         --  Otherwise, normal case where N is in a statement sequence,
2181         --  just put the post-call stuff after the call statement.
2182
2183         else
2184            Insert_Actions_After (N, Post_Call);
2185            return;
2186         end if;
2187      end if;
2188
2189      --  The call node itself is re-analyzed in Expand_Call
2190
2191   end Expand_Actuals;
2192
2193   -----------------
2194   -- Expand_Call --
2195   -----------------
2196
2197   --  This procedure handles expansion of function calls and procedure call
2198   --  statements (i.e. it serves as the body for Expand_N_Function_Call and
2199   --  Expand_N_Procedure_Call_Statement). Processing for calls includes:
2200
2201   --    Replace call to Raise_Exception by Raise_Exception_Always if possible
2202   --    Provide values of actuals for all formals in Extra_Formals list
2203   --    Replace "call" to enumeration literal function by literal itself
2204   --    Rewrite call to predefined operator as operator
2205   --    Replace actuals to in-out parameters that are numeric conversions,
2206   --     with explicit assignment to temporaries before and after the call.
2207
2208   --   Note that the list of actuals has been filled with default expressions
2209   --   during semantic analysis of the call. Only the extra actuals required
2210   --   for the 'Constrained attribute and for accessibility checks are added
2211   --   at this point.
2212
2213   procedure Expand_Call (N : Node_Id) is
2214      Loc           : constant Source_Ptr := Sloc (N);
2215      Call_Node     : Node_Id := N;
2216      Extra_Actuals : List_Id := No_List;
2217      Prev          : Node_Id := Empty;
2218
2219      procedure Add_Actual_Parameter (Insert_Param : Node_Id);
2220      --  Adds one entry to the end of the actual parameter list. Used for
2221      --  default parameters and for extra actuals (for Extra_Formals). The
2222      --  argument is an N_Parameter_Association node.
2223
2224      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2225      --  Adds an extra actual to the list of extra actuals. Expr is the
2226      --  expression for the value of the actual, EF is the entity for the
2227      --  extra formal.
2228
2229      function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2230      --  Within an instance, a type derived from an untagged formal derived
2231      --  type inherits from the original parent, not from the actual. The
2232      --  current derivation mechanism has the derived type inherit from the
2233      --  actual, which is only correct outside of the instance. If the
2234      --  subprogram is inherited, we test for this particular case through a
2235      --  convoluted tree traversal before setting the proper subprogram to be
2236      --  called.
2237
2238      function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2239      --  Return true if E comes from an instance that is not yet frozen
2240
2241      function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2242      --  Determine if Subp denotes a non-dispatching call to a Deep routine
2243
2244      function New_Value (From : Node_Id) return Node_Id;
2245      --  From is the original Expression. New_Value is equivalent to a call
2246      --  to Duplicate_Subexpr with an explicit dereference when From is an
2247      --  access parameter.
2248
2249      --------------------------
2250      -- Add_Actual_Parameter --
2251      --------------------------
2252
2253      procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2254         Actual_Expr : constant Node_Id :=
2255                         Explicit_Actual_Parameter (Insert_Param);
2256
2257      begin
2258         --  Case of insertion is first named actual
2259
2260         if No (Prev) or else
2261            Nkind (Parent (Prev)) /= N_Parameter_Association
2262         then
2263            Set_Next_Named_Actual
2264              (Insert_Param, First_Named_Actual (Call_Node));
2265            Set_First_Named_Actual (Call_Node, Actual_Expr);
2266
2267            if No (Prev) then
2268               if No (Parameter_Associations (Call_Node)) then
2269                  Set_Parameter_Associations (Call_Node, New_List);
2270               end if;
2271
2272               Append (Insert_Param, Parameter_Associations (Call_Node));
2273
2274            else
2275               Insert_After (Prev, Insert_Param);
2276            end if;
2277
2278         --  Case of insertion is not first named actual
2279
2280         else
2281            Set_Next_Named_Actual
2282              (Insert_Param, Next_Named_Actual (Parent (Prev)));
2283            Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2284            Append (Insert_Param, Parameter_Associations (Call_Node));
2285         end if;
2286
2287         Prev := Actual_Expr;
2288      end Add_Actual_Parameter;
2289
2290      ----------------------
2291      -- Add_Extra_Actual --
2292      ----------------------
2293
2294      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2295         Loc : constant Source_Ptr := Sloc (Expr);
2296
2297      begin
2298         if Extra_Actuals = No_List then
2299            Extra_Actuals := New_List;
2300            Set_Parent (Extra_Actuals, Call_Node);
2301         end if;
2302
2303         Append_To (Extra_Actuals,
2304           Make_Parameter_Association (Loc,
2305             Selector_Name             => New_Occurrence_Of (EF, Loc),
2306             Explicit_Actual_Parameter => Expr));
2307
2308         Analyze_And_Resolve (Expr, Etype (EF));
2309
2310         if Nkind (Call_Node) = N_Function_Call then
2311            Set_Is_Accessibility_Actual (Parent (Expr));
2312         end if;
2313      end Add_Extra_Actual;
2314
2315      ---------------------------
2316      -- Inherited_From_Formal --
2317      ---------------------------
2318
2319      function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2320         Par      : Entity_Id;
2321         Gen_Par  : Entity_Id;
2322         Gen_Prim : Elist_Id;
2323         Elmt     : Elmt_Id;
2324         Indic    : Node_Id;
2325
2326      begin
2327         --  If the operation is inherited, it is attached to the corresponding
2328         --  type derivation. If the parent in the derivation is a generic
2329         --  actual, it is a subtype of the actual, and we have to recover the
2330         --  original derived type declaration to find the proper parent.
2331
2332         if Nkind (Parent (S)) /= N_Full_Type_Declaration
2333           or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2334           or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2335                                                   N_Derived_Type_Definition
2336           or else not In_Instance
2337         then
2338            return Empty;
2339
2340         else
2341            Indic :=
2342              Subtype_Indication
2343                (Type_Definition (Original_Node (Parent (S))));
2344
2345            if Nkind (Indic) = N_Subtype_Indication then
2346               Par := Entity (Subtype_Mark (Indic));
2347            else
2348               Par := Entity (Indic);
2349            end if;
2350         end if;
2351
2352         if not Is_Generic_Actual_Type (Par)
2353           or else Is_Tagged_Type (Par)
2354           or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2355           or else not In_Open_Scopes (Scope (Par))
2356         then
2357            return Empty;
2358         else
2359            Gen_Par := Generic_Parent_Type (Parent (Par));
2360         end if;
2361
2362         --  If the actual has no generic parent type, the formal is not
2363         --  a formal derived type, so nothing to inherit.
2364
2365         if No (Gen_Par) then
2366            return Empty;
2367         end if;
2368
2369         --  If the generic parent type is still the generic type, this is a
2370         --  private formal, not a derived formal, and there are no operations
2371         --  inherited from the formal.
2372
2373         if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2374            return Empty;
2375         end if;
2376
2377         Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2378
2379         Elmt := First_Elmt (Gen_Prim);
2380         while Present (Elmt) loop
2381            if Chars (Node (Elmt)) = Chars (S) then
2382               declare
2383                  F1 : Entity_Id;
2384                  F2 : Entity_Id;
2385
2386               begin
2387                  F1 := First_Formal (S);
2388                  F2 := First_Formal (Node (Elmt));
2389                  while Present (F1)
2390                    and then Present (F2)
2391                  loop
2392                     if Etype (F1) = Etype (F2)
2393                       or else Etype (F2) = Gen_Par
2394                     then
2395                        Next_Formal (F1);
2396                        Next_Formal (F2);
2397                     else
2398                        Next_Elmt (Elmt);
2399                        exit;   --  not the right subprogram
2400                     end if;
2401
2402                     return Node (Elmt);
2403                  end loop;
2404               end;
2405
2406            else
2407               Next_Elmt (Elmt);
2408            end if;
2409         end loop;
2410
2411         raise Program_Error;
2412      end Inherited_From_Formal;
2413
2414      --------------------------
2415      -- In_Unfrozen_Instance --
2416      --------------------------
2417
2418      function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2419         S : Entity_Id;
2420
2421      begin
2422         S := E;
2423         while Present (S) and then S /= Standard_Standard loop
2424            if Is_Generic_Instance (S)
2425              and then Present (Freeze_Node (S))
2426              and then not Analyzed (Freeze_Node (S))
2427            then
2428               return True;
2429            end if;
2430
2431            S := Scope (S);
2432         end loop;
2433
2434         return False;
2435      end In_Unfrozen_Instance;
2436
2437      -------------------------
2438      -- Is_Direct_Deep_Call --
2439      -------------------------
2440
2441      function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2442      begin
2443         if Is_TSS (Subp, TSS_Deep_Adjust)
2444           or else Is_TSS (Subp, TSS_Deep_Finalize)
2445           or else Is_TSS (Subp, TSS_Deep_Initialize)
2446         then
2447            declare
2448               Actual : Node_Id;
2449               Formal : Node_Id;
2450
2451            begin
2452               Actual := First (Parameter_Associations (N));
2453               Formal := First_Formal (Subp);
2454               while Present (Actual)
2455                 and then Present (Formal)
2456               loop
2457                  if Nkind (Actual) = N_Identifier
2458                    and then Is_Controlling_Actual (Actual)
2459                    and then Etype (Actual) = Etype (Formal)
2460                  then
2461                     return True;
2462                  end if;
2463
2464                  Next (Actual);
2465                  Next_Formal (Formal);
2466               end loop;
2467            end;
2468         end if;
2469
2470         return False;
2471      end Is_Direct_Deep_Call;
2472
2473      ---------------
2474      -- New_Value --
2475      ---------------
2476
2477      function New_Value (From : Node_Id) return Node_Id is
2478         Res : constant Node_Id := Duplicate_Subexpr (From);
2479      begin
2480         if Is_Access_Type (Etype (From)) then
2481            return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2482         else
2483            return Res;
2484         end if;
2485      end New_Value;
2486
2487      --  Local variables
2488
2489      Remote        : constant Boolean   := Is_Remote_Call (Call_Node);
2490      Actual        : Node_Id;
2491      Formal        : Entity_Id;
2492      Orig_Subp     : Entity_Id := Empty;
2493      Param_Count   : Natural := 0;
2494      Parent_Formal : Entity_Id;
2495      Parent_Subp   : Entity_Id;
2496      Scop          : Entity_Id;
2497      Subp          : Entity_Id;
2498
2499      Prev_Orig : Node_Id;
2500      --  Original node for an actual, which may have been rewritten. If the
2501      --  actual is a function call that has been transformed from a selected
2502      --  component, the original node is unanalyzed. Otherwise, it carries
2503      --  semantic information used to generate additional actuals.
2504
2505      CW_Interface_Formals_Present : Boolean := False;
2506
2507   --  Start of processing for Expand_Call
2508
2509   begin
2510      --  Expand the function or procedure call if the first actual has a
2511      --  declared dimension aspect, and the subprogram is declared in one
2512      --  of the dimension I/O packages.
2513
2514      if Ada_Version >= Ada_2012
2515        and then
2516           Nkind_In (Call_Node, N_Procedure_Call_Statement, N_Function_Call)
2517        and then Present (Parameter_Associations (Call_Node))
2518      then
2519         Expand_Put_Call_With_Symbol (Call_Node);
2520      end if;
2521
2522      --  Ignore if previous error
2523
2524      if Nkind (Call_Node) in N_Has_Etype
2525        and then Etype (Call_Node) = Any_Type
2526      then
2527         return;
2528      end if;
2529
2530      --  Call using access to subprogram with explicit dereference
2531
2532      if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2533         Subp        := Etype (Name (Call_Node));
2534         Parent_Subp := Empty;
2535
2536      --  Case of call to simple entry, where the Name is a selected component
2537      --  whose prefix is the task, and whose selector name is the entry name
2538
2539      elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2540         Subp        := Entity (Selector_Name (Name (Call_Node)));
2541         Parent_Subp := Empty;
2542
2543      --  Case of call to member of entry family, where Name is an indexed
2544      --  component, with the prefix being a selected component giving the
2545      --  task and entry family name, and the index being the entry index.
2546
2547      elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2548         Subp        := Entity (Selector_Name (Prefix (Name (Call_Node))));
2549         Parent_Subp := Empty;
2550
2551      --  Normal case
2552
2553      else
2554         Subp        := Entity (Name (Call_Node));
2555         Parent_Subp := Alias (Subp);
2556
2557         --  Replace call to Raise_Exception by call to Raise_Exception_Always
2558         --  if we can tell that the first parameter cannot possibly be null.
2559         --  This improves efficiency by avoiding a run-time test.
2560
2561         --  We do not do this if Raise_Exception_Always does not exist, which
2562         --  can happen in configurable run time profiles which provide only a
2563         --  Raise_Exception.
2564
2565         if Is_RTE (Subp, RE_Raise_Exception)
2566           and then RTE_Available (RE_Raise_Exception_Always)
2567         then
2568            declare
2569               FA : constant Node_Id :=
2570                      Original_Node (First_Actual (Call_Node));
2571
2572            begin
2573               --  The case we catch is where the first argument is obtained
2574               --  using the Identity attribute (which must always be
2575               --  non-null).
2576
2577               if Nkind (FA) = N_Attribute_Reference
2578                 and then Attribute_Name (FA) = Name_Identity
2579               then
2580                  Subp := RTE (RE_Raise_Exception_Always);
2581                  Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2582               end if;
2583            end;
2584         end if;
2585
2586         if Ekind (Subp) = E_Entry then
2587            Parent_Subp := Empty;
2588         end if;
2589      end if;
2590
2591      --  Ada 2005 (AI-345): We have a procedure call as a triggering
2592      --  alternative in an asynchronous select or as an entry call in
2593      --  a conditional or timed select. Check whether the procedure call
2594      --  is a renaming of an entry and rewrite it as an entry call.
2595
2596      if Ada_Version >= Ada_2005
2597        and then Nkind (Call_Node) = N_Procedure_Call_Statement
2598        and then
2599           ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
2600              and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
2601          or else
2602            (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
2603              and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
2604      then
2605         declare
2606            Ren_Decl : Node_Id;
2607            Ren_Root : Entity_Id := Subp;
2608
2609         begin
2610            --  This may be a chain of renamings, find the root
2611
2612            if Present (Alias (Ren_Root)) then
2613               Ren_Root := Alias (Ren_Root);
2614            end if;
2615
2616            if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2617               Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2618
2619               if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2620                  Rewrite (Call_Node,
2621                    Make_Entry_Call_Statement (Loc,
2622                      Name =>
2623                        New_Copy_Tree (Name (Ren_Decl)),
2624                      Parameter_Associations =>
2625                        New_Copy_List_Tree
2626                          (Parameter_Associations (Call_Node))));
2627
2628                  return;
2629               end if;
2630            end if;
2631         end;
2632      end if;
2633
2634      --  When generating C code, transform a function call that returns a
2635      --  constrained array type into procedure form.
2636
2637      if Modify_Tree_For_C
2638        and then Nkind (Call_Node) = N_Function_Call
2639        and then Is_Entity_Name (Name (Call_Node))
2640        and then Rewritten_For_C (Entity (Name (Call_Node)))
2641      then
2642         Rewrite_Function_Call_For_C (Call_Node);
2643         return;
2644      end if;
2645
2646      --  First step, compute extra actuals, corresponding to any Extra_Formals
2647      --  present. Note that we do not access Extra_Formals directly, instead
2648      --  we simply note the presence of the extra formals as we process the
2649      --  regular formals collecting corresponding actuals in Extra_Actuals.
2650
2651      --  We also generate any required range checks for actuals for in formals
2652      --  as we go through the loop, since this is a convenient place to do it.
2653      --  (Though it seems that this would be better done in Expand_Actuals???)
2654
2655      --  Special case: Thunks must not compute the extra actuals; they must
2656      --  just propagate to the target primitive their extra actuals.
2657
2658      if Is_Thunk (Current_Scope)
2659        and then Thunk_Entity (Current_Scope) = Subp
2660        and then Present (Extra_Formals (Subp))
2661      then
2662         pragma Assert (Present (Extra_Formals (Current_Scope)));
2663
2664         declare
2665            Target_Formal : Entity_Id;
2666            Thunk_Formal  : Entity_Id;
2667
2668         begin
2669            Target_Formal := Extra_Formals (Subp);
2670            Thunk_Formal  := Extra_Formals (Current_Scope);
2671            while Present (Target_Formal) loop
2672               Add_Extra_Actual
2673                 (New_Occurrence_Of (Thunk_Formal, Loc), Thunk_Formal);
2674
2675               Target_Formal := Extra_Formal (Target_Formal);
2676               Thunk_Formal  := Extra_Formal (Thunk_Formal);
2677            end loop;
2678
2679            while Is_Non_Empty_List (Extra_Actuals) loop
2680               Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2681            end loop;
2682
2683            Expand_Actuals (Call_Node, Subp);
2684            return;
2685         end;
2686      end if;
2687
2688      Formal := First_Formal (Subp);
2689      Actual := First_Actual (Call_Node);
2690      Param_Count := 1;
2691      while Present (Formal) loop
2692
2693         --  Generate range check if required
2694
2695         if Do_Range_Check (Actual)
2696           and then Ekind (Formal) = E_In_Parameter
2697         then
2698            Generate_Range_Check
2699              (Actual, Etype (Formal), CE_Range_Check_Failed);
2700         end if;
2701
2702         --  Prepare to examine current entry
2703
2704         Prev := Actual;
2705         Prev_Orig := Original_Node (Prev);
2706
2707         --  Ada 2005 (AI-251): Check if any formal is a class-wide interface
2708         --  to expand it in a further round.
2709
2710         CW_Interface_Formals_Present :=
2711           CW_Interface_Formals_Present
2712             or else
2713               (Ekind (Etype (Formal)) = E_Class_Wide_Type
2714                 and then Is_Interface (Etype (Etype (Formal))))
2715             or else
2716               (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2717                 and then Is_Interface (Directly_Designated_Type
2718                                         (Etype (Etype (Formal)))));
2719
2720         --  Create possible extra actual for constrained case. Usually, the
2721         --  extra actual is of the form actual'constrained, but since this
2722         --  attribute is only available for unconstrained records, TRUE is
2723         --  expanded if the type of the formal happens to be constrained (for
2724         --  instance when this procedure is inherited from an unconstrained
2725         --  record to a constrained one) or if the actual has no discriminant
2726         --  (its type is constrained). An exception to this is the case of a
2727         --  private type without discriminants. In this case we pass FALSE
2728         --  because the object has underlying discriminants with defaults.
2729
2730         if Present (Extra_Constrained (Formal)) then
2731            if Ekind (Etype (Prev)) in Private_Kind
2732              and then not Has_Discriminants (Base_Type (Etype (Prev)))
2733            then
2734               Add_Extra_Actual
2735                 (New_Occurrence_Of (Standard_False, Loc),
2736                  Extra_Constrained (Formal));
2737
2738            elsif Is_Constrained (Etype (Formal))
2739              or else not Has_Discriminants (Etype (Prev))
2740            then
2741               Add_Extra_Actual
2742                 (New_Occurrence_Of (Standard_True, Loc),
2743                  Extra_Constrained (Formal));
2744
2745            --  Do not produce extra actuals for Unchecked_Union parameters.
2746            --  Jump directly to the end of the loop.
2747
2748            elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2749               goto Skip_Extra_Actual_Generation;
2750
2751            else
2752               --  If the actual is a type conversion, then the constrained
2753               --  test applies to the actual, not the target type.
2754
2755               declare
2756                  Act_Prev : Node_Id;
2757
2758               begin
2759                  --  Test for unchecked conversions as well, which can occur
2760                  --  as out parameter actuals on calls to stream procedures.
2761
2762                  Act_Prev := Prev;
2763                  while Nkind_In (Act_Prev, N_Type_Conversion,
2764                                            N_Unchecked_Type_Conversion)
2765                  loop
2766                     Act_Prev := Expression (Act_Prev);
2767                  end loop;
2768
2769                  --  If the expression is a conversion of a dereference, this
2770                  --  is internally generated code that manipulates addresses,
2771                  --  e.g. when building interface tables. No check should
2772                  --  occur in this case, and the discriminated object is not
2773                  --  directly a hand.
2774
2775                  if not Comes_From_Source (Actual)
2776                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
2777                    and then Nkind (Act_Prev) = N_Explicit_Dereference
2778                  then
2779                     Add_Extra_Actual
2780                       (New_Occurrence_Of (Standard_False, Loc),
2781                        Extra_Constrained (Formal));
2782
2783                  else
2784                     Add_Extra_Actual
2785                       (Make_Attribute_Reference (Sloc (Prev),
2786                        Prefix =>
2787                          Duplicate_Subexpr_No_Checks
2788                            (Act_Prev, Name_Req => True),
2789                        Attribute_Name => Name_Constrained),
2790                        Extra_Constrained (Formal));
2791                  end if;
2792               end;
2793            end if;
2794         end if;
2795
2796         --  Create possible extra actual for accessibility level
2797
2798         if Present (Extra_Accessibility (Formal)) then
2799
2800            --  Ada 2005 (AI-252): If the actual was rewritten as an Access
2801            --  attribute, then the original actual may be an aliased object
2802            --  occurring as the prefix in a call using "Object.Operation"
2803            --  notation. In that case we must pass the level of the object,
2804            --  so Prev_Orig is reset to Prev and the attribute will be
2805            --  processed by the code for Access attributes further below.
2806
2807            if Prev_Orig /= Prev
2808              and then Nkind (Prev) = N_Attribute_Reference
2809              and then
2810                Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2811              and then Is_Aliased_View (Prev_Orig)
2812            then
2813               Prev_Orig := Prev;
2814            end if;
2815
2816            --  Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2817            --  accessibility levels.
2818
2819            if Is_Thunk (Current_Scope) then
2820               declare
2821                  Parm_Ent : Entity_Id;
2822
2823               begin
2824                  if Is_Controlling_Actual (Actual) then
2825
2826                     --  Find the corresponding actual of the thunk
2827
2828                     Parm_Ent := First_Entity (Current_Scope);
2829                     for J in 2 .. Param_Count loop
2830                        Next_Entity (Parm_Ent);
2831                     end loop;
2832
2833                  --  Handle unchecked conversion of access types generated
2834                  --  in thunks (cf. Expand_Interface_Thunk).
2835
2836                  elsif Is_Access_Type (Etype (Actual))
2837                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
2838                  then
2839                     Parm_Ent := Entity (Expression (Actual));
2840
2841                  else pragma Assert (Is_Entity_Name (Actual));
2842                     Parm_Ent := Entity (Actual);
2843                  end if;
2844
2845                  Add_Extra_Actual
2846                    (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2847                     Extra_Accessibility (Formal));
2848               end;
2849
2850            elsif Is_Entity_Name (Prev_Orig) then
2851
2852               --  When passing an access parameter, or a renaming of an access
2853               --  parameter, as the actual to another access parameter we need
2854               --  to pass along the actual's own access level parameter. This
2855               --  is done if we are within the scope of the formal access
2856               --  parameter (if this is an inlined body the extra formal is
2857               --  irrelevant).
2858
2859               if (Is_Formal (Entity (Prev_Orig))
2860                    or else
2861                      (Present (Renamed_Object (Entity (Prev_Orig)))
2862                        and then
2863                          Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2864                        and then
2865                          Is_Formal
2866                            (Entity (Renamed_Object (Entity (Prev_Orig))))))
2867                 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2868                 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2869               then
2870                  declare
2871                     Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2872
2873                  begin
2874                     pragma Assert (Present (Parm_Ent));
2875
2876                     if Present (Extra_Accessibility (Parm_Ent)) then
2877                        Add_Extra_Actual
2878                          (New_Occurrence_Of
2879                             (Extra_Accessibility (Parm_Ent), Loc),
2880                           Extra_Accessibility (Formal));
2881
2882                     --  If the actual access parameter does not have an
2883                     --  associated extra formal providing its scope level,
2884                     --  then treat the actual as having library-level
2885                     --  accessibility.
2886
2887                     else
2888                        Add_Extra_Actual
2889                          (Make_Integer_Literal (Loc,
2890                             Intval => Scope_Depth (Standard_Standard)),
2891                           Extra_Accessibility (Formal));
2892                     end if;
2893                  end;
2894
2895               --  The actual is a normal access value, so just pass the level
2896               --  of the actual's access type.
2897
2898               else
2899                  Add_Extra_Actual
2900                    (Dynamic_Accessibility_Level (Prev_Orig),
2901                     Extra_Accessibility (Formal));
2902               end if;
2903
2904            --  If the actual is an access discriminant, then pass the level
2905            --  of the enclosing object (RM05-3.10.2(12.4/2)).
2906
2907            elsif Nkind (Prev_Orig) = N_Selected_Component
2908              and then Ekind (Entity (Selector_Name (Prev_Orig))) =
2909                                                       E_Discriminant
2910              and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
2911                                                       E_Anonymous_Access_Type
2912            then
2913               Add_Extra_Actual
2914                 (Make_Integer_Literal (Loc,
2915                    Intval => Object_Access_Level (Prefix (Prev_Orig))),
2916                  Extra_Accessibility (Formal));
2917
2918            --  All other cases
2919
2920            else
2921               case Nkind (Prev_Orig) is
2922
2923                  when N_Attribute_Reference =>
2924                     case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2925
2926                        --  For X'Access, pass on the level of the prefix X
2927
2928                        when Attribute_Access =>
2929
2930                           --  If this is an Access attribute applied to the
2931                           --  the current instance object passed to a type
2932                           --  initialization procedure, then use the level
2933                           --  of the type itself. This is not really correct,
2934                           --  as there should be an extra level parameter
2935                           --  passed in with _init formals (only in the case
2936                           --  where the type is immutably limited), but we
2937                           --  don't have an easy way currently to create such
2938                           --  an extra formal (init procs aren't ever frozen).
2939                           --  For now we just use the level of the type,
2940                           --  which may be too shallow, but that works better
2941                           --  than passing Object_Access_Level of the type,
2942                           --  which can be one level too deep in some cases.
2943                           --  ???
2944
2945                           if Is_Entity_Name (Prefix (Prev_Orig))
2946                             and then Is_Type (Entity (Prefix (Prev_Orig)))
2947                           then
2948                              Add_Extra_Actual
2949                                (Make_Integer_Literal (Loc,
2950                                   Intval =>
2951                                     Type_Access_Level
2952                                       (Entity (Prefix (Prev_Orig)))),
2953                                 Extra_Accessibility (Formal));
2954
2955                           else
2956                              Add_Extra_Actual
2957                                (Make_Integer_Literal (Loc,
2958                                   Intval =>
2959                                     Object_Access_Level
2960                                       (Prefix (Prev_Orig))),
2961                                 Extra_Accessibility (Formal));
2962                           end if;
2963
2964                        --  Treat the unchecked attributes as library-level
2965
2966                        when Attribute_Unchecked_Access |
2967                           Attribute_Unrestricted_Access =>
2968                           Add_Extra_Actual
2969                             (Make_Integer_Literal (Loc,
2970                                Intval => Scope_Depth (Standard_Standard)),
2971                              Extra_Accessibility (Formal));
2972
2973                        --  No other cases of attributes returning access
2974                        --  values that can be passed to access parameters.
2975
2976                        when others =>
2977                           raise Program_Error;
2978
2979                     end case;
2980
2981                  --  For allocators we pass the level of the execution of the
2982                  --  called subprogram, which is one greater than the current
2983                  --  scope level.
2984
2985                  when N_Allocator =>
2986                     Add_Extra_Actual
2987                       (Make_Integer_Literal (Loc,
2988                          Intval => Scope_Depth (Current_Scope) + 1),
2989                        Extra_Accessibility (Formal));
2990
2991                  --  For most other cases we simply pass the level of the
2992                  --  actual's access type. The type is retrieved from
2993                  --  Prev rather than Prev_Orig, because in some cases
2994                  --  Prev_Orig denotes an original expression that has
2995                  --  not been analyzed.
2996
2997                  when others =>
2998                     Add_Extra_Actual
2999                       (Dynamic_Accessibility_Level (Prev),
3000                        Extra_Accessibility (Formal));
3001               end case;
3002            end if;
3003         end if;
3004
3005         --  Perform the check of 4.6(49) that prevents a null value from being
3006         --  passed as an actual to an access parameter. Note that the check
3007         --  is elided in the common cases of passing an access attribute or
3008         --  access parameter as an actual. Also, we currently don't enforce
3009         --  this check for expander-generated actuals and when -gnatdj is set.
3010
3011         if Ada_Version >= Ada_2005 then
3012
3013            --  Ada 2005 (AI-231): Check null-excluding access types. Note that
3014            --  the intent of 6.4.1(13) is that null-exclusion checks should
3015            --  not be done for 'out' parameters, even though it refers only
3016            --  to constraint checks, and a null_exclusion is not a constraint.
3017            --  Note that AI05-0196-1 corrects this mistake in the RM.
3018
3019            if Is_Access_Type (Etype (Formal))
3020              and then Can_Never_Be_Null (Etype (Formal))
3021              and then Ekind (Formal) /= E_Out_Parameter
3022              and then Nkind (Prev) /= N_Raise_Constraint_Error
3023              and then (Known_Null (Prev)
3024                         or else not Can_Never_Be_Null (Etype (Prev)))
3025            then
3026               Install_Null_Excluding_Check (Prev);
3027            end if;
3028
3029         --  Ada_Version < Ada_2005
3030
3031         else
3032            if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3033              or else Access_Checks_Suppressed (Subp)
3034            then
3035               null;
3036
3037            elsif Debug_Flag_J then
3038               null;
3039
3040            elsif not Comes_From_Source (Prev) then
3041               null;
3042
3043            elsif Is_Entity_Name (Prev)
3044              and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3045            then
3046               null;
3047
3048            elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
3049               null;
3050
3051            else
3052               Install_Null_Excluding_Check (Prev);
3053            end if;
3054         end if;
3055
3056         --  Perform appropriate validity checks on parameters that
3057         --  are entities.
3058
3059         if Validity_Checks_On then
3060            if  (Ekind (Formal) = E_In_Parameter
3061                  and then Validity_Check_In_Params)
3062              or else
3063                (Ekind (Formal) = E_In_Out_Parameter
3064                  and then Validity_Check_In_Out_Params)
3065            then
3066               --  If the actual is an indexed component of a packed type (or
3067               --  is an indexed or selected component whose prefix recursively
3068               --  meets this condition), it has not been expanded yet. It will
3069               --  be copied in the validity code that follows, and has to be
3070               --  expanded appropriately, so reanalyze it.
3071
3072               --  What we do is just to unset analyzed bits on prefixes till
3073               --  we reach something that does not have a prefix.
3074
3075               declare
3076                  Nod : Node_Id;
3077
3078               begin
3079                  Nod := Actual;
3080                  while Nkind_In (Nod, N_Indexed_Component,
3081                                       N_Selected_Component)
3082                  loop
3083                     Set_Analyzed (Nod, False);
3084                     Nod := Prefix (Nod);
3085                  end loop;
3086               end;
3087
3088               Ensure_Valid (Actual);
3089            end if;
3090         end if;
3091
3092         --  For IN OUT and OUT parameters, ensure that subscripts are valid
3093         --  since this is a left side reference. We only do this for calls
3094         --  from the source program since we assume that compiler generated
3095         --  calls explicitly generate any required checks. We also need it
3096         --  only if we are doing standard validity checks, since clearly it is
3097         --  not needed if validity checks are off, and in subscript validity
3098         --  checking mode, all indexed components are checked with a call
3099         --  directly from Expand_N_Indexed_Component.
3100
3101         if Comes_From_Source (Call_Node)
3102           and then Ekind (Formal) /= E_In_Parameter
3103           and then Validity_Checks_On
3104           and then Validity_Check_Default
3105           and then not Validity_Check_Subscripts
3106         then
3107            Check_Valid_Lvalue_Subscripts (Actual);
3108         end if;
3109
3110         --  Mark any scalar OUT parameter that is a simple variable as no
3111         --  longer known to be valid (unless the type is always valid). This
3112         --  reflects the fact that if an OUT parameter is never set in a
3113         --  procedure, then it can become invalid on the procedure return.
3114
3115         if Ekind (Formal) = E_Out_Parameter
3116           and then Is_Entity_Name (Actual)
3117           and then Ekind (Entity (Actual)) = E_Variable
3118           and then not Is_Known_Valid (Etype (Actual))
3119         then
3120            Set_Is_Known_Valid (Entity (Actual), False);
3121         end if;
3122
3123         --  For an OUT or IN OUT parameter, if the actual is an entity, then
3124         --  clear current values, since they can be clobbered. We are probably
3125         --  doing this in more places than we need to, but better safe than
3126         --  sorry when it comes to retaining bad current values.
3127
3128         if Ekind (Formal) /= E_In_Parameter
3129           and then Is_Entity_Name (Actual)
3130           and then Present (Entity (Actual))
3131         then
3132            declare
3133               Ent : constant Entity_Id := Entity (Actual);
3134               Sav : Node_Id;
3135
3136            begin
3137               --  For an OUT or IN OUT parameter that is an assignable entity,
3138               --  we do not want to clobber the Last_Assignment field, since
3139               --  if it is set, it was precisely because it is indeed an OUT
3140               --  or IN OUT parameter. We do reset the Is_Known_Valid flag
3141               --  since the subprogram could have returned in invalid value.
3142
3143               if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
3144                 and then Is_Assignable (Ent)
3145               then
3146                  Sav := Last_Assignment (Ent);
3147                  Kill_Current_Values (Ent);
3148                  Set_Last_Assignment (Ent, Sav);
3149                  Set_Is_Known_Valid (Ent, False);
3150
3151               --  For all other cases, just kill the current values
3152
3153               else
3154                  Kill_Current_Values (Ent);
3155               end if;
3156            end;
3157         end if;
3158
3159         --  If the formal is class wide and the actual is an aggregate, force
3160         --  evaluation so that the back end who does not know about class-wide
3161         --  type, does not generate a temporary of the wrong size.
3162
3163         if not Is_Class_Wide_Type (Etype (Formal)) then
3164            null;
3165
3166         elsif Nkind (Actual) = N_Aggregate
3167           or else (Nkind (Actual) = N_Qualified_Expression
3168                     and then Nkind (Expression (Actual)) = N_Aggregate)
3169         then
3170            Force_Evaluation (Actual);
3171         end if;
3172
3173         --  In a remote call, if the formal is of a class-wide type, check
3174         --  that the actual meets the requirements described in E.4(18).
3175
3176         if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
3177            Insert_Action (Actual,
3178              Make_Transportable_Check (Loc,
3179                Duplicate_Subexpr_Move_Checks (Actual)));
3180         end if;
3181
3182         --  This label is required when skipping extra actual generation for
3183         --  Unchecked_Union parameters.
3184
3185         <<Skip_Extra_Actual_Generation>>
3186
3187         Param_Count := Param_Count + 1;
3188         Next_Actual (Actual);
3189         Next_Formal (Formal);
3190      end loop;
3191
3192      --  If we are calling an Ada 2012 function which needs to have the
3193      --  "accessibility level determined by the point of call" (AI05-0234)
3194      --  passed in to it, then pass it in.
3195
3196      if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3197        and then
3198          Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3199      then
3200         declare
3201            Ancestor : Node_Id := Parent (Call_Node);
3202            Level    : Node_Id := Empty;
3203            Defer    : Boolean := False;
3204
3205         begin
3206            --  Unimplemented: if Subp returns an anonymous access type, then
3207
3208            --    a) if the call is the operand of an explict conversion, then
3209            --       the target type of the conversion (a named access type)
3210            --       determines the accessibility level pass in;
3211
3212            --    b) if the call defines an access discriminant of an object
3213            --       (e.g., the discriminant of an object being created by an
3214            --       allocator, or the discriminant of a function result),
3215            --       then the accessibility level to pass in is that of the
3216            --       discriminated object being initialized).
3217
3218            --  ???
3219
3220            while Nkind (Ancestor) = N_Qualified_Expression
3221            loop
3222               Ancestor := Parent (Ancestor);
3223            end loop;
3224
3225            case Nkind (Ancestor) is
3226               when N_Allocator =>
3227
3228                  --  At this point, we'd like to assign
3229
3230                  --    Level := Dynamic_Accessibility_Level (Ancestor);
3231
3232                  --  but Etype of Ancestor may not have been set yet,
3233                  --  so that doesn't work.
3234
3235                  --  Handle this later in Expand_Allocator_Expression.
3236
3237                  Defer := True;
3238
3239               when N_Object_Declaration | N_Object_Renaming_Declaration =>
3240                  declare
3241                     Def_Id : constant Entity_Id :=
3242                                Defining_Identifier (Ancestor);
3243
3244                  begin
3245                     if Is_Return_Object (Def_Id) then
3246                        if Present (Extra_Accessibility_Of_Result
3247                                     (Return_Applies_To (Scope (Def_Id))))
3248                        then
3249                           --  Pass along value that was passed in if the
3250                           --  routine we are returning from also has an
3251                           --  Accessibility_Of_Result formal.
3252
3253                           Level :=
3254                             New_Occurrence_Of
3255                              (Extra_Accessibility_Of_Result
3256                                (Return_Applies_To (Scope (Def_Id))), Loc);
3257                        end if;
3258                     else
3259                        Level :=
3260                          Make_Integer_Literal (Loc,
3261                            Intval => Object_Access_Level (Def_Id));
3262                     end if;
3263                  end;
3264
3265               when N_Simple_Return_Statement =>
3266                  if Present (Extra_Accessibility_Of_Result
3267                               (Return_Applies_To
3268                                 (Return_Statement_Entity (Ancestor))))
3269                  then
3270                     --  Pass along value that was passed in if the returned
3271                     --  routine also has an Accessibility_Of_Result formal.
3272
3273                     Level :=
3274                       New_Occurrence_Of
3275                         (Extra_Accessibility_Of_Result
3276                            (Return_Applies_To
3277                               (Return_Statement_Entity (Ancestor))), Loc);
3278                  end if;
3279
3280               when others =>
3281                  null;
3282            end case;
3283
3284            if not Defer then
3285               if not Present (Level) then
3286
3287                  --  The "innermost master that evaluates the function call".
3288
3289                  --  ??? - Should we use Integer'Last here instead in order
3290                  --  to deal with (some of) the problems associated with
3291                  --  calls to subps whose enclosing scope is unknown (e.g.,
3292                  --  Anon_Access_To_Subp_Param.all)?
3293
3294                  Level := Make_Integer_Literal (Loc,
3295                             Scope_Depth (Current_Scope) + 1);
3296               end if;
3297
3298               Add_Extra_Actual
3299                 (Level,
3300                  Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3301            end if;
3302         end;
3303      end if;
3304
3305      --  If we are expanding the RHS of an assignment we need to check if tag
3306      --  propagation is needed. You might expect this processing to be in
3307      --  Analyze_Assignment but has to be done earlier (bottom-up) because the
3308      --  assignment might be transformed to a declaration for an unconstrained
3309      --  value if the expression is classwide.
3310
3311      if Nkind (Call_Node) = N_Function_Call
3312        and then Is_Tag_Indeterminate (Call_Node)
3313        and then Is_Entity_Name (Name (Call_Node))
3314      then
3315         declare
3316            Ass : Node_Id := Empty;
3317
3318         begin
3319            if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3320               Ass := Parent (Call_Node);
3321
3322            elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3323              and then Nkind (Parent (Parent (Call_Node))) =
3324                                                  N_Assignment_Statement
3325            then
3326               Ass := Parent (Parent (Call_Node));
3327
3328            elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3329              and then Nkind (Parent (Parent (Call_Node))) =
3330                                                  N_Assignment_Statement
3331            then
3332               Ass := Parent (Parent (Call_Node));
3333            end if;
3334
3335            if Present (Ass)
3336              and then Is_Class_Wide_Type (Etype (Name (Ass)))
3337            then
3338               if Is_Access_Type (Etype (Call_Node)) then
3339                  if Designated_Type (Etype (Call_Node)) /=
3340                    Root_Type (Etype (Name (Ass)))
3341                  then
3342                     Error_Msg_NE
3343                       ("tag-indeterminate expression "
3344                         & " must have designated type& (RM 5.2 (6))",
3345                         Call_Node, Root_Type (Etype (Name (Ass))));
3346                  else
3347                     Propagate_Tag (Name (Ass), Call_Node);
3348                  end if;
3349
3350               elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3351                  Error_Msg_NE
3352                    ("tag-indeterminate expression must have type&"
3353                     & "(RM 5.2 (6))",
3354                     Call_Node, Root_Type (Etype (Name (Ass))));
3355
3356               else
3357                  Propagate_Tag (Name (Ass), Call_Node);
3358               end if;
3359
3360               --  The call will be rewritten as a dispatching call, and
3361               --  expanded as such.
3362
3363               return;
3364            end if;
3365         end;
3366      end if;
3367
3368      --  Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3369      --  it to point to the correct secondary virtual table
3370
3371      if Nkind (Call_Node) in N_Subprogram_Call
3372        and then CW_Interface_Formals_Present
3373      then
3374         Expand_Interface_Actuals (Call_Node);
3375      end if;
3376
3377      --  Deals with Dispatch_Call if we still have a call, before expanding
3378      --  extra actuals since this will be done on the re-analysis of the
3379      --  dispatching call. Note that we do not try to shorten the actual list
3380      --  for a dispatching call, it would not make sense to do so. Expansion
3381      --  of dispatching calls is suppressed for VM targets, because the VM
3382      --  back-ends directly handle the generation of dispatching calls and
3383      --  would have to undo any expansion to an indirect call.
3384
3385      if Nkind (Call_Node) in N_Subprogram_Call
3386        and then Present (Controlling_Argument (Call_Node))
3387      then
3388         declare
3389            Call_Typ   : constant Entity_Id := Etype (Call_Node);
3390            Typ        : constant Entity_Id := Find_Dispatching_Type (Subp);
3391            Eq_Prim_Op : Entity_Id := Empty;
3392            New_Call   : Node_Id;
3393            Param      : Node_Id;
3394            Prev_Call  : Node_Id;
3395
3396         begin
3397            if not Is_Limited_Type (Typ) then
3398               Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3399            end if;
3400
3401            if Tagged_Type_Expansion then
3402               Expand_Dispatching_Call (Call_Node);
3403
3404               --  The following return is worrisome. Is it really OK to skip
3405               --  all remaining processing in this procedure ???
3406
3407               return;
3408
3409            --  VM targets
3410
3411            else
3412               Apply_Tag_Checks (Call_Node);
3413
3414               --  If this is a dispatching "=", we must first compare the
3415               --  tags so we generate: x.tag = y.tag and then x = y
3416
3417               if Subp = Eq_Prim_Op then
3418
3419                  --  Mark the node as analyzed to avoid reanalyzing this
3420                  --  dispatching call (which would cause a never-ending loop)
3421
3422                  Prev_Call := Relocate_Node (Call_Node);
3423                  Set_Analyzed (Prev_Call);
3424
3425                  Param := First_Actual (Call_Node);
3426                  New_Call :=
3427                    Make_And_Then (Loc,
3428                      Left_Opnd =>
3429                           Make_Op_Eq (Loc,
3430                             Left_Opnd =>
3431                               Make_Selected_Component (Loc,
3432                                 Prefix        => New_Value (Param),
3433                                 Selector_Name =>
3434                                   New_Occurrence_Of
3435                                     (First_Tag_Component (Typ), Loc)),
3436
3437                             Right_Opnd =>
3438                               Make_Selected_Component (Loc,
3439                                 Prefix        =>
3440                                   Unchecked_Convert_To (Typ,
3441                                     New_Value (Next_Actual (Param))),
3442                                 Selector_Name =>
3443                                   New_Occurrence_Of
3444                                     (First_Tag_Component (Typ), Loc))),
3445                      Right_Opnd => Prev_Call);
3446
3447                  Rewrite (Call_Node, New_Call);
3448
3449                  Analyze_And_Resolve
3450                    (Call_Node, Call_Typ, Suppress => All_Checks);
3451               end if;
3452
3453               --  Expansion of a dispatching call results in an indirect call,
3454               --  which in turn causes current values to be killed (see
3455               --  Resolve_Call), so on VM targets we do the call here to
3456               --  ensure consistent warnings between VM and non-VM targets.
3457
3458               Kill_Current_Values;
3459            end if;
3460
3461            --  If this is a dispatching "=" then we must update the reference
3462            --  to the call node because we generated:
3463            --     x.tag = y.tag and then x = y
3464
3465            if Subp = Eq_Prim_Op then
3466               Call_Node := Right_Opnd (Call_Node);
3467            end if;
3468         end;
3469      end if;
3470
3471      --  Similarly, expand calls to RCI subprograms on which pragma
3472      --  All_Calls_Remote applies. The rewriting will be reanalyzed
3473      --  later. Do this only when the call comes from source since we
3474      --  do not want such a rewriting to occur in expanded code.
3475
3476      if Is_All_Remote_Call (Call_Node) then
3477         Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
3478
3479      --  Similarly, do not add extra actuals for an entry call whose entity
3480      --  is a protected procedure, or for an internal protected subprogram
3481      --  call, because it will be rewritten as a protected subprogram call
3482      --  and reanalyzed (see Expand_Protected_Subprogram_Call).
3483
3484      elsif Is_Protected_Type (Scope (Subp))
3485         and then (Ekind (Subp) = E_Procedure
3486                    or else Ekind (Subp) = E_Function)
3487      then
3488         null;
3489
3490      --  During that loop we gathered the extra actuals (the ones that
3491      --  correspond to Extra_Formals), so now they can be appended.
3492
3493      else
3494         while Is_Non_Empty_List (Extra_Actuals) loop
3495            Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3496         end loop;
3497      end if;
3498
3499      --  At this point we have all the actuals, so this is the point at which
3500      --  the various expansion activities for actuals is carried out.
3501
3502      Expand_Actuals (Call_Node, Subp);
3503
3504      --  Verify that the actuals do not share storage. This check must be done
3505      --  on the caller side rather that inside the subprogram to avoid issues
3506      --  of parameter passing.
3507
3508      if Check_Aliasing_Of_Parameters then
3509         Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3510      end if;
3511
3512      --  If the subprogram is a renaming, or if it is inherited, replace it in
3513      --  the call with the name of the actual subprogram being called. If this
3514      --  is a dispatching call, the run-time decides what to call. The Alias
3515      --  attribute does not apply to entries.
3516
3517      if Nkind (Call_Node) /= N_Entry_Call_Statement
3518        and then No (Controlling_Argument (Call_Node))
3519        and then Present (Parent_Subp)
3520        and then not Is_Direct_Deep_Call (Subp)
3521      then
3522         if Present (Inherited_From_Formal (Subp)) then
3523            Parent_Subp := Inherited_From_Formal (Subp);
3524         else
3525            Parent_Subp := Ultimate_Alias (Parent_Subp);
3526         end if;
3527
3528         --  The below setting of Entity is suspect, see F109-018 discussion???
3529
3530         Set_Entity (Name (Call_Node), Parent_Subp);
3531
3532         if Is_Abstract_Subprogram (Parent_Subp)
3533           and then not In_Instance
3534         then
3535            Error_Msg_NE
3536              ("cannot call abstract subprogram &!",
3537               Name (Call_Node), Parent_Subp);
3538         end if;
3539
3540         --  Inspect all formals of derived subprogram Subp. Compare parameter
3541         --  types with the parent subprogram and check whether an actual may
3542         --  need a type conversion to the corresponding formal of the parent
3543         --  subprogram.
3544
3545         --  Not clear whether intrinsic subprograms need such conversions. ???
3546
3547         if not Is_Intrinsic_Subprogram (Parent_Subp)
3548           or else Is_Generic_Instance (Parent_Subp)
3549         then
3550            declare
3551               procedure Convert (Act : Node_Id; Typ : Entity_Id);
3552               --  Rewrite node Act as a type conversion of Act to Typ. Analyze
3553               --  and resolve the newly generated construct.
3554
3555               -------------
3556               -- Convert --
3557               -------------
3558
3559               procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3560               begin
3561                  Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3562                  Analyze (Act);
3563                  Resolve (Act, Typ);
3564               end Convert;
3565
3566               --  Local variables
3567
3568               Actual_Typ : Entity_Id;
3569               Formal_Typ : Entity_Id;
3570               Parent_Typ : Entity_Id;
3571
3572            begin
3573               Actual := First_Actual (Call_Node);
3574               Formal := First_Formal (Subp);
3575               Parent_Formal := First_Formal (Parent_Subp);
3576               while Present (Formal) loop
3577                  Actual_Typ := Etype (Actual);
3578                  Formal_Typ := Etype (Formal);
3579                  Parent_Typ := Etype (Parent_Formal);
3580
3581                  --  For an IN parameter of a scalar type, the parent formal
3582                  --  type and derived formal type differ or the parent formal
3583                  --  type and actual type do not match statically.
3584
3585                  if Is_Scalar_Type (Formal_Typ)
3586                    and then Ekind (Formal) = E_In_Parameter
3587                    and then Formal_Typ /= Parent_Typ
3588                    and then
3589                      not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3590                    and then not Raises_Constraint_Error (Actual)
3591                  then
3592                     Convert (Actual, Parent_Typ);
3593                     Enable_Range_Check (Actual);
3594
3595                     --  If the actual has been marked as requiring a range
3596                     --  check, then generate it here.
3597
3598                     if Do_Range_Check (Actual) then
3599                        Generate_Range_Check
3600                          (Actual, Etype (Formal), CE_Range_Check_Failed);
3601                     end if;
3602
3603                  --  For access types, the parent formal type and actual type
3604                  --  differ.
3605
3606                  elsif Is_Access_Type (Formal_Typ)
3607                    and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
3608                  then
3609                     if Ekind (Formal) /= E_In_Parameter then
3610                        Convert (Actual, Parent_Typ);
3611
3612                     elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3613                       and then Designated_Type (Parent_Typ) /=
3614                                Designated_Type (Actual_Typ)
3615                       and then not Is_Controlling_Formal (Formal)
3616                     then
3617                        --  This unchecked conversion is not necessary unless
3618                        --  inlining is enabled, because in that case the type
3619                        --  mismatch may become visible in the body about to be
3620                        --  inlined.
3621
3622                        Rewrite (Actual,
3623                          Unchecked_Convert_To (Parent_Typ,
3624                            Relocate_Node (Actual)));
3625                        Analyze (Actual);
3626                        Resolve (Actual, Parent_Typ);
3627                     end if;
3628
3629                  --  If there is a change of representation, then generate a
3630                  --  warning, and do the change of representation.
3631
3632                  elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3633                     Error_Msg_N
3634                       ("??change of representation required", Actual);
3635                     Convert (Actual, Parent_Typ);
3636
3637                  --  For array and record types, the parent formal type and
3638                  --  derived formal type have different sizes or pragma Pack
3639                  --  status.
3640
3641                  elsif ((Is_Array_Type (Formal_Typ)
3642                           and then Is_Array_Type (Parent_Typ))
3643                       or else
3644                         (Is_Record_Type (Formal_Typ)
3645                           and then Is_Record_Type (Parent_Typ)))
3646                    and then
3647                      (Esize (Formal_Typ) /= Esize (Parent_Typ)
3648                        or else Has_Pragma_Pack (Formal_Typ) /=
3649                                Has_Pragma_Pack (Parent_Typ))
3650                  then
3651                     Convert (Actual, Parent_Typ);
3652                  end if;
3653
3654                  Next_Actual (Actual);
3655                  Next_Formal (Formal);
3656                  Next_Formal (Parent_Formal);
3657               end loop;
3658            end;
3659         end if;
3660
3661         Orig_Subp := Subp;
3662         Subp := Parent_Subp;
3663      end if;
3664
3665      --  Deal with case where call is an explicit dereference
3666
3667      if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3668
3669      --  Handle case of access to protected subprogram type
3670
3671         if Is_Access_Protected_Subprogram_Type
3672              (Base_Type (Etype (Prefix (Name (Call_Node)))))
3673         then
3674            --  If this is a call through an access to protected operation, the
3675            --  prefix has the form (object'address, operation'access). Rewrite
3676            --  as a for other protected calls: the object is the 1st parameter
3677            --  of the list of actuals.
3678
3679            declare
3680               Call : Node_Id;
3681               Parm : List_Id;
3682               Nam  : Node_Id;
3683               Obj  : Node_Id;
3684               Ptr  : constant Node_Id := Prefix (Name (Call_Node));
3685
3686               T : constant Entity_Id :=
3687                     Equivalent_Type (Base_Type (Etype (Ptr)));
3688
3689               D_T : constant Entity_Id :=
3690                       Designated_Type (Base_Type (Etype (Ptr)));
3691
3692            begin
3693               Obj :=
3694                 Make_Selected_Component (Loc,
3695                   Prefix        => Unchecked_Convert_To (T, Ptr),
3696                   Selector_Name =>
3697                     New_Occurrence_Of (First_Entity (T), Loc));
3698
3699               Nam :=
3700                 Make_Selected_Component (Loc,
3701                   Prefix        => Unchecked_Convert_To (T, Ptr),
3702                   Selector_Name =>
3703                     New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
3704
3705               Nam :=
3706                 Make_Explicit_Dereference (Loc,
3707                   Prefix => Nam);
3708
3709               if Present (Parameter_Associations (Call_Node))  then
3710                  Parm := Parameter_Associations (Call_Node);
3711               else
3712                  Parm := New_List;
3713               end if;
3714
3715               Prepend (Obj, Parm);
3716
3717               if Etype (D_T) = Standard_Void_Type then
3718                  Call :=
3719                    Make_Procedure_Call_Statement (Loc,
3720                      Name                   => Nam,
3721                      Parameter_Associations => Parm);
3722               else
3723                  Call :=
3724                    Make_Function_Call (Loc,
3725                      Name                   => Nam,
3726                      Parameter_Associations => Parm);
3727               end if;
3728
3729               Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
3730               Set_Etype (Call, Etype (D_T));
3731
3732               --  We do not re-analyze the call to avoid infinite recursion.
3733               --  We analyze separately the prefix and the object, and set
3734               --  the checks on the prefix that would otherwise be emitted
3735               --  when resolving a call.
3736
3737               Rewrite (Call_Node, Call);
3738               Analyze (Nam);
3739               Apply_Access_Check (Nam);
3740               Analyze (Obj);
3741               return;
3742            end;
3743         end if;
3744      end if;
3745
3746      --  If this is a call to an intrinsic subprogram, then perform the
3747      --  appropriate expansion to the corresponding tree node and we
3748      --  are all done (since after that the call is gone).
3749
3750      --  In the case where the intrinsic is to be processed by the back end,
3751      --  the call to Expand_Intrinsic_Call will do nothing, which is fine,
3752      --  since the idea in this case is to pass the call unchanged. If the
3753      --  intrinsic is an inherited unchecked conversion, and the derived type
3754      --  is the target type of the conversion, we must retain it as the return
3755      --  type of the expression. Otherwise the expansion below, which uses the
3756      --  parent operation, will yield the wrong type.
3757
3758      if Is_Intrinsic_Subprogram (Subp) then
3759         Expand_Intrinsic_Call (Call_Node, Subp);
3760
3761         if Nkind (Call_Node) = N_Unchecked_Type_Conversion
3762           and then Parent_Subp /= Orig_Subp
3763           and then Etype (Parent_Subp) /= Etype (Orig_Subp)
3764         then
3765            Set_Etype (Call_Node, Etype (Orig_Subp));
3766         end if;
3767
3768         return;
3769      end if;
3770
3771      if Ekind_In (Subp, E_Function, E_Procedure) then
3772
3773         --  We perform two simple optimization on calls:
3774
3775         --  a) replace calls to null procedures unconditionally;
3776
3777         --  b) for To_Address, just do an unchecked conversion. Not only is
3778         --  this efficient, but it also avoids order of elaboration problems
3779         --  when address clauses are inlined (address expression elaborated
3780         --  at the wrong point).
3781
3782         --  We perform these optimization regardless of whether we are in the
3783         --  main unit or in a unit in the context of the main unit, to ensure
3784         --  that tree generated is the same in both cases, for CodePeer use.
3785
3786         if Is_RTE (Subp, RE_To_Address) then
3787            Rewrite (Call_Node,
3788              Unchecked_Convert_To
3789                (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
3790            return;
3791
3792         elsif Is_Null_Procedure (Subp)  then
3793            Rewrite (Call_Node, Make_Null_Statement (Loc));
3794            return;
3795         end if;
3796
3797         --  Handle inlining. No action needed if the subprogram is not inlined
3798
3799         if not Is_Inlined (Subp) then
3800            null;
3801
3802         --  Handle frontend inlining
3803
3804         elsif not Back_End_Inlining then
3805            Inlined_Subprogram : declare
3806               Bod         : Node_Id;
3807               Must_Inline : Boolean := False;
3808               Spec        : constant Node_Id := Unit_Declaration_Node (Subp);
3809
3810            begin
3811               --  Verify that the body to inline has already been seen, and
3812               --  that if the body is in the current unit the inlining does
3813               --  not occur earlier. This avoids order-of-elaboration problems
3814               --  in the back end.
3815
3816               --  This should be documented in sinfo/einfo ???
3817
3818               if No (Spec)
3819                 or else Nkind (Spec) /= N_Subprogram_Declaration
3820                 or else No (Body_To_Inline (Spec))
3821               then
3822                  Must_Inline := False;
3823
3824               --  If this an inherited function that returns a private type,
3825               --  do not inline if the full view is an unconstrained array,
3826               --  because such calls cannot be inlined.
3827
3828               elsif Present (Orig_Subp)
3829                 and then Is_Array_Type (Etype (Orig_Subp))
3830                 and then not Is_Constrained (Etype (Orig_Subp))
3831               then
3832                  Must_Inline := False;
3833
3834               elsif In_Unfrozen_Instance (Scope (Subp)) then
3835                  Must_Inline := False;
3836
3837               else
3838                  Bod := Body_To_Inline (Spec);
3839
3840                  if (In_Extended_Main_Code_Unit (Call_Node)
3841                        or else In_Extended_Main_Code_Unit (Parent (Call_Node))
3842                        or else Has_Pragma_Inline_Always (Subp))
3843                    and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
3844                               or else
3845                                 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
3846                  then
3847                     Must_Inline := True;
3848
3849                  --  If we are compiling a package body that is not the main
3850                  --  unit, it must be for inlining/instantiation purposes,
3851                  --  in which case we inline the call to insure that the same
3852                  --  temporaries are generated when compiling the body by
3853                  --  itself. Otherwise link errors can occur.
3854
3855                  --  If the function being called is itself in the main unit,
3856                  --  we cannot inline, because there is a risk of double
3857                  --  elaboration and/or circularity: the inlining can make
3858                  --  visible a private entity in the body of the main unit,
3859                  --  that gigi will see before its sees its proper definition.
3860
3861                  elsif not (In_Extended_Main_Code_Unit (Call_Node))
3862                    and then In_Package_Body
3863                  then
3864                     Must_Inline := not In_Extended_Main_Source_Unit (Subp);
3865                  end if;
3866               end if;
3867
3868               if Must_Inline then
3869                  Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
3870
3871               else
3872                  --  Let the back end handle it
3873
3874                  Add_Inlined_Body (Subp, Call_Node);
3875
3876                  if Front_End_Inlining
3877                    and then Nkind (Spec) = N_Subprogram_Declaration
3878                    and then (In_Extended_Main_Code_Unit (Call_Node))
3879                    and then No (Body_To_Inline (Spec))
3880                    and then not Has_Completion (Subp)
3881                    and then In_Same_Extended_Unit (Sloc (Spec), Loc)
3882                  then
3883                     Cannot_Inline
3884                       ("cannot inline& (body not seen yet)?",
3885                        Call_Node, Subp);
3886                  end if;
3887               end if;
3888            end Inlined_Subprogram;
3889
3890         --  Back end inlining: let the back end handle it
3891
3892         elsif No (Unit_Declaration_Node (Subp))
3893           or else Nkind (Unit_Declaration_Node (Subp)) /=
3894                                                 N_Subprogram_Declaration
3895           or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
3896           or else Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) in
3897                                                                      N_Entity
3898         then
3899            Add_Inlined_Body (Subp, Call_Node);
3900
3901         --  Front end expansion of simple functions returning unconstrained
3902         --  types (see Check_And_Split_Unconstrained_Function). Note that the
3903         --  case of a simple renaming (Body_To_Inline in N_Entity above, see
3904         --  also Build_Renamed_Body) cannot be expanded here because this may
3905         --  give rise to order-of-elaboration issues for the types of the
3906         --  parameters of the subprogram, if any.
3907
3908         else
3909            Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
3910         end if;
3911      end if;
3912
3913      --  Check for protected subprogram. This is either an intra-object call,
3914      --  or a protected function call. Protected procedure calls are rewritten
3915      --  as entry calls and handled accordingly.
3916
3917      --  In Ada 2005, this may be an indirect call to an access parameter that
3918      --  is an access_to_subprogram. In that case the anonymous type has a
3919      --  scope that is a protected operation, but the call is a regular one.
3920      --  In either case do not expand call if subprogram is eliminated.
3921
3922      Scop := Scope (Subp);
3923
3924      if Nkind (Call_Node) /= N_Entry_Call_Statement
3925        and then Is_Protected_Type (Scop)
3926        and then Ekind (Subp) /= E_Subprogram_Type
3927        and then not Is_Eliminated (Subp)
3928      then
3929         --  If the call is an internal one, it is rewritten as a call to the
3930         --  corresponding unprotected subprogram.
3931
3932         Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
3933      end if;
3934
3935      --  Functions returning controlled objects need special attention. If
3936      --  the return type is limited, then the context is initialization and
3937      --  different processing applies. If the call is to a protected function,
3938      --  the expansion above will call Expand_Call recursively. Otherwise the
3939      --  function call is transformed into a temporary which obtains the
3940      --  result from the secondary stack.
3941
3942      if Needs_Finalization (Etype (Subp)) then
3943         if not Is_Limited_View (Etype (Subp))
3944           and then
3945             (No (First_Formal (Subp))
3946                or else
3947                  not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
3948         then
3949            Expand_Ctrl_Function_Call (Call_Node);
3950
3951         --  Build-in-place function calls which appear in anonymous contexts
3952         --  need a transient scope to ensure the proper finalization of the
3953         --  intermediate result after its use.
3954
3955         elsif Is_Build_In_Place_Function_Call (Call_Node)
3956           and then
3957             Nkind_In (Parent (Call_Node), N_Attribute_Reference,
3958                                           N_Function_Call,
3959                                           N_Indexed_Component,
3960                                           N_Object_Renaming_Declaration,
3961                                           N_Procedure_Call_Statement,
3962                                           N_Selected_Component,
3963                                           N_Slice)
3964         then
3965            Establish_Transient_Scope (Call_Node, Sec_Stack => True);
3966         end if;
3967      end if;
3968   end Expand_Call;
3969
3970   -------------------------------
3971   -- Expand_Ctrl_Function_Call --
3972   -------------------------------
3973
3974   procedure Expand_Ctrl_Function_Call (N : Node_Id) is
3975      function Is_Element_Reference (N : Node_Id) return Boolean;
3976      --  Determine whether node N denotes a reference to an Ada 2012 container
3977      --  element.
3978
3979      --------------------------
3980      -- Is_Element_Reference --
3981      --------------------------
3982
3983      function Is_Element_Reference (N : Node_Id) return Boolean is
3984         Ref : constant Node_Id := Original_Node (N);
3985
3986      begin
3987         --  Analysis marks an element reference by setting the generalized
3988         --  indexing attribute of an indexed component before the component
3989         --  is rewritten into a function call.
3990
3991         return
3992           Nkind (Ref) = N_Indexed_Component
3993             and then Present (Generalized_Indexing (Ref));
3994      end Is_Element_Reference;
3995
3996      --  Local variables
3997
3998      Is_Elem_Ref : constant Boolean := Is_Element_Reference (N);
3999
4000   --  Start of processing for Expand_Ctrl_Function_Call
4001
4002   begin
4003      --  Optimization, if the returned value (which is on the sec-stack) is
4004      --  returned again, no need to copy/readjust/finalize, we can just pass
4005      --  the value thru (see Expand_N_Simple_Return_Statement), and thus no
4006      --  attachment is needed
4007
4008      if Nkind (Parent (N)) = N_Simple_Return_Statement then
4009         return;
4010      end if;
4011
4012      --  Resolution is now finished, make sure we don't start analysis again
4013      --  because of the duplication.
4014
4015      Set_Analyzed (N);
4016
4017      --  A function which returns a controlled object uses the secondary
4018      --  stack. Rewrite the call into a temporary which obtains the result of
4019      --  the function using 'reference.
4020
4021      Remove_Side_Effects (N);
4022
4023      --  When the temporary function result appears inside a case expression
4024      --  or an if expression, its lifetime must be extended to match that of
4025      --  the context. If not, the function result will be finalized too early
4026      --  and the evaluation of the expression could yield incorrect result. An
4027      --  exception to this rule are references to Ada 2012 container elements.
4028      --  Such references must be finalized at the end of each iteration of the
4029      --  related quantified expression, otherwise the container will remain
4030      --  busy.
4031
4032      if not Is_Elem_Ref
4033        and then Within_Case_Or_If_Expression (N)
4034        and then Nkind (N) = N_Explicit_Dereference
4035      then
4036         Set_Is_Processed_Transient (Entity (Prefix (N)));
4037      end if;
4038   end Expand_Ctrl_Function_Call;
4039
4040   ----------------------------------------
4041   -- Expand_N_Extended_Return_Statement --
4042   ----------------------------------------
4043
4044   --  If there is a Handled_Statement_Sequence, we rewrite this:
4045
4046   --     return Result : T := <expression> do
4047   --        <handled_seq_of_stms>
4048   --     end return;
4049
4050   --  to be:
4051
4052   --     declare
4053   --        Result : T := <expression>;
4054   --     begin
4055   --        <handled_seq_of_stms>
4056   --        return Result;
4057   --     end;
4058
4059   --  Otherwise (no Handled_Statement_Sequence), we rewrite this:
4060
4061   --     return Result : T := <expression>;
4062
4063   --  to be:
4064
4065   --     return <expression>;
4066
4067   --  unless it's build-in-place or there's no <expression>, in which case
4068   --  we generate:
4069
4070   --     declare
4071   --        Result : T := <expression>;
4072   --     begin
4073   --        return Result;
4074   --     end;
4075
4076   --  Note that this case could have been written by the user as an extended
4077   --  return statement, or could have been transformed to this from a simple
4078   --  return statement.
4079
4080   --  That is, we need to have a reified return object if there are statements
4081   --  (which might refer to it) or if we're doing build-in-place (so we can
4082   --  set its address to the final resting place or if there is no expression
4083   --  (in which case default initial values might need to be set).
4084
4085   procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4086      Loc : constant Source_Ptr := Sloc (N);
4087
4088      function Build_Heap_Allocator
4089        (Temp_Id    : Entity_Id;
4090         Temp_Typ   : Entity_Id;
4091         Func_Id    : Entity_Id;
4092         Ret_Typ    : Entity_Id;
4093         Alloc_Expr : Node_Id) return Node_Id;
4094      --  Create the statements necessary to allocate a return object on the
4095      --  caller's master. The master is available through implicit parameter
4096      --  BIPfinalizationmaster.
4097      --
4098      --    if BIPfinalizationmaster /= null then
4099      --       declare
4100      --          type Ptr_Typ is access Ret_Typ;
4101      --          for Ptr_Typ'Storage_Pool use
4102      --                Base_Pool (BIPfinalizationmaster.all).all;
4103      --          Local : Ptr_Typ;
4104      --
4105      --       begin
4106      --          procedure Allocate (...) is
4107      --          begin
4108      --             System.Storage_Pools.Subpools.Allocate_Any (...);
4109      --          end Allocate;
4110      --
4111      --          Local := <Alloc_Expr>;
4112      --          Temp_Id := Temp_Typ (Local);
4113      --       end;
4114      --    end if;
4115      --
4116      --  Temp_Id is the temporary which is used to reference the internally
4117      --  created object in all allocation forms. Temp_Typ is the type of the
4118      --  temporary. Func_Id is the enclosing function. Ret_Typ is the return
4119      --  type of Func_Id. Alloc_Expr is the actual allocator.
4120
4121      function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
4122      --  Construct a call to System.Tasking.Stages.Move_Activation_Chain
4123      --  with parameters:
4124      --    From         current activation chain
4125      --    To           activation chain passed in by the caller
4126      --    New_Master   master passed in by the caller
4127      --
4128      --  Func_Id is the entity of the function where the extended return
4129      --  statement appears.
4130
4131      --------------------------
4132      -- Build_Heap_Allocator --
4133      --------------------------
4134
4135      function Build_Heap_Allocator
4136        (Temp_Id    : Entity_Id;
4137         Temp_Typ   : Entity_Id;
4138         Func_Id    : Entity_Id;
4139         Ret_Typ    : Entity_Id;
4140         Alloc_Expr : Node_Id) return Node_Id
4141      is
4142      begin
4143         pragma Assert (Is_Build_In_Place_Function (Func_Id));
4144
4145         --  Processing for build-in-place object allocation.
4146
4147         if Needs_Finalization (Ret_Typ) then
4148            declare
4149               Decls      : constant List_Id := New_List;
4150               Fin_Mas_Id : constant Entity_Id :=
4151                              Build_In_Place_Formal
4152                                (Func_Id, BIP_Finalization_Master);
4153               Stmts      : constant List_Id := New_List;
4154               Desig_Typ  : Entity_Id;
4155               Local_Id   : Entity_Id;
4156               Pool_Id    : Entity_Id;
4157               Ptr_Typ    : Entity_Id;
4158
4159            begin
4160               --  Generate:
4161               --    Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4162
4163               Pool_Id := Make_Temporary (Loc, 'P');
4164
4165               Append_To (Decls,
4166                 Make_Object_Renaming_Declaration (Loc,
4167                   Defining_Identifier => Pool_Id,
4168                   Subtype_Mark        =>
4169                     New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4170                   Name                =>
4171                     Make_Explicit_Dereference (Loc,
4172                       Prefix =>
4173                         Make_Function_Call (Loc,
4174                           Name                   =>
4175                             New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4176                           Parameter_Associations => New_List (
4177                             Make_Explicit_Dereference (Loc,
4178                               Prefix =>
4179                                 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4180
4181               --  Create an access type which uses the storage pool of the
4182               --  caller's master. This additional type is necessary because
4183               --  the finalization master cannot be associated with the type
4184               --  of the temporary. Otherwise the secondary stack allocation
4185               --  will fail.
4186
4187               Desig_Typ := Ret_Typ;
4188
4189               --  Ensure that the build-in-place machinery uses a fat pointer
4190               --  when allocating an unconstrained array on the heap. In this
4191               --  case the result object type is a constrained array type even
4192               --  though the function type is unconstrained.
4193
4194               if Ekind (Desig_Typ) = E_Array_Subtype then
4195                  Desig_Typ := Base_Type (Desig_Typ);
4196               end if;
4197
4198               --  Generate:
4199               --    type Ptr_Typ is access Desig_Typ;
4200
4201               Ptr_Typ := Make_Temporary (Loc, 'P');
4202
4203               Append_To (Decls,
4204                 Make_Full_Type_Declaration (Loc,
4205                   Defining_Identifier => Ptr_Typ,
4206                   Type_Definition     =>
4207                     Make_Access_To_Object_Definition (Loc,
4208                       Subtype_Indication =>
4209                         New_Occurrence_Of (Desig_Typ, Loc))));
4210
4211               --  Perform minor decoration in order to set the master and the
4212               --  storage pool attributes.
4213
4214               Set_Ekind (Ptr_Typ, E_Access_Type);
4215               Set_Finalization_Master     (Ptr_Typ, Fin_Mas_Id);
4216               Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4217
4218               --  Create the temporary, generate:
4219               --    Local_Id : Ptr_Typ;
4220
4221               Local_Id := Make_Temporary (Loc, 'T');
4222
4223               Append_To (Decls,
4224                 Make_Object_Declaration (Loc,
4225                   Defining_Identifier => Local_Id,
4226                   Object_Definition   =>
4227                     New_Occurrence_Of (Ptr_Typ, Loc)));
4228
4229               --  Allocate the object, generate:
4230               --    Local_Id := <Alloc_Expr>;
4231
4232               Append_To (Stmts,
4233                 Make_Assignment_Statement (Loc,
4234                   Name       => New_Occurrence_Of (Local_Id, Loc),
4235                   Expression => Alloc_Expr));
4236
4237               --  Generate:
4238               --    Temp_Id := Temp_Typ (Local_Id);
4239
4240               Append_To (Stmts,
4241                 Make_Assignment_Statement (Loc,
4242                   Name       => New_Occurrence_Of (Temp_Id, Loc),
4243                   Expression =>
4244                     Unchecked_Convert_To (Temp_Typ,
4245                       New_Occurrence_Of (Local_Id, Loc))));
4246
4247               --  Wrap the allocation in a block. This is further conditioned
4248               --  by checking the caller finalization master at runtime. A
4249               --  null value indicates a non-existent master, most likely due
4250               --  to a Finalize_Storage_Only allocation.
4251
4252               --  Generate:
4253               --    if BIPfinalizationmaster /= null then
4254               --       declare
4255               --          <Decls>
4256               --       begin
4257               --          <Stmts>
4258               --       end;
4259               --    end if;
4260
4261               return
4262                 Make_If_Statement (Loc,
4263                   Condition       =>
4264                     Make_Op_Ne (Loc,
4265                       Left_Opnd  => New_Occurrence_Of (Fin_Mas_Id, Loc),
4266                       Right_Opnd => Make_Null (Loc)),
4267
4268                   Then_Statements => New_List (
4269                     Make_Block_Statement (Loc,
4270                       Declarations               => Decls,
4271                       Handled_Statement_Sequence =>
4272                         Make_Handled_Sequence_Of_Statements (Loc,
4273                           Statements => Stmts))));
4274            end;
4275
4276         --  For all other cases, generate:
4277         --    Temp_Id := <Alloc_Expr>;
4278
4279         else
4280            return
4281              Make_Assignment_Statement (Loc,
4282                Name       => New_Occurrence_Of (Temp_Id, Loc),
4283                Expression => Alloc_Expr);
4284         end if;
4285      end Build_Heap_Allocator;
4286
4287      ---------------------------
4288      -- Move_Activation_Chain --
4289      ---------------------------
4290
4291      function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
4292      begin
4293         return
4294           Make_Procedure_Call_Statement (Loc,
4295             Name                   =>
4296               New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4297
4298             Parameter_Associations => New_List (
4299
4300               --  Source chain
4301
4302               Make_Attribute_Reference (Loc,
4303                 Prefix         => Make_Identifier (Loc, Name_uChain),
4304                 Attribute_Name => Name_Unrestricted_Access),
4305
4306               --  Destination chain
4307
4308               New_Occurrence_Of
4309                 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
4310
4311               --  New master
4312
4313               New_Occurrence_Of
4314                 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
4315      end Move_Activation_Chain;
4316
4317      --  Local variables
4318
4319      Func_Id      : constant Entity_Id :=
4320                       Return_Applies_To (Return_Statement_Entity (N));
4321      Is_BIP_Func  : constant Boolean   :=
4322                       Is_Build_In_Place_Function (Func_Id);
4323      Ret_Obj_Id   : constant Entity_Id :=
4324                       First_Entity (Return_Statement_Entity (N));
4325      Ret_Obj_Decl : constant Node_Id   := Parent (Ret_Obj_Id);
4326      Ret_Typ      : constant Entity_Id := Etype (Func_Id);
4327
4328      Exp         : Node_Id;
4329      HSS         : Node_Id;
4330      Result      : Node_Id;
4331      Return_Stmt : Node_Id;
4332      Stmts       : List_Id;
4333
4334   --  Start of processing for Expand_N_Extended_Return_Statement
4335
4336   begin
4337      --  Given that functionality of interface thunks is simple (just displace
4338      --  the pointer to the object) they are always handled by means of
4339      --  simple return statements.
4340
4341      pragma Assert (not Is_Thunk (Current_Scope));
4342
4343      if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4344         Exp := Expression (Ret_Obj_Decl);
4345      else
4346         Exp := Empty;
4347      end if;
4348
4349      HSS := Handled_Statement_Sequence (N);
4350
4351      --  If the returned object needs finalization actions, the function must
4352      --  perform the appropriate cleanup should it fail to return. The state
4353      --  of the function itself is tracked through a flag which is coupled
4354      --  with the scope finalizer. There is one flag per each return object
4355      --  in case of multiple returns.
4356
4357      if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4358         declare
4359            Flag_Decl : Node_Id;
4360            Flag_Id   : Entity_Id;
4361            Func_Bod  : Node_Id;
4362
4363         begin
4364            --  Recover the function body
4365
4366            Func_Bod := Unit_Declaration_Node (Func_Id);
4367
4368            if Nkind (Func_Bod) = N_Subprogram_Declaration then
4369               Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4370            end if;
4371
4372            --  Create a flag to track the function state
4373
4374            Flag_Id := Make_Temporary (Loc, 'F');
4375            Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
4376
4377            --  Insert the flag at the beginning of the function declarations,
4378            --  generate:
4379            --    Fnn : Boolean := False;
4380
4381            Flag_Decl :=
4382              Make_Object_Declaration (Loc,
4383                Defining_Identifier => Flag_Id,
4384                  Object_Definition =>
4385                    New_Occurrence_Of (Standard_Boolean, Loc),
4386                  Expression        =>
4387                    New_Occurrence_Of (Standard_False, Loc));
4388
4389            Prepend_To (Declarations (Func_Bod), Flag_Decl);
4390            Analyze (Flag_Decl);
4391         end;
4392      end if;
4393
4394      --  Build a simple_return_statement that returns the return object when
4395      --  there is a statement sequence, or no expression, or the result will
4396      --  be built in place. Note however that we currently do this for all
4397      --  composite cases, even though nonlimited composite results are not yet
4398      --  built in place (though we plan to do so eventually).
4399
4400      if Present (HSS)
4401        or else Is_Composite_Type (Ret_Typ)
4402        or else No (Exp)
4403      then
4404         if No (HSS) then
4405            Stmts := New_List;
4406
4407         --  If the extended return has a handled statement sequence, then wrap
4408         --  it in a block and use the block as the first statement.
4409
4410         else
4411            Stmts := New_List (
4412              Make_Block_Statement (Loc,
4413                Declarations               => New_List,
4414                Handled_Statement_Sequence => HSS));
4415         end if;
4416
4417         --  If the result type contains tasks, we call Move_Activation_Chain.
4418         --  Later, the cleanup code will call Complete_Master, which will
4419         --  terminate any unactivated tasks belonging to the return statement
4420         --  master. But Move_Activation_Chain updates their master to be that
4421         --  of the caller, so they will not be terminated unless the return
4422         --  statement completes unsuccessfully due to exception, abort, goto,
4423         --  or exit. As a formality, we test whether the function requires the
4424         --  result to be built in place, though that's necessarily true for
4425         --  the case of result types with task parts.
4426
4427         if Is_BIP_Func and then Has_Task (Ret_Typ) then
4428
4429            --  The return expression is an aggregate for a complex type which
4430            --  contains tasks. This particular case is left unexpanded since
4431            --  the regular expansion would insert all temporaries and
4432            --  initialization code in the wrong block.
4433
4434            if Nkind (Exp) = N_Aggregate then
4435               Expand_N_Aggregate (Exp);
4436            end if;
4437
4438            --  Do not move the activation chain if the return object does not
4439            --  contain tasks.
4440
4441            if Has_Task (Etype (Ret_Obj_Id)) then
4442               Append_To (Stmts, Move_Activation_Chain (Func_Id));
4443            end if;
4444         end if;
4445
4446         --  Update the state of the function right before the object is
4447         --  returned.
4448
4449         if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4450            declare
4451               Flag_Id : constant Entity_Id :=
4452                           Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4453
4454            begin
4455               --  Generate:
4456               --    Fnn := True;
4457
4458               Append_To (Stmts,
4459                 Make_Assignment_Statement (Loc,
4460                   Name       => New_Occurrence_Of (Flag_Id, Loc),
4461                   Expression => New_Occurrence_Of (Standard_True, Loc)));
4462            end;
4463         end if;
4464
4465         --  Build a simple_return_statement that returns the return object
4466
4467         Return_Stmt :=
4468           Make_Simple_Return_Statement (Loc,
4469             Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
4470         Append_To (Stmts, Return_Stmt);
4471
4472         HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
4473      end if;
4474
4475      --  Case where we build a return statement block
4476
4477      if Present (HSS) then
4478         Result :=
4479           Make_Block_Statement (Loc,
4480             Declarations               => Return_Object_Declarations (N),
4481             Handled_Statement_Sequence => HSS);
4482
4483         --  We set the entity of the new block statement to be that of the
4484         --  return statement. This is necessary so that various fields, such
4485         --  as Finalization_Chain_Entity carry over from the return statement
4486         --  to the block. Note that this block is unusual, in that its entity
4487         --  is an E_Return_Statement rather than an E_Block.
4488
4489         Set_Identifier
4490           (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4491
4492         --  If the object decl was already rewritten as a renaming, then we
4493         --  don't want to do the object allocation and transformation of
4494         --  the return object declaration to a renaming. This case occurs
4495         --  when the return object is initialized by a call to another
4496         --  build-in-place function, and that function is responsible for
4497         --  the allocation of the return object.
4498
4499         if Is_BIP_Func
4500           and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
4501         then
4502            pragma Assert
4503              (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4504                and then Is_Build_In_Place_Function_Call
4505                           (Expression (Original_Node (Ret_Obj_Decl))));
4506
4507            --  Return the build-in-place result by reference
4508
4509            Set_By_Ref (Return_Stmt);
4510
4511         elsif Is_BIP_Func then
4512
4513            --  Locate the implicit access parameter associated with the
4514            --  caller-supplied return object and convert the return
4515            --  statement's return object declaration to a renaming of a
4516            --  dereference of the access parameter. If the return object's
4517            --  declaration includes an expression that has not already been
4518            --  expanded as separate assignments, then add an assignment
4519            --  statement to ensure the return object gets initialized.
4520
4521            --    declare
4522            --       Result : T [:= <expression>];
4523            --    begin
4524            --       ...
4525
4526            --  is converted to
4527
4528            --    declare
4529            --       Result : T renames FuncRA.all;
4530            --       [Result := <expression;]
4531            --    begin
4532            --       ...
4533
4534            declare
4535               Ret_Obj_Expr : constant Node_Id   := Expression (Ret_Obj_Decl);
4536               Ret_Obj_Typ  : constant Entity_Id := Etype (Ret_Obj_Id);
4537
4538               Init_Assignment  : Node_Id := Empty;
4539               Obj_Acc_Formal   : Entity_Id;
4540               Obj_Acc_Deref    : Node_Id;
4541               Obj_Alloc_Formal : Entity_Id;
4542
4543            begin
4544               --  Build-in-place results must be returned by reference
4545
4546               Set_By_Ref (Return_Stmt);
4547
4548               --  Retrieve the implicit access parameter passed by the caller
4549
4550               Obj_Acc_Formal :=
4551                 Build_In_Place_Formal (Func_Id, BIP_Object_Access);
4552
4553               --  If the return object's declaration includes an expression
4554               --  and the declaration isn't marked as No_Initialization, then
4555               --  we need to generate an assignment to the object and insert
4556               --  it after the declaration before rewriting it as a renaming
4557               --  (otherwise we'll lose the initialization). The case where
4558               --  the result type is an interface (or class-wide interface)
4559               --  is also excluded because the context of the function call
4560               --  must be unconstrained, so the initialization will always
4561               --  be done as part of an allocator evaluation (storage pool
4562               --  or secondary stack), never to a constrained target object
4563               --  passed in by the caller. Besides the assignment being
4564               --  unneeded in this case, it avoids problems with trying to
4565               --  generate a dispatching assignment when the return expression
4566               --  is a nonlimited descendant of a limited interface (the
4567               --  interface has no assignment operation).
4568
4569               if Present (Ret_Obj_Expr)
4570                 and then not No_Initialization (Ret_Obj_Decl)
4571                 and then not Is_Interface (Ret_Obj_Typ)
4572               then
4573                  Init_Assignment :=
4574                    Make_Assignment_Statement (Loc,
4575                      Name       => New_Occurrence_Of (Ret_Obj_Id, Loc),
4576                      Expression => Relocate_Node (Ret_Obj_Expr));
4577
4578                  Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
4579                  Set_Assignment_OK (Name (Init_Assignment));
4580                  Set_No_Ctrl_Actions (Init_Assignment);
4581
4582                  Set_Parent (Name (Init_Assignment), Init_Assignment);
4583                  Set_Parent (Expression (Init_Assignment), Init_Assignment);
4584
4585                  Set_Expression (Ret_Obj_Decl, Empty);
4586
4587                  if Is_Class_Wide_Type (Etype (Ret_Obj_Id))
4588                    and then not Is_Class_Wide_Type
4589                                   (Etype (Expression (Init_Assignment)))
4590                  then
4591                     Rewrite (Expression (Init_Assignment),
4592                       Make_Type_Conversion (Loc,
4593                         Subtype_Mark =>
4594                           New_Occurrence_Of (Etype (Ret_Obj_Id), Loc),
4595                         Expression   =>
4596                           Relocate_Node (Expression (Init_Assignment))));
4597                  end if;
4598
4599                  --  In the case of functions where the calling context can
4600                  --  determine the form of allocation needed, initialization
4601                  --  is done with each part of the if statement that handles
4602                  --  the different forms of allocation (this is true for
4603                  --  unconstrained and tagged result subtypes).
4604
4605                  if Is_Constrained (Ret_Typ)
4606                    and then not Is_Tagged_Type (Underlying_Type (Ret_Typ))
4607                  then
4608                     Insert_After (Ret_Obj_Decl, Init_Assignment);
4609                  end if;
4610               end if;
4611
4612               --  When the function's subtype is unconstrained, a run-time
4613               --  test is needed to determine the form of allocation to use
4614               --  for the return object. The function has an implicit formal
4615               --  parameter indicating this. If the BIP_Alloc_Form formal has
4616               --  the value one, then the caller has passed access to an
4617               --  existing object for use as the return object. If the value
4618               --  is two, then the return object must be allocated on the
4619               --  secondary stack. Otherwise, the object must be allocated in
4620               --  a storage pool (currently only supported for the global
4621               --  heap, user-defined storage pools TBD ???). We generate an
4622               --  if statement to test the implicit allocation formal and
4623               --  initialize a local access value appropriately, creating
4624               --  allocators in the secondary stack and global heap cases.
4625               --  The special formal also exists and must be tested when the
4626               --  function has a tagged result, even when the result subtype
4627               --  is constrained, because in general such functions can be
4628               --  called in dispatching contexts and must be handled similarly
4629               --  to functions with a class-wide result.
4630
4631               if not Is_Constrained (Ret_Typ)
4632                 or else Is_Tagged_Type (Underlying_Type (Ret_Typ))
4633               then
4634                  Obj_Alloc_Formal :=
4635                    Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
4636
4637                  declare
4638                     Pool_Id        : constant Entity_Id :=
4639                                        Make_Temporary (Loc, 'P');
4640                     Alloc_Obj_Id   : Entity_Id;
4641                     Alloc_Obj_Decl : Node_Id;
4642                     Alloc_If_Stmt  : Node_Id;
4643                     Heap_Allocator : Node_Id;
4644                     Pool_Decl      : Node_Id;
4645                     Pool_Allocator : Node_Id;
4646                     Ptr_Type_Decl  : Node_Id;
4647                     Ref_Type       : Entity_Id;
4648                     SS_Allocator   : Node_Id;
4649
4650                  begin
4651                     --  Reuse the itype created for the function's implicit
4652                     --  access formal. This avoids the need to create a new
4653                     --  access type here, plus it allows assigning the access
4654                     --  formal directly without applying a conversion.
4655
4656                     --    Ref_Type := Etype (Object_Access);
4657
4658                     --  Create an access type designating the function's
4659                     --  result subtype.
4660
4661                     Ref_Type := Make_Temporary (Loc, 'A');
4662
4663                     Ptr_Type_Decl :=
4664                       Make_Full_Type_Declaration (Loc,
4665                         Defining_Identifier => Ref_Type,
4666                         Type_Definition     =>
4667                           Make_Access_To_Object_Definition (Loc,
4668                             All_Present        => True,
4669                             Subtype_Indication =>
4670                               New_Occurrence_Of (Ret_Obj_Typ, Loc)));
4671
4672                     Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
4673
4674                     --  Create an access object that will be initialized to an
4675                     --  access value denoting the return object, either coming
4676                     --  from an implicit access value passed in by the caller
4677                     --  or from the result of an allocator.
4678
4679                     Alloc_Obj_Id := Make_Temporary (Loc, 'R');
4680                     Set_Etype (Alloc_Obj_Id, Ref_Type);
4681
4682                     Alloc_Obj_Decl :=
4683                       Make_Object_Declaration (Loc,
4684                         Defining_Identifier => Alloc_Obj_Id,
4685                         Object_Definition   =>
4686                           New_Occurrence_Of (Ref_Type, Loc));
4687
4688                     Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
4689
4690                     --  Create allocators for both the secondary stack and
4691                     --  global heap. If there's an initialization expression,
4692                     --  then create these as initialized allocators.
4693
4694                     if Present (Ret_Obj_Expr)
4695                       and then not No_Initialization (Ret_Obj_Decl)
4696                     then
4697                        --  Always use the type of the expression for the
4698                        --  qualified expression, rather than the result type.
4699                        --  In general we cannot always use the result type
4700                        --  for the allocator, because the expression might be
4701                        --  of a specific type, such as in the case of an
4702                        --  aggregate or even a nonlimited object when the
4703                        --  result type is a limited class-wide interface type.
4704
4705                        Heap_Allocator :=
4706                          Make_Allocator (Loc,
4707                            Expression =>
4708                              Make_Qualified_Expression (Loc,
4709                                Subtype_Mark =>
4710                                  New_Occurrence_Of
4711                                    (Etype (Ret_Obj_Expr), Loc),
4712                                Expression   => New_Copy_Tree (Ret_Obj_Expr)));
4713
4714                     else
4715                        --  If the function returns a class-wide type we cannot
4716                        --  use the return type for the allocator. Instead we
4717                        --  use the type of the expression, which must be an
4718                        --  aggregate of a definite type.
4719
4720                        if Is_Class_Wide_Type (Ret_Obj_Typ) then
4721                           Heap_Allocator :=
4722                             Make_Allocator (Loc,
4723                               Expression =>
4724                                 New_Occurrence_Of
4725                                   (Etype (Ret_Obj_Expr), Loc));
4726                        else
4727                           Heap_Allocator :=
4728                             Make_Allocator (Loc,
4729                               Expression =>
4730                                 New_Occurrence_Of (Ret_Obj_Typ, Loc));
4731                        end if;
4732
4733                        --  If the object requires default initialization then
4734                        --  that will happen later following the elaboration of
4735                        --  the object renaming. If we don't turn it off here
4736                        --  then the object will be default initialized twice.
4737
4738                        Set_No_Initialization (Heap_Allocator);
4739                     end if;
4740
4741                     --  The Pool_Allocator is just like the Heap_Allocator,
4742                     --  except we set Storage_Pool and Procedure_To_Call so
4743                     --  it will use the user-defined storage pool.
4744
4745                     Pool_Allocator := New_Copy_Tree (Heap_Allocator);
4746
4747                     --  Do not generate the renaming of the build-in-place
4748                     --  pool parameter on ZFP because the parameter is not
4749                     --  created in the first place.
4750
4751                     if RTE_Available (RE_Root_Storage_Pool_Ptr) then
4752                        Pool_Decl :=
4753                          Make_Object_Renaming_Declaration (Loc,
4754                            Defining_Identifier => Pool_Id,
4755                            Subtype_Mark        =>
4756                              New_Occurrence_Of
4757                                (RTE (RE_Root_Storage_Pool), Loc),
4758                            Name                =>
4759                              Make_Explicit_Dereference (Loc,
4760                                New_Occurrence_Of
4761                                  (Build_In_Place_Formal
4762                                     (Func_Id, BIP_Storage_Pool), Loc)));
4763                        Set_Storage_Pool (Pool_Allocator, Pool_Id);
4764                        Set_Procedure_To_Call
4765                          (Pool_Allocator, RTE (RE_Allocate_Any));
4766                     else
4767                        Pool_Decl := Make_Null_Statement (Loc);
4768                     end if;
4769
4770                     --  If the No_Allocators restriction is active, then only
4771                     --  an allocator for secondary stack allocation is needed.
4772                     --  It's OK for such allocators to have Comes_From_Source
4773                     --  set to False, because gigi knows not to flag them as
4774                     --  being a violation of No_Implicit_Heap_Allocations.
4775
4776                     if Restriction_Active (No_Allocators) then
4777                        SS_Allocator   := Heap_Allocator;
4778                        Heap_Allocator := Make_Null (Loc);
4779                        Pool_Allocator := Make_Null (Loc);
4780
4781                     --  Otherwise the heap and pool allocators may be needed,
4782                     --  so we make another allocator for secondary stack
4783                     --  allocation.
4784
4785                     else
4786                        SS_Allocator := New_Copy_Tree (Heap_Allocator);
4787
4788                        --  The heap and pool allocators are marked as
4789                        --  Comes_From_Source since they correspond to an
4790                        --  explicit user-written allocator (that is, it will
4791                        --  only be executed on behalf of callers that call the
4792                        --  function as initialization for such an allocator).
4793                        --  Prevents errors when No_Implicit_Heap_Allocations
4794                        --  is in force.
4795
4796                        Set_Comes_From_Source (Heap_Allocator, True);
4797                        Set_Comes_From_Source (Pool_Allocator, True);
4798                     end if;
4799
4800                     --  The allocator is returned on the secondary stack.
4801
4802                     Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
4803                     Set_Procedure_To_Call
4804                       (SS_Allocator, RTE (RE_SS_Allocate));
4805
4806                     --  The allocator is returned on the secondary stack,
4807                     --  so indicate that the function return, as well as
4808                     --  all blocks that encloses the allocator, must not
4809                     --  release it. The flags must be set now because
4810                     --  the decision to use the secondary stack is done
4811                     --  very late in the course of expanding the return
4812                     --  statement, past the point where these flags are
4813                     --  normally set.
4814
4815                     Set_Uses_Sec_Stack (Func_Id);
4816                     Set_Uses_Sec_Stack (Return_Statement_Entity (N));
4817                     Set_Sec_Stack_Needed_For_Return
4818                       (Return_Statement_Entity (N));
4819                     Set_Enclosing_Sec_Stack_Return (N);
4820
4821                     --  Create an if statement to test the BIP_Alloc_Form
4822                     --  formal and initialize the access object to either the
4823                     --  BIP_Object_Access formal (BIP_Alloc_Form =
4824                     --  Caller_Allocation), the result of allocating the
4825                     --  object in the secondary stack (BIP_Alloc_Form =
4826                     --  Secondary_Stack), or else an allocator to create the
4827                     --  return object in the heap or user-defined pool
4828                     --  (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
4829
4830                     --  ??? An unchecked type conversion must be made in the
4831                     --  case of assigning the access object formal to the
4832                     --  local access object, because a normal conversion would
4833                     --  be illegal in some cases (such as converting access-
4834                     --  to-unconstrained to access-to-constrained), but the
4835                     --  the unchecked conversion will presumably fail to work
4836                     --  right in just such cases. It's not clear at all how to
4837                     --  handle this. ???
4838
4839                     Alloc_If_Stmt :=
4840                       Make_If_Statement (Loc,
4841                         Condition =>
4842                           Make_Op_Eq (Loc,
4843                             Left_Opnd  =>
4844                               New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4845                             Right_Opnd =>
4846                               Make_Integer_Literal (Loc,
4847                                 UI_From_Int (BIP_Allocation_Form'Pos
4848                                                (Caller_Allocation)))),
4849
4850                         Then_Statements => New_List (
4851                           Make_Assignment_Statement (Loc,
4852                             Name       =>
4853                               New_Occurrence_Of (Alloc_Obj_Id, Loc),
4854                             Expression =>
4855                               Make_Unchecked_Type_Conversion (Loc,
4856                                 Subtype_Mark =>
4857                                   New_Occurrence_Of (Ref_Type, Loc),
4858                                 Expression   =>
4859                                   New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
4860
4861                         Elsif_Parts => New_List (
4862                           Make_Elsif_Part (Loc,
4863                             Condition =>
4864                               Make_Op_Eq (Loc,
4865                                 Left_Opnd  =>
4866                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4867                                 Right_Opnd =>
4868                                   Make_Integer_Literal (Loc,
4869                                     UI_From_Int (BIP_Allocation_Form'Pos
4870                                                    (Secondary_Stack)))),
4871
4872                             Then_Statements => New_List (
4873                               Make_Assignment_Statement (Loc,
4874                                 Name       =>
4875                                   New_Occurrence_Of (Alloc_Obj_Id, Loc),
4876                                 Expression => SS_Allocator))),
4877
4878                           Make_Elsif_Part (Loc,
4879                             Condition =>
4880                               Make_Op_Eq (Loc,
4881                                 Left_Opnd  =>
4882                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4883                                 Right_Opnd =>
4884                                   Make_Integer_Literal (Loc,
4885                                     UI_From_Int (BIP_Allocation_Form'Pos
4886                                                    (Global_Heap)))),
4887
4888                             Then_Statements => New_List (
4889                               Build_Heap_Allocator
4890                                 (Temp_Id    => Alloc_Obj_Id,
4891                                  Temp_Typ   => Ref_Type,
4892                                  Func_Id    => Func_Id,
4893                                  Ret_Typ    => Ret_Obj_Typ,
4894                                  Alloc_Expr => Heap_Allocator)))),
4895
4896                         Else_Statements => New_List (
4897                           Pool_Decl,
4898                           Build_Heap_Allocator
4899                             (Temp_Id    => Alloc_Obj_Id,
4900                              Temp_Typ   => Ref_Type,
4901                              Func_Id    => Func_Id,
4902                              Ret_Typ    => Ret_Obj_Typ,
4903                              Alloc_Expr => Pool_Allocator)));
4904
4905                     --  If a separate initialization assignment was created
4906                     --  earlier, append that following the assignment of the
4907                     --  implicit access formal to the access object, to ensure
4908                     --  that the return object is initialized in that case. In
4909                     --  this situation, the target of the assignment must be
4910                     --  rewritten to denote a dereference of the access to the
4911                     --  return object passed in by the caller.
4912
4913                     if Present (Init_Assignment) then
4914                        Rewrite (Name (Init_Assignment),
4915                          Make_Explicit_Dereference (Loc,
4916                            Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
4917
4918                        Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
4919
4920                        Append_To
4921                          (Then_Statements (Alloc_If_Stmt), Init_Assignment);
4922                     end if;
4923
4924                     Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
4925
4926                     --  Remember the local access object for use in the
4927                     --  dereference of the renaming created below.
4928
4929                     Obj_Acc_Formal := Alloc_Obj_Id;
4930                  end;
4931               end if;
4932
4933               --  Replace the return object declaration with a renaming of a
4934               --  dereference of the access value designating the return
4935               --  object.
4936
4937               Obj_Acc_Deref :=
4938                 Make_Explicit_Dereference (Loc,
4939                   Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
4940
4941               Rewrite (Ret_Obj_Decl,
4942                 Make_Object_Renaming_Declaration (Loc,
4943                   Defining_Identifier => Ret_Obj_Id,
4944                   Access_Definition   => Empty,
4945                   Subtype_Mark        => New_Occurrence_Of (Ret_Obj_Typ, Loc),
4946                   Name                => Obj_Acc_Deref));
4947
4948               Set_Renamed_Object (Ret_Obj_Id, Obj_Acc_Deref);
4949            end;
4950         end if;
4951
4952      --  Case where we do not build a block
4953
4954      else
4955         --  We're about to drop Return_Object_Declarations on the floor, so
4956         --  we need to insert it, in case it got expanded into useful code.
4957         --  Remove side effects from expression, which may be duplicated in
4958         --  subsequent checks (see Expand_Simple_Function_Return).
4959
4960         Insert_List_Before (N, Return_Object_Declarations (N));
4961         Remove_Side_Effects (Exp);
4962
4963         --  Build simple_return_statement that returns the expression directly
4964
4965         Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
4966         Result := Return_Stmt;
4967      end if;
4968
4969      --  Set the flag to prevent infinite recursion
4970
4971      Set_Comes_From_Extended_Return_Statement (Return_Stmt);
4972
4973      Rewrite (N, Result);
4974      Analyze (N);
4975   end Expand_N_Extended_Return_Statement;
4976
4977   ----------------------------
4978   -- Expand_N_Function_Call --
4979   ----------------------------
4980
4981   procedure Expand_N_Function_Call (N : Node_Id) is
4982   begin
4983      Expand_Call (N);
4984   end Expand_N_Function_Call;
4985
4986   ---------------------------------------
4987   -- Expand_N_Procedure_Call_Statement --
4988   ---------------------------------------
4989
4990   procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
4991      Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
4992
4993   begin
4994      --  The procedure call is Ghost when the name is Ghost. Set the mode now
4995      --  to ensure that any nodes generated during expansion are properly set
4996      --  as Ghost.
4997
4998      Set_Ghost_Mode (N);
4999
5000      Expand_Call (N);
5001      Ghost_Mode := Save_Ghost_Mode;
5002   end Expand_N_Procedure_Call_Statement;
5003
5004   --------------------------------------
5005   -- Expand_N_Simple_Return_Statement --
5006   --------------------------------------
5007
5008   procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5009   begin
5010      --  Defend against previous errors (i.e. the return statement calls a
5011      --  function that is not available in configurable runtime).
5012
5013      if Present (Expression (N))
5014        and then Nkind (Expression (N)) = N_Empty
5015      then
5016         Check_Error_Detected;
5017         return;
5018      end if;
5019
5020      --  Distinguish the function and non-function cases:
5021
5022      case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5023
5024         when E_Function          |
5025              E_Generic_Function  =>
5026            Expand_Simple_Function_Return (N);
5027
5028         when E_Procedure         |
5029              E_Generic_Procedure |
5030              E_Entry             |
5031              E_Entry_Family      |
5032              E_Return_Statement =>
5033            Expand_Non_Function_Return (N);
5034
5035         when others =>
5036            raise Program_Error;
5037      end case;
5038
5039   exception
5040      when RE_Not_Available =>
5041         return;
5042   end Expand_N_Simple_Return_Statement;
5043
5044   ------------------------------
5045   -- Expand_N_Subprogram_Body --
5046   ------------------------------
5047
5048   --  Add poll call if ATC polling is enabled, unless the body will be inlined
5049   --  by the back-end.
5050
5051   --  Add dummy push/pop label nodes at start and end to clear any local
5052   --  exception indications if local-exception-to-goto optimization is active.
5053
5054   --  Add return statement if last statement in body is not a return statement
5055   --  (this makes things easier on Gigi which does not want to have to handle
5056   --  a missing return).
5057
5058   --  Add call to Activate_Tasks if body is a task activator
5059
5060   --  Deal with possible detection of infinite recursion
5061
5062   --  Eliminate body completely if convention stubbed
5063
5064   --  Encode entity names within body, since we will not need to reference
5065   --  these entities any longer in the front end.
5066
5067   --  Initialize scalar out parameters if Initialize/Normalize_Scalars
5068
5069   --  Reset Pure indication if any parameter has root type System.Address
5070   --  or has any parameters of limited types, where limited means that the
5071   --  run-time view is limited (i.e. the full type is limited).
5072
5073   --  Wrap thread body
5074
5075   procedure Expand_N_Subprogram_Body (N : Node_Id) is
5076      Body_Id  : constant Entity_Id  := Defining_Entity (N);
5077      HSS      : constant Node_Id    := Handled_Statement_Sequence (N);
5078      Loc      : constant Source_Ptr := Sloc (N);
5079
5080      procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5081      --  Append a return statement to the statement sequence Stmts if the last
5082      --  statement is not already a return or a goto statement. Note that the
5083      --  latter test is not critical, it does not matter if we add a few extra
5084      --  returns, since they get eliminated anyway later on. Spec_Id denotes
5085      --  the corresponding spec of the subprogram body.
5086
5087      ----------------
5088      -- Add_Return --
5089      ----------------
5090
5091      procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
5092         Last_Stmt : Node_Id;
5093         Loc       : Source_Ptr;
5094         Stmt      : Node_Id;
5095
5096      begin
5097         --  Get last statement, ignoring any Pop_xxx_Label nodes, which are
5098         --  not relevant in this context since they are not executable.
5099
5100         Last_Stmt := Last (Stmts);
5101         while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5102            Prev (Last_Stmt);
5103         end loop;
5104
5105         --  Now insert return unless last statement is a transfer
5106
5107         if not Is_Transfer (Last_Stmt) then
5108
5109            --  The source location for the return is the end label of the
5110            --  procedure if present. Otherwise use the sloc of the last
5111            --  statement in the list. If the list comes from a generated
5112            --  exception handler and we are not debugging generated code,
5113            --  all the statements within the handler are made invisible
5114            --  to the debugger.
5115
5116            if Nkind (Parent (Stmts)) = N_Exception_Handler
5117              and then not Comes_From_Source (Parent (Stmts))
5118            then
5119               Loc := Sloc (Last_Stmt);
5120            elsif Present (End_Label (HSS)) then
5121               Loc := Sloc (End_Label (HSS));
5122            else
5123               Loc := Sloc (Last_Stmt);
5124            end if;
5125
5126            --  Append return statement, and set analyzed manually. We can't
5127            --  call Analyze on this return since the scope is wrong.
5128
5129            --  Note: it almost works to push the scope and then do the Analyze
5130            --  call, but something goes wrong in some weird cases and it is
5131            --  not worth worrying about ???
5132
5133            Stmt := Make_Simple_Return_Statement (Loc);
5134
5135            --  The return statement is handled properly, and the call to the
5136            --  postcondition, inserted below, does not require information
5137            --  from the body either. However, that call is analyzed in the
5138            --  enclosing scope, and an elaboration check might improperly be
5139            --  added to it. A guard in Sem_Elab is needed to prevent that
5140            --  spurious check, see Check_Elab_Call.
5141
5142            Append_To (Stmts, Stmt);
5143            Set_Analyzed (Stmt);
5144
5145            --  Call the _Postconditions procedure if the related subprogram
5146            --  has contract assertions that need to be verified on exit.
5147
5148            if Ekind (Spec_Id) = E_Procedure
5149              and then Present (Postconditions_Proc (Spec_Id))
5150            then
5151               Insert_Action (Stmt,
5152                 Make_Procedure_Call_Statement (Loc,
5153                   Name =>
5154                     New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
5155            end if;
5156         end if;
5157      end Add_Return;
5158
5159      --  Local variables
5160
5161      Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
5162
5163      Except_H : Node_Id;
5164      L        : List_Id;
5165      Spec_Id  : Entity_Id;
5166
5167   --  Start of processing for Expand_N_Subprogram_Body
5168
5169   begin
5170      if Present (Corresponding_Spec (N)) then
5171         Spec_Id := Corresponding_Spec (N);
5172      else
5173         Spec_Id := Body_Id;
5174      end if;
5175
5176      --  If this is a Pure function which has any parameters whose root type
5177      --  is System.Address, reset the Pure indication.
5178      --  This check is also performed when the subprogram is frozen, but we
5179      --  repeat it on the body so that the indication is consistent, and so
5180      --  it applies as well to bodies without separate specifications.
5181
5182      if Is_Pure (Spec_Id)
5183        and then Is_Subprogram (Spec_Id)
5184        and then not Has_Pragma_Pure_Function (Spec_Id)
5185      then
5186         Check_Function_With_Address_Parameter (Spec_Id);
5187
5188         if Spec_Id /= Body_Id then
5189            Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5190         end if;
5191      end if;
5192
5193      --  The subprogram body is Ghost when it is stand alone and subject to
5194      --  pragma Ghost or the corresponding spec is Ghost. To accomodate both
5195      --  cases, set the mode now to ensure that any nodes generated during
5196      --  expansion are marked as Ghost.
5197
5198      Set_Ghost_Mode (N, Spec_Id);
5199
5200      --  Set L to either the list of declarations if present, or to the list
5201      --  of statements if no declarations are present. This is used to insert
5202      --  new stuff at the start.
5203
5204      if Is_Non_Empty_List (Declarations (N)) then
5205         L := Declarations (N);
5206      else
5207         L := Statements (HSS);
5208      end if;
5209
5210      --  If local-exception-to-goto optimization active, insert dummy push
5211      --  statements at start, and dummy pop statements at end, but inhibit
5212      --  this if we have No_Exception_Handlers, since they are useless and
5213      --  intefere with analysis, e.g. by codepeer.
5214
5215      if (Debug_Flag_Dot_G
5216           or else Restriction_Active (No_Exception_Propagation))
5217        and then not Restriction_Active (No_Exception_Handlers)
5218        and then not CodePeer_Mode
5219        and then Is_Non_Empty_List (L)
5220      then
5221         declare
5222            FS  : constant Node_Id    := First (L);
5223            FL  : constant Source_Ptr := Sloc (FS);
5224            LS  : Node_Id;
5225            LL  : Source_Ptr;
5226
5227         begin
5228            --  LS points to either last statement, if statements are present
5229            --  or to the last declaration if there are no statements present.
5230            --  It is the node after which the pop's are generated.
5231
5232            if Is_Non_Empty_List (Statements (HSS)) then
5233               LS := Last (Statements (HSS));
5234            else
5235               LS := Last (L);
5236            end if;
5237
5238            LL := Sloc (LS);
5239
5240            Insert_List_Before_And_Analyze (FS, New_List (
5241              Make_Push_Constraint_Error_Label (FL),
5242              Make_Push_Program_Error_Label    (FL),
5243              Make_Push_Storage_Error_Label    (FL)));
5244
5245            Insert_List_After_And_Analyze (LS, New_List (
5246              Make_Pop_Constraint_Error_Label  (LL),
5247              Make_Pop_Program_Error_Label     (LL),
5248              Make_Pop_Storage_Error_Label     (LL)));
5249         end;
5250      end if;
5251
5252      --  Need poll on entry to subprogram if polling enabled. We only do this
5253      --  for non-empty subprograms, since it does not seem necessary to poll
5254      --  for a dummy null subprogram.
5255
5256      if Is_Non_Empty_List (L) then
5257
5258         --  Do not add a polling call if the subprogram is to be inlined by
5259         --  the back-end, to avoid repeated calls with multiple inlinings.
5260
5261         if Is_Inlined (Spec_Id)
5262           and then Front_End_Inlining
5263           and then Optimization_Level > 1
5264         then
5265            null;
5266         else
5267            Generate_Poll_Call (First (L));
5268         end if;
5269      end if;
5270
5271      --  Initialize any scalar OUT args if Initialize/Normalize_Scalars
5272
5273      if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5274         declare
5275            F : Entity_Id;
5276            A : Node_Id;
5277
5278         begin
5279            --  Loop through formals
5280
5281            F := First_Formal (Spec_Id);
5282            while Present (F) loop
5283               if Is_Scalar_Type (Etype (F))
5284                 and then Ekind (F) = E_Out_Parameter
5285               then
5286                  Check_Restriction (No_Default_Initialization, F);
5287
5288                  --  Insert the initialization. We turn off validity checks
5289                  --  for this assignment, since we do not want any check on
5290                  --  the initial value itself (which may well be invalid).
5291                  --  Predicate checks are disabled as well (RM 6.4.1 (13/3))
5292
5293                  A :=
5294                    Make_Assignment_Statement (Loc,
5295                      Name       => New_Occurrence_Of (F, Loc),
5296                      Expression => Get_Simple_Init_Val (Etype (F), N));
5297                  Set_Suppress_Assignment_Checks (A);
5298
5299                  Insert_Before_And_Analyze (First (L),
5300                    A, Suppress => Validity_Check);
5301               end if;
5302
5303               Next_Formal (F);
5304            end loop;
5305         end;
5306      end if;
5307
5308      --  Clear out statement list for stubbed procedure
5309
5310      if Present (Corresponding_Spec (N)) then
5311         Set_Elaboration_Flag (N, Spec_Id);
5312
5313         if Convention (Spec_Id) = Convention_Stubbed
5314           or else Is_Eliminated (Spec_Id)
5315         then
5316            Set_Declarations (N, Empty_List);
5317            Set_Handled_Statement_Sequence (N,
5318              Make_Handled_Sequence_Of_Statements (Loc,
5319                Statements => New_List (Make_Null_Statement (Loc))));
5320
5321            Ghost_Mode := Save_Ghost_Mode;
5322            return;
5323         end if;
5324      end if;
5325
5326      --  Create a set of discriminals for the next protected subprogram body
5327
5328      if Is_List_Member (N)
5329        and then Present (Parent (List_Containing (N)))
5330        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5331        and then Present (Next_Protected_Operation (N))
5332      then
5333         Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5334      end if;
5335
5336      --  Returns_By_Ref flag is normally set when the subprogram is frozen but
5337      --  subprograms with no specs are not frozen.
5338
5339      declare
5340         Typ  : constant Entity_Id := Etype (Spec_Id);
5341         Utyp : constant Entity_Id := Underlying_Type (Typ);
5342
5343      begin
5344         if not Acts_As_Spec (N)
5345           and then Nkind (Parent (Parent (Spec_Id))) /=
5346             N_Subprogram_Body_Stub
5347         then
5348            null;
5349
5350         elsif Is_Limited_View (Typ) then
5351            Set_Returns_By_Ref (Spec_Id);
5352
5353         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5354            Set_Returns_By_Ref (Spec_Id);
5355         end if;
5356      end;
5357
5358      --  For a procedure, we add a return for all possible syntactic ends of
5359      --  the subprogram.
5360
5361      if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
5362         Add_Return (Spec_Id, Statements (HSS));
5363
5364         if Present (Exception_Handlers (HSS)) then
5365            Except_H := First_Non_Pragma (Exception_Handlers (HSS));
5366            while Present (Except_H) loop
5367               Add_Return (Spec_Id, Statements (Except_H));
5368               Next_Non_Pragma (Except_H);
5369            end loop;
5370         end if;
5371
5372      --  For a function, we must deal with the case where there is at least
5373      --  one missing return. What we do is to wrap the entire body of the
5374      --  function in a block:
5375
5376      --    begin
5377      --      ...
5378      --    end;
5379
5380      --  becomes
5381
5382      --    begin
5383      --       begin
5384      --          ...
5385      --       end;
5386
5387      --       raise Program_Error;
5388      --    end;
5389
5390      --  This approach is necessary because the raise must be signalled to the
5391      --  caller, not handled by any local handler (RM 6.4(11)).
5392
5393      --  Note: we do not need to analyze the constructed sequence here, since
5394      --  it has no handler, and an attempt to analyze the handled statement
5395      --  sequence twice is risky in various ways (e.g. the issue of expanding
5396      --  cleanup actions twice).
5397
5398      elsif Has_Missing_Return (Spec_Id) then
5399         declare
5400            Hloc : constant Source_Ptr := Sloc (HSS);
5401            Blok : constant Node_Id    :=
5402                     Make_Block_Statement (Hloc,
5403                       Handled_Statement_Sequence => HSS);
5404            Rais : constant Node_Id    :=
5405                     Make_Raise_Program_Error (Hloc,
5406                       Reason => PE_Missing_Return);
5407
5408         begin
5409            Set_Handled_Statement_Sequence (N,
5410              Make_Handled_Sequence_Of_Statements (Hloc,
5411                Statements => New_List (Blok, Rais)));
5412
5413            Push_Scope (Spec_Id);
5414            Analyze (Blok);
5415            Analyze (Rais);
5416            Pop_Scope;
5417         end;
5418      end if;
5419
5420      --  If subprogram contains a parameterless recursive call, then we may
5421      --  have an infinite recursion, so see if we can generate code to check
5422      --  for this possibility if storage checks are not suppressed.
5423
5424      if Ekind (Spec_Id) = E_Procedure
5425        and then Has_Recursive_Call (Spec_Id)
5426        and then not Storage_Checks_Suppressed (Spec_Id)
5427      then
5428         Detect_Infinite_Recursion (N, Spec_Id);
5429      end if;
5430
5431      --  Set to encode entity names in package body before gigi is called
5432
5433      Qualify_Entity_Names (N);
5434
5435      --  If we are unnesting procedures, and this is an outer level procedure
5436      --  with nested subprograms, do the unnesting operation now.
5437
5438      if Opt.Unnest_Subprogram_Mode
5439
5440        --  We are only interested in subprograms (not generic subprograms)
5441
5442        and then Is_Subprogram (Spec_Id)
5443
5444        --  Only deal with outer level subprograms. Nested subprograms are
5445        --  handled as part of dealing with the outer level subprogram in
5446        --  which they are nested.
5447
5448        and then Enclosing_Subprogram (Spec_Id) = Empty
5449
5450        --  We are only interested in subprograms that have nested subprograms
5451
5452        and then Has_Nested_Subprogram (Spec_Id)
5453      then
5454         Unest_Bodies.Append ((Spec_Id, N));
5455      end if;
5456
5457      Ghost_Mode := Save_Ghost_Mode;
5458   end Expand_N_Subprogram_Body;
5459
5460   -----------------------------------
5461   -- Expand_N_Subprogram_Body_Stub --
5462   -----------------------------------
5463
5464   procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5465   begin
5466      if Present (Corresponding_Body (N)) then
5467         Expand_N_Subprogram_Body (
5468           Unit_Declaration_Node (Corresponding_Body (N)));
5469      end if;
5470   end Expand_N_Subprogram_Body_Stub;
5471
5472   -------------------------------------
5473   -- Expand_N_Subprogram_Declaration --
5474   -------------------------------------
5475
5476   --  If the declaration appears within a protected body, it is a private
5477   --  operation of the protected type. We must create the corresponding
5478   --  protected subprogram an associated formals. For a normal protected
5479   --  operation, this is done when expanding the protected type declaration.
5480
5481   --  If the declaration is for a null procedure, emit null body
5482
5483   procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
5484      Loc  : constant Source_Ptr := Sloc (N);
5485      Subp : constant Entity_Id  := Defining_Entity (N);
5486
5487      procedure Build_Procedure_Form;
5488      --  Create a procedure declaration which emulates the behavior of
5489      --  function Subp, for C-compatible generation.
5490
5491      --------------------------
5492      -- Build_Procedure_Form --
5493      --------------------------
5494
5495      procedure Build_Procedure_Form is
5496         Func_Formal  : Entity_Id;
5497         Proc_Formals : List_Id;
5498
5499      begin
5500         Proc_Formals := New_List;
5501
5502         --  Create a list of formal parameters with the same types as the
5503         --  function.
5504
5505         Func_Formal := First_Formal (Subp);
5506         while Present (Func_Formal) loop
5507            Append_To (Proc_Formals,
5508              Make_Parameter_Specification (Loc,
5509                Defining_Identifier =>
5510                  Make_Defining_Identifier (Loc, Chars (Func_Formal)),
5511                Parameter_Type      =>
5512                  New_Occurrence_Of (Etype (Func_Formal), Loc)));
5513
5514            Next_Formal (Func_Formal);
5515         end loop;
5516
5517         --  Add an extra out parameter to carry the function result
5518
5519         Name_Len := 6;
5520         Name_Buffer (1 .. Name_Len) := "RESULT";
5521         Append_To (Proc_Formals,
5522           Make_Parameter_Specification (Loc,
5523             Defining_Identifier =>
5524               Make_Defining_Identifier (Loc, Chars => Name_Find),
5525             Out_Present         => True,
5526             Parameter_Type      => New_Occurrence_Of (Etype (Subp), Loc)));
5527
5528         --  The new procedure declaration is inserted immediately after the
5529         --  function declaration. The processing in Build_Procedure_Body_Form
5530         --  relies on this order.
5531
5532         Insert_After_And_Analyze (N,
5533           Make_Subprogram_Declaration (Loc,
5534             Specification =>
5535               Make_Procedure_Specification (Loc,
5536                 Defining_Unit_Name       =>
5537                   Make_Defining_Identifier (Loc, Chars (Subp)),
5538                 Parameter_Specifications => Proc_Formals)));
5539
5540         --  Mark the function as having a procedure form
5541
5542         Set_Rewritten_For_C (Subp);
5543      end Build_Procedure_Form;
5544
5545      --  Local variables
5546
5547      Scop      : constant Entity_Id  := Scope (Subp);
5548      Prot_Bod  : Node_Id;
5549      Prot_Decl : Node_Id;
5550      Prot_Id   : Entity_Id;
5551
5552   --  Start of processing for Expand_N_Subprogram_Declaration
5553
5554   begin
5555      --  In SPARK, subprogram declarations are only allowed in package
5556      --  specifications.
5557
5558      if Nkind (Parent (N)) /= N_Package_Specification then
5559         if Nkind (Parent (N)) = N_Compilation_Unit then
5560            Check_SPARK_05_Restriction
5561              ("subprogram declaration is not a library item", N);
5562
5563         elsif Present (Next (N))
5564           and then Nkind (Next (N)) = N_Pragma
5565           and then Get_Pragma_Id (Pragma_Name (Next (N))) = Pragma_Import
5566         then
5567            --  In SPARK, subprogram declarations are also permitted in
5568            --  declarative parts when immediately followed by a corresponding
5569            --  pragma Import. We only check here that there is some pragma
5570            --  Import.
5571
5572            null;
5573         else
5574            Check_SPARK_05_Restriction
5575              ("subprogram declaration is not allowed here", N);
5576         end if;
5577      end if;
5578
5579      --  Deal with case of protected subprogram. Do not generate protected
5580      --  operation if operation is flagged as eliminated.
5581
5582      if Is_List_Member (N)
5583        and then Present (Parent (List_Containing (N)))
5584        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5585        and then Is_Protected_Type (Scop)
5586      then
5587         if No (Protected_Body_Subprogram (Subp))
5588           and then not Is_Eliminated (Subp)
5589         then
5590            Prot_Decl :=
5591              Make_Subprogram_Declaration (Loc,
5592                Specification =>
5593                  Build_Protected_Sub_Specification
5594                    (N, Scop, Unprotected_Mode));
5595
5596            --  The protected subprogram is declared outside of the protected
5597            --  body. Given that the body has frozen all entities so far, we
5598            --  analyze the subprogram and perform freezing actions explicitly.
5599            --  including the generation of an explicit freeze node, to ensure
5600            --  that gigi has the proper order of elaboration.
5601            --  If the body is a subunit, the insertion point is before the
5602            --  stub in the parent.
5603
5604            Prot_Bod := Parent (List_Containing (N));
5605
5606            if Nkind (Parent (Prot_Bod)) = N_Subunit then
5607               Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5608            end if;
5609
5610            Insert_Before (Prot_Bod, Prot_Decl);
5611            Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
5612            Set_Has_Delayed_Freeze (Prot_Id);
5613
5614            Push_Scope (Scope (Scop));
5615            Analyze (Prot_Decl);
5616            Freeze_Before (N, Prot_Id);
5617            Set_Protected_Body_Subprogram (Subp, Prot_Id);
5618
5619            --  Create protected operation as well. Even though the operation
5620            --  is only accessible within the body, it is possible to make it
5621            --  available outside of the protected object by using 'Access to
5622            --  provide a callback, so build protected version in all cases.
5623
5624            Prot_Decl :=
5625              Make_Subprogram_Declaration (Loc,
5626                Specification =>
5627                  Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
5628            Insert_Before (Prot_Bod, Prot_Decl);
5629            Analyze (Prot_Decl);
5630
5631            Pop_Scope;
5632         end if;
5633
5634      --  Ada 2005 (AI-348): Generate body for a null procedure. In most
5635      --  cases this is superfluous because calls to it will be automatically
5636      --  inlined, but we definitely need the body if preconditions for the
5637      --  procedure are present.
5638
5639      elsif Nkind (Specification (N)) = N_Procedure_Specification
5640        and then Null_Present (Specification (N))
5641      then
5642         declare
5643            Bod : constant Node_Id := Body_To_Inline (N);
5644
5645         begin
5646            Set_Has_Completion (Subp, False);
5647            Append_Freeze_Action (Subp, Bod);
5648
5649            --  The body now contains raise statements, so calls to it will
5650            --  not be inlined.
5651
5652            Set_Is_Inlined (Subp, False);
5653         end;
5654      end if;
5655
5656      --  When generating C code, transform a function that returns a
5657      --  constrained array type into a procedure with an out parameter
5658      --  that carries the return value.
5659
5660      --  We skip this transformation for unchecked conversions, since they
5661      --  are not needed by the C generator (and this also produces cleaner
5662      --  output).
5663
5664      if Modify_Tree_For_C
5665        and then Nkind (Specification (N)) = N_Function_Specification
5666        and then Is_Array_Type (Etype (Subp))
5667        and then Is_Constrained (Etype (Subp))
5668        and then not Is_Unchecked_Conversion_Instance (Subp)
5669      then
5670         Build_Procedure_Form;
5671      end if;
5672   end Expand_N_Subprogram_Declaration;
5673
5674   --------------------------------
5675   -- Expand_Non_Function_Return --
5676   --------------------------------
5677
5678   procedure Expand_Non_Function_Return (N : Node_Id) is
5679      pragma Assert (No (Expression (N)));
5680
5681      Loc       : constant Source_Ptr := Sloc (N);
5682      Scope_Id  : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
5683      Kind      : constant Entity_Kind := Ekind (Scope_Id);
5684      Call      : Node_Id;
5685      Acc_Stat  : Node_Id;
5686      Goto_Stat : Node_Id;
5687      Lab_Node  : Node_Id;
5688
5689   begin
5690      --  Call the _Postconditions procedure if the related subprogram has
5691      --  contract assertions that need to be verified on exit.
5692
5693      if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
5694        and then Present (Postconditions_Proc (Scope_Id))
5695      then
5696         Insert_Action (N,
5697           Make_Procedure_Call_Statement (Loc,
5698             Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
5699      end if;
5700
5701      --  If it is a return from a procedure do no extra steps
5702
5703      if Kind = E_Procedure or else Kind = E_Generic_Procedure then
5704         return;
5705
5706      --  If it is a nested return within an extended one, replace it with a
5707      --  return of the previously declared return object.
5708
5709      elsif Kind = E_Return_Statement then
5710         Rewrite (N,
5711           Make_Simple_Return_Statement (Loc,
5712             Expression =>
5713               New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
5714         Set_Comes_From_Extended_Return_Statement (N);
5715         Set_Return_Statement_Entity (N, Scope_Id);
5716         Expand_Simple_Function_Return (N);
5717         return;
5718      end if;
5719
5720      pragma Assert (Is_Entry (Scope_Id));
5721
5722      --  Look at the enclosing block to see whether the return is from an
5723      --  accept statement or an entry body.
5724
5725      for J in reverse 0 .. Scope_Stack.Last loop
5726         Scope_Id := Scope_Stack.Table (J).Entity;
5727         exit when Is_Concurrent_Type (Scope_Id);
5728      end loop;
5729
5730      --  If it is a return from accept statement it is expanded as call to
5731      --  RTS Complete_Rendezvous and a goto to the end of the accept body.
5732
5733      --  (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5734      --  Expand_N_Accept_Alternative in exp_ch9.adb)
5735
5736      if Is_Task_Type (Scope_Id) then
5737
5738         Call :=
5739           Make_Procedure_Call_Statement (Loc,
5740             Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
5741         Insert_Before (N, Call);
5742         --  why not insert actions here???
5743         Analyze (Call);
5744
5745         Acc_Stat := Parent (N);
5746         while Nkind (Acc_Stat) /= N_Accept_Statement loop
5747            Acc_Stat := Parent (Acc_Stat);
5748         end loop;
5749
5750         Lab_Node := Last (Statements
5751           (Handled_Statement_Sequence (Acc_Stat)));
5752
5753         Goto_Stat := Make_Goto_Statement (Loc,
5754           Name => New_Occurrence_Of
5755             (Entity (Identifier (Lab_Node)), Loc));
5756
5757         Set_Analyzed (Goto_Stat);
5758
5759         Rewrite (N, Goto_Stat);
5760         Analyze (N);
5761
5762      --  If it is a return from an entry body, put a Complete_Entry_Body call
5763      --  in front of the return.
5764
5765      elsif Is_Protected_Type (Scope_Id) then
5766         Call :=
5767           Make_Procedure_Call_Statement (Loc,
5768             Name =>
5769               New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
5770             Parameter_Associations => New_List (
5771               Make_Attribute_Reference (Loc,
5772                 Prefix         =>
5773                   New_Occurrence_Of
5774                     (Find_Protection_Object (Current_Scope), Loc),
5775                 Attribute_Name => Name_Unchecked_Access)));
5776
5777         Insert_Before (N, Call);
5778         Analyze (Call);
5779      end if;
5780   end Expand_Non_Function_Return;
5781
5782   ---------------------------------------
5783   -- Expand_Protected_Object_Reference --
5784   ---------------------------------------
5785
5786   function Expand_Protected_Object_Reference
5787     (N    : Node_Id;
5788      Scop : Entity_Id) return Node_Id
5789   is
5790      Loc   : constant Source_Ptr := Sloc (N);
5791      Corr  : Entity_Id;
5792      Rec   : Node_Id;
5793      Param : Entity_Id;
5794      Proc  : Entity_Id;
5795
5796   begin
5797      Rec := Make_Identifier (Loc, Name_uObject);
5798      Set_Etype (Rec, Corresponding_Record_Type (Scop));
5799
5800      --  Find enclosing protected operation, and retrieve its first parameter,
5801      --  which denotes the enclosing protected object. If the enclosing
5802      --  operation is an entry, we are immediately within the protected body,
5803      --  and we can retrieve the object from the service entries procedure. A
5804      --  barrier function has the same signature as an entry. A barrier
5805      --  function is compiled within the protected object, but unlike
5806      --  protected operations its never needs locks, so that its protected
5807      --  body subprogram points to itself.
5808
5809      Proc := Current_Scope;
5810      while Present (Proc)
5811        and then Scope (Proc) /= Scop
5812      loop
5813         Proc := Scope (Proc);
5814      end loop;
5815
5816      Corr := Protected_Body_Subprogram (Proc);
5817
5818      if No (Corr) then
5819
5820         --  Previous error left expansion incomplete.
5821         --  Nothing to do on this call.
5822
5823         return Empty;
5824      end if;
5825
5826      Param :=
5827        Defining_Identifier
5828          (First (Parameter_Specifications (Parent (Corr))));
5829
5830      if Is_Subprogram (Proc) and then Proc /= Corr then
5831
5832         --  Protected function or procedure
5833
5834         Set_Entity (Rec, Param);
5835
5836         --  Rec is a reference to an entity which will not be in scope when
5837         --  the call is reanalyzed, and needs no further analysis.
5838
5839         Set_Analyzed (Rec);
5840
5841      else
5842         --  Entry or barrier function for entry body. The first parameter of
5843         --  the entry body procedure is pointer to the object. We create a
5844         --  local variable of the proper type, duplicating what is done to
5845         --  define _object later on.
5846
5847         declare
5848            Decls   : List_Id;
5849            Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
5850
5851         begin
5852            Decls := New_List (
5853              Make_Full_Type_Declaration (Loc,
5854                Defining_Identifier => Obj_Ptr,
5855                  Type_Definition   =>
5856                     Make_Access_To_Object_Definition (Loc,
5857                       Subtype_Indication =>
5858                         New_Occurrence_Of
5859                           (Corresponding_Record_Type (Scop), Loc))));
5860
5861            Insert_Actions (N, Decls);
5862            Freeze_Before (N, Obj_Ptr);
5863
5864            Rec :=
5865              Make_Explicit_Dereference (Loc,
5866                Prefix =>
5867                  Unchecked_Convert_To (Obj_Ptr,
5868                    New_Occurrence_Of (Param, Loc)));
5869
5870            --  Analyze new actual. Other actuals in calls are already analyzed
5871            --  and the list of actuals is not reanalyzed after rewriting.
5872
5873            Set_Parent (Rec, N);
5874            Analyze (Rec);
5875         end;
5876      end if;
5877
5878      return Rec;
5879   end Expand_Protected_Object_Reference;
5880
5881   --------------------------------------
5882   -- Expand_Protected_Subprogram_Call --
5883   --------------------------------------
5884
5885   procedure Expand_Protected_Subprogram_Call
5886     (N    : Node_Id;
5887      Subp : Entity_Id;
5888      Scop : Entity_Id)
5889   is
5890      Rec   : Node_Id;
5891
5892      procedure Freeze_Called_Function;
5893      --  If it is a function call it can appear in elaboration code and
5894      --  the called entity must be frozen before the call. This must be
5895      --  done before the call is expanded, as the expansion may rewrite it
5896      --  to something other than a call (e.g. a temporary initialized in a
5897      --  transient block).
5898
5899      ----------------------------
5900      -- Freeze_Called_Function --
5901      ----------------------------
5902
5903      procedure Freeze_Called_Function is
5904      begin
5905         if Ekind (Subp) = E_Function then
5906            Freeze_Expression (Name (N));
5907         end if;
5908      end Freeze_Called_Function;
5909
5910   --  Start of processing for Expand_Protected_Subprogram_Call
5911
5912   begin
5913      --  If the protected object is not an enclosing scope, this is an inter-
5914      --  object function call. Inter-object procedure calls are expanded by
5915      --  Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
5916      --  subprogram being called is in the protected body being compiled, and
5917      --  if the protected object in the call is statically the enclosing type.
5918      --  The object may be an component of some other data structure, in which
5919      --  case this must be handled as an inter-object call.
5920
5921      if not In_Open_Scopes (Scop)
5922        or else not Is_Entity_Name (Name (N))
5923      then
5924         if Nkind (Name (N)) = N_Selected_Component then
5925            Rec := Prefix (Name (N));
5926
5927         else
5928            pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
5929            Rec := Prefix (Prefix (Name (N)));
5930         end if;
5931
5932         Freeze_Called_Function;
5933         Build_Protected_Subprogram_Call (N,
5934           Name     => New_Occurrence_Of (Subp, Sloc (N)),
5935           Rec      => Convert_Concurrent (Rec, Etype (Rec)),
5936           External => True);
5937
5938      else
5939         Rec := Expand_Protected_Object_Reference (N, Scop);
5940
5941         if No (Rec) then
5942            return;
5943         end if;
5944
5945         Freeze_Called_Function;
5946         Build_Protected_Subprogram_Call (N,
5947           Name     => Name (N),
5948           Rec      => Rec,
5949           External => False);
5950
5951      end if;
5952
5953      --  Analyze and resolve the new call. The actuals have already been
5954      --  resolved, but expansion of a function call will add extra actuals
5955      --  if needed. Analysis of a procedure call already includes resolution.
5956
5957      Analyze (N);
5958
5959      if Ekind (Subp) = E_Function then
5960         Resolve (N, Etype (Subp));
5961      end if;
5962   end Expand_Protected_Subprogram_Call;
5963
5964   -----------------------------------
5965   -- Expand_Simple_Function_Return --
5966   -----------------------------------
5967
5968   --  The "simple" comes from the syntax rule simple_return_statement. The
5969   --  semantics are not at all simple.
5970
5971   procedure Expand_Simple_Function_Return (N : Node_Id) is
5972      Loc : constant Source_Ptr := Sloc (N);
5973
5974      Scope_Id : constant Entity_Id :=
5975                   Return_Applies_To (Return_Statement_Entity (N));
5976      --  The function we are returning from
5977
5978      R_Type : constant Entity_Id := Etype (Scope_Id);
5979      --  The result type of the function
5980
5981      Utyp : constant Entity_Id := Underlying_Type (R_Type);
5982
5983      Exp : Node_Id := Expression (N);
5984      pragma Assert (Present (Exp));
5985
5986      Exptyp : constant Entity_Id := Etype (Exp);
5987      --  The type of the expression (not necessarily the same as R_Type)
5988
5989      Subtype_Ind : Node_Id;
5990      --  If the result type of the function is class-wide and the expression
5991      --  has a specific type, then we use the expression's type as the type of
5992      --  the return object. In cases where the expression is an aggregate that
5993      --  is built in place, this avoids the need for an expensive conversion
5994      --  of the return object to the specific type on assignments to the
5995      --  individual components.
5996
5997   begin
5998      if Is_Class_Wide_Type (R_Type)
5999        and then not Is_Class_Wide_Type (Exptyp)
6000        and then Nkind (Exp) /= N_Type_Conversion
6001      then
6002         Subtype_Ind := New_Occurrence_Of (Exptyp, Loc);
6003      else
6004         Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6005
6006         --  If the result type is class-wide and the expression is a view
6007         --  conversion, the conversion plays no role in the expansion because
6008         --  it does not modify the tag of the object. Remove the conversion
6009         --  altogether to prevent tag overwriting.
6010
6011         if Is_Class_Wide_Type (R_Type)
6012           and then not Is_Class_Wide_Type (Exptyp)
6013           and then Nkind (Exp) = N_Type_Conversion
6014         then
6015            Exp := Expression (Exp);
6016         end if;
6017      end if;
6018
6019      --  For the case of a simple return that does not come from an extended
6020      --  return, in the case of Ada 2005 where we are returning a limited
6021      --  type, we rewrite "return <expression>;" to be:
6022
6023      --    return _anon_ : <return_subtype> := <expression>
6024
6025      --  The expansion produced by Expand_N_Extended_Return_Statement will
6026      --  contain simple return statements (for example, a block containing
6027      --  simple return of the return object), which brings us back here with
6028      --  Comes_From_Extended_Return_Statement set. The reason for the barrier
6029      --  checking for a simple return that does not come from an extended
6030      --  return is to avoid this infinite recursion.
6031
6032      --  The reason for this design is that for Ada 2005 limited returns, we
6033      --  need to reify the return object, so we can build it "in place", and
6034      --  we need a block statement to hang finalization and tasking stuff.
6035
6036      --  ??? In order to avoid disruption, we avoid translating to extended
6037      --  return except in the cases where we really need to (Ada 2005 for
6038      --  inherently limited). We might prefer to do this translation in all
6039      --  cases (except perhaps for the case of Ada 95 inherently limited),
6040      --  in order to fully exercise the Expand_N_Extended_Return_Statement
6041      --  code. This would also allow us to do the build-in-place optimization
6042      --  for efficiency even in cases where it is semantically not required.
6043
6044      --  As before, we check the type of the return expression rather than the
6045      --  return type of the function, because the latter may be a limited
6046      --  class-wide interface type, which is not a limited type, even though
6047      --  the type of the expression may be.
6048
6049      if not Comes_From_Extended_Return_Statement (N)
6050        and then Is_Limited_View (Etype (Expression (N)))
6051        and then Ada_Version >= Ada_2005
6052        and then not Debug_Flag_Dot_L
6053
6054         --  The functionality of interface thunks is simple and it is always
6055         --  handled by means of simple return statements. This leaves their
6056         --  expansion simple and clean.
6057
6058        and then not Is_Thunk (Current_Scope)
6059      then
6060         declare
6061            Return_Object_Entity : constant Entity_Id :=
6062                                     Make_Temporary (Loc, 'R', Exp);
6063
6064            Obj_Decl : constant Node_Id :=
6065                         Make_Object_Declaration (Loc,
6066                           Defining_Identifier => Return_Object_Entity,
6067                           Object_Definition   => Subtype_Ind,
6068                           Expression          => Exp);
6069
6070            Ext : constant Node_Id :=
6071                    Make_Extended_Return_Statement (Loc,
6072                      Return_Object_Declarations => New_List (Obj_Decl));
6073            --  Do not perform this high-level optimization if the result type
6074            --  is an interface because the "this" pointer must be displaced.
6075
6076         begin
6077            Rewrite (N, Ext);
6078            Analyze (N);
6079            return;
6080         end;
6081      end if;
6082
6083      --  Here we have a simple return statement that is part of the expansion
6084      --  of an extended return statement (either written by the user, or
6085      --  generated by the above code).
6086
6087      --  Always normalize C/Fortran boolean result. This is not always needed,
6088      --  but it seems a good idea to minimize the passing around of non-
6089      --  normalized values, and in any case this handles the processing of
6090      --  barrier functions for protected types, which turn the condition into
6091      --  a return statement.
6092
6093      if Is_Boolean_Type (Exptyp)
6094        and then Nonzero_Is_True (Exptyp)
6095      then
6096         Adjust_Condition (Exp);
6097         Adjust_Result_Type (Exp, Exptyp);
6098      end if;
6099
6100      --  Do validity check if enabled for returns
6101
6102      if Validity_Checks_On
6103        and then Validity_Check_Returns
6104      then
6105         Ensure_Valid (Exp);
6106      end if;
6107
6108      --  Check the result expression of a scalar function against the subtype
6109      --  of the function by inserting a conversion. This conversion must
6110      --  eventually be performed for other classes of types, but for now it's
6111      --  only done for scalars.
6112      --  ???
6113
6114      if Is_Scalar_Type (Exptyp) then
6115         Rewrite (Exp, Convert_To (R_Type, Exp));
6116
6117         --  The expression is resolved to ensure that the conversion gets
6118         --  expanded to generate a possible constraint check.
6119
6120         Analyze_And_Resolve (Exp, R_Type);
6121      end if;
6122
6123      --  Deal with returning variable length objects and controlled types
6124
6125      --  Nothing to do if we are returning by reference, or this is not a
6126      --  type that requires special processing (indicated by the fact that
6127      --  it requires a cleanup scope for the secondary stack case).
6128
6129      if Is_Limited_View (Exptyp)
6130        or else Is_Limited_Interface (Exptyp)
6131      then
6132         null;
6133
6134      --  No copy needed for thunks returning interface type objects since
6135      --  the object is returned by reference and the maximum functionality
6136      --  required is just to displace the pointer.
6137
6138      elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
6139         null;
6140
6141      --  If the call is within a thunk and the type is a limited view, the
6142      --  backend will eventually see the non-limited view of the type.
6143
6144      elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
6145         return;
6146
6147      elsif not Requires_Transient_Scope (R_Type) then
6148
6149         --  Mutable records with variable-length components are not returned
6150         --  on the sec-stack, so we need to make sure that the back end will
6151         --  only copy back the size of the actual value, and not the maximum
6152         --  size. We create an actual subtype for this purpose. However we
6153         --  need not do it if the expression is a function call since this
6154         --  will be done in the called function and doing it here too would
6155         --  cause a temporary with maximum size to be created.
6156
6157         declare
6158            Ubt  : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6159            Decl : Node_Id;
6160            Ent  : Entity_Id;
6161         begin
6162            if Nkind (Exp) /= N_Function_Call
6163              and then Has_Discriminants (Ubt)
6164              and then not Is_Constrained (Ubt)
6165              and then not Has_Unchecked_Union (Ubt)
6166            then
6167               Decl := Build_Actual_Subtype (Ubt, Exp);
6168               Ent := Defining_Identifier (Decl);
6169               Insert_Action (Exp, Decl);
6170               Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6171               Analyze_And_Resolve (Exp);
6172            end if;
6173         end;
6174
6175      --  Here if secondary stack is used
6176
6177      else
6178         --  Prevent the reclamation of the secondary stack by all enclosing
6179         --  blocks and loops as well as the related function; otherwise the
6180         --  result would be reclaimed too early.
6181
6182         Set_Enclosing_Sec_Stack_Return (N);
6183
6184         --  Optimize the case where the result is a function call. In this
6185         --  case either the result is already on the secondary stack, or is
6186         --  already being returned with the stack pointer depressed and no
6187         --  further processing is required except to set the By_Ref flag
6188         --  to ensure that gigi does not attempt an extra unnecessary copy.
6189         --  (actually not just unnecessary but harmfully wrong in the case
6190         --  of a controlled type, where gigi does not know how to do a copy).
6191         --  To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6192         --  for array types if the constrained status of the target type is
6193         --  different from that of the expression.
6194
6195         if Requires_Transient_Scope (Exptyp)
6196           and then
6197              (not Is_Array_Type (Exptyp)
6198                or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6199                or else CW_Or_Has_Controlled_Part (Utyp))
6200           and then Nkind (Exp) = N_Function_Call
6201         then
6202            Set_By_Ref (N);
6203
6204            --  Remove side effects from the expression now so that other parts
6205            --  of the expander do not have to reanalyze this node without this
6206            --  optimization
6207
6208            Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6209
6210         --  For controlled types, do the allocation on the secondary stack
6211         --  manually in order to call adjust at the right time:
6212
6213         --    type Anon1 is access R_Type;
6214         --    for Anon1'Storage_pool use ss_pool;
6215         --    Anon2 : anon1 := new R_Type'(expr);
6216         --    return Anon2.all;
6217
6218         --  We do the same for classwide types that are not potentially
6219         --  controlled (by the virtue of restriction No_Finalization) because
6220         --  gigi is not able to properly allocate class-wide types.
6221
6222         elsif CW_Or_Has_Controlled_Part (Utyp) then
6223            declare
6224               Loc        : constant Source_Ptr := Sloc (N);
6225               Acc_Typ    : constant Entity_Id := Make_Temporary (Loc, 'A');
6226               Alloc_Node : Node_Id;
6227               Temp       : Entity_Id;
6228
6229            begin
6230               Set_Ekind (Acc_Typ, E_Access_Type);
6231
6232               Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6233
6234               --  This is an allocator for the secondary stack, and it's fine
6235               --  to have Comes_From_Source set False on it, as gigi knows not
6236               --  to flag it as a violation of No_Implicit_Heap_Allocations.
6237
6238               Alloc_Node :=
6239                 Make_Allocator (Loc,
6240                   Expression =>
6241                     Make_Qualified_Expression (Loc,
6242                       Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
6243                       Expression   => Relocate_Node (Exp)));
6244
6245               --  We do not want discriminant checks on the declaration,
6246               --  given that it gets its value from the allocator.
6247
6248               Set_No_Initialization (Alloc_Node);
6249
6250               Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6251
6252               Insert_List_Before_And_Analyze (N, New_List (
6253                 Make_Full_Type_Declaration (Loc,
6254                   Defining_Identifier => Acc_Typ,
6255                   Type_Definition     =>
6256                     Make_Access_To_Object_Definition (Loc,
6257                       Subtype_Indication => Subtype_Ind)),
6258
6259                 Make_Object_Declaration (Loc,
6260                   Defining_Identifier => Temp,
6261                   Object_Definition   => New_Occurrence_Of (Acc_Typ, Loc),
6262                   Expression          => Alloc_Node)));
6263
6264               Rewrite (Exp,
6265                 Make_Explicit_Dereference (Loc,
6266                 Prefix => New_Occurrence_Of (Temp, Loc)));
6267
6268               --  Ada 2005 (AI-251): If the type of the returned object is
6269               --  an interface then add an implicit type conversion to force
6270               --  displacement of the "this" pointer.
6271
6272               if Is_Interface (R_Type) then
6273                  Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6274               end if;
6275
6276               Analyze_And_Resolve (Exp, R_Type);
6277            end;
6278
6279         --  Otherwise use the gigi mechanism to allocate result on the
6280         --  secondary stack.
6281
6282         else
6283            Check_Restriction (No_Secondary_Stack, N);
6284            Set_Storage_Pool (N, RTE (RE_SS_Pool));
6285            Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6286         end if;
6287      end if;
6288
6289      --  Implement the rules of 6.5(8-10), which require a tag check in
6290      --  the case of a limited tagged return type, and tag reassignment for
6291      --  nonlimited tagged results. These actions are needed when the return
6292      --  type is a specific tagged type and the result expression is a
6293      --  conversion or a formal parameter, because in that case the tag of
6294      --  the expression might differ from the tag of the specific result type.
6295
6296      if Is_Tagged_Type (Utyp)
6297        and then not Is_Class_Wide_Type (Utyp)
6298        and then (Nkind_In (Exp, N_Type_Conversion,
6299                                 N_Unchecked_Type_Conversion)
6300                    or else (Is_Entity_Name (Exp)
6301                               and then Ekind (Entity (Exp)) in Formal_Kind))
6302      then
6303         --  When the return type is limited, perform a check that the tag of
6304         --  the result is the same as the tag of the return type.
6305
6306         if Is_Limited_Type (R_Type) then
6307            Insert_Action (Exp,
6308              Make_Raise_Constraint_Error (Loc,
6309                Condition =>
6310                  Make_Op_Ne (Loc,
6311                    Left_Opnd  =>
6312                      Make_Selected_Component (Loc,
6313                        Prefix        => Duplicate_Subexpr (Exp),
6314                        Selector_Name => Make_Identifier (Loc, Name_uTag)),
6315                    Right_Opnd =>
6316                      Make_Attribute_Reference (Loc,
6317                        Prefix         =>
6318                          New_Occurrence_Of (Base_Type (Utyp), Loc),
6319                        Attribute_Name => Name_Tag)),
6320                Reason    => CE_Tag_Check_Failed));
6321
6322         --  If the result type is a specific nonlimited tagged type, then we
6323         --  have to ensure that the tag of the result is that of the result
6324         --  type. This is handled by making a copy of the expression in
6325         --  the case where it might have a different tag, namely when the
6326         --  expression is a conversion or a formal parameter. We create a new
6327         --  object of the result type and initialize it from the expression,
6328         --  which will implicitly force the tag to be set appropriately.
6329
6330         else
6331            declare
6332               ExpR       : constant Node_Id   := Relocate_Node (Exp);
6333               Result_Id  : constant Entity_Id :=
6334                              Make_Temporary (Loc, 'R', ExpR);
6335               Result_Exp : constant Node_Id   :=
6336                              New_Occurrence_Of (Result_Id, Loc);
6337               Result_Obj : constant Node_Id   :=
6338                              Make_Object_Declaration (Loc,
6339                                Defining_Identifier => Result_Id,
6340                                Object_Definition   =>
6341                                  New_Occurrence_Of (R_Type, Loc),
6342                                Constant_Present    => True,
6343                                Expression          => ExpR);
6344
6345            begin
6346               Set_Assignment_OK (Result_Obj);
6347               Insert_Action (Exp, Result_Obj);
6348
6349               Rewrite (Exp, Result_Exp);
6350               Analyze_And_Resolve (Exp, R_Type);
6351            end;
6352         end if;
6353
6354      --  Ada 2005 (AI-344): If the result type is class-wide, then insert
6355      --  a check that the level of the return expression's underlying type
6356      --  is not deeper than the level of the master enclosing the function.
6357      --  Always generate the check when the type of the return expression
6358      --  is class-wide, when it's a type conversion, or when it's a formal
6359      --  parameter. Otherwise, suppress the check in the case where the
6360      --  return expression has a specific type whose level is known not to
6361      --  be statically deeper than the function's result type.
6362
6363      --  No runtime check needed in interface thunks since it is performed
6364      --  by the target primitive associated with the thunk.
6365
6366      --  Note: accessibility check is skipped in the VM case, since there
6367      --  does not seem to be any practical way to implement this check.
6368
6369      elsif Ada_Version >= Ada_2005
6370        and then Tagged_Type_Expansion
6371        and then Is_Class_Wide_Type (R_Type)
6372        and then not Is_Thunk (Current_Scope)
6373        and then not Scope_Suppress.Suppress (Accessibility_Check)
6374        and then
6375          (Is_Class_Wide_Type (Etype (Exp))
6376            or else Nkind_In (Exp, N_Type_Conversion,
6377                                   N_Unchecked_Type_Conversion)
6378            or else (Is_Entity_Name (Exp)
6379                      and then Ekind (Entity (Exp)) in Formal_Kind)
6380            or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6381                      Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6382      then
6383         declare
6384            Tag_Node : Node_Id;
6385
6386         begin
6387            --  Ada 2005 (AI-251): In class-wide interface objects we displace
6388            --  "this" to reference the base of the object. This is required to
6389            --  get access to the TSD of the object.
6390
6391            if Is_Class_Wide_Type (Etype (Exp))
6392              and then Is_Interface (Etype (Exp))
6393            then
6394               --  If the expression is an explicit dereference then we can
6395               --  directly displace the pointer to reference the base of
6396               --  the object.
6397
6398               if Nkind (Exp) = N_Explicit_Dereference then
6399                  Tag_Node :=
6400                    Make_Explicit_Dereference (Loc,
6401                      Prefix =>
6402                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6403                          Make_Function_Call (Loc,
6404                            Name                   =>
6405                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6406                            Parameter_Associations => New_List (
6407                              Unchecked_Convert_To (RTE (RE_Address),
6408                                Duplicate_Subexpr (Prefix (Exp)))))));
6409
6410               --  Similar case to the previous one but the expression is a
6411               --  renaming of an explicit dereference.
6412
6413               elsif Nkind (Exp) = N_Identifier
6414                 and then Present (Renamed_Object (Entity (Exp)))
6415                 and then Nkind (Renamed_Object (Entity (Exp)))
6416                            = N_Explicit_Dereference
6417               then
6418                  Tag_Node :=
6419                    Make_Explicit_Dereference (Loc,
6420                      Prefix =>
6421                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6422                          Make_Function_Call (Loc,
6423                            Name                   =>
6424                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6425                            Parameter_Associations => New_List (
6426                              Unchecked_Convert_To (RTE (RE_Address),
6427                                Duplicate_Subexpr
6428                                  (Prefix
6429                                    (Renamed_Object (Entity (Exp)))))))));
6430
6431               --  Common case: obtain the address of the actual object and
6432               --  displace the pointer to reference the base of the object.
6433
6434               else
6435                  Tag_Node :=
6436                    Make_Explicit_Dereference (Loc,
6437                      Prefix =>
6438                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6439                          Make_Function_Call (Loc,
6440                            Name               =>
6441                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6442                            Parameter_Associations => New_List (
6443                              Make_Attribute_Reference (Loc,
6444                                Prefix         => Duplicate_Subexpr (Exp),
6445                                Attribute_Name => Name_Address)))));
6446               end if;
6447            else
6448               Tag_Node :=
6449                 Make_Attribute_Reference (Loc,
6450                   Prefix         => Duplicate_Subexpr (Exp),
6451                   Attribute_Name => Name_Tag);
6452            end if;
6453
6454            Insert_Action (Exp,
6455              Make_Raise_Program_Error (Loc,
6456                Condition =>
6457                  Make_Op_Gt (Loc,
6458                    Left_Opnd  => Build_Get_Access_Level (Loc, Tag_Node),
6459                    Right_Opnd =>
6460                      Make_Integer_Literal (Loc,
6461                        Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6462                Reason => PE_Accessibility_Check_Failed));
6463         end;
6464
6465      --  AI05-0073: If function has a controlling access result, check that
6466      --  the tag of the return value, if it is not null, matches designated
6467      --  type of return type.
6468
6469      --  The return expression is referenced twice in the code below, so it
6470      --  must be made free of side effects. Given that different compilers
6471      --  may evaluate these parameters in different order, both occurrences
6472      --  perform a copy.
6473
6474      elsif Ekind (R_Type) = E_Anonymous_Access_Type
6475        and then Has_Controlling_Result (Scope_Id)
6476      then
6477         Insert_Action (N,
6478           Make_Raise_Constraint_Error (Loc,
6479             Condition =>
6480               Make_And_Then (Loc,
6481                 Left_Opnd  =>
6482                   Make_Op_Ne (Loc,
6483                     Left_Opnd  => Duplicate_Subexpr (Exp),
6484                     Right_Opnd => Make_Null (Loc)),
6485
6486                 Right_Opnd => Make_Op_Ne (Loc,
6487                   Left_Opnd  =>
6488                     Make_Selected_Component (Loc,
6489                       Prefix        => Duplicate_Subexpr (Exp),
6490                       Selector_Name => Make_Identifier (Loc, Name_uTag)),
6491
6492                   Right_Opnd =>
6493                     Make_Attribute_Reference (Loc,
6494                       Prefix         =>
6495                         New_Occurrence_Of (Designated_Type (R_Type), Loc),
6496                       Attribute_Name => Name_Tag))),
6497
6498             Reason    => CE_Tag_Check_Failed),
6499             Suppress  => All_Checks);
6500      end if;
6501
6502      --  AI05-0234: RM 6.5(21/3). Check access discriminants to
6503      --  ensure that the function result does not outlive an
6504      --  object designated by one of it discriminants.
6505
6506      if Present (Extra_Accessibility_Of_Result (Scope_Id))
6507        and then Has_Unconstrained_Access_Discriminants (R_Type)
6508      then
6509         declare
6510            Discrim_Source : Node_Id;
6511
6512            procedure Check_Against_Result_Level (Level : Node_Id);
6513            --  Check the given accessibility level against the level
6514            --  determined by the point of call. (AI05-0234).
6515
6516            --------------------------------
6517            -- Check_Against_Result_Level --
6518            --------------------------------
6519
6520            procedure Check_Against_Result_Level (Level : Node_Id) is
6521            begin
6522               Insert_Action (N,
6523                 Make_Raise_Program_Error (Loc,
6524                   Condition =>
6525                     Make_Op_Gt (Loc,
6526                       Left_Opnd  => Level,
6527                       Right_Opnd =>
6528                         New_Occurrence_Of
6529                           (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
6530                       Reason => PE_Accessibility_Check_Failed));
6531            end Check_Against_Result_Level;
6532
6533         begin
6534            Discrim_Source := Exp;
6535            while Nkind (Discrim_Source) = N_Qualified_Expression loop
6536               Discrim_Source := Expression (Discrim_Source);
6537            end loop;
6538
6539            if Nkind (Discrim_Source) = N_Identifier
6540              and then Is_Return_Object (Entity (Discrim_Source))
6541            then
6542               Discrim_Source := Entity (Discrim_Source);
6543
6544               if Is_Constrained (Etype (Discrim_Source)) then
6545                  Discrim_Source := Etype (Discrim_Source);
6546               else
6547                  Discrim_Source := Expression (Parent (Discrim_Source));
6548               end if;
6549
6550            elsif Nkind (Discrim_Source) = N_Identifier
6551              and then Nkind_In (Original_Node (Discrim_Source),
6552                                 N_Aggregate, N_Extension_Aggregate)
6553            then
6554               Discrim_Source := Original_Node (Discrim_Source);
6555
6556            elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
6557              Nkind (Original_Node (Discrim_Source)) = N_Function_Call
6558            then
6559               Discrim_Source := Original_Node (Discrim_Source);
6560            end if;
6561
6562            while Nkind_In (Discrim_Source, N_Qualified_Expression,
6563                                            N_Type_Conversion,
6564                                            N_Unchecked_Type_Conversion)
6565            loop
6566               Discrim_Source := Expression (Discrim_Source);
6567            end loop;
6568
6569            case Nkind (Discrim_Source) is
6570               when N_Defining_Identifier =>
6571
6572                  pragma Assert (Is_Composite_Type (Discrim_Source)
6573                                  and then Has_Discriminants (Discrim_Source)
6574                                  and then Is_Constrained (Discrim_Source));
6575
6576                  declare
6577                     Discrim   : Entity_Id :=
6578                                   First_Discriminant (Base_Type (R_Type));
6579                     Disc_Elmt : Elmt_Id   :=
6580                                   First_Elmt (Discriminant_Constraint
6581                                                 (Discrim_Source));
6582                  begin
6583                     loop
6584                        if Ekind (Etype (Discrim)) =
6585                             E_Anonymous_Access_Type
6586                        then
6587                           Check_Against_Result_Level
6588                             (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
6589                        end if;
6590
6591                        Next_Elmt (Disc_Elmt);
6592                        Next_Discriminant (Discrim);
6593                        exit when not Present (Discrim);
6594                     end loop;
6595                  end;
6596
6597               when N_Aggregate | N_Extension_Aggregate =>
6598
6599                  --  Unimplemented: extension aggregate case where discrims
6600                  --  come from ancestor part, not extension part.
6601
6602                  declare
6603                     Discrim  : Entity_Id :=
6604                                  First_Discriminant (Base_Type (R_Type));
6605
6606                     Disc_Exp : Node_Id   := Empty;
6607
6608                     Positionals_Exhausted
6609                              : Boolean   := not Present (Expressions
6610                                                            (Discrim_Source));
6611
6612                     function Associated_Expr
6613                       (Comp_Id : Entity_Id;
6614                        Associations : List_Id) return Node_Id;
6615
6616                     --  Given a component and a component associations list,
6617                     --  locate the expression for that component; returns
6618                     --  Empty if no such expression is found.
6619
6620                     ---------------------
6621                     -- Associated_Expr --
6622                     ---------------------
6623
6624                     function Associated_Expr
6625                       (Comp_Id : Entity_Id;
6626                        Associations : List_Id) return Node_Id
6627                     is
6628                        Assoc  : Node_Id;
6629                        Choice : Node_Id;
6630
6631                     begin
6632                        --  Simple linear search seems ok here
6633
6634                        Assoc := First (Associations);
6635                        while Present (Assoc) loop
6636                           Choice := First (Choices (Assoc));
6637                           while Present (Choice) loop
6638                              if (Nkind (Choice) = N_Identifier
6639                                   and then Chars (Choice) = Chars (Comp_Id))
6640                                or else (Nkind (Choice) = N_Others_Choice)
6641                              then
6642                                 return Expression (Assoc);
6643                              end if;
6644
6645                              Next (Choice);
6646                           end loop;
6647
6648                           Next (Assoc);
6649                        end loop;
6650
6651                        return Empty;
6652                     end Associated_Expr;
6653
6654                  --  Start of processing for Expand_Simple_Function_Return
6655
6656                  begin
6657                     if not Positionals_Exhausted then
6658                        Disc_Exp := First (Expressions (Discrim_Source));
6659                     end if;
6660
6661                     loop
6662                        if Positionals_Exhausted then
6663                           Disc_Exp :=
6664                             Associated_Expr
6665                               (Discrim,
6666                                Component_Associations (Discrim_Source));
6667                        end if;
6668
6669                        if Ekind (Etype (Discrim)) =
6670                             E_Anonymous_Access_Type
6671                        then
6672                           Check_Against_Result_Level
6673                             (Dynamic_Accessibility_Level (Disc_Exp));
6674                        end if;
6675
6676                        Next_Discriminant (Discrim);
6677                        exit when not Present (Discrim);
6678
6679                        if not Positionals_Exhausted then
6680                           Next (Disc_Exp);
6681                           Positionals_Exhausted := not Present (Disc_Exp);
6682                        end if;
6683                     end loop;
6684                  end;
6685
6686               when N_Function_Call =>
6687
6688                  --  No check needed (check performed by callee)
6689
6690                  null;
6691
6692               when others =>
6693
6694                  declare
6695                     Level : constant Node_Id :=
6696                               Make_Integer_Literal (Loc,
6697                                 Object_Access_Level (Discrim_Source));
6698
6699                  begin
6700                     --  Unimplemented: check for name prefix that includes
6701                     --  a dereference of an access value with a dynamic
6702                     --  accessibility level (e.g., an access param or a
6703                     --  saooaaat) and use dynamic level in that case. For
6704                     --  example:
6705                     --    return Access_Param.all(Some_Index).Some_Component;
6706                     --  ???
6707
6708                     Set_Etype (Level, Standard_Natural);
6709                     Check_Against_Result_Level (Level);
6710                  end;
6711
6712            end case;
6713         end;
6714      end if;
6715
6716      --  If we are returning an object that may not be bit-aligned, then copy
6717      --  the value into a temporary first. This copy may need to expand to a
6718      --  loop of component operations.
6719
6720      if Is_Possibly_Unaligned_Slice (Exp)
6721        or else Is_Possibly_Unaligned_Object (Exp)
6722      then
6723         declare
6724            ExpR : constant Node_Id   := Relocate_Node (Exp);
6725            Tnn  : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6726         begin
6727            Insert_Action (Exp,
6728              Make_Object_Declaration (Loc,
6729                Defining_Identifier => Tnn,
6730                Constant_Present    => True,
6731                Object_Definition   => New_Occurrence_Of (R_Type, Loc),
6732                Expression          => ExpR),
6733              Suppress => All_Checks);
6734            Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6735         end;
6736      end if;
6737
6738      --  Call the _Postconditions procedure if the related function has
6739      --  contract assertions that need to be verified on exit.
6740
6741      if Ekind (Scope_Id) = E_Function
6742        and then Present (Postconditions_Proc (Scope_Id))
6743      then
6744         --  In the case of discriminated objects, we have created a
6745         --  constrained subtype above, and used the underlying type. This
6746         --  transformation is post-analysis and harmless, except that now the
6747         --  call to the post-condition will be analyzed and the type kinds
6748         --  have to match.
6749
6750         if Nkind (Exp) = N_Unchecked_Type_Conversion
6751           and then Is_Private_Type (R_Type) /= Is_Private_Type (Etype (Exp))
6752         then
6753            Rewrite (Exp, Expression (Relocate_Node (Exp)));
6754         end if;
6755
6756         --  We are going to reference the returned value twice in this case,
6757         --  once in the call to _Postconditions, and once in the actual return
6758         --  statement, but we can't have side effects happening twice.
6759
6760         Remove_Side_Effects (Exp);
6761
6762         --  Generate call to _Postconditions
6763
6764         Insert_Action (Exp,
6765           Make_Procedure_Call_Statement (Loc,
6766             Name                   =>
6767               New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
6768             Parameter_Associations => New_List (New_Copy_Tree (Exp))));
6769      end if;
6770
6771      --  Ada 2005 (AI-251): If this return statement corresponds with an
6772      --  simple return statement associated with an extended return statement
6773      --  and the type of the returned object is an interface then generate an
6774      --  implicit conversion to force displacement of the "this" pointer.
6775
6776      if Ada_Version >= Ada_2005
6777        and then Comes_From_Extended_Return_Statement (N)
6778        and then Nkind (Expression (N)) = N_Identifier
6779        and then Is_Interface (Utyp)
6780        and then Utyp /= Underlying_Type (Exptyp)
6781      then
6782         Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
6783         Analyze_And_Resolve (Exp);
6784      end if;
6785   end Expand_Simple_Function_Return;
6786
6787   --------------------------------------------
6788   -- Has_Unconstrained_Access_Discriminants --
6789   --------------------------------------------
6790
6791   function Has_Unconstrained_Access_Discriminants
6792     (Subtyp : Entity_Id) return Boolean
6793   is
6794      Discr : Entity_Id;
6795
6796   begin
6797      if Has_Discriminants (Subtyp)
6798        and then not Is_Constrained (Subtyp)
6799      then
6800         Discr := First_Discriminant (Subtyp);
6801         while Present (Discr) loop
6802            if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
6803               return True;
6804            end if;
6805
6806            Next_Discriminant (Discr);
6807         end loop;
6808      end if;
6809
6810      return False;
6811   end Has_Unconstrained_Access_Discriminants;
6812
6813   ----------------
6814   -- Initialize --
6815   ----------------
6816
6817   procedure Initialize is
6818   begin
6819      Unest_Bodies.Init;
6820   end Initialize;
6821
6822   --------------------------------
6823   -- Is_Build_In_Place_Function --
6824   --------------------------------
6825
6826   function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
6827   begin
6828      --  This function is called from Expand_Subtype_From_Expr during
6829      --  semantic analysis, even when expansion is off. In those cases
6830      --  the build_in_place expansion will not take place.
6831
6832      if not Expander_Active then
6833         return False;
6834      end if;
6835
6836      --  For now we test whether E denotes a function or access-to-function
6837      --  type whose result subtype is inherently limited. Later this test
6838      --  may be revised to allow composite nonlimited types. Functions with
6839      --  a foreign convention or whose result type has a foreign convention
6840      --  never qualify.
6841
6842      if Ekind_In (E, E_Function, E_Generic_Function)
6843        or else (Ekind (E) = E_Subprogram_Type
6844                  and then Etype (E) /= Standard_Void_Type)
6845      then
6846         --  Note: If the function has a foreign convention, it cannot build
6847         --  its result in place, so you're on your own. On the other hand,
6848         --  if only the return type has a foreign convention, its layout is
6849         --  intended to be compatible with the other language, but the build-
6850         --  in place machinery can ensure that the object is not copied.
6851
6852         if Has_Foreign_Convention (E) then
6853            return False;
6854
6855         --  In Ada 2005 all functions with an inherently limited return type
6856         --  must be handled using a build-in-place profile, including the case
6857         --  of a function with a limited interface result, where the function
6858         --  may return objects of nonlimited descendants.
6859
6860         else
6861            return Is_Limited_View (Etype (E))
6862              and then Ada_Version >= Ada_2005
6863              and then not Debug_Flag_Dot_L;
6864         end if;
6865
6866      else
6867         return False;
6868      end if;
6869   end Is_Build_In_Place_Function;
6870
6871   -------------------------------------
6872   -- Is_Build_In_Place_Function_Call --
6873   -------------------------------------
6874
6875   function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
6876      Exp_Node    : Node_Id := N;
6877      Function_Id : Entity_Id;
6878
6879   begin
6880      --  Return False if the expander is currently inactive, since awareness
6881      --  of build-in-place treatment is only relevant during expansion. Note
6882      --  that Is_Build_In_Place_Function, which is called as part of this
6883      --  function, is also conditioned this way, but we need to check here as
6884      --  well to avoid blowing up on processing protected calls when expansion
6885      --  is disabled (such as with -gnatc) since those would trip over the
6886      --  raise of Program_Error below.
6887
6888      --  In SPARK mode, build-in-place calls are not expanded, so that we
6889      --  may end up with a call that is neither resolved to an entity, nor
6890      --  an indirect call.
6891
6892      if not Expander_Active then
6893         return False;
6894      end if;
6895
6896      --  Step past qualification, type conversion (which can occur in actual
6897      --  parameter contexts), and unchecked conversion (which can occur in
6898      --  cases of calls to 'Input).
6899
6900      if Nkind_In (Exp_Node, N_Qualified_Expression,
6901                             N_Type_Conversion,
6902                             N_Unchecked_Type_Conversion)
6903      then
6904         Exp_Node := Expression (N);
6905      end if;
6906
6907      if Nkind (Exp_Node) /= N_Function_Call then
6908         return False;
6909
6910      else
6911         if Is_Entity_Name (Name (Exp_Node)) then
6912            Function_Id := Entity (Name (Exp_Node));
6913
6914         --  In the case of an explicitly dereferenced call, use the subprogram
6915         --  type generated for the dereference.
6916
6917         elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
6918            Function_Id := Etype (Name (Exp_Node));
6919
6920         --  This may be a call to a protected function.
6921
6922         elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
6923            Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
6924
6925         else
6926            raise Program_Error;
6927         end if;
6928
6929         return Is_Build_In_Place_Function (Function_Id);
6930      end if;
6931   end Is_Build_In_Place_Function_Call;
6932
6933   -----------------------
6934   -- Freeze_Subprogram --
6935   -----------------------
6936
6937   procedure Freeze_Subprogram (N : Node_Id) is
6938      Loc : constant Source_Ptr := Sloc (N);
6939
6940      procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
6941      --  (Ada 2005): Register a predefined primitive in all the secondary
6942      --  dispatch tables of its primitive type.
6943
6944      ----------------------------------
6945      -- Register_Predefined_DT_Entry --
6946      ----------------------------------
6947
6948      procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
6949         Iface_DT_Ptr : Elmt_Id;
6950         Tagged_Typ   : Entity_Id;
6951         Thunk_Id     : Entity_Id;
6952         Thunk_Code   : Node_Id;
6953
6954      begin
6955         Tagged_Typ := Find_Dispatching_Type (Prim);
6956
6957         if No (Access_Disp_Table (Tagged_Typ))
6958           or else not Has_Interfaces (Tagged_Typ)
6959           or else not RTE_Available (RE_Interface_Tag)
6960           or else Restriction_Active (No_Dispatching_Calls)
6961         then
6962            return;
6963         end if;
6964
6965         --  Skip the first two access-to-dispatch-table pointers since they
6966         --  leads to the primary dispatch table (predefined DT and user
6967         --  defined DT). We are only concerned with the secondary dispatch
6968         --  table pointers. Note that the access-to- dispatch-table pointer
6969         --  corresponds to the first implemented interface retrieved below.
6970
6971         Iface_DT_Ptr :=
6972           Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
6973
6974         while Present (Iface_DT_Ptr)
6975           and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
6976         loop
6977            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
6978            Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
6979
6980            if Present (Thunk_Code) then
6981               Insert_Actions_After (N, New_List (
6982                 Thunk_Code,
6983
6984                 Build_Set_Predefined_Prim_Op_Address (Loc,
6985                   Tag_Node     =>
6986                     New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
6987                   Position     => DT_Position (Prim),
6988                   Address_Node =>
6989                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
6990                       Make_Attribute_Reference (Loc,
6991                         Prefix         => New_Occurrence_Of (Thunk_Id, Loc),
6992                         Attribute_Name => Name_Unrestricted_Access))),
6993
6994                 Build_Set_Predefined_Prim_Op_Address (Loc,
6995                   Tag_Node     =>
6996                     New_Occurrence_Of
6997                      (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
6998                       Loc),
6999                   Position     => DT_Position (Prim),
7000                   Address_Node =>
7001                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7002                       Make_Attribute_Reference (Loc,
7003                         Prefix         => New_Occurrence_Of (Prim, Loc),
7004                         Attribute_Name => Name_Unrestricted_Access)))));
7005            end if;
7006
7007            --  Skip the tag of the predefined primitives dispatch table
7008
7009            Next_Elmt (Iface_DT_Ptr);
7010            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7011
7012            --  Skip tag of the no-thunks dispatch table
7013
7014            Next_Elmt (Iface_DT_Ptr);
7015            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7016
7017            --  Skip tag of predefined primitives no-thunks dispatch table
7018
7019            Next_Elmt (Iface_DT_Ptr);
7020            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7021
7022            Next_Elmt (Iface_DT_Ptr);
7023         end loop;
7024      end Register_Predefined_DT_Entry;
7025
7026      --  Local variables
7027
7028      Subp : constant Entity_Id  := Entity (N);
7029
7030   --  Start of processing for Freeze_Subprogram
7031
7032   begin
7033      --  We suppress the initialization of the dispatch table entry when
7034      --  not Tagged_Type_Expansion because the dispatching mechanism is
7035      --  handled internally by the target.
7036
7037      if Is_Dispatching_Operation (Subp)
7038        and then not Is_Abstract_Subprogram (Subp)
7039        and then Present (DTC_Entity (Subp))
7040        and then Present (Scope (DTC_Entity (Subp)))
7041        and then Tagged_Type_Expansion
7042        and then not Restriction_Active (No_Dispatching_Calls)
7043        and then RTE_Available (RE_Tag)
7044      then
7045         declare
7046            Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7047
7048         begin
7049            --  Handle private overridden primitives
7050
7051            if not Is_CPP_Class (Typ) then
7052               Check_Overriding_Operation (Subp);
7053            end if;
7054
7055            --  We assume that imported CPP primitives correspond with objects
7056            --  whose constructor is in the CPP side; therefore we don't need
7057            --  to generate code to register them in the dispatch table.
7058
7059            if Is_CPP_Class (Typ) then
7060               null;
7061
7062            --  Handle CPP primitives found in derivations of CPP_Class types.
7063            --  These primitives must have been inherited from some parent, and
7064            --  there is no need to register them in the dispatch table because
7065            --  Build_Inherit_Prims takes care of initializing these slots.
7066
7067            elsif Is_Imported (Subp)
7068               and then (Convention (Subp) = Convention_CPP
7069                           or else Convention (Subp) = Convention_C)
7070            then
7071               null;
7072
7073            --  Generate code to register the primitive in non statically
7074            --  allocated dispatch tables
7075
7076            elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7077
7078               --  When a primitive is frozen, enter its name in its dispatch
7079               --  table slot.
7080
7081               if not Is_Interface (Typ)
7082                 or else Present (Interface_Alias (Subp))
7083               then
7084                  if Is_Predefined_Dispatching_Operation (Subp) then
7085                     Register_Predefined_DT_Entry (Subp);
7086                  end if;
7087
7088                  Insert_Actions_After (N,
7089                    Register_Primitive (Loc, Prim => Subp));
7090               end if;
7091            end if;
7092         end;
7093      end if;
7094
7095      --  Mark functions that return by reference. Note that it cannot be part
7096      --  of the normal semantic analysis of the spec since the underlying
7097      --  returned type may not be known yet (for private types).
7098
7099      declare
7100         Typ  : constant Entity_Id := Etype (Subp);
7101         Utyp : constant Entity_Id := Underlying_Type (Typ);
7102      begin
7103         if Is_Limited_View (Typ) then
7104            Set_Returns_By_Ref (Subp);
7105         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
7106            Set_Returns_By_Ref (Subp);
7107         end if;
7108      end;
7109
7110      --  Wnen freezing a null procedure, analyze its delayed aspects now
7111      --  because we may not have reached the end of the declarative list when
7112      --  delayed aspects are normally analyzed. This ensures that dispatching
7113      --  calls are properly rewritten when the generated _Postcondition
7114      --  procedure is analyzed in the null procedure body.
7115
7116      if Nkind (Parent (Subp)) = N_Procedure_Specification
7117        and then Null_Present (Parent (Subp))
7118      then
7119         Analyze_Entry_Or_Subprogram_Contract (Subp);
7120      end if;
7121   end Freeze_Subprogram;
7122
7123   -----------------------
7124   -- Is_Null_Procedure --
7125   -----------------------
7126
7127   function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
7128      Decl : constant Node_Id := Unit_Declaration_Node (Subp);
7129
7130   begin
7131      if Ekind (Subp) /= E_Procedure then
7132         return False;
7133
7134      --  Check if this is a declared null procedure
7135
7136      elsif Nkind (Decl) = N_Subprogram_Declaration then
7137         if not Null_Present (Specification (Decl)) then
7138            return False;
7139
7140         elsif No (Body_To_Inline (Decl)) then
7141            return False;
7142
7143         --  Check if the body contains only a null statement, followed by
7144         --  the return statement added during expansion.
7145
7146         else
7147            declare
7148               Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
7149
7150               Stat  : Node_Id;
7151               Stat2 : Node_Id;
7152
7153            begin
7154               if Nkind (Orig_Bod) /= N_Subprogram_Body then
7155                  return False;
7156               else
7157                  --  We must skip SCIL nodes because they are currently
7158                  --  implemented as special N_Null_Statement nodes.
7159
7160                  Stat :=
7161                     First_Non_SCIL_Node
7162                       (Statements (Handled_Statement_Sequence (Orig_Bod)));
7163                  Stat2 := Next_Non_SCIL_Node (Stat);
7164
7165                  return
7166                     Is_Empty_List (Declarations (Orig_Bod))
7167                       and then Nkind (Stat) = N_Null_Statement
7168                       and then
7169                        (No (Stat2)
7170                          or else
7171                            (Nkind (Stat2) = N_Simple_Return_Statement
7172                              and then No (Next (Stat2))));
7173               end if;
7174            end;
7175         end if;
7176
7177      else
7178         return False;
7179      end if;
7180   end Is_Null_Procedure;
7181
7182   -------------------------------------------
7183   -- Make_Build_In_Place_Call_In_Allocator --
7184   -------------------------------------------
7185
7186   procedure Make_Build_In_Place_Call_In_Allocator
7187     (Allocator     : Node_Id;
7188      Function_Call : Node_Id)
7189   is
7190      Acc_Type          : constant Entity_Id := Etype (Allocator);
7191      Loc               : Source_Ptr;
7192      Func_Call         : Node_Id := Function_Call;
7193      Ref_Func_Call     : Node_Id;
7194      Function_Id       : Entity_Id;
7195      Result_Subt       : Entity_Id;
7196      New_Allocator     : Node_Id;
7197      Return_Obj_Access : Entity_Id; -- temp for function result
7198      Temp_Init         : Node_Id; -- initial value of Return_Obj_Access
7199      Alloc_Form        : BIP_Allocation_Form;
7200      Pool              : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
7201      Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
7202      Chain             : Entity_Id; -- activation chain, in case of tasks
7203
7204   begin
7205      --  Step past qualification or unchecked conversion (the latter can occur
7206      --  in cases of calls to 'Input).
7207
7208      if Nkind_In (Func_Call,
7209                   N_Qualified_Expression,
7210                   N_Unchecked_Type_Conversion)
7211      then
7212         Func_Call := Expression (Func_Call);
7213      end if;
7214
7215      --  If the call has already been processed to add build-in-place actuals
7216      --  then return. This should not normally occur in an allocator context,
7217      --  but we add the protection as a defensive measure.
7218
7219      if Is_Expanded_Build_In_Place_Call (Func_Call) then
7220         return;
7221      end if;
7222
7223      --  Mark the call as processed as a build-in-place call
7224
7225      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7226
7227      Loc := Sloc (Function_Call);
7228
7229      if Is_Entity_Name (Name (Func_Call)) then
7230         Function_Id := Entity (Name (Func_Call));
7231
7232      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7233         Function_Id := Etype (Name (Func_Call));
7234
7235      else
7236         raise Program_Error;
7237      end if;
7238
7239      Result_Subt := Available_View (Etype (Function_Id));
7240
7241      --  Create a temp for the function result. In the caller-allocates case,
7242      --  this will be initialized to the result of a new uninitialized
7243      --  allocator. Note: we do not use Allocator as the Related_Node of
7244      --  Return_Obj_Access in call to Make_Temporary below as this would
7245      --  create a sort of infinite "recursion".
7246
7247      Return_Obj_Access := Make_Temporary (Loc, 'R');
7248      Set_Etype (Return_Obj_Access, Acc_Type);
7249
7250      --  When the result subtype is constrained, the return object is
7251      --  allocated on the caller side, and access to it is passed to the
7252      --  function.
7253
7254      --  Here and in related routines, we must examine the full view of the
7255      --  type, because the view at the point of call may differ from that
7256      --  that in the function body, and the expansion mechanism depends on
7257      --  the characteristics of the full view.
7258
7259      if Is_Constrained (Underlying_Type (Result_Subt)) then
7260
7261         --  Replace the initialized allocator of form "new T'(Func (...))"
7262         --  with an uninitialized allocator of form "new T", where T is the
7263         --  result subtype of the called function. The call to the function
7264         --  is handled separately further below.
7265
7266         New_Allocator :=
7267           Make_Allocator (Loc,
7268             Expression => New_Occurrence_Of (Result_Subt, Loc));
7269         Set_No_Initialization (New_Allocator);
7270
7271         --  Copy attributes to new allocator. Note that the new allocator
7272         --  logically comes from source if the original one did, so copy the
7273         --  relevant flag. This ensures proper treatment of the restriction
7274         --  No_Implicit_Heap_Allocations in this case.
7275
7276         Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
7277         Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
7278         Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
7279
7280         Rewrite (Allocator, New_Allocator);
7281
7282         --  Initial value of the temp is the result of the uninitialized
7283         --  allocator
7284
7285         Temp_Init := Relocate_Node (Allocator);
7286
7287         --  Indicate that caller allocates, and pass in the return object
7288
7289         Alloc_Form := Caller_Allocation;
7290         Pool := Make_Null (No_Location);
7291         Return_Obj_Actual :=
7292           Make_Unchecked_Type_Conversion (Loc,
7293             Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
7294             Expression   =>
7295               Make_Explicit_Dereference (Loc,
7296                 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
7297
7298      --  When the result subtype is unconstrained, the function itself must
7299      --  perform the allocation of the return object, so we pass parameters
7300      --  indicating that.
7301
7302      else
7303         Temp_Init := Empty;
7304
7305         --  Case of a user-defined storage pool. Pass an allocation parameter
7306         --  indicating that the function should allocate its result in the
7307         --  pool, and pass the pool. Use 'Unrestricted_Access because the
7308         --  pool may not be aliased.
7309
7310         if Present (Associated_Storage_Pool (Acc_Type)) then
7311            Alloc_Form := User_Storage_Pool;
7312            Pool :=
7313              Make_Attribute_Reference (Loc,
7314                Prefix         =>
7315                  New_Occurrence_Of
7316                    (Associated_Storage_Pool (Acc_Type), Loc),
7317                Attribute_Name => Name_Unrestricted_Access);
7318
7319         --  No user-defined pool; pass an allocation parameter indicating that
7320         --  the function should allocate its result on the heap.
7321
7322         else
7323            Alloc_Form := Global_Heap;
7324            Pool := Make_Null (No_Location);
7325         end if;
7326
7327         --  The caller does not provide the return object in this case, so we
7328         --  have to pass null for the object access actual.
7329
7330         Return_Obj_Actual := Empty;
7331      end if;
7332
7333      --  Declare the temp object
7334
7335      Insert_Action (Allocator,
7336        Make_Object_Declaration (Loc,
7337          Defining_Identifier => Return_Obj_Access,
7338          Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
7339          Expression          => Temp_Init));
7340
7341      Ref_Func_Call := Make_Reference (Loc, Func_Call);
7342
7343      --  Ada 2005 (AI-251): If the type of the allocator is an interface
7344      --  then generate an implicit conversion to force displacement of the
7345      --  "this" pointer.
7346
7347      if Is_Interface (Designated_Type (Acc_Type)) then
7348         Rewrite
7349           (Ref_Func_Call,
7350            OK_Convert_To (Acc_Type, Ref_Func_Call));
7351      end if;
7352
7353      declare
7354         Assign : constant Node_Id :=
7355           Make_Assignment_Statement (Loc,
7356             Name       => New_Occurrence_Of (Return_Obj_Access, Loc),
7357             Expression => Ref_Func_Call);
7358         --  Assign the result of the function call into the temp. In the
7359         --  caller-allocates case, this is overwriting the temp with its
7360         --  initial value, which has no effect. In the callee-allocates case,
7361         --  this is setting the temp to point to the object allocated by the
7362         --  callee.
7363
7364         Actions : List_Id;
7365         --  Actions to be inserted. If there are no tasks, this is just the
7366         --  assignment statement. If the allocated object has tasks, we need
7367         --  to wrap the assignment in a block that activates them. The
7368         --  activation chain of that block must be passed to the function,
7369         --  rather than some outer chain.
7370      begin
7371         if Has_Task (Result_Subt) then
7372            Actions := New_List;
7373            Build_Task_Allocate_Block_With_Init_Stmts
7374              (Actions, Allocator, Init_Stmts => New_List (Assign));
7375            Chain := Activation_Chain_Entity (Last (Actions));
7376         else
7377            Actions := New_List (Assign);
7378            Chain   := Empty;
7379         end if;
7380
7381         Insert_Actions (Allocator, Actions);
7382      end;
7383
7384      --  When the function has a controlling result, an allocation-form
7385      --  parameter must be passed indicating that the caller is allocating
7386      --  the result object. This is needed because such a function can be
7387      --  called as a dispatching operation and must be treated similarly
7388      --  to functions with unconstrained result subtypes.
7389
7390      Add_Unconstrained_Actuals_To_Build_In_Place_Call
7391        (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
7392
7393      Add_Finalization_Master_Actual_To_Build_In_Place_Call
7394        (Func_Call, Function_Id, Acc_Type);
7395
7396      Add_Task_Actuals_To_Build_In_Place_Call
7397        (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
7398         Chain => Chain);
7399
7400      --  Add an implicit actual to the function call that provides access
7401      --  to the allocated object. An unchecked conversion to the (specific)
7402      --  result subtype of the function is inserted to handle cases where
7403      --  the access type of the allocator has a class-wide designated type.
7404
7405      Add_Access_Actual_To_Build_In_Place_Call
7406        (Func_Call, Function_Id, Return_Obj_Actual);
7407
7408      --  Finally, replace the allocator node with a reference to the temp
7409
7410      Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
7411
7412      Analyze_And_Resolve (Allocator, Acc_Type);
7413   end Make_Build_In_Place_Call_In_Allocator;
7414
7415   ---------------------------------------------------
7416   -- Make_Build_In_Place_Call_In_Anonymous_Context --
7417   ---------------------------------------------------
7418
7419   procedure Make_Build_In_Place_Call_In_Anonymous_Context
7420     (Function_Call : Node_Id)
7421   is
7422      Loc             : Source_Ptr;
7423      Func_Call       : Node_Id := Function_Call;
7424      Function_Id     : Entity_Id;
7425      Result_Subt     : Entity_Id;
7426      Return_Obj_Id   : Entity_Id;
7427      Return_Obj_Decl : Entity_Id;
7428
7429   begin
7430      --  Step past qualification, type conversion (which can occur in actual
7431      --  parameter contexts), and unchecked conversion (which can occur in
7432      --  cases of calls to 'Input).
7433
7434      if Nkind_In (Func_Call, N_Qualified_Expression,
7435                              N_Type_Conversion,
7436                              N_Unchecked_Type_Conversion)
7437      then
7438         Func_Call := Expression (Func_Call);
7439      end if;
7440
7441      --  If the call has already been processed to add build-in-place actuals
7442      --  then return. One place this can occur is for calls to build-in-place
7443      --  functions that occur within a call to a protected operation, where
7444      --  due to rewriting and expansion of the protected call there can be
7445      --  more than one call to Expand_Actuals for the same set of actuals.
7446
7447      if Is_Expanded_Build_In_Place_Call (Func_Call) then
7448         return;
7449      end if;
7450
7451      --  Mark the call as processed as a build-in-place call
7452
7453      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7454
7455      Loc := Sloc (Function_Call);
7456
7457      if Is_Entity_Name (Name (Func_Call)) then
7458         Function_Id := Entity (Name (Func_Call));
7459
7460      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7461         Function_Id := Etype (Name (Func_Call));
7462
7463      else
7464         raise Program_Error;
7465      end if;
7466
7467      Result_Subt := Etype (Function_Id);
7468
7469      --  If the build-in-place function returns a controlled object, then the
7470      --  object needs to be finalized immediately after the context. Since
7471      --  this case produces a transient scope, the servicing finalizer needs
7472      --  to name the returned object. Create a temporary which is initialized
7473      --  with the function call:
7474      --
7475      --    Temp_Id : Func_Type := BIP_Func_Call;
7476      --
7477      --  The initialization expression of the temporary will be rewritten by
7478      --  the expander using the appropriate mechanism in Make_Build_In_Place_
7479      --  Call_In_Object_Declaration.
7480
7481      if Needs_Finalization (Result_Subt) then
7482         declare
7483            Temp_Id   : constant Entity_Id := Make_Temporary (Loc, 'R');
7484            Temp_Decl : Node_Id;
7485
7486         begin
7487            --  Reset the guard on the function call since the following does
7488            --  not perform actual call expansion.
7489
7490            Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
7491
7492            Temp_Decl :=
7493              Make_Object_Declaration (Loc,
7494                Defining_Identifier => Temp_Id,
7495                Object_Definition =>
7496                  New_Occurrence_Of (Result_Subt, Loc),
7497                Expression =>
7498                  New_Copy_Tree (Function_Call));
7499
7500            Insert_Action (Function_Call, Temp_Decl);
7501
7502            Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
7503            Analyze (Function_Call);
7504         end;
7505
7506      --  When the result subtype is constrained, an object of the subtype is
7507      --  declared and an access value designating it is passed as an actual.
7508
7509      elsif Is_Constrained (Underlying_Type (Result_Subt)) then
7510
7511         --  Create a temporary object to hold the function result
7512
7513         Return_Obj_Id := Make_Temporary (Loc, 'R');
7514         Set_Etype (Return_Obj_Id, Result_Subt);
7515
7516         Return_Obj_Decl :=
7517           Make_Object_Declaration (Loc,
7518             Defining_Identifier => Return_Obj_Id,
7519             Aliased_Present     => True,
7520             Object_Definition   => New_Occurrence_Of (Result_Subt, Loc));
7521
7522         Set_No_Initialization (Return_Obj_Decl);
7523
7524         Insert_Action (Func_Call, Return_Obj_Decl);
7525
7526         --  When the function has a controlling result, an allocation-form
7527         --  parameter must be passed indicating that the caller is allocating
7528         --  the result object. This is needed because such a function can be
7529         --  called as a dispatching operation and must be treated similarly
7530         --  to functions with unconstrained result subtypes.
7531
7532         Add_Unconstrained_Actuals_To_Build_In_Place_Call
7533           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
7534
7535         Add_Finalization_Master_Actual_To_Build_In_Place_Call
7536           (Func_Call, Function_Id);
7537
7538         Add_Task_Actuals_To_Build_In_Place_Call
7539           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7540
7541         --  Add an implicit actual to the function call that provides access
7542         --  to the caller's return object.
7543
7544         Add_Access_Actual_To_Build_In_Place_Call
7545           (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
7546
7547      --  When the result subtype is unconstrained, the function must allocate
7548      --  the return object in the secondary stack, so appropriate implicit
7549      --  parameters are added to the call to indicate that. A transient
7550      --  scope is established to ensure eventual cleanup of the result.
7551
7552      else
7553         --  Pass an allocation parameter indicating that the function should
7554         --  allocate its result on the secondary stack.
7555
7556         Add_Unconstrained_Actuals_To_Build_In_Place_Call
7557           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
7558
7559         Add_Finalization_Master_Actual_To_Build_In_Place_Call
7560           (Func_Call, Function_Id);
7561
7562         Add_Task_Actuals_To_Build_In_Place_Call
7563           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7564
7565         --  Pass a null value to the function since no return object is
7566         --  available on the caller side.
7567
7568         Add_Access_Actual_To_Build_In_Place_Call
7569           (Func_Call, Function_Id, Empty);
7570      end if;
7571   end Make_Build_In_Place_Call_In_Anonymous_Context;
7572
7573   --------------------------------------------
7574   -- Make_Build_In_Place_Call_In_Assignment --
7575   --------------------------------------------
7576
7577   procedure Make_Build_In_Place_Call_In_Assignment
7578     (Assign        : Node_Id;
7579      Function_Call : Node_Id)
7580   is
7581      Lhs          : constant Node_Id := Name (Assign);
7582      Func_Call    : Node_Id := Function_Call;
7583      Func_Id      : Entity_Id;
7584      Loc          : Source_Ptr;
7585      Obj_Decl     : Node_Id;
7586      Obj_Id       : Entity_Id;
7587      Ptr_Typ      : Entity_Id;
7588      Ptr_Typ_Decl : Node_Id;
7589      New_Expr     : Node_Id;
7590      Result_Subt  : Entity_Id;
7591      Target       : Node_Id;
7592
7593   begin
7594      --  Step past qualification or unchecked conversion (the latter can occur
7595      --  in cases of calls to 'Input).
7596
7597      if Nkind_In (Func_Call, N_Qualified_Expression,
7598                              N_Unchecked_Type_Conversion)
7599      then
7600         Func_Call := Expression (Func_Call);
7601      end if;
7602
7603      --  If the call has already been processed to add build-in-place actuals
7604      --  then return. This should not normally occur in an assignment context,
7605      --  but we add the protection as a defensive measure.
7606
7607      if Is_Expanded_Build_In_Place_Call (Func_Call) then
7608         return;
7609      end if;
7610
7611      --  Mark the call as processed as a build-in-place call
7612
7613      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7614
7615      Loc := Sloc (Function_Call);
7616
7617      if Is_Entity_Name (Name (Func_Call)) then
7618         Func_Id := Entity (Name (Func_Call));
7619
7620      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7621         Func_Id := Etype (Name (Func_Call));
7622
7623      else
7624         raise Program_Error;
7625      end if;
7626
7627      Result_Subt := Etype (Func_Id);
7628
7629      --  When the result subtype is unconstrained, an additional actual must
7630      --  be passed to indicate that the caller is providing the return object.
7631      --  This parameter must also be passed when the called function has a
7632      --  controlling result, because dispatching calls to the function needs
7633      --  to be treated effectively the same as calls to class-wide functions.
7634
7635      Add_Unconstrained_Actuals_To_Build_In_Place_Call
7636        (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
7637
7638      Add_Finalization_Master_Actual_To_Build_In_Place_Call
7639        (Func_Call, Func_Id);
7640
7641      Add_Task_Actuals_To_Build_In_Place_Call
7642        (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
7643
7644      --  Add an implicit actual to the function call that provides access to
7645      --  the caller's return object.
7646
7647      Add_Access_Actual_To_Build_In_Place_Call
7648        (Func_Call,
7649         Func_Id,
7650         Make_Unchecked_Type_Conversion (Loc,
7651           Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
7652           Expression   => Relocate_Node (Lhs)));
7653
7654      --  Create an access type designating the function's result subtype
7655
7656      Ptr_Typ := Make_Temporary (Loc, 'A');
7657
7658      Ptr_Typ_Decl :=
7659        Make_Full_Type_Declaration (Loc,
7660          Defining_Identifier => Ptr_Typ,
7661          Type_Definition     =>
7662            Make_Access_To_Object_Definition (Loc,
7663              All_Present        => True,
7664              Subtype_Indication =>
7665                New_Occurrence_Of (Result_Subt, Loc)));
7666      Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
7667
7668      --  Finally, create an access object initialized to a reference to the
7669      --  function call. We know this access value is non-null, so mark the
7670      --  entity accordingly to suppress junk access checks.
7671
7672      New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
7673
7674      Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
7675      Set_Etype (Obj_Id, Ptr_Typ);
7676      Set_Is_Known_Non_Null (Obj_Id);
7677
7678      Obj_Decl :=
7679        Make_Object_Declaration (Loc,
7680          Defining_Identifier => Obj_Id,
7681          Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
7682          Expression          => New_Expr);
7683      Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
7684
7685      Rewrite (Assign, Make_Null_Statement (Loc));
7686
7687      --  Retrieve the target of the assignment
7688
7689      if Nkind (Lhs) = N_Selected_Component then
7690         Target := Selector_Name (Lhs);
7691      elsif Nkind (Lhs) = N_Type_Conversion then
7692         Target := Expression (Lhs);
7693      else
7694         Target := Lhs;
7695      end if;
7696
7697      --  If we are assigning to a return object or this is an expression of
7698      --  an extension aggregate, the target should either be an identifier
7699      --  or a simple expression. All other cases imply a different scenario.
7700
7701      if Nkind (Target) in N_Has_Entity then
7702         Target := Entity (Target);
7703      else
7704         return;
7705      end if;
7706   end Make_Build_In_Place_Call_In_Assignment;
7707
7708   ----------------------------------------------------
7709   -- Make_Build_In_Place_Call_In_Object_Declaration --
7710   ----------------------------------------------------
7711
7712   procedure Make_Build_In_Place_Call_In_Object_Declaration
7713     (Obj_Decl      : Node_Id;
7714      Function_Call : Node_Id)
7715   is
7716      Obj_Def_Id : constant Entity_Id  := Defining_Identifier (Obj_Decl);
7717      Encl_Func  : constant Entity_Id  := Enclosing_Subprogram (Obj_Def_Id);
7718      Loc        : constant Source_Ptr := Sloc (Function_Call);
7719      Obj_Loc    : constant Source_Ptr := Sloc (Obj_Decl);
7720
7721      Call_Deref      : Node_Id;
7722      Caller_Object   : Node_Id;
7723      Def_Id          : Entity_Id;
7724      Fmaster_Actual  : Node_Id := Empty;
7725      Func_Call       : Node_Id := Function_Call;
7726      Function_Id     : Entity_Id;
7727      Pool_Actual     : Node_Id;
7728      Ptr_Typ         : Entity_Id;
7729      Ptr_Typ_Decl    : Node_Id;
7730      Pass_Caller_Acc : Boolean := False;
7731      Res_Decl        : Node_Id;
7732      Result_Subt     : Entity_Id;
7733
7734      Definite : Boolean;
7735      --  True for definite function result subtype
7736
7737   begin
7738      --  Step past qualification or unchecked conversion (the latter can occur
7739      --  in cases of calls to 'Input).
7740
7741      if Nkind_In (Func_Call, N_Qualified_Expression,
7742                              N_Unchecked_Type_Conversion)
7743      then
7744         Func_Call := Expression (Func_Call);
7745      end if;
7746
7747      --  If the call has already been processed to add build-in-place actuals
7748      --  then return. This should not normally occur in an object declaration,
7749      --  but we add the protection as a defensive measure.
7750
7751      if Is_Expanded_Build_In_Place_Call (Func_Call) then
7752         return;
7753      end if;
7754
7755      --  Mark the call as processed as a build-in-place call
7756
7757      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7758
7759      if Is_Entity_Name (Name (Func_Call)) then
7760         Function_Id := Entity (Name (Func_Call));
7761
7762      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7763         Function_Id := Etype (Name (Func_Call));
7764
7765      else
7766         raise Program_Error;
7767      end if;
7768
7769      Result_Subt := Etype (Function_Id);
7770      Definite    := Is_Definite_Subtype (Underlying_Type (Result_Subt));
7771
7772      --  Create an access type designating the function's result subtype. We
7773      --  use the type of the original call because it may be a call to an
7774      --  inherited operation, which the expansion has replaced with the parent
7775      --  operation that yields the parent type. Note that this access type
7776      --  must be declared before we establish a transient scope, so that it
7777      --  receives the proper accessibility level.
7778
7779      Ptr_Typ := Make_Temporary (Loc, 'A');
7780      Ptr_Typ_Decl :=
7781        Make_Full_Type_Declaration (Loc,
7782          Defining_Identifier => Ptr_Typ,
7783          Type_Definition     =>
7784            Make_Access_To_Object_Definition (Loc,
7785              All_Present        => True,
7786              Subtype_Indication =>
7787                New_Occurrence_Of (Etype (Function_Call), Loc)));
7788
7789      --  The access type and its accompanying object must be inserted after
7790      --  the object declaration in the constrained case, so that the function
7791      --  call can be passed access to the object. In the indefinite case,
7792      --  or if the object declaration is for a return object, the access type
7793      --  and object must be inserted before the object, since the object
7794      --  declaration is rewritten to be a renaming of a dereference of the
7795      --  access object. Note: we need to freeze Ptr_Typ explicitly, because
7796      --  the result object is in a different (transient) scope, so won't
7797      --  cause freezing.
7798
7799      if Definite
7800        and then not Is_Return_Object (Defining_Identifier (Obj_Decl))
7801      then
7802         Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
7803      else
7804         Insert_Action (Obj_Decl, Ptr_Typ_Decl);
7805      end if;
7806
7807      --  Force immediate freezing of Ptr_Typ because Res_Decl will be
7808      --  elaborated in an inner (transient) scope and thus won't cause
7809      --  freezing by itself.
7810
7811      declare
7812         Ptr_Typ_Freeze_Ref : constant Node_Id :=
7813                                New_Occurrence_Of (Ptr_Typ, Loc);
7814      begin
7815         Set_Parent (Ptr_Typ_Freeze_Ref, Ptr_Typ_Decl);
7816         Freeze_Expression (Ptr_Typ_Freeze_Ref);
7817      end;
7818
7819      --  If the object is a return object of an enclosing build-in-place
7820      --  function, then the implicit build-in-place parameters of the
7821      --  enclosing function are simply passed along to the called function.
7822      --  (Unfortunately, this won't cover the case of extension aggregates
7823      --  where the ancestor part is a build-in-place indefinite function
7824      --  call that should be passed along the caller's parameters. Currently
7825      --  those get mishandled by reassigning the result of the call to the
7826      --  aggregate return object, when the call result should really be
7827      --  directly built in place in the aggregate and not in a temporary. ???)
7828
7829      if Is_Return_Object (Defining_Identifier (Obj_Decl)) then
7830         Pass_Caller_Acc := True;
7831
7832         --  When the enclosing function has a BIP_Alloc_Form formal then we
7833         --  pass it along to the callee (such as when the enclosing function
7834         --  has an unconstrained or tagged result type).
7835
7836         if Needs_BIP_Alloc_Form (Encl_Func) then
7837            if RTE_Available (RE_Root_Storage_Pool_Ptr) then
7838               Pool_Actual :=
7839                 New_Occurrence_Of
7840                   (Build_In_Place_Formal (Encl_Func, BIP_Storage_Pool), Loc);
7841
7842            --  The build-in-place pool formal is not built on e.g. ZFP
7843
7844            else
7845               Pool_Actual := Empty;
7846            end if;
7847
7848            Add_Unconstrained_Actuals_To_Build_In_Place_Call
7849              (Function_Call  => Func_Call,
7850               Function_Id    => Function_Id,
7851               Alloc_Form_Exp =>
7852                 New_Occurrence_Of
7853                   (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
7854               Pool_Actual    => Pool_Actual);
7855
7856         --  Otherwise, if enclosing function has a definite result subtype,
7857         --  then caller allocation will be used.
7858
7859         else
7860            Add_Unconstrained_Actuals_To_Build_In_Place_Call
7861              (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
7862         end if;
7863
7864         if Needs_BIP_Finalization_Master (Encl_Func) then
7865            Fmaster_Actual :=
7866              New_Occurrence_Of
7867                (Build_In_Place_Formal
7868                   (Encl_Func, BIP_Finalization_Master), Loc);
7869         end if;
7870
7871         --  Retrieve the BIPacc formal from the enclosing function and convert
7872         --  it to the access type of the callee's BIP_Object_Access formal.
7873
7874         Caller_Object :=
7875           Make_Unchecked_Type_Conversion (Loc,
7876             Subtype_Mark =>
7877               New_Occurrence_Of
7878                 (Etype
7879                    (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
7880                  Loc),
7881             Expression   =>
7882               New_Occurrence_Of
7883                 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access),
7884                  Loc));
7885
7886      --  In the definite case, add an implicit actual to the function call
7887      --  that provides access to the declared object. An unchecked conversion
7888      --  to the (specific) result type of the function is inserted to handle
7889      --  the case where the object is declared with a class-wide type.
7890
7891      elsif Definite then
7892         Caller_Object :=
7893            Make_Unchecked_Type_Conversion (Loc,
7894              Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
7895              Expression   => New_Occurrence_Of (Obj_Def_Id, Loc));
7896
7897         --  When the function has a controlling result, an allocation-form
7898         --  parameter must be passed indicating that the caller is allocating
7899         --  the result object. This is needed because such a function can be
7900         --  called as a dispatching operation and must be treated similarly
7901         --  to functions with indefinite result subtypes.
7902
7903         Add_Unconstrained_Actuals_To_Build_In_Place_Call
7904           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
7905
7906      --  The allocation for indefinite library-level objects occurs on the
7907      --  heap as opposed to the secondary stack. This accommodates DLLs where
7908      --  the secondary stack is destroyed after each library unload. This is
7909      --  a hybrid mechanism where a stack-allocated object lives on the heap.
7910
7911      elsif Is_Library_Level_Entity (Defining_Identifier (Obj_Decl))
7912        and then not Restriction_Active (No_Implicit_Heap_Allocations)
7913      then
7914         Add_Unconstrained_Actuals_To_Build_In_Place_Call
7915           (Func_Call, Function_Id, Alloc_Form => Global_Heap);
7916         Caller_Object := Empty;
7917
7918         --  Create a finalization master for the access result type to ensure
7919         --  that the heap allocation can properly chain the object and later
7920         --  finalize it when the library unit goes out of scope.
7921
7922         if Needs_Finalization (Etype (Func_Call)) then
7923            Build_Finalization_Master
7924              (Typ            => Ptr_Typ,
7925               For_Lib_Level  => True,
7926               Insertion_Node => Ptr_Typ_Decl);
7927
7928            Fmaster_Actual :=
7929              Make_Attribute_Reference (Loc,
7930                Prefix         =>
7931                  New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
7932                Attribute_Name => Name_Unrestricted_Access);
7933         end if;
7934
7935      --  In other indefinite cases, pass an indication to do the allocation
7936      --  on the secondary stack and set Caller_Object to Empty so that a null
7937      --  value will be passed for the caller's object address. A transient
7938      --  scope is established to ensure eventual cleanup of the result.
7939
7940      else
7941         Add_Unconstrained_Actuals_To_Build_In_Place_Call
7942           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
7943         Caller_Object := Empty;
7944
7945         Establish_Transient_Scope (Obj_Decl, Sec_Stack => True);
7946      end if;
7947
7948      --  Pass along any finalization master actual, which is needed in the
7949      --  case where the called function initializes a return object of an
7950      --  enclosing build-in-place function.
7951
7952      Add_Finalization_Master_Actual_To_Build_In_Place_Call
7953        (Func_Call  => Func_Call,
7954         Func_Id    => Function_Id,
7955         Master_Exp => Fmaster_Actual);
7956
7957      if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
7958        and then Has_Task (Result_Subt)
7959      then
7960         --  Here we're passing along the master that was passed in to this
7961         --  function.
7962
7963         Add_Task_Actuals_To_Build_In_Place_Call
7964           (Func_Call, Function_Id,
7965            Master_Actual =>
7966              New_Occurrence_Of
7967                (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
7968
7969      else
7970         Add_Task_Actuals_To_Build_In_Place_Call
7971           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7972      end if;
7973
7974      Add_Access_Actual_To_Build_In_Place_Call
7975        (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
7976
7977      --  Finally, create an access object initialized to a reference to the
7978      --  function call. We know this access value cannot be null, so mark the
7979      --  entity accordingly to suppress the access check.
7980
7981      Def_Id := Make_Temporary (Loc, 'R', Func_Call);
7982      Set_Etype (Def_Id, Ptr_Typ);
7983      Set_Is_Known_Non_Null (Def_Id);
7984
7985      Res_Decl :=
7986        Make_Object_Declaration (Loc,
7987          Defining_Identifier => Def_Id,
7988          Constant_Present    => True,
7989          Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
7990          Expression          =>
7991            Make_Reference (Loc, Relocate_Node (Func_Call)));
7992
7993      Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
7994
7995      --  If the result subtype of the called function is definite and is not
7996      --  itself the return expression of an enclosing BIP function, then mark
7997      --  the object as having no initialization.
7998
7999      if Definite
8000        and then not Is_Return_Object (Defining_Identifier (Obj_Decl))
8001      then
8002         --  The related object declaration is encased in a transient block
8003         --  because the build-in-place function call contains at least one
8004         --  nested function call that produces a controlled transient
8005         --  temporary:
8006
8007         --    Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8008
8009         --  Since the build-in-place expansion decouples the call from the
8010         --  object declaration, the finalization machinery lacks the context
8011         --  which prompted the generation of the transient block. To resolve
8012         --  this scenario, store the build-in-place call.
8013
8014         if Scope_Is_Transient and then Node_To_Be_Wrapped = Obj_Decl then
8015            Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
8016         end if;
8017
8018         Set_Expression (Obj_Decl, Empty);
8019         Set_No_Initialization (Obj_Decl);
8020
8021      --  In case of an indefinite result subtype, or if the call is the
8022      --  return expression of an enclosing BIP function, rewrite the object
8023      --  declaration as an object renaming where the renamed object is a
8024      --  dereference of <function_Call>'reference:
8025      --
8026      --      Obj : Subt renames <function_call>'Ref.all;
8027
8028      else
8029         Call_Deref :=
8030           Make_Explicit_Dereference (Obj_Loc,
8031             Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
8032
8033         Rewrite (Obj_Decl,
8034           Make_Object_Renaming_Declaration (Obj_Loc,
8035             Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
8036             Subtype_Mark        => New_Occurrence_Of (Result_Subt, Obj_Loc),
8037             Name                => Call_Deref));
8038
8039         Set_Renamed_Object (Defining_Identifier (Obj_Decl), Call_Deref);
8040
8041         --  If the original entity comes from source, then mark the new
8042         --  entity as needing debug information, even though it's defined
8043         --  by a generated renaming that does not come from source, so that
8044         --  the Materialize_Entity flag will be set on the entity when
8045         --  Debug_Renaming_Declaration is called during analysis.
8046
8047         if Comes_From_Source (Obj_Def_Id) then
8048            Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
8049         end if;
8050
8051         Analyze (Obj_Decl);
8052
8053         --  Replace the internal identifier of the renaming declaration's
8054         --  entity with identifier of the original object entity. We also have
8055         --  to exchange the entities containing their defining identifiers to
8056         --  ensure the correct replacement of the object declaration by the
8057         --  object renaming declaration to avoid homograph conflicts (since
8058         --  the object declaration's defining identifier was already entered
8059         --  in current scope). The Next_Entity links of the two entities also
8060         --  have to be swapped since the entities are part of the return
8061         --  scope's entity list and the list structure would otherwise be
8062         --  corrupted. Finally, the homonym chain must be preserved as well.
8063
8064         declare
8065            Ren_Id  : constant Entity_Id := Defining_Entity (Obj_Decl);
8066            Next_Id : constant Entity_Id := Next_Entity (Ren_Id);
8067
8068         begin
8069            Set_Chars (Ren_Id, Chars (Obj_Def_Id));
8070
8071            --  Swap next entity links in preparation for exchanging entities
8072
8073            Set_Next_Entity (Ren_Id, Next_Entity (Obj_Def_Id));
8074            Set_Next_Entity (Obj_Def_Id, Next_Id);
8075            Set_Homonym     (Ren_Id, Homonym (Obj_Def_Id));
8076
8077            Exchange_Entities (Ren_Id, Obj_Def_Id);
8078
8079            --  Preserve source indication of original declaration, so that
8080            --  xref information is properly generated for the right entity.
8081
8082            Preserve_Comes_From_Source (Obj_Decl, Original_Node (Obj_Decl));
8083            Preserve_Comes_From_Source (Obj_Def_Id, Original_Node (Obj_Decl));
8084
8085            Set_Comes_From_Source (Ren_Id, False);
8086         end;
8087      end if;
8088
8089      --  If the object entity has a class-wide Etype, then we need to change
8090      --  it to the result subtype of the function call, because otherwise the
8091      --  object will be class-wide without an explicit initialization and
8092      --  won't be allocated properly by the back end. It seems unclean to make
8093      --  such a revision to the type at this point, and we should try to
8094      --  improve this treatment when build-in-place functions with class-wide
8095      --  results are implemented. ???
8096
8097      if Is_Class_Wide_Type (Etype (Defining_Identifier (Obj_Decl))) then
8098         Set_Etype (Defining_Identifier (Obj_Decl), Result_Subt);
8099      end if;
8100   end Make_Build_In_Place_Call_In_Object_Declaration;
8101
8102   --------------------------------------------
8103   -- Make_CPP_Constructor_Call_In_Allocator --
8104   --------------------------------------------
8105
8106   procedure Make_CPP_Constructor_Call_In_Allocator
8107     (Allocator     : Node_Id;
8108      Function_Call : Node_Id)
8109   is
8110      Loc         : constant Source_Ptr := Sloc (Function_Call);
8111      Acc_Type    : constant Entity_Id := Etype (Allocator);
8112      Function_Id : constant Entity_Id := Entity (Name (Function_Call));
8113      Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
8114
8115      New_Allocator     : Node_Id;
8116      Return_Obj_Access : Entity_Id;
8117      Tmp_Obj           : Node_Id;
8118
8119   begin
8120      pragma Assert (Nkind (Allocator) = N_Allocator
8121                      and then Nkind (Function_Call) = N_Function_Call);
8122      pragma Assert (Convention (Function_Id) = Convention_CPP
8123                      and then Is_Constructor (Function_Id));
8124      pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
8125
8126      --  Replace the initialized allocator of form "new T'(Func (...))" with
8127      --  an uninitialized allocator of form "new T", where T is the result
8128      --  subtype of the called function. The call to the function is handled
8129      --  separately further below.
8130
8131      New_Allocator :=
8132        Make_Allocator (Loc,
8133          Expression => New_Occurrence_Of (Result_Subt, Loc));
8134      Set_No_Initialization (New_Allocator);
8135
8136      --  Copy attributes to new allocator. Note that the new allocator
8137      --  logically comes from source if the original one did, so copy the
8138      --  relevant flag. This ensures proper treatment of the restriction
8139      --  No_Implicit_Heap_Allocations in this case.
8140
8141      Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
8142      Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8143      Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8144
8145      Rewrite (Allocator, New_Allocator);
8146
8147      --  Create a new access object and initialize it to the result of the
8148      --  new uninitialized allocator. Note: we do not use Allocator as the
8149      --  Related_Node of Return_Obj_Access in call to Make_Temporary below
8150      --  as this would create a sort of infinite "recursion".
8151
8152      Return_Obj_Access := Make_Temporary (Loc, 'R');
8153      Set_Etype (Return_Obj_Access, Acc_Type);
8154
8155      --  Generate:
8156      --    Rnnn : constant ptr_T := new (T);
8157      --    Init (Rnn.all,...);
8158
8159      Tmp_Obj :=
8160        Make_Object_Declaration (Loc,
8161          Defining_Identifier => Return_Obj_Access,
8162          Constant_Present    => True,
8163          Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
8164          Expression          => Relocate_Node (Allocator));
8165      Insert_Action (Allocator, Tmp_Obj);
8166
8167      Insert_List_After_And_Analyze (Tmp_Obj,
8168        Build_Initialization_Call (Loc,
8169          Id_Ref =>
8170            Make_Explicit_Dereference (Loc,
8171              Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
8172          Typ => Etype (Function_Id),
8173          Constructor_Ref => Function_Call));
8174
8175      --  Finally, replace the allocator node with a reference to the result of
8176      --  the function call itself (which will effectively be an access to the
8177      --  object created by the allocator).
8178
8179      Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8180
8181      --  Ada 2005 (AI-251): If the type of the allocator is an interface then
8182      --  generate an implicit conversion to force displacement of the "this"
8183      --  pointer.
8184
8185      if Is_Interface (Designated_Type (Acc_Type)) then
8186         Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
8187      end if;
8188
8189      Analyze_And_Resolve (Allocator, Acc_Type);
8190   end Make_CPP_Constructor_Call_In_Allocator;
8191
8192   -----------------------------------
8193   -- Needs_BIP_Finalization_Master --
8194   -----------------------------------
8195
8196   function Needs_BIP_Finalization_Master
8197     (Func_Id : Entity_Id) return Boolean
8198   is
8199      pragma Assert (Is_Build_In_Place_Function (Func_Id));
8200      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8201   begin
8202      return
8203        not Restriction_Active (No_Finalization)
8204          and then Needs_Finalization (Func_Typ);
8205   end Needs_BIP_Finalization_Master;
8206
8207   --------------------------
8208   -- Needs_BIP_Alloc_Form --
8209   --------------------------
8210
8211   function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
8212      pragma Assert (Is_Build_In_Place_Function (Func_Id));
8213      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8214   begin
8215      return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
8216   end Needs_BIP_Alloc_Form;
8217
8218   --------------------------------------
8219   -- Needs_Result_Accessibility_Level --
8220   --------------------------------------
8221
8222   function Needs_Result_Accessibility_Level
8223     (Func_Id : Entity_Id) return Boolean
8224   is
8225      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8226
8227      function Has_Unconstrained_Access_Discriminant_Component
8228        (Comp_Typ : Entity_Id) return Boolean;
8229      --  Returns True if any component of the type has an unconstrained access
8230      --  discriminant.
8231
8232      -----------------------------------------------------
8233      -- Has_Unconstrained_Access_Discriminant_Component --
8234      -----------------------------------------------------
8235
8236      function Has_Unconstrained_Access_Discriminant_Component
8237        (Comp_Typ :  Entity_Id) return Boolean
8238      is
8239      begin
8240         if not Is_Limited_Type (Comp_Typ) then
8241            return False;
8242
8243            --  Only limited types can have access discriminants with
8244            --  defaults.
8245
8246         elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
8247            return True;
8248
8249         elsif Is_Array_Type (Comp_Typ) then
8250            return Has_Unconstrained_Access_Discriminant_Component
8251                     (Underlying_Type (Component_Type (Comp_Typ)));
8252
8253         elsif Is_Record_Type (Comp_Typ) then
8254            declare
8255               Comp : Entity_Id;
8256
8257            begin
8258               Comp := First_Component (Comp_Typ);
8259               while Present (Comp) loop
8260                  if Has_Unconstrained_Access_Discriminant_Component
8261                       (Underlying_Type (Etype (Comp)))
8262                  then
8263                     return True;
8264                  end if;
8265
8266                  Next_Component (Comp);
8267               end loop;
8268            end;
8269         end if;
8270
8271         return False;
8272      end Has_Unconstrained_Access_Discriminant_Component;
8273
8274      Feature_Disabled : constant Boolean := True;
8275      --  Temporary
8276
8277   --  Start of processing for Needs_Result_Accessibility_Level
8278
8279   begin
8280      --  False if completion unavailable (how does this happen???)
8281
8282      if not Present (Func_Typ) then
8283         return False;
8284
8285      elsif Feature_Disabled then
8286         return False;
8287
8288      --  False if not a function, also handle enum-lit renames case
8289
8290      elsif Func_Typ = Standard_Void_Type
8291        or else Is_Scalar_Type (Func_Typ)
8292      then
8293         return False;
8294
8295      --  Handle a corner case, a cross-dialect subp renaming. For example,
8296      --  an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
8297      --  an Ada 2005 (or earlier) unit references predefined run-time units.
8298
8299      elsif Present (Alias (Func_Id)) then
8300
8301         --  Unimplemented: a cross-dialect subp renaming which does not set
8302         --  the Alias attribute (e.g., a rename of a dereference of an access
8303         --  to subprogram value). ???
8304
8305         return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
8306
8307      --  Remaining cases require Ada 2012 mode
8308
8309      elsif Ada_Version < Ada_2012 then
8310         return False;
8311
8312      elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
8313        or else Is_Tagged_Type (Func_Typ)
8314      then
8315         --  In the case of, say, a null tagged record result type, the need
8316         --  for this extra parameter might not be obvious. This function
8317         --  returns True for all tagged types for compatibility reasons.
8318         --  A function with, say, a tagged null controlling result type might
8319         --  be overridden by a primitive of an extension having an access
8320         --  discriminant and the overrider and overridden must have compatible
8321         --  calling conventions (including implicitly declared parameters).
8322         --  Similarly, values of one access-to-subprogram type might designate
8323         --  both a primitive subprogram of a given type and a function
8324         --  which is, for example, not a primitive subprogram of any type.
8325         --  Again, this requires calling convention compatibility.
8326         --  It might be possible to solve these issues by introducing
8327         --  wrappers, but that is not the approach that was chosen.
8328
8329         return True;
8330
8331      elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
8332         return True;
8333
8334      elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
8335         return True;
8336
8337      --  False for all other cases
8338
8339      else
8340         return False;
8341      end if;
8342   end Needs_Result_Accessibility_Level;
8343
8344   ---------------------------------
8345   -- Rewrite_Function_Call_For_C --
8346   ---------------------------------
8347
8348   procedure Rewrite_Function_Call_For_C (N : Node_Id) is
8349      Func_Id     : constant Entity_Id  := Entity (Name (N));
8350      Func_Decl   : constant Node_Id    := Unit_Declaration_Node (Func_Id);
8351      Par         : constant Node_Id    := Parent (N);
8352      Proc_Id     : constant Entity_Id  := Defining_Entity (Next (Func_Decl));
8353      Loc         : constant Source_Ptr := Sloc (Par);
8354      Actuals     : List_Id;
8355      Last_Formal : Entity_Id;
8356
8357   begin
8358      --  The actuals may be given by named associations, so the added actual
8359      --  that is the target of the return value of the call must be a named
8360      --  association as well, so we retrieve the name of the generated
8361      --  out_formal.
8362
8363      Last_Formal := First_Formal (Proc_Id);
8364      while Present (Next_Formal (Last_Formal)) loop
8365         Last_Formal := Next_Formal (Last_Formal);
8366      end loop;
8367
8368      Actuals := Parameter_Associations (N);
8369
8370      --  The original function may lack parameters
8371
8372      if No (Actuals) then
8373         Actuals := New_List;
8374      end if;
8375
8376      --  If the function call is the expression of an assignment statement,
8377      --  transform the assignment into a procedure call. Generate:
8378
8379      --    LHS := Func_Call (...);
8380
8381      --    Proc_Call (..., LHS);
8382
8383      if Nkind (Par) = N_Assignment_Statement then
8384         Append_To (Actuals,
8385           Make_Parameter_Association (Loc,
8386             Selector_Name             =>
8387               Make_Identifier (Loc, Chars (Last_Formal)),
8388             Explicit_Actual_Parameter => Name (Par)));
8389
8390         Rewrite (Par,
8391           Make_Procedure_Call_Statement (Loc,
8392             Name                   => New_Occurrence_Of (Proc_Id, Loc),
8393             Parameter_Associations => Actuals));
8394         Analyze (Par);
8395
8396      --  Otherwise the context is an expression. Generate a temporary and a
8397      --  procedure call to obtain the function result. Generate:
8398
8399      --    ... Func_Call (...) ...
8400
8401      --    Temp : ...;
8402      --    Proc_Call (..., Temp);
8403      --    ... Temp ...
8404
8405      else
8406         declare
8407            Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
8408            Call    : Node_Id;
8409            Decl    : Node_Id;
8410
8411         begin
8412            --  Generate:
8413            --    Temp : ...;
8414
8415            Decl :=
8416              Make_Object_Declaration (Loc,
8417                Defining_Identifier => Temp_Id,
8418                Object_Definition   =>
8419                  New_Occurrence_Of (Etype (Func_Id), Loc));
8420
8421            --  Generate:
8422            --    Proc_Call (..., Temp);
8423
8424            Append_To (Actuals,
8425              Make_Parameter_Association (Loc,
8426                Selector_Name             =>
8427                  Make_Identifier (Loc, Chars (Last_Formal)),
8428                Explicit_Actual_Parameter =>
8429                  New_Occurrence_Of (Temp_Id, Loc)));
8430
8431            Call :=
8432              Make_Procedure_Call_Statement (Loc,
8433                Name                   => New_Occurrence_Of (Proc_Id, Loc),
8434                Parameter_Associations => Actuals);
8435
8436            Insert_Actions (Par, New_List (Decl, Call));
8437            Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
8438         end;
8439      end if;
8440   end Rewrite_Function_Call_For_C;
8441
8442   ------------------------------------
8443   -- Set_Enclosing_Sec_Stack_Return --
8444   ------------------------------------
8445
8446   procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
8447      P : Node_Id := N;
8448
8449   begin
8450      --  Due to a possible mix of internally generated blocks, source blocks
8451      --  and loops, the scope stack may not be contiguous as all labels are
8452      --  inserted at the top level within the related function. Instead,
8453      --  perform a parent-based traversal and mark all appropriate constructs.
8454
8455      while Present (P) loop
8456
8457         --  Mark the label of a source or internally generated block or
8458         --  loop.
8459
8460         if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
8461            Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
8462
8463         --  Mark the enclosing function
8464
8465         elsif Nkind (P) = N_Subprogram_Body then
8466            if Present (Corresponding_Spec (P)) then
8467               Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
8468            else
8469               Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
8470            end if;
8471
8472            --  Do not go beyond the enclosing function
8473
8474            exit;
8475         end if;
8476
8477         P := Parent (P);
8478      end loop;
8479   end Set_Enclosing_Sec_Stack_Return;
8480
8481   ------------------------
8482   -- Unnest_Subprograms --
8483   ------------------------
8484
8485   procedure Unnest_Subprograms is
8486   begin
8487      for J in Unest_Bodies.First .. Unest_Bodies.Last loop
8488         declare
8489            UBJ : Unest_Entry renames Unest_Bodies.Table (J);
8490         begin
8491            Unnest_Subprogram (UBJ.Ent, UBJ.Bod);
8492         end;
8493      end loop;
8494   end Unnest_Subprograms;
8495
8496end Exp_Ch6;
8497