1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--                          G N A T . R E G P A T                           --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--               Copyright (C) 1986 by University of Toronto.               --
10--                      Copyright (C) 1999-2015, AdaCore                    --
11--                                                                          --
12-- GNAT is free software;  you can  redistribute it  and/or modify it under --
13-- terms of the  GNU General Public License as published  by the Free Soft- --
14-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
15-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
16-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
17-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
18--                                                                          --
19-- As a special exception under Section 7 of GPL version 3, you are granted --
20-- additional permissions described in the GCC Runtime Library Exception,   --
21-- version 3.1, as published by the Free Software Foundation.               --
22--                                                                          --
23-- You should have received a copy of the GNU General Public License and    --
24-- a copy of the GCC Runtime Library Exception along with this program;     --
25-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
26-- <http://www.gnu.org/licenses/>.                                          --
27--                                                                          --
28-- GNAT was originally developed  by the GNAT team at  New York University. --
29-- Extensive contributions were provided by Ada Core Technologies Inc.      --
30--                                                                          --
31------------------------------------------------------------------------------
32
33--  This is an altered Ada 95 version of the original V8 style regular
34--  expression library written in C by Henry Spencer. Apart from the
35--  translation to Ada, the interface has been considerably changed to
36--  use the Ada String type instead of C-style nul-terminated strings.
37
38--  Beware that some of this code is subtly aware of the way operator
39--  precedence is structured in regular expressions. Serious changes in
40--  regular-expression syntax might require a total rethink.
41
42with System.IO;               use System.IO;
43with Ada.Characters.Handling; use Ada.Characters.Handling;
44with Ada.Unchecked_Conversion;
45
46package body System.Regpat is
47
48   Debug : constant Boolean := False;
49   --  Set to True to activate debug traces. This is normally set to constant
50   --  False to simply delete all the trace code. It is to be edited to True
51   --  for internal debugging of the package.
52
53   ----------------------------
54   -- Implementation details --
55   ----------------------------
56
57   --  This is essentially a linear encoding of a nondeterministic
58   --  finite-state machine, also known as syntax charts or
59   --  "railroad normal form" in parsing technology.
60
61   --  Each node is an opcode plus a "next" pointer, possibly plus an
62   --  operand. "Next" pointers of all nodes except BRANCH implement
63   --  concatenation; a "next" pointer with a BRANCH on both ends of it
64   --  is connecting two alternatives.
65
66   --  The operand of some types of node is a literal string; for others,
67   --  it is a node leading into a sub-FSM. In particular, the operand of
68   --  a BRANCH node is the first node of the branch.
69   --  (NB this is *not* a tree structure:  the tail of the branch connects
70   --  to the thing following the set of BRANCHes).
71
72   --  You can see the exact byte-compiled version by using the Dump
73   --  subprogram. However, here are a few examples:
74
75   --  (a|b):  1 : BRANCH  (next at  9)
76   --          4 :    EXACT  (next at  17)   operand=a
77   --          9 : BRANCH  (next at  17)
78   --         12 :    EXACT  (next at  17)   operand=b
79   --         17 : EOP  (next at 0)
80   --
81   --  (ab)*:  1 : CURLYX  (next at  25)  { 0, 32767}
82   --          8 :    OPEN 1  (next at  12)
83   --         12 :       EXACT  (next at  18)   operand=ab
84   --         18 :    CLOSE 1  (next at  22)
85   --         22 :    WHILEM  (next at 0)
86   --         25 : NOTHING  (next at  28)
87   --         28 : EOP  (next at 0)
88
89   --  The opcodes are:
90
91   type Opcode is
92
93      --  Name          Operand?  Meaning
94
95     (EOP,        -- no        End of program
96      MINMOD,     -- no        Next operator is not greedy
97
98      --  Classes of characters
99
100      ANY,        -- no        Match any one character except newline
101      SANY,       -- no        Match any character, including new line
102      ANYOF,      -- class     Match any character in this class
103      EXACT,      -- str       Match this string exactly
104      EXACTF,     -- str       Match this string (case-folding is one)
105      NOTHING,    -- no        Match empty string
106      SPACE,      -- no        Match any whitespace character
107      NSPACE,     -- no        Match any non-whitespace character
108      DIGIT,      -- no        Match any numeric character
109      NDIGIT,     -- no        Match any non-numeric character
110      ALNUM,      -- no        Match any alphanumeric character
111      NALNUM,     -- no        Match any non-alphanumeric character
112
113      --  Branches
114
115      BRANCH,     -- node      Match this alternative, or the next
116
117      --  Simple loops (when the following node is one character in length)
118
119      STAR,       -- node      Match this simple thing 0 or more times
120      PLUS,       -- node      Match this simple thing 1 or more times
121      CURLY,      -- 2num node Match this simple thing between n and m times.
122
123      --  Complex loops
124
125      CURLYX,     -- 2num node Match this complex thing {n,m} times
126      --                       The nums are coded on two characters each
127
128      WHILEM,     -- no        Do curly processing and see if rest matches
129
130      --  Matches after or before a word
131
132      BOL,        -- no        Match "" at beginning of line
133      MBOL,       -- no        Same, assuming multiline (match after \n)
134      SBOL,       -- no        Same, assuming single line (don't match at \n)
135      EOL,        -- no        Match "" at end of line
136      MEOL,       -- no        Same, assuming multiline (match before \n)
137      SEOL,       -- no        Same, assuming single line (don't match at \n)
138
139      BOUND,      -- no        Match "" at any word boundary
140      NBOUND,     -- no        Match "" at any word non-boundary
141
142      --  Parenthesis groups handling
143
144      REFF,       -- num       Match some already matched string, folded
145      OPEN,       -- num       Mark this point in input as start of #n
146      CLOSE);     -- num       Analogous to OPEN
147
148   for Opcode'Size use 8;
149
150   --  Opcode notes:
151
152   --  BRANCH
153   --    The set of branches constituting a single choice are hooked
154   --    together with their "next" pointers, since precedence prevents
155   --    anything being concatenated to any individual branch. The
156   --    "next" pointer of the last BRANCH in a choice points to the
157   --    thing following the whole choice. This is also where the
158   --    final "next" pointer of each individual branch points; each
159   --    branch starts with the operand node of a BRANCH node.
160
161   --  STAR,PLUS
162   --    '?', and complex '*' and '+', are implemented with CURLYX.
163   --    branches. Simple cases (one character per match) are implemented with
164   --    STAR and PLUS for speed and to minimize recursive plunges.
165
166   --  OPEN,CLOSE
167   --    ...are numbered at compile time.
168
169   --  EXACT, EXACTF
170   --    There are in fact two arguments, the first one is the length (minus
171   --    one of the string argument), coded on one character, the second
172   --    argument is the string itself, coded on length + 1 characters.
173
174   --  A node is one char of opcode followed by two chars of "next" pointer.
175   --  "Next" pointers are stored as two 8-bit pieces, high order first. The
176   --  value is a positive offset from the opcode of the node containing it.
177   --  An operand, if any, simply follows the node. (Note that much of the
178   --  code generation knows about this implicit relationship.)
179
180   --  Using two bytes for the "next" pointer is vast overkill for most
181   --  things, but allows patterns to get big without disasters.
182
183   Next_Pointer_Bytes : constant := 3;
184   --  Points after the "next pointer" data. An instruction is therefore:
185   --     1 byte: instruction opcode
186   --     2 bytes: pointer to next instruction
187   --     * bytes: optional data for the instruction
188
189   -----------------------
190   -- Character classes --
191   -----------------------
192   --  This is the implementation for character classes ([...]) in the
193   --  syntax for regular expressions. Each character (0..256) has an
194   --  entry into the table. This makes for a very fast matching
195   --  algorithm.
196
197   type Class_Byte is mod 256;
198   type Character_Class is array (Class_Byte range 0 .. 31) of Class_Byte;
199
200   type Bit_Conversion_Array is array (Class_Byte range 0 .. 7) of Class_Byte;
201   Bit_Conversion : constant Bit_Conversion_Array :=
202                      (1, 2, 4, 8, 16, 32, 64, 128);
203
204   type Std_Class is (ANYOF_NONE,
205                      ANYOF_ALNUM,   --  Alphanumeric class [a-zA-Z0-9]
206                      ANYOF_NALNUM,
207                      ANYOF_SPACE,   --  Space class [ \t\n\r\f]
208                      ANYOF_NSPACE,
209                      ANYOF_DIGIT,   --  Digit class [0-9]
210                      ANYOF_NDIGIT,
211                      ANYOF_ALNUMC,  --  Alphanumeric class [a-zA-Z0-9]
212                      ANYOF_NALNUMC,
213                      ANYOF_ALPHA,   --  Alpha class [a-zA-Z]
214                      ANYOF_NALPHA,
215                      ANYOF_ASCII,   --  Ascii class (7 bits) 0..127
216                      ANYOF_NASCII,
217                      ANYOF_CNTRL,   --  Control class
218                      ANYOF_NCNTRL,
219                      ANYOF_GRAPH,   --  Graphic class
220                      ANYOF_NGRAPH,
221                      ANYOF_LOWER,   --  Lower case class [a-z]
222                      ANYOF_NLOWER,
223                      ANYOF_PRINT,   --  printable class
224                      ANYOF_NPRINT,
225                      ANYOF_PUNCT,   --
226                      ANYOF_NPUNCT,
227                      ANYOF_UPPER,   --  Upper case class [A-Z]
228                      ANYOF_NUPPER,
229                      ANYOF_XDIGIT,  --  Hexadecimal digit
230                      ANYOF_NXDIGIT
231                      );
232
233   procedure Set_In_Class
234     (Bitmap : in out Character_Class;
235      C      : Character);
236   --  Set the entry to True for C in the class Bitmap
237
238   function Get_From_Class
239     (Bitmap : Character_Class;
240      C      : Character) return Boolean;
241   --  Return True if the entry is set for C in the class Bitmap
242
243   procedure Reset_Class (Bitmap : out Character_Class);
244   --  Clear all the entries in the class Bitmap
245
246   pragma Inline (Set_In_Class);
247   pragma Inline (Get_From_Class);
248   pragma Inline (Reset_Class);
249
250   -----------------------
251   -- Local Subprograms --
252   -----------------------
253
254   function "=" (Left : Character; Right : Opcode) return Boolean;
255
256   function Is_Alnum (C : Character) return Boolean;
257   --  Return True if C is an alphanum character or an underscore ('_')
258
259   function Is_White_Space (C : Character) return Boolean;
260   --  Return True if C is a whitespace character
261
262   function Is_Printable (C : Character) return Boolean;
263   --  Return True if C is a printable character
264
265   function Operand (P : Pointer) return Pointer;
266   --  Return a pointer to the first operand of the node at P
267
268   function String_Length
269     (Program : Program_Data;
270      P       : Pointer) return Program_Size;
271   --  Return the length of the string argument of the node at P
272
273   function String_Operand (P : Pointer) return Pointer;
274   --  Return a pointer to the string argument of the node at P
275
276   procedure Bitmap_Operand
277     (Program : Program_Data;
278      P       : Pointer;
279      Op      : out Character_Class);
280   --  Return a pointer to the string argument of the node at P
281
282   function Get_Next
283     (Program : Program_Data;
284      IP      : Pointer) return Pointer;
285   --  Dig the next instruction pointer out of a node
286
287   procedure Optimize (Self : in out Pattern_Matcher);
288   --  Optimize a Pattern_Matcher by noting certain special cases
289
290   function Read_Natural
291     (Program : Program_Data;
292      IP      : Pointer) return Natural;
293   --  Return the 2-byte natural coded at position IP
294
295   --  All of the subprograms above are tiny and should be inlined
296
297   pragma Inline ("=");
298   pragma Inline (Is_Alnum);
299   pragma Inline (Is_White_Space);
300   pragma Inline (Get_Next);
301   pragma Inline (Operand);
302   pragma Inline (Read_Natural);
303   pragma Inline (String_Length);
304   pragma Inline (String_Operand);
305
306   type Expression_Flags is record
307      Has_Width,            -- Known never to match null string
308      Simple,               -- Simple enough to be STAR/PLUS operand
309      SP_Start  : Boolean;  -- Starts with * or +
310   end record;
311
312   Worst_Expression : constant Expression_Flags := (others => False);
313   --  Worst case
314
315   procedure Dump_Until
316     (Program  : Program_Data;
317      Index    : in out Pointer;
318      Till     : Pointer;
319      Indent   : Natural;
320      Do_Print : Boolean := True);
321   --  Dump the program until the node Till (not included) is met. Every line
322   --  is indented with Index spaces at the beginning Dumps till the end if
323   --  Till is 0.
324
325   procedure Dump_Operation
326      (Program      : Program_Data;
327       Index        : Pointer;
328       Indent       : Natural);
329   --  Same as above, but only dumps a single operation, and compute its
330   --  indentation from the program.
331
332   ---------
333   -- "=" --
334   ---------
335
336   function "=" (Left : Character; Right : Opcode) return Boolean is
337   begin
338      return Character'Pos (Left) = Opcode'Pos (Right);
339   end "=";
340
341   --------------------
342   -- Bitmap_Operand --
343   --------------------
344
345   procedure Bitmap_Operand
346     (Program : Program_Data;
347      P       : Pointer;
348      Op      : out Character_Class)
349   is
350      function Convert is new Ada.Unchecked_Conversion
351        (Program_Data, Character_Class);
352
353   begin
354      Op (0 .. 31) := Convert (Program (P + Next_Pointer_Bytes .. P + 34));
355   end Bitmap_Operand;
356
357   -------------
358   -- Compile --
359   -------------
360
361   procedure Compile
362     (Matcher         : out Pattern_Matcher;
363      Expression      : String;
364      Final_Code_Size : out Program_Size;
365      Flags           : Regexp_Flags := No_Flags)
366   is
367      --  We can't allocate space until we know how big the compiled form
368      --  will be, but we can't compile it (and thus know how big it is)
369      --  until we've got a place to put the code. So we cheat: we compile
370      --  it twice, once with code generation turned off and size counting
371      --  turned on, and once "for real".
372
373      --  This also means that we don't allocate space until we are sure
374      --  that the thing really will compile successfully, and we never
375      --  have to move the code and thus invalidate pointers into it.
376
377      --  Beware that the optimization-preparation code in here knows
378      --  about some of the structure of the compiled regexp.
379
380      PM        : Pattern_Matcher renames Matcher;
381      Program   : Program_Data renames PM.Program;
382
383      Emit_Ptr  : Pointer := Program_First;
384
385      Parse_Pos : Natural := Expression'First; -- Input-scan pointer
386      Parse_End : constant Natural := Expression'Last;
387
388      ----------------------------
389      -- Subprograms for Create --
390      ----------------------------
391
392      procedure Emit (B : Character);
393      --  Output the Character B to the Program. If code-generation is
394      --  disabled, simply increments the program counter.
395
396      function  Emit_Node (Op : Opcode) return Pointer;
397      --  If code-generation is enabled, Emit_Node outputs the
398      --  opcode Op and reserves space for a pointer to the next node.
399      --  Return value is the location of new opcode, i.e. old Emit_Ptr.
400
401      procedure Emit_Natural (IP : Pointer; N : Natural);
402      --  Split N on two characters at position IP
403
404      procedure Emit_Class (Bitmap : Character_Class);
405      --  Emits a character class
406
407      procedure Case_Emit (C : Character);
408      --  Emit C, after converting is to lower-case if the regular
409      --  expression is case insensitive.
410
411      procedure Parse
412        (Parenthesized : Boolean;
413         Capturing     : Boolean;
414         Flags         : out Expression_Flags;
415         IP            : out Pointer);
416      --  Parse regular expression, i.e. main body or parenthesized thing.
417      --  Caller must absorb opening parenthesis. Capturing should be set to
418      --  True when we have an open parenthesis from which we want the user
419      --  to extra text.
420
421      procedure Parse_Branch
422        (Flags         : out Expression_Flags;
423         First         : Boolean;
424         IP            : out Pointer);
425      --  Implements the concatenation operator and handles '|'.
426      --  First should be true if this is the first item of the alternative.
427
428      procedure Parse_Piece
429        (Expr_Flags : out Expression_Flags;
430         IP         : out Pointer);
431      --  Parse something followed by possible [*+?]
432
433      procedure Parse_Atom
434        (Expr_Flags : out Expression_Flags;
435         IP         : out Pointer);
436      --  Parse_Atom is the lowest level parse procedure.
437      --
438      --  Optimization: Gobbles an entire sequence of ordinary characters so
439      --  that it can turn them into a single node, which is smaller to store
440      --  and faster to run. Backslashed characters are exceptions, each
441      --  becoming a separate node; the code is simpler that way and it's
442      --  not worth fixing.
443
444      procedure Insert_Operator
445        (Op       : Opcode;
446         Operand  : Pointer;
447         Greedy   : Boolean := True);
448      --  Insert_Operator inserts an operator in front of an already-emitted
449      --  operand and relocates the operand. This applies to PLUS and STAR.
450      --  If Minmod is True, then the operator is non-greedy.
451
452      function Insert_Operator_Before
453        (Op      : Opcode;
454         Operand : Pointer;
455         Greedy  : Boolean;
456         Opsize  : Pointer) return Pointer;
457      --  Insert an operator before Operand (and move the latter forward in the
458      --  program). Opsize is the size needed to represent the operator. This
459      --  returns the position at which the operator was inserted, and moves
460      --  Emit_Ptr after the new position of the operand.
461
462      procedure Insert_Curly_Operator
463        (Op      : Opcode;
464         Min     : Natural;
465         Max     : Natural;
466         Operand : Pointer;
467         Greedy  : Boolean := True);
468      --  Insert an operator for CURLY ({Min}, {Min,} or {Min,Max}).
469      --  If Minmod is True, then the operator is non-greedy.
470
471      procedure Link_Tail (P, Val : Pointer);
472      --  Link_Tail sets the next-pointer at the end of a node chain
473
474      procedure Link_Operand_Tail (P, Val : Pointer);
475      --  Link_Tail on operand of first argument; noop if operand-less
476
477      procedure Fail (M : String);
478      pragma No_Return (Fail);
479      --  Fail with a diagnostic message, if possible
480
481      function Is_Curly_Operator (IP : Natural) return Boolean;
482      --  Return True if IP is looking at a '{' that is the beginning
483      --  of a curly operator, i.e. it matches {\d+,?\d*}
484
485      function Is_Mult (IP : Natural) return Boolean;
486      --  Return True if C is a regexp multiplier: '+', '*' or '?'
487
488      procedure Get_Curly_Arguments
489        (IP     : Natural;
490         Min    : out Natural;
491         Max    : out Natural;
492         Greedy : out Boolean);
493      --  Parse the argument list for a curly operator.
494      --  It is assumed that IP is indeed pointing at a valid operator.
495      --  So what is IP and how come IP is not referenced in the body ???
496
497      procedure Parse_Character_Class (IP : out Pointer);
498      --  Parse a character class.
499      --  The calling subprogram should consume the opening '[' before.
500
501      procedure Parse_Literal
502        (Expr_Flags : out Expression_Flags;
503         IP         : out Pointer);
504      --  Parse_Literal encodes a string of characters to be matched exactly
505
506      function Parse_Posix_Character_Class return Std_Class;
507      --  Parse a posix character class, like [:alpha:] or [:^alpha:].
508      --  The caller is supposed to absorb the opening [.
509
510      pragma Inline (Is_Mult);
511      pragma Inline (Emit_Natural);
512      pragma Inline (Parse_Character_Class); --  since used only once
513
514      ---------------
515      -- Case_Emit --
516      ---------------
517
518      procedure Case_Emit (C : Character) is
519      begin
520         if (Flags and Case_Insensitive) /= 0 then
521            Emit (To_Lower (C));
522
523         else
524            --  Dump current character
525
526            Emit (C);
527         end if;
528      end Case_Emit;
529
530      ----------
531      -- Emit --
532      ----------
533
534      procedure Emit (B : Character) is
535      begin
536         if Emit_Ptr <= PM.Size then
537            Program (Emit_Ptr) := B;
538         end if;
539
540         Emit_Ptr := Emit_Ptr + 1;
541      end Emit;
542
543      ----------------
544      -- Emit_Class --
545      ----------------
546
547      procedure Emit_Class (Bitmap : Character_Class) is
548         subtype Program31 is Program_Data (0 .. 31);
549
550         function Convert is new Ada.Unchecked_Conversion
551           (Character_Class, Program31);
552
553      begin
554         --  What is the mysterious constant 31 here??? Can't it be expressed
555         --  symbolically (size of integer - 1 or some such???). In any case
556         --  it should be declared as a constant (and referenced presumably
557         --  as this constant + 1 below.
558
559         if Emit_Ptr + 31 <= PM.Size then
560            Program (Emit_Ptr .. Emit_Ptr + 31) := Convert (Bitmap);
561         end if;
562
563         Emit_Ptr := Emit_Ptr + 32;
564      end Emit_Class;
565
566      ------------------
567      -- Emit_Natural --
568      ------------------
569
570      procedure Emit_Natural (IP : Pointer; N : Natural) is
571      begin
572         if IP + 1 <= PM.Size then
573            Program (IP + 1) := Character'Val (N / 256);
574            Program (IP) := Character'Val (N mod 256);
575         end if;
576      end Emit_Natural;
577
578      ---------------
579      -- Emit_Node --
580      ---------------
581
582      function Emit_Node (Op : Opcode) return Pointer is
583         Result : constant Pointer := Emit_Ptr;
584
585      begin
586         if Emit_Ptr + 2 <= PM.Size then
587            Program (Emit_Ptr) := Character'Val (Opcode'Pos (Op));
588            Program (Emit_Ptr + 1) := ASCII.NUL;
589            Program (Emit_Ptr + 2) := ASCII.NUL;
590         end if;
591
592         Emit_Ptr := Emit_Ptr + Next_Pointer_Bytes;
593         return Result;
594      end Emit_Node;
595
596      ----------
597      -- Fail --
598      ----------
599
600      procedure Fail (M : String) is
601      begin
602         raise Expression_Error with M;
603      end Fail;
604
605      -------------------------
606      -- Get_Curly_Arguments --
607      -------------------------
608
609      procedure Get_Curly_Arguments
610        (IP     : Natural;
611         Min    : out Natural;
612         Max    : out Natural;
613         Greedy : out Boolean)
614      is
615         pragma Unreferenced (IP);
616
617         Save_Pos : Natural := Parse_Pos + 1;
618
619      begin
620         Min := 0;
621         Max := Max_Curly_Repeat;
622
623         while Expression (Parse_Pos) /= '}'
624           and then Expression (Parse_Pos) /= ','
625         loop
626            Parse_Pos := Parse_Pos + 1;
627         end loop;
628
629         Min := Natural'Value (Expression (Save_Pos .. Parse_Pos - 1));
630
631         if Expression (Parse_Pos) = ',' then
632            Save_Pos := Parse_Pos + 1;
633            while Expression (Parse_Pos) /= '}' loop
634               Parse_Pos := Parse_Pos + 1;
635            end loop;
636
637            if Save_Pos /= Parse_Pos then
638               Max := Natural'Value (Expression (Save_Pos .. Parse_Pos - 1));
639            end if;
640
641         else
642            Max := Min;
643         end if;
644
645         if Parse_Pos < Expression'Last
646           and then Expression (Parse_Pos + 1) = '?'
647         then
648            Greedy := False;
649            Parse_Pos := Parse_Pos + 1;
650
651         else
652            Greedy := True;
653         end if;
654      end Get_Curly_Arguments;
655
656      ---------------------------
657      -- Insert_Curly_Operator --
658      ---------------------------
659
660      procedure Insert_Curly_Operator
661        (Op      : Opcode;
662         Min     : Natural;
663         Max     : Natural;
664         Operand : Pointer;
665         Greedy  : Boolean := True)
666      is
667         Old    : Pointer;
668      begin
669         Old := Insert_Operator_Before (Op, Operand, Greedy, Opsize => 7);
670         Emit_Natural (Old + Next_Pointer_Bytes, Min);
671         Emit_Natural (Old + Next_Pointer_Bytes + 2, Max);
672      end Insert_Curly_Operator;
673
674      ----------------------------
675      -- Insert_Operator_Before --
676      ----------------------------
677
678      function Insert_Operator_Before
679        (Op      : Opcode;
680         Operand : Pointer;
681         Greedy  : Boolean;
682         Opsize  : Pointer) return Pointer
683      is
684         Dest : constant Pointer := Emit_Ptr;
685         Old  : Pointer;
686         Size : Pointer := Opsize;
687
688      begin
689         --  If not greedy, we have to emit another opcode first
690
691         if not Greedy then
692            Size := Size + Next_Pointer_Bytes;
693         end if;
694
695         --  Move the operand in the byte-compilation, so that we can insert
696         --  the operator before it.
697
698         if Emit_Ptr + Size <= PM.Size then
699            Program (Operand + Size .. Emit_Ptr + Size) :=
700              Program (Operand .. Emit_Ptr);
701         end if;
702
703         --  Insert the operator at the position previously occupied by the
704         --  operand.
705
706         Emit_Ptr := Operand;
707
708         if not Greedy then
709            Old := Emit_Node (MINMOD);
710            Link_Tail (Old, Old + Next_Pointer_Bytes);
711         end if;
712
713         Old := Emit_Node (Op);
714         Emit_Ptr := Dest + Size;
715         return Old;
716      end Insert_Operator_Before;
717
718      ---------------------
719      -- Insert_Operator --
720      ---------------------
721
722      procedure Insert_Operator
723        (Op      : Opcode;
724         Operand : Pointer;
725         Greedy  : Boolean := True)
726      is
727         Discard : Pointer;
728         pragma Warnings (Off, Discard);
729      begin
730         Discard := Insert_Operator_Before
731            (Op, Operand, Greedy, Opsize => Next_Pointer_Bytes);
732      end Insert_Operator;
733
734      -----------------------
735      -- Is_Curly_Operator --
736      -----------------------
737
738      function Is_Curly_Operator (IP : Natural) return Boolean is
739         Scan : Natural := IP;
740
741      begin
742         if Expression (Scan) /= '{'
743           or else Scan + 2 > Expression'Last
744           or else not Is_Digit (Expression (Scan + 1))
745         then
746            return False;
747         end if;
748
749         Scan := Scan + 1;
750
751         --  The first digit
752
753         loop
754            Scan := Scan + 1;
755
756            if Scan > Expression'Last then
757               return False;
758            end if;
759
760            exit when not Is_Digit (Expression (Scan));
761         end loop;
762
763         if Expression (Scan) = ',' then
764            loop
765               Scan := Scan + 1;
766
767               if Scan > Expression'Last then
768                  return False;
769               end if;
770
771               exit when not Is_Digit (Expression (Scan));
772            end loop;
773         end if;
774
775         return Expression (Scan) = '}';
776      end Is_Curly_Operator;
777
778      -------------
779      -- Is_Mult --
780      -------------
781
782      function Is_Mult (IP : Natural) return Boolean is
783         C : constant Character := Expression (IP);
784
785      begin
786         return     C = '*'
787           or else  C = '+'
788           or else  C = '?'
789           or else (C = '{' and then Is_Curly_Operator (IP));
790      end Is_Mult;
791
792      -----------------------
793      -- Link_Operand_Tail --
794      -----------------------
795
796      procedure Link_Operand_Tail (P, Val : Pointer) is
797      begin
798         if P <= PM.Size and then Program (P) = BRANCH then
799            Link_Tail (Operand (P), Val);
800         end if;
801      end Link_Operand_Tail;
802
803      ---------------
804      -- Link_Tail --
805      ---------------
806
807      procedure Link_Tail (P, Val : Pointer) is
808         Scan   : Pointer;
809         Temp   : Pointer;
810         Offset : Pointer;
811
812      begin
813         --  Find last node (the size of the pattern matcher might be too
814         --  small, so don't try to read past its end).
815
816         Scan := P;
817         while Scan + Next_Pointer_Bytes <= PM.Size loop
818            Temp := Get_Next (Program, Scan);
819            exit when Temp = Scan;
820            Scan := Temp;
821         end loop;
822
823         Offset := Val - Scan;
824
825         Emit_Natural (Scan + 1, Natural (Offset));
826      end Link_Tail;
827
828      -----------
829      -- Parse --
830      -----------
831
832      --  Combining parenthesis handling with the base level of regular
833      --  expression is a trifle forced, but the need to tie the tails of the
834      --  the branches to what follows makes it hard to avoid.
835
836      procedure Parse
837         (Parenthesized : Boolean;
838          Capturing     : Boolean;
839          Flags         : out Expression_Flags;
840          IP            : out Pointer)
841      is
842         E           : String renames Expression;
843         Br, Br2     : Pointer;
844         Ender       : Pointer;
845         Par_No      : Natural;
846         New_Flags   : Expression_Flags;
847         Have_Branch : Boolean := False;
848
849      begin
850         Flags := (Has_Width => True, others => False);  -- Tentatively
851
852         --  Make an OPEN node, if parenthesized
853
854         if Parenthesized and then Capturing then
855            if Matcher.Paren_Count > Max_Paren_Count then
856               Fail ("too many ()");
857            end if;
858
859            Par_No := Matcher.Paren_Count + 1;
860            Matcher.Paren_Count := Matcher.Paren_Count + 1;
861            IP := Emit_Node (OPEN);
862            Emit (Character'Val (Par_No));
863         else
864            IP := 0;
865            Par_No := 0;
866         end if;
867
868         --  Pick up the branches, linking them together
869
870         Parse_Branch (New_Flags, True, Br);
871
872         if Br = 0 then
873            IP := 0;
874            return;
875         end if;
876
877         if Parse_Pos <= Parse_End
878           and then E (Parse_Pos) = '|'
879         then
880            Insert_Operator (BRANCH, Br);
881            Have_Branch := True;
882         end if;
883
884         if IP /= 0 then
885            Link_Tail (IP, Br);   -- OPEN -> first
886         else
887            IP := Br;
888         end if;
889
890         if not New_Flags.Has_Width then
891            Flags.Has_Width := False;
892         end if;
893
894         Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
895
896         while Parse_Pos <= Parse_End
897           and then (E (Parse_Pos) = '|')
898         loop
899            Parse_Pos := Parse_Pos + 1;
900            Parse_Branch (New_Flags, False, Br);
901
902            if Br = 0 then
903               IP := 0;
904               return;
905            end if;
906
907            Link_Tail (IP, Br);   -- BRANCH -> BRANCH
908
909            if not New_Flags.Has_Width then
910               Flags.Has_Width := False;
911            end if;
912
913            Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
914         end loop;
915
916         --  Make a closing node, and hook it on the end
917
918         if Parenthesized then
919            if Capturing then
920               Ender := Emit_Node (CLOSE);
921               Emit (Character'Val (Par_No));
922               Link_Tail (IP, Ender);
923
924            else
925               --  Need to keep looking after the closing parenthesis
926               Ender := Emit_Ptr;
927            end if;
928
929         else
930            Ender := Emit_Node (EOP);
931            Link_Tail (IP, Ender);
932         end if;
933
934         if Have_Branch and then Emit_Ptr <= PM.Size + 1 then
935
936            --  Hook the tails of the branches to the closing node
937
938            Br := IP;
939            loop
940               Link_Operand_Tail (Br, Ender);
941               Br2 := Get_Next (Program, Br);
942               exit when Br2 = Br;
943               Br := Br2;
944            end loop;
945         end if;
946
947         --  Check for proper termination
948
949         if Parenthesized then
950            if Parse_Pos > Parse_End or else E (Parse_Pos) /= ')' then
951               Fail ("unmatched ()");
952            end if;
953
954            Parse_Pos := Parse_Pos + 1;
955
956         elsif Parse_Pos <= Parse_End then
957            if E (Parse_Pos) = ')'  then
958               Fail ("unmatched ')'");
959            else
960               Fail ("junk on end");         -- "Can't happen"
961            end if;
962         end if;
963      end Parse;
964
965      ----------------
966      -- Parse_Atom --
967      ----------------
968
969      procedure Parse_Atom
970        (Expr_Flags : out Expression_Flags;
971         IP         : out Pointer)
972      is
973         C : Character;
974
975      begin
976         --  Tentatively set worst expression case
977
978         Expr_Flags := Worst_Expression;
979
980         C := Expression (Parse_Pos);
981         Parse_Pos := Parse_Pos + 1;
982
983         case (C) is
984            when '^' =>
985               IP :=
986                 Emit_Node
987                   (if (Flags and Multiple_Lines) /= 0 then MBOL
988                    elsif (Flags and Single_Line) /= 0 then SBOL
989                    else BOL);
990
991            when '$' =>
992               IP :=
993                 Emit_Node
994                   (if (Flags and Multiple_Lines) /= 0 then MEOL
995                    elsif (Flags and Single_Line) /= 0 then SEOL
996                    else EOL);
997
998            when '.' =>
999               IP :=
1000                 Emit_Node
1001                   (if (Flags and Single_Line) /= 0 then SANY else ANY);
1002
1003               Expr_Flags.Has_Width := True;
1004               Expr_Flags.Simple := True;
1005
1006            when '[' =>
1007               Parse_Character_Class (IP);
1008               Expr_Flags.Has_Width := True;
1009               Expr_Flags.Simple := True;
1010
1011            when '(' =>
1012               declare
1013                  New_Flags : Expression_Flags;
1014
1015               begin
1016                  if Parse_Pos <= Parse_End - 1
1017                    and then Expression (Parse_Pos) = '?'
1018                    and then Expression (Parse_Pos + 1) = ':'
1019                  then
1020                     Parse_Pos := Parse_Pos + 2;
1021
1022                     --  Non-capturing parenthesis
1023
1024                     Parse (True, False, New_Flags, IP);
1025
1026                  else
1027                     --  Capturing parenthesis
1028
1029                     Parse (True, True, New_Flags, IP);
1030                     Expr_Flags.Has_Width :=
1031                       Expr_Flags.Has_Width or else New_Flags.Has_Width;
1032                     Expr_Flags.SP_Start :=
1033                       Expr_Flags.SP_Start or else New_Flags.SP_Start;
1034                     if IP = 0 then
1035                        return;
1036                     end if;
1037                  end if;
1038               end;
1039
1040            when '|' | ASCII.LF | ')' =>
1041               Fail ("internal urp");  --  Supposed to be caught earlier
1042
1043            when '?' | '+' | '*' =>
1044               Fail (C & " follows nothing");
1045
1046            when '{' =>
1047               if Is_Curly_Operator (Parse_Pos - 1) then
1048                  Fail (C & " follows nothing");
1049               else
1050                  Parse_Literal (Expr_Flags, IP);
1051               end if;
1052
1053            when '\' =>
1054               if Parse_Pos > Parse_End then
1055                  Fail ("trailing \");
1056               end if;
1057
1058               Parse_Pos := Parse_Pos + 1;
1059
1060               case Expression (Parse_Pos - 1) is
1061                  when 'b'        =>
1062                     IP := Emit_Node (BOUND);
1063
1064                  when 'B'        =>
1065                     IP := Emit_Node (NBOUND);
1066
1067                  when 's'        =>
1068                     IP := Emit_Node (SPACE);
1069                     Expr_Flags.Simple := True;
1070                     Expr_Flags.Has_Width := True;
1071
1072                  when 'S'        =>
1073                     IP := Emit_Node (NSPACE);
1074                     Expr_Flags.Simple := True;
1075                     Expr_Flags.Has_Width := True;
1076
1077                  when 'd'        =>
1078                     IP := Emit_Node (DIGIT);
1079                     Expr_Flags.Simple := True;
1080                     Expr_Flags.Has_Width := True;
1081
1082                  when 'D'        =>
1083                     IP := Emit_Node (NDIGIT);
1084                     Expr_Flags.Simple := True;
1085                     Expr_Flags.Has_Width := True;
1086
1087                  when 'w'        =>
1088                     IP := Emit_Node (ALNUM);
1089                     Expr_Flags.Simple := True;
1090                     Expr_Flags.Has_Width := True;
1091
1092                  when 'W'        =>
1093                     IP := Emit_Node (NALNUM);
1094                     Expr_Flags.Simple := True;
1095                     Expr_Flags.Has_Width := True;
1096
1097                  when 'A'        =>
1098                     IP := Emit_Node (SBOL);
1099
1100                  when 'G'        =>
1101                     IP := Emit_Node (SEOL);
1102
1103                  when '0' .. '9' =>
1104                     IP := Emit_Node (REFF);
1105
1106                     declare
1107                        Save : constant Natural := Parse_Pos - 1;
1108
1109                     begin
1110                        while Parse_Pos <= Expression'Last
1111                          and then Is_Digit (Expression (Parse_Pos))
1112                        loop
1113                           Parse_Pos := Parse_Pos + 1;
1114                        end loop;
1115
1116                        Emit (Character'Val (Natural'Value
1117                               (Expression (Save .. Parse_Pos - 1))));
1118                     end;
1119
1120                  when others =>
1121                     Parse_Pos := Parse_Pos - 1;
1122                     Parse_Literal (Expr_Flags, IP);
1123               end case;
1124
1125            when others =>
1126               Parse_Literal (Expr_Flags, IP);
1127         end case;
1128      end Parse_Atom;
1129
1130      ------------------
1131      -- Parse_Branch --
1132      ------------------
1133
1134      procedure Parse_Branch
1135        (Flags : out Expression_Flags;
1136         First : Boolean;
1137         IP    : out Pointer)
1138      is
1139         E         : String renames Expression;
1140         Chain     : Pointer;
1141         Last      : Pointer;
1142         New_Flags : Expression_Flags;
1143
1144         Discard : Pointer;
1145         pragma Warnings (Off, Discard);
1146
1147      begin
1148         Flags := Worst_Expression;    -- Tentatively
1149         IP := (if First then Emit_Ptr else Emit_Node (BRANCH));
1150
1151         Chain := 0;
1152         while Parse_Pos <= Parse_End
1153           and then E (Parse_Pos) /= ')'
1154           and then E (Parse_Pos) /= ASCII.LF
1155           and then E (Parse_Pos) /= '|'
1156         loop
1157            Parse_Piece (New_Flags, Last);
1158
1159            if Last = 0 then
1160               IP := 0;
1161               return;
1162            end if;
1163
1164            Flags.Has_Width := Flags.Has_Width or else New_Flags.Has_Width;
1165
1166            if Chain = 0 then            -- First piece
1167               Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
1168            else
1169               Link_Tail (Chain, Last);
1170            end if;
1171
1172            Chain := Last;
1173         end loop;
1174
1175         --  Case where loop ran zero CURLY
1176
1177         if Chain = 0 then
1178            Discard := Emit_Node (NOTHING);
1179         end if;
1180      end Parse_Branch;
1181
1182      ---------------------------
1183      -- Parse_Character_Class --
1184      ---------------------------
1185
1186      procedure Parse_Character_Class (IP : out Pointer) is
1187         Bitmap      : Character_Class;
1188         Invert      : Boolean := False;
1189         In_Range    : Boolean := False;
1190         Named_Class : Std_Class := ANYOF_NONE;
1191         Value       : Character;
1192         Last_Value  : Character := ASCII.NUL;
1193
1194      begin
1195         Reset_Class (Bitmap);
1196
1197         --  Do we have an invert character class ?
1198
1199         if Parse_Pos <= Parse_End
1200           and then Expression (Parse_Pos) = '^'
1201         then
1202            Invert := True;
1203            Parse_Pos := Parse_Pos + 1;
1204         end if;
1205
1206         --  First character can be ] or - without closing the class
1207
1208         if Parse_Pos <= Parse_End
1209           and then (Expression (Parse_Pos) = ']'
1210                      or else Expression (Parse_Pos) = '-')
1211         then
1212            Set_In_Class (Bitmap, Expression (Parse_Pos));
1213            Parse_Pos := Parse_Pos + 1;
1214         end if;
1215
1216         --  While we don't have the end of the class
1217
1218         while Parse_Pos <= Parse_End
1219           and then Expression (Parse_Pos) /= ']'
1220         loop
1221            Named_Class := ANYOF_NONE;
1222            Value := Expression (Parse_Pos);
1223            Parse_Pos := Parse_Pos + 1;
1224
1225            --  Do we have a Posix character class
1226            if Value = '[' then
1227               Named_Class := Parse_Posix_Character_Class;
1228
1229            elsif Value = '\' then
1230               if Parse_Pos = Parse_End then
1231                  Fail ("Trailing \");
1232               end if;
1233               Value := Expression (Parse_Pos);
1234               Parse_Pos := Parse_Pos + 1;
1235
1236               case Value is
1237                  when 'w' => Named_Class := ANYOF_ALNUM;
1238                  when 'W' => Named_Class := ANYOF_NALNUM;
1239                  when 's' => Named_Class := ANYOF_SPACE;
1240                  when 'S' => Named_Class := ANYOF_NSPACE;
1241                  when 'd' => Named_Class := ANYOF_DIGIT;
1242                  when 'D' => Named_Class := ANYOF_NDIGIT;
1243                  when 'n' => Value := ASCII.LF;
1244                  when 'r' => Value := ASCII.CR;
1245                  when 't' => Value := ASCII.HT;
1246                  when 'f' => Value := ASCII.FF;
1247                  when 'e' => Value := ASCII.ESC;
1248                  when 'a' => Value := ASCII.BEL;
1249
1250                  --  when 'x'  => ??? hexadecimal value
1251                  --  when 'c'  => ??? control character
1252                  --  when '0'..'9' => ??? octal character
1253
1254                  when others => null;
1255               end case;
1256            end if;
1257
1258            --  Do we have a character class?
1259
1260            if Named_Class /= ANYOF_NONE then
1261
1262               --  A range like 'a-\d' or 'a-[:digit:] is not a range
1263
1264               if In_Range then
1265                  Set_In_Class (Bitmap, Last_Value);
1266                  Set_In_Class (Bitmap, '-');
1267                  In_Range := False;
1268               end if;
1269
1270               --  Expand the range
1271
1272               case Named_Class is
1273                  when ANYOF_NONE => null;
1274
1275                  when ANYOF_ALNUM | ANYOF_ALNUMC =>
1276                     for Value in Class_Byte'Range loop
1277                        if Is_Alnum (Character'Val (Value)) then
1278                           Set_In_Class (Bitmap, Character'Val (Value));
1279                        end if;
1280                     end loop;
1281
1282                  when ANYOF_NALNUM | ANYOF_NALNUMC =>
1283                     for Value in Class_Byte'Range loop
1284                        if not Is_Alnum (Character'Val (Value)) then
1285                           Set_In_Class (Bitmap, Character'Val (Value));
1286                        end if;
1287                     end loop;
1288
1289                  when ANYOF_SPACE =>
1290                     for Value in Class_Byte'Range loop
1291                        if Is_White_Space (Character'Val (Value)) then
1292                           Set_In_Class (Bitmap, Character'Val (Value));
1293                        end if;
1294                     end loop;
1295
1296                  when ANYOF_NSPACE =>
1297                     for Value in Class_Byte'Range loop
1298                        if not Is_White_Space (Character'Val (Value)) then
1299                           Set_In_Class (Bitmap, Character'Val (Value));
1300                        end if;
1301                     end loop;
1302
1303                  when ANYOF_DIGIT =>
1304                     for Value in Class_Byte'Range loop
1305                        if Is_Digit (Character'Val (Value)) then
1306                           Set_In_Class (Bitmap, Character'Val (Value));
1307                        end if;
1308                     end loop;
1309
1310                  when ANYOF_NDIGIT =>
1311                     for Value in Class_Byte'Range loop
1312                        if not Is_Digit (Character'Val (Value)) then
1313                           Set_In_Class (Bitmap, Character'Val (Value));
1314                        end if;
1315                     end loop;
1316
1317                  when ANYOF_ALPHA =>
1318                     for Value in Class_Byte'Range loop
1319                        if Is_Letter (Character'Val (Value)) then
1320                           Set_In_Class (Bitmap, Character'Val (Value));
1321                        end if;
1322                     end loop;
1323
1324                  when ANYOF_NALPHA =>
1325                     for Value in Class_Byte'Range loop
1326                        if not Is_Letter (Character'Val (Value)) then
1327                           Set_In_Class (Bitmap, Character'Val (Value));
1328                        end if;
1329                     end loop;
1330
1331                  when ANYOF_ASCII =>
1332                     for Value in 0 .. 127 loop
1333                        Set_In_Class (Bitmap, Character'Val (Value));
1334                     end loop;
1335
1336                  when ANYOF_NASCII =>
1337                     for Value in 128 .. 255 loop
1338                        Set_In_Class (Bitmap, Character'Val (Value));
1339                     end loop;
1340
1341                  when ANYOF_CNTRL =>
1342                     for Value in Class_Byte'Range loop
1343                        if Is_Control (Character'Val (Value)) then
1344                           Set_In_Class (Bitmap, Character'Val (Value));
1345                        end if;
1346                     end loop;
1347
1348                  when ANYOF_NCNTRL =>
1349                     for Value in Class_Byte'Range loop
1350                        if not Is_Control (Character'Val (Value)) then
1351                           Set_In_Class (Bitmap, Character'Val (Value));
1352                        end if;
1353                     end loop;
1354
1355                  when ANYOF_GRAPH =>
1356                     for Value in Class_Byte'Range loop
1357                        if Is_Graphic (Character'Val (Value)) then
1358                           Set_In_Class (Bitmap, Character'Val (Value));
1359                        end if;
1360                     end loop;
1361
1362                  when ANYOF_NGRAPH =>
1363                     for Value in Class_Byte'Range loop
1364                        if not Is_Graphic (Character'Val (Value)) then
1365                           Set_In_Class (Bitmap, Character'Val (Value));
1366                        end if;
1367                     end loop;
1368
1369                  when ANYOF_LOWER =>
1370                     for Value in Class_Byte'Range loop
1371                        if Is_Lower (Character'Val (Value)) then
1372                           Set_In_Class (Bitmap, Character'Val (Value));
1373                        end if;
1374                     end loop;
1375
1376                  when ANYOF_NLOWER =>
1377                     for Value in Class_Byte'Range loop
1378                        if not Is_Lower (Character'Val (Value)) then
1379                           Set_In_Class (Bitmap, Character'Val (Value));
1380                        end if;
1381                     end loop;
1382
1383                  when ANYOF_PRINT =>
1384                     for Value in Class_Byte'Range loop
1385                        if Is_Printable (Character'Val (Value)) then
1386                           Set_In_Class (Bitmap, Character'Val (Value));
1387                        end if;
1388                     end loop;
1389
1390                  when ANYOF_NPRINT =>
1391                     for Value in Class_Byte'Range loop
1392                        if not Is_Printable (Character'Val (Value)) then
1393                           Set_In_Class (Bitmap, Character'Val (Value));
1394                        end if;
1395                     end loop;
1396
1397                  when ANYOF_PUNCT =>
1398                     for Value in Class_Byte'Range loop
1399                        if Is_Printable (Character'Val (Value))
1400                          and then not Is_White_Space (Character'Val (Value))
1401                          and then not Is_Alnum (Character'Val (Value))
1402                        then
1403                           Set_In_Class (Bitmap, Character'Val (Value));
1404                        end if;
1405                     end loop;
1406
1407                  when ANYOF_NPUNCT =>
1408                     for Value in Class_Byte'Range loop
1409                        if not Is_Printable (Character'Val (Value))
1410                          or else Is_White_Space (Character'Val (Value))
1411                          or else Is_Alnum (Character'Val (Value))
1412                        then
1413                           Set_In_Class (Bitmap, Character'Val (Value));
1414                        end if;
1415                     end loop;
1416
1417                  when ANYOF_UPPER =>
1418                     for Value in Class_Byte'Range loop
1419                        if Is_Upper (Character'Val (Value)) then
1420                           Set_In_Class (Bitmap, Character'Val (Value));
1421                        end if;
1422                     end loop;
1423
1424                  when ANYOF_NUPPER =>
1425                     for Value in Class_Byte'Range loop
1426                        if not Is_Upper (Character'Val (Value)) then
1427                           Set_In_Class (Bitmap, Character'Val (Value));
1428                        end if;
1429                     end loop;
1430
1431                  when ANYOF_XDIGIT =>
1432                     for Value in Class_Byte'Range loop
1433                        if Is_Hexadecimal_Digit (Character'Val (Value)) then
1434                           Set_In_Class (Bitmap, Character'Val (Value));
1435                        end if;
1436                     end loop;
1437
1438                  when ANYOF_NXDIGIT =>
1439                     for Value in Class_Byte'Range loop
1440                        if not Is_Hexadecimal_Digit
1441                          (Character'Val (Value))
1442                        then
1443                           Set_In_Class (Bitmap, Character'Val (Value));
1444                        end if;
1445                     end loop;
1446
1447               end case;
1448
1449            --  Not a character range
1450
1451            elsif not In_Range then
1452               Last_Value := Value;
1453
1454               if Parse_Pos > Expression'Last then
1455                  Fail ("Empty character class []");
1456               end if;
1457
1458               if Expression (Parse_Pos) = '-'
1459                 and then Parse_Pos < Parse_End
1460                 and then Expression (Parse_Pos + 1) /= ']'
1461               then
1462                  Parse_Pos := Parse_Pos + 1;
1463
1464                  --  Do we have a range like '\d-a' and '[:space:]-a'
1465                  --  which is not a real range
1466
1467                  if Named_Class /= ANYOF_NONE then
1468                     Set_In_Class (Bitmap, '-');
1469                  else
1470                     In_Range := True;
1471                  end if;
1472
1473               else
1474                  Set_In_Class (Bitmap, Value);
1475
1476               end if;
1477
1478            --  Else in a character range
1479
1480            else
1481               if Last_Value > Value then
1482                  Fail ("Invalid Range [" & Last_Value'Img
1483                        & "-" & Value'Img & "]");
1484               end if;
1485
1486               while Last_Value <= Value loop
1487                  Set_In_Class (Bitmap, Last_Value);
1488                  Last_Value := Character'Succ (Last_Value);
1489               end loop;
1490
1491               In_Range := False;
1492
1493            end if;
1494
1495         end loop;
1496
1497         --  Optimize case-insensitive ranges (put the upper case or lower
1498         --  case character into the bitmap)
1499
1500         if (Flags and Case_Insensitive) /= 0 then
1501            for C in Character'Range loop
1502               if Get_From_Class (Bitmap, C) then
1503                  Set_In_Class (Bitmap, To_Lower (C));
1504                  Set_In_Class (Bitmap, To_Upper (C));
1505               end if;
1506            end loop;
1507         end if;
1508
1509         --  Optimize inverted classes
1510
1511         if Invert then
1512            for J in Bitmap'Range loop
1513               Bitmap (J) := not Bitmap (J);
1514            end loop;
1515         end if;
1516
1517         Parse_Pos := Parse_Pos + 1;
1518
1519         --  Emit the class
1520
1521         IP := Emit_Node (ANYOF);
1522         Emit_Class (Bitmap);
1523      end Parse_Character_Class;
1524
1525      -------------------
1526      -- Parse_Literal --
1527      -------------------
1528
1529      --  This is a bit tricky due to quoted chars and due to
1530      --  the multiplier characters '*', '+', and '?' that
1531      --  take the SINGLE char previous as their operand.
1532
1533      --  On entry, the character at Parse_Pos - 1 is going to go
1534      --  into the string, no matter what it is. It could be
1535      --  following a \ if Parse_Atom was entered from the '\' case.
1536
1537      --  Basic idea is to pick up a good char in C and examine
1538      --  the next char. If Is_Mult (C) then twiddle, if it's a \
1539      --  then frozzle and if it's another magic char then push C and
1540      --  terminate the string. If none of the above, push C on the
1541      --  string and go around again.
1542
1543      --  Start_Pos is used to remember where "the current character"
1544      --  starts in the string, if due to an Is_Mult we need to back
1545      --  up and put the current char in a separate 1-character string.
1546      --  When Start_Pos is 0, C is the only char in the string;
1547      --  this is used in Is_Mult handling, and in setting the SIMPLE
1548      --  flag at the end.
1549
1550      procedure Parse_Literal
1551        (Expr_Flags : out Expression_Flags;
1552         IP         : out Pointer)
1553      is
1554         Start_Pos  : Natural := 0;
1555         C          : Character;
1556         Length_Ptr : Pointer;
1557
1558         Has_Special_Operator : Boolean := False;
1559
1560      begin
1561         Parse_Pos := Parse_Pos - 1;      --  Look at current character
1562
1563         IP :=
1564           Emit_Node
1565             (if (Flags and Case_Insensitive) /= 0 then EXACTF else EXACT);
1566
1567         Length_Ptr := Emit_Ptr;
1568         Emit_Ptr := String_Operand (IP);
1569
1570         Parse_Loop :
1571         loop
1572            C := Expression (Parse_Pos); --  Get current character
1573
1574            case C is
1575               when '.' | '[' | '(' | ')' | '|' | ASCII.LF | '$' | '^' =>
1576
1577                  if Start_Pos = 0 then
1578                     Start_Pos := Parse_Pos;
1579                     Emit (C);         --  First character is always emitted
1580                  else
1581                     exit Parse_Loop;  --  Else we are done
1582                  end if;
1583
1584               when '?' | '+' | '*' | '{' =>
1585
1586                  if Start_Pos = 0 then
1587                     Start_Pos := Parse_Pos;
1588                     Emit (C);         --  First character is always emitted
1589
1590                  --  Are we looking at an operator, or is this
1591                  --  simply a normal character ?
1592
1593                  elsif not Is_Mult (Parse_Pos) then
1594                     Start_Pos := Parse_Pos;
1595                     Case_Emit (C);
1596
1597                  else
1598                     --  We've got something like "abc?d".  Mark this as a
1599                     --  special case. What we want to emit is a first
1600                     --  constant string for "ab", then one for "c" that will
1601                     --  ultimately be transformed with a CURLY operator, A
1602                     --  special case has to be handled for "a?", since there
1603                     --  is no initial string to emit.
1604
1605                     Has_Special_Operator := True;
1606                     exit Parse_Loop;
1607                  end if;
1608
1609               when '\' =>
1610                  Start_Pos := Parse_Pos;
1611
1612                  if Parse_Pos = Parse_End then
1613                     Fail ("Trailing \");
1614
1615                  else
1616                     case Expression (Parse_Pos + 1) is
1617                        when 'b' | 'B' | 's' | 'S' | 'd' | 'D'
1618                          | 'w' | 'W' | '0' .. '9' | 'G' | 'A'
1619                          => exit Parse_Loop;
1620                        when 'n'         => Emit (ASCII.LF);
1621                        when 't'         => Emit (ASCII.HT);
1622                        when 'r'         => Emit (ASCII.CR);
1623                        when 'f'         => Emit (ASCII.FF);
1624                        when 'e'         => Emit (ASCII.ESC);
1625                        when 'a'         => Emit (ASCII.BEL);
1626                        when others      => Emit (Expression (Parse_Pos + 1));
1627                     end case;
1628
1629                     Parse_Pos := Parse_Pos + 1;
1630                  end if;
1631
1632               when others =>
1633                  Start_Pos := Parse_Pos;
1634                  Case_Emit (C);
1635            end case;
1636
1637            exit Parse_Loop when Emit_Ptr - Length_Ptr = 254;
1638
1639            Parse_Pos := Parse_Pos + 1;
1640
1641            exit Parse_Loop when Parse_Pos > Parse_End;
1642         end loop Parse_Loop;
1643
1644         --  Is the string followed by a '*+?{' operator ? If yes, and if there
1645         --  is an initial string to emit, do it now.
1646
1647         if Has_Special_Operator
1648           and then Emit_Ptr >= Length_Ptr + Next_Pointer_Bytes
1649         then
1650            Emit_Ptr := Emit_Ptr - 1;
1651            Parse_Pos := Start_Pos;
1652         end if;
1653
1654         if Length_Ptr <= PM.Size then
1655            Program (Length_Ptr) := Character'Val (Emit_Ptr - Length_Ptr - 2);
1656         end if;
1657
1658         Expr_Flags.Has_Width := True;
1659
1660         --  Slight optimization when there is a single character
1661
1662         if Emit_Ptr = Length_Ptr + 2 then
1663            Expr_Flags.Simple := True;
1664         end if;
1665      end Parse_Literal;
1666
1667      -----------------
1668      -- Parse_Piece --
1669      -----------------
1670
1671      --  Note that the branching code sequences used for '?' and the
1672      --  general cases of '*' and + are somewhat optimized: they use
1673      --  the same NOTHING node as both the endmarker for their branch
1674      --  list and the body of the last branch. It might seem that
1675      --  this node could be dispensed with entirely, but the endmarker
1676      --  role is not redundant.
1677
1678      procedure Parse_Piece
1679        (Expr_Flags : out Expression_Flags;
1680         IP         : out Pointer)
1681      is
1682         Op        : Character;
1683         New_Flags : Expression_Flags;
1684         Greedy    : Boolean := True;
1685
1686      begin
1687         Parse_Atom (New_Flags, IP);
1688
1689         if IP = 0 then
1690            return;
1691         end if;
1692
1693         if Parse_Pos > Parse_End
1694           or else not Is_Mult (Parse_Pos)
1695         then
1696            Expr_Flags := New_Flags;
1697            return;
1698         end if;
1699
1700         Op := Expression (Parse_Pos);
1701
1702         Expr_Flags :=
1703           (if Op /= '+'
1704            then (SP_Start  => True, others => False)
1705            else (Has_Width => True, others => False));
1706
1707         --  Detect non greedy operators in the easy cases
1708
1709         if Op /= '{'
1710           and then Parse_Pos + 1 <= Parse_End
1711           and then Expression (Parse_Pos + 1) = '?'
1712         then
1713            Greedy := False;
1714            Parse_Pos := Parse_Pos + 1;
1715         end if;
1716
1717         --  Generate the byte code
1718
1719         case Op is
1720            when '*' =>
1721
1722               if New_Flags.Simple then
1723                  Insert_Operator (STAR, IP, Greedy);
1724               else
1725                  Link_Tail (IP, Emit_Node (WHILEM));
1726                  Insert_Curly_Operator
1727                    (CURLYX, 0, Max_Curly_Repeat, IP, Greedy);
1728                  Link_Tail (IP, Emit_Node (NOTHING));
1729               end if;
1730
1731            when '+' =>
1732
1733               if New_Flags.Simple then
1734                  Insert_Operator (PLUS, IP, Greedy);
1735               else
1736                  Link_Tail (IP, Emit_Node (WHILEM));
1737                  Insert_Curly_Operator
1738                    (CURLYX, 1, Max_Curly_Repeat, IP, Greedy);
1739                  Link_Tail (IP, Emit_Node (NOTHING));
1740               end if;
1741
1742            when '?' =>
1743               if New_Flags.Simple then
1744                  Insert_Curly_Operator (CURLY, 0, 1, IP, Greedy);
1745               else
1746                  Link_Tail (IP, Emit_Node (WHILEM));
1747                  Insert_Curly_Operator (CURLYX, 0, 1, IP, Greedy);
1748                  Link_Tail (IP, Emit_Node (NOTHING));
1749               end if;
1750
1751            when '{' =>
1752               declare
1753                  Min, Max : Natural;
1754
1755               begin
1756                  Get_Curly_Arguments (Parse_Pos, Min, Max, Greedy);
1757
1758                  if New_Flags.Simple then
1759                     Insert_Curly_Operator (CURLY, Min, Max, IP, Greedy);
1760                  else
1761                     Link_Tail (IP, Emit_Node (WHILEM));
1762                     Insert_Curly_Operator (CURLYX, Min, Max, IP, Greedy);
1763                     Link_Tail (IP, Emit_Node (NOTHING));
1764                  end if;
1765               end;
1766
1767            when others =>
1768               null;
1769         end case;
1770
1771         Parse_Pos := Parse_Pos + 1;
1772
1773         if Parse_Pos <= Parse_End
1774           and then Is_Mult (Parse_Pos)
1775         then
1776            Fail ("nested *+{");
1777         end if;
1778      end Parse_Piece;
1779
1780      ---------------------------------
1781      -- Parse_Posix_Character_Class --
1782      ---------------------------------
1783
1784      function Parse_Posix_Character_Class return Std_Class is
1785         Invert : Boolean := False;
1786         Class  : Std_Class := ANYOF_NONE;
1787         E      : String renames Expression;
1788
1789         --  Class names. Note that code assumes that the length of all
1790         --  classes starting with the same letter have the same length.
1791
1792         Alnum   : constant String := "alnum:]";
1793         Alpha   : constant String := "alpha:]";
1794         Ascii_C : constant String := "ascii:]";
1795         Cntrl   : constant String := "cntrl:]";
1796         Digit   : constant String := "digit:]";
1797         Graph   : constant String := "graph:]";
1798         Lower   : constant String := "lower:]";
1799         Print   : constant String := "print:]";
1800         Punct   : constant String := "punct:]";
1801         Space   : constant String := "space:]";
1802         Upper   : constant String := "upper:]";
1803         Word    : constant String := "word:]";
1804         Xdigit  : constant String := "xdigit:]";
1805
1806      begin
1807         --  Case of character class specified
1808
1809         if Parse_Pos <= Parse_End
1810           and then Expression (Parse_Pos) = ':'
1811         then
1812            Parse_Pos := Parse_Pos + 1;
1813
1814            --  Do we have something like:  [[:^alpha:]]
1815
1816            if Parse_Pos <= Parse_End
1817              and then Expression (Parse_Pos) = '^'
1818            then
1819               Invert := True;
1820               Parse_Pos := Parse_Pos + 1;
1821            end if;
1822
1823            --  Check for class names based on first letter
1824
1825            case Expression (Parse_Pos) is
1826               when 'a' =>
1827
1828                  --  All 'a' classes have the same length (Alnum'Length)
1829
1830                  if Parse_Pos + Alnum'Length - 1 <= Parse_End then
1831                     if
1832                       E (Parse_Pos .. Parse_Pos + Alnum'Length - 1) = Alnum
1833                     then
1834                        Class :=
1835                          (if Invert then ANYOF_NALNUMC else ANYOF_ALNUMC);
1836                        Parse_Pos := Parse_Pos + Alnum'Length;
1837
1838                     elsif
1839                       E (Parse_Pos .. Parse_Pos + Alpha'Length - 1) = Alpha
1840                     then
1841                        Class :=
1842                          (if Invert then ANYOF_NALPHA else ANYOF_ALPHA);
1843                        Parse_Pos := Parse_Pos + Alpha'Length;
1844
1845                     elsif E (Parse_Pos .. Parse_Pos + Ascii_C'Length - 1) =
1846                                                                      Ascii_C
1847                     then
1848                        Class :=
1849                          (if Invert then ANYOF_NASCII else ANYOF_ASCII);
1850                        Parse_Pos := Parse_Pos + Ascii_C'Length;
1851                     else
1852                        Fail ("Invalid character class: " & E);
1853                     end if;
1854
1855                  else
1856                     Fail ("Invalid character class: " & E);
1857                  end if;
1858
1859               when 'c' =>
1860                  if Parse_Pos + Cntrl'Length - 1 <= Parse_End
1861                    and then
1862                      E (Parse_Pos .. Parse_Pos + Cntrl'Length - 1) = Cntrl
1863                  then
1864                     Class := (if Invert then ANYOF_NCNTRL else ANYOF_CNTRL);
1865                     Parse_Pos := Parse_Pos + Cntrl'Length;
1866                  else
1867                     Fail ("Invalid character class: " & E);
1868                  end if;
1869
1870               when 'd' =>
1871                  if Parse_Pos + Digit'Length - 1 <= Parse_End
1872                    and then
1873                      E (Parse_Pos .. Parse_Pos + Digit'Length - 1) = Digit
1874                  then
1875                     Class := (if Invert then ANYOF_NDIGIT else ANYOF_DIGIT);
1876                     Parse_Pos := Parse_Pos + Digit'Length;
1877                  end if;
1878
1879               when 'g' =>
1880                  if Parse_Pos + Graph'Length - 1 <= Parse_End
1881                    and then
1882                      E (Parse_Pos .. Parse_Pos + Graph'Length - 1) = Graph
1883                  then
1884                     Class := (if Invert then ANYOF_NGRAPH else ANYOF_GRAPH);
1885                     Parse_Pos := Parse_Pos + Graph'Length;
1886                  else
1887                     Fail ("Invalid character class: " & E);
1888                  end if;
1889
1890               when 'l' =>
1891                  if Parse_Pos + Lower'Length - 1 <= Parse_End
1892                    and then
1893                      E (Parse_Pos .. Parse_Pos + Lower'Length - 1) = Lower
1894                  then
1895                     Class := (if Invert then ANYOF_NLOWER else ANYOF_LOWER);
1896                     Parse_Pos := Parse_Pos + Lower'Length;
1897                  else
1898                     Fail ("Invalid character class: " & E);
1899                  end if;
1900
1901               when 'p' =>
1902
1903                  --  All 'p' classes have the same length
1904
1905                  if Parse_Pos + Print'Length - 1 <= Parse_End then
1906                     if
1907                       E (Parse_Pos .. Parse_Pos + Print'Length - 1) = Print
1908                     then
1909                        Class :=
1910                          (if Invert then ANYOF_NPRINT else ANYOF_PRINT);
1911                        Parse_Pos := Parse_Pos + Print'Length;
1912
1913                     elsif
1914                       E (Parse_Pos .. Parse_Pos + Punct'Length - 1) = Punct
1915                     then
1916                        Class :=
1917                          (if Invert then ANYOF_NPUNCT else ANYOF_PUNCT);
1918                        Parse_Pos := Parse_Pos + Punct'Length;
1919
1920                     else
1921                        Fail ("Invalid character class: " & E);
1922                     end if;
1923
1924                  else
1925                     Fail ("Invalid character class: " & E);
1926                  end if;
1927
1928               when 's' =>
1929                  if Parse_Pos + Space'Length - 1 <= Parse_End
1930                    and then
1931                      E (Parse_Pos .. Parse_Pos + Space'Length - 1) = Space
1932                  then
1933                     Class := (if Invert then ANYOF_NSPACE else ANYOF_SPACE);
1934                     Parse_Pos := Parse_Pos + Space'Length;
1935                  else
1936                     Fail ("Invalid character class: " & E);
1937                  end if;
1938
1939               when 'u' =>
1940                  if Parse_Pos + Upper'Length - 1 <= Parse_End
1941                    and then
1942                      E (Parse_Pos .. Parse_Pos + Upper'Length - 1) = Upper
1943                  then
1944                     Class := (if Invert then ANYOF_NUPPER else ANYOF_UPPER);
1945                     Parse_Pos := Parse_Pos + Upper'Length;
1946                  else
1947                     Fail ("Invalid character class: " & E);
1948                  end if;
1949
1950               when 'w' =>
1951                  if Parse_Pos + Word'Length - 1 <= Parse_End
1952                    and then
1953                      E (Parse_Pos .. Parse_Pos + Word'Length - 1) = Word
1954                  then
1955                     Class := (if Invert then ANYOF_NALNUM else ANYOF_ALNUM);
1956                     Parse_Pos := Parse_Pos + Word'Length;
1957                  else
1958                     Fail ("Invalid character class: " & E);
1959                  end if;
1960
1961               when 'x' =>
1962                  if Parse_Pos + Xdigit'Length - 1 <= Parse_End
1963                    and then
1964                      E (Parse_Pos .. Parse_Pos + Xdigit'Length - 1) = Xdigit
1965                  then
1966                     Class := (if Invert then ANYOF_NXDIGIT else ANYOF_XDIGIT);
1967                     Parse_Pos := Parse_Pos + Xdigit'Length;
1968
1969                  else
1970                     Fail ("Invalid character class: " & E);
1971                  end if;
1972
1973               when others =>
1974                  Fail ("Invalid character class: " & E);
1975            end case;
1976
1977         --  Character class not specified
1978
1979         else
1980            return ANYOF_NONE;
1981         end if;
1982
1983         return Class;
1984      end Parse_Posix_Character_Class;
1985
1986      --  Local Declarations
1987
1988      Result : Pointer;
1989
1990      Expr_Flags : Expression_Flags;
1991      pragma Unreferenced (Expr_Flags);
1992
1993   --  Start of processing for Compile
1994
1995   begin
1996      Parse (False, False, Expr_Flags, Result);
1997
1998      if Result = 0 then
1999         Fail ("Couldn't compile expression");
2000      end if;
2001
2002      Final_Code_Size := Emit_Ptr - 1;
2003
2004      --  Do we want to actually compile the expression, or simply get the
2005      --  code size ???
2006
2007      if Emit_Ptr <= PM.Size then
2008         Optimize (PM);
2009      end if;
2010
2011      PM.Flags := Flags;
2012   end Compile;
2013
2014   function Compile
2015     (Expression : String;
2016      Flags      : Regexp_Flags := No_Flags) return Pattern_Matcher
2017   is
2018      --  Assume the compiled regexp will fit in 1000 chars. If it does not we
2019      --  will have to compile a second time once the correct size is known. If
2020      --  it fits, we save a significant amount of time by avoiding the second
2021      --  compilation.
2022
2023      Dummy : Pattern_Matcher (1000);
2024      Size  : Program_Size;
2025
2026   begin
2027      Compile (Dummy, Expression, Size, Flags);
2028
2029      if Size <= Dummy.Size then
2030         return Pattern_Matcher'
2031           (Size             => Size,
2032            First            => Dummy.First,
2033            Anchored         => Dummy.Anchored,
2034            Must_Have        => Dummy.Must_Have,
2035            Must_Have_Length => Dummy.Must_Have_Length,
2036            Paren_Count      => Dummy.Paren_Count,
2037            Flags            => Dummy.Flags,
2038            Program          =>
2039              Dummy.Program
2040                (Dummy.Program'First .. Dummy.Program'First + Size - 1));
2041      else
2042         --  We have to recompile now that we know the size
2043         --  ??? Can we use Ada 2005's return construct ?
2044
2045         declare
2046            Result : Pattern_Matcher (Size);
2047         begin
2048            Compile (Result, Expression, Size, Flags);
2049            return Result;
2050         end;
2051      end if;
2052   end Compile;
2053
2054   procedure Compile
2055     (Matcher    : out Pattern_Matcher;
2056      Expression : String;
2057      Flags      : Regexp_Flags := No_Flags)
2058   is
2059      Size : Program_Size;
2060
2061   begin
2062      Compile (Matcher, Expression, Size, Flags);
2063
2064      if Size > Matcher.Size then
2065         raise Expression_Error with "Pattern_Matcher is too small";
2066      end if;
2067   end Compile;
2068
2069   --------------------
2070   -- Dump_Operation --
2071   --------------------
2072
2073   procedure Dump_Operation
2074      (Program : Program_Data;
2075       Index   : Pointer;
2076       Indent  : Natural)
2077   is
2078      Current : Pointer := Index;
2079   begin
2080      Dump_Until (Program, Current, Current + 1, Indent);
2081   end Dump_Operation;
2082
2083   ----------------
2084   -- Dump_Until --
2085   ----------------
2086
2087   procedure Dump_Until
2088      (Program  : Program_Data;
2089       Index    : in out Pointer;
2090       Till     : Pointer;
2091       Indent   : Natural;
2092       Do_Print : Boolean := True)
2093   is
2094      function Image (S : String) return String;
2095      --  Remove leading space
2096
2097      -----------
2098      -- Image --
2099      -----------
2100
2101      function Image (S : String) return String is
2102      begin
2103         if S (S'First) = ' ' then
2104            return S (S'First + 1 .. S'Last);
2105         else
2106            return S;
2107         end if;
2108      end Image;
2109
2110      --  Local variables
2111
2112      Op           : Opcode;
2113      Next         : Pointer;
2114      Length       : Pointer;
2115      Local_Indent : Natural := Indent;
2116
2117   --  Start of processing for Dump_Until
2118
2119   begin
2120      while Index < Till loop
2121         Op   := Opcode'Val (Character'Pos ((Program (Index))));
2122         Next := Get_Next (Program, Index);
2123
2124         if Do_Print then
2125            declare
2126               Point   : constant String := Pointer'Image (Index);
2127            begin
2128               Put ((1 .. 4 - Point'Length => ' ')
2129                    & Point & ":"
2130                    & (1 .. Local_Indent * 2 => ' ') & Opcode'Image (Op));
2131            end;
2132
2133            --  Print the parenthesis number
2134
2135            if Op = OPEN or else Op = CLOSE or else Op = REFF then
2136               Put (Image (Natural'Image
2137                            (Character'Pos
2138                               (Program (Index + Next_Pointer_Bytes)))));
2139            end if;
2140
2141            if Next = Index then
2142               Put (" (-)");
2143            else
2144               Put (" (" & Image (Pointer'Image (Next)) & ")");
2145            end if;
2146         end if;
2147
2148         case Op is
2149            when ANYOF =>
2150               declare
2151                  Bitmap       : Character_Class;
2152                  Last         : Character := ASCII.NUL;
2153                  Current      : Natural := 0;
2154                  Current_Char : Character;
2155
2156               begin
2157                  Bitmap_Operand (Program, Index, Bitmap);
2158
2159                  if Do_Print then
2160                     Put ("[");
2161
2162                     while Current <= 255 loop
2163                        Current_Char := Character'Val (Current);
2164
2165                        --  First item in a range
2166
2167                        if Get_From_Class (Bitmap, Current_Char) then
2168                           Last := Current_Char;
2169
2170                           --  Search for the last item in the range
2171
2172                           loop
2173                              Current := Current + 1;
2174                              exit when Current > 255;
2175                              Current_Char := Character'Val (Current);
2176                              exit when
2177                                not Get_From_Class (Bitmap, Current_Char);
2178                           end loop;
2179
2180                           if not Is_Graphic (Last) then
2181                              Put (Last'Img);
2182                           else
2183                              Put (Last);
2184                           end if;
2185
2186                           if Character'Succ (Last) /= Current_Char then
2187                              Put ("\-" & Character'Pred (Current_Char));
2188                           end if;
2189
2190                        else
2191                           Current := Current + 1;
2192                        end if;
2193                     end loop;
2194
2195                     Put_Line ("]");
2196                  end if;
2197
2198                  Index := Index + Next_Pointer_Bytes + Bitmap'Length;
2199               end;
2200
2201            when EXACT | EXACTF =>
2202               Length := String_Length (Program, Index);
2203               if Do_Print then
2204                  Put (" (" & Image (Program_Size'Image (Length + 1))
2205                          & " chars) <"
2206                          & String (Program (String_Operand (Index)
2207                                              .. String_Operand (Index)
2208                                              + Length)));
2209                  Put_Line (">");
2210               end if;
2211
2212               Index := String_Operand (Index) + Length + 1;
2213
2214               --  Node operand
2215
2216            when BRANCH | STAR | PLUS =>
2217               if Do_Print then
2218                  New_Line;
2219               end if;
2220
2221               Index  := Index + Next_Pointer_Bytes;
2222               Dump_Until (Program, Index, Pointer'Min (Next, Till),
2223                           Local_Indent + 1, Do_Print);
2224
2225            when CURLY | CURLYX =>
2226               if Do_Print then
2227                  Put_Line
2228                    (" {"
2229                    & Image (Natural'Image
2230                       (Read_Natural (Program, Index + Next_Pointer_Bytes)))
2231                    & ","
2232                    & Image (Natural'Image (Read_Natural (Program, Index + 5)))
2233                    & "}");
2234               end if;
2235
2236               Index  := Index + 7;
2237               Dump_Until (Program, Index, Pointer'Min (Next, Till),
2238                           Local_Indent + 1, Do_Print);
2239
2240            when OPEN =>
2241               if Do_Print then
2242                  New_Line;
2243               end if;
2244
2245               Index := Index + 4;
2246               Local_Indent := Local_Indent + 1;
2247
2248            when CLOSE | REFF =>
2249               if Do_Print then
2250                  New_Line;
2251               end if;
2252
2253               Index := Index + 4;
2254
2255               if Op = CLOSE then
2256                  Local_Indent := Local_Indent - 1;
2257               end if;
2258
2259            when others =>
2260               Index := Index + Next_Pointer_Bytes;
2261
2262               if Do_Print then
2263                  New_Line;
2264               end if;
2265
2266               exit when Op = EOP;
2267         end case;
2268      end loop;
2269   end Dump_Until;
2270
2271   ----------
2272   -- Dump --
2273   ----------
2274
2275   procedure Dump (Self : Pattern_Matcher) is
2276      Program : Program_Data renames Self.Program;
2277      Index   : Pointer := Program'First;
2278
2279   --  Start of processing for Dump
2280
2281   begin
2282      Put_Line ("Must start with (Self.First) = "
2283                & Character'Image (Self.First));
2284
2285      if (Self.Flags and Case_Insensitive) /= 0 then
2286         Put_Line ("  Case_Insensitive mode");
2287      end if;
2288
2289      if (Self.Flags and Single_Line) /= 0 then
2290         Put_Line ("  Single_Line mode");
2291      end if;
2292
2293      if (Self.Flags and Multiple_Lines) /= 0 then
2294         Put_Line ("  Multiple_Lines mode");
2295      end if;
2296
2297      Dump_Until (Program, Index, Self.Program'Last + 1, 0);
2298   end Dump;
2299
2300   --------------------
2301   -- Get_From_Class --
2302   --------------------
2303
2304   function Get_From_Class
2305     (Bitmap : Character_Class;
2306      C      : Character) return Boolean
2307   is
2308      Value : constant Class_Byte := Character'Pos (C);
2309   begin
2310      return
2311        (Bitmap (Value / 8) and Bit_Conversion (Value mod 8)) /= 0;
2312   end Get_From_Class;
2313
2314   --------------
2315   -- Get_Next --
2316   --------------
2317
2318   function Get_Next (Program : Program_Data; IP : Pointer) return Pointer is
2319   begin
2320      return IP + Pointer (Read_Natural (Program, IP + 1));
2321   end Get_Next;
2322
2323   --------------
2324   -- Is_Alnum --
2325   --------------
2326
2327   function Is_Alnum (C : Character) return Boolean is
2328   begin
2329      return Is_Alphanumeric (C) or else C = '_';
2330   end Is_Alnum;
2331
2332   ------------------
2333   -- Is_Printable --
2334   ------------------
2335
2336   function Is_Printable (C : Character) return Boolean is
2337   begin
2338      --  Printable if space or graphic character or other whitespace
2339      --  Other white space includes (HT/LF/VT/FF/CR = codes 9-13)
2340
2341      return C in Character'Val (32) .. Character'Val (126)
2342        or else C in ASCII.HT .. ASCII.CR;
2343   end Is_Printable;
2344
2345   --------------------
2346   -- Is_White_Space --
2347   --------------------
2348
2349   function Is_White_Space (C : Character) return Boolean is
2350   begin
2351      --  Note: HT = 9, LF = 10, VT = 11, FF = 12, CR = 13
2352
2353      return C = ' ' or else C in ASCII.HT .. ASCII.CR;
2354   end Is_White_Space;
2355
2356   -----------
2357   -- Match --
2358   -----------
2359
2360   procedure Match
2361     (Self       : Pattern_Matcher;
2362      Data       : String;
2363      Matches    : out Match_Array;
2364      Data_First : Integer := -1;
2365      Data_Last  : Positive := Positive'Last)
2366   is
2367      Program : Program_Data renames Self.Program; -- Shorter notation
2368
2369      First_In_Data : constant Integer := Integer'Max (Data_First, Data'First);
2370      Last_In_Data  : constant Integer := Integer'Min (Data_Last, Data'Last);
2371
2372      --  Global work variables
2373
2374      Input_Pos : Natural;           -- String-input pointer
2375      BOL_Pos   : Natural;           -- Beginning of input, for ^ check
2376      Matched   : Boolean := False;  -- Until proven True
2377
2378      Matches_Full : Match_Array (0 .. Natural'Max (Self.Paren_Count,
2379                                                    Matches'Last));
2380      --  Stores the value of all the parenthesis pairs.
2381      --  We do not use directly Matches, so that we can also use back
2382      --  references (REFF) even if Matches is too small.
2383
2384      type Natural_Array is array (Match_Count range <>) of Natural;
2385      Matches_Tmp : Natural_Array (Matches_Full'Range);
2386      --  Save the opening position of parenthesis
2387
2388      Last_Paren  : Natural := 0;
2389      --  Last parenthesis seen
2390
2391      Greedy : Boolean := True;
2392      --  True if the next operator should be greedy
2393
2394      type Current_Curly_Record;
2395      type Current_Curly_Access is access all Current_Curly_Record;
2396      type Current_Curly_Record is record
2397         Paren_Floor : Natural;  --  How far back to strip parenthesis data
2398         Cur         : Integer;  --  How many instances of scan we've matched
2399         Min         : Natural;  --  Minimal number of scans to match
2400         Max         : Natural;  --  Maximal number of scans to match
2401         Greedy      : Boolean;  --  Whether to work our way up or down
2402         Scan        : Pointer;  --  The thing to match
2403         Next        : Pointer;  --  What has to match after it
2404         Lastloc     : Natural;  --  Where we started matching this scan
2405         Old_Cc      : Current_Curly_Access; --  Before we started this one
2406      end record;
2407      --  Data used to handle the curly operator and the plus and star
2408      --  operators for complex expressions.
2409
2410      Current_Curly : Current_Curly_Access := null;
2411      --  The curly currently being processed
2412
2413      -----------------------
2414      -- Local Subprograms --
2415      -----------------------
2416
2417      function Index (Start : Positive; C : Character) return Natural;
2418      --  Find character C in Data starting at Start and return position
2419
2420      function Repeat
2421        (IP  : Pointer;
2422         Max : Natural := Natural'Last) return Natural;
2423      --  Repeatedly match something simple, report how many
2424      --  It only matches on things of length 1.
2425      --  Starting from Input_Pos, it matches at most Max CURLY.
2426
2427      function Try (Pos : Positive) return Boolean;
2428      --  Try to match at specific point
2429
2430      function Match (IP : Pointer) return Boolean;
2431      --  This is the main matching routine. Conceptually the strategy
2432      --  is simple:  check to see whether the current node matches,
2433      --  call self recursively to see whether the rest matches,
2434      --  and then act accordingly.
2435      --
2436      --  In practice Match makes some effort to avoid recursion, in
2437      --  particular by going through "ordinary" nodes (that don't
2438      --  need to know whether the rest of the match failed) by
2439      --  using a loop instead of recursion.
2440      --  Why is the above comment part of the spec rather than body ???
2441
2442      function Match_Whilem return Boolean;
2443      --  Return True if a WHILEM matches the Current_Curly
2444
2445      function Recurse_Match (IP : Pointer; From : Natural) return Boolean;
2446      pragma Inline (Recurse_Match);
2447      --  Calls Match recursively. It saves and restores the parenthesis
2448      --  status and location in the input stream correctly, so that
2449      --  backtracking is possible
2450
2451      function Match_Simple_Operator
2452        (Op     : Opcode;
2453         Scan   : Pointer;
2454         Next   : Pointer;
2455         Greedy : Boolean) return Boolean;
2456      --  Return True it the simple operator (possibly non-greedy) matches
2457
2458      Dump_Indent : Integer := -1;
2459      procedure Dump_Current (Scan : Pointer; Prefix : Boolean := True);
2460      procedure Dump_Error (Msg : String);
2461      --  Debug: print the current context
2462
2463      pragma Inline (Index);
2464      pragma Inline (Repeat);
2465
2466      --  These are two complex functions, but used only once
2467
2468      pragma Inline (Match_Whilem);
2469      pragma Inline (Match_Simple_Operator);
2470
2471      -----------
2472      -- Index --
2473      -----------
2474
2475      function Index (Start : Positive; C : Character) return Natural is
2476      begin
2477         for J in Start .. Last_In_Data loop
2478            if Data (J) = C then
2479               return J;
2480            end if;
2481         end loop;
2482
2483         return 0;
2484      end Index;
2485
2486      -------------------
2487      -- Recurse_Match --
2488      -------------------
2489
2490      function Recurse_Match (IP : Pointer; From : Natural) return Boolean is
2491         L     : constant Natural := Last_Paren;
2492         Tmp_F : constant Match_Array :=
2493                   Matches_Full (From + 1 .. Matches_Full'Last);
2494         Start : constant Natural_Array :=
2495                   Matches_Tmp (From + 1 .. Matches_Tmp'Last);
2496         Input : constant Natural := Input_Pos;
2497
2498         Dump_Indent_Save : constant Integer := Dump_Indent;
2499
2500      begin
2501         if Match (IP) then
2502            return True;
2503         end if;
2504
2505         Last_Paren := L;
2506         Matches_Full (Tmp_F'Range) := Tmp_F;
2507         Matches_Tmp (Start'Range) := Start;
2508         Input_Pos := Input;
2509         Dump_Indent := Dump_Indent_Save;
2510         return False;
2511      end Recurse_Match;
2512
2513      ------------------
2514      -- Dump_Current --
2515      ------------------
2516
2517      procedure Dump_Current (Scan : Pointer; Prefix : Boolean := True) is
2518         Length : constant := 10;
2519         Pos    : constant String := Integer'Image (Input_Pos);
2520
2521      begin
2522         if Prefix then
2523            Put ((1 .. 5 - Pos'Length => ' '));
2524            Put (Pos & " <"
2525                 & Data (Input_Pos
2526                     .. Integer'Min (Last_In_Data, Input_Pos + Length - 1)));
2527            Put ((1 .. Length - 1 - Last_In_Data + Input_Pos => ' '));
2528            Put ("> |");
2529
2530         else
2531            Put ("                    ");
2532         end if;
2533
2534         Dump_Operation (Program, Scan, Indent => Dump_Indent);
2535      end Dump_Current;
2536
2537      ----------------
2538      -- Dump_Error --
2539      ----------------
2540
2541      procedure Dump_Error (Msg : String) is
2542      begin
2543         Put ("                   |     ");
2544         Put ((1 .. Dump_Indent * 2 => ' '));
2545         Put_Line (Msg);
2546      end Dump_Error;
2547
2548      -----------
2549      -- Match --
2550      -----------
2551
2552      function Match (IP : Pointer) return Boolean is
2553         Scan   : Pointer := IP;
2554         Next   : Pointer;
2555         Op     : Opcode;
2556         Result : Boolean;
2557
2558      begin
2559         Dump_Indent := Dump_Indent + 1;
2560
2561         State_Machine :
2562         loop
2563            pragma Assert (Scan /= 0);
2564
2565            --  Determine current opcode and count its usage in debug mode
2566
2567            Op := Opcode'Val (Character'Pos (Program (Scan)));
2568
2569            --  Calculate offset of next instruction. Second character is most
2570            --  significant in Program_Data.
2571
2572            Next := Get_Next (Program, Scan);
2573
2574            if Debug then
2575               Dump_Current (Scan);
2576            end if;
2577
2578            case Op is
2579               when EOP =>
2580                  Dump_Indent := Dump_Indent - 1;
2581                  return True;  --  Success
2582
2583               when BRANCH =>
2584                  if Program (Next) /= BRANCH then
2585                     Next := Operand (Scan); -- No choice, avoid recursion
2586
2587                  else
2588                     loop
2589                        if Recurse_Match (Operand (Scan), 0) then
2590                           Dump_Indent := Dump_Indent - 1;
2591                           return True;
2592                        end if;
2593
2594                        Scan := Get_Next (Program, Scan);
2595                        exit when Scan = 0 or else Program (Scan) /= BRANCH;
2596                     end loop;
2597
2598                     exit State_Machine;
2599                  end if;
2600
2601               when NOTHING =>
2602                  null;
2603
2604               when BOL =>
2605                  exit State_Machine when Input_Pos /= BOL_Pos
2606                    and then ((Self.Flags and Multiple_Lines) = 0
2607                               or else Data (Input_Pos - 1) /= ASCII.LF);
2608
2609               when MBOL =>
2610                  exit State_Machine when Input_Pos /= BOL_Pos
2611                    and then Data (Input_Pos - 1) /= ASCII.LF;
2612
2613               when SBOL =>
2614                  exit State_Machine when Input_Pos /= BOL_Pos;
2615
2616               when EOL =>
2617                  exit State_Machine when Input_Pos <= Data'Last
2618                    and then ((Self.Flags and Multiple_Lines) = 0
2619                               or else Data (Input_Pos) /= ASCII.LF);
2620
2621               when MEOL =>
2622                  exit State_Machine when Input_Pos <= Data'Last
2623                    and then Data (Input_Pos) /= ASCII.LF;
2624
2625               when SEOL =>
2626                  exit State_Machine when Input_Pos <= Data'Last;
2627
2628               when BOUND | NBOUND =>
2629
2630                  --  Was last char in word ?
2631
2632                  declare
2633                     N  : Boolean := False;
2634                     Ln : Boolean := False;
2635
2636                  begin
2637                     if Input_Pos /= First_In_Data then
2638                        N := Is_Alnum (Data (Input_Pos - 1));
2639                     end if;
2640
2641                     Ln :=
2642                       (if Input_Pos > Last_In_Data
2643                        then False
2644                        else Is_Alnum (Data (Input_Pos)));
2645
2646                     if Op = BOUND then
2647                        if N = Ln then
2648                           exit State_Machine;
2649                        end if;
2650                     else
2651                        if N /= Ln then
2652                           exit State_Machine;
2653                        end if;
2654                     end if;
2655                  end;
2656
2657               when SPACE =>
2658                  exit State_Machine when Input_Pos > Last_In_Data
2659                    or else not Is_White_Space (Data (Input_Pos));
2660                  Input_Pos := Input_Pos + 1;
2661
2662               when NSPACE =>
2663                  exit State_Machine when Input_Pos > Last_In_Data
2664                    or else Is_White_Space (Data (Input_Pos));
2665                  Input_Pos := Input_Pos + 1;
2666
2667               when DIGIT =>
2668                  exit State_Machine when Input_Pos > Last_In_Data
2669                    or else not Is_Digit (Data (Input_Pos));
2670                  Input_Pos := Input_Pos + 1;
2671
2672               when NDIGIT =>
2673                  exit State_Machine when Input_Pos > Last_In_Data
2674                    or else Is_Digit (Data (Input_Pos));
2675                  Input_Pos := Input_Pos + 1;
2676
2677               when ALNUM =>
2678                  exit State_Machine when Input_Pos > Last_In_Data
2679                    or else not Is_Alnum (Data (Input_Pos));
2680                  Input_Pos := Input_Pos + 1;
2681
2682               when NALNUM =>
2683                  exit State_Machine when Input_Pos > Last_In_Data
2684                    or else Is_Alnum (Data (Input_Pos));
2685                  Input_Pos := Input_Pos + 1;
2686
2687               when ANY =>
2688                  exit State_Machine when Input_Pos > Last_In_Data
2689                    or else Data (Input_Pos) = ASCII.LF;
2690                  Input_Pos := Input_Pos + 1;
2691
2692               when SANY =>
2693                  exit State_Machine when Input_Pos > Last_In_Data;
2694                  Input_Pos := Input_Pos + 1;
2695
2696               when EXACT =>
2697                  declare
2698                     Opnd    : Pointer  := String_Operand (Scan);
2699                     Current : Positive := Input_Pos;
2700                     Last    : constant Pointer :=
2701                                 Opnd + String_Length (Program, Scan);
2702
2703                  begin
2704                     while Opnd <= Last loop
2705                        exit State_Machine when Current > Last_In_Data
2706                          or else Program (Opnd) /= Data (Current);
2707                        Current := Current + 1;
2708                        Opnd := Opnd + 1;
2709                     end loop;
2710
2711                     Input_Pos := Current;
2712                  end;
2713
2714               when EXACTF =>
2715                  declare
2716                     Opnd    : Pointer  := String_Operand (Scan);
2717                     Current : Positive := Input_Pos;
2718
2719                     Last : constant Pointer :=
2720                              Opnd + String_Length (Program, Scan);
2721
2722                  begin
2723                     while Opnd <= Last loop
2724                        exit State_Machine when Current > Last_In_Data
2725                          or else Program (Opnd) /= To_Lower (Data (Current));
2726                        Current := Current + 1;
2727                        Opnd := Opnd + 1;
2728                     end loop;
2729
2730                     Input_Pos := Current;
2731                  end;
2732
2733               when ANYOF =>
2734                  declare
2735                     Bitmap : Character_Class;
2736                  begin
2737                     Bitmap_Operand (Program, Scan, Bitmap);
2738                     exit State_Machine when Input_Pos > Last_In_Data
2739                       or else not Get_From_Class (Bitmap, Data (Input_Pos));
2740                     Input_Pos := Input_Pos + 1;
2741                  end;
2742
2743               when OPEN =>
2744                  declare
2745                     No : constant Natural :=
2746                            Character'Pos (Program (Operand (Scan)));
2747                  begin
2748                     Matches_Tmp (No) := Input_Pos;
2749                  end;
2750
2751               when CLOSE =>
2752                  declare
2753                     No : constant Natural :=
2754                            Character'Pos (Program (Operand (Scan)));
2755
2756                  begin
2757                     Matches_Full (No) := (Matches_Tmp (No), Input_Pos - 1);
2758
2759                     if Last_Paren < No then
2760                        Last_Paren := No;
2761                     end if;
2762                  end;
2763
2764               when REFF =>
2765                  declare
2766                     No : constant Natural :=
2767                            Character'Pos (Program (Operand (Scan)));
2768
2769                     Data_Pos : Natural;
2770
2771                  begin
2772                     --  If we haven't seen that parenthesis yet
2773
2774                     if Last_Paren < No then
2775                        Dump_Indent := Dump_Indent - 1;
2776
2777                        if Debug then
2778                           Dump_Error ("REFF: No match, backtracking");
2779                        end if;
2780
2781                        return False;
2782                     end if;
2783
2784                     Data_Pos := Matches_Full (No).First;
2785
2786                     while Data_Pos <= Matches_Full (No).Last loop
2787                        if Input_Pos > Last_In_Data
2788                          or else Data (Input_Pos) /= Data (Data_Pos)
2789                        then
2790                           Dump_Indent := Dump_Indent - 1;
2791
2792                           if Debug then
2793                              Dump_Error ("REFF: No match, backtracking");
2794                           end if;
2795
2796                           return False;
2797                        end if;
2798
2799                        Input_Pos := Input_Pos + 1;
2800                        Data_Pos := Data_Pos + 1;
2801                     end loop;
2802                  end;
2803
2804               when MINMOD =>
2805                  Greedy := False;
2806
2807               when STAR | PLUS | CURLY =>
2808                  declare
2809                     Greed : constant Boolean := Greedy;
2810                  begin
2811                     Greedy := True;
2812                     Result := Match_Simple_Operator (Op, Scan, Next, Greed);
2813                     Dump_Indent := Dump_Indent - 1;
2814                     return Result;
2815                  end;
2816
2817               when CURLYX =>
2818
2819                  --  Looking at something like:
2820
2821                  --    1: CURLYX {n,m}  (->4)
2822                  --    2:   code for complex thing  (->3)
2823                  --    3:   WHILEM (->0)
2824                  --    4: NOTHING
2825
2826                  declare
2827                     Min : constant Natural :=
2828                             Read_Natural (Program, Scan + Next_Pointer_Bytes);
2829                     Max : constant Natural :=
2830                             Read_Natural
2831                                (Program, Scan + Next_Pointer_Bytes + 2);
2832                     Cc  : aliased Current_Curly_Record;
2833
2834                     Has_Match : Boolean;
2835
2836                  begin
2837                     Cc := (Paren_Floor => Last_Paren,
2838                            Cur         => -1,
2839                            Min         => Min,
2840                            Max         => Max,
2841                            Greedy      => Greedy,
2842                            Scan        => Scan + 7,
2843                            Next        => Next,
2844                            Lastloc     => 0,
2845                            Old_Cc      => Current_Curly);
2846                     Greedy := True;
2847                     Current_Curly := Cc'Unchecked_Access;
2848
2849                     Has_Match := Match (Next - Next_Pointer_Bytes);
2850
2851                     --  Start on the WHILEM
2852
2853                     Current_Curly := Cc.Old_Cc;
2854                     Dump_Indent := Dump_Indent - 1;
2855
2856                     if not Has_Match then
2857                        if Debug then
2858                           Dump_Error ("CURLYX failed...");
2859                        end if;
2860                     end if;
2861
2862                     return Has_Match;
2863                  end;
2864
2865               when WHILEM =>
2866                  Result := Match_Whilem;
2867                  Dump_Indent := Dump_Indent - 1;
2868
2869                  if Debug and then not Result then
2870                     Dump_Error ("WHILEM: no match, backtracking");
2871                  end if;
2872
2873                  return Result;
2874            end case;
2875
2876            Scan := Next;
2877         end loop State_Machine;
2878
2879         if Debug then
2880            Dump_Error ("failed...");
2881            Dump_Indent := Dump_Indent - 1;
2882         end if;
2883
2884         --  If we get here, there is no match. For successful matches when EOP
2885         --  is the terminating point.
2886
2887         return False;
2888      end Match;
2889
2890      ---------------------------
2891      -- Match_Simple_Operator --
2892      ---------------------------
2893
2894      function Match_Simple_Operator
2895        (Op     : Opcode;
2896         Scan   : Pointer;
2897         Next   : Pointer;
2898         Greedy : Boolean) return Boolean
2899      is
2900         Next_Char       : Character := ASCII.NUL;
2901         Next_Char_Known : Boolean := False;
2902         No              : Integer;  --  Can be negative
2903         Min             : Natural;
2904         Max             : Natural := Natural'Last;
2905         Operand_Code    : Pointer;
2906         Old             : Natural;
2907         Last_Pos        : Natural;
2908         Save            : constant Natural := Input_Pos;
2909
2910      begin
2911         --  Lookahead to avoid useless match attempts when we know what
2912         --  character comes next.
2913
2914         if Program (Next) = EXACT then
2915            Next_Char := Program (String_Operand (Next));
2916            Next_Char_Known := True;
2917         end if;
2918
2919         --  Find the minimal and maximal values for the operator
2920
2921         case Op is
2922            when STAR =>
2923               Min := 0;
2924               Operand_Code := Operand (Scan);
2925
2926            when PLUS =>
2927               Min := 1;
2928               Operand_Code := Operand (Scan);
2929
2930            when others =>
2931               Min := Read_Natural (Program, Scan + Next_Pointer_Bytes);
2932               Max := Read_Natural (Program, Scan + Next_Pointer_Bytes + 2);
2933               Operand_Code := Scan + 7;
2934         end case;
2935
2936         if Debug then
2937            Dump_Current (Operand_Code, Prefix => False);
2938         end if;
2939
2940         --  Non greedy operators
2941
2942         if not Greedy then
2943
2944            --  Test we can repeat at least Min times
2945
2946            if Min /= 0 then
2947               No := Repeat (Operand_Code, Min);
2948
2949               if No < Min then
2950                  if Debug then
2951                     Dump_Error ("failed... matched" & No'Img & " times");
2952                  end if;
2953
2954                  return False;
2955               end if;
2956            end if;
2957
2958            Old := Input_Pos;
2959
2960            --  Find the place where 'next' could work
2961
2962            if Next_Char_Known then
2963
2964               --  Last position to check
2965
2966               if Max = Natural'Last then
2967                  Last_Pos := Last_In_Data;
2968               else
2969                  Last_Pos := Input_Pos + Max;
2970
2971                  if Last_Pos > Last_In_Data then
2972                     Last_Pos := Last_In_Data;
2973                  end if;
2974               end if;
2975
2976               --  Look for the first possible opportunity
2977
2978               if Debug then
2979                  Dump_Error ("Next_Char must be " & Next_Char);
2980               end if;
2981
2982               loop
2983                  --  Find the next possible position
2984
2985                  while Input_Pos <= Last_Pos
2986                    and then Data (Input_Pos) /= Next_Char
2987                  loop
2988                     Input_Pos := Input_Pos + 1;
2989                  end loop;
2990
2991                  if Input_Pos > Last_Pos then
2992                     return False;
2993                  end if;
2994
2995                  --  Check that we still match if we stop at the position we
2996                  --  just found.
2997
2998                  declare
2999                     Num : constant Natural := Input_Pos - Old;
3000
3001                  begin
3002                     Input_Pos := Old;
3003
3004                     if Debug then
3005                        Dump_Error ("Would we still match at that position?");
3006                     end if;
3007
3008                     if Repeat (Operand_Code, Num) < Num then
3009                        return False;
3010                     end if;
3011                  end;
3012
3013                  --  Input_Pos now points to the new position
3014
3015                  if Match (Get_Next (Program, Scan)) then
3016                     return True;
3017                  end if;
3018
3019                  Old := Input_Pos;
3020                  Input_Pos := Input_Pos + 1;
3021               end loop;
3022
3023            --  We do not know what the next character is
3024
3025            else
3026               while Max >= Min loop
3027                  if Debug then
3028                     Dump_Error ("Non-greedy repeat, N=" & Min'Img);
3029                     Dump_Error ("Do we still match Next if we stop here?");
3030                  end if;
3031
3032                  --  If the next character matches
3033
3034                  if Recurse_Match (Next, 1) then
3035                     return True;
3036                  end if;
3037
3038                  Input_Pos := Save + Min;
3039
3040                  --  Could not or did not match -- move forward
3041
3042                  if Repeat (Operand_Code, 1) /= 0 then
3043                     Min := Min + 1;
3044                  else
3045                     if Debug then
3046                        Dump_Error ("Non-greedy repeat failed...");
3047                     end if;
3048
3049                     return False;
3050                  end if;
3051               end loop;
3052            end if;
3053
3054            return False;
3055
3056         --  Greedy operators
3057
3058         else
3059            No := Repeat (Operand_Code, Max);
3060
3061            if Debug and then No < Min then
3062               Dump_Error ("failed... matched" & No'Img & " times");
3063            end if;
3064
3065            --  ??? Perl has some special code here in case the next
3066            --  instruction is of type EOL, since $ and \Z can match before
3067            --  *and* after newline at the end.
3068
3069            --  ??? Perl has some special code here in case (paren) is True
3070
3071            --  Else, if we don't have any parenthesis
3072
3073            while No >= Min loop
3074               if not Next_Char_Known
3075                 or else (Input_Pos <= Last_In_Data
3076                           and then Data (Input_Pos) = Next_Char)
3077               then
3078                  if Match (Next) then
3079                     return True;
3080                  end if;
3081               end if;
3082
3083               --  Could not or did not work, we back up
3084
3085               No := No - 1;
3086               Input_Pos := Save + No;
3087            end loop;
3088
3089            return False;
3090         end if;
3091      end Match_Simple_Operator;
3092
3093      ------------------
3094      -- Match_Whilem --
3095      ------------------
3096
3097      --  This is really hard to understand, because after we match what we
3098      --  are trying to match, we must make sure the rest of the REx is going
3099      --  to match for sure, and to do that we have to go back UP the parse
3100      --  tree by recursing ever deeper.  And if it fails, we have to reset
3101      --  our parent's current state that we can try again after backing off.
3102
3103      function Match_Whilem return Boolean is
3104         Cc : constant Current_Curly_Access := Current_Curly;
3105
3106         N  : constant Natural              := Cc.Cur + 1;
3107         Ln : Natural                       := 0;
3108
3109         Lastloc : constant Natural := Cc.Lastloc;
3110         --  Detection of 0-len
3111
3112      begin
3113         --  If degenerate scan matches "", assume scan done
3114
3115         if Input_Pos = Cc.Lastloc
3116           and then N >= Cc.Min
3117         then
3118            --  Temporarily restore the old context, and check that we
3119            --  match was comes after CURLYX.
3120
3121            Current_Curly := Cc.Old_Cc;
3122
3123            if Current_Curly /= null then
3124               Ln := Current_Curly.Cur;
3125            end if;
3126
3127            if Match (Cc.Next) then
3128               return True;
3129            end if;
3130
3131            if Current_Curly /= null then
3132               Current_Curly.Cur := Ln;
3133            end if;
3134
3135            Current_Curly := Cc;
3136            return False;
3137         end if;
3138
3139         --  First, just match a string of min scans
3140
3141         if N < Cc.Min then
3142            Cc.Cur := N;
3143            Cc.Lastloc := Input_Pos;
3144
3145            if Debug then
3146               Dump_Error
3147                 ("Tests that we match at least" & Cc.Min'Img & " N=" & N'Img);
3148            end if;
3149
3150            if Match (Cc.Scan) then
3151               return True;
3152            end if;
3153
3154            Cc.Cur := N - 1;
3155            Cc.Lastloc := Lastloc;
3156
3157            if Debug then
3158               Dump_Error ("failed...");
3159            end if;
3160
3161            return False;
3162         end if;
3163
3164         --  Prefer next over scan for minimal matching
3165
3166         if not Cc.Greedy then
3167            Current_Curly := Cc.Old_Cc;
3168
3169            if Current_Curly /= null then
3170               Ln := Current_Curly.Cur;
3171            end if;
3172
3173            if Recurse_Match (Cc.Next, Cc.Paren_Floor) then
3174               return True;
3175            end if;
3176
3177            if Current_Curly /= null then
3178               Current_Curly.Cur := Ln;
3179            end if;
3180
3181            Current_Curly := Cc;
3182
3183            --  Maximum greed exceeded ?
3184
3185            if N >= Cc.Max then
3186               if Debug then
3187                  Dump_Error ("failed...");
3188               end if;
3189               return False;
3190            end if;
3191
3192            --  Try scanning more and see if it helps
3193            Cc.Cur := N;
3194            Cc.Lastloc := Input_Pos;
3195
3196            if Debug then
3197               Dump_Error ("Next failed, what about Current?");
3198            end if;
3199
3200            if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3201               return True;
3202            end if;
3203
3204            Cc.Cur := N - 1;
3205            Cc.Lastloc := Lastloc;
3206            return False;
3207         end if;
3208
3209         --  Prefer scan over next for maximal matching
3210
3211         if N < Cc.Max then   --  more greed allowed ?
3212            Cc.Cur := N;
3213            Cc.Lastloc := Input_Pos;
3214
3215            if Debug then
3216               Dump_Error ("Recurse at current position");
3217            end if;
3218
3219            if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3220               return True;
3221            end if;
3222         end if;
3223
3224         --  Failed deeper matches of scan, so see if this one works
3225
3226         Current_Curly := Cc.Old_Cc;
3227
3228         if Current_Curly /= null then
3229            Ln := Current_Curly.Cur;
3230         end if;
3231
3232         if Debug then
3233            Dump_Error ("Failed matching for later positions");
3234         end if;
3235
3236         if Match (Cc.Next) then
3237            return True;
3238         end if;
3239
3240         if Current_Curly /= null then
3241            Current_Curly.Cur := Ln;
3242         end if;
3243
3244         Current_Curly := Cc;
3245         Cc.Cur := N - 1;
3246         Cc.Lastloc := Lastloc;
3247
3248         if Debug then
3249            Dump_Error ("failed...");
3250         end if;
3251
3252         return False;
3253      end Match_Whilem;
3254
3255      ------------
3256      -- Repeat --
3257      ------------
3258
3259      function Repeat
3260        (IP  : Pointer;
3261         Max : Natural := Natural'Last) return Natural
3262      is
3263         Scan  : Natural := Input_Pos;
3264         Last  : Natural;
3265         Op    : constant Opcode := Opcode'Val (Character'Pos (Program (IP)));
3266         Count : Natural;
3267         C     : Character;
3268         Is_First : Boolean := True;
3269         Bitmap   : Character_Class;
3270
3271      begin
3272         if Max = Natural'Last or else Scan + Max - 1 > Last_In_Data then
3273            Last := Last_In_Data;
3274         else
3275            Last := Scan + Max - 1;
3276         end if;
3277
3278         case Op is
3279            when ANY =>
3280               while Scan <= Last
3281                 and then Data (Scan) /= ASCII.LF
3282               loop
3283                  Scan := Scan + 1;
3284               end loop;
3285
3286            when SANY =>
3287               Scan := Last + 1;
3288
3289            when EXACT =>
3290
3291               --  The string has only one character if Repeat was called
3292
3293               C := Program (String_Operand (IP));
3294               while Scan <= Last
3295                 and then C = Data (Scan)
3296               loop
3297                  Scan := Scan + 1;
3298               end loop;
3299
3300            when EXACTF =>
3301
3302               --  The string has only one character if Repeat was called
3303
3304               C := Program (String_Operand (IP));
3305               while Scan <= Last
3306                 and then To_Lower (C) = Data (Scan)
3307               loop
3308                  Scan := Scan + 1;
3309               end loop;
3310
3311            when ANYOF =>
3312               if Is_First then
3313                  Bitmap_Operand (Program, IP, Bitmap);
3314                  Is_First := False;
3315               end if;
3316
3317               while Scan <= Last
3318                 and then Get_From_Class (Bitmap, Data (Scan))
3319               loop
3320                  Scan := Scan + 1;
3321               end loop;
3322
3323            when ALNUM =>
3324               while Scan <= Last
3325                 and then Is_Alnum (Data (Scan))
3326               loop
3327                  Scan := Scan + 1;
3328               end loop;
3329
3330            when NALNUM =>
3331               while Scan <= Last
3332                 and then not Is_Alnum (Data (Scan))
3333               loop
3334                  Scan := Scan + 1;
3335               end loop;
3336
3337            when SPACE =>
3338               while Scan <= Last
3339                 and then Is_White_Space (Data (Scan))
3340               loop
3341                  Scan := Scan + 1;
3342               end loop;
3343
3344            when NSPACE =>
3345               while Scan <= Last
3346                 and then not Is_White_Space (Data (Scan))
3347               loop
3348                  Scan := Scan + 1;
3349               end loop;
3350
3351            when DIGIT  =>
3352               while Scan <= Last
3353                 and then Is_Digit (Data (Scan))
3354               loop
3355                  Scan := Scan + 1;
3356               end loop;
3357
3358            when NDIGIT  =>
3359               while Scan <= Last
3360                 and then not Is_Digit (Data (Scan))
3361               loop
3362                  Scan := Scan + 1;
3363               end loop;
3364
3365            when others =>
3366               raise Program_Error;
3367         end case;
3368
3369         Count := Scan - Input_Pos;
3370         Input_Pos := Scan;
3371         return Count;
3372      end Repeat;
3373
3374      ---------
3375      -- Try --
3376      ---------
3377
3378      function Try (Pos : Positive) return Boolean is
3379      begin
3380         Input_Pos  := Pos;
3381         Last_Paren := 0;
3382         Matches_Full := (others => No_Match);
3383
3384         if Match (Program_First) then
3385            Matches_Full (0) := (Pos, Input_Pos - 1);
3386            return True;
3387         end if;
3388
3389         return False;
3390      end Try;
3391
3392   --  Start of processing for Match
3393
3394   begin
3395      --  Do we have the regexp Never_Match?
3396
3397      if Self.Size = 0 then
3398         Matches := (others => No_Match);
3399         return;
3400      end if;
3401
3402      --  If there is a "must appear" string, look for it
3403
3404      if Self.Must_Have_Length > 0 then
3405         declare
3406            First      : constant Character := Program (Self.Must_Have);
3407            Must_First : constant Pointer := Self.Must_Have;
3408            Must_Last  : constant Pointer :=
3409                           Must_First + Pointer (Self.Must_Have_Length - 1);
3410            Next_Try   : Natural := Index (First_In_Data, First);
3411
3412         begin
3413            while Next_Try /= 0
3414              and then Data (Next_Try .. Next_Try + Self.Must_Have_Length - 1)
3415                          = String (Program (Must_First .. Must_Last))
3416            loop
3417               Next_Try := Index (Next_Try + 1, First);
3418            end loop;
3419
3420            if Next_Try = 0 then
3421               Matches := (others => No_Match);
3422               return;                  -- Not present
3423            end if;
3424         end;
3425      end if;
3426
3427      --  Mark beginning of line for ^
3428
3429      BOL_Pos := Data'First;
3430
3431      --  Simplest case first: an anchored match need be tried only once
3432
3433      if Self.Anchored and then (Self.Flags and Multiple_Lines) = 0 then
3434         Matched := Try (First_In_Data);
3435
3436      elsif Self.Anchored then
3437         declare
3438            Next_Try : Natural := First_In_Data;
3439         begin
3440            --  Test the first position in the buffer
3441            Matched := Try (Next_Try);
3442
3443            --  Else only test after newlines
3444
3445            if not Matched then
3446               while Next_Try <= Last_In_Data loop
3447                  while Next_Try <= Last_In_Data
3448                    and then Data (Next_Try) /= ASCII.LF
3449                  loop
3450                     Next_Try := Next_Try + 1;
3451                  end loop;
3452
3453                  Next_Try := Next_Try + 1;
3454
3455                  if Next_Try <= Last_In_Data then
3456                     Matched := Try (Next_Try);
3457                     exit when Matched;
3458                  end if;
3459               end loop;
3460            end if;
3461         end;
3462
3463      elsif Self.First /= ASCII.NUL then
3464         --  We know what char it must start with
3465
3466         declare
3467            Next_Try : Natural := Index (First_In_Data, Self.First);
3468
3469         begin
3470            while Next_Try /= 0 loop
3471               Matched := Try (Next_Try);
3472               exit when Matched;
3473               Next_Try := Index (Next_Try + 1, Self.First);
3474            end loop;
3475         end;
3476
3477      else
3478         --  Messy cases: try all locations (including for the empty string)
3479
3480         Matched := Try (First_In_Data);
3481
3482         if not Matched then
3483            for S in First_In_Data + 1 .. Last_In_Data loop
3484               Matched := Try (S);
3485               exit when Matched;
3486            end loop;
3487         end if;
3488      end if;
3489
3490      --  Matched has its value
3491
3492      for J in Last_Paren + 1 .. Matches'Last loop
3493         Matches_Full (J) := No_Match;
3494      end loop;
3495
3496      Matches := Matches_Full (Matches'Range);
3497   end Match;
3498
3499   -----------
3500   -- Match --
3501   -----------
3502
3503   function Match
3504     (Self       : Pattern_Matcher;
3505      Data       : String;
3506      Data_First : Integer := -1;
3507      Data_Last  : Positive := Positive'Last) return Natural
3508   is
3509      Matches : Match_Array (0 .. 0);
3510
3511   begin
3512      Match (Self, Data, Matches, Data_First, Data_Last);
3513      if Matches (0) = No_Match then
3514         return Data'First - 1;
3515      else
3516         return Matches (0).First;
3517      end if;
3518   end Match;
3519
3520   function Match
3521     (Self       : Pattern_Matcher;
3522      Data       : String;
3523      Data_First : Integer  := -1;
3524      Data_Last  : Positive := Positive'Last) return Boolean
3525   is
3526      Matches : Match_Array (0 .. 0);
3527
3528   begin
3529      Match (Self, Data, Matches, Data_First, Data_Last);
3530      return Matches (0).First >= Data'First;
3531   end Match;
3532
3533   procedure Match
3534     (Expression : String;
3535      Data       : String;
3536      Matches    : out Match_Array;
3537      Size       : Program_Size := Auto_Size;
3538      Data_First : Integer      := -1;
3539      Data_Last  : Positive     := Positive'Last)
3540   is
3541      PM            : Pattern_Matcher (Size);
3542      Finalize_Size : Program_Size;
3543      pragma Unreferenced (Finalize_Size);
3544   begin
3545      if Size = 0 then
3546         Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3547      else
3548         Compile (PM, Expression, Finalize_Size);
3549         Match (PM, Data, Matches, Data_First, Data_Last);
3550      end if;
3551   end Match;
3552
3553   -----------
3554   -- Match --
3555   -----------
3556
3557   function Match
3558     (Expression : String;
3559      Data       : String;
3560      Size       : Program_Size := Auto_Size;
3561      Data_First : Integer      := -1;
3562      Data_Last  : Positive     := Positive'Last) return Natural
3563   is
3564      PM         : Pattern_Matcher (Size);
3565      Final_Size : Program_Size;
3566      pragma Unreferenced (Final_Size);
3567   begin
3568      if Size = 0 then
3569         return Match (Compile (Expression), Data, Data_First, Data_Last);
3570      else
3571         Compile (PM, Expression, Final_Size);
3572         return Match (PM, Data, Data_First, Data_Last);
3573      end if;
3574   end Match;
3575
3576   -----------
3577   -- Match --
3578   -----------
3579
3580   function  Match
3581     (Expression : String;
3582      Data       : String;
3583      Size       : Program_Size := Auto_Size;
3584      Data_First : Integer      := -1;
3585      Data_Last  : Positive     := Positive'Last) return Boolean
3586   is
3587      Matches    : Match_Array (0 .. 0);
3588      PM         : Pattern_Matcher (Size);
3589      Final_Size : Program_Size;
3590      pragma Unreferenced (Final_Size);
3591   begin
3592      if Size = 0 then
3593         Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3594      else
3595         Compile (PM, Expression, Final_Size);
3596         Match (PM, Data, Matches, Data_First, Data_Last);
3597      end if;
3598
3599      return Matches (0).First >= Data'First;
3600   end Match;
3601
3602   -------------
3603   -- Operand --
3604   -------------
3605
3606   function Operand (P : Pointer) return Pointer is
3607   begin
3608      return P + Next_Pointer_Bytes;
3609   end Operand;
3610
3611   --------------
3612   -- Optimize --
3613   --------------
3614
3615   procedure Optimize (Self : in out Pattern_Matcher) is
3616      Scan    : Pointer;
3617      Program : Program_Data renames Self.Program;
3618
3619   begin
3620      --  Start with safe defaults (no optimization):
3621      --    *  No known first character of match
3622      --    *  Does not necessarily start at beginning of line
3623      --    *  No string known that has to appear in data
3624
3625      Self.First := ASCII.NUL;
3626      Self.Anchored := False;
3627      Self.Must_Have := Program'Last + 1;
3628      Self.Must_Have_Length := 0;
3629
3630      Scan := Program_First;  --  First instruction (can be anything)
3631
3632      if Program (Scan) = EXACT then
3633         Self.First := Program (String_Operand (Scan));
3634
3635      elsif Program (Scan) = BOL
3636        or else Program (Scan) = SBOL
3637        or else Program (Scan) = MBOL
3638      then
3639         Self.Anchored := True;
3640      end if;
3641   end Optimize;
3642
3643   -----------------
3644   -- Paren_Count --
3645   -----------------
3646
3647   function Paren_Count (Regexp : Pattern_Matcher) return Match_Count is
3648   begin
3649      return Regexp.Paren_Count;
3650   end Paren_Count;
3651
3652   -----------
3653   -- Quote --
3654   -----------
3655
3656   function Quote (Str : String) return String is
3657      S    : String (1 .. Str'Length * 2);
3658      Last : Natural := 0;
3659
3660   begin
3661      for J in Str'Range loop
3662         case Str (J) is
3663            when '^' | '$' | '|' | '*' | '+' | '?' | '{' |
3664                 '}' | '[' | ']' | '(' | ')' | '\' | '.' =>
3665
3666               S (Last + 1) := '\';
3667               S (Last + 2) := Str (J);
3668               Last := Last + 2;
3669
3670            when others =>
3671               S (Last + 1) := Str (J);
3672               Last := Last + 1;
3673         end case;
3674      end loop;
3675
3676      return S (1 .. Last);
3677   end Quote;
3678
3679   ------------------
3680   -- Read_Natural --
3681   ------------------
3682
3683   function Read_Natural
3684     (Program : Program_Data;
3685      IP      : Pointer) return Natural
3686   is
3687   begin
3688      return Character'Pos (Program (IP)) +
3689               256 * Character'Pos (Program (IP + 1));
3690   end Read_Natural;
3691
3692   -----------------
3693   -- Reset_Class --
3694   -----------------
3695
3696   procedure Reset_Class (Bitmap : out Character_Class) is
3697   begin
3698      Bitmap := (others => 0);
3699   end Reset_Class;
3700
3701   ------------------
3702   -- Set_In_Class --
3703   ------------------
3704
3705   procedure Set_In_Class
3706     (Bitmap : in out Character_Class;
3707      C      : Character)
3708   is
3709      Value : constant Class_Byte := Character'Pos (C);
3710   begin
3711      Bitmap (Value / 8) := Bitmap (Value / 8)
3712        or Bit_Conversion (Value mod 8);
3713   end Set_In_Class;
3714
3715   -------------------
3716   -- String_Length --
3717   -------------------
3718
3719   function String_Length
3720     (Program : Program_Data;
3721      P       : Pointer) return Program_Size
3722   is
3723   begin
3724      pragma Assert (Program (P) = EXACT or else Program (P) = EXACTF);
3725      return Character'Pos (Program (P + Next_Pointer_Bytes));
3726   end String_Length;
3727
3728   --------------------
3729   -- String_Operand --
3730   --------------------
3731
3732   function String_Operand (P : Pointer) return Pointer is
3733   begin
3734      return P + 4;
3735   end String_Operand;
3736
3737end System.Regpat;
3738