1------------------------------------------------------------------------------
2--                                                                          --
3--                  GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                --
4--                                                                          --
5--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6--                                                                          --
7--                                  B o d y                                 --
8--                                                                          --
9--         Copyright (C) 1992-2015, Free Software Foundation, Inc.          --
10--                                                                          --
11-- GNARL is free software; you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNARL was developed by the GNARL team at Florida State University.       --
28-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29--                                                                          --
30------------------------------------------------------------------------------
31
32--  This is the VxWorks version of this package
33
34--  This package contains all the GNULL primitives that interface directly with
35--  the underlying OS.
36
37pragma Polling (Off);
38--  Turn off polling, we do not want ATC polling to take place during tasking
39--  operations. It causes infinite loops and other problems.
40
41with Ada.Unchecked_Conversion;
42
43with Interfaces.C;
44
45with System.Multiprocessors;
46with System.Tasking.Debug;
47with System.Interrupt_Management;
48with System.Float_Control;
49with System.OS_Constants;
50
51with System.Soft_Links;
52--  We use System.Soft_Links instead of System.Tasking.Initialization
53--  because the later is a higher level package that we shouldn't depend
54--  on. For example when using the restricted run time, it is replaced by
55--  System.Tasking.Restricted.Stages.
56
57with System.Task_Info;
58with System.VxWorks.Ext;
59
60package body System.Task_Primitives.Operations is
61
62   package OSC renames System.OS_Constants;
63   package SSL renames System.Soft_Links;
64
65   use System.Tasking.Debug;
66   use System.Tasking;
67   use System.OS_Interface;
68   use System.Parameters;
69   use type System.VxWorks.Ext.t_id;
70   use type Interfaces.C.int;
71   use type System.OS_Interface.unsigned;
72
73   subtype int is System.OS_Interface.int;
74   subtype unsigned is System.OS_Interface.unsigned;
75
76   Relative : constant := 0;
77
78   ----------------
79   -- Local Data --
80   ----------------
81
82   --  The followings are logically constants, but need to be initialized at
83   --  run time.
84
85   Environment_Task_Id : Task_Id;
86   --  A variable to hold Task_Id for the environment task
87
88   --  The followings are internal configuration constants needed
89
90   Dispatching_Policy : Character;
91   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
92
93   Foreign_Task_Elaborated : aliased Boolean := True;
94   --  Used to identified fake tasks (i.e., non-Ada Threads)
95
96   Locking_Policy : Character;
97   pragma Import (C, Locking_Policy, "__gl_locking_policy");
98
99   Mutex_Protocol : Priority_Type;
100
101   Single_RTS_Lock : aliased RTS_Lock;
102   --  This is a lock to allow only one thread of control in the RTS at a
103   --  time; it is used to execute in mutual exclusion from all other tasks.
104   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
105
106   Time_Slice_Val : Integer;
107   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
108
109   Null_Thread_Id : constant Thread_Id := 0;
110   --  Constant to indicate that the thread identifier has not yet been
111   --  initialized.
112
113   --------------------
114   -- Local Packages --
115   --------------------
116
117   package Specific is
118
119      procedure Initialize;
120      pragma Inline (Initialize);
121      --  Initialize task specific data
122
123      function Is_Valid_Task return Boolean;
124      pragma Inline (Is_Valid_Task);
125      --  Does executing thread have a TCB?
126
127      procedure Set (Self_Id : Task_Id);
128      pragma Inline (Set);
129      --  Set the self id for the current task, unless Self_Id is null, in
130      --  which case the task specific data is deleted.
131
132      function Self return Task_Id;
133      pragma Inline (Self);
134      --  Return a pointer to the Ada Task Control Block of the calling task
135
136   end Specific;
137
138   package body Specific is separate;
139   --  The body of this package is target specific
140
141   ----------------------------------
142   -- ATCB allocation/deallocation --
143   ----------------------------------
144
145   package body ATCB_Allocation is separate;
146   --  The body of this package is shared across several targets
147
148   ---------------------------------
149   -- Support for foreign threads --
150   ---------------------------------
151
152   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
153   --  Allocate and Initialize a new ATCB for the current Thread
154
155   function Register_Foreign_Thread
156     (Thread : Thread_Id) return Task_Id is separate;
157
158   -----------------------
159   -- Local Subprograms --
160   -----------------------
161
162   procedure Abort_Handler (signo : Signal);
163   --  Handler for the abort (SIGABRT) signal to handle asynchronous abort
164
165   procedure Install_Signal_Handlers;
166   --  Install the default signal handlers for the current task
167
168   function Is_Task_Context return Boolean;
169   --  This function returns True if the current execution is in the context of
170   --  a task, and False if it is an interrupt context.
171
172   type Set_Stack_Limit_Proc_Acc is access procedure;
173   pragma Convention (C, Set_Stack_Limit_Proc_Acc);
174
175   Set_Stack_Limit_Hook : Set_Stack_Limit_Proc_Acc;
176   pragma Import (C, Set_Stack_Limit_Hook, "__gnat_set_stack_limit_hook");
177   --  Procedure to be called when a task is created to set stack limit. Used
178   --  only for VxWorks 5 and VxWorks MILS guest OS.
179
180   function To_Address is
181     new Ada.Unchecked_Conversion (Task_Id, System.Address);
182
183   -------------------
184   -- Abort_Handler --
185   -------------------
186
187   procedure Abort_Handler (signo : Signal) is
188      pragma Unreferenced (signo);
189
190      Self_ID        : constant Task_Id := Self;
191      Old_Set        : aliased sigset_t;
192      Unblocked_Mask : aliased sigset_t;
193      Result         : int;
194      pragma Warnings (Off, Result);
195
196      use System.Interrupt_Management;
197
198   begin
199      --  It is not safe to raise an exception when using ZCX and the GCC
200      --  exception handling mechanism.
201
202      if ZCX_By_Default then
203         return;
204      end if;
205
206      if Self_ID.Deferral_Level = 0
207        and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
208        and then not Self_ID.Aborting
209      then
210         Self_ID.Aborting := True;
211
212         --  Make sure signals used for RTS internal purposes are unmasked
213
214         Result := sigemptyset (Unblocked_Mask'Access);
215         pragma Assert (Result = 0);
216         Result :=
217           sigaddset
218           (Unblocked_Mask'Access,
219            Signal (Abort_Task_Interrupt));
220         pragma Assert (Result = 0);
221         Result := sigaddset (Unblocked_Mask'Access, SIGBUS);
222         pragma Assert (Result = 0);
223         Result := sigaddset (Unblocked_Mask'Access, SIGFPE);
224         pragma Assert (Result = 0);
225         Result := sigaddset (Unblocked_Mask'Access, SIGILL);
226         pragma Assert (Result = 0);
227         Result := sigaddset (Unblocked_Mask'Access, SIGSEGV);
228         pragma Assert (Result = 0);
229
230         Result :=
231           pthread_sigmask
232             (SIG_UNBLOCK,
233              Unblocked_Mask'Access,
234              Old_Set'Access);
235         pragma Assert (Result = 0);
236
237         raise Standard'Abort_Signal;
238      end if;
239   end Abort_Handler;
240
241   -----------------
242   -- Stack_Guard --
243   -----------------
244
245   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
246      pragma Unreferenced (T);
247      pragma Unreferenced (On);
248
249   begin
250      --  Nothing needed (why not???)
251
252      null;
253   end Stack_Guard;
254
255   -------------------
256   -- Get_Thread_Id --
257   -------------------
258
259   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
260   begin
261      return T.Common.LL.Thread;
262   end Get_Thread_Id;
263
264   ----------
265   -- Self --
266   ----------
267
268   function Self return Task_Id renames Specific.Self;
269
270   -----------------------------
271   -- Install_Signal_Handlers --
272   -----------------------------
273
274   procedure Install_Signal_Handlers is
275      act     : aliased struct_sigaction;
276      old_act : aliased struct_sigaction;
277      Tmp_Set : aliased sigset_t;
278      Result  : int;
279
280   begin
281      act.sa_flags := 0;
282      act.sa_handler := Abort_Handler'Address;
283
284      Result := sigemptyset (Tmp_Set'Access);
285      pragma Assert (Result = 0);
286      act.sa_mask := Tmp_Set;
287
288      Result :=
289        sigaction
290          (Signal (Interrupt_Management.Abort_Task_Interrupt),
291           act'Unchecked_Access,
292           old_act'Unchecked_Access);
293      pragma Assert (Result = 0);
294
295      Interrupt_Management.Initialize_Interrupts;
296   end Install_Signal_Handlers;
297
298   ---------------------
299   -- Initialize_Lock --
300   ---------------------
301
302   procedure Initialize_Lock
303     (Prio : System.Any_Priority;
304      L    : not null access Lock)
305   is
306   begin
307      L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
308      L.Prio_Ceiling := int (Prio);
309      L.Protocol := Mutex_Protocol;
310      pragma Assert (L.Mutex /= 0);
311   end Initialize_Lock;
312
313   procedure Initialize_Lock
314     (L     : not null access RTS_Lock;
315      Level : Lock_Level)
316   is
317      pragma Unreferenced (Level);
318   begin
319      L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
320      L.Prio_Ceiling := int (System.Any_Priority'Last);
321      L.Protocol := Mutex_Protocol;
322      pragma Assert (L.Mutex /= 0);
323   end Initialize_Lock;
324
325   -------------------
326   -- Finalize_Lock --
327   -------------------
328
329   procedure Finalize_Lock (L : not null access Lock) is
330      Result : int;
331   begin
332      Result := semDelete (L.Mutex);
333      pragma Assert (Result = 0);
334   end Finalize_Lock;
335
336   procedure Finalize_Lock (L : not null access RTS_Lock) is
337      Result : int;
338   begin
339      Result := semDelete (L.Mutex);
340      pragma Assert (Result = 0);
341   end Finalize_Lock;
342
343   ----------------
344   -- Write_Lock --
345   ----------------
346
347   procedure Write_Lock
348     (L                 : not null access Lock;
349      Ceiling_Violation : out Boolean)
350   is
351      Result : int;
352
353   begin
354      if L.Protocol = Prio_Protect
355        and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
356      then
357         Ceiling_Violation := True;
358         return;
359      else
360         Ceiling_Violation := False;
361      end if;
362
363      Result := semTake (L.Mutex, WAIT_FOREVER);
364      pragma Assert (Result = 0);
365   end Write_Lock;
366
367   procedure Write_Lock
368     (L           : not null access RTS_Lock;
369      Global_Lock : Boolean := False)
370   is
371      Result : int;
372   begin
373      if not Single_Lock or else Global_Lock then
374         Result := semTake (L.Mutex, WAIT_FOREVER);
375         pragma Assert (Result = 0);
376      end if;
377   end Write_Lock;
378
379   procedure Write_Lock (T : Task_Id) is
380      Result : int;
381   begin
382      if not Single_Lock then
383         Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
384         pragma Assert (Result = 0);
385      end if;
386   end Write_Lock;
387
388   ---------------
389   -- Read_Lock --
390   ---------------
391
392   procedure Read_Lock
393     (L                 : not null access Lock;
394      Ceiling_Violation : out Boolean)
395   is
396   begin
397      Write_Lock (L, Ceiling_Violation);
398   end Read_Lock;
399
400   ------------
401   -- Unlock --
402   ------------
403
404   procedure Unlock (L : not null access Lock) is
405      Result : int;
406   begin
407      Result := semGive (L.Mutex);
408      pragma Assert (Result = 0);
409   end Unlock;
410
411   procedure Unlock
412     (L           : not null access RTS_Lock;
413      Global_Lock : Boolean := False)
414   is
415      Result : int;
416   begin
417      if not Single_Lock or else Global_Lock then
418         Result := semGive (L.Mutex);
419         pragma Assert (Result = 0);
420      end if;
421   end Unlock;
422
423   procedure Unlock (T : Task_Id) is
424      Result : int;
425   begin
426      if not Single_Lock then
427         Result := semGive (T.Common.LL.L.Mutex);
428         pragma Assert (Result = 0);
429      end if;
430   end Unlock;
431
432   -----------------
433   -- Set_Ceiling --
434   -----------------
435
436   --  Dynamic priority ceilings are not supported by the underlying system
437
438   procedure Set_Ceiling
439     (L    : not null access Lock;
440      Prio : System.Any_Priority)
441   is
442      pragma Unreferenced (L, Prio);
443   begin
444      null;
445   end Set_Ceiling;
446
447   -----------
448   -- Sleep --
449   -----------
450
451   procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
452      pragma Unreferenced (Reason);
453
454      Result : int;
455
456   begin
457      pragma Assert (Self_ID = Self);
458
459      --  Release the mutex before sleeping
460
461      Result :=
462        semGive (if Single_Lock
463                 then Single_RTS_Lock.Mutex
464                 else Self_ID.Common.LL.L.Mutex);
465      pragma Assert (Result = 0);
466
467      --  Perform a blocking operation to take the CV semaphore. Note that a
468      --  blocking operation in VxWorks will reenable task scheduling. When we
469      --  are no longer blocked and control is returned, task scheduling will
470      --  again be disabled.
471
472      Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
473      pragma Assert (Result = 0);
474
475      --  Take the mutex back
476
477      Result :=
478        semTake ((if Single_Lock
479                  then Single_RTS_Lock.Mutex
480                  else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
481      pragma Assert (Result = 0);
482   end Sleep;
483
484   -----------------
485   -- Timed_Sleep --
486   -----------------
487
488   --  This is for use within the run-time system, so abort is assumed to be
489   --  already deferred, and the caller should be holding its own ATCB lock.
490
491   procedure Timed_Sleep
492     (Self_ID  : Task_Id;
493      Time     : Duration;
494      Mode     : ST.Delay_Modes;
495      Reason   : System.Tasking.Task_States;
496      Timedout : out Boolean;
497      Yielded  : out Boolean)
498   is
499      pragma Unreferenced (Reason);
500
501      Orig     : constant Duration := Monotonic_Clock;
502      Absolute : Duration;
503      Ticks    : int;
504      Result   : int;
505      Wakeup   : Boolean := False;
506
507   begin
508      Timedout := False;
509      Yielded  := True;
510
511      if Mode = Relative then
512         Absolute := Orig + Time;
513
514         --  Systematically add one since the first tick will delay *at most*
515         --  1 / Rate_Duration seconds, so we need to add one to be on the
516         --  safe side.
517
518         Ticks := To_Clock_Ticks (Time);
519
520         if Ticks > 0 and then Ticks < int'Last then
521            Ticks := Ticks + 1;
522         end if;
523
524      else
525         Absolute := Time;
526         Ticks    := To_Clock_Ticks (Time - Monotonic_Clock);
527      end if;
528
529      if Ticks > 0 then
530         loop
531            --  Release the mutex before sleeping
532
533            Result :=
534              semGive (if Single_Lock
535                       then Single_RTS_Lock.Mutex
536                       else Self_ID.Common.LL.L.Mutex);
537            pragma Assert (Result = 0);
538
539            --  Perform a blocking operation to take the CV semaphore. Note
540            --  that a blocking operation in VxWorks will reenable task
541            --  scheduling. When we are no longer blocked and control is
542            --  returned, task scheduling will again be disabled.
543
544            Result := semTake (Self_ID.Common.LL.CV, Ticks);
545
546            if Result = 0 then
547
548               --  Somebody may have called Wakeup for us
549
550               Wakeup := True;
551
552            else
553               if errno /= S_objLib_OBJ_TIMEOUT then
554                  Wakeup := True;
555
556               else
557                  --  If Ticks = int'last, it was most probably truncated so
558                  --  let's make another round after recomputing Ticks from
559                  --  the absolute time.
560
561                  if Ticks /= int'Last then
562                     Timedout := True;
563
564                  else
565                     Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
566
567                     if Ticks < 0 then
568                        Timedout := True;
569                     end if;
570                  end if;
571               end if;
572            end if;
573
574            --  Take the mutex back
575
576            Result :=
577              semTake ((if Single_Lock
578                        then Single_RTS_Lock.Mutex
579                        else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
580            pragma Assert (Result = 0);
581
582            exit when Timedout or Wakeup;
583         end loop;
584
585      else
586         Timedout := True;
587
588         --  Should never hold a lock while yielding
589
590         if Single_Lock then
591            Result := semGive (Single_RTS_Lock.Mutex);
592            Result := taskDelay (0);
593            Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
594
595         else
596            Result := semGive (Self_ID.Common.LL.L.Mutex);
597            Result := taskDelay (0);
598            Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
599         end if;
600      end if;
601   end Timed_Sleep;
602
603   -----------------
604   -- Timed_Delay --
605   -----------------
606
607   --  This is for use in implementing delay statements, so we assume the
608   --  caller is holding no locks.
609
610   procedure Timed_Delay
611     (Self_ID : Task_Id;
612      Time    : Duration;
613      Mode    : ST.Delay_Modes)
614   is
615      Orig     : constant Duration := Monotonic_Clock;
616      Absolute : Duration;
617      Ticks    : int;
618      Timedout : Boolean;
619      Aborted  : Boolean := False;
620
621      Result : int;
622      pragma Warnings (Off, Result);
623
624   begin
625      if Mode = Relative then
626         Absolute := Orig + Time;
627         Ticks    := To_Clock_Ticks (Time);
628
629         if Ticks > 0 and then Ticks < int'Last then
630
631            --  First tick will delay anytime between 0 and 1 / sysClkRateGet
632            --  seconds, so we need to add one to be on the safe side.
633
634            Ticks := Ticks + 1;
635         end if;
636
637      else
638         Absolute := Time;
639         Ticks    := To_Clock_Ticks (Time - Orig);
640      end if;
641
642      if Ticks > 0 then
643
644         --  Modifying State, locking the TCB
645
646         Result :=
647           semTake ((if Single_Lock
648                     then Single_RTS_Lock.Mutex
649                     else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
650
651         pragma Assert (Result = 0);
652
653         Self_ID.Common.State := Delay_Sleep;
654         Timedout := False;
655
656         loop
657            Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
658
659            --  Release the TCB before sleeping
660
661            Result :=
662              semGive (if Single_Lock
663                       then Single_RTS_Lock.Mutex
664                       else Self_ID.Common.LL.L.Mutex);
665            pragma Assert (Result = 0);
666
667            exit when Aborted;
668
669            Result := semTake (Self_ID.Common.LL.CV, Ticks);
670
671            if Result /= 0 then
672
673               --  If Ticks = int'last, it was most probably truncated, so make
674               --  another round after recomputing Ticks from absolute time.
675
676               if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
677                  Timedout := True;
678               else
679                  Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
680
681                  if Ticks < 0 then
682                     Timedout := True;
683                  end if;
684               end if;
685            end if;
686
687            --  Take back the lock after having slept, to protect further
688            --  access to Self_ID.
689
690            Result :=
691              semTake
692                ((if Single_Lock
693                  then Single_RTS_Lock.Mutex
694                  else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
695
696            pragma Assert (Result = 0);
697
698            exit when Timedout;
699         end loop;
700
701         Self_ID.Common.State := Runnable;
702
703         Result :=
704           semGive
705             (if Single_Lock
706              then Single_RTS_Lock.Mutex
707              else Self_ID.Common.LL.L.Mutex);
708
709      else
710         Result := taskDelay (0);
711      end if;
712   end Timed_Delay;
713
714   ---------------------
715   -- Monotonic_Clock --
716   ---------------------
717
718   function Monotonic_Clock return Duration is
719      TS     : aliased timespec;
720      Result : int;
721   begin
722      Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
723      pragma Assert (Result = 0);
724      return To_Duration (TS);
725   end Monotonic_Clock;
726
727   -------------------
728   -- RT_Resolution --
729   -------------------
730
731   function RT_Resolution return Duration is
732   begin
733      return 1.0 / Duration (sysClkRateGet);
734   end RT_Resolution;
735
736   ------------
737   -- Wakeup --
738   ------------
739
740   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
741      pragma Unreferenced (Reason);
742      Result : int;
743   begin
744      Result := semGive (T.Common.LL.CV);
745      pragma Assert (Result = 0);
746   end Wakeup;
747
748   -----------
749   -- Yield --
750   -----------
751
752   procedure Yield (Do_Yield : Boolean := True) is
753      pragma Unreferenced (Do_Yield);
754      Result : int;
755      pragma Unreferenced (Result);
756   begin
757      Result := taskDelay (0);
758   end Yield;
759
760   ------------------
761   -- Set_Priority --
762   ------------------
763
764   procedure Set_Priority
765     (T                   : Task_Id;
766      Prio                : System.Any_Priority;
767      Loss_Of_Inheritance : Boolean := False)
768   is
769      pragma Unreferenced (Loss_Of_Inheritance);
770
771      Result     : int;
772
773   begin
774      Result :=
775        taskPrioritySet
776          (T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
777      pragma Assert (Result = 0);
778
779      --  Note: in VxWorks 6.6 (or earlier), the task is placed at the end of
780      --  the priority queue instead of the head. This is not the behavior
781      --  required by Annex D (RM D.2.3(5/2)), but we consider it an acceptable
782      --  variation (RM 1.1.3(6)), given this is the built-in behavior of the
783      --  operating system. VxWorks versions starting from 6.7 implement the
784      --  required Annex D semantics.
785
786      --  In older versions we attempted to better approximate the Annex D
787      --  required behavior, but this simulation was not entirely accurate,
788      --  and it seems better to live with the standard VxWorks semantics.
789
790      T.Common.Current_Priority := Prio;
791   end Set_Priority;
792
793   ------------------
794   -- Get_Priority --
795   ------------------
796
797   function Get_Priority (T : Task_Id) return System.Any_Priority is
798   begin
799      return T.Common.Current_Priority;
800   end Get_Priority;
801
802   ----------------
803   -- Enter_Task --
804   ----------------
805
806   procedure Enter_Task (Self_ID : Task_Id) is
807   begin
808      --  Store the user-level task id in the Thread field (to be used
809      --  internally by the run-time system) and the kernel-level task id in
810      --  the LWP field (to be used by the debugger).
811
812      Self_ID.Common.LL.Thread := taskIdSelf;
813      Self_ID.Common.LL.LWP := getpid;
814
815      Specific.Set (Self_ID);
816
817      --  Properly initializes the FPU for PPC/MIPS systems
818
819      System.Float_Control.Reset;
820
821      --  Install the signal handlers
822
823      --  This is called for each task since there is no signal inheritance
824      --  between VxWorks tasks.
825
826      Install_Signal_Handlers;
827
828      --  If stack checking is enabled, set the stack limit for this task
829
830      if Set_Stack_Limit_Hook /= null then
831         Set_Stack_Limit_Hook.all;
832      end if;
833   end Enter_Task;
834
835   -------------------
836   -- Is_Valid_Task --
837   -------------------
838
839   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
840
841   -----------------------------
842   -- Register_Foreign_Thread --
843   -----------------------------
844
845   function Register_Foreign_Thread return Task_Id is
846   begin
847      if Is_Valid_Task then
848         return Self;
849      else
850         return Register_Foreign_Thread (taskIdSelf);
851      end if;
852   end Register_Foreign_Thread;
853
854   --------------------
855   -- Initialize_TCB --
856   --------------------
857
858   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
859   begin
860      Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
861      Self_ID.Common.LL.Thread := Null_Thread_Id;
862
863      if Self_ID.Common.LL.CV = 0 then
864         Succeeded := False;
865
866      else
867         Succeeded := True;
868
869         if not Single_Lock then
870            Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
871         end if;
872      end if;
873   end Initialize_TCB;
874
875   -----------------
876   -- Create_Task --
877   -----------------
878
879   procedure Create_Task
880     (T          : Task_Id;
881      Wrapper    : System.Address;
882      Stack_Size : System.Parameters.Size_Type;
883      Priority   : System.Any_Priority;
884      Succeeded  : out Boolean)
885   is
886      Adjusted_Stack_Size : size_t;
887
888      use type System.Multiprocessors.CPU_Range;
889
890   begin
891      --  Check whether both Dispatching_Domain and CPU are specified for
892      --  the task, and the CPU value is not contained within the range of
893      --  processors for the domain.
894
895      if T.Common.Domain /= null
896        and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
897        and then
898          (T.Common.Base_CPU not in T.Common.Domain'Range
899            or else not T.Common.Domain (T.Common.Base_CPU))
900      then
901         Succeeded := False;
902         return;
903      end if;
904
905      --  Ask for four extra bytes of stack space so that the ATCB pointer can
906      --  be stored below the stack limit, plus extra space for the frame of
907      --  Task_Wrapper. This is so the user gets the amount of stack requested
908      --  exclusive of the needs.
909
910      --  We also have to allocate n more bytes for the task name storage and
911      --  enough space for the Wind Task Control Block which is around 0x778
912      --  bytes. VxWorks also seems to carve out additional space, so use 2048
913      --  as a nice round number. We might want to increment to the nearest
914      --  page size in case we ever support VxVMI.
915
916      --  ??? - we should come back and visit this so we can set the task name
917      --        to something appropriate.
918
919      Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
920
921      --  Since the initial signal mask of a thread is inherited from the
922      --  creator, and the Environment task has all its signals masked, we do
923      --  not need to manipulate caller's signal mask at this point. All tasks
924      --  in RTS will have All_Tasks_Mask initially.
925
926      --  We now compute the VxWorks task name and options, then spawn ...
927
928      declare
929         Name         : aliased String (1 .. T.Common.Task_Image_Len + 1);
930         Name_Address : System.Address;
931         --  Task name we are going to hand down to VxWorks
932
933         function Get_Task_Options return int;
934         pragma Import (C, Get_Task_Options, "__gnat_get_task_options");
935         --  Function that returns the options to be set for the task that we
936         --  are creating. We fetch the options assigned to the current task,
937         --  so offering some user level control over the options for a task
938         --  hierarchy, and force VX_FP_TASK because it is almost always
939         --  required.
940
941      begin
942         --  If there is no Ada task name handy, let VxWorks choose one.
943         --  Otherwise, tell VxWorks what the Ada task name is.
944
945         if T.Common.Task_Image_Len = 0 then
946            Name_Address := System.Null_Address;
947         else
948            Name (1 .. Name'Last - 1) :=
949              T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
950            Name (Name'Last) := ASCII.NUL;
951            Name_Address := Name'Address;
952         end if;
953
954         --  Now spawn the VxWorks task for real
955
956         T.Common.LL.Thread :=
957           taskSpawn
958             (Name_Address,
959              To_VxWorks_Priority (int (Priority)),
960              Get_Task_Options,
961              Adjusted_Stack_Size,
962              Wrapper,
963              To_Address (T));
964      end;
965
966      --  Set processor affinity
967
968      Set_Task_Affinity (T);
969
970      --  Only case of failure is if taskSpawn returned 0 (aka Null_Thread_Id)
971
972      if T.Common.LL.Thread = Null_Thread_Id then
973         Succeeded := False;
974      else
975         Succeeded := True;
976         Task_Creation_Hook (T.Common.LL.Thread);
977         Set_Priority (T, Priority);
978      end if;
979   end Create_Task;
980
981   ------------------
982   -- Finalize_TCB --
983   ------------------
984
985   procedure Finalize_TCB (T : Task_Id) is
986      Result : int;
987
988   begin
989      if not Single_Lock then
990         Result := semDelete (T.Common.LL.L.Mutex);
991         pragma Assert (Result = 0);
992      end if;
993
994      T.Common.LL.Thread := Null_Thread_Id;
995
996      Result := semDelete (T.Common.LL.CV);
997      pragma Assert (Result = 0);
998
999      if T.Known_Tasks_Index /= -1 then
1000         Known_Tasks (T.Known_Tasks_Index) := null;
1001      end if;
1002
1003      ATCB_Allocation.Free_ATCB (T);
1004   end Finalize_TCB;
1005
1006   ---------------
1007   -- Exit_Task --
1008   ---------------
1009
1010   procedure Exit_Task is
1011   begin
1012      Specific.Set (null);
1013   end Exit_Task;
1014
1015   ----------------
1016   -- Abort_Task --
1017   ----------------
1018
1019   procedure Abort_Task (T : Task_Id) is
1020      Result : int;
1021   begin
1022      Result :=
1023        kill
1024          (T.Common.LL.Thread,
1025           Signal (Interrupt_Management.Abort_Task_Interrupt));
1026      pragma Assert (Result = 0);
1027   end Abort_Task;
1028
1029   ----------------
1030   -- Initialize --
1031   ----------------
1032
1033   procedure Initialize (S : in out Suspension_Object) is
1034   begin
1035      --  Initialize internal state (always to False (RM D.10(6)))
1036
1037      S.State := False;
1038      S.Waiting := False;
1039
1040      --  Initialize internal mutex
1041
1042      --  Use simpler binary semaphore instead of VxWorks mutual exclusion
1043      --  semaphore, because we don't need the fancier semantics and their
1044      --  overhead.
1045
1046      S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
1047
1048      --  Initialize internal condition variable
1049
1050      S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
1051   end Initialize;
1052
1053   --------------
1054   -- Finalize --
1055   --------------
1056
1057   procedure Finalize (S : in out Suspension_Object) is
1058      pragma Unmodified (S);
1059      --  S may be modified on other targets, but not on VxWorks
1060
1061      Result : STATUS;
1062
1063   begin
1064      --  Destroy internal mutex
1065
1066      Result := semDelete (S.L);
1067      pragma Assert (Result = OK);
1068
1069      --  Destroy internal condition variable
1070
1071      Result := semDelete (S.CV);
1072      pragma Assert (Result = OK);
1073   end Finalize;
1074
1075   -------------------
1076   -- Current_State --
1077   -------------------
1078
1079   function Current_State (S : Suspension_Object) return Boolean is
1080   begin
1081      --  We do not want to use lock on this read operation. State is marked
1082      --  as Atomic so that we ensure that the value retrieved is correct.
1083
1084      return S.State;
1085   end Current_State;
1086
1087   ---------------
1088   -- Set_False --
1089   ---------------
1090
1091   procedure Set_False (S : in out Suspension_Object) is
1092      Result : STATUS;
1093
1094   begin
1095      SSL.Abort_Defer.all;
1096
1097      Result := semTake (S.L, WAIT_FOREVER);
1098      pragma Assert (Result = OK);
1099
1100      S.State := False;
1101
1102      Result := semGive (S.L);
1103      pragma Assert (Result = OK);
1104
1105      SSL.Abort_Undefer.all;
1106   end Set_False;
1107
1108   --------------
1109   -- Set_True --
1110   --------------
1111
1112   procedure Set_True (S : in out Suspension_Object) is
1113      Result : STATUS;
1114
1115   begin
1116      --  Set_True can be called from an interrupt context, in which case
1117      --  Abort_Defer is undefined.
1118
1119      if Is_Task_Context then
1120         SSL.Abort_Defer.all;
1121      end if;
1122
1123      Result := semTake (S.L, WAIT_FOREVER);
1124      pragma Assert (Result = OK);
1125
1126      --  If there is already a task waiting on this suspension object then we
1127      --  resume it, leaving the state of the suspension object to False, as it
1128      --  is specified in (RM D.10 (9)). Otherwise, it just leaves the state to
1129      --  True.
1130
1131      if S.Waiting then
1132         S.Waiting := False;
1133         S.State := False;
1134
1135         Result := semGive (S.CV);
1136         pragma Assert (Result = OK);
1137      else
1138         S.State := True;
1139      end if;
1140
1141      Result := semGive (S.L);
1142      pragma Assert (Result = OK);
1143
1144      --  Set_True can be called from an interrupt context, in which case
1145      --  Abort_Undefer is undefined.
1146
1147      if Is_Task_Context then
1148         SSL.Abort_Undefer.all;
1149      end if;
1150
1151   end Set_True;
1152
1153   ------------------------
1154   -- Suspend_Until_True --
1155   ------------------------
1156
1157   procedure Suspend_Until_True (S : in out Suspension_Object) is
1158      Result : STATUS;
1159
1160   begin
1161      SSL.Abort_Defer.all;
1162
1163      Result := semTake (S.L, WAIT_FOREVER);
1164
1165      if S.Waiting then
1166
1167         --  Program_Error must be raised upon calling Suspend_Until_True
1168         --  if another task is already waiting on that suspension object
1169         --  (RM D.10(10)).
1170
1171         Result := semGive (S.L);
1172         pragma Assert (Result = OK);
1173
1174         SSL.Abort_Undefer.all;
1175
1176         raise Program_Error;
1177
1178      else
1179         --  Suspend the task if the state is False. Otherwise, the task
1180         --  continues its execution, and the state of the suspension object
1181         --  is set to False (RM D.10 (9)).
1182
1183         if S.State then
1184            S.State := False;
1185
1186            Result := semGive (S.L);
1187            pragma Assert (Result = 0);
1188
1189            SSL.Abort_Undefer.all;
1190
1191         else
1192            S.Waiting := True;
1193
1194            --  Release the mutex before sleeping
1195
1196            Result := semGive (S.L);
1197            pragma Assert (Result = OK);
1198
1199            SSL.Abort_Undefer.all;
1200
1201            Result := semTake (S.CV, WAIT_FOREVER);
1202            pragma Assert (Result = 0);
1203         end if;
1204      end if;
1205   end Suspend_Until_True;
1206
1207   ----------------
1208   -- Check_Exit --
1209   ----------------
1210
1211   --  Dummy version
1212
1213   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1214      pragma Unreferenced (Self_ID);
1215   begin
1216      return True;
1217   end Check_Exit;
1218
1219   --------------------
1220   -- Check_No_Locks --
1221   --------------------
1222
1223   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1224      pragma Unreferenced (Self_ID);
1225   begin
1226      return True;
1227   end Check_No_Locks;
1228
1229   ----------------------
1230   -- Environment_Task --
1231   ----------------------
1232
1233   function Environment_Task return Task_Id is
1234   begin
1235      return Environment_Task_Id;
1236   end Environment_Task;
1237
1238   --------------
1239   -- Lock_RTS --
1240   --------------
1241
1242   procedure Lock_RTS is
1243   begin
1244      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1245   end Lock_RTS;
1246
1247   ----------------
1248   -- Unlock_RTS --
1249   ----------------
1250
1251   procedure Unlock_RTS is
1252   begin
1253      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1254   end Unlock_RTS;
1255
1256   ------------------
1257   -- Suspend_Task --
1258   ------------------
1259
1260   function Suspend_Task
1261     (T           : ST.Task_Id;
1262      Thread_Self : Thread_Id) return Boolean
1263   is
1264   begin
1265      if T.Common.LL.Thread /= Null_Thread_Id
1266        and then T.Common.LL.Thread /= Thread_Self
1267      then
1268         return taskSuspend (T.Common.LL.Thread) = 0;
1269      else
1270         return True;
1271      end if;
1272   end Suspend_Task;
1273
1274   -----------------
1275   -- Resume_Task --
1276   -----------------
1277
1278   function Resume_Task
1279     (T           : ST.Task_Id;
1280      Thread_Self : Thread_Id) return Boolean
1281   is
1282   begin
1283      if T.Common.LL.Thread /= Null_Thread_Id
1284        and then T.Common.LL.Thread /= Thread_Self
1285      then
1286         return taskResume (T.Common.LL.Thread) = 0;
1287      else
1288         return True;
1289      end if;
1290   end Resume_Task;
1291
1292   --------------------
1293   -- Stop_All_Tasks --
1294   --------------------
1295
1296   procedure Stop_All_Tasks
1297   is
1298      Thread_Self : constant Thread_Id := taskIdSelf;
1299      C           : Task_Id;
1300
1301      Dummy : int;
1302      Old   : int;
1303
1304   begin
1305      Old := Int_Lock;
1306
1307      C := All_Tasks_List;
1308      while C /= null loop
1309         if C.Common.LL.Thread /= Null_Thread_Id
1310           and then C.Common.LL.Thread /= Thread_Self
1311         then
1312            Dummy := Task_Stop (C.Common.LL.Thread);
1313         end if;
1314
1315         C := C.Common.All_Tasks_Link;
1316      end loop;
1317
1318      Dummy := Int_Unlock (Old);
1319   end Stop_All_Tasks;
1320
1321   ---------------
1322   -- Stop_Task --
1323   ---------------
1324
1325   function Stop_Task (T : ST.Task_Id) return Boolean is
1326   begin
1327      if T.Common.LL.Thread /= Null_Thread_Id then
1328         return Task_Stop (T.Common.LL.Thread) = 0;
1329      else
1330         return True;
1331      end if;
1332   end Stop_Task;
1333
1334   -------------------
1335   -- Continue_Task --
1336   -------------------
1337
1338   function Continue_Task (T : ST.Task_Id) return Boolean
1339   is
1340   begin
1341      if T.Common.LL.Thread /= Null_Thread_Id then
1342         return Task_Cont (T.Common.LL.Thread) = 0;
1343      else
1344         return True;
1345      end if;
1346   end Continue_Task;
1347
1348   ---------------------
1349   -- Is_Task_Context --
1350   ---------------------
1351
1352   function Is_Task_Context return Boolean is
1353   begin
1354      return System.OS_Interface.Interrupt_Context /= 1;
1355   end Is_Task_Context;
1356
1357   ----------------
1358   -- Initialize --
1359   ----------------
1360
1361   procedure Initialize (Environment_Task : Task_Id) is
1362      Result : int;
1363      pragma Unreferenced (Result);
1364
1365   begin
1366      Environment_Task_Id := Environment_Task;
1367
1368      Interrupt_Management.Initialize;
1369      Specific.Initialize;
1370
1371      if Locking_Policy = 'C' then
1372         Mutex_Protocol := Prio_Protect;
1373      elsif Locking_Policy = 'I' then
1374         Mutex_Protocol := Prio_Inherit;
1375      else
1376         Mutex_Protocol := Prio_None;
1377      end if;
1378
1379      if Time_Slice_Val > 0 then
1380         Result :=
1381           Set_Time_Slice
1382             (To_Clock_Ticks
1383                (Duration (Time_Slice_Val) / Duration (1_000_000.0)));
1384
1385      elsif Dispatching_Policy = 'R' then
1386         Result := Set_Time_Slice (To_Clock_Ticks (0.01));
1387
1388      end if;
1389
1390      --  Initialize the lock used to synchronize chain of all ATCBs
1391
1392      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1393
1394      --  Make environment task known here because it doesn't go through
1395      --  Activate_Tasks, which does it for all other tasks.
1396
1397      Known_Tasks (Known_Tasks'First) := Environment_Task;
1398      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1399
1400      Enter_Task (Environment_Task);
1401
1402      --  Set processor affinity
1403
1404      Set_Task_Affinity (Environment_Task);
1405   end Initialize;
1406
1407   -----------------------
1408   -- Set_Task_Affinity --
1409   -----------------------
1410
1411   procedure Set_Task_Affinity (T : ST.Task_Id) is
1412      Result : int := 0;
1413      pragma Unreferenced (Result);
1414
1415      use System.Task_Info;
1416      use type System.Multiprocessors.CPU_Range;
1417
1418   begin
1419      --  Do nothing if the underlying thread has not yet been created. If the
1420      --  thread has not yet been created then the proper affinity will be set
1421      --  during its creation.
1422
1423      if T.Common.LL.Thread = Null_Thread_Id then
1424         null;
1425
1426      --  pragma CPU
1427
1428      elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
1429
1430         --  Ada 2012 pragma CPU uses CPU numbers starting from 1, while on
1431         --  VxWorks the first CPU is identified by a 0, so we need to adjust.
1432
1433         Result :=
1434           taskCpuAffinitySet
1435             (T.Common.LL.Thread, int (T.Common.Base_CPU) - 1);
1436
1437      --  Task_Info
1438
1439      elsif T.Common.Task_Info /= Unspecified_Task_Info then
1440         Result := taskCpuAffinitySet (T.Common.LL.Thread, T.Common.Task_Info);
1441
1442      --  Handle dispatching domains
1443
1444      elsif T.Common.Domain /= null
1445        and then (T.Common.Domain /= ST.System_Domain
1446                   or else T.Common.Domain.all /=
1447                             (Multiprocessors.CPU'First ..
1448                              Multiprocessors.Number_Of_CPUs => True))
1449      then
1450         declare
1451            CPU_Set : unsigned := 0;
1452
1453         begin
1454            --  Set the affinity to all the processors belonging to the
1455            --  dispatching domain.
1456
1457            for Proc in T.Common.Domain'Range loop
1458               if T.Common.Domain (Proc) then
1459
1460                  --  The thread affinity mask is a bit vector in which each
1461                  --  bit represents a logical processor.
1462
1463                  CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1);
1464               end if;
1465            end loop;
1466
1467            Result := taskMaskAffinitySet (T.Common.LL.Thread, CPU_Set);
1468         end;
1469      end if;
1470   end Set_Task_Affinity;
1471
1472end System.Task_Primitives.Operations;
1473