1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              S E M _ R E S                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Debug;    use Debug;
29with Debug_A;  use Debug_A;
30with Einfo;    use Einfo;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Disp; use Exp_Disp;
34with Exp_Ch6;  use Exp_Ch6;
35with Exp_Ch7;  use Exp_Ch7;
36with Exp_Tss;  use Exp_Tss;
37with Exp_Util; use Exp_Util;
38with Fname;    use Fname;
39with Freeze;   use Freeze;
40with Ghost;    use Ghost;
41with Inline;   use Inline;
42with Itypes;   use Itypes;
43with Lib;      use Lib;
44with Lib.Xref; use Lib.Xref;
45with Namet;    use Namet;
46with Nmake;    use Nmake;
47with Nlists;   use Nlists;
48with Opt;      use Opt;
49with Output;   use Output;
50with Par_SCO;  use Par_SCO;
51with Restrict; use Restrict;
52with Rident;   use Rident;
53with Rtsfind;  use Rtsfind;
54with Sem;      use Sem;
55with Sem_Aux;  use Sem_Aux;
56with Sem_Aggr; use Sem_Aggr;
57with Sem_Attr; use Sem_Attr;
58with Sem_Cat;  use Sem_Cat;
59with Sem_Ch4;  use Sem_Ch4;
60with Sem_Ch3;  use Sem_Ch3;
61with Sem_Ch6;  use Sem_Ch6;
62with Sem_Ch8;  use Sem_Ch8;
63with Sem_Ch13; use Sem_Ch13;
64with Sem_Dim;  use Sem_Dim;
65with Sem_Disp; use Sem_Disp;
66with Sem_Dist; use Sem_Dist;
67with Sem_Elim; use Sem_Elim;
68with Sem_Elab; use Sem_Elab;
69with Sem_Eval; use Sem_Eval;
70with Sem_Intr; use Sem_Intr;
71with Sem_Util; use Sem_Util;
72with Targparm; use Targparm;
73with Sem_Type; use Sem_Type;
74with Sem_Warn; use Sem_Warn;
75with Sinfo;    use Sinfo;
76with Sinfo.CN; use Sinfo.CN;
77with Snames;   use Snames;
78with Stand;    use Stand;
79with Stringt;  use Stringt;
80with Style;    use Style;
81with Tbuild;   use Tbuild;
82with Uintp;    use Uintp;
83with Urealp;   use Urealp;
84
85package body Sem_Res is
86
87   -----------------------
88   -- Local Subprograms --
89   -----------------------
90
91   --  Second pass (top-down) type checking and overload resolution procedures
92   --  Typ is the type required by context. These procedures propagate the
93   --  type information recursively to the descendants of N. If the node is not
94   --  overloaded, its Etype is established in the first pass. If overloaded,
95   --  the Resolve routines set the correct type. For arithmetic operators, the
96   --  Etype is the base type of the context.
97
98   --  Note that Resolve_Attribute is separated off in Sem_Attr
99
100   procedure Check_Discriminant_Use (N : Node_Id);
101   --  Enforce the restrictions on the use of discriminants when constraining
102   --  a component of a discriminated type (record or concurrent type).
103
104   procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
105   --  Given a node for an operator associated with type T, check that the
106   --  operator is visible. Operators all of whose operands are universal must
107   --  be checked for visibility during resolution because their type is not
108   --  determinable based on their operands.
109
110   procedure Check_Fully_Declared_Prefix
111     (Typ  : Entity_Id;
112      Pref : Node_Id);
113   --  Check that the type of the prefix of a dereference is not incomplete
114
115   function Check_Infinite_Recursion (N : Node_Id) return Boolean;
116   --  Given a call node, N, which is known to occur immediately within the
117   --  subprogram being called, determines whether it is a detectable case of
118   --  an infinite recursion, and if so, outputs appropriate messages. Returns
119   --  True if an infinite recursion is detected, and False otherwise.
120
121   procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
122   --  If the type of the object being initialized uses the secondary stack
123   --  directly or indirectly, create a transient scope for the call to the
124   --  init proc. This is because we do not create transient scopes for the
125   --  initialization of individual components within the init proc itself.
126   --  Could be optimized away perhaps?
127
128   procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
129   --  N is the node for a logical operator. If the operator is predefined, and
130   --  the root type of the operands is Standard.Boolean, then a check is made
131   --  for restriction No_Direct_Boolean_Operators. This procedure also handles
132   --  the style check for Style_Check_Boolean_And_Or.
133
134   function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
135   --  N is either an indexed component or a selected component. This function
136   --  returns true if the prefix refers to an object that has an address
137   --  clause (the case in which we may want to issue a warning).
138
139   function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
140   --  Determine whether E is an access type declared by an access declaration,
141   --  and not an (anonymous) allocator type.
142
143   function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
144   --  Utility to check whether the entity for an operator is a predefined
145   --  operator, in which case the expression is left as an operator in the
146   --  tree (else it is rewritten into a call). An instance of an intrinsic
147   --  conversion operation may be given an operator name, but is not treated
148   --  like an operator. Note that an operator that is an imported back-end
149   --  builtin has convention Intrinsic, but is expected to be rewritten into
150   --  a call, so such an operator is not treated as predefined by this
151   --  predicate.
152
153   procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
154   --  If a default expression in entry call N depends on the discriminants
155   --  of the task, it must be replaced with a reference to the discriminant
156   --  of the task being called.
157
158   procedure Resolve_Op_Concat_Arg
159     (N       : Node_Id;
160      Arg     : Node_Id;
161      Typ     : Entity_Id;
162      Is_Comp : Boolean);
163   --  Internal procedure for Resolve_Op_Concat to resolve one operand of
164   --  concatenation operator.  The operand is either of the array type or of
165   --  the component type. If the operand is an aggregate, and the component
166   --  type is composite, this is ambiguous if component type has aggregates.
167
168   procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
169   --  Does the first part of the work of Resolve_Op_Concat
170
171   procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
172   --  Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173   --  has been resolved. See Resolve_Op_Concat for details.
174
175   procedure Resolve_Allocator                 (N : Node_Id; Typ : Entity_Id);
176   procedure Resolve_Arithmetic_Op             (N : Node_Id; Typ : Entity_Id);
177   procedure Resolve_Call                      (N : Node_Id; Typ : Entity_Id);
178   procedure Resolve_Case_Expression           (N : Node_Id; Typ : Entity_Id);
179   procedure Resolve_Character_Literal         (N : Node_Id; Typ : Entity_Id);
180   procedure Resolve_Comparison_Op             (N : Node_Id; Typ : Entity_Id);
181   procedure Resolve_Entity_Name               (N : Node_Id; Typ : Entity_Id);
182   procedure Resolve_Equality_Op               (N : Node_Id; Typ : Entity_Id);
183   procedure Resolve_Explicit_Dereference      (N : Node_Id; Typ : Entity_Id);
184   procedure Resolve_Expression_With_Actions   (N : Node_Id; Typ : Entity_Id);
185   procedure Resolve_If_Expression             (N : Node_Id; Typ : Entity_Id);
186   procedure Resolve_Generalized_Indexing      (N : Node_Id; Typ : Entity_Id);
187   procedure Resolve_Indexed_Component         (N : Node_Id; Typ : Entity_Id);
188   procedure Resolve_Integer_Literal           (N : Node_Id; Typ : Entity_Id);
189   procedure Resolve_Logical_Op                (N : Node_Id; Typ : Entity_Id);
190   procedure Resolve_Membership_Op             (N : Node_Id; Typ : Entity_Id);
191   procedure Resolve_Null                      (N : Node_Id; Typ : Entity_Id);
192   procedure Resolve_Operator_Symbol           (N : Node_Id; Typ : Entity_Id);
193   procedure Resolve_Op_Concat                 (N : Node_Id; Typ : Entity_Id);
194   procedure Resolve_Op_Expon                  (N : Node_Id; Typ : Entity_Id);
195   procedure Resolve_Op_Not                    (N : Node_Id; Typ : Entity_Id);
196   procedure Resolve_Qualified_Expression      (N : Node_Id; Typ : Entity_Id);
197   procedure Resolve_Raise_Expression          (N : Node_Id; Typ : Entity_Id);
198   procedure Resolve_Range                     (N : Node_Id; Typ : Entity_Id);
199   procedure Resolve_Real_Literal              (N : Node_Id; Typ : Entity_Id);
200   procedure Resolve_Reference                 (N : Node_Id; Typ : Entity_Id);
201   procedure Resolve_Selected_Component        (N : Node_Id; Typ : Entity_Id);
202   procedure Resolve_Shift                     (N : Node_Id; Typ : Entity_Id);
203   procedure Resolve_Short_Circuit             (N : Node_Id; Typ : Entity_Id);
204   procedure Resolve_Slice                     (N : Node_Id; Typ : Entity_Id);
205   procedure Resolve_String_Literal            (N : Node_Id; Typ : Entity_Id);
206   procedure Resolve_Type_Conversion           (N : Node_Id; Typ : Entity_Id);
207   procedure Resolve_Unary_Op                  (N : Node_Id; Typ : Entity_Id);
208   procedure Resolve_Unchecked_Expression      (N : Node_Id; Typ : Entity_Id);
209   procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
210
211   function Operator_Kind
212     (Op_Name   : Name_Id;
213      Is_Binary : Boolean) return Node_Kind;
214   --  Utility to map the name of an operator into the corresponding Node. Used
215   --  by other node rewriting procedures.
216
217   procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218   --  Resolve actuals of call, and add default expressions for missing ones.
219   --  N is the Node_Id for the subprogram call, and Nam is the entity of the
220   --  called subprogram.
221
222   procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223   --  Called from Resolve_Call, when the prefix denotes an entry or element
224   --  of entry family. Actuals are resolved as for subprograms, and the node
225   --  is rebuilt as an entry call. Also called for protected operations. Typ
226   --  is the context type, which is used when the operation is a protected
227   --  function with no arguments, and the return value is indexed.
228
229   procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230   --  A call to a user-defined intrinsic operator is rewritten as a call to
231   --  the corresponding predefined operator, with suitable conversions. Note
232   --  that this applies only for intrinsic operators that denote predefined
233   --  operators, not ones that are intrinsic imports of back-end builtins.
234
235   procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236   --  Ditto, for arithmetic unary operators
237
238   procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239   --  If an operator node resolves to a call to a user-defined operator,
240   --  rewrite the node as a function call.
241
242   procedure Make_Call_Into_Operator
243     (N     : Node_Id;
244      Typ   : Entity_Id;
245      Op_Id : Entity_Id);
246   --  Inverse transformation: if an operator is given in functional notation,
247   --  then after resolving the node, transform into an operator node, so that
248   --  operands are resolved properly. Recall that predefined operators do not
249   --  have a full signature and special resolution rules apply.
250
251   procedure Rewrite_Renamed_Operator
252     (N   : Node_Id;
253      Op  : Entity_Id;
254      Typ : Entity_Id);
255   --  An operator can rename another, e.g. in an instantiation. In that
256   --  case, the proper operator node must be constructed and resolved.
257
258   procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259   --  The String_Literal_Subtype is built for all strings that are not
260   --  operands of a static concatenation operation. If the argument is not
261   --  a N_String_Literal node, then the call has no effect.
262
263   procedure Set_Slice_Subtype (N : Node_Id);
264   --  Build subtype of array type, with the range specified by the slice
265
266   procedure Simplify_Type_Conversion (N : Node_Id);
267   --  Called after N has been resolved and evaluated, but before range checks
268   --  have been applied. Currently simplifies a combination of floating-point
269   --  to integer conversion and Rounding or Truncation attribute.
270
271   function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272   --  A universal_fixed expression in an universal context is unambiguous if
273   --  there is only one applicable fixed point type. Determining whether there
274   --  is only one requires a search over all visible entities, and happens
275   --  only in very pathological cases (see 6115-006).
276
277   -------------------------
278   -- Ambiguous_Character --
279   -------------------------
280
281   procedure Ambiguous_Character (C : Node_Id) is
282      E : Entity_Id;
283
284   begin
285      if Nkind (C) = N_Character_Literal then
286         Error_Msg_N ("ambiguous character literal", C);
287
288         --  First the ones in Standard
289
290         Error_Msg_N ("\\possible interpretation: Character!", C);
291         Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
292
293         --  Include Wide_Wide_Character in Ada 2005 mode
294
295         if Ada_Version >= Ada_2005 then
296            Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297         end if;
298
299         --  Now any other types that match
300
301         E := Current_Entity (C);
302         while Present (E) loop
303            Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304            E := Homonym (E);
305         end loop;
306      end if;
307   end Ambiguous_Character;
308
309   -------------------------
310   -- Analyze_And_Resolve --
311   -------------------------
312
313   procedure Analyze_And_Resolve (N : Node_Id) is
314   begin
315      Analyze (N);
316      Resolve (N);
317   end Analyze_And_Resolve;
318
319   procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320   begin
321      Analyze (N);
322      Resolve (N, Typ);
323   end Analyze_And_Resolve;
324
325   --  Versions with check(s) suppressed
326
327   procedure Analyze_And_Resolve
328     (N        : Node_Id;
329      Typ      : Entity_Id;
330      Suppress : Check_Id)
331   is
332      Scop : constant Entity_Id := Current_Scope;
333
334   begin
335      if Suppress = All_Checks then
336         declare
337            Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338         begin
339            Scope_Suppress.Suppress := (others => True);
340            Analyze_And_Resolve (N, Typ);
341            Scope_Suppress.Suppress := Sva;
342         end;
343
344      else
345         declare
346            Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347         begin
348            Scope_Suppress.Suppress (Suppress) := True;
349            Analyze_And_Resolve (N, Typ);
350            Scope_Suppress.Suppress (Suppress) := Svg;
351         end;
352      end if;
353
354      if Current_Scope /= Scop
355        and then Scope_Is_Transient
356      then
357         --  This can only happen if a transient scope was created for an inner
358         --  expression, which will be removed upon completion of the analysis
359         --  of an enclosing construct. The transient scope must have the
360         --  suppress status of the enclosing environment, not of this Analyze
361         --  call.
362
363         Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364           Scope_Suppress;
365      end if;
366   end Analyze_And_Resolve;
367
368   procedure Analyze_And_Resolve
369     (N        : Node_Id;
370      Suppress : Check_Id)
371   is
372      Scop : constant Entity_Id := Current_Scope;
373
374   begin
375      if Suppress = All_Checks then
376         declare
377            Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378         begin
379            Scope_Suppress.Suppress := (others => True);
380            Analyze_And_Resolve (N);
381            Scope_Suppress.Suppress := Sva;
382         end;
383
384      else
385         declare
386            Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387         begin
388            Scope_Suppress.Suppress (Suppress) := True;
389            Analyze_And_Resolve (N);
390            Scope_Suppress.Suppress (Suppress) := Svg;
391         end;
392      end if;
393
394      if Current_Scope /= Scop and then Scope_Is_Transient then
395         Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396           Scope_Suppress;
397      end if;
398   end Analyze_And_Resolve;
399
400   ----------------------------
401   -- Check_Discriminant_Use --
402   ----------------------------
403
404   procedure Check_Discriminant_Use (N : Node_Id) is
405      PN   : constant Node_Id   := Parent (N);
406      Disc : constant Entity_Id := Entity (N);
407      P    : Node_Id;
408      D    : Node_Id;
409
410   begin
411      --  Any use in a spec-expression is legal
412
413      if In_Spec_Expression then
414         null;
415
416      elsif Nkind (PN) = N_Range then
417
418         --  Discriminant cannot be used to constrain a scalar type
419
420         P := Parent (PN);
421
422         if Nkind (P) = N_Range_Constraint
423           and then Nkind (Parent (P)) = N_Subtype_Indication
424           and then Nkind (Parent (Parent (P))) = N_Component_Definition
425         then
426            Error_Msg_N ("discriminant cannot constrain scalar type", N);
427
428         elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
429
430            --  The following check catches the unusual case where a
431            --  discriminant appears within an index constraint that is part
432            --  of a larger expression within a constraint on a component,
433            --  e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434            --  check case of record components, and note that a similar check
435            --  should also apply in the case of discriminant constraints
436            --  below. ???
437
438            --  Note that the check for N_Subtype_Declaration below is to
439            --  detect the valid use of discriminants in the constraints of a
440            --  subtype declaration when this subtype declaration appears
441            --  inside the scope of a record type (which is syntactically
442            --  illegal, but which may be created as part of derived type
443            --  processing for records). See Sem_Ch3.Build_Derived_Record_Type
444            --  for more info.
445
446            if Ekind (Current_Scope) = E_Record_Type
447              and then Scope (Disc) = Current_Scope
448              and then not
449                (Nkind (Parent (P)) = N_Subtype_Indication
450                  and then
451                    Nkind_In (Parent (Parent (P)), N_Component_Definition,
452                                                   N_Subtype_Declaration)
453                  and then Paren_Count (N) = 0)
454            then
455               Error_Msg_N
456                 ("discriminant must appear alone in component constraint", N);
457               return;
458            end if;
459
460            --   Detect a common error:
461
462            --   type R (D : Positive := 100) is record
463            --     Name : String (1 .. D);
464            --   end record;
465
466            --  The default value causes an object of type R to be allocated
467            --  with room for Positive'Last characters. The RM does not mandate
468            --  the allocation of the maximum size, but that is what GNAT does
469            --  so we should warn the programmer that there is a problem.
470
471            Check_Large : declare
472               SI : Node_Id;
473               T  : Entity_Id;
474               TB : Node_Id;
475               CB : Entity_Id;
476
477               function Large_Storage_Type (T : Entity_Id) return Boolean;
478               --  Return True if type T has a large enough range that any
479               --  array whose index type covered the whole range of the type
480               --  would likely raise Storage_Error.
481
482               ------------------------
483               -- Large_Storage_Type --
484               ------------------------
485
486               function Large_Storage_Type (T : Entity_Id) return Boolean is
487               begin
488                  --  The type is considered large if its bounds are known at
489                  --  compile time and if it requires at least as many bits as
490                  --  a Positive to store the possible values.
491
492                  return Compile_Time_Known_Value (Type_Low_Bound (T))
493                    and then Compile_Time_Known_Value (Type_High_Bound (T))
494                    and then
495                      Minimum_Size (T, Biased => True) >=
496                        RM_Size (Standard_Positive);
497               end Large_Storage_Type;
498
499            --  Start of processing for Check_Large
500
501            begin
502               --  Check that the Disc has a large range
503
504               if not Large_Storage_Type (Etype (Disc)) then
505                  goto No_Danger;
506               end if;
507
508               --  If the enclosing type is limited, we allocate only the
509               --  default value, not the maximum, and there is no need for
510               --  a warning.
511
512               if Is_Limited_Type (Scope (Disc)) then
513                  goto No_Danger;
514               end if;
515
516               --  Check that it is the high bound
517
518               if N /= High_Bound (PN)
519                 or else No (Discriminant_Default_Value (Disc))
520               then
521                  goto No_Danger;
522               end if;
523
524               --  Check the array allows a large range at this bound. First
525               --  find the array
526
527               SI := Parent (P);
528
529               if Nkind (SI) /= N_Subtype_Indication then
530                  goto No_Danger;
531               end if;
532
533               T := Entity (Subtype_Mark (SI));
534
535               if not Is_Array_Type (T) then
536                  goto No_Danger;
537               end if;
538
539               --  Next, find the dimension
540
541               TB := First_Index (T);
542               CB := First (Constraints (P));
543               while True
544                 and then Present (TB)
545                 and then Present (CB)
546                 and then CB /= PN
547               loop
548                  Next_Index (TB);
549                  Next (CB);
550               end loop;
551
552               if CB /= PN then
553                  goto No_Danger;
554               end if;
555
556               --  Now, check the dimension has a large range
557
558               if not Large_Storage_Type (Etype (TB)) then
559                  goto No_Danger;
560               end if;
561
562               --  Warn about the danger
563
564               Error_Msg_N
565                 ("??creation of & object may raise Storage_Error!",
566                  Scope (Disc));
567
568               <<No_Danger>>
569                  null;
570
571            end Check_Large;
572         end if;
573
574      --  Legal case is in index or discriminant constraint
575
576      elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577                          N_Discriminant_Association)
578      then
579         if Paren_Count (N) > 0 then
580            Error_Msg_N
581              ("discriminant in constraint must appear alone",  N);
582
583         elsif Nkind (N) = N_Expanded_Name
584           and then Comes_From_Source (N)
585         then
586            Error_Msg_N
587              ("discriminant must appear alone as a direct name", N);
588         end if;
589
590         return;
591
592      --  Otherwise, context is an expression. It should not be within (i.e. a
593      --  subexpression of) a constraint for a component.
594
595      else
596         D := PN;
597         P := Parent (PN);
598         while not Nkind_In (P, N_Component_Declaration,
599                                N_Subtype_Indication,
600                                N_Entry_Declaration)
601         loop
602            D := P;
603            P := Parent (P);
604            exit when No (P);
605         end loop;
606
607         --  If the discriminant is used in an expression that is a bound of a
608         --  scalar type, an Itype is created and the bounds are attached to
609         --  its range, not to the original subtype indication. Such use is of
610         --  course a double fault.
611
612         if (Nkind (P) = N_Subtype_Indication
613              and then Nkind_In (Parent (P), N_Component_Definition,
614                                             N_Derived_Type_Definition)
615              and then D = Constraint (P))
616
617           --  The constraint itself may be given by a subtype indication,
618           --  rather than by a more common discrete range.
619
620           or else (Nkind (P) = N_Subtype_Indication
621                      and then
622                    Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623           or else Nkind (P) = N_Entry_Declaration
624           or else Nkind (D) = N_Defining_Identifier
625         then
626            Error_Msg_N
627              ("discriminant in constraint must appear alone",  N);
628         end if;
629      end if;
630   end Check_Discriminant_Use;
631
632   --------------------------------
633   -- Check_For_Visible_Operator --
634   --------------------------------
635
636   procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637   begin
638      if Is_Invisible_Operator (N, T) then
639         Error_Msg_NE -- CODEFIX
640           ("operator for} is not directly visible!", N, First_Subtype (T));
641         Error_Msg_N -- CODEFIX
642           ("use clause would make operation legal!", N);
643      end if;
644   end Check_For_Visible_Operator;
645
646   ----------------------------------
647   --  Check_Fully_Declared_Prefix --
648   ----------------------------------
649
650   procedure Check_Fully_Declared_Prefix
651     (Typ  : Entity_Id;
652      Pref : Node_Id)
653   is
654   begin
655      --  Check that the designated type of the prefix of a dereference is
656      --  not an incomplete type. This cannot be done unconditionally, because
657      --  dereferences of private types are legal in default expressions. This
658      --  case is taken care of in Check_Fully_Declared, called below. There
659      --  are also 2005 cases where it is legal for the prefix to be unfrozen.
660
661      --  This consideration also applies to similar checks for allocators,
662      --  qualified expressions, and type conversions.
663
664      --  An additional exception concerns other per-object expressions that
665      --  are not directly related to component declarations, in particular
666      --  representation pragmas for tasks. These will be per-object
667      --  expressions if they depend on discriminants or some global entity.
668      --  If the task has access discriminants, the designated type may be
669      --  incomplete at the point the expression is resolved. This resolution
670      --  takes place within the body of the initialization procedure, where
671      --  the discriminant is replaced by its discriminal.
672
673      if Is_Entity_Name (Pref)
674        and then Ekind (Entity (Pref)) = E_In_Parameter
675      then
676         null;
677
678      --  Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679      --  are handled by Analyze_Access_Attribute, Analyze_Assignment,
680      --  Analyze_Object_Renaming, and Freeze_Entity.
681
682      elsif Ada_Version >= Ada_2005
683        and then Is_Entity_Name (Pref)
684        and then Is_Access_Type (Etype (Pref))
685        and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686                                                       E_Incomplete_Type
687        and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688      then
689         null;
690      else
691         Check_Fully_Declared (Typ, Parent (Pref));
692      end if;
693   end Check_Fully_Declared_Prefix;
694
695   ------------------------------
696   -- Check_Infinite_Recursion --
697   ------------------------------
698
699   function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700      P : Node_Id;
701      C : Node_Id;
702
703      function Same_Argument_List return Boolean;
704      --  Check whether list of actuals is identical to list of formals of
705      --  called function (which is also the enclosing scope).
706
707      ------------------------
708      -- Same_Argument_List --
709      ------------------------
710
711      function Same_Argument_List return Boolean is
712         A    : Node_Id;
713         F    : Entity_Id;
714         Subp : Entity_Id;
715
716      begin
717         if not Is_Entity_Name (Name (N)) then
718            return False;
719         else
720            Subp := Entity (Name (N));
721         end if;
722
723         F := First_Formal (Subp);
724         A := First_Actual (N);
725         while Present (F) and then Present (A) loop
726            if not Is_Entity_Name (A) or else Entity (A) /= F then
727               return False;
728            end if;
729
730            Next_Actual (A);
731            Next_Formal (F);
732         end loop;
733
734         return True;
735      end Same_Argument_List;
736
737   --  Start of processing for Check_Infinite_Recursion
738
739   begin
740      --  Special case, if this is a procedure call and is a call to the
741      --  current procedure with the same argument list, then this is for
742      --  sure an infinite recursion and we insert a call to raise SE.
743
744      if Is_List_Member (N)
745        and then List_Length (List_Containing (N)) = 1
746        and then Same_Argument_List
747      then
748         declare
749            P : constant Node_Id := Parent (N);
750         begin
751            if Nkind (P) = N_Handled_Sequence_Of_Statements
752              and then Nkind (Parent (P)) = N_Subprogram_Body
753              and then Is_Empty_List (Declarations (Parent (P)))
754            then
755               Error_Msg_Warn := SPARK_Mode /= On;
756               Error_Msg_N ("!infinite recursion<<", N);
757               Error_Msg_N ("\!Storage_Error [<<", N);
758               Insert_Action (N,
759                 Make_Raise_Storage_Error (Sloc (N),
760                   Reason => SE_Infinite_Recursion));
761               return True;
762            end if;
763         end;
764      end if;
765
766      --  If not that special case, search up tree, quitting if we reach a
767      --  construct (e.g. a conditional) that tells us that this is not a
768      --  case for an infinite recursion warning.
769
770      C := N;
771      loop
772         P := Parent (C);
773
774         --  If no parent, then we were not inside a subprogram, this can for
775         --  example happen when processing certain pragmas in a spec. Just
776         --  return False in this case.
777
778         if No (P) then
779            return False;
780         end if;
781
782         --  Done if we get to subprogram body, this is definitely an infinite
783         --  recursion case if we did not find anything to stop us.
784
785         exit when Nkind (P) = N_Subprogram_Body;
786
787         --  If appearing in conditional, result is false
788
789         if Nkind_In (P, N_Or_Else,
790                         N_And_Then,
791                         N_Case_Expression,
792                         N_Case_Statement,
793                         N_If_Expression,
794                         N_If_Statement)
795         then
796            return False;
797
798         elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799           and then C /= First (Statements (P))
800         then
801            --  If the call is the expression of a return statement and the
802            --  actuals are identical to the formals, it's worth a warning.
803            --  However, we skip this if there is an immediately preceding
804            --  raise statement, since the call is never executed.
805
806            --  Furthermore, this corresponds to a common idiom:
807
808            --    function F (L : Thing) return Boolean is
809            --    begin
810            --       raise Program_Error;
811            --       return F (L);
812            --    end F;
813
814            --  for generating a stub function
815
816            if Nkind (Parent (N)) = N_Simple_Return_Statement
817              and then Same_Argument_List
818            then
819               exit when not Is_List_Member (Parent (N));
820
821               --  OK, return statement is in a statement list, look for raise
822
823               declare
824                  Nod : Node_Id;
825
826               begin
827                  --  Skip past N_Freeze_Entity nodes generated by expansion
828
829                  Nod := Prev (Parent (N));
830                  while Present (Nod)
831                    and then Nkind (Nod) = N_Freeze_Entity
832                  loop
833                     Prev (Nod);
834                  end loop;
835
836                  --  If no raise statement, give warning. We look at the
837                  --  original node, because in the case of "raise ... with
838                  --  ...", the node has been transformed into a call.
839
840                  exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841                    and then
842                      (Nkind (Nod) not in N_Raise_xxx_Error
843                        or else Present (Condition (Nod)));
844               end;
845            end if;
846
847            return False;
848
849         else
850            C := P;
851         end if;
852      end loop;
853
854      Error_Msg_Warn := SPARK_Mode /= On;
855      Error_Msg_N ("!possible infinite recursion<<", N);
856      Error_Msg_N ("\!??Storage_Error ]<<", N);
857
858      return True;
859   end Check_Infinite_Recursion;
860
861   -------------------------------
862   -- Check_Initialization_Call --
863   -------------------------------
864
865   procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866      Typ : constant Entity_Id := Etype (First_Formal (Nam));
867
868      function Uses_SS (T : Entity_Id) return Boolean;
869      --  Check whether the creation of an object of the type will involve
870      --  use of the secondary stack. If T is a record type, this is true
871      --  if the expression for some component uses the secondary stack, e.g.
872      --  through a call to a function that returns an unconstrained value.
873      --  False if T is controlled, because cleanups occur elsewhere.
874
875      -------------
876      -- Uses_SS --
877      -------------
878
879      function Uses_SS (T : Entity_Id) return Boolean is
880         Comp      : Entity_Id;
881         Expr      : Node_Id;
882         Full_Type : Entity_Id := Underlying_Type (T);
883
884      begin
885         --  Normally we want to use the underlying type, but if it's not set
886         --  then continue with T.
887
888         if not Present (Full_Type) then
889            Full_Type := T;
890         end if;
891
892         if Is_Controlled (Full_Type) then
893            return False;
894
895         elsif Is_Array_Type (Full_Type) then
896            return Uses_SS (Component_Type (Full_Type));
897
898         elsif Is_Record_Type (Full_Type) then
899            Comp := First_Component (Full_Type);
900            while Present (Comp) loop
901               if Ekind (Comp) = E_Component
902                 and then Nkind (Parent (Comp)) = N_Component_Declaration
903               then
904                  --  The expression for a dynamic component may be rewritten
905                  --  as a dereference, so retrieve original node.
906
907                  Expr := Original_Node (Expression (Parent (Comp)));
908
909                  --  Return True if the expression is a call to a function
910                  --  (including an attribute function such as Image, or a
911                  --  user-defined operator) with a result that requires a
912                  --  transient scope.
913
914                  if (Nkind (Expr) = N_Function_Call
915                       or else Nkind (Expr) in N_Op
916                       or else (Nkind (Expr) = N_Attribute_Reference
917                                 and then Present (Expressions (Expr))))
918                    and then Requires_Transient_Scope (Etype (Expr))
919                  then
920                     return True;
921
922                  elsif Uses_SS (Etype (Comp)) then
923                     return True;
924                  end if;
925               end if;
926
927               Next_Component (Comp);
928            end loop;
929
930            return False;
931
932         else
933            return False;
934         end if;
935      end Uses_SS;
936
937   --  Start of processing for Check_Initialization_Call
938
939   begin
940      --  Establish a transient scope if the type needs it
941
942      if Uses_SS (Typ) then
943         Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944      end if;
945   end Check_Initialization_Call;
946
947   ---------------------------------------
948   -- Check_No_Direct_Boolean_Operators --
949   ---------------------------------------
950
951   procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952   begin
953      if Scope (Entity (N)) = Standard_Standard
954        and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955      then
956         --  Restriction only applies to original source code
957
958         if Comes_From_Source (N) then
959            Check_Restriction (No_Direct_Boolean_Operators, N);
960         end if;
961      end if;
962
963      --  Do style check (but skip if in instance, error is on template)
964
965      if Style_Check then
966         if not In_Instance then
967            Check_Boolean_Operator (N);
968         end if;
969      end if;
970   end Check_No_Direct_Boolean_Operators;
971
972   ------------------------------
973   -- Check_Parameterless_Call --
974   ------------------------------
975
976   procedure Check_Parameterless_Call (N : Node_Id) is
977      Nam : Node_Id;
978
979      function Prefix_Is_Access_Subp return Boolean;
980      --  If the prefix is of an access_to_subprogram type, the node must be
981      --  rewritten as a call. Ditto if the prefix is overloaded and all its
982      --  interpretations are access to subprograms.
983
984      ---------------------------
985      -- Prefix_Is_Access_Subp --
986      ---------------------------
987
988      function Prefix_Is_Access_Subp return Boolean is
989         I   : Interp_Index;
990         It  : Interp;
991
992      begin
993         --  If the context is an attribute reference that can apply to
994         --  functions, this is never a parameterless call (RM 4.1.4(6)).
995
996         if Nkind (Parent (N)) = N_Attribute_Reference
997            and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998                                                          Name_Code_Address,
999                                                          Name_Access)
1000         then
1001            return False;
1002         end if;
1003
1004         if not Is_Overloaded (N) then
1005            return
1006              Ekind (Etype (N)) = E_Subprogram_Type
1007                and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008         else
1009            Get_First_Interp (N, I, It);
1010            while Present (It.Typ) loop
1011               if Ekind (It.Typ) /= E_Subprogram_Type
1012                 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013               then
1014                  return False;
1015               end if;
1016
1017               Get_Next_Interp (I, It);
1018            end loop;
1019
1020            return True;
1021         end if;
1022      end Prefix_Is_Access_Subp;
1023
1024   --  Start of processing for Check_Parameterless_Call
1025
1026   begin
1027      --  Defend against junk stuff if errors already detected
1028
1029      if Total_Errors_Detected /= 0 then
1030         if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031            return;
1032         elsif Nkind (N) in N_Has_Chars
1033           and then Chars (N) in Error_Name_Or_No_Name
1034         then
1035            return;
1036         end if;
1037
1038         Require_Entity (N);
1039      end if;
1040
1041      --  If the context expects a value, and the name is a procedure, this is
1042      --  most likely a missing 'Access. Don't try to resolve the parameterless
1043      --  call, error will be caught when the outer call is analyzed.
1044
1045      if Is_Entity_Name (N)
1046        and then Ekind (Entity (N)) = E_Procedure
1047        and then not Is_Overloaded (N)
1048        and then
1049         Nkind_In (Parent (N), N_Parameter_Association,
1050                               N_Function_Call,
1051                               N_Procedure_Call_Statement)
1052      then
1053         return;
1054      end if;
1055
1056      --  Rewrite as call if overloadable entity that is (or could be, in the
1057      --  overloaded case) a function call. If we know for sure that the entity
1058      --  is an enumeration literal, we do not rewrite it.
1059
1060      --  If the entity is the name of an operator, it cannot be a call because
1061      --  operators cannot have default parameters. In this case, this must be
1062      --  a string whose contents coincide with an operator name. Set the kind
1063      --  of the node appropriately.
1064
1065      if (Is_Entity_Name (N)
1066            and then Nkind (N) /= N_Operator_Symbol
1067            and then Is_Overloadable (Entity (N))
1068            and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069                       or else Is_Overloaded (N)))
1070
1071      --  Rewrite as call if it is an explicit dereference of an expression of
1072      --  a subprogram access type, and the subprogram type is not that of a
1073      --  procedure or entry.
1074
1075      or else
1076        (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1077
1078      --  Rewrite as call if it is a selected component which is a function,
1079      --  this is the case of a call to a protected function (which may be
1080      --  overloaded with other protected operations).
1081
1082      or else
1083        (Nkind (N) = N_Selected_Component
1084          and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085                     or else
1086                       (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087                                                              E_Procedure)
1088                         and then Is_Overloaded (Selector_Name (N)))))
1089
1090      --  If one of the above three conditions is met, rewrite as call. Apply
1091      --  the rewriting only once.
1092
1093      then
1094         if Nkind (Parent (N)) /= N_Function_Call
1095           or else N /= Name (Parent (N))
1096         then
1097
1098            --  This may be a prefixed call that was not fully analyzed, e.g.
1099            --  an actual in an instance.
1100
1101            if Ada_Version >= Ada_2005
1102              and then Nkind (N) = N_Selected_Component
1103              and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104            then
1105               Analyze_Selected_Component (N);
1106
1107               if Nkind (N) /= N_Selected_Component then
1108                  return;
1109               end if;
1110            end if;
1111
1112            --  The node is the name of the parameterless call. Preserve its
1113            --  descendants, which may be complex expressions.
1114
1115            Nam := Relocate_Node (N);
1116
1117            --  If overloaded, overload set belongs to new copy
1118
1119            Save_Interps (N, Nam);
1120
1121            --  Change node to parameterless function call (note that the
1122            --  Parameter_Associations associations field is left set to Empty,
1123            --  its normal default value since there are no parameters)
1124
1125            Change_Node (N, N_Function_Call);
1126            Set_Name (N, Nam);
1127            Set_Sloc (N, Sloc (Nam));
1128            Analyze_Call (N);
1129         end if;
1130
1131      elsif Nkind (N) = N_Parameter_Association then
1132         Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1133
1134      elsif Nkind (N) = N_Operator_Symbol then
1135         Change_Operator_Symbol_To_String_Literal (N);
1136         Set_Is_Overloaded (N, False);
1137         Set_Etype (N, Any_String);
1138      end if;
1139   end Check_Parameterless_Call;
1140
1141   --------------------------------
1142   -- Is_Atomic_Ref_With_Address --
1143   --------------------------------
1144
1145   function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146      Pref : constant Node_Id := Prefix (N);
1147
1148   begin
1149      if not Is_Entity_Name (Pref) then
1150         return False;
1151
1152      else
1153         declare
1154            Pent : constant Entity_Id := Entity (Pref);
1155            Ptyp : constant Entity_Id := Etype (Pent);
1156         begin
1157            return not Is_Access_Type (Ptyp)
1158              and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159              and then Present (Address_Clause (Pent));
1160         end;
1161      end if;
1162   end Is_Atomic_Ref_With_Address;
1163
1164   -----------------------------
1165   -- Is_Definite_Access_Type --
1166   -----------------------------
1167
1168   function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169      Btyp : constant Entity_Id := Base_Type (E);
1170   begin
1171      return Ekind (Btyp) = E_Access_Type
1172        or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173                  and then Comes_From_Source (Btyp));
1174   end Is_Definite_Access_Type;
1175
1176   ----------------------
1177   -- Is_Predefined_Op --
1178   ----------------------
1179
1180   function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181   begin
1182      --  Predefined operators are intrinsic subprograms
1183
1184      if not Is_Intrinsic_Subprogram (Nam) then
1185         return False;
1186      end if;
1187
1188      --  A call to a back-end builtin is never a predefined operator
1189
1190      if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191         return False;
1192      end if;
1193
1194      return not Is_Generic_Instance (Nam)
1195        and then Chars (Nam) in Any_Operator_Name
1196        and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197   end Is_Predefined_Op;
1198
1199   -----------------------------
1200   -- Make_Call_Into_Operator --
1201   -----------------------------
1202
1203   procedure Make_Call_Into_Operator
1204     (N     : Node_Id;
1205      Typ   : Entity_Id;
1206      Op_Id : Entity_Id)
1207   is
1208      Op_Name   : constant Name_Id := Chars (Op_Id);
1209      Act1      : Node_Id := First_Actual (N);
1210      Act2      : Node_Id := Next_Actual (Act1);
1211      Error     : Boolean := False;
1212      Func      : constant Entity_Id := Entity (Name (N));
1213      Is_Binary : constant Boolean   := Present (Act2);
1214      Op_Node   : Node_Id;
1215      Opnd_Type : Entity_Id;
1216      Orig_Type : Entity_Id := Empty;
1217      Pack      : Entity_Id;
1218
1219      type Kind_Test is access function (E : Entity_Id) return Boolean;
1220
1221      function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222      --  If the operand is not universal, and the operator is given by an
1223      --  expanded name, verify that the operand has an interpretation with a
1224      --  type defined in the given scope of the operator.
1225
1226      function Type_In_P (Test : Kind_Test) return Entity_Id;
1227      --  Find a type of the given class in package Pack that contains the
1228      --  operator.
1229
1230      ---------------------------
1231      -- Operand_Type_In_Scope --
1232      ---------------------------
1233
1234      function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235         Nod : constant Node_Id := Right_Opnd (Op_Node);
1236         I   : Interp_Index;
1237         It  : Interp;
1238
1239      begin
1240         if not Is_Overloaded (Nod) then
1241            return Scope (Base_Type (Etype (Nod))) = S;
1242
1243         else
1244            Get_First_Interp (Nod, I, It);
1245            while Present (It.Typ) loop
1246               if Scope (Base_Type (It.Typ)) = S then
1247                  return True;
1248               end if;
1249
1250               Get_Next_Interp (I, It);
1251            end loop;
1252
1253            return False;
1254         end if;
1255      end Operand_Type_In_Scope;
1256
1257      ---------------
1258      -- Type_In_P --
1259      ---------------
1260
1261      function Type_In_P (Test : Kind_Test) return Entity_Id is
1262         E : Entity_Id;
1263
1264         function In_Decl return Boolean;
1265         --  Verify that node is not part of the type declaration for the
1266         --  candidate type, which would otherwise be invisible.
1267
1268         -------------
1269         -- In_Decl --
1270         -------------
1271
1272         function In_Decl return Boolean is
1273            Decl_Node : constant Node_Id := Parent (E);
1274            N2        : Node_Id;
1275
1276         begin
1277            N2 := N;
1278
1279            if Etype (E) = Any_Type then
1280               return True;
1281
1282            elsif No (Decl_Node) then
1283               return False;
1284
1285            else
1286               while Present (N2)
1287                 and then Nkind (N2) /= N_Compilation_Unit
1288               loop
1289                  if N2 = Decl_Node then
1290                     return True;
1291                  else
1292                     N2 := Parent (N2);
1293                  end if;
1294               end loop;
1295
1296               return False;
1297            end if;
1298         end In_Decl;
1299
1300      --  Start of processing for Type_In_P
1301
1302      begin
1303         --  If the context type is declared in the prefix package, this is the
1304         --  desired base type.
1305
1306         if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307            return Base_Type (Typ);
1308
1309         else
1310            E := First_Entity (Pack);
1311            while Present (E) loop
1312               if Test (E) and then not In_Decl then
1313                  return E;
1314               end if;
1315
1316               Next_Entity (E);
1317            end loop;
1318
1319            return Empty;
1320         end if;
1321      end Type_In_P;
1322
1323   --  Start of processing for Make_Call_Into_Operator
1324
1325   begin
1326      Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1327
1328      --  Binary operator
1329
1330      if Is_Binary then
1331         Set_Left_Opnd  (Op_Node, Relocate_Node (Act1));
1332         Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1333         Save_Interps (Act1, Left_Opnd  (Op_Node));
1334         Save_Interps (Act2, Right_Opnd (Op_Node));
1335         Act1 := Left_Opnd (Op_Node);
1336         Act2 := Right_Opnd (Op_Node);
1337
1338      --  Unary operator
1339
1340      else
1341         Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1342         Save_Interps (Act1, Right_Opnd (Op_Node));
1343         Act1 := Right_Opnd (Op_Node);
1344      end if;
1345
1346      --  If the operator is denoted by an expanded name, and the prefix is
1347      --  not Standard, but the operator is a predefined one whose scope is
1348      --  Standard, then this is an implicit_operator, inserted as an
1349      --  interpretation by the procedure of the same name. This procedure
1350      --  overestimates the presence of implicit operators, because it does
1351      --  not examine the type of the operands. Verify now that the operand
1352      --  type appears in the given scope. If right operand is universal,
1353      --  check the other operand. In the case of concatenation, either
1354      --  argument can be the component type, so check the type of the result.
1355      --  If both arguments are literals, look for a type of the right kind
1356      --  defined in the given scope. This elaborate nonsense is brought to
1357      --  you courtesy of b33302a. The type itself must be frozen, so we must
1358      --  find the type of the proper class in the given scope.
1359
1360      --  A final wrinkle is the multiplication operator for fixed point types,
1361      --  which is defined in Standard only, and not in the scope of the
1362      --  fixed point type itself.
1363
1364      if Nkind (Name (N)) = N_Expanded_Name then
1365         Pack := Entity (Prefix (Name (N)));
1366
1367         --  If this is a package renaming, get renamed entity, which will be
1368         --  the scope of the operands if operaton is type-correct.
1369
1370         if Present (Renamed_Entity (Pack)) then
1371            Pack := Renamed_Entity (Pack);
1372         end if;
1373
1374         --  If the entity being called is defined in the given package, it is
1375         --  a renaming of a predefined operator, and known to be legal.
1376
1377         if Scope (Entity (Name (N))) = Pack
1378            and then Pack /= Standard_Standard
1379         then
1380            null;
1381
1382         --  Visibility does not need to be checked in an instance: if the
1383         --  operator was not visible in the generic it has been diagnosed
1384         --  already, else there is an implicit copy of it in the instance.
1385
1386         elsif In_Instance then
1387            null;
1388
1389         elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1390           and then Is_Fixed_Point_Type (Etype (Left_Opnd  (Op_Node)))
1391           and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1392         then
1393            if Pack /= Standard_Standard then
1394               Error := True;
1395            end if;
1396
1397         --  Ada 2005 AI-420: Predefined equality on Universal_Access is
1398         --  available.
1399
1400         elsif Ada_Version >= Ada_2005
1401           and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1402           and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1403         then
1404            null;
1405
1406         else
1407            Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1408
1409            if Op_Name = Name_Op_Concat then
1410               Opnd_Type := Base_Type (Typ);
1411
1412            elsif (Scope (Opnd_Type) = Standard_Standard
1413                     and then Is_Binary)
1414              or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1415                        and then Is_Binary
1416                        and then not Comes_From_Source (Opnd_Type))
1417            then
1418               Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1419            end if;
1420
1421            if Scope (Opnd_Type) = Standard_Standard then
1422
1423               --  Verify that the scope contains a type that corresponds to
1424               --  the given literal. Optimize the case where Pack is Standard.
1425
1426               if Pack /= Standard_Standard then
1427
1428                  if Opnd_Type = Universal_Integer then
1429                     Orig_Type := Type_In_P (Is_Integer_Type'Access);
1430
1431                  elsif Opnd_Type = Universal_Real then
1432                     Orig_Type := Type_In_P (Is_Real_Type'Access);
1433
1434                  elsif Opnd_Type = Any_String then
1435                     Orig_Type := Type_In_P (Is_String_Type'Access);
1436
1437                  elsif Opnd_Type = Any_Access then
1438                     Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1439
1440                  elsif Opnd_Type = Any_Composite then
1441                     Orig_Type := Type_In_P (Is_Composite_Type'Access);
1442
1443                     if Present (Orig_Type) then
1444                        if Has_Private_Component (Orig_Type) then
1445                           Orig_Type := Empty;
1446                        else
1447                           Set_Etype (Act1, Orig_Type);
1448
1449                           if Is_Binary then
1450                              Set_Etype (Act2, Orig_Type);
1451                           end if;
1452                        end if;
1453                     end if;
1454
1455                  else
1456                     Orig_Type := Empty;
1457                  end if;
1458
1459                  Error := No (Orig_Type);
1460               end if;
1461
1462            elsif Ekind (Opnd_Type) = E_Allocator_Type
1463               and then No (Type_In_P (Is_Definite_Access_Type'Access))
1464            then
1465               Error := True;
1466
1467            --  If the type is defined elsewhere, and the operator is not
1468            --  defined in the given scope (by a renaming declaration, e.g.)
1469            --  then this is an error as well. If an extension of System is
1470            --  present, and the type may be defined there, Pack must be
1471            --  System itself.
1472
1473            elsif Scope (Opnd_Type) /= Pack
1474              and then Scope (Op_Id) /= Pack
1475              and then (No (System_Aux_Id)
1476                         or else Scope (Opnd_Type) /= System_Aux_Id
1477                         or else Pack /= Scope (System_Aux_Id))
1478            then
1479               if not Is_Overloaded (Right_Opnd (Op_Node)) then
1480                  Error := True;
1481               else
1482                  Error := not Operand_Type_In_Scope (Pack);
1483               end if;
1484
1485            elsif Pack = Standard_Standard
1486              and then not Operand_Type_In_Scope (Standard_Standard)
1487            then
1488               Error := True;
1489            end if;
1490         end if;
1491
1492         if Error then
1493            Error_Msg_Node_2 := Pack;
1494            Error_Msg_NE
1495              ("& not declared in&", N, Selector_Name (Name (N)));
1496            Set_Etype (N, Any_Type);
1497            return;
1498
1499         --  Detect a mismatch between the context type and the result type
1500         --  in the named package, which is otherwise not detected if the
1501         --  operands are universal. Check is only needed if source entity is
1502         --  an operator, not a function that renames an operator.
1503
1504         elsif Nkind (Parent (N)) /= N_Type_Conversion
1505           and then Ekind (Entity (Name (N))) = E_Operator
1506           and then Is_Numeric_Type (Typ)
1507           and then not Is_Universal_Numeric_Type (Typ)
1508           and then Scope (Base_Type (Typ)) /= Pack
1509           and then not In_Instance
1510         then
1511            if Is_Fixed_Point_Type (Typ)
1512              and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1513            then
1514               --  Already checked above
1515
1516               null;
1517
1518            --  Operator may be defined in an extension of System
1519
1520            elsif Present (System_Aux_Id)
1521              and then Scope (Opnd_Type) = System_Aux_Id
1522            then
1523               null;
1524
1525            else
1526               --  Could we use Wrong_Type here??? (this would require setting
1527               --  Etype (N) to the actual type found where Typ was expected).
1528
1529               Error_Msg_NE ("expect }", N, Typ);
1530            end if;
1531         end if;
1532      end if;
1533
1534      Set_Chars  (Op_Node, Op_Name);
1535
1536      if not Is_Private_Type (Etype (N)) then
1537         Set_Etype (Op_Node, Base_Type (Etype (N)));
1538      else
1539         Set_Etype (Op_Node, Etype (N));
1540      end if;
1541
1542      --  If this is a call to a function that renames a predefined equality,
1543      --  the renaming declaration provides a type that must be used to
1544      --  resolve the operands. This must be done now because resolution of
1545      --  the equality node will not resolve any remaining ambiguity, and it
1546      --  assumes that the first operand is not overloaded.
1547
1548      if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1549        and then Ekind (Func) = E_Function
1550        and then Is_Overloaded (Act1)
1551      then
1552         Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1553         Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1554      end if;
1555
1556      Set_Entity (Op_Node, Op_Id);
1557      Generate_Reference (Op_Id, N, ' ');
1558
1559      --  Do rewrite setting Comes_From_Source on the result if the original
1560      --  call came from source. Although it is not strictly the case that the
1561      --  operator as such comes from the source, logically it corresponds
1562      --  exactly to the function call in the source, so it should be marked
1563      --  this way (e.g. to make sure that validity checks work fine).
1564
1565      declare
1566         CS : constant Boolean := Comes_From_Source (N);
1567      begin
1568         Rewrite (N, Op_Node);
1569         Set_Comes_From_Source (N, CS);
1570      end;
1571
1572      --  If this is an arithmetic operator and the result type is private,
1573      --  the operands and the result must be wrapped in conversion to
1574      --  expose the underlying numeric type and expand the proper checks,
1575      --  e.g. on division.
1576
1577      if Is_Private_Type (Typ) then
1578         case Nkind (N) is
1579            when N_Op_Add   | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1580                 N_Op_Expon | N_Op_Mod      | N_Op_Rem      =>
1581               Resolve_Intrinsic_Operator (N, Typ);
1582
1583            when N_Op_Plus  | N_Op_Minus    | N_Op_Abs      =>
1584               Resolve_Intrinsic_Unary_Operator (N, Typ);
1585
1586            when others =>
1587               Resolve (N, Typ);
1588         end case;
1589      else
1590         Resolve (N, Typ);
1591      end if;
1592
1593      --  If in ASIS_Mode, propagate operand types to original actuals of
1594      --  function call, which would otherwise not be fully resolved. If
1595      --  the call has already been constant-folded, nothing to do. We
1596      --  relocate the operand nodes rather than copy them, to preserve
1597      --  original_node pointers, given that the operands themselves may
1598      --  have been rewritten. If the call was itself a rewriting of an
1599      --  operator node, nothing to do.
1600
1601      if ASIS_Mode
1602        and then Nkind (N) in N_Op
1603        and then Nkind (Original_Node (N)) = N_Function_Call
1604      then
1605         declare
1606            L : Node_Id;
1607            R : constant Node_Id := Right_Opnd (N);
1608
1609            Old_First : constant Node_Id :=
1610                          First (Parameter_Associations (Original_Node (N)));
1611            Old_Sec   : Node_Id;
1612
1613         begin
1614            if Is_Binary then
1615               L       := Left_Opnd (N);
1616               Old_Sec := Next (Old_First);
1617
1618               --  If the original call has named associations, replace the
1619               --  explicit actual parameter in the association with the proper
1620               --  resolved operand.
1621
1622               if Nkind (Old_First) = N_Parameter_Association then
1623                  if Chars (Selector_Name (Old_First)) =
1624                     Chars (First_Entity (Op_Id))
1625                  then
1626                     Rewrite (Explicit_Actual_Parameter (Old_First),
1627                       Relocate_Node (L));
1628                  else
1629                     Rewrite (Explicit_Actual_Parameter (Old_First),
1630                       Relocate_Node (R));
1631                  end if;
1632
1633               else
1634                  Rewrite (Old_First, Relocate_Node (L));
1635               end if;
1636
1637               if Nkind (Old_Sec) = N_Parameter_Association then
1638                  if Chars (Selector_Name (Old_Sec)) =
1639                     Chars (First_Entity (Op_Id))
1640                  then
1641                     Rewrite (Explicit_Actual_Parameter (Old_Sec),
1642                       Relocate_Node (L));
1643                  else
1644                     Rewrite (Explicit_Actual_Parameter (Old_Sec),
1645                       Relocate_Node (R));
1646                  end if;
1647
1648               else
1649                  Rewrite (Old_Sec, Relocate_Node (R));
1650               end if;
1651
1652            else
1653               if Nkind (Old_First) = N_Parameter_Association then
1654                  Rewrite (Explicit_Actual_Parameter (Old_First),
1655                    Relocate_Node (R));
1656               else
1657                  Rewrite (Old_First, Relocate_Node (R));
1658               end if;
1659            end if;
1660         end;
1661
1662         Set_Parent (Original_Node (N), Parent (N));
1663      end if;
1664   end Make_Call_Into_Operator;
1665
1666   -------------------
1667   -- Operator_Kind --
1668   -------------------
1669
1670   function Operator_Kind
1671     (Op_Name   : Name_Id;
1672      Is_Binary : Boolean) return Node_Kind
1673   is
1674      Kind : Node_Kind;
1675
1676   begin
1677      --  Use CASE statement or array???
1678
1679      if Is_Binary then
1680         if    Op_Name = Name_Op_And      then
1681            Kind := N_Op_And;
1682         elsif Op_Name = Name_Op_Or       then
1683            Kind := N_Op_Or;
1684         elsif Op_Name = Name_Op_Xor      then
1685            Kind := N_Op_Xor;
1686         elsif Op_Name = Name_Op_Eq       then
1687            Kind := N_Op_Eq;
1688         elsif Op_Name = Name_Op_Ne       then
1689            Kind := N_Op_Ne;
1690         elsif Op_Name = Name_Op_Lt       then
1691            Kind := N_Op_Lt;
1692         elsif Op_Name = Name_Op_Le       then
1693            Kind := N_Op_Le;
1694         elsif Op_Name = Name_Op_Gt       then
1695            Kind := N_Op_Gt;
1696         elsif Op_Name = Name_Op_Ge       then
1697            Kind := N_Op_Ge;
1698         elsif Op_Name = Name_Op_Add      then
1699            Kind := N_Op_Add;
1700         elsif Op_Name = Name_Op_Subtract then
1701            Kind := N_Op_Subtract;
1702         elsif Op_Name = Name_Op_Concat   then
1703            Kind := N_Op_Concat;
1704         elsif Op_Name = Name_Op_Multiply then
1705            Kind := N_Op_Multiply;
1706         elsif Op_Name = Name_Op_Divide   then
1707            Kind := N_Op_Divide;
1708         elsif Op_Name = Name_Op_Mod      then
1709            Kind := N_Op_Mod;
1710         elsif Op_Name = Name_Op_Rem      then
1711            Kind := N_Op_Rem;
1712         elsif Op_Name = Name_Op_Expon    then
1713            Kind := N_Op_Expon;
1714         else
1715            raise Program_Error;
1716         end if;
1717
1718      --  Unary operators
1719
1720      else
1721         if    Op_Name = Name_Op_Add      then
1722            Kind := N_Op_Plus;
1723         elsif Op_Name = Name_Op_Subtract then
1724            Kind := N_Op_Minus;
1725         elsif Op_Name = Name_Op_Abs      then
1726            Kind := N_Op_Abs;
1727         elsif Op_Name = Name_Op_Not      then
1728            Kind := N_Op_Not;
1729         else
1730            raise Program_Error;
1731         end if;
1732      end if;
1733
1734      return Kind;
1735   end Operator_Kind;
1736
1737   ----------------------------
1738   -- Preanalyze_And_Resolve --
1739   ----------------------------
1740
1741   procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1742      Save_Full_Analysis : constant Boolean := Full_Analysis;
1743
1744   begin
1745      Full_Analysis := False;
1746      Expander_Mode_Save_And_Set (False);
1747
1748      --  Normally, we suppress all checks for this preanalysis. There is no
1749      --  point in processing them now, since they will be applied properly
1750      --  and in the proper location when the default expressions reanalyzed
1751      --  and reexpanded later on. We will also have more information at that
1752      --  point for possible suppression of individual checks.
1753
1754      --  However, in SPARK mode, most expansion is suppressed, and this
1755      --  later reanalysis and reexpansion may not occur. SPARK mode does
1756      --  require the setting of checking flags for proof purposes, so we
1757      --  do the SPARK preanalysis without suppressing checks.
1758
1759      --  This special handling for SPARK mode is required for example in the
1760      --  case of Ada 2012 constructs such as quantified expressions, which are
1761      --  expanded in two separate steps.
1762
1763      if GNATprove_Mode then
1764         Analyze_And_Resolve (N, T);
1765      else
1766         Analyze_And_Resolve (N, T, Suppress => All_Checks);
1767      end if;
1768
1769      Expander_Mode_Restore;
1770      Full_Analysis := Save_Full_Analysis;
1771   end Preanalyze_And_Resolve;
1772
1773   --  Version without context type
1774
1775   procedure Preanalyze_And_Resolve (N : Node_Id) is
1776      Save_Full_Analysis : constant Boolean := Full_Analysis;
1777
1778   begin
1779      Full_Analysis := False;
1780      Expander_Mode_Save_And_Set (False);
1781
1782      Analyze (N);
1783      Resolve (N, Etype (N), Suppress => All_Checks);
1784
1785      Expander_Mode_Restore;
1786      Full_Analysis := Save_Full_Analysis;
1787   end Preanalyze_And_Resolve;
1788
1789   ----------------------------------
1790   -- Replace_Actual_Discriminants --
1791   ----------------------------------
1792
1793   procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1794      Loc : constant Source_Ptr := Sloc (N);
1795      Tsk : Node_Id := Empty;
1796
1797      function Process_Discr (Nod : Node_Id) return Traverse_Result;
1798      --  Comment needed???
1799
1800      -------------------
1801      -- Process_Discr --
1802      -------------------
1803
1804      function Process_Discr (Nod : Node_Id) return Traverse_Result is
1805         Ent : Entity_Id;
1806
1807      begin
1808         if Nkind (Nod) = N_Identifier then
1809            Ent := Entity (Nod);
1810
1811            if Present (Ent)
1812              and then Ekind (Ent) = E_Discriminant
1813            then
1814               Rewrite (Nod,
1815                 Make_Selected_Component (Loc,
1816                   Prefix        => New_Copy_Tree (Tsk, New_Sloc => Loc),
1817                   Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1818
1819               Set_Etype (Nod, Etype (Ent));
1820            end if;
1821
1822         end if;
1823
1824         return OK;
1825      end Process_Discr;
1826
1827      procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1828
1829   --  Start of processing for Replace_Actual_Discriminants
1830
1831   begin
1832      if not Expander_Active then
1833         return;
1834      end if;
1835
1836      if Nkind (Name (N)) = N_Selected_Component then
1837         Tsk := Prefix (Name (N));
1838
1839      elsif Nkind (Name (N)) = N_Indexed_Component then
1840         Tsk := Prefix (Prefix (Name (N)));
1841      end if;
1842
1843      if No (Tsk) then
1844         return;
1845      else
1846         Replace_Discrs (Default);
1847      end if;
1848   end Replace_Actual_Discriminants;
1849
1850   -------------
1851   -- Resolve --
1852   -------------
1853
1854   procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1855      Ambiguous : Boolean   := False;
1856      Ctx_Type  : Entity_Id := Typ;
1857      Expr_Type : Entity_Id := Empty; -- prevent junk warning
1858      Err_Type  : Entity_Id := Empty;
1859      Found     : Boolean   := False;
1860      From_Lib  : Boolean;
1861      I         : Interp_Index;
1862      I1        : Interp_Index := 0;  -- prevent junk warning
1863      It        : Interp;
1864      It1       : Interp;
1865      Seen      : Entity_Id := Empty; -- prevent junk warning
1866
1867      function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1868      --  Determine whether a node comes from a predefined library unit or
1869      --  Standard.
1870
1871      procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1872      --  Try and fix up a literal so that it matches its expected type. New
1873      --  literals are manufactured if necessary to avoid cascaded errors.
1874
1875      procedure Report_Ambiguous_Argument;
1876      --  Additional diagnostics when an ambiguous call has an ambiguous
1877      --  argument (typically a controlling actual).
1878
1879      procedure Resolution_Failed;
1880      --  Called when attempt at resolving current expression fails
1881
1882      ------------------------------------
1883      -- Comes_From_Predefined_Lib_Unit --
1884      -------------------------------------
1885
1886      function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1887      begin
1888         return
1889           Sloc (Nod) = Standard_Location
1890             or else Is_Predefined_File_Name
1891                       (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1892      end Comes_From_Predefined_Lib_Unit;
1893
1894      --------------------
1895      -- Patch_Up_Value --
1896      --------------------
1897
1898      procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1899      begin
1900         if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1901            Rewrite (N,
1902              Make_Real_Literal (Sloc (N),
1903                Realval => UR_From_Uint (Intval (N))));
1904            Set_Etype (N, Universal_Real);
1905            Set_Is_Static_Expression (N);
1906
1907         elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1908            Rewrite (N,
1909              Make_Integer_Literal (Sloc (N),
1910                Intval => UR_To_Uint (Realval (N))));
1911            Set_Etype (N, Universal_Integer);
1912            Set_Is_Static_Expression (N);
1913
1914         elsif Nkind (N) = N_String_Literal
1915                 and then Is_Character_Type (Typ)
1916         then
1917            Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1918            Rewrite (N,
1919              Make_Character_Literal (Sloc (N),
1920                Chars => Name_Find,
1921                Char_Literal_Value =>
1922                  UI_From_Int (Character'Pos ('A'))));
1923            Set_Etype (N, Any_Character);
1924            Set_Is_Static_Expression (N);
1925
1926         elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1927            Rewrite (N,
1928              Make_String_Literal (Sloc (N),
1929                Strval => End_String));
1930
1931         elsif Nkind (N) = N_Range then
1932            Patch_Up_Value (Low_Bound (N),  Typ);
1933            Patch_Up_Value (High_Bound (N), Typ);
1934         end if;
1935      end Patch_Up_Value;
1936
1937      -------------------------------
1938      -- Report_Ambiguous_Argument --
1939      -------------------------------
1940
1941      procedure Report_Ambiguous_Argument is
1942         Arg : constant Node_Id := First (Parameter_Associations (N));
1943         I   : Interp_Index;
1944         It  : Interp;
1945
1946      begin
1947         if Nkind (Arg) = N_Function_Call
1948           and then Is_Entity_Name (Name (Arg))
1949           and then Is_Overloaded (Name (Arg))
1950         then
1951            Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1952
1953            --  Could use comments on what is going on here???
1954
1955            Get_First_Interp (Name (Arg), I, It);
1956            while Present (It.Nam) loop
1957               Error_Msg_Sloc := Sloc (It.Nam);
1958
1959               if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1960                  Error_Msg_N ("interpretation (inherited) #!", Arg);
1961               else
1962                  Error_Msg_N ("interpretation #!", Arg);
1963               end if;
1964
1965               Get_Next_Interp (I, It);
1966            end loop;
1967         end if;
1968      end Report_Ambiguous_Argument;
1969
1970      -----------------------
1971      -- Resolution_Failed --
1972      -----------------------
1973
1974      procedure Resolution_Failed is
1975      begin
1976         Patch_Up_Value (N, Typ);
1977         Set_Etype (N, Typ);
1978         Debug_A_Exit ("resolving  ", N, " (done, resolution failed)");
1979         Set_Is_Overloaded (N, False);
1980
1981         --  The caller will return without calling the expander, so we need
1982         --  to set the analyzed flag. Note that it is fine to set Analyzed
1983         --  to True even if we are in the middle of a shallow analysis,
1984         --  (see the spec of sem for more details) since this is an error
1985         --  situation anyway, and there is no point in repeating the
1986         --  analysis later (indeed it won't work to repeat it later, since
1987         --  we haven't got a clear resolution of which entity is being
1988         --  referenced.)
1989
1990         Set_Analyzed (N, True);
1991         return;
1992      end Resolution_Failed;
1993
1994      --  Local variables
1995
1996      Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
1997
1998   --  Start of processing for Resolve
1999
2000   begin
2001      if N = Error then
2002         return;
2003      end if;
2004
2005      --  A declaration may be subject to pragma Ghost. Set the mode now to
2006      --  ensure that any nodes generated during analysis and expansion are
2007      --  marked as Ghost.
2008
2009      if Is_Declaration (N) then
2010         Set_Ghost_Mode (N);
2011      end if;
2012
2013      --  Access attribute on remote subprogram cannot be used for a non-remote
2014      --  access-to-subprogram type.
2015
2016      if Nkind (N) = N_Attribute_Reference
2017        and then Nam_In (Attribute_Name (N), Name_Access,
2018                                             Name_Unrestricted_Access,
2019                                             Name_Unchecked_Access)
2020        and then Comes_From_Source (N)
2021        and then Is_Entity_Name (Prefix (N))
2022        and then Is_Subprogram (Entity (Prefix (N)))
2023        and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2024        and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2025      then
2026         Error_Msg_N
2027           ("prefix must statically denote a non-remote subprogram", N);
2028      end if;
2029
2030      From_Lib := Comes_From_Predefined_Lib_Unit (N);
2031
2032      --  If the context is a Remote_Access_To_Subprogram, access attributes
2033      --  must be resolved with the corresponding fat pointer. There is no need
2034      --  to check for the attribute name since the return type of an
2035      --  attribute is never a remote type.
2036
2037      if Nkind (N) = N_Attribute_Reference
2038        and then Comes_From_Source (N)
2039        and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2040      then
2041         declare
2042            Attr      : constant Attribute_Id :=
2043                          Get_Attribute_Id (Attribute_Name (N));
2044            Pref      : constant Node_Id      := Prefix (N);
2045            Decl      : Node_Id;
2046            Spec      : Node_Id;
2047            Is_Remote : Boolean := True;
2048
2049         begin
2050            --  Check that Typ is a remote access-to-subprogram type
2051
2052            if Is_Remote_Access_To_Subprogram_Type (Typ) then
2053
2054               --  Prefix (N) must statically denote a remote subprogram
2055               --  declared in a package specification.
2056
2057               if Attr = Attribute_Access           or else
2058                  Attr = Attribute_Unchecked_Access or else
2059                  Attr = Attribute_Unrestricted_Access
2060               then
2061                  Decl := Unit_Declaration_Node (Entity (Pref));
2062
2063                  if Nkind (Decl) = N_Subprogram_Body then
2064                     Spec := Corresponding_Spec (Decl);
2065
2066                     if Present (Spec) then
2067                        Decl := Unit_Declaration_Node (Spec);
2068                     end if;
2069                  end if;
2070
2071                  Spec := Parent (Decl);
2072
2073                  if not Is_Entity_Name (Prefix (N))
2074                    or else Nkind (Spec) /= N_Package_Specification
2075                    or else
2076                      not Is_Remote_Call_Interface (Defining_Entity (Spec))
2077                  then
2078                     Is_Remote := False;
2079                     Error_Msg_N
2080                       ("prefix must statically denote a remote subprogram ",
2081                        N);
2082                  end if;
2083
2084                  --  If we are generating code in distributed mode, perform
2085                  --  semantic checks against corresponding remote entities.
2086
2087                  if Expander_Active
2088                    and then Get_PCS_Name /= Name_No_DSA
2089                  then
2090                     Check_Subtype_Conformant
2091                       (New_Id  => Entity (Prefix (N)),
2092                        Old_Id  => Designated_Type
2093                                     (Corresponding_Remote_Type (Typ)),
2094                        Err_Loc => N);
2095
2096                     if Is_Remote then
2097                        Process_Remote_AST_Attribute (N, Typ);
2098                     end if;
2099                  end if;
2100               end if;
2101            end if;
2102         end;
2103      end if;
2104
2105      Debug_A_Entry ("resolving  ", N);
2106
2107      if Debug_Flag_V then
2108         Write_Overloads (N);
2109      end if;
2110
2111      if Comes_From_Source (N) then
2112         if Is_Fixed_Point_Type (Typ) then
2113            Check_Restriction (No_Fixed_Point, N);
2114
2115         elsif Is_Floating_Point_Type (Typ)
2116           and then Typ /= Universal_Real
2117           and then Typ /= Any_Real
2118         then
2119            Check_Restriction (No_Floating_Point, N);
2120         end if;
2121      end if;
2122
2123      --  Return if already analyzed
2124
2125      if Analyzed (N) then
2126         Debug_A_Exit ("resolving  ", N, "  (done, already analyzed)");
2127         Analyze_Dimension (N);
2128         Ghost_Mode := Save_Ghost_Mode;
2129         return;
2130
2131      --  Any case of Any_Type as the Etype value means that we had a
2132      --  previous error.
2133
2134      elsif Etype (N) = Any_Type then
2135         Debug_A_Exit ("resolving  ", N, "  (done, Etype = Any_Type)");
2136         Ghost_Mode := Save_Ghost_Mode;
2137         return;
2138      end if;
2139
2140      Check_Parameterless_Call (N);
2141
2142      --  The resolution of an Expression_With_Actions is determined by
2143      --  its Expression.
2144
2145      if Nkind (N) = N_Expression_With_Actions then
2146         Resolve (Expression (N), Typ);
2147
2148         Found := True;
2149         Expr_Type := Etype (Expression (N));
2150
2151      --  If not overloaded, then we know the type, and all that needs doing
2152      --  is to check that this type is compatible with the context.
2153
2154      elsif not Is_Overloaded (N) then
2155         Found := Covers (Typ, Etype (N));
2156         Expr_Type := Etype (N);
2157
2158      --  In the overloaded case, we must select the interpretation that
2159      --  is compatible with the context (i.e. the type passed to Resolve)
2160
2161      else
2162         --  Loop through possible interpretations
2163
2164         Get_First_Interp (N, I, It);
2165         Interp_Loop : while Present (It.Typ) loop
2166            if Debug_Flag_V then
2167               Write_Str ("Interp: ");
2168               Write_Interp (It);
2169            end if;
2170
2171            --  We are only interested in interpretations that are compatible
2172            --  with the expected type, any other interpretations are ignored.
2173
2174            if not Covers (Typ, It.Typ) then
2175               if Debug_Flag_V then
2176                  Write_Str ("    interpretation incompatible with context");
2177                  Write_Eol;
2178               end if;
2179
2180            else
2181               --  Skip the current interpretation if it is disabled by an
2182               --  abstract operator. This action is performed only when the
2183               --  type against which we are resolving is the same as the
2184               --  type of the interpretation.
2185
2186               if Ada_Version >= Ada_2005
2187                 and then It.Typ = Typ
2188                 and then Typ /= Universal_Integer
2189                 and then Typ /= Universal_Real
2190                 and then Present (It.Abstract_Op)
2191               then
2192                  if Debug_Flag_V then
2193                     Write_Line ("Skip.");
2194                  end if;
2195
2196                  goto Continue;
2197               end if;
2198
2199               --  First matching interpretation
2200
2201               if not Found then
2202                  Found := True;
2203                  I1    := I;
2204                  Seen  := It.Nam;
2205                  Expr_Type := It.Typ;
2206
2207               --  Matching interpretation that is not the first, maybe an
2208               --  error, but there are some cases where preference rules are
2209               --  used to choose between the two possibilities. These and
2210               --  some more obscure cases are handled in Disambiguate.
2211
2212               else
2213                  --  If the current statement is part of a predefined library
2214                  --  unit, then all interpretations which come from user level
2215                  --  packages should not be considered. Check previous and
2216                  --  current one.
2217
2218                  if From_Lib then
2219                     if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2220                        goto Continue;
2221
2222                     elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2223
2224                        --  Previous interpretation must be discarded
2225
2226                        I1 := I;
2227                        Seen := It.Nam;
2228                        Expr_Type := It.Typ;
2229                        Set_Entity (N, Seen);
2230                        goto Continue;
2231                     end if;
2232                  end if;
2233
2234                  --  Otherwise apply further disambiguation steps
2235
2236                  Error_Msg_Sloc := Sloc (Seen);
2237                  It1 := Disambiguate (N, I1, I, Typ);
2238
2239                  --  Disambiguation has succeeded. Skip the remaining
2240                  --  interpretations.
2241
2242                  if It1 /= No_Interp then
2243                     Seen := It1.Nam;
2244                     Expr_Type := It1.Typ;
2245
2246                     while Present (It.Typ) loop
2247                        Get_Next_Interp (I, It);
2248                     end loop;
2249
2250                  else
2251                     --  Before we issue an ambiguity complaint, check for
2252                     --  the case of a subprogram call where at least one
2253                     --  of the arguments is Any_Type, and if so, suppress
2254                     --  the message, since it is a cascaded error.
2255
2256                     if Nkind (N) in N_Subprogram_Call then
2257                        declare
2258                           A : Node_Id;
2259                           E : Node_Id;
2260
2261                        begin
2262                           A := First_Actual (N);
2263                           while Present (A) loop
2264                              E := A;
2265
2266                              if Nkind (E) = N_Parameter_Association then
2267                                 E := Explicit_Actual_Parameter (E);
2268                              end if;
2269
2270                              if Etype (E) = Any_Type then
2271                                 if Debug_Flag_V then
2272                                    Write_Str ("Any_Type in call");
2273                                    Write_Eol;
2274                                 end if;
2275
2276                                 exit Interp_Loop;
2277                              end if;
2278
2279                              Next_Actual (A);
2280                           end loop;
2281                        end;
2282
2283                     elsif Nkind (N) in N_Binary_Op
2284                       and then (Etype (Left_Opnd (N)) = Any_Type
2285                                  or else Etype (Right_Opnd (N)) = Any_Type)
2286                     then
2287                        exit Interp_Loop;
2288
2289                     elsif Nkind (N) in N_Unary_Op
2290                       and then Etype (Right_Opnd (N)) = Any_Type
2291                     then
2292                        exit Interp_Loop;
2293                     end if;
2294
2295                     --  Not that special case, so issue message using the
2296                     --  flag Ambiguous to control printing of the header
2297                     --  message only at the start of an ambiguous set.
2298
2299                     if not Ambiguous then
2300                        if Nkind (N) = N_Function_Call
2301                          and then Nkind (Name (N)) = N_Explicit_Dereference
2302                        then
2303                           Error_Msg_N
2304                             ("ambiguous expression "
2305                               & "(cannot resolve indirect call)!", N);
2306                        else
2307                           Error_Msg_NE -- CODEFIX
2308                             ("ambiguous expression (cannot resolve&)!",
2309                              N, It.Nam);
2310                        end if;
2311
2312                        Ambiguous := True;
2313
2314                        if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2315                           Error_Msg_N
2316                             ("\\possible interpretation (inherited)#!", N);
2317                        else
2318                           Error_Msg_N -- CODEFIX
2319                             ("\\possible interpretation#!", N);
2320                        end if;
2321
2322                        if Nkind (N) in N_Subprogram_Call
2323                          and then Present (Parameter_Associations (N))
2324                        then
2325                           Report_Ambiguous_Argument;
2326                        end if;
2327                     end if;
2328
2329                     Error_Msg_Sloc := Sloc (It.Nam);
2330
2331                     --  By default, the error message refers to the candidate
2332                     --  interpretation. But if it is a predefined operator, it
2333                     --  is implicitly declared at the declaration of the type
2334                     --  of the operand. Recover the sloc of that declaration
2335                     --  for the error message.
2336
2337                     if Nkind (N) in N_Op
2338                       and then Scope (It.Nam) = Standard_Standard
2339                       and then not Is_Overloaded (Right_Opnd (N))
2340                       and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2341                                                             Standard_Standard
2342                     then
2343                        Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2344
2345                        if Comes_From_Source (Err_Type)
2346                          and then Present (Parent (Err_Type))
2347                        then
2348                           Error_Msg_Sloc := Sloc (Parent (Err_Type));
2349                        end if;
2350
2351                     elsif Nkind (N) in N_Binary_Op
2352                       and then Scope (It.Nam) = Standard_Standard
2353                       and then not Is_Overloaded (Left_Opnd (N))
2354                       and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2355                                                             Standard_Standard
2356                     then
2357                        Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2358
2359                        if Comes_From_Source (Err_Type)
2360                          and then Present (Parent (Err_Type))
2361                        then
2362                           Error_Msg_Sloc := Sloc (Parent (Err_Type));
2363                        end if;
2364
2365                     --  If this is an indirect call, use the subprogram_type
2366                     --  in the message, to have a meaningful location. Also
2367                     --  indicate if this is an inherited operation, created
2368                     --  by a type declaration.
2369
2370                     elsif Nkind (N) = N_Function_Call
2371                       and then Nkind (Name (N)) = N_Explicit_Dereference
2372                       and then Is_Type (It.Nam)
2373                     then
2374                        Err_Type := It.Nam;
2375                        Error_Msg_Sloc :=
2376                          Sloc (Associated_Node_For_Itype (Err_Type));
2377                     else
2378                        Err_Type := Empty;
2379                     end if;
2380
2381                     if Nkind (N) in N_Op
2382                       and then Scope (It.Nam) = Standard_Standard
2383                       and then Present (Err_Type)
2384                     then
2385                        --  Special-case the message for universal_fixed
2386                        --  operators, which are not declared with the type
2387                        --  of the operand, but appear forever in Standard.
2388
2389                        if It.Typ = Universal_Fixed
2390                          and then Scope (It.Nam) = Standard_Standard
2391                        then
2392                           Error_Msg_N
2393                             ("\\possible interpretation as universal_fixed "
2394                              & "operation (RM 4.5.5 (19))", N);
2395                        else
2396                           Error_Msg_N
2397                             ("\\possible interpretation (predefined)#!", N);
2398                        end if;
2399
2400                     elsif
2401                       Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2402                     then
2403                        Error_Msg_N
2404                          ("\\possible interpretation (inherited)#!", N);
2405                     else
2406                        Error_Msg_N -- CODEFIX
2407                          ("\\possible interpretation#!", N);
2408                     end if;
2409
2410                  end if;
2411               end if;
2412
2413               --  We have a matching interpretation, Expr_Type is the type
2414               --  from this interpretation, and Seen is the entity.
2415
2416               --  For an operator, just set the entity name. The type will be
2417               --  set by the specific operator resolution routine.
2418
2419               if Nkind (N) in N_Op then
2420                  Set_Entity (N, Seen);
2421                  Generate_Reference (Seen, N);
2422
2423               elsif Nkind (N) = N_Case_Expression then
2424                  Set_Etype (N, Expr_Type);
2425
2426               elsif Nkind (N) = N_Character_Literal then
2427                  Set_Etype (N, Expr_Type);
2428
2429               elsif Nkind (N) = N_If_Expression then
2430                  Set_Etype (N, Expr_Type);
2431
2432               --  AI05-0139-2: Expression is overloaded because type has
2433               --  implicit dereference. If type matches context, no implicit
2434               --  dereference is involved.
2435
2436               elsif Has_Implicit_Dereference (Expr_Type) then
2437                  Set_Etype (N, Expr_Type);
2438                  Set_Is_Overloaded (N, False);
2439                  exit Interp_Loop;
2440
2441               elsif Is_Overloaded (N)
2442                 and then Present (It.Nam)
2443                 and then Ekind (It.Nam) = E_Discriminant
2444                 and then Has_Implicit_Dereference (It.Nam)
2445               then
2446                  --  If the node is a general indexing, the dereference is
2447                  --  is inserted when resolving the rewritten form, else
2448                  --  insert it now.
2449
2450                  if Nkind (N) /= N_Indexed_Component
2451                    or else No (Generalized_Indexing (N))
2452                  then
2453                     Build_Explicit_Dereference (N, It.Nam);
2454                  end if;
2455
2456               --  For an explicit dereference, attribute reference, range,
2457               --  short-circuit form (which is not an operator node), or call
2458               --  with a name that is an explicit dereference, there is
2459               --  nothing to be done at this point.
2460
2461               elsif Nkind_In (N, N_Explicit_Dereference,
2462                                  N_Attribute_Reference,
2463                                  N_And_Then,
2464                                  N_Indexed_Component,
2465                                  N_Or_Else,
2466                                  N_Range,
2467                                  N_Selected_Component,
2468                                  N_Slice)
2469                 or else Nkind (Name (N)) = N_Explicit_Dereference
2470               then
2471                  null;
2472
2473               --  For procedure or function calls, set the type of the name,
2474               --  and also the entity pointer for the prefix.
2475
2476               elsif Nkind (N) in N_Subprogram_Call
2477                 and then Is_Entity_Name (Name (N))
2478               then
2479                  Set_Etype  (Name (N), Expr_Type);
2480                  Set_Entity (Name (N), Seen);
2481                  Generate_Reference (Seen, Name (N));
2482
2483               elsif Nkind (N) = N_Function_Call
2484                 and then Nkind (Name (N)) = N_Selected_Component
2485               then
2486                  Set_Etype (Name (N), Expr_Type);
2487                  Set_Entity (Selector_Name (Name (N)), Seen);
2488                  Generate_Reference (Seen, Selector_Name (Name (N)));
2489
2490               --  For all other cases, just set the type of the Name
2491
2492               else
2493                  Set_Etype (Name (N), Expr_Type);
2494               end if;
2495
2496            end if;
2497
2498            <<Continue>>
2499
2500            --  Move to next interpretation
2501
2502            exit Interp_Loop when No (It.Typ);
2503
2504            Get_Next_Interp (I, It);
2505         end loop Interp_Loop;
2506      end if;
2507
2508      --  At this stage Found indicates whether or not an acceptable
2509      --  interpretation exists. If not, then we have an error, except that if
2510      --  the context is Any_Type as a result of some other error, then we
2511      --  suppress the error report.
2512
2513      if not Found then
2514         if Typ /= Any_Type then
2515
2516            --  If type we are looking for is Void, then this is the procedure
2517            --  call case, and the error is simply that what we gave is not a
2518            --  procedure name (we think of procedure calls as expressions with
2519            --  types internally, but the user doesn't think of them this way).
2520
2521            if Typ = Standard_Void_Type then
2522
2523               --  Special case message if function used as a procedure
2524
2525               if Nkind (N) = N_Procedure_Call_Statement
2526                 and then Is_Entity_Name (Name (N))
2527                 and then Ekind (Entity (Name (N))) = E_Function
2528               then
2529                  Error_Msg_NE
2530                    ("cannot use function & in a procedure call",
2531                     Name (N), Entity (Name (N)));
2532
2533               --  Otherwise give general message (not clear what cases this
2534               --  covers, but no harm in providing for them).
2535
2536               else
2537                  Error_Msg_N ("expect procedure name in procedure call", N);
2538               end if;
2539
2540               Found := True;
2541
2542            --  Otherwise we do have a subexpression with the wrong type
2543
2544            --  Check for the case of an allocator which uses an access type
2545            --  instead of the designated type. This is a common error and we
2546            --  specialize the message, posting an error on the operand of the
2547            --  allocator, complaining that we expected the designated type of
2548            --  the allocator.
2549
2550            elsif Nkind (N) = N_Allocator
2551              and then Is_Access_Type (Typ)
2552              and then Is_Access_Type (Etype (N))
2553              and then Designated_Type (Etype (N)) = Typ
2554            then
2555               Wrong_Type (Expression (N), Designated_Type (Typ));
2556               Found := True;
2557
2558            --  Check for view mismatch on Null in instances, for which the
2559            --  view-swapping mechanism has no identifier.
2560
2561            elsif (In_Instance or else In_Inlined_Body)
2562              and then (Nkind (N) = N_Null)
2563              and then Is_Private_Type (Typ)
2564              and then Is_Access_Type (Full_View (Typ))
2565            then
2566               Resolve (N, Full_View (Typ));
2567               Set_Etype (N, Typ);
2568               Ghost_Mode := Save_Ghost_Mode;
2569               return;
2570
2571            --  Check for an aggregate. Sometimes we can get bogus aggregates
2572            --  from misuse of parentheses, and we are about to complain about
2573            --  the aggregate without even looking inside it.
2574
2575            --  Instead, if we have an aggregate of type Any_Composite, then
2576            --  analyze and resolve the component fields, and then only issue
2577            --  another message if we get no errors doing this (otherwise
2578            --  assume that the errors in the aggregate caused the problem).
2579
2580            elsif Nkind (N) = N_Aggregate
2581              and then Etype (N) = Any_Composite
2582            then
2583               --  Disable expansion in any case. If there is a type mismatch
2584               --  it may be fatal to try to expand the aggregate. The flag
2585               --  would otherwise be set to false when the error is posted.
2586
2587               Expander_Active := False;
2588
2589               declare
2590                  procedure Check_Aggr (Aggr : Node_Id);
2591                  --  Check one aggregate, and set Found to True if we have a
2592                  --  definite error in any of its elements
2593
2594                  procedure Check_Elmt (Aelmt : Node_Id);
2595                  --  Check one element of aggregate and set Found to True if
2596                  --  we definitely have an error in the element.
2597
2598                  ----------------
2599                  -- Check_Aggr --
2600                  ----------------
2601
2602                  procedure Check_Aggr (Aggr : Node_Id) is
2603                     Elmt : Node_Id;
2604
2605                  begin
2606                     if Present (Expressions (Aggr)) then
2607                        Elmt := First (Expressions (Aggr));
2608                        while Present (Elmt) loop
2609                           Check_Elmt (Elmt);
2610                           Next (Elmt);
2611                        end loop;
2612                     end if;
2613
2614                     if Present (Component_Associations (Aggr)) then
2615                        Elmt := First (Component_Associations (Aggr));
2616                        while Present (Elmt) loop
2617
2618                           --  If this is a default-initialized component, then
2619                           --  there is nothing to check. The box will be
2620                           --  replaced by the appropriate call during late
2621                           --  expansion.
2622
2623                           if not Box_Present (Elmt) then
2624                              Check_Elmt (Expression (Elmt));
2625                           end if;
2626
2627                           Next (Elmt);
2628                        end loop;
2629                     end if;
2630                  end Check_Aggr;
2631
2632                  ----------------
2633                  -- Check_Elmt --
2634                  ----------------
2635
2636                  procedure Check_Elmt (Aelmt : Node_Id) is
2637                  begin
2638                     --  If we have a nested aggregate, go inside it (to
2639                     --  attempt a naked analyze-resolve of the aggregate can
2640                     --  cause undesirable cascaded errors). Do not resolve
2641                     --  expression if it needs a type from context, as for
2642                     --  integer * fixed expression.
2643
2644                     if Nkind (Aelmt) = N_Aggregate then
2645                        Check_Aggr (Aelmt);
2646
2647                     else
2648                        Analyze (Aelmt);
2649
2650                        if not Is_Overloaded (Aelmt)
2651                          and then Etype (Aelmt) /= Any_Fixed
2652                        then
2653                           Resolve (Aelmt);
2654                        end if;
2655
2656                        if Etype (Aelmt) = Any_Type then
2657                           Found := True;
2658                        end if;
2659                     end if;
2660                  end Check_Elmt;
2661
2662               begin
2663                  Check_Aggr (N);
2664               end;
2665            end if;
2666
2667            --  Looks like we have a type error, but check for special case
2668            --  of Address wanted, integer found, with the configuration pragma
2669            --  Allow_Integer_Address active. If we have this case, introduce
2670            --  an unchecked conversion to allow the integer expression to be
2671            --  treated as an Address. The reverse case of integer wanted,
2672            --  Address found, is treated in an analogous manner.
2673
2674            if Address_Integer_Convert_OK (Typ, Etype (N)) then
2675               Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2676               Analyze_And_Resolve (N, Typ);
2677               Ghost_Mode := Save_Ghost_Mode;
2678               return;
2679            end if;
2680
2681            --  That special Allow_Integer_Address check did not appply, so we
2682            --  have a real type error. If an error message was issued already,
2683            --  Found got reset to True, so if it's still False, issue standard
2684            --  Wrong_Type message.
2685
2686            if not Found then
2687               if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2688                  declare
2689                     Subp_Name : Node_Id;
2690
2691                  begin
2692                     if Is_Entity_Name (Name (N)) then
2693                        Subp_Name := Name (N);
2694
2695                     elsif Nkind (Name (N)) = N_Selected_Component then
2696
2697                        --  Protected operation: retrieve operation name
2698
2699                        Subp_Name := Selector_Name (Name (N));
2700
2701                     else
2702                        raise Program_Error;
2703                     end if;
2704
2705                     Error_Msg_Node_2 := Typ;
2706                     Error_Msg_NE
2707                       ("no visible interpretation of& "
2708                        & "matches expected type&", N, Subp_Name);
2709                  end;
2710
2711                  if All_Errors_Mode then
2712                     declare
2713                        Index : Interp_Index;
2714                        It    : Interp;
2715
2716                     begin
2717                        Error_Msg_N ("\\possible interpretations:", N);
2718
2719                        Get_First_Interp (Name (N), Index, It);
2720                        while Present (It.Nam) loop
2721                           Error_Msg_Sloc := Sloc (It.Nam);
2722                           Error_Msg_Node_2 := It.Nam;
2723                           Error_Msg_NE
2724                             ("\\  type& for & declared#", N, It.Typ);
2725                           Get_Next_Interp (Index, It);
2726                        end loop;
2727                     end;
2728
2729                  else
2730                     Error_Msg_N ("\use -gnatf for details", N);
2731                  end if;
2732
2733               else
2734                  Wrong_Type (N, Typ);
2735               end if;
2736            end if;
2737         end if;
2738
2739         Resolution_Failed;
2740         Ghost_Mode := Save_Ghost_Mode;
2741         return;
2742
2743      --  Test if we have more than one interpretation for the context
2744
2745      elsif Ambiguous then
2746         Resolution_Failed;
2747         Ghost_Mode := Save_Ghost_Mode;
2748         return;
2749
2750      --  Only one intepretation
2751
2752      else
2753         --  In Ada 2005, if we have something like "X : T := 2 + 2;", where
2754         --  the "+" on T is abstract, and the operands are of universal type,
2755         --  the above code will have (incorrectly) resolved the "+" to the
2756         --  universal one in Standard. Therefore check for this case and give
2757         --  an error. We can't do this earlier, because it would cause legal
2758         --  cases to get errors (when some other type has an abstract "+").
2759
2760         if Ada_Version >= Ada_2005
2761           and then Nkind (N) in N_Op
2762           and then Is_Overloaded (N)
2763           and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2764         then
2765            Get_First_Interp (N, I, It);
2766            while Present (It.Typ) loop
2767               if Present (It.Abstract_Op) and then
2768                 Etype (It.Abstract_Op) = Typ
2769               then
2770                  Error_Msg_NE
2771                    ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2772                  return;
2773               end if;
2774
2775               Get_Next_Interp (I, It);
2776            end loop;
2777         end if;
2778
2779         --  Here we have an acceptable interpretation for the context
2780
2781         --  Propagate type information and normalize tree for various
2782         --  predefined operations. If the context only imposes a class of
2783         --  types, rather than a specific type, propagate the actual type
2784         --  downward.
2785
2786         if Typ = Any_Integer or else
2787            Typ = Any_Boolean or else
2788            Typ = Any_Modular or else
2789            Typ = Any_Real    or else
2790            Typ = Any_Discrete
2791         then
2792            Ctx_Type := Expr_Type;
2793
2794            --  Any_Fixed is legal in a real context only if a specific fixed-
2795            --  point type is imposed. If Norman Cohen can be confused by this,
2796            --  it deserves a separate message.
2797
2798            if Typ = Any_Real
2799              and then Expr_Type = Any_Fixed
2800            then
2801               Error_Msg_N ("illegal context for mixed mode operation", N);
2802               Set_Etype (N, Universal_Real);
2803               Ctx_Type := Universal_Real;
2804            end if;
2805         end if;
2806
2807         --  A user-defined operator is transformed into a function call at
2808         --  this point, so that further processing knows that operators are
2809         --  really operators (i.e. are predefined operators). User-defined
2810         --  operators that are intrinsic are just renamings of the predefined
2811         --  ones, and need not be turned into calls either, but if they rename
2812         --  a different operator, we must transform the node accordingly.
2813         --  Instantiations of Unchecked_Conversion are intrinsic but are
2814         --  treated as functions, even if given an operator designator.
2815
2816         if Nkind (N) in N_Op
2817           and then Present (Entity (N))
2818           and then Ekind (Entity (N)) /= E_Operator
2819         then
2820
2821            if not Is_Predefined_Op (Entity (N)) then
2822               Rewrite_Operator_As_Call (N, Entity (N));
2823
2824            elsif Present (Alias (Entity (N)))
2825              and then
2826                Nkind (Parent (Parent (Entity (N)))) =
2827                                    N_Subprogram_Renaming_Declaration
2828            then
2829               Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2830
2831               --  If the node is rewritten, it will be fully resolved in
2832               --  Rewrite_Renamed_Operator.
2833
2834               if Analyzed (N) then
2835                  Ghost_Mode := Save_Ghost_Mode;
2836                  return;
2837               end if;
2838            end if;
2839         end if;
2840
2841         case N_Subexpr'(Nkind (N)) is
2842
2843            when N_Aggregate => Resolve_Aggregate                (N, Ctx_Type);
2844
2845            when N_Allocator => Resolve_Allocator                (N, Ctx_Type);
2846
2847            when N_Short_Circuit
2848                             => Resolve_Short_Circuit            (N, Ctx_Type);
2849
2850            when N_Attribute_Reference
2851                             => Resolve_Attribute                (N, Ctx_Type);
2852
2853            when N_Case_Expression
2854                             => Resolve_Case_Expression          (N, Ctx_Type);
2855
2856            when N_Character_Literal
2857                             => Resolve_Character_Literal        (N, Ctx_Type);
2858
2859            when N_Expanded_Name
2860                             => Resolve_Entity_Name              (N, Ctx_Type);
2861
2862            when N_Explicit_Dereference
2863                             => Resolve_Explicit_Dereference     (N, Ctx_Type);
2864
2865            when N_Expression_With_Actions
2866                             => Resolve_Expression_With_Actions  (N, Ctx_Type);
2867
2868            when N_Extension_Aggregate
2869                             => Resolve_Extension_Aggregate      (N, Ctx_Type);
2870
2871            when N_Function_Call
2872                             => Resolve_Call                     (N, Ctx_Type);
2873
2874            when N_Identifier
2875                             => Resolve_Entity_Name              (N, Ctx_Type);
2876
2877            when N_If_Expression
2878                             => Resolve_If_Expression            (N, Ctx_Type);
2879
2880            when N_Indexed_Component
2881                             => Resolve_Indexed_Component        (N, Ctx_Type);
2882
2883            when N_Integer_Literal
2884                             => Resolve_Integer_Literal          (N, Ctx_Type);
2885
2886            when N_Membership_Test
2887                             => Resolve_Membership_Op            (N, Ctx_Type);
2888
2889            when N_Null      => Resolve_Null                     (N, Ctx_Type);
2890
2891            when N_Op_And | N_Op_Or | N_Op_Xor
2892                             => Resolve_Logical_Op               (N, Ctx_Type);
2893
2894            when N_Op_Eq | N_Op_Ne
2895                             => Resolve_Equality_Op              (N, Ctx_Type);
2896
2897            when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2898                             => Resolve_Comparison_Op            (N, Ctx_Type);
2899
2900            when N_Op_Not    => Resolve_Op_Not                   (N, Ctx_Type);
2901
2902            when N_Op_Add    | N_Op_Subtract | N_Op_Multiply |
2903                 N_Op_Divide | N_Op_Mod      | N_Op_Rem
2904
2905                             => Resolve_Arithmetic_Op            (N, Ctx_Type);
2906
2907            when N_Op_Concat => Resolve_Op_Concat                (N, Ctx_Type);
2908
2909            when N_Op_Expon  => Resolve_Op_Expon                 (N, Ctx_Type);
2910
2911            when N_Op_Plus | N_Op_Minus  | N_Op_Abs
2912                             => Resolve_Unary_Op                 (N, Ctx_Type);
2913
2914            when N_Op_Shift  => Resolve_Shift                    (N, Ctx_Type);
2915
2916            when N_Procedure_Call_Statement
2917                             => Resolve_Call                     (N, Ctx_Type);
2918
2919            when N_Operator_Symbol
2920                             => Resolve_Operator_Symbol          (N, Ctx_Type);
2921
2922            when N_Qualified_Expression
2923                             => Resolve_Qualified_Expression     (N, Ctx_Type);
2924
2925            --  Why is the following null, needs a comment ???
2926
2927            when N_Quantified_Expression
2928                             => null;
2929
2930            when N_Raise_Expression
2931                             => Resolve_Raise_Expression         (N, Ctx_Type);
2932
2933            when N_Raise_xxx_Error
2934                             => Set_Etype (N, Ctx_Type);
2935
2936            when N_Range     => Resolve_Range                    (N, Ctx_Type);
2937
2938            when N_Real_Literal
2939                             => Resolve_Real_Literal             (N, Ctx_Type);
2940
2941            when N_Reference => Resolve_Reference                (N, Ctx_Type);
2942
2943            when N_Selected_Component
2944                             => Resolve_Selected_Component       (N, Ctx_Type);
2945
2946            when N_Slice     => Resolve_Slice                    (N, Ctx_Type);
2947
2948            when N_String_Literal
2949                             => Resolve_String_Literal           (N, Ctx_Type);
2950
2951            when N_Type_Conversion
2952                             => Resolve_Type_Conversion          (N, Ctx_Type);
2953
2954            when N_Unchecked_Expression =>
2955               Resolve_Unchecked_Expression                      (N, Ctx_Type);
2956
2957            when N_Unchecked_Type_Conversion =>
2958               Resolve_Unchecked_Type_Conversion                 (N, Ctx_Type);
2959         end case;
2960
2961         --  Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2962         --  expression of an anonymous access type that occurs in the context
2963         --  of a named general access type, except when the expression is that
2964         --  of a membership test. This ensures proper legality checking in
2965         --  terms of allowed conversions (expressions that would be illegal to
2966         --  convert implicitly are allowed in membership tests).
2967
2968         if Ada_Version >= Ada_2012
2969           and then Ekind (Ctx_Type) = E_General_Access_Type
2970           and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2971           and then Nkind (Parent (N)) not in N_Membership_Test
2972         then
2973            Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2974            Analyze_And_Resolve (N, Ctx_Type);
2975         end if;
2976
2977         --  If the subexpression was replaced by a non-subexpression, then
2978         --  all we do is to expand it. The only legitimate case we know of
2979         --  is converting procedure call statement to entry call statements,
2980         --  but there may be others, so we are making this test general.
2981
2982         if Nkind (N) not in N_Subexpr then
2983            Debug_A_Exit ("resolving  ", N, "  (done)");
2984            Expand (N);
2985            Ghost_Mode := Save_Ghost_Mode;
2986            return;
2987         end if;
2988
2989         --  The expression is definitely NOT overloaded at this point, so
2990         --  we reset the Is_Overloaded flag to avoid any confusion when
2991         --  reanalyzing the node.
2992
2993         Set_Is_Overloaded (N, False);
2994
2995         --  Freeze expression type, entity if it is a name, and designated
2996         --  type if it is an allocator (RM 13.14(10,11,13)).
2997
2998         --  Now that the resolution of the type of the node is complete, and
2999         --  we did not detect an error, we can expand this node. We skip the
3000         --  expand call if we are in a default expression, see section
3001         --  "Handling of Default Expressions" in Sem spec.
3002
3003         Debug_A_Exit ("resolving  ", N, "  (done)");
3004
3005         --  We unconditionally freeze the expression, even if we are in
3006         --  default expression mode (the Freeze_Expression routine tests this
3007         --  flag and only freezes static types if it is set).
3008
3009         --  Ada 2012 (AI05-177): The declaration of an expression function
3010         --  does not cause freezing, but we never reach here in that case.
3011         --  Here we are resolving the corresponding expanded body, so we do
3012         --  need to perform normal freezing.
3013
3014         Freeze_Expression (N);
3015
3016         --  Now we can do the expansion
3017
3018         Expand (N);
3019      end if;
3020
3021      Ghost_Mode := Save_Ghost_Mode;
3022   end Resolve;
3023
3024   -------------
3025   -- Resolve --
3026   -------------
3027
3028   --  Version with check(s) suppressed
3029
3030   procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3031   begin
3032      if Suppress = All_Checks then
3033         declare
3034            Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3035         begin
3036            Scope_Suppress.Suppress := (others => True);
3037            Resolve (N, Typ);
3038            Scope_Suppress.Suppress := Sva;
3039         end;
3040
3041      else
3042         declare
3043            Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3044         begin
3045            Scope_Suppress.Suppress (Suppress) := True;
3046            Resolve (N, Typ);
3047            Scope_Suppress.Suppress (Suppress) := Svg;
3048         end;
3049      end if;
3050   end Resolve;
3051
3052   -------------
3053   -- Resolve --
3054   -------------
3055
3056   --  Version with implicit type
3057
3058   procedure Resolve (N : Node_Id) is
3059   begin
3060      Resolve (N, Etype (N));
3061   end Resolve;
3062
3063   ---------------------
3064   -- Resolve_Actuals --
3065   ---------------------
3066
3067   procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3068      Loc    : constant Source_Ptr := Sloc (N);
3069      A      : Node_Id;
3070      A_Id   : Entity_Id;
3071      A_Typ  : Entity_Id;
3072      F      : Entity_Id;
3073      F_Typ  : Entity_Id;
3074      Prev   : Node_Id := Empty;
3075      Orig_A : Node_Id;
3076      Real_F : Entity_Id;
3077
3078      Real_Subp : Entity_Id;
3079      --  If the subprogram being called is an inherited operation for
3080      --  a formal derived type in an instance, Real_Subp is the subprogram
3081      --  that will be called. It may have different formal names than the
3082      --  operation of the formal in the generic, so after actual is resolved
3083      --  the name of the actual in a named association must carry the name
3084      --  of the actual of the subprogram being called.
3085
3086      procedure Check_Aliased_Parameter;
3087      --  Check rules on aliased parameters and related accessibility rules
3088      --  in (RM 3.10.2 (10.2-10.4)).
3089
3090      procedure Check_Argument_Order;
3091      --  Performs a check for the case where the actuals are all simple
3092      --  identifiers that correspond to the formal names, but in the wrong
3093      --  order, which is considered suspicious and cause for a warning.
3094
3095      procedure Check_Prefixed_Call;
3096      --  If the original node is an overloaded call in prefix notation,
3097      --  insert an 'Access or a dereference as needed over the first actual.
3098      --  Try_Object_Operation has already verified that there is a valid
3099      --  interpretation, but the form of the actual can only be determined
3100      --  once the primitive operation is identified.
3101
3102      procedure Insert_Default;
3103      --  If the actual is missing in a call, insert in the actuals list
3104      --  an instance of the default expression. The insertion is always
3105      --  a named association.
3106
3107      procedure Property_Error
3108        (Var      : Node_Id;
3109         Var_Id   : Entity_Id;
3110         Prop_Nam : Name_Id);
3111      --  Emit an error concerning variable Var with entity Var_Id that has
3112      --  enabled property Prop_Nam when it acts as an actual parameter in a
3113      --  call and the corresponding formal parameter is of mode IN.
3114
3115      function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3116      --  Check whether T1 and T2, or their full views, are derived from a
3117      --  common type. Used to enforce the restrictions on array conversions
3118      --  of AI95-00246.
3119
3120      function Static_Concatenation (N : Node_Id) return Boolean;
3121      --  Predicate to determine whether an actual that is a concatenation
3122      --  will be evaluated statically and does not need a transient scope.
3123      --  This must be determined before the actual is resolved and expanded
3124      --  because if needed the transient scope must be introduced earlier.
3125
3126      -----------------------------
3127      -- Check_Aliased_Parameter --
3128      -----------------------------
3129
3130      procedure Check_Aliased_Parameter is
3131         Nominal_Subt : Entity_Id;
3132
3133      begin
3134         if Is_Aliased (F) then
3135            if Is_Tagged_Type (A_Typ) then
3136               null;
3137
3138            elsif Is_Aliased_View (A) then
3139               if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3140                  Nominal_Subt := Base_Type (A_Typ);
3141               else
3142                  Nominal_Subt := A_Typ;
3143               end if;
3144
3145               if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3146                  null;
3147
3148               --  In a generic body assume the worst for generic formals:
3149               --  they can have a constrained partial view (AI05-041).
3150
3151               elsif Has_Discriminants (F_Typ)
3152                 and then not Is_Constrained (F_Typ)
3153                 and then not Has_Constrained_Partial_View (F_Typ)
3154                 and then not Is_Generic_Type (F_Typ)
3155               then
3156                  null;
3157
3158               else
3159                  Error_Msg_NE ("untagged actual does not match "
3160                                & "aliased formal&", A, F);
3161               end if;
3162
3163            else
3164               Error_Msg_NE ("actual for aliased formal& must be "
3165                             & "aliased object", A, F);
3166            end if;
3167
3168            if Ekind (Nam) = E_Procedure then
3169               null;
3170
3171            elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3172               if Nkind (Parent (N)) = N_Type_Conversion
3173                 and then Type_Access_Level (Etype (Parent (N))) <
3174                                                        Object_Access_Level (A)
3175               then
3176                  Error_Msg_N ("aliased actual has wrong accessibility", A);
3177               end if;
3178
3179            elsif Nkind (Parent (N)) = N_Qualified_Expression
3180              and then Nkind (Parent (Parent (N))) = N_Allocator
3181              and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3182                                                        Object_Access_Level (A)
3183            then
3184               Error_Msg_N
3185                 ("aliased actual in allocator has wrong accessibility", A);
3186            end if;
3187         end if;
3188      end Check_Aliased_Parameter;
3189
3190      --------------------------
3191      -- Check_Argument_Order --
3192      --------------------------
3193
3194      procedure Check_Argument_Order is
3195      begin
3196         --  Nothing to do if no parameters, or original node is neither a
3197         --  function call nor a procedure call statement (happens in the
3198         --  operator-transformed-to-function call case), or the call does
3199         --  not come from source, or this warning is off.
3200
3201         if not Warn_On_Parameter_Order
3202           or else No (Parameter_Associations (N))
3203           or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3204           or else not Comes_From_Source (N)
3205         then
3206            return;
3207         end if;
3208
3209         declare
3210            Nargs : constant Nat := List_Length (Parameter_Associations (N));
3211
3212         begin
3213            --  Nothing to do if only one parameter
3214
3215            if Nargs < 2 then
3216               return;
3217            end if;
3218
3219            --  Here if at least two arguments
3220
3221            declare
3222               Actuals : array (1 .. Nargs) of Node_Id;
3223               Actual  : Node_Id;
3224               Formal  : Node_Id;
3225
3226               Wrong_Order : Boolean := False;
3227               --  Set True if an out of order case is found
3228
3229            begin
3230               --  Collect identifier names of actuals, fail if any actual is
3231               --  not a simple identifier, and record max length of name.
3232
3233               Actual := First (Parameter_Associations (N));
3234               for J in Actuals'Range loop
3235                  if Nkind (Actual) /= N_Identifier then
3236                     return;
3237                  else
3238                     Actuals (J) := Actual;
3239                     Next (Actual);
3240                  end if;
3241               end loop;
3242
3243               --  If we got this far, all actuals are identifiers and the list
3244               --  of their names is stored in the Actuals array.
3245
3246               Formal := First_Formal (Nam);
3247               for J in Actuals'Range loop
3248
3249                  --  If we ran out of formals, that's odd, probably an error
3250                  --  which will be detected elsewhere, but abandon the search.
3251
3252                  if No (Formal) then
3253                     return;
3254                  end if;
3255
3256                  --  If name matches and is in order OK
3257
3258                  if Chars (Formal) = Chars (Actuals (J)) then
3259                     null;
3260
3261                  else
3262                     --  If no match, see if it is elsewhere in list and if so
3263                     --  flag potential wrong order if type is compatible.
3264
3265                     for K in Actuals'Range loop
3266                        if Chars (Formal) = Chars (Actuals (K))
3267                          and then
3268                            Has_Compatible_Type (Actuals (K), Etype (Formal))
3269                        then
3270                           Wrong_Order := True;
3271                           goto Continue;
3272                        end if;
3273                     end loop;
3274
3275                     --  No match
3276
3277                     return;
3278                  end if;
3279
3280                  <<Continue>> Next_Formal (Formal);
3281               end loop;
3282
3283               --  If Formals left over, also probably an error, skip warning
3284
3285               if Present (Formal) then
3286                  return;
3287               end if;
3288
3289               --  Here we give the warning if something was out of order
3290
3291               if Wrong_Order then
3292                  Error_Msg_N
3293                    ("?P?actuals for this call may be in wrong order", N);
3294               end if;
3295            end;
3296         end;
3297      end Check_Argument_Order;
3298
3299      -------------------------
3300      -- Check_Prefixed_Call --
3301      -------------------------
3302
3303      procedure Check_Prefixed_Call is
3304         Act    : constant Node_Id   := First_Actual (N);
3305         A_Type : constant Entity_Id := Etype (Act);
3306         F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3307         Orig   : constant Node_Id := Original_Node (N);
3308         New_A  : Node_Id;
3309
3310      begin
3311         --  Check whether the call is a prefixed call, with or without
3312         --  additional actuals.
3313
3314         if Nkind (Orig) = N_Selected_Component
3315           or else
3316             (Nkind (Orig) = N_Indexed_Component
3317               and then Nkind (Prefix (Orig)) = N_Selected_Component
3318               and then Is_Entity_Name (Prefix (Prefix (Orig)))
3319               and then Is_Entity_Name (Act)
3320               and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3321         then
3322            if Is_Access_Type (A_Type)
3323              and then not Is_Access_Type (F_Type)
3324            then
3325               --  Introduce dereference on object in prefix
3326
3327               New_A :=
3328                 Make_Explicit_Dereference (Sloc (Act),
3329                   Prefix => Relocate_Node (Act));
3330               Rewrite (Act, New_A);
3331               Analyze (Act);
3332
3333            elsif Is_Access_Type (F_Type)
3334              and then not Is_Access_Type (A_Type)
3335            then
3336               --  Introduce an implicit 'Access in prefix
3337
3338               if not Is_Aliased_View (Act) then
3339                  Error_Msg_NE
3340                    ("object in prefixed call to& must be aliased "
3341                     & "(RM 4.1.3 (13 1/2))",
3342                    Prefix (Act), Nam);
3343               end if;
3344
3345               Rewrite (Act,
3346                 Make_Attribute_Reference (Loc,
3347                   Attribute_Name => Name_Access,
3348                   Prefix         => Relocate_Node (Act)));
3349            end if;
3350
3351            Analyze (Act);
3352         end if;
3353      end Check_Prefixed_Call;
3354
3355      --------------------
3356      -- Insert_Default --
3357      --------------------
3358
3359      procedure Insert_Default is
3360         Actval : Node_Id;
3361         Assoc  : Node_Id;
3362
3363      begin
3364         --  Missing argument in call, nothing to insert
3365
3366         if No (Default_Value (F)) then
3367            return;
3368
3369         else
3370            --  Note that we do a full New_Copy_Tree, so that any associated
3371            --  Itypes are properly copied. This may not be needed any more,
3372            --  but it does no harm as a safety measure. Defaults of a generic
3373            --  formal may be out of bounds of the corresponding actual (see
3374            --  cc1311b) and an additional check may be required.
3375
3376            Actval :=
3377              New_Copy_Tree
3378                (Default_Value (F),
3379                 New_Scope => Current_Scope,
3380                 New_Sloc  => Loc);
3381
3382            if Is_Concurrent_Type (Scope (Nam))
3383              and then Has_Discriminants (Scope (Nam))
3384            then
3385               Replace_Actual_Discriminants (N, Actval);
3386            end if;
3387
3388            if Is_Overloadable (Nam)
3389              and then Present (Alias (Nam))
3390            then
3391               if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3392                 and then not Is_Tagged_Type (Etype (F))
3393               then
3394                  --  If default is a real literal, do not introduce a
3395                  --  conversion whose effect may depend on the run-time
3396                  --  size of universal real.
3397
3398                  if Nkind (Actval) = N_Real_Literal then
3399                     Set_Etype (Actval, Base_Type (Etype (F)));
3400                  else
3401                     Actval := Unchecked_Convert_To (Etype (F), Actval);
3402                  end if;
3403               end if;
3404
3405               if Is_Scalar_Type (Etype (F)) then
3406                  Enable_Range_Check (Actval);
3407               end if;
3408
3409               Set_Parent (Actval, N);
3410
3411               --  Resolve aggregates with their base type, to avoid scope
3412               --  anomalies: the subtype was first built in the subprogram
3413               --  declaration, and the current call may be nested.
3414
3415               if Nkind (Actval) = N_Aggregate then
3416                  Analyze_And_Resolve (Actval, Etype (F));
3417               else
3418                  Analyze_And_Resolve (Actval, Etype (Actval));
3419               end if;
3420
3421            else
3422               Set_Parent (Actval, N);
3423
3424               --  See note above concerning aggregates
3425
3426               if Nkind (Actval) = N_Aggregate
3427                 and then Has_Discriminants (Etype (Actval))
3428               then
3429                  Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3430
3431               --  Resolve entities with their own type, which may differ from
3432               --  the type of a reference in a generic context (the view
3433               --  swapping mechanism did not anticipate the re-analysis of
3434               --  default values in calls).
3435
3436               elsif Is_Entity_Name (Actval) then
3437                  Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3438
3439               else
3440                  Analyze_And_Resolve (Actval, Etype (Actval));
3441               end if;
3442            end if;
3443
3444            --  If default is a tag indeterminate function call, propagate tag
3445            --  to obtain proper dispatching.
3446
3447            if Is_Controlling_Formal (F)
3448              and then Nkind (Default_Value (F)) = N_Function_Call
3449            then
3450               Set_Is_Controlling_Actual (Actval);
3451            end if;
3452
3453         end if;
3454
3455         --  If the default expression raises constraint error, then just
3456         --  silently replace it with an N_Raise_Constraint_Error node, since
3457         --  we already gave the warning on the subprogram spec. If node is
3458         --  already a Raise_Constraint_Error leave as is, to prevent loops in
3459         --  the warnings removal machinery.
3460
3461         if Raises_Constraint_Error (Actval)
3462           and then Nkind (Actval) /= N_Raise_Constraint_Error
3463         then
3464            Rewrite (Actval,
3465              Make_Raise_Constraint_Error (Loc,
3466                Reason => CE_Range_Check_Failed));
3467            Set_Raises_Constraint_Error (Actval);
3468            Set_Etype (Actval, Etype (F));
3469         end if;
3470
3471         Assoc :=
3472           Make_Parameter_Association (Loc,
3473             Explicit_Actual_Parameter => Actval,
3474             Selector_Name => Make_Identifier (Loc, Chars (F)));
3475
3476         --  Case of insertion is first named actual
3477
3478         if No (Prev) or else
3479            Nkind (Parent (Prev)) /= N_Parameter_Association
3480         then
3481            Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3482            Set_First_Named_Actual (N, Actval);
3483
3484            if No (Prev) then
3485               if No (Parameter_Associations (N)) then
3486                  Set_Parameter_Associations (N, New_List (Assoc));
3487               else
3488                  Append (Assoc, Parameter_Associations (N));
3489               end if;
3490
3491            else
3492               Insert_After (Prev, Assoc);
3493            end if;
3494
3495         --  Case of insertion is not first named actual
3496
3497         else
3498            Set_Next_Named_Actual
3499              (Assoc, Next_Named_Actual (Parent (Prev)));
3500            Set_Next_Named_Actual (Parent (Prev), Actval);
3501            Append (Assoc, Parameter_Associations (N));
3502         end if;
3503
3504         Mark_Rewrite_Insertion (Assoc);
3505         Mark_Rewrite_Insertion (Actval);
3506
3507         Prev := Actval;
3508      end Insert_Default;
3509
3510      --------------------
3511      -- Property_Error --
3512      --------------------
3513
3514      procedure Property_Error
3515        (Var      : Node_Id;
3516         Var_Id   : Entity_Id;
3517         Prop_Nam : Name_Id)
3518      is
3519      begin
3520         Error_Msg_Name_1 := Prop_Nam;
3521         Error_Msg_NE
3522           ("external variable & with enabled property % cannot appear as "
3523            & "actual in procedure call (SPARK RM 7.1.3(11))", Var, Var_Id);
3524         Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3525      end Property_Error;
3526
3527      -------------------
3528      -- Same_Ancestor --
3529      -------------------
3530
3531      function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3532         FT1 : Entity_Id := T1;
3533         FT2 : Entity_Id := T2;
3534
3535      begin
3536         if Is_Private_Type (T1)
3537           and then Present (Full_View (T1))
3538         then
3539            FT1 := Full_View (T1);
3540         end if;
3541
3542         if Is_Private_Type (T2)
3543           and then Present (Full_View (T2))
3544         then
3545            FT2 := Full_View (T2);
3546         end if;
3547
3548         return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3549      end Same_Ancestor;
3550
3551      --------------------------
3552      -- Static_Concatenation --
3553      --------------------------
3554
3555      function Static_Concatenation (N : Node_Id) return Boolean is
3556      begin
3557         case Nkind (N) is
3558            when N_String_Literal =>
3559               return True;
3560
3561            when N_Op_Concat =>
3562
3563               --  Concatenation is static when both operands are static and
3564               --  the concatenation operator is a predefined one.
3565
3566               return Scope (Entity (N)) = Standard_Standard
3567                        and then
3568                      Static_Concatenation (Left_Opnd (N))
3569                        and then
3570                      Static_Concatenation (Right_Opnd (N));
3571
3572            when others =>
3573               if Is_Entity_Name (N) then
3574                  declare
3575                     Ent : constant Entity_Id := Entity (N);
3576                  begin
3577                     return Ekind (Ent) = E_Constant
3578                              and then Present (Constant_Value (Ent))
3579                              and then
3580                                Is_OK_Static_Expression (Constant_Value (Ent));
3581                  end;
3582
3583               else
3584                  return False;
3585               end if;
3586         end case;
3587      end Static_Concatenation;
3588
3589   --  Start of processing for Resolve_Actuals
3590
3591   begin
3592      Check_Argument_Order;
3593
3594      if Is_Overloadable (Nam)
3595        and then Is_Inherited_Operation (Nam)
3596        and then In_Instance
3597        and then Present (Alias (Nam))
3598        and then Present (Overridden_Operation (Alias (Nam)))
3599      then
3600         Real_Subp := Alias (Nam);
3601      else
3602         Real_Subp := Empty;
3603      end if;
3604
3605      if Present (First_Actual (N)) then
3606         Check_Prefixed_Call;
3607      end if;
3608
3609      A := First_Actual (N);
3610      F := First_Formal (Nam);
3611
3612      if Present (Real_Subp) then
3613         Real_F := First_Formal (Real_Subp);
3614      end if;
3615
3616      while Present (F) loop
3617         if No (A) and then Needs_No_Actuals (Nam) then
3618            null;
3619
3620         --  If we have an error in any actual or formal, indicated by a type
3621         --  of Any_Type, then abandon resolution attempt, and set result type
3622         --  to Any_Type. Skip this if the actual is a Raise_Expression, whose
3623         --  type is imposed from context.
3624
3625         elsif (Present (A) and then Etype (A) = Any_Type)
3626           or else Etype (F) = Any_Type
3627         then
3628            if Nkind (A) /= N_Raise_Expression then
3629               Set_Etype (N, Any_Type);
3630               return;
3631            end if;
3632         end if;
3633
3634         --  Case where actual is present
3635
3636         --  If the actual is an entity, generate a reference to it now. We
3637         --  do this before the actual is resolved, because a formal of some
3638         --  protected subprogram, or a task discriminant, will be rewritten
3639         --  during expansion, and the source entity reference may be lost.
3640
3641         if Present (A)
3642           and then Is_Entity_Name (A)
3643           and then Comes_From_Source (N)
3644         then
3645            Orig_A := Entity (A);
3646
3647            if Present (Orig_A) then
3648               if Is_Formal (Orig_A)
3649                 and then Ekind (F) /= E_In_Parameter
3650               then
3651                  Generate_Reference (Orig_A, A, 'm');
3652
3653               elsif not Is_Overloaded (A) then
3654                  if Ekind (F) /= E_Out_Parameter then
3655                     Generate_Reference (Orig_A, A);
3656
3657                  --  RM 6.4.1(12): For an out parameter that is passed by
3658                  --  copy, the formal parameter object is created, and:
3659
3660                  --  * For an access type, the formal parameter is initialized
3661                  --    from the value of the actual, without checking that the
3662                  --    value satisfies any constraint, any predicate, or any
3663                  --    exclusion of the null value.
3664
3665                  --  * For a scalar type that has the Default_Value aspect
3666                  --    specified, the formal parameter is initialized from the
3667                  --    value of the actual, without checking that the value
3668                  --    satisfies any constraint or any predicate.
3669                  --  I do not understand why this case is included??? this is
3670                  --  not a case where an OUT parameter is treated as IN OUT.
3671
3672                  --  * For a composite type with discriminants or that has
3673                  --    implicit initial values for any subcomponents, the
3674                  --    behavior is as for an in out parameter passed by copy.
3675
3676                  --  Hence for these cases we generate the read reference now
3677                  --  (the write reference will be generated later by
3678                  --   Note_Possible_Modification).
3679
3680                  elsif Is_By_Copy_Type (Etype (F))
3681                    and then
3682                      (Is_Access_Type (Etype (F))
3683                         or else
3684                           (Is_Scalar_Type (Etype (F))
3685                              and then
3686                                Present (Default_Aspect_Value (Etype (F))))
3687                         or else
3688                           (Is_Composite_Type (Etype (F))
3689                              and then (Has_Discriminants (Etype (F))
3690                                         or else Is_Partially_Initialized_Type
3691                                                   (Etype (F)))))
3692                  then
3693                     Generate_Reference (Orig_A, A);
3694                  end if;
3695               end if;
3696            end if;
3697         end if;
3698
3699         if Present (A)
3700           and then (Nkind (Parent (A)) /= N_Parameter_Association
3701                      or else Chars (Selector_Name (Parent (A))) = Chars (F))
3702         then
3703            --  If style checking mode on, check match of formal name
3704
3705            if Style_Check then
3706               if Nkind (Parent (A)) = N_Parameter_Association then
3707                  Check_Identifier (Selector_Name (Parent (A)), F);
3708               end if;
3709            end if;
3710
3711            --  If the formal is Out or In_Out, do not resolve and expand the
3712            --  conversion, because it is subsequently expanded into explicit
3713            --  temporaries and assignments. However, the object of the
3714            --  conversion can be resolved. An exception is the case of tagged
3715            --  type conversion with a class-wide actual. In that case we want
3716            --  the tag check to occur and no temporary will be needed (no
3717            --  representation change can occur) and the parameter is passed by
3718            --  reference, so we go ahead and resolve the type conversion.
3719            --  Another exception is the case of reference to component or
3720            --  subcomponent of a bit-packed array, in which case we want to
3721            --  defer expansion to the point the in and out assignments are
3722            --  performed.
3723
3724            if Ekind (F) /= E_In_Parameter
3725              and then Nkind (A) = N_Type_Conversion
3726              and then not Is_Class_Wide_Type (Etype (Expression (A)))
3727            then
3728               if Ekind (F) = E_In_Out_Parameter
3729                 and then Is_Array_Type (Etype (F))
3730               then
3731                  --  In a view conversion, the conversion must be legal in
3732                  --  both directions, and thus both component types must be
3733                  --  aliased, or neither (4.6 (8)).
3734
3735                  --  The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3736                  --  the privacy requirement should not apply to generic
3737                  --  types, and should be checked in an instance. ARG query
3738                  --  is in order ???
3739
3740                  if Has_Aliased_Components (Etype (Expression (A))) /=
3741                     Has_Aliased_Components (Etype (F))
3742                  then
3743                     Error_Msg_N
3744                       ("both component types in a view conversion must be"
3745                         & " aliased, or neither", A);
3746
3747                  --  Comment here??? what set of cases???
3748
3749                  elsif
3750                     not Same_Ancestor (Etype (F), Etype (Expression (A)))
3751                  then
3752                     --  Check view conv between unrelated by ref array types
3753
3754                     if Is_By_Reference_Type (Etype (F))
3755                        or else Is_By_Reference_Type (Etype (Expression (A)))
3756                     then
3757                        Error_Msg_N
3758                          ("view conversion between unrelated by reference "
3759                           & "array types not allowed (\'A'I-00246)", A);
3760
3761                     --  In Ada 2005 mode, check view conversion component
3762                     --  type cannot be private, tagged, or volatile. Note
3763                     --  that we only apply this to source conversions. The
3764                     --  generated code can contain conversions which are
3765                     --  not subject to this test, and we cannot extract the
3766                     --  component type in such cases since it is not present.
3767
3768                     elsif Comes_From_Source (A)
3769                       and then Ada_Version >= Ada_2005
3770                     then
3771                        declare
3772                           Comp_Type : constant Entity_Id :=
3773                                         Component_Type
3774                                           (Etype (Expression (A)));
3775                        begin
3776                           if (Is_Private_Type (Comp_Type)
3777                                 and then not Is_Generic_Type (Comp_Type))
3778                             or else Is_Tagged_Type (Comp_Type)
3779                             or else Is_Volatile (Comp_Type)
3780                           then
3781                              Error_Msg_N
3782                                ("component type of a view conversion cannot"
3783                                   & " be private, tagged, or volatile"
3784                                   & " (RM 4.6 (24))",
3785                                   Expression (A));
3786                           end if;
3787                        end;
3788                     end if;
3789                  end if;
3790               end if;
3791
3792               --  Resolve expression if conversion is all OK
3793
3794               if (Conversion_OK (A)
3795                    or else Valid_Conversion (A, Etype (A), Expression (A)))
3796                 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3797               then
3798                  Resolve (Expression (A));
3799               end if;
3800
3801            --  If the actual is a function call that returns a limited
3802            --  unconstrained object that needs finalization, create a
3803            --  transient scope for it, so that it can receive the proper
3804            --  finalization list.
3805
3806            elsif Nkind (A) = N_Function_Call
3807              and then Is_Limited_Record (Etype (F))
3808              and then not Is_Constrained (Etype (F))
3809              and then Expander_Active
3810              and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3811            then
3812               Establish_Transient_Scope (A, Sec_Stack => False);
3813               Resolve (A, Etype (F));
3814
3815            --  A small optimization: if one of the actuals is a concatenation
3816            --  create a block around a procedure call to recover stack space.
3817            --  This alleviates stack usage when several procedure calls in
3818            --  the same statement list use concatenation. We do not perform
3819            --  this wrapping for code statements, where the argument is a
3820            --  static string, and we want to preserve warnings involving
3821            --  sequences of such statements.
3822
3823            elsif Nkind (A) = N_Op_Concat
3824              and then Nkind (N) = N_Procedure_Call_Statement
3825              and then Expander_Active
3826              and then
3827                not (Is_Intrinsic_Subprogram (Nam)
3828                      and then Chars (Nam) = Name_Asm)
3829              and then not Static_Concatenation (A)
3830            then
3831               Establish_Transient_Scope (A, Sec_Stack => False);
3832               Resolve (A, Etype (F));
3833
3834            else
3835               if Nkind (A) = N_Type_Conversion
3836                 and then Is_Array_Type (Etype (F))
3837                 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3838                 and then
3839                  (Is_Limited_Type (Etype (F))
3840                    or else Is_Limited_Type (Etype (Expression (A))))
3841               then
3842                  Error_Msg_N
3843                    ("conversion between unrelated limited array types "
3844                     & "not allowed ('A'I-00246)", A);
3845
3846                  if Is_Limited_Type (Etype (F)) then
3847                     Explain_Limited_Type (Etype (F), A);
3848                  end if;
3849
3850                  if Is_Limited_Type (Etype (Expression (A))) then
3851                     Explain_Limited_Type (Etype (Expression (A)), A);
3852                  end if;
3853               end if;
3854
3855               --  (Ada 2005: AI-251): If the actual is an allocator whose
3856               --  directly designated type is a class-wide interface, we build
3857               --  an anonymous access type to use it as the type of the
3858               --  allocator. Later, when the subprogram call is expanded, if
3859               --  the interface has a secondary dispatch table the expander
3860               --  will add a type conversion to force the correct displacement
3861               --  of the pointer.
3862
3863               if Nkind (A) = N_Allocator then
3864                  declare
3865                     DDT : constant Entity_Id :=
3866                             Directly_Designated_Type (Base_Type (Etype (F)));
3867
3868                     New_Itype : Entity_Id;
3869
3870                  begin
3871                     if Is_Class_Wide_Type (DDT)
3872                       and then Is_Interface (DDT)
3873                     then
3874                        New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3875                        Set_Etype (New_Itype, Etype (A));
3876                        Set_Directly_Designated_Type
3877                          (New_Itype, Directly_Designated_Type (Etype (A)));
3878                        Set_Etype (A, New_Itype);
3879                     end if;
3880
3881                     --  Ada 2005, AI-162:If the actual is an allocator, the
3882                     --  innermost enclosing statement is the master of the
3883                     --  created object. This needs to be done with expansion
3884                     --  enabled only, otherwise the transient scope will not
3885                     --  be removed in the expansion of the wrapped construct.
3886
3887                     if (Is_Controlled (DDT) or else Has_Task (DDT))
3888                       and then Expander_Active
3889                     then
3890                        Establish_Transient_Scope (A, Sec_Stack => False);
3891                     end if;
3892                  end;
3893
3894                  if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3895                     Check_Restriction (No_Access_Parameter_Allocators, A);
3896                  end if;
3897               end if;
3898
3899               --  (Ada 2005): The call may be to a primitive operation of a
3900               --  tagged synchronized type, declared outside of the type. In
3901               --  this case the controlling actual must be converted to its
3902               --  corresponding record type, which is the formal type. The
3903               --  actual may be a subtype, either because of a constraint or
3904               --  because it is a generic actual, so use base type to locate
3905               --  concurrent type.
3906
3907               F_Typ := Base_Type (Etype (F));
3908
3909               if Is_Tagged_Type (F_Typ)
3910                 and then (Is_Concurrent_Type (F_Typ)
3911                            or else Is_Concurrent_Record_Type (F_Typ))
3912               then
3913                  --  If the actual is overloaded, look for an interpretation
3914                  --  that has a synchronized type.
3915
3916                  if not Is_Overloaded (A) then
3917                     A_Typ := Base_Type (Etype (A));
3918
3919                  else
3920                     declare
3921                        Index : Interp_Index;
3922                        It    : Interp;
3923
3924                     begin
3925                        Get_First_Interp (A, Index, It);
3926                        while Present (It.Typ) loop
3927                           if Is_Concurrent_Type (It.Typ)
3928                             or else Is_Concurrent_Record_Type (It.Typ)
3929                           then
3930                              A_Typ := Base_Type (It.Typ);
3931                              exit;
3932                           end if;
3933
3934                           Get_Next_Interp (Index, It);
3935                        end loop;
3936                     end;
3937                  end if;
3938
3939                  declare
3940                     Full_A_Typ : Entity_Id;
3941
3942                  begin
3943                     if Present (Full_View (A_Typ)) then
3944                        Full_A_Typ := Base_Type (Full_View (A_Typ));
3945                     else
3946                        Full_A_Typ := A_Typ;
3947                     end if;
3948
3949                     --  Tagged synchronized type (case 1): the actual is a
3950                     --  concurrent type.
3951
3952                     if Is_Concurrent_Type (A_Typ)
3953                       and then Corresponding_Record_Type (A_Typ) = F_Typ
3954                     then
3955                        Rewrite (A,
3956                          Unchecked_Convert_To
3957                            (Corresponding_Record_Type (A_Typ), A));
3958                        Resolve (A, Etype (F));
3959
3960                     --  Tagged synchronized type (case 2): the formal is a
3961                     --  concurrent type.
3962
3963                     elsif Ekind (Full_A_Typ) = E_Record_Type
3964                       and then Present
3965                               (Corresponding_Concurrent_Type (Full_A_Typ))
3966                       and then Is_Concurrent_Type (F_Typ)
3967                       and then Present (Corresponding_Record_Type (F_Typ))
3968                       and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3969                     then
3970                        Resolve (A, Corresponding_Record_Type (F_Typ));
3971
3972                     --  Common case
3973
3974                     else
3975                        Resolve (A, Etype (F));
3976                     end if;
3977                  end;
3978
3979               --  Not a synchronized operation
3980
3981               else
3982                  Resolve (A, Etype (F));
3983               end if;
3984            end if;
3985
3986            A_Typ := Etype (A);
3987            F_Typ := Etype (F);
3988
3989            --  An actual cannot be an untagged formal incomplete type
3990
3991            if Ekind (A_Typ) = E_Incomplete_Type
3992              and then not Is_Tagged_Type (A_Typ)
3993              and then Is_Generic_Type (A_Typ)
3994            then
3995               Error_Msg_N
3996                 ("invalid use of untagged formal incomplete type", A);
3997            end if;
3998
3999            if Comes_From_Source (Original_Node (N))
4000              and then Nkind_In (Original_Node (N), N_Function_Call,
4001                                                    N_Procedure_Call_Statement)
4002            then
4003               --  In formal mode, check that actual parameters matching
4004               --  formals of tagged types are objects (or ancestor type
4005               --  conversions of objects), not general expressions.
4006
4007               if Is_Actual_Tagged_Parameter (A) then
4008                  if Is_SPARK_05_Object_Reference (A) then
4009                     null;
4010
4011                  elsif Nkind (A) = N_Type_Conversion then
4012                     declare
4013                        Operand     : constant Node_Id   := Expression (A);
4014                        Operand_Typ : constant Entity_Id := Etype (Operand);
4015                        Target_Typ  : constant Entity_Id := A_Typ;
4016
4017                     begin
4018                        if not Is_SPARK_05_Object_Reference (Operand) then
4019                           Check_SPARK_05_Restriction
4020                             ("object required", Operand);
4021
4022                        --  In formal mode, the only view conversions are those
4023                        --  involving ancestor conversion of an extended type.
4024
4025                        elsif not
4026                          (Is_Tagged_Type (Target_Typ)
4027                           and then not Is_Class_Wide_Type (Target_Typ)
4028                           and then Is_Tagged_Type (Operand_Typ)
4029                           and then not Is_Class_Wide_Type (Operand_Typ)
4030                           and then Is_Ancestor (Target_Typ, Operand_Typ))
4031                        then
4032                           if Ekind_In
4033                             (F, E_Out_Parameter, E_In_Out_Parameter)
4034                           then
4035                              Check_SPARK_05_Restriction
4036                                ("ancestor conversion is the only permitted "
4037                                 & "view conversion", A);
4038                           else
4039                              Check_SPARK_05_Restriction
4040                                ("ancestor conversion required", A);
4041                           end if;
4042
4043                        else
4044                           null;
4045                        end if;
4046                     end;
4047
4048                  else
4049                     Check_SPARK_05_Restriction ("object required", A);
4050                  end if;
4051
4052               --  In formal mode, the only view conversions are those
4053               --  involving ancestor conversion of an extended type.
4054
4055               elsif Nkind (A) = N_Type_Conversion
4056                 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4057               then
4058                  Check_SPARK_05_Restriction
4059                    ("ancestor conversion is the only permitted view "
4060                     & "conversion", A);
4061               end if;
4062            end if;
4063
4064            --  has warnings suppressed, then we reset Never_Set_In_Source for
4065            --  the calling entity. The reason for this is to catch cases like
4066            --  GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4067            --  uses trickery to modify an IN parameter.
4068
4069            if Ekind (F) = E_In_Parameter
4070              and then Is_Entity_Name (A)
4071              and then Present (Entity (A))
4072              and then Ekind (Entity (A)) = E_Variable
4073              and then Has_Warnings_Off (F_Typ)
4074            then
4075               Set_Never_Set_In_Source (Entity (A), False);
4076            end if;
4077
4078            --  Perform error checks for IN and IN OUT parameters
4079
4080            if Ekind (F) /= E_Out_Parameter then
4081
4082               --  Check unset reference. For scalar parameters, it is clearly
4083               --  wrong to pass an uninitialized value as either an IN or
4084               --  IN-OUT parameter. For composites, it is also clearly an
4085               --  error to pass a completely uninitialized value as an IN
4086               --  parameter, but the case of IN OUT is trickier. We prefer
4087               --  not to give a warning here. For example, suppose there is
4088               --  a routine that sets some component of a record to False.
4089               --  It is perfectly reasonable to make this IN-OUT and allow
4090               --  either initialized or uninitialized records to be passed
4091               --  in this case.
4092
4093               --  For partially initialized composite values, we also avoid
4094               --  warnings, since it is quite likely that we are passing a
4095               --  partially initialized value and only the initialized fields
4096               --  will in fact be read in the subprogram.
4097
4098               if Is_Scalar_Type (A_Typ)
4099                 or else (Ekind (F) = E_In_Parameter
4100                           and then not Is_Partially_Initialized_Type (A_Typ))
4101               then
4102                  Check_Unset_Reference (A);
4103               end if;
4104
4105               --  In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4106               --  actual to a nested call, since this constitutes a reading of
4107               --  the parameter, which is not allowed.
4108
4109               if Ada_Version = Ada_83
4110                 and then Is_Entity_Name (A)
4111                 and then Ekind (Entity (A)) = E_Out_Parameter
4112               then
4113                  Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4114               end if;
4115            end if;
4116
4117            --  Case of OUT or IN OUT parameter
4118
4119            if Ekind (F) /= E_In_Parameter then
4120
4121               --  For an Out parameter, check for useless assignment. Note
4122               --  that we can't set Last_Assignment this early, because we may
4123               --  kill current values in Resolve_Call, and that call would
4124               --  clobber the Last_Assignment field.
4125
4126               --  Note: call Warn_On_Useless_Assignment before doing the check
4127               --  below for Is_OK_Variable_For_Out_Formal so that the setting
4128               --  of Referenced_As_LHS/Referenced_As_Out_Formal properly
4129               --  reflects the last assignment, not this one.
4130
4131               if Ekind (F) = E_Out_Parameter then
4132                  if Warn_On_Modified_As_Out_Parameter (F)
4133                    and then Is_Entity_Name (A)
4134                    and then Present (Entity (A))
4135                    and then Comes_From_Source (N)
4136                  then
4137                     Warn_On_Useless_Assignment (Entity (A), A);
4138                  end if;
4139               end if;
4140
4141               --  Validate the form of the actual. Note that the call to
4142               --  Is_OK_Variable_For_Out_Formal generates the required
4143               --  reference in this case.
4144
4145               --  A call to an initialization procedure for an aggregate
4146               --  component may initialize a nested component of a constant
4147               --  designated object. In this context the object is variable.
4148
4149               if not Is_OK_Variable_For_Out_Formal (A)
4150                 and then not Is_Init_Proc (Nam)
4151               then
4152                  Error_Msg_NE ("actual for& must be a variable", A, F);
4153
4154                  if Is_Subprogram (Current_Scope)
4155                    and then
4156                      (Is_Invariant_Procedure (Current_Scope)
4157                        or else Is_Predicate_Function (Current_Scope))
4158                  then
4159                     Error_Msg_N
4160                       ("function used in predicate cannot "
4161                        & "modify its argument", F);
4162                  end if;
4163               end if;
4164
4165               --  What's the following about???
4166
4167               if Is_Entity_Name (A) then
4168                  Kill_Checks (Entity (A));
4169               else
4170                  Kill_All_Checks;
4171               end if;
4172            end if;
4173
4174            if Etype (A) = Any_Type then
4175               Set_Etype (N, Any_Type);
4176               return;
4177            end if;
4178
4179            --  Apply appropriate constraint/predicate checks for IN [OUT] case
4180
4181            if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4182
4183               --  Apply predicate tests except in certain special cases. Note
4184               --  that it might be more consistent to apply these only when
4185               --  expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4186               --  for the outbound predicate tests ???
4187
4188               if Predicate_Tests_On_Arguments (Nam) then
4189                  Apply_Predicate_Check (A, F_Typ);
4190               end if;
4191
4192               --  Apply required constraint checks
4193
4194               --  Gigi looks at the check flag and uses the appropriate types.
4195               --  For now since one flag is used there is an optimization
4196               --  which might not be done in the IN OUT case since Gigi does
4197               --  not do any analysis. More thought required about this ???
4198
4199               --  In fact is this comment obsolete??? doesn't the expander now
4200               --  generate all these tests anyway???
4201
4202               if Is_Scalar_Type (Etype (A)) then
4203                  Apply_Scalar_Range_Check (A, F_Typ);
4204
4205               elsif Is_Array_Type (Etype (A)) then
4206                  Apply_Length_Check (A, F_Typ);
4207
4208               elsif Is_Record_Type (F_Typ)
4209                 and then Has_Discriminants (F_Typ)
4210                 and then Is_Constrained (F_Typ)
4211                 and then (not Is_Derived_Type (F_Typ)
4212                            or else Comes_From_Source (Nam))
4213               then
4214                  Apply_Discriminant_Check (A, F_Typ);
4215
4216                  --  For view conversions of a discriminated object, apply
4217                  --  check to object itself, the conversion alreay has the
4218                  --  proper type.
4219
4220                  if Nkind (A) = N_Type_Conversion
4221                    and then Is_Constrained (Etype (Expression (A)))
4222                  then
4223                     Apply_Discriminant_Check (Expression (A), F_Typ);
4224                  end if;
4225
4226               elsif Is_Access_Type (F_Typ)
4227                 and then Is_Array_Type (Designated_Type (F_Typ))
4228                 and then Is_Constrained (Designated_Type (F_Typ))
4229               then
4230                  Apply_Length_Check (A, F_Typ);
4231
4232               elsif Is_Access_Type (F_Typ)
4233                 and then Has_Discriminants (Designated_Type (F_Typ))
4234                 and then Is_Constrained (Designated_Type (F_Typ))
4235               then
4236                  Apply_Discriminant_Check (A, F_Typ);
4237
4238               else
4239                  Apply_Range_Check (A, F_Typ);
4240               end if;
4241
4242               --  Ada 2005 (AI-231): Note that the controlling parameter case
4243               --  already existed in Ada 95, which is partially checked
4244               --  elsewhere (see Checks), and we don't want the warning
4245               --  message to differ.
4246
4247               if Is_Access_Type (F_Typ)
4248                 and then Can_Never_Be_Null (F_Typ)
4249                 and then Known_Null (A)
4250               then
4251                  if Is_Controlling_Formal (F) then
4252                     Apply_Compile_Time_Constraint_Error
4253                       (N      => A,
4254                        Msg    => "null value not allowed here??",
4255                        Reason => CE_Access_Check_Failed);
4256
4257                  elsif Ada_Version >= Ada_2005 then
4258                     Apply_Compile_Time_Constraint_Error
4259                       (N      => A,
4260                        Msg    => "(Ada 2005) null not allowed in "
4261                                  & "null-excluding formal??",
4262                        Reason => CE_Null_Not_Allowed);
4263                  end if;
4264               end if;
4265            end if;
4266
4267            --  Checks for OUT parameters and IN OUT parameters
4268
4269            if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4270
4271               --  If there is a type conversion, to make sure the return value
4272               --  meets the constraints of the variable before the conversion.
4273
4274               if Nkind (A) = N_Type_Conversion then
4275                  if Is_Scalar_Type (A_Typ) then
4276                     Apply_Scalar_Range_Check
4277                       (Expression (A), Etype (Expression (A)), A_Typ);
4278                  else
4279                     Apply_Range_Check
4280                       (Expression (A), Etype (Expression (A)), A_Typ);
4281                  end if;
4282
4283               --  If no conversion apply scalar range checks and length checks
4284               --  base on the subtype of the actual (NOT that of the formal).
4285
4286               else
4287                  if Is_Scalar_Type (F_Typ) then
4288                     Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4289                  elsif Is_Array_Type (F_Typ)
4290                    and then Ekind (F) = E_Out_Parameter
4291                  then
4292                     Apply_Length_Check (A, F_Typ);
4293                  else
4294                     Apply_Range_Check (A, A_Typ, F_Typ);
4295                  end if;
4296               end if;
4297
4298               --  Note: we do not apply the predicate checks for the case of
4299               --  OUT and IN OUT parameters. They are instead applied in the
4300               --  Expand_Actuals routine in Exp_Ch6.
4301            end if;
4302
4303            --  An actual associated with an access parameter is implicitly
4304            --  converted to the anonymous access type of the formal and must
4305            --  satisfy the legality checks for access conversions.
4306
4307            if Ekind (F_Typ) = E_Anonymous_Access_Type then
4308               if not Valid_Conversion (A, F_Typ, A) then
4309                  Error_Msg_N
4310                    ("invalid implicit conversion for access parameter", A);
4311               end if;
4312
4313               --  If the actual is an access selected component of a variable,
4314               --  the call may modify its designated object. It is reasonable
4315               --  to treat this as a potential modification of the enclosing
4316               --  record, to prevent spurious warnings that it should be
4317               --  declared as a constant, because intuitively programmers
4318               --  regard the designated subcomponent as part of the record.
4319
4320               if Nkind (A) = N_Selected_Component
4321                 and then Is_Entity_Name (Prefix (A))
4322                 and then not Is_Constant_Object (Entity (Prefix (A)))
4323               then
4324                  Note_Possible_Modification (A, Sure => False);
4325               end if;
4326            end if;
4327
4328            --  Check bad case of atomic/volatile argument (RM C.6(12))
4329
4330            if Is_By_Reference_Type (Etype (F))
4331              and then Comes_From_Source (N)
4332            then
4333               if Is_Atomic_Object (A)
4334                 and then not Is_Atomic (Etype (F))
4335               then
4336                  Error_Msg_NE
4337                    ("cannot pass atomic argument to non-atomic formal&",
4338                     A, F);
4339
4340               elsif Is_Volatile_Object (A)
4341                 and then not Is_Volatile (Etype (F))
4342               then
4343                  Error_Msg_NE
4344                    ("cannot pass volatile argument to non-volatile formal&",
4345                     A, F);
4346               end if;
4347            end if;
4348
4349            --  Check that subprograms don't have improper controlling
4350            --  arguments (RM 3.9.2 (9)).
4351
4352            --  A primitive operation may have an access parameter of an
4353            --  incomplete tagged type, but a dispatching call is illegal
4354            --  if the type is still incomplete.
4355
4356            if Is_Controlling_Formal (F) then
4357               Set_Is_Controlling_Actual (A);
4358
4359               if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4360                  declare
4361                     Desig : constant Entity_Id := Designated_Type (Etype (F));
4362                  begin
4363                     if Ekind (Desig) = E_Incomplete_Type
4364                       and then No (Full_View (Desig))
4365                       and then No (Non_Limited_View (Desig))
4366                     then
4367                        Error_Msg_NE
4368                          ("premature use of incomplete type& "
4369                           & "in dispatching call", A, Desig);
4370                     end if;
4371                  end;
4372               end if;
4373
4374            elsif Nkind (A) = N_Explicit_Dereference then
4375               Validate_Remote_Access_To_Class_Wide_Type (A);
4376            end if;
4377
4378            --  Apply legality rule 3.9.2  (9/1)
4379
4380            if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4381              and then not Is_Class_Wide_Type (F_Typ)
4382              and then not Is_Controlling_Formal (F)
4383              and then not In_Instance
4384            then
4385               Error_Msg_N ("class-wide argument not allowed here!", A);
4386
4387               if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4388                  Error_Msg_Node_2 := F_Typ;
4389                  Error_Msg_NE
4390                    ("& is not a dispatching operation of &!", A, Nam);
4391               end if;
4392
4393            --  Apply the checks described in 3.10.2(27): if the context is a
4394            --  specific access-to-object, the actual cannot be class-wide.
4395            --  Use base type to exclude access_to_subprogram cases.
4396
4397            elsif Is_Access_Type (A_Typ)
4398              and then Is_Access_Type (F_Typ)
4399              and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4400              and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4401                         or else (Nkind (A) = N_Attribute_Reference
4402                                   and then
4403                                     Is_Class_Wide_Type (Etype (Prefix (A)))))
4404              and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4405              and then not Is_Controlling_Formal (F)
4406
4407              --  Disable these checks for call to imported C++ subprograms
4408
4409              and then not
4410                (Is_Entity_Name (Name (N))
4411                  and then Is_Imported (Entity (Name (N)))
4412                  and then Convention (Entity (Name (N))) = Convention_CPP)
4413            then
4414               Error_Msg_N
4415                 ("access to class-wide argument not allowed here!", A);
4416
4417               if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4418                  Error_Msg_Node_2 := Designated_Type (F_Typ);
4419                  Error_Msg_NE
4420                    ("& is not a dispatching operation of &!", A, Nam);
4421               end if;
4422            end if;
4423
4424            Check_Aliased_Parameter;
4425
4426            Eval_Actual (A);
4427
4428            --  If it is a named association, treat the selector_name as a
4429            --  proper identifier, and mark the corresponding entity.
4430
4431            if Nkind (Parent (A)) = N_Parameter_Association
4432
4433              --  Ignore reference in SPARK mode, as it refers to an entity not
4434              --  in scope at the point of reference, so the reference should
4435              --  be ignored for computing effects of subprograms.
4436
4437              and then not GNATprove_Mode
4438            then
4439               --  If subprogram is overridden, use name of formal that
4440               --  is being called.
4441
4442               if Present (Real_Subp) then
4443                  Set_Entity (Selector_Name (Parent (A)), Real_F);
4444                  Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4445
4446               else
4447                  Set_Entity (Selector_Name (Parent (A)), F);
4448                  Generate_Reference (F, Selector_Name (Parent (A)));
4449                  Set_Etype (Selector_Name (Parent (A)), F_Typ);
4450                  Generate_Reference (F_Typ, N, ' ');
4451               end if;
4452            end if;
4453
4454            Prev := A;
4455
4456            if Ekind (F) /= E_Out_Parameter then
4457               Check_Unset_Reference (A);
4458            end if;
4459
4460            --  The following checks are only relevant when SPARK_Mode is on as
4461            --  they are not standard Ada legality rule. Internally generated
4462            --  temporaries are ignored.
4463
4464            if SPARK_Mode = On
4465              and then Comes_From_Source (A)
4466              and then Is_Effectively_Volatile_Object (A)
4467            then
4468               --  An effectively volatile object may act as an actual when the
4469               --  corresponding formal is of a non-scalar effectively volatile
4470               --  type (SPARK RM 7.1.3(12)).
4471
4472               if not Is_Scalar_Type (Etype (F))
4473                 and then Is_Effectively_Volatile (Etype (F))
4474               then
4475                  null;
4476
4477               --  An effectively volatile object may act as an actual in a
4478               --  call to an instance of Unchecked_Conversion.
4479               --  (SPARK RM 7.1.3(12)).
4480
4481               elsif Is_Unchecked_Conversion_Instance (Nam) then
4482                  null;
4483
4484               else
4485                  Error_Msg_N
4486                    ("volatile object cannot act as actual in a call (SPARK "
4487                     & "RM 7.1.3(12))", A);
4488               end if;
4489
4490               --  Detect an external variable with an enabled property that
4491               --  does not match the mode of the corresponding formal in a
4492               --  procedure call. Functions are not considered because they
4493               --  cannot have effectively volatile formal parameters in the
4494               --  first place.
4495
4496               if Ekind (Nam) = E_Procedure
4497                 and then Ekind (F) = E_In_Parameter
4498                 and then Is_Entity_Name (A)
4499                 and then Present (Entity (A))
4500                 and then Ekind (Entity (A)) = E_Variable
4501               then
4502                  A_Id := Entity (A);
4503
4504                  if Async_Readers_Enabled (A_Id) then
4505                     Property_Error (A, A_Id, Name_Async_Readers);
4506                  elsif Effective_Reads_Enabled (A_Id) then
4507                     Property_Error (A, A_Id, Name_Effective_Reads);
4508                  elsif Effective_Writes_Enabled (A_Id) then
4509                     Property_Error (A, A_Id, Name_Effective_Writes);
4510                  end if;
4511               end if;
4512            end if;
4513
4514            --  A formal parameter of a specific tagged type whose related
4515            --  subprogram is subject to pragma Extensions_Visible with value
4516            --  "False" cannot act as an actual in a subprogram with value
4517            --  "True" (SPARK RM 6.1.7(3)).
4518
4519            if Is_EVF_Expression (A)
4520              and then Extensions_Visible_Status (Nam) =
4521                       Extensions_Visible_True
4522            then
4523               Error_Msg_N
4524                 ("formal parameter with Extensions_Visible False cannot act "
4525                  & "as actual parameter", A);
4526               Error_Msg_NE
4527                 ("\subprogram & has Extensions_Visible True", A, Nam);
4528            end if;
4529
4530            --  The actual parameter of a Ghost subprogram whose formal is of
4531            --  mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(13)).
4532
4533            if Comes_From_Source (Nam)
4534              and then Is_Ghost_Entity (Nam)
4535              and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4536              and then Is_Entity_Name (A)
4537              and then Present (Entity (A))
4538              and then not Is_Ghost_Entity (Entity (A))
4539            then
4540               Error_Msg_NE
4541                 ("non-ghost variable & cannot appear as actual in call to "
4542                  & "ghost procedure", A, Entity (A));
4543
4544               if Ekind (F) = E_In_Out_Parameter then
4545                  Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4546               else
4547                  Error_Msg_N ("\corresponding formal has mode OUT", A);
4548               end if;
4549            end if;
4550
4551            Next_Actual (A);
4552
4553         --  Case where actual is not present
4554
4555         else
4556            Insert_Default;
4557         end if;
4558
4559         Next_Formal (F);
4560
4561         if Present (Real_Subp) then
4562            Next_Formal (Real_F);
4563         end if;
4564      end loop;
4565   end Resolve_Actuals;
4566
4567   -----------------------
4568   -- Resolve_Allocator --
4569   -----------------------
4570
4571   procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4572      Desig_T  : constant Entity_Id := Designated_Type (Typ);
4573      E        : constant Node_Id   := Expression (N);
4574      Subtyp   : Entity_Id;
4575      Discrim  : Entity_Id;
4576      Constr   : Node_Id;
4577      Aggr     : Node_Id;
4578      Assoc    : Node_Id := Empty;
4579      Disc_Exp : Node_Id;
4580
4581      procedure Check_Allocator_Discrim_Accessibility
4582        (Disc_Exp  : Node_Id;
4583         Alloc_Typ : Entity_Id);
4584      --  Check that accessibility level associated with an access discriminant
4585      --  initialized in an allocator by the expression Disc_Exp is not deeper
4586      --  than the level of the allocator type Alloc_Typ. An error message is
4587      --  issued if this condition is violated. Specialized checks are done for
4588      --  the cases of a constraint expression which is an access attribute or
4589      --  an access discriminant.
4590
4591      function In_Dispatching_Context return Boolean;
4592      --  If the allocator is an actual in a call, it is allowed to be class-
4593      --  wide when the context is not because it is a controlling actual.
4594
4595      -------------------------------------------
4596      -- Check_Allocator_Discrim_Accessibility --
4597      -------------------------------------------
4598
4599      procedure Check_Allocator_Discrim_Accessibility
4600        (Disc_Exp  : Node_Id;
4601         Alloc_Typ : Entity_Id)
4602      is
4603      begin
4604         if Type_Access_Level (Etype (Disc_Exp)) >
4605            Deepest_Type_Access_Level (Alloc_Typ)
4606         then
4607            Error_Msg_N
4608              ("operand type has deeper level than allocator type", Disc_Exp);
4609
4610         --  When the expression is an Access attribute the level of the prefix
4611         --  object must not be deeper than that of the allocator's type.
4612
4613         elsif Nkind (Disc_Exp) = N_Attribute_Reference
4614           and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4615                      Attribute_Access
4616           and then Object_Access_Level (Prefix (Disc_Exp)) >
4617                      Deepest_Type_Access_Level (Alloc_Typ)
4618         then
4619            Error_Msg_N
4620              ("prefix of attribute has deeper level than allocator type",
4621               Disc_Exp);
4622
4623         --  When the expression is an access discriminant the check is against
4624         --  the level of the prefix object.
4625
4626         elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4627           and then Nkind (Disc_Exp) = N_Selected_Component
4628           and then Object_Access_Level (Prefix (Disc_Exp)) >
4629                      Deepest_Type_Access_Level (Alloc_Typ)
4630         then
4631            Error_Msg_N
4632              ("access discriminant has deeper level than allocator type",
4633               Disc_Exp);
4634
4635         --  All other cases are legal
4636
4637         else
4638            null;
4639         end if;
4640      end Check_Allocator_Discrim_Accessibility;
4641
4642      ----------------------------
4643      -- In_Dispatching_Context --
4644      ----------------------------
4645
4646      function In_Dispatching_Context return Boolean is
4647         Par : constant Node_Id := Parent (N);
4648
4649      begin
4650         return Nkind (Par) in N_Subprogram_Call
4651           and then Is_Entity_Name (Name (Par))
4652           and then Is_Dispatching_Operation (Entity (Name (Par)));
4653      end In_Dispatching_Context;
4654
4655   --  Start of processing for Resolve_Allocator
4656
4657   begin
4658      --  Replace general access with specific type
4659
4660      if Ekind (Etype (N)) = E_Allocator_Type then
4661         Set_Etype (N, Base_Type (Typ));
4662      end if;
4663
4664      if Is_Abstract_Type (Typ) then
4665         Error_Msg_N ("type of allocator cannot be abstract",  N);
4666      end if;
4667
4668      --  For qualified expression, resolve the expression using the given
4669      --  subtype (nothing to do for type mark, subtype indication)
4670
4671      if Nkind (E) = N_Qualified_Expression then
4672         if Is_Class_Wide_Type (Etype (E))
4673           and then not Is_Class_Wide_Type (Desig_T)
4674           and then not In_Dispatching_Context
4675         then
4676            Error_Msg_N
4677              ("class-wide allocator not allowed for this access type", N);
4678         end if;
4679
4680         Resolve (Expression (E), Etype (E));
4681         Check_Non_Static_Context (Expression (E));
4682         Check_Unset_Reference (Expression (E));
4683
4684         --  Allocators generated by the build-in-place expansion mechanism
4685         --  are explicitly marked as coming from source but do not need to be
4686         --  checked for limited initialization. To exclude this case, ensure
4687         --  that the parent of the allocator is a source node.
4688
4689         if Is_Limited_Type (Etype (E))
4690           and then Comes_From_Source (N)
4691           and then Comes_From_Source (Parent (N))
4692           and then not In_Instance_Body
4693         then
4694            if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4695               Error_Msg_N ("initialization not allowed for limited types", N);
4696               Explain_Limited_Type (Etype (E), N);
4697            end if;
4698         end if;
4699
4700         --  A qualified expression requires an exact match of the type.
4701         --  Class-wide matching is not allowed.
4702
4703         if (Is_Class_Wide_Type (Etype (Expression (E)))
4704              or else Is_Class_Wide_Type (Etype (E)))
4705           and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4706         then
4707            Wrong_Type (Expression (E), Etype (E));
4708         end if;
4709
4710         --  Calls to build-in-place functions are not currently supported in
4711         --  allocators for access types associated with a simple storage pool.
4712         --  Supporting such allocators may require passing additional implicit
4713         --  parameters to build-in-place functions (or a significant revision
4714         --  of the current b-i-p implementation to unify the handling for
4715         --  multiple kinds of storage pools). ???
4716
4717         if Is_Limited_View (Desig_T)
4718           and then Nkind (Expression (E)) = N_Function_Call
4719         then
4720            declare
4721               Pool : constant Entity_Id :=
4722                        Associated_Storage_Pool (Root_Type (Typ));
4723            begin
4724               if Present (Pool)
4725                 and then
4726                   Present (Get_Rep_Pragma
4727                              (Etype (Pool), Name_Simple_Storage_Pool_Type))
4728               then
4729                  Error_Msg_N
4730                    ("limited function calls not yet supported in simple "
4731                     & "storage pool allocators", Expression (E));
4732               end if;
4733            end;
4734         end if;
4735
4736         --  A special accessibility check is needed for allocators that
4737         --  constrain access discriminants. The level of the type of the
4738         --  expression used to constrain an access discriminant cannot be
4739         --  deeper than the type of the allocator (in contrast to access
4740         --  parameters, where the level of the actual can be arbitrary).
4741
4742         --  We can't use Valid_Conversion to perform this check because in
4743         --  general the type of the allocator is unrelated to the type of
4744         --  the access discriminant.
4745
4746         if Ekind (Typ) /= E_Anonymous_Access_Type
4747           or else Is_Local_Anonymous_Access (Typ)
4748         then
4749            Subtyp := Entity (Subtype_Mark (E));
4750
4751            Aggr := Original_Node (Expression (E));
4752
4753            if Has_Discriminants (Subtyp)
4754              and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4755            then
4756               Discrim := First_Discriminant (Base_Type (Subtyp));
4757
4758               --  Get the first component expression of the aggregate
4759
4760               if Present (Expressions (Aggr)) then
4761                  Disc_Exp := First (Expressions (Aggr));
4762
4763               elsif Present (Component_Associations (Aggr)) then
4764                  Assoc := First (Component_Associations (Aggr));
4765
4766                  if Present (Assoc) then
4767                     Disc_Exp := Expression (Assoc);
4768                  else
4769                     Disc_Exp := Empty;
4770                  end if;
4771
4772               else
4773                  Disc_Exp := Empty;
4774               end if;
4775
4776               while Present (Discrim) and then Present (Disc_Exp) loop
4777                  if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4778                     Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4779                  end if;
4780
4781                  Next_Discriminant (Discrim);
4782
4783                  if Present (Discrim) then
4784                     if Present (Assoc) then
4785                        Next (Assoc);
4786                        Disc_Exp := Expression (Assoc);
4787
4788                     elsif Present (Next (Disc_Exp)) then
4789                        Next (Disc_Exp);
4790
4791                     else
4792                        Assoc := First (Component_Associations (Aggr));
4793
4794                        if Present (Assoc) then
4795                           Disc_Exp := Expression (Assoc);
4796                        else
4797                           Disc_Exp := Empty;
4798                        end if;
4799                     end if;
4800                  end if;
4801               end loop;
4802            end if;
4803         end if;
4804
4805      --  For a subtype mark or subtype indication, freeze the subtype
4806
4807      else
4808         Freeze_Expression (E);
4809
4810         if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4811            Error_Msg_N
4812              ("initialization required for access-to-constant allocator", N);
4813         end if;
4814
4815         --  A special accessibility check is needed for allocators that
4816         --  constrain access discriminants. The level of the type of the
4817         --  expression used to constrain an access discriminant cannot be
4818         --  deeper than the type of the allocator (in contrast to access
4819         --  parameters, where the level of the actual can be arbitrary).
4820         --  We can't use Valid_Conversion to perform this check because
4821         --  in general the type of the allocator is unrelated to the type
4822         --  of the access discriminant.
4823
4824         if Nkind (Original_Node (E)) = N_Subtype_Indication
4825           and then (Ekind (Typ) /= E_Anonymous_Access_Type
4826                      or else Is_Local_Anonymous_Access (Typ))
4827         then
4828            Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4829
4830            if Has_Discriminants (Subtyp) then
4831               Discrim := First_Discriminant (Base_Type (Subtyp));
4832               Constr := First (Constraints (Constraint (Original_Node (E))));
4833               while Present (Discrim) and then Present (Constr) loop
4834                  if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4835                     if Nkind (Constr) = N_Discriminant_Association then
4836                        Disc_Exp := Original_Node (Expression (Constr));
4837                     else
4838                        Disc_Exp := Original_Node (Constr);
4839                     end if;
4840
4841                     Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4842                  end if;
4843
4844                  Next_Discriminant (Discrim);
4845                  Next (Constr);
4846               end loop;
4847            end if;
4848         end if;
4849      end if;
4850
4851      --  Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4852      --  check that the level of the type of the created object is not deeper
4853      --  than the level of the allocator's access type, since extensions can
4854      --  now occur at deeper levels than their ancestor types. This is a
4855      --  static accessibility level check; a run-time check is also needed in
4856      --  the case of an initialized allocator with a class-wide argument (see
4857      --  Expand_Allocator_Expression).
4858
4859      if Ada_Version >= Ada_2005
4860        and then Is_Class_Wide_Type (Desig_T)
4861      then
4862         declare
4863            Exp_Typ : Entity_Id;
4864
4865         begin
4866            if Nkind (E) = N_Qualified_Expression then
4867               Exp_Typ := Etype (E);
4868            elsif Nkind (E) = N_Subtype_Indication then
4869               Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4870            else
4871               Exp_Typ := Entity (E);
4872            end if;
4873
4874            if Type_Access_Level (Exp_Typ) >
4875                 Deepest_Type_Access_Level (Typ)
4876            then
4877               if In_Instance_Body then
4878                  Error_Msg_Warn := SPARK_Mode /= On;
4879                  Error_Msg_N
4880                    ("type in allocator has deeper level than "
4881                     & "designated class-wide type<<", E);
4882                  Error_Msg_N ("\Program_Error [<<", E);
4883                  Rewrite (N,
4884                    Make_Raise_Program_Error (Sloc (N),
4885                      Reason => PE_Accessibility_Check_Failed));
4886                  Set_Etype (N, Typ);
4887
4888               --  Do not apply Ada 2005 accessibility checks on a class-wide
4889               --  allocator if the type given in the allocator is a formal
4890               --  type. A run-time check will be performed in the instance.
4891
4892               elsif not Is_Generic_Type (Exp_Typ) then
4893                  Error_Msg_N ("type in allocator has deeper level than "
4894                               & "designated class-wide type", E);
4895               end if;
4896            end if;
4897         end;
4898      end if;
4899
4900      --  Check for allocation from an empty storage pool
4901
4902      if No_Pool_Assigned (Typ) then
4903         Error_Msg_N ("allocation from empty storage pool!", N);
4904
4905      --  If the context is an unchecked conversion, as may happen within an
4906      --  inlined subprogram, the allocator is being resolved with its own
4907      --  anonymous type. In that case, if the target type has a specific
4908      --  storage pool, it must be inherited explicitly by the allocator type.
4909
4910      elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4911        and then No (Associated_Storage_Pool (Typ))
4912      then
4913         Set_Associated_Storage_Pool
4914           (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4915      end if;
4916
4917      if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4918         Check_Restriction (No_Anonymous_Allocators, N);
4919      end if;
4920
4921      --  Check that an allocator with task parts isn't for a nested access
4922      --  type when restriction No_Task_Hierarchy applies.
4923
4924      if not Is_Library_Level_Entity (Base_Type (Typ))
4925        and then Has_Task (Base_Type (Desig_T))
4926      then
4927         Check_Restriction (No_Task_Hierarchy, N);
4928      end if;
4929
4930      --  An illegal allocator may be rewritten as a raise Program_Error
4931      --  statement.
4932
4933      if Nkind (N) = N_Allocator then
4934
4935         --  An anonymous access discriminant is the definition of a
4936         --  coextension.
4937
4938         if Ekind (Typ) = E_Anonymous_Access_Type
4939           and then Nkind (Associated_Node_For_Itype (Typ)) =
4940                      N_Discriminant_Specification
4941         then
4942            declare
4943               Discr : constant Entity_Id :=
4944                         Defining_Identifier (Associated_Node_For_Itype (Typ));
4945
4946            begin
4947               Check_Restriction (No_Coextensions, N);
4948
4949               --  Ada 2012 AI05-0052: If the designated type of the allocator
4950               --  is limited, then the allocator shall not be used to define
4951               --  the value of an access discriminant unless the discriminated
4952               --  type is immutably limited.
4953
4954               if Ada_Version >= Ada_2012
4955                 and then Is_Limited_Type (Desig_T)
4956                 and then not Is_Limited_View (Scope (Discr))
4957               then
4958                  Error_Msg_N
4959                    ("only immutably limited types can have anonymous "
4960                     & "access discriminants designating a limited type", N);
4961               end if;
4962            end;
4963
4964            --  Avoid marking an allocator as a dynamic coextension if it is
4965            --  within a static construct.
4966
4967            if not Is_Static_Coextension (N) then
4968               Set_Is_Dynamic_Coextension (N);
4969            end if;
4970
4971         --  Cleanup for potential static coextensions
4972
4973         else
4974            Set_Is_Dynamic_Coextension (N, False);
4975            Set_Is_Static_Coextension  (N, False);
4976         end if;
4977      end if;
4978
4979      --  Report a simple error: if the designated object is a local task,
4980      --  its body has not been seen yet, and its activation will fail an
4981      --  elaboration check.
4982
4983      if Is_Task_Type (Desig_T)
4984        and then Scope (Base_Type (Desig_T)) = Current_Scope
4985        and then Is_Compilation_Unit (Current_Scope)
4986        and then Ekind (Current_Scope) = E_Package
4987        and then not In_Package_Body (Current_Scope)
4988      then
4989         Error_Msg_Warn := SPARK_Mode /= On;
4990         Error_Msg_N ("cannot activate task before body seen<<", N);
4991         Error_Msg_N ("\Program_Error [<<", N);
4992      end if;
4993
4994      --  Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4995      --  type with a task component on a subpool. This action must raise
4996      --  Program_Error at runtime.
4997
4998      if Ada_Version >= Ada_2012
4999        and then Nkind (N) = N_Allocator
5000        and then Present (Subpool_Handle_Name (N))
5001        and then Has_Task (Desig_T)
5002      then
5003         Error_Msg_Warn := SPARK_Mode /= On;
5004         Error_Msg_N ("cannot allocate task on subpool<<", N);
5005         Error_Msg_N ("\Program_Error [<<", N);
5006
5007         Rewrite (N,
5008           Make_Raise_Program_Error (Sloc (N),
5009             Reason => PE_Explicit_Raise));
5010         Set_Etype (N, Typ);
5011      end if;
5012   end Resolve_Allocator;
5013
5014   ---------------------------
5015   -- Resolve_Arithmetic_Op --
5016   ---------------------------
5017
5018   --  Used for resolving all arithmetic operators except exponentiation
5019
5020   procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5021      L   : constant Node_Id := Left_Opnd (N);
5022      R   : constant Node_Id := Right_Opnd (N);
5023      TL  : constant Entity_Id := Base_Type (Etype (L));
5024      TR  : constant Entity_Id := Base_Type (Etype (R));
5025      T   : Entity_Id;
5026      Rop : Node_Id;
5027
5028      B_Typ : constant Entity_Id := Base_Type (Typ);
5029      --  We do the resolution using the base type, because intermediate values
5030      --  in expressions always are of the base type, not a subtype of it.
5031
5032      function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5033      --  Returns True if N is in a context that expects "any real type"
5034
5035      function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5036      --  Return True iff given type is Integer or universal real/integer
5037
5038      procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5039      --  Choose type of integer literal in fixed-point operation to conform
5040      --  to available fixed-point type. T is the type of the other operand,
5041      --  which is needed to determine the expected type of N.
5042
5043      procedure Set_Operand_Type (N : Node_Id);
5044      --  Set operand type to T if universal
5045
5046      -------------------------------
5047      -- Expected_Type_Is_Any_Real --
5048      -------------------------------
5049
5050      function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5051      begin
5052         --  N is the expression after "delta" in a fixed_point_definition;
5053         --  see RM-3.5.9(6):
5054
5055         return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5056                                      N_Decimal_Fixed_Point_Definition,
5057
5058         --  N is one of the bounds in a real_range_specification;
5059         --  see RM-3.5.7(5):
5060
5061                                      N_Real_Range_Specification,
5062
5063         --  N is the expression of a delta_constraint;
5064         --  see RM-J.3(3):
5065
5066                                      N_Delta_Constraint);
5067      end Expected_Type_Is_Any_Real;
5068
5069      -----------------------------
5070      -- Is_Integer_Or_Universal --
5071      -----------------------------
5072
5073      function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5074         T     : Entity_Id;
5075         Index : Interp_Index;
5076         It    : Interp;
5077
5078      begin
5079         if not Is_Overloaded (N) then
5080            T := Etype (N);
5081            return Base_Type (T) = Base_Type (Standard_Integer)
5082              or else T = Universal_Integer
5083              or else T = Universal_Real;
5084         else
5085            Get_First_Interp (N, Index, It);
5086            while Present (It.Typ) loop
5087               if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5088                 or else It.Typ = Universal_Integer
5089                 or else It.Typ = Universal_Real
5090               then
5091                  return True;
5092               end if;
5093
5094               Get_Next_Interp (Index, It);
5095            end loop;
5096         end if;
5097
5098         return False;
5099      end Is_Integer_Or_Universal;
5100
5101      ----------------------------
5102      -- Set_Mixed_Mode_Operand --
5103      ----------------------------
5104
5105      procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5106         Index : Interp_Index;
5107         It    : Interp;
5108
5109      begin
5110         if Universal_Interpretation (N) = Universal_Integer then
5111
5112            --  A universal integer literal is resolved as standard integer
5113            --  except in the case of a fixed-point result, where we leave it
5114            --  as universal (to be handled by Exp_Fixd later on)
5115
5116            if Is_Fixed_Point_Type (T) then
5117               Resolve (N, Universal_Integer);
5118            else
5119               Resolve (N, Standard_Integer);
5120            end if;
5121
5122         elsif Universal_Interpretation (N) = Universal_Real
5123           and then (T = Base_Type (Standard_Integer)
5124                      or else T = Universal_Integer
5125                      or else T = Universal_Real)
5126         then
5127            --  A universal real can appear in a fixed-type context. We resolve
5128            --  the literal with that context, even though this might raise an
5129            --  exception prematurely (the other operand may be zero).
5130
5131            Resolve (N, B_Typ);
5132
5133         elsif Etype (N) = Base_Type (Standard_Integer)
5134           and then T = Universal_Real
5135           and then Is_Overloaded (N)
5136         then
5137            --  Integer arg in mixed-mode operation. Resolve with universal
5138            --  type, in case preference rule must be applied.
5139
5140            Resolve (N, Universal_Integer);
5141
5142         elsif Etype (N) = T
5143           and then B_Typ /= Universal_Fixed
5144         then
5145            --  Not a mixed-mode operation, resolve with context
5146
5147            Resolve (N, B_Typ);
5148
5149         elsif Etype (N) = Any_Fixed then
5150
5151            --  N may itself be a mixed-mode operation, so use context type
5152
5153            Resolve (N, B_Typ);
5154
5155         elsif Is_Fixed_Point_Type (T)
5156           and then B_Typ = Universal_Fixed
5157           and then Is_Overloaded (N)
5158         then
5159            --  Must be (fixed * fixed) operation, operand must have one
5160            --  compatible interpretation.
5161
5162            Resolve (N, Any_Fixed);
5163
5164         elsif Is_Fixed_Point_Type (B_Typ)
5165           and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5166           and then Is_Overloaded (N)
5167         then
5168            --  C * F(X) in a fixed context, where C is a real literal or a
5169            --  fixed-point expression. F must have either a fixed type
5170            --  interpretation or an integer interpretation, but not both.
5171
5172            Get_First_Interp (N, Index, It);
5173            while Present (It.Typ) loop
5174               if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5175                  if Analyzed (N) then
5176                     Error_Msg_N ("ambiguous operand in fixed operation", N);
5177                  else
5178                     Resolve (N, Standard_Integer);
5179                  end if;
5180
5181               elsif Is_Fixed_Point_Type (It.Typ) then
5182                  if Analyzed (N) then
5183                     Error_Msg_N ("ambiguous operand in fixed operation", N);
5184                  else
5185                     Resolve (N, It.Typ);
5186                  end if;
5187               end if;
5188
5189               Get_Next_Interp (Index, It);
5190            end loop;
5191
5192            --  Reanalyze the literal with the fixed type of the context. If
5193            --  context is Universal_Fixed, we are within a conversion, leave
5194            --  the literal as a universal real because there is no usable
5195            --  fixed type, and the target of the conversion plays no role in
5196            --  the resolution.
5197
5198            declare
5199               Op2 : Node_Id;
5200               T2  : Entity_Id;
5201
5202            begin
5203               if N = L then
5204                  Op2 := R;
5205               else
5206                  Op2 := L;
5207               end if;
5208
5209               if B_Typ = Universal_Fixed
5210                  and then Nkind (Op2) = N_Real_Literal
5211               then
5212                  T2 := Universal_Real;
5213               else
5214                  T2 := B_Typ;
5215               end if;
5216
5217               Set_Analyzed (Op2, False);
5218               Resolve (Op2, T2);
5219            end;
5220
5221         else
5222            Resolve (N);
5223         end if;
5224      end Set_Mixed_Mode_Operand;
5225
5226      ----------------------
5227      -- Set_Operand_Type --
5228      ----------------------
5229
5230      procedure Set_Operand_Type (N : Node_Id) is
5231      begin
5232         if Etype (N) = Universal_Integer
5233           or else Etype (N) = Universal_Real
5234         then
5235            Set_Etype (N, T);
5236         end if;
5237      end Set_Operand_Type;
5238
5239   --  Start of processing for Resolve_Arithmetic_Op
5240
5241   begin
5242      if Comes_From_Source (N)
5243        and then Ekind (Entity (N)) = E_Function
5244        and then Is_Imported (Entity (N))
5245        and then Is_Intrinsic_Subprogram (Entity (N))
5246      then
5247         Resolve_Intrinsic_Operator (N, Typ);
5248         return;
5249
5250      --  Special-case for mixed-mode universal expressions or fixed point type
5251      --  operation: each argument is resolved separately. The same treatment
5252      --  is required if one of the operands of a fixed point operation is
5253      --  universal real, since in this case we don't do a conversion to a
5254      --  specific fixed-point type (instead the expander handles the case).
5255
5256      --  Set the type of the node to its universal interpretation because
5257      --  legality checks on an exponentiation operand need the context.
5258
5259      elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5260        and then Present (Universal_Interpretation (L))
5261        and then Present (Universal_Interpretation (R))
5262      then
5263         Set_Etype (N, B_Typ);
5264         Resolve (L, Universal_Interpretation (L));
5265         Resolve (R, Universal_Interpretation (R));
5266
5267      elsif (B_Typ = Universal_Real
5268              or else Etype (N) = Universal_Fixed
5269              or else (Etype (N) = Any_Fixed
5270                        and then Is_Fixed_Point_Type (B_Typ))
5271              or else (Is_Fixed_Point_Type (B_Typ)
5272                        and then (Is_Integer_Or_Universal (L)
5273                                    or else
5274                                  Is_Integer_Or_Universal (R))))
5275        and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5276      then
5277         if TL = Universal_Integer or else TR = Universal_Integer then
5278            Check_For_Visible_Operator (N, B_Typ);
5279         end if;
5280
5281         --  If context is a fixed type and one operand is integer, the other
5282         --  is resolved with the type of the context.
5283
5284         if Is_Fixed_Point_Type (B_Typ)
5285           and then (Base_Type (TL) = Base_Type (Standard_Integer)
5286                      or else TL = Universal_Integer)
5287         then
5288            Resolve (R, B_Typ);
5289            Resolve (L, TL);
5290
5291         elsif Is_Fixed_Point_Type (B_Typ)
5292           and then (Base_Type (TR) = Base_Type (Standard_Integer)
5293                      or else TR = Universal_Integer)
5294         then
5295            Resolve (L, B_Typ);
5296            Resolve (R, TR);
5297
5298         else
5299            Set_Mixed_Mode_Operand (L, TR);
5300            Set_Mixed_Mode_Operand (R, TL);
5301         end if;
5302
5303         --  Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5304         --  multiplying operators from being used when the expected type is
5305         --  also universal_fixed. Note that B_Typ will be Universal_Fixed in
5306         --  some cases where the expected type is actually Any_Real;
5307         --  Expected_Type_Is_Any_Real takes care of that case.
5308
5309         if Etype (N) = Universal_Fixed
5310           or else Etype (N) = Any_Fixed
5311         then
5312            if B_Typ = Universal_Fixed
5313              and then not Expected_Type_Is_Any_Real (N)
5314              and then not Nkind_In (Parent (N), N_Type_Conversion,
5315                                                 N_Unchecked_Type_Conversion)
5316            then
5317               Error_Msg_N ("type cannot be determined from context!", N);
5318               Error_Msg_N ("\explicit conversion to result type required", N);
5319
5320               Set_Etype (L, Any_Type);
5321               Set_Etype (R, Any_Type);
5322
5323            else
5324               if Ada_Version = Ada_83
5325                 and then Etype (N) = Universal_Fixed
5326                 and then not
5327                   Nkind_In (Parent (N), N_Type_Conversion,
5328                                         N_Unchecked_Type_Conversion)
5329               then
5330                  Error_Msg_N
5331                    ("(Ada 83) fixed-point operation needs explicit "
5332                     & "conversion", N);
5333               end if;
5334
5335               --  The expected type is "any real type" in contexts like
5336
5337               --    type T is delta <universal_fixed-expression> ...
5338
5339               --  in which case we need to set the type to Universal_Real
5340               --  so that static expression evaluation will work properly.
5341
5342               if Expected_Type_Is_Any_Real (N) then
5343                  Set_Etype (N, Universal_Real);
5344               else
5345                  Set_Etype (N, B_Typ);
5346               end if;
5347            end if;
5348
5349         elsif Is_Fixed_Point_Type (B_Typ)
5350           and then (Is_Integer_Or_Universal (L)
5351                       or else Nkind (L) = N_Real_Literal
5352                       or else Nkind (R) = N_Real_Literal
5353                       or else Is_Integer_Or_Universal (R))
5354         then
5355            Set_Etype (N, B_Typ);
5356
5357         elsif Etype (N) = Any_Fixed then
5358
5359            --  If no previous errors, this is only possible if one operand is
5360            --  overloaded and the context is universal. Resolve as such.
5361
5362            Set_Etype (N, B_Typ);
5363         end if;
5364
5365      else
5366         if (TL = Universal_Integer or else TL = Universal_Real)
5367               and then
5368            (TR = Universal_Integer or else TR = Universal_Real)
5369         then
5370            Check_For_Visible_Operator (N, B_Typ);
5371         end if;
5372
5373         --  If the context is Universal_Fixed and the operands are also
5374         --  universal fixed, this is an error, unless there is only one
5375         --  applicable fixed_point type (usually Duration).
5376
5377         if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5378            T := Unique_Fixed_Point_Type (N);
5379
5380            if T  = Any_Type then
5381               Set_Etype (N, T);
5382               return;
5383            else
5384               Resolve (L, T);
5385               Resolve (R, T);
5386            end if;
5387
5388         else
5389            Resolve (L, B_Typ);
5390            Resolve (R, B_Typ);
5391         end if;
5392
5393         --  If one of the arguments was resolved to a non-universal type.
5394         --  label the result of the operation itself with the same type.
5395         --  Do the same for the universal argument, if any.
5396
5397         T := Intersect_Types (L, R);
5398         Set_Etype (N, Base_Type (T));
5399         Set_Operand_Type (L);
5400         Set_Operand_Type (R);
5401      end if;
5402
5403      Generate_Operator_Reference (N, Typ);
5404      Analyze_Dimension (N);
5405      Eval_Arithmetic_Op (N);
5406
5407      --  In SPARK, a multiplication or division with operands of fixed point
5408      --  types must be qualified or explicitly converted to identify the
5409      --  result type.
5410
5411      if (Is_Fixed_Point_Type (Etype (L))
5412           or else Is_Fixed_Point_Type (Etype (R)))
5413        and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5414        and then
5415          not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5416      then
5417         Check_SPARK_05_Restriction
5418           ("operation should be qualified or explicitly converted", N);
5419      end if;
5420
5421      --  Set overflow and division checking bit
5422
5423      if Nkind (N) in N_Op then
5424         if not Overflow_Checks_Suppressed (Etype (N)) then
5425            Enable_Overflow_Check (N);
5426         end if;
5427
5428         --  Give warning if explicit division by zero
5429
5430         if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5431           and then not Division_Checks_Suppressed (Etype (N))
5432         then
5433            Rop := Right_Opnd (N);
5434
5435            if Compile_Time_Known_Value (Rop)
5436              and then ((Is_Integer_Type (Etype (Rop))
5437                          and then Expr_Value (Rop) = Uint_0)
5438                         or else
5439                           (Is_Real_Type (Etype (Rop))
5440                             and then Expr_Value_R (Rop) = Ureal_0))
5441            then
5442               --  Specialize the warning message according to the operation.
5443               --  The following warnings are for the case
5444
5445               case Nkind (N) is
5446                  when N_Op_Divide =>
5447
5448                     --  For division, we have two cases, for float division
5449                     --  of an unconstrained float type, on a machine where
5450                     --  Machine_Overflows is false, we don't get an exception
5451                     --  at run-time, but rather an infinity or Nan. The Nan
5452                     --  case is pretty obscure, so just warn about infinities.
5453
5454                     if Is_Floating_Point_Type (Typ)
5455                       and then not Is_Constrained (Typ)
5456                       and then not Machine_Overflows_On_Target
5457                     then
5458                        Error_Msg_N
5459                          ("float division by zero, may generate "
5460                           & "'+'/'- infinity??", Right_Opnd (N));
5461
5462                        --  For all other cases, we get a Constraint_Error
5463
5464                     else
5465                        Apply_Compile_Time_Constraint_Error
5466                          (N, "division by zero??", CE_Divide_By_Zero,
5467                           Loc => Sloc (Right_Opnd (N)));
5468                     end if;
5469
5470                  when N_Op_Rem =>
5471                     Apply_Compile_Time_Constraint_Error
5472                       (N, "rem with zero divisor??", CE_Divide_By_Zero,
5473                        Loc => Sloc (Right_Opnd (N)));
5474
5475                  when N_Op_Mod =>
5476                     Apply_Compile_Time_Constraint_Error
5477                       (N, "mod with zero divisor??", CE_Divide_By_Zero,
5478                        Loc => Sloc (Right_Opnd (N)));
5479
5480                  --  Division by zero can only happen with division, rem,
5481                  --  and mod operations.
5482
5483                  when others =>
5484                     raise Program_Error;
5485               end case;
5486
5487            --  Otherwise just set the flag to check at run time
5488
5489            else
5490               Activate_Division_Check (N);
5491            end if;
5492         end if;
5493
5494         --  If Restriction No_Implicit_Conditionals is active, then it is
5495         --  violated if either operand can be negative for mod, or for rem
5496         --  if both operands can be negative.
5497
5498         if Restriction_Check_Required (No_Implicit_Conditionals)
5499           and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5500         then
5501            declare
5502               Lo : Uint;
5503               Hi : Uint;
5504               OK : Boolean;
5505
5506               LNeg : Boolean;
5507               RNeg : Boolean;
5508               --  Set if corresponding operand might be negative
5509
5510            begin
5511               Determine_Range
5512                 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5513               LNeg := (not OK) or else Lo < 0;
5514
5515               Determine_Range
5516                 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5517               RNeg := (not OK) or else Lo < 0;
5518
5519               --  Check if we will be generating conditionals. There are two
5520               --  cases where that can happen, first for REM, the only case
5521               --  is largest negative integer mod -1, where the division can
5522               --  overflow, but we still have to give the right result. The
5523               --  front end generates a test for this annoying case. Here we
5524               --  just test if both operands can be negative (that's what the
5525               --  expander does, so we match its logic here).
5526
5527               --  The second case is mod where either operand can be negative.
5528               --  In this case, the back end has to generate additional tests.
5529
5530               if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5531                     or else
5532                  (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5533               then
5534                  Check_Restriction (No_Implicit_Conditionals, N);
5535               end if;
5536            end;
5537         end if;
5538      end if;
5539
5540      Check_Unset_Reference (L);
5541      Check_Unset_Reference (R);
5542   end Resolve_Arithmetic_Op;
5543
5544   ------------------
5545   -- Resolve_Call --
5546   ------------------
5547
5548   procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5549      function Same_Or_Aliased_Subprograms
5550        (S : Entity_Id;
5551         E : Entity_Id) return Boolean;
5552      --  Returns True if the subprogram entity S is the same as E or else
5553      --  S is an alias of E.
5554
5555      ---------------------------------
5556      -- Same_Or_Aliased_Subprograms --
5557      ---------------------------------
5558
5559      function Same_Or_Aliased_Subprograms
5560        (S : Entity_Id;
5561         E : Entity_Id) return Boolean
5562      is
5563         Subp_Alias : constant Entity_Id := Alias (S);
5564      begin
5565         return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5566      end Same_Or_Aliased_Subprograms;
5567
5568      --  Local variables
5569
5570      Loc      : constant Source_Ptr := Sloc (N);
5571      Subp     : constant Node_Id    := Name (N);
5572      Body_Id  : Entity_Id;
5573      I        : Interp_Index;
5574      It       : Interp;
5575      Nam      : Entity_Id;
5576      Nam_Decl : Node_Id;
5577      Nam_UA   : Entity_Id;
5578      Norm_OK  : Boolean;
5579      Rtype    : Entity_Id;
5580      Scop     : Entity_Id;
5581
5582   --  Start of processing for Resolve_Call
5583
5584   begin
5585      --  The context imposes a unique interpretation with type Typ on a
5586      --  procedure or function call. Find the entity of the subprogram that
5587      --  yields the expected type, and propagate the corresponding formal
5588      --  constraints on the actuals. The caller has established that an
5589      --  interpretation exists, and emitted an error if not unique.
5590
5591      --  First deal with the case of a call to an access-to-subprogram,
5592      --  dereference made explicit in Analyze_Call.
5593
5594      if Ekind (Etype (Subp)) = E_Subprogram_Type then
5595         if not Is_Overloaded (Subp) then
5596            Nam := Etype (Subp);
5597
5598         else
5599            --  Find the interpretation whose type (a subprogram type) has a
5600            --  return type that is compatible with the context. Analysis of
5601            --  the node has established that one exists.
5602
5603            Nam := Empty;
5604
5605            Get_First_Interp (Subp,  I, It);
5606            while Present (It.Typ) loop
5607               if Covers (Typ, Etype (It.Typ)) then
5608                  Nam := It.Typ;
5609                  exit;
5610               end if;
5611
5612               Get_Next_Interp (I, It);
5613            end loop;
5614
5615            if No (Nam) then
5616               raise Program_Error;
5617            end if;
5618         end if;
5619
5620         --  If the prefix is not an entity, then resolve it
5621
5622         if not Is_Entity_Name (Subp) then
5623            Resolve (Subp, Nam);
5624         end if;
5625
5626         --  For an indirect call, we always invalidate checks, since we do not
5627         --  know whether the subprogram is local or global. Yes we could do
5628         --  better here, e.g. by knowing that there are no local subprograms,
5629         --  but it does not seem worth the effort. Similarly, we kill all
5630         --  knowledge of current constant values.
5631
5632         Kill_Current_Values;
5633
5634      --  If this is a procedure call which is really an entry call, do
5635      --  the conversion of the procedure call to an entry call. Protected
5636      --  operations use the same circuitry because the name in the call
5637      --  can be an arbitrary expression with special resolution rules.
5638
5639      elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5640        or else (Is_Entity_Name (Subp)
5641                  and then Ekind (Entity (Subp)) = E_Entry)
5642      then
5643         Resolve_Entry_Call (N, Typ);
5644         Check_Elab_Call (N);
5645
5646         --  Kill checks and constant values, as above for indirect case
5647         --  Who knows what happens when another task is activated?
5648
5649         Kill_Current_Values;
5650         return;
5651
5652      --  Normal subprogram call with name established in Resolve
5653
5654      elsif not (Is_Type (Entity (Subp))) then
5655         Nam := Entity (Subp);
5656         Set_Entity_With_Checks (Subp, Nam);
5657
5658      --  Otherwise we must have the case of an overloaded call
5659
5660      else
5661         pragma Assert (Is_Overloaded (Subp));
5662
5663         --  Initialize Nam to prevent warning (we know it will be assigned
5664         --  in the loop below, but the compiler does not know that).
5665
5666         Nam := Empty;
5667
5668         Get_First_Interp (Subp,  I, It);
5669         while Present (It.Typ) loop
5670            if Covers (Typ, It.Typ) then
5671               Nam := It.Nam;
5672               Set_Entity_With_Checks (Subp, Nam);
5673               exit;
5674            end if;
5675
5676            Get_Next_Interp (I, It);
5677         end loop;
5678      end if;
5679
5680      if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5681        and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5682        and then Nkind (Subp) /= N_Explicit_Dereference
5683        and then Present (Parameter_Associations (N))
5684      then
5685         --  The prefix is a parameterless function call that returns an access
5686         --  to subprogram. If parameters are present in the current call, add
5687         --  add an explicit dereference. We use the base type here because
5688         --  within an instance these may be subtypes.
5689
5690         --  The dereference is added either in Analyze_Call or here. Should
5691         --  be consolidated ???
5692
5693         Set_Is_Overloaded (Subp, False);
5694         Set_Etype (Subp, Etype (Nam));
5695         Insert_Explicit_Dereference (Subp);
5696         Nam := Designated_Type (Etype (Nam));
5697         Resolve (Subp, Nam);
5698      end if;
5699
5700      --  Check that a call to Current_Task does not occur in an entry body
5701
5702      if Is_RTE (Nam, RE_Current_Task) then
5703         declare
5704            P : Node_Id;
5705
5706         begin
5707            P := N;
5708            loop
5709               P := Parent (P);
5710
5711               --  Exclude calls that occur within the default of a formal
5712               --  parameter of the entry, since those are evaluated outside
5713               --  of the body.
5714
5715               exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5716
5717               if Nkind (P) = N_Entry_Body
5718                 or else (Nkind (P) = N_Subprogram_Body
5719                           and then Is_Entry_Barrier_Function (P))
5720               then
5721                  Rtype := Etype (N);
5722                  Error_Msg_Warn := SPARK_Mode /= On;
5723                  Error_Msg_NE
5724                    ("& should not be used in entry body (RM C.7(17))<<",
5725                     N, Nam);
5726                  Error_Msg_NE ("\Program_Error [<<", N, Nam);
5727                  Rewrite (N,
5728                    Make_Raise_Program_Error (Loc,
5729                      Reason => PE_Current_Task_In_Entry_Body));
5730                  Set_Etype (N, Rtype);
5731                  return;
5732               end if;
5733            end loop;
5734         end;
5735      end if;
5736
5737      --  Check that a procedure call does not occur in the context of the
5738      --  entry call statement of a conditional or timed entry call. Note that
5739      --  the case of a call to a subprogram renaming of an entry will also be
5740      --  rejected. The test for N not being an N_Entry_Call_Statement is
5741      --  defensive, covering the possibility that the processing of entry
5742      --  calls might reach this point due to later modifications of the code
5743      --  above.
5744
5745      if Nkind (Parent (N)) = N_Entry_Call_Alternative
5746        and then Nkind (N) /= N_Entry_Call_Statement
5747        and then Entry_Call_Statement (Parent (N)) = N
5748      then
5749         if Ada_Version < Ada_2005 then
5750            Error_Msg_N ("entry call required in select statement", N);
5751
5752         --  Ada 2005 (AI-345): If a procedure_call_statement is used
5753         --  for a procedure_or_entry_call, the procedure_name or
5754         --  procedure_prefix of the procedure_call_statement shall denote
5755         --  an entry renamed by a procedure, or (a view of) a primitive
5756         --  subprogram of a limited interface whose first parameter is
5757         --  a controlling parameter.
5758
5759         elsif Nkind (N) = N_Procedure_Call_Statement
5760           and then not Is_Renamed_Entry (Nam)
5761           and then not Is_Controlling_Limited_Procedure (Nam)
5762         then
5763            Error_Msg_N
5764             ("entry call or dispatching primitive of interface required", N);
5765         end if;
5766      end if;
5767
5768      --  If the SPARK_05 restriction is active, we are not allowed
5769      --  to have a call to a subprogram before we see its completion.
5770
5771      if not Has_Completion (Nam)
5772        and then Restriction_Check_Required (SPARK_05)
5773
5774        --  Don't flag strange internal calls
5775
5776        and then Comes_From_Source (N)
5777        and then Comes_From_Source (Nam)
5778
5779        --  Only flag calls in extended main source
5780
5781        and then In_Extended_Main_Source_Unit (Nam)
5782        and then In_Extended_Main_Source_Unit (N)
5783
5784        --  Exclude enumeration literals from this processing
5785
5786        and then Ekind (Nam) /= E_Enumeration_Literal
5787      then
5788         Check_SPARK_05_Restriction
5789           ("call to subprogram cannot appear before its body", N);
5790      end if;
5791
5792      --  Check that this is not a call to a protected procedure or entry from
5793      --  within a protected function.
5794
5795      Check_Internal_Protected_Use (N, Nam);
5796
5797      --  Freeze the subprogram name if not in a spec-expression. Note that
5798      --  we freeze procedure calls as well as function calls. Procedure calls
5799      --  are not frozen according to the rules (RM 13.14(14)) because it is
5800      --  impossible to have a procedure call to a non-frozen procedure in
5801      --  pure Ada, but in the code that we generate in the expander, this
5802      --  rule needs extending because we can generate procedure calls that
5803      --  need freezing.
5804
5805      --  In Ada 2012, expression functions may be called within pre/post
5806      --  conditions of subsequent functions or expression functions. Such
5807      --  calls do not freeze when they appear within generated bodies,
5808      --  (including the body of another expression function) which would
5809      --  place the freeze node in the wrong scope. An expression function
5810      --  is frozen in the usual fashion, by the appearance of a real body,
5811      --  or at the end of a declarative part.
5812
5813      if Is_Entity_Name (Subp)
5814        and then not In_Spec_Expression
5815        and then not Is_Expression_Function_Or_Completion (Current_Scope)
5816        and then
5817          (not Is_Expression_Function_Or_Completion (Entity (Subp))
5818            or else Scope (Entity (Subp)) = Current_Scope)
5819      then
5820         Freeze_Expression (Subp);
5821      end if;
5822
5823      --  For a predefined operator, the type of the result is the type imposed
5824      --  by context, except for a predefined operation on universal fixed.
5825      --  Otherwise The type of the call is the type returned by the subprogram
5826      --  being called.
5827
5828      if Is_Predefined_Op (Nam) then
5829         if Etype (N) /= Universal_Fixed then
5830            Set_Etype (N, Typ);
5831         end if;
5832
5833      --  If the subprogram returns an array type, and the context requires the
5834      --  component type of that array type, the node is really an indexing of
5835      --  the parameterless call. Resolve as such. A pathological case occurs
5836      --  when the type of the component is an access to the array type. In
5837      --  this case the call is truly ambiguous.
5838
5839      elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5840        and then
5841          ((Is_Array_Type (Etype (Nam))
5842             and then Covers (Typ, Component_Type (Etype (Nam))))
5843           or else
5844             (Is_Access_Type (Etype (Nam))
5845               and then Is_Array_Type (Designated_Type (Etype (Nam)))
5846               and then
5847                 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
5848      then
5849         declare
5850            Index_Node : Node_Id;
5851            New_Subp   : Node_Id;
5852            Ret_Type   : constant Entity_Id := Etype (Nam);
5853
5854         begin
5855            if Is_Access_Type (Ret_Type)
5856              and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5857            then
5858               Error_Msg_N
5859                 ("cannot disambiguate function call and indexing", N);
5860            else
5861               New_Subp := Relocate_Node (Subp);
5862
5863               --  The called entity may be an explicit dereference, in which
5864               --  case there is no entity to set.
5865
5866               if Nkind (New_Subp) /= N_Explicit_Dereference then
5867                  Set_Entity (Subp, Nam);
5868               end if;
5869
5870               if (Is_Array_Type (Ret_Type)
5871                    and then Component_Type (Ret_Type) /= Any_Type)
5872                 or else
5873                  (Is_Access_Type (Ret_Type)
5874                    and then
5875                      Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5876               then
5877                  if Needs_No_Actuals (Nam) then
5878
5879                     --  Indexed call to a parameterless function
5880
5881                     Index_Node :=
5882                       Make_Indexed_Component (Loc,
5883                         Prefix      =>
5884                           Make_Function_Call (Loc, Name => New_Subp),
5885                         Expressions => Parameter_Associations (N));
5886                  else
5887                     --  An Ada 2005 prefixed call to a primitive operation
5888                     --  whose first parameter is the prefix. This prefix was
5889                     --  prepended to the parameter list, which is actually a
5890                     --  list of indexes. Remove the prefix in order to build
5891                     --  the proper indexed component.
5892
5893                     Index_Node :=
5894                        Make_Indexed_Component (Loc,
5895                          Prefix       =>
5896                            Make_Function_Call (Loc,
5897                               Name                   => New_Subp,
5898                               Parameter_Associations =>
5899                                 New_List
5900                                   (Remove_Head (Parameter_Associations (N)))),
5901                           Expressions => Parameter_Associations (N));
5902                  end if;
5903
5904                  --  Preserve the parenthesis count of the node
5905
5906                  Set_Paren_Count (Index_Node, Paren_Count (N));
5907
5908                  --  Since we are correcting a node classification error made
5909                  --  by the parser, we call Replace rather than Rewrite.
5910
5911                  Replace (N, Index_Node);
5912
5913                  Set_Etype (Prefix (N), Ret_Type);
5914                  Set_Etype (N, Typ);
5915                  Resolve_Indexed_Component (N, Typ);
5916                  Check_Elab_Call (Prefix (N));
5917               end if;
5918            end if;
5919
5920            return;
5921         end;
5922
5923      else
5924         Set_Etype (N, Etype (Nam));
5925      end if;
5926
5927      --  In the case where the call is to an overloaded subprogram, Analyze
5928      --  calls Normalize_Actuals once per overloaded subprogram. Therefore in
5929      --  such a case Normalize_Actuals needs to be called once more to order
5930      --  the actuals correctly. Otherwise the call will have the ordering
5931      --  given by the last overloaded subprogram whether this is the correct
5932      --  one being called or not.
5933
5934      if Is_Overloaded (Subp) then
5935         Normalize_Actuals (N, Nam, False, Norm_OK);
5936         pragma Assert (Norm_OK);
5937      end if;
5938
5939      --  In any case, call is fully resolved now. Reset Overload flag, to
5940      --  prevent subsequent overload resolution if node is analyzed again
5941
5942      Set_Is_Overloaded (Subp, False);
5943      Set_Is_Overloaded (N, False);
5944
5945      --  A Ghost entity must appear in a specific context
5946
5947      if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
5948         Check_Ghost_Context (Nam, N);
5949      end if;
5950
5951      --  If we are calling the current subprogram from immediately within its
5952      --  body, then that is the case where we can sometimes detect cases of
5953      --  infinite recursion statically. Do not try this in case restriction
5954      --  No_Recursion is in effect anyway, and do it only for source calls.
5955
5956      if Comes_From_Source (N) then
5957         Scop := Current_Scope;
5958
5959         --  Check violation of SPARK_05 restriction which does not permit
5960         --  a subprogram body to contain a call to the subprogram directly.
5961
5962         if Restriction_Check_Required (SPARK_05)
5963           and then Same_Or_Aliased_Subprograms (Nam, Scop)
5964         then
5965            Check_SPARK_05_Restriction
5966              ("subprogram may not contain direct call to itself", N);
5967         end if;
5968
5969         --  Issue warning for possible infinite recursion in the absence
5970         --  of the No_Recursion restriction.
5971
5972         if Same_Or_Aliased_Subprograms (Nam, Scop)
5973           and then not Restriction_Active (No_Recursion)
5974           and then Check_Infinite_Recursion (N)
5975         then
5976            --  Here we detected and flagged an infinite recursion, so we do
5977            --  not need to test the case below for further warnings. Also we
5978            --  are all done if we now have a raise SE node.
5979
5980            if Nkind (N) = N_Raise_Storage_Error then
5981               return;
5982            end if;
5983
5984         --  If call is to immediately containing subprogram, then check for
5985         --  the case of a possible run-time detectable infinite recursion.
5986
5987         else
5988            Scope_Loop : while Scop /= Standard_Standard loop
5989               if Same_Or_Aliased_Subprograms (Nam, Scop) then
5990
5991                  --  Although in general case, recursion is not statically
5992                  --  checkable, the case of calling an immediately containing
5993                  --  subprogram is easy to catch.
5994
5995                  Check_Restriction (No_Recursion, N);
5996
5997                  --  If the recursive call is to a parameterless subprogram,
5998                  --  then even if we can't statically detect infinite
5999                  --  recursion, this is pretty suspicious, and we output a
6000                  --  warning. Furthermore, we will try later to detect some
6001                  --  cases here at run time by expanding checking code (see
6002                  --  Detect_Infinite_Recursion in package Exp_Ch6).
6003
6004                  --  If the recursive call is within a handler, do not emit a
6005                  --  warning, because this is a common idiom: loop until input
6006                  --  is correct, catch illegal input in handler and restart.
6007
6008                  if No (First_Formal (Nam))
6009                    and then Etype (Nam) = Standard_Void_Type
6010                    and then not Error_Posted (N)
6011                    and then Nkind (Parent (N)) /= N_Exception_Handler
6012                  then
6013                     --  For the case of a procedure call. We give the message
6014                     --  only if the call is the first statement in a sequence
6015                     --  of statements, or if all previous statements are
6016                     --  simple assignments. This is simply a heuristic to
6017                     --  decrease false positives, without losing too many good
6018                     --  warnings. The idea is that these previous statements
6019                     --  may affect global variables the procedure depends on.
6020                     --  We also exclude raise statements, that may arise from
6021                     --  constraint checks and are probably unrelated to the
6022                     --  intended control flow.
6023
6024                     if Nkind (N) = N_Procedure_Call_Statement
6025                       and then Is_List_Member (N)
6026                     then
6027                        declare
6028                           P : Node_Id;
6029                        begin
6030                           P := Prev (N);
6031                           while Present (P) loop
6032                              if not Nkind_In (P, N_Assignment_Statement,
6033                                                  N_Raise_Constraint_Error)
6034                              then
6035                                 exit Scope_Loop;
6036                              end if;
6037
6038                              Prev (P);
6039                           end loop;
6040                        end;
6041                     end if;
6042
6043                     --  Do not give warning if we are in a conditional context
6044
6045                     declare
6046                        K : constant Node_Kind := Nkind (Parent (N));
6047                     begin
6048                        if (K = N_Loop_Statement
6049                             and then Present (Iteration_Scheme (Parent (N))))
6050                          or else K = N_If_Statement
6051                          or else K = N_Elsif_Part
6052                          or else K = N_Case_Statement_Alternative
6053                        then
6054                           exit Scope_Loop;
6055                        end if;
6056                     end;
6057
6058                     --  Here warning is to be issued
6059
6060                     Set_Has_Recursive_Call (Nam);
6061                     Error_Msg_Warn := SPARK_Mode /= On;
6062                     Error_Msg_N ("possible infinite recursion<<!", N);
6063                     Error_Msg_N ("\Storage_Error ]<<!", N);
6064                  end if;
6065
6066                  exit Scope_Loop;
6067               end if;
6068
6069               Scop := Scope (Scop);
6070            end loop Scope_Loop;
6071         end if;
6072      end if;
6073
6074      --  Check obsolescent reference to Ada.Characters.Handling subprogram
6075
6076      Check_Obsolescent_2005_Entity (Nam, Subp);
6077
6078      --  If subprogram name is a predefined operator, it was given in
6079      --  functional notation. Replace call node with operator node, so
6080      --  that actuals can be resolved appropriately.
6081
6082      if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6083         Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6084         return;
6085
6086      elsif Present (Alias (Nam))
6087        and then Is_Predefined_Op (Alias (Nam))
6088      then
6089         Resolve_Actuals (N, Nam);
6090         Make_Call_Into_Operator (N, Typ, Alias (Nam));
6091         return;
6092      end if;
6093
6094      --  Create a transient scope if the resulting type requires it
6095
6096      --  There are several notable exceptions:
6097
6098      --  a) In init procs, the transient scope overhead is not needed, and is
6099      --  even incorrect when the call is a nested initialization call for a
6100      --  component whose expansion may generate adjust calls. However, if the
6101      --  call is some other procedure call within an initialization procedure
6102      --  (for example a call to Create_Task in the init_proc of the task
6103      --  run-time record) a transient scope must be created around this call.
6104
6105      --  b) Enumeration literal pseudo-calls need no transient scope
6106
6107      --  c) Intrinsic subprograms (Unchecked_Conversion and source info
6108      --  functions) do not use the secondary stack even though the return
6109      --  type may be unconstrained.
6110
6111      --  d) Calls to a build-in-place function, since such functions may
6112      --  allocate their result directly in a target object, and cases where
6113      --  the result does get allocated in the secondary stack are checked for
6114      --  within the specialized Exp_Ch6 procedures for expanding those
6115      --  build-in-place calls.
6116
6117      --  e) If the subprogram is marked Inline_Always, then even if it returns
6118      --  an unconstrained type the call does not require use of the secondary
6119      --  stack. However, inlining will only take place if the body to inline
6120      --  is already present. It may not be available if e.g. the subprogram is
6121      --  declared in a child instance.
6122
6123      --  If this is an initialization call for a type whose construction
6124      --  uses the secondary stack, and it is not a nested call to initialize
6125      --  a component, we do need to create a transient scope for it. We
6126      --  check for this by traversing the type in Check_Initialization_Call.
6127
6128      if Is_Inlined (Nam)
6129        and then Has_Pragma_Inline (Nam)
6130        and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6131        and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6132      then
6133         null;
6134
6135      elsif Ekind (Nam) = E_Enumeration_Literal
6136        or else Is_Build_In_Place_Function (Nam)
6137        or else Is_Intrinsic_Subprogram (Nam)
6138      then
6139         null;
6140
6141      elsif Expander_Active
6142        and then Is_Type (Etype (Nam))
6143        and then Requires_Transient_Scope (Etype (Nam))
6144        and then
6145          (not Within_Init_Proc
6146            or else
6147              (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6148      then
6149         Establish_Transient_Scope (N, Sec_Stack => True);
6150
6151         --  If the call appears within the bounds of a loop, it will
6152         --  be rewritten and reanalyzed, nothing left to do here.
6153
6154         if Nkind (N) /= N_Function_Call then
6155            return;
6156         end if;
6157
6158      elsif Is_Init_Proc (Nam)
6159        and then not Within_Init_Proc
6160      then
6161         Check_Initialization_Call (N, Nam);
6162      end if;
6163
6164      --  A protected function cannot be called within the definition of the
6165      --  enclosing protected type, unless it is part of a pre/postcondition
6166      --  on another protected operation.
6167
6168      if Is_Protected_Type (Scope (Nam))
6169        and then In_Open_Scopes (Scope (Nam))
6170        and then not Has_Completion (Scope (Nam))
6171        and then not In_Spec_Expression
6172      then
6173         Error_Msg_NE
6174           ("& cannot be called before end of protected definition", N, Nam);
6175      end if;
6176
6177      --  Propagate interpretation to actuals, and add default expressions
6178      --  where needed.
6179
6180      if Present (First_Formal (Nam)) then
6181         Resolve_Actuals (N, Nam);
6182
6183      --  Overloaded literals are rewritten as function calls, for purpose of
6184      --  resolution. After resolution, we can replace the call with the
6185      --  literal itself.
6186
6187      elsif Ekind (Nam) = E_Enumeration_Literal then
6188         Copy_Node (Subp, N);
6189         Resolve_Entity_Name (N, Typ);
6190
6191         --  Avoid validation, since it is a static function call
6192
6193         Generate_Reference (Nam, Subp);
6194         return;
6195      end if;
6196
6197      --  If the subprogram is not global, then kill all saved values and
6198      --  checks. This is a bit conservative, since in many cases we could do
6199      --  better, but it is not worth the effort. Similarly, we kill constant
6200      --  values. However we do not need to do this for internal entities
6201      --  (unless they are inherited user-defined subprograms), since they
6202      --  are not in the business of molesting local values.
6203
6204      --  If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6205      --  kill all checks and values for calls to global subprograms. This
6206      --  takes care of the case where an access to a local subprogram is
6207      --  taken, and could be passed directly or indirectly and then called
6208      --  from almost any context.
6209
6210      --  Note: we do not do this step till after resolving the actuals. That
6211      --  way we still take advantage of the current value information while
6212      --  scanning the actuals.
6213
6214      --  We suppress killing values if we are processing the nodes associated
6215      --  with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6216      --  type kills all the values as part of analyzing the code that
6217      --  initializes the dispatch tables.
6218
6219      if Inside_Freezing_Actions = 0
6220        and then (not Is_Library_Level_Entity (Nam)
6221                   or else Suppress_Value_Tracking_On_Call
6222                             (Nearest_Dynamic_Scope (Current_Scope)))
6223        and then (Comes_From_Source (Nam)
6224                   or else (Present (Alias (Nam))
6225                             and then Comes_From_Source (Alias (Nam))))
6226      then
6227         Kill_Current_Values;
6228      end if;
6229
6230      --  If we are warning about unread OUT parameters, this is the place to
6231      --  set Last_Assignment for OUT and IN OUT parameters. We have to do this
6232      --  after the above call to Kill_Current_Values (since that call clears
6233      --  the Last_Assignment field of all local variables).
6234
6235      if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6236        and then Comes_From_Source (N)
6237        and then In_Extended_Main_Source_Unit (N)
6238      then
6239         declare
6240            F : Entity_Id;
6241            A : Node_Id;
6242
6243         begin
6244            F := First_Formal (Nam);
6245            A := First_Actual (N);
6246            while Present (F) and then Present (A) loop
6247               if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6248                 and then Warn_On_Modified_As_Out_Parameter (F)
6249                 and then Is_Entity_Name (A)
6250                 and then Present (Entity (A))
6251                 and then Comes_From_Source (N)
6252                 and then Safe_To_Capture_Value (N, Entity (A))
6253               then
6254                  Set_Last_Assignment (Entity (A), A);
6255               end if;
6256
6257               Next_Formal (F);
6258               Next_Actual (A);
6259            end loop;
6260         end;
6261      end if;
6262
6263      --  If the subprogram is a primitive operation, check whether or not
6264      --  it is a correct dispatching call.
6265
6266      if Is_Overloadable (Nam)
6267        and then Is_Dispatching_Operation (Nam)
6268      then
6269         Check_Dispatching_Call (N);
6270
6271      elsif Ekind (Nam) /= E_Subprogram_Type
6272        and then Is_Abstract_Subprogram (Nam)
6273        and then not In_Instance
6274      then
6275         Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6276      end if;
6277
6278      --  If this is a dispatching call, generate the appropriate reference,
6279      --  for better source navigation in GPS.
6280
6281      if Is_Overloadable (Nam)
6282        and then Present (Controlling_Argument (N))
6283      then
6284         Generate_Reference (Nam, Subp, 'R');
6285
6286      --  Normal case, not a dispatching call: generate a call reference
6287
6288      else
6289         Generate_Reference (Nam, Subp, 's');
6290      end if;
6291
6292      if Is_Intrinsic_Subprogram (Nam) then
6293         Check_Intrinsic_Call (N);
6294      end if;
6295
6296      --  Check for violation of restriction No_Specific_Termination_Handlers
6297      --  and warn on a potentially blocking call to Abort_Task.
6298
6299      if Restriction_Check_Required (No_Specific_Termination_Handlers)
6300        and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6301                    or else
6302                  Is_RTE (Nam, RE_Specific_Handler))
6303      then
6304         Check_Restriction (No_Specific_Termination_Handlers, N);
6305
6306      elsif Is_RTE (Nam, RE_Abort_Task) then
6307         Check_Potentially_Blocking_Operation (N);
6308      end if;
6309
6310      --  A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6311      --  timing event violates restriction No_Relative_Delay (AI-0211). We
6312      --  need to check the second argument to determine whether it is an
6313      --  absolute or relative timing event.
6314
6315      if Restriction_Check_Required (No_Relative_Delay)
6316        and then Is_RTE (Nam, RE_Set_Handler)
6317        and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6318      then
6319         Check_Restriction (No_Relative_Delay, N);
6320      end if;
6321
6322      --  Issue an error for a call to an eliminated subprogram. This routine
6323      --  will not perform the check if the call appears within a default
6324      --  expression.
6325
6326      Check_For_Eliminated_Subprogram (Subp, Nam);
6327
6328      --  In formal mode, the primitive operations of a tagged type or type
6329      --  extension do not include functions that return the tagged type.
6330
6331      if Nkind (N) = N_Function_Call
6332        and then Is_Tagged_Type (Etype (N))
6333        and then Is_Entity_Name (Name (N))
6334        and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6335      then
6336         Check_SPARK_05_Restriction ("function not inherited", N);
6337      end if;
6338
6339      --  Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6340      --  class-wide and the call dispatches on result in a context that does
6341      --  not provide a tag, the call raises Program_Error.
6342
6343      if Nkind (N) = N_Function_Call
6344        and then In_Instance
6345        and then Is_Generic_Actual_Type (Typ)
6346        and then Is_Class_Wide_Type (Typ)
6347        and then Has_Controlling_Result (Nam)
6348        and then Nkind (Parent (N)) = N_Object_Declaration
6349      then
6350         --  Verify that none of the formals are controlling
6351
6352         declare
6353            Call_OK : Boolean := False;
6354            F       : Entity_Id;
6355
6356         begin
6357            F := First_Formal (Nam);
6358            while Present (F) loop
6359               if Is_Controlling_Formal (F) then
6360                  Call_OK := True;
6361                  exit;
6362               end if;
6363
6364               Next_Formal (F);
6365            end loop;
6366
6367            if not Call_OK then
6368               Error_Msg_Warn := SPARK_Mode /= On;
6369               Error_Msg_N ("!cannot determine tag of result<<", N);
6370               Error_Msg_N ("\Program_Error [<<!", N);
6371               Insert_Action (N,
6372                 Make_Raise_Program_Error (Sloc (N),
6373                    Reason => PE_Explicit_Raise));
6374            end if;
6375         end;
6376      end if;
6377
6378      --  Check for calling a function with OUT or IN OUT parameter when the
6379      --  calling context (us right now) is not Ada 2012, so does not allow
6380      --  OUT or IN OUT parameters in function calls. Functions declared in
6381      --  a predefined unit are OK, as they may be called indirectly from a
6382      --  user-declared instantiation.
6383
6384      if Ada_Version < Ada_2012
6385        and then Ekind (Nam) = E_Function
6386        and then Has_Out_Or_In_Out_Parameter (Nam)
6387        and then not In_Predefined_Unit (Nam)
6388      then
6389         Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6390         Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6391      end if;
6392
6393      --  Check the dimensions of the actuals in the call. For function calls,
6394      --  propagate the dimensions from the returned type to N.
6395
6396      Analyze_Dimension_Call (N, Nam);
6397
6398      --  All done, evaluate call and deal with elaboration issues
6399
6400      Eval_Call (N);
6401      Check_Elab_Call (N);
6402
6403      --  In GNATprove mode, expansion is disabled, but we want to inline some
6404      --  subprograms to facilitate formal verification. Indirect calls through
6405      --  a subprogram type or within a generic cannot be inlined. Inlining is
6406      --  performed only for calls subject to SPARK_Mode on.
6407
6408      if GNATprove_Mode
6409        and then SPARK_Mode = On
6410        and then Is_Overloadable (Nam)
6411        and then not Inside_A_Generic
6412      then
6413         Nam_UA   := Ultimate_Alias (Nam);
6414         Nam_Decl := Unit_Declaration_Node (Nam_UA);
6415
6416         if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6417            Body_Id := Corresponding_Body (Nam_Decl);
6418
6419            --  Nothing to do if the subprogram is not eligible for inlining in
6420            --  GNATprove mode.
6421
6422            if not Is_Inlined_Always (Nam_UA)
6423              or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6424            then
6425               null;
6426
6427            --  Calls cannot be inlined inside assertions, as GNATprove treats
6428            --  assertions as logic expressions.
6429
6430            elsif In_Assertion_Expr /= 0 then
6431               Error_Msg_NE ("info: no contextual analysis of &?", N, Nam);
6432               Error_Msg_N ("\call appears in assertion expression", N);
6433               Set_Is_Inlined_Always (Nam_UA, False);
6434
6435            --  Calls cannot be inlined inside default expressions
6436
6437            elsif In_Default_Expr then
6438               Error_Msg_NE ("info: no contextual analysis of &?", N, Nam);
6439               Error_Msg_N ("\call appears in default expression", N);
6440               Set_Is_Inlined_Always (Nam_UA, False);
6441
6442            --  Inlining should not be performed during pre-analysis
6443
6444            elsif Full_Analysis then
6445
6446               --  With the one-pass inlining technique, a call cannot be
6447               --  inlined if the corresponding body has not been seen yet.
6448
6449               if No (Body_Id) then
6450                  Error_Msg_NE
6451                    ("info: no contextual analysis of & (body not seen yet)?",
6452                     N, Nam);
6453                  Set_Is_Inlined_Always (Nam_UA, False);
6454
6455               --  Nothing to do if there is no body to inline, indicating that
6456               --  the subprogram is not suitable for inlining in GNATprove
6457               --  mode.
6458
6459               elsif No (Body_To_Inline (Nam_Decl)) then
6460                  null;
6461
6462               --  Calls cannot be inlined inside potentially unevaluated
6463               --  expressions, as this would create complex actions inside
6464               --  expressions, that are not handled by GNATprove.
6465
6466               elsif Is_Potentially_Unevaluated (N) then
6467                  Error_Msg_NE ("info: no contextual analysis of &?", N, Nam);
6468                  Error_Msg_N
6469                    ("\call appears in potentially unevaluated context", N);
6470                  Set_Is_Inlined_Always (Nam_UA, False);
6471
6472               --  Otherwise, inline the call
6473
6474               else
6475                  Expand_Inlined_Call (N, Nam_UA, Nam);
6476               end if;
6477            end if;
6478         end if;
6479      end if;
6480
6481      Warn_On_Overlapping_Actuals (Nam, N);
6482   end Resolve_Call;
6483
6484   -----------------------------
6485   -- Resolve_Case_Expression --
6486   -----------------------------
6487
6488   procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6489      Alt    : Node_Id;
6490      Is_Dyn : Boolean;
6491
6492   begin
6493      Alt := First (Alternatives (N));
6494      while Present (Alt) loop
6495         Resolve (Expression (Alt), Typ);
6496         Next (Alt);
6497      end loop;
6498
6499      --  Apply RM 4.5.7 (17/3): whether the expression is statically or
6500      --  dynamically tagged must be known statically.
6501
6502      if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6503         Alt := First (Alternatives (N));
6504         Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6505
6506         while Present (Alt) loop
6507            if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6508               Error_Msg_N ("all or none of the dependent expressions "
6509                            & "can be dynamically tagged", N);
6510            end if;
6511
6512            Next (Alt);
6513         end loop;
6514      end if;
6515
6516      Set_Etype (N, Typ);
6517      Eval_Case_Expression (N);
6518   end Resolve_Case_Expression;
6519
6520   -------------------------------
6521   -- Resolve_Character_Literal --
6522   -------------------------------
6523
6524   procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6525      B_Typ : constant Entity_Id := Base_Type (Typ);
6526      C     : Entity_Id;
6527
6528   begin
6529      --  Verify that the character does belong to the type of the context
6530
6531      Set_Etype (N, B_Typ);
6532      Eval_Character_Literal (N);
6533
6534      --  Wide_Wide_Character literals must always be defined, since the set
6535      --  of wide wide character literals is complete, i.e. if a character
6536      --  literal is accepted by the parser, then it is OK for wide wide
6537      --  character (out of range character literals are rejected).
6538
6539      if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6540         return;
6541
6542      --  Always accept character literal for type Any_Character, which
6543      --  occurs in error situations and in comparisons of literals, both
6544      --  of which should accept all literals.
6545
6546      elsif B_Typ = Any_Character then
6547         return;
6548
6549      --  For Standard.Character or a type derived from it, check that the
6550      --  literal is in range.
6551
6552      elsif Root_Type (B_Typ) = Standard_Character then
6553         if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6554            return;
6555         end if;
6556
6557      --  For Standard.Wide_Character or a type derived from it, check that the
6558      --  literal is in range.
6559
6560      elsif Root_Type (B_Typ) = Standard_Wide_Character then
6561         if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6562            return;
6563         end if;
6564
6565      --  For Standard.Wide_Wide_Character or a type derived from it, we
6566      --  know the literal is in range, since the parser checked.
6567
6568      elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6569         return;
6570
6571      --  If the entity is already set, this has already been resolved in a
6572      --  generic context, or comes from expansion. Nothing else to do.
6573
6574      elsif Present (Entity (N)) then
6575         return;
6576
6577      --  Otherwise we have a user defined character type, and we can use the
6578      --  standard visibility mechanisms to locate the referenced entity.
6579
6580      else
6581         C := Current_Entity (N);
6582         while Present (C) loop
6583            if Etype (C) = B_Typ then
6584               Set_Entity_With_Checks (N, C);
6585               Generate_Reference (C, N);
6586               return;
6587            end if;
6588
6589            C := Homonym (C);
6590         end loop;
6591      end if;
6592
6593      --  If we fall through, then the literal does not match any of the
6594      --  entries of the enumeration type. This isn't just a constraint error
6595      --  situation, it is an illegality (see RM 4.2).
6596
6597      Error_Msg_NE
6598        ("character not defined for }", N, First_Subtype (B_Typ));
6599   end Resolve_Character_Literal;
6600
6601   ---------------------------
6602   -- Resolve_Comparison_Op --
6603   ---------------------------
6604
6605   --  Context requires a boolean type, and plays no role in resolution.
6606   --  Processing identical to that for equality operators. The result type is
6607   --  the base type, which matters when pathological subtypes of booleans with
6608   --  limited ranges are used.
6609
6610   procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6611      L : constant Node_Id := Left_Opnd (N);
6612      R : constant Node_Id := Right_Opnd (N);
6613      T : Entity_Id;
6614
6615   begin
6616      --  If this is an intrinsic operation which is not predefined, use the
6617      --  types of its declared arguments to resolve the possibly overloaded
6618      --  operands. Otherwise the operands are unambiguous and specify the
6619      --  expected type.
6620
6621      if Scope (Entity (N)) /= Standard_Standard then
6622         T := Etype (First_Entity (Entity (N)));
6623
6624      else
6625         T := Find_Unique_Type (L, R);
6626
6627         if T = Any_Fixed then
6628            T := Unique_Fixed_Point_Type (L);
6629         end if;
6630      end if;
6631
6632      Set_Etype (N, Base_Type (Typ));
6633      Generate_Reference (T, N, ' ');
6634
6635      --  Skip remaining processing if already set to Any_Type
6636
6637      if T = Any_Type then
6638         return;
6639      end if;
6640
6641      --  Deal with other error cases
6642
6643      if T = Any_String    or else
6644         T = Any_Composite or else
6645         T = Any_Character
6646      then
6647         if T = Any_Character then
6648            Ambiguous_Character (L);
6649         else
6650            Error_Msg_N ("ambiguous operands for comparison", N);
6651         end if;
6652
6653         Set_Etype (N, Any_Type);
6654         return;
6655      end if;
6656
6657      --  Resolve the operands if types OK
6658
6659      Resolve (L, T);
6660      Resolve (R, T);
6661      Check_Unset_Reference (L);
6662      Check_Unset_Reference (R);
6663      Generate_Operator_Reference (N, T);
6664      Check_Low_Bound_Tested (N);
6665
6666      --  In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6667      --  types or array types except String.
6668
6669      if Is_Boolean_Type (T) then
6670         Check_SPARK_05_Restriction
6671           ("comparison is not defined on Boolean type", N);
6672
6673      elsif Is_Array_Type (T)
6674        and then Base_Type (T) /= Standard_String
6675      then
6676         Check_SPARK_05_Restriction
6677           ("comparison is not defined on array types other than String", N);
6678      end if;
6679
6680      --  Check comparison on unordered enumeration
6681
6682      if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6683         Error_Msg_Sloc := Sloc (Etype (L));
6684         Error_Msg_NE
6685           ("comparison on unordered enumeration type& declared#?U?",
6686            N, Etype (L));
6687      end if;
6688
6689      --  Evaluate the relation (note we do this after the above check since
6690      --  this Eval call may change N to True/False.
6691
6692      Analyze_Dimension (N);
6693      Eval_Relational_Op (N);
6694   end Resolve_Comparison_Op;
6695
6696   -----------------------------------------
6697   -- Resolve_Discrete_Subtype_Indication --
6698   -----------------------------------------
6699
6700   procedure Resolve_Discrete_Subtype_Indication
6701     (N   : Node_Id;
6702      Typ : Entity_Id)
6703   is
6704      R : Node_Id;
6705      S : Entity_Id;
6706
6707   begin
6708      Analyze (Subtype_Mark (N));
6709      S := Entity (Subtype_Mark (N));
6710
6711      if Nkind (Constraint (N)) /= N_Range_Constraint then
6712         Error_Msg_N ("expect range constraint for discrete type", N);
6713         Set_Etype (N, Any_Type);
6714
6715      else
6716         R := Range_Expression (Constraint (N));
6717
6718         if R = Error then
6719            return;
6720         end if;
6721
6722         Analyze (R);
6723
6724         if Base_Type (S) /= Base_Type (Typ) then
6725            Error_Msg_NE
6726              ("expect subtype of }", N, First_Subtype (Typ));
6727
6728            --  Rewrite the constraint as a range of Typ
6729            --  to allow compilation to proceed further.
6730
6731            Set_Etype (N, Typ);
6732            Rewrite (Low_Bound (R),
6733              Make_Attribute_Reference (Sloc (Low_Bound (R)),
6734                Prefix         => New_Occurrence_Of (Typ, Sloc (R)),
6735                Attribute_Name => Name_First));
6736            Rewrite (High_Bound (R),
6737              Make_Attribute_Reference (Sloc (High_Bound (R)),
6738                Prefix         => New_Occurrence_Of (Typ, Sloc (R)),
6739                Attribute_Name => Name_First));
6740
6741         else
6742            Resolve (R, Typ);
6743            Set_Etype (N, Etype (R));
6744
6745            --  Additionally, we must check that the bounds are compatible
6746            --  with the given subtype, which might be different from the
6747            --  type of the context.
6748
6749            Apply_Range_Check (R, S);
6750
6751            --  ??? If the above check statically detects a Constraint_Error
6752            --  it replaces the offending bound(s) of the range R with a
6753            --  Constraint_Error node. When the itype which uses these bounds
6754            --  is frozen the resulting call to Duplicate_Subexpr generates
6755            --  a new temporary for the bounds.
6756
6757            --  Unfortunately there are other itypes that are also made depend
6758            --  on these bounds, so when Duplicate_Subexpr is called they get
6759            --  a forward reference to the newly created temporaries and Gigi
6760            --  aborts on such forward references. This is probably sign of a
6761            --  more fundamental problem somewhere else in either the order of
6762            --  itype freezing or the way certain itypes are constructed.
6763
6764            --  To get around this problem we call Remove_Side_Effects right
6765            --  away if either bounds of R are a Constraint_Error.
6766
6767            declare
6768               L : constant Node_Id := Low_Bound (R);
6769               H : constant Node_Id := High_Bound (R);
6770
6771            begin
6772               if Nkind (L) = N_Raise_Constraint_Error then
6773                  Remove_Side_Effects (L);
6774               end if;
6775
6776               if Nkind (H) = N_Raise_Constraint_Error then
6777                  Remove_Side_Effects (H);
6778               end if;
6779            end;
6780
6781            Check_Unset_Reference (Low_Bound  (R));
6782            Check_Unset_Reference (High_Bound (R));
6783         end if;
6784      end if;
6785   end Resolve_Discrete_Subtype_Indication;
6786
6787   -------------------------
6788   -- Resolve_Entity_Name --
6789   -------------------------
6790
6791   --  Used to resolve identifiers and expanded names
6792
6793   procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6794      function Is_Assignment_Or_Object_Expression
6795        (Context : Node_Id;
6796         Expr    : Node_Id) return Boolean;
6797      --  Determine whether node Context denotes an assignment statement or an
6798      --  object declaration whose expression is node Expr.
6799
6800      function Is_OK_Volatile_Context
6801        (Context : Node_Id;
6802         Obj_Ref : Node_Id) return Boolean;
6803      --  Determine whether node Context denotes a "non-interfering context"
6804      --  (as defined in SPARK RM 7.1.3(12)) where volatile reference Obj_Ref
6805      --  can safely reside.
6806
6807      ----------------------------------------
6808      -- Is_Assignment_Or_Object_Expression --
6809      ----------------------------------------
6810
6811      function Is_Assignment_Or_Object_Expression
6812        (Context : Node_Id;
6813         Expr    : Node_Id) return Boolean
6814      is
6815      begin
6816         if Nkind_In (Context, N_Assignment_Statement,
6817                               N_Object_Declaration)
6818           and then Expression (Context) = Expr
6819         then
6820            return True;
6821
6822         --  Check whether a construct that yields a name is the expression of
6823         --  an assignment statement or an object declaration.
6824
6825         elsif (Nkind_In (Context, N_Attribute_Reference,
6826                                   N_Explicit_Dereference,
6827                                   N_Indexed_Component,
6828                                   N_Selected_Component,
6829                                   N_Slice)
6830                  and then Prefix (Context) = Expr)
6831           or else
6832               (Nkind_In (Context, N_Type_Conversion,
6833                                   N_Unchecked_Type_Conversion)
6834                  and then Expression (Context) = Expr)
6835         then
6836            return
6837              Is_Assignment_Or_Object_Expression
6838                (Context => Parent (Context),
6839                 Expr    => Context);
6840
6841         --  Otherwise the context is not an assignment statement or an object
6842         --  declaration.
6843
6844         else
6845            return False;
6846         end if;
6847      end Is_Assignment_Or_Object_Expression;
6848
6849      ----------------------------
6850      -- Is_OK_Volatile_Context --
6851      ----------------------------
6852
6853      function Is_OK_Volatile_Context
6854        (Context : Node_Id;
6855         Obj_Ref : Node_Id) return Boolean
6856      is
6857         function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean;
6858         --  Determine whether an arbitrary node denotes a call to a protected
6859         --  entry, function or procedure in prefixed form where the prefix is
6860         --  Obj_Ref.
6861
6862         function Within_Check (Nod : Node_Id) return Boolean;
6863         --  Determine whether an arbitrary node appears in a check node
6864
6865         function Within_Subprogram_Call (Nod : Node_Id) return Boolean;
6866         --  Determine whether an arbitrary node appears in a procedure call
6867
6868         function Within_Volatile_Function (Id : Entity_Id) return Boolean;
6869         --  Determine whether an arbitrary entity appears in a volatile
6870         --  function.
6871
6872         ---------------------------------
6873         -- Is_Protected_Operation_Call --
6874         ---------------------------------
6875
6876         function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean is
6877            Pref : Node_Id;
6878            Subp : Node_Id;
6879
6880         begin
6881            --  A call to a protected operations retains its selected component
6882            --  form as opposed to other prefixed calls that are transformed in
6883            --  expanded names.
6884
6885            if Nkind (Nod) = N_Selected_Component then
6886               Pref := Prefix (Nod);
6887               Subp := Selector_Name (Nod);
6888
6889               return
6890                 Pref = Obj_Ref
6891                   and then Is_Protected_Type (Etype (Pref))
6892                   and then Is_Entity_Name (Subp)
6893                   and then Ekind_In (Entity (Subp), E_Entry,
6894                                                     E_Entry_Family,
6895                                                     E_Function,
6896                                                     E_Procedure);
6897            else
6898               return False;
6899            end if;
6900         end Is_Protected_Operation_Call;
6901
6902         ------------------
6903         -- Within_Check --
6904         ------------------
6905
6906         function Within_Check (Nod : Node_Id) return Boolean is
6907            Par : Node_Id;
6908
6909         begin
6910            --  Climb the parent chain looking for a check node
6911
6912            Par := Nod;
6913            while Present (Par) loop
6914               if Nkind (Par) in N_Raise_xxx_Error then
6915                  return True;
6916
6917               --  Prevent the search from going too far
6918
6919               elsif Is_Body_Or_Package_Declaration (Par) then
6920                  exit;
6921               end if;
6922
6923               Par := Parent (Par);
6924            end loop;
6925
6926            return False;
6927         end Within_Check;
6928
6929         ----------------------------
6930         -- Within_Subprogram_Call --
6931         ----------------------------
6932
6933         function Within_Subprogram_Call (Nod : Node_Id) return Boolean is
6934            Par : Node_Id;
6935
6936         begin
6937            --  Climb the parent chain looking for a function or procedure call
6938
6939            Par := Nod;
6940            while Present (Par) loop
6941               if Nkind_In (Par, N_Function_Call,
6942                                 N_Procedure_Call_Statement)
6943               then
6944                  return True;
6945
6946               --  Prevent the search from going too far
6947
6948               elsif Is_Body_Or_Package_Declaration (Par) then
6949                  exit;
6950               end if;
6951
6952               Par := Parent (Par);
6953            end loop;
6954
6955            return False;
6956         end Within_Subprogram_Call;
6957
6958         ------------------------------
6959         -- Within_Volatile_Function --
6960         ------------------------------
6961
6962         function Within_Volatile_Function (Id : Entity_Id) return Boolean is
6963            Func_Id : Entity_Id;
6964
6965         begin
6966            --  Traverse the scope stack looking for a [generic] function
6967
6968            Func_Id := Id;
6969            while Present (Func_Id) and then Func_Id /= Standard_Standard loop
6970               if Ekind_In (Func_Id, E_Function, E_Generic_Function) then
6971                  return Is_Volatile_Function (Func_Id);
6972               end if;
6973
6974               Func_Id := Scope (Func_Id);
6975            end loop;
6976
6977            return False;
6978         end Within_Volatile_Function;
6979
6980         --  Local variables
6981
6982         Obj_Id : Entity_Id;
6983
6984      --  Start of processing for Is_OK_Volatile_Context
6985
6986      begin
6987         --  The volatile object appears on either side of an assignment
6988
6989         if Nkind (Context) = N_Assignment_Statement then
6990            return True;
6991
6992         --  The volatile object is part of the initialization expression of
6993         --  another object.
6994
6995         elsif Nkind (Context) = N_Object_Declaration
6996           and then Present (Expression (Context))
6997           and then Expression (Context) = Obj_Ref
6998         then
6999            Obj_Id := Defining_Entity (Context);
7000
7001            --  The volatile object acts as the initialization expression of an
7002            --  extended return statement. This is valid context as long as the
7003            --  function is volatile.
7004
7005            if Is_Return_Object (Obj_Id) then
7006               return Within_Volatile_Function (Obj_Id);
7007
7008            --  Otherwise this is a normal object initialization
7009
7010            else
7011               return True;
7012            end if;
7013
7014         --  The volatile object acts as the name of a renaming declaration
7015
7016         elsif Nkind (Context) = N_Object_Renaming_Declaration
7017           and then Name (Context) = Obj_Ref
7018         then
7019            return True;
7020
7021         --  The volatile object appears as an actual parameter in a call to an
7022         --  instance of Unchecked_Conversion whose result is renamed.
7023
7024         elsif Nkind (Context) = N_Function_Call
7025           and then Is_Entity_Name (Name (Context))
7026           and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
7027           and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
7028         then
7029            return True;
7030
7031         --  The volatile object is actually the prefix in a protected entry,
7032         --  function, or procedure call.
7033
7034         elsif Is_Protected_Operation_Call (Context) then
7035            return True;
7036
7037         --  The volatile object appears as the expression of a simple return
7038         --  statement that applies to a volatile function.
7039
7040         elsif Nkind (Context) = N_Simple_Return_Statement
7041           and then Expression (Context) = Obj_Ref
7042         then
7043            return
7044              Within_Volatile_Function (Return_Statement_Entity (Context));
7045
7046         --  The volatile object appears as the prefix of a name occurring
7047         --  in a non-interfering context.
7048
7049         elsif Nkind_In (Context, N_Attribute_Reference,
7050                                  N_Explicit_Dereference,
7051                                  N_Indexed_Component,
7052                                  N_Selected_Component,
7053                                  N_Slice)
7054           and then Prefix (Context) = Obj_Ref
7055           and then Is_OK_Volatile_Context
7056                      (Context => Parent (Context),
7057                       Obj_Ref => Context)
7058         then
7059            return True;
7060
7061         --  The volatile object appears as the expression of a type conversion
7062         --  occurring in a non-interfering context.
7063
7064         elsif Nkind_In (Context, N_Type_Conversion,
7065                                  N_Unchecked_Type_Conversion)
7066           and then Expression (Context) = Obj_Ref
7067           and then Is_OK_Volatile_Context
7068                      (Context => Parent (Context),
7069                       Obj_Ref => Context)
7070         then
7071            return True;
7072
7073         --  Allow references to volatile objects in various checks. This is
7074         --  not a direct SPARK 2014 requirement.
7075
7076         elsif Within_Check (Context) then
7077            return True;
7078
7079         --  Assume that references to effectively volatile objects that appear
7080         --  as actual parameters in a subprogram call are always legal. A full
7081         --  legality check is done when the actuals are resolved.
7082
7083         elsif Within_Subprogram_Call (Context) then
7084            return True;
7085
7086         --  Otherwise the context is not suitable for an effectively volatile
7087         --  object.
7088
7089         else
7090            return False;
7091         end if;
7092      end Is_OK_Volatile_Context;
7093
7094      --  Local variables
7095
7096      E   : constant Entity_Id := Entity (N);
7097      Par : Node_Id;
7098
7099   --  Start of processing for Resolve_Entity_Name
7100
7101   begin
7102      --  If garbage from errors, set to Any_Type and return
7103
7104      if No (E) and then Total_Errors_Detected /= 0 then
7105         Set_Etype (N, Any_Type);
7106         return;
7107      end if;
7108
7109      --  Replace named numbers by corresponding literals. Note that this is
7110      --  the one case where Resolve_Entity_Name must reset the Etype, since
7111      --  it is currently marked as universal.
7112
7113      if Ekind (E) = E_Named_Integer then
7114         Set_Etype (N, Typ);
7115         Eval_Named_Integer (N);
7116
7117      elsif Ekind (E) = E_Named_Real then
7118         Set_Etype (N, Typ);
7119         Eval_Named_Real (N);
7120
7121      --  For enumeration literals, we need to make sure that a proper style
7122      --  check is done, since such literals are overloaded, and thus we did
7123      --  not do a style check during the first phase of analysis.
7124
7125      elsif Ekind (E) = E_Enumeration_Literal then
7126         Set_Entity_With_Checks (N, E);
7127         Eval_Entity_Name (N);
7128
7129      --  Case of (sub)type name appearing in a context where an expression
7130      --  is expected. This is legal if occurrence is a current instance.
7131      --  See RM 8.6 (17/3).
7132
7133      elsif Is_Type (E) then
7134         if Is_Current_Instance (N) then
7135            null;
7136
7137         --  Any other use is an error
7138
7139         else
7140            Error_Msg_N
7141               ("invalid use of subtype mark in expression or call", N);
7142         end if;
7143
7144      --  Check discriminant use if entity is discriminant in current scope,
7145      --  i.e. discriminant of record or concurrent type currently being
7146      --  analyzed. Uses in corresponding body are unrestricted.
7147
7148      elsif Ekind (E) = E_Discriminant
7149        and then Scope (E) = Current_Scope
7150        and then not Has_Completion (Current_Scope)
7151      then
7152         Check_Discriminant_Use (N);
7153
7154      --  A parameterless generic function cannot appear in a context that
7155      --  requires resolution.
7156
7157      elsif Ekind (E) = E_Generic_Function then
7158         Error_Msg_N ("illegal use of generic function", N);
7159
7160      --  In Ada 83 an OUT parameter cannot be read
7161
7162      elsif Ekind (E) = E_Out_Parameter
7163        and then (Nkind (Parent (N)) in N_Op
7164                   or else Nkind (Parent (N)) = N_Explicit_Dereference
7165                   or else Is_Assignment_Or_Object_Expression
7166                             (Context => Parent (N),
7167                              Expr    => N))
7168      then
7169         if Ada_Version = Ada_83 then
7170            Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7171         end if;
7172
7173      --  In all other cases, just do the possible static evaluation
7174
7175      else
7176         --  A deferred constant that appears in an expression must have a
7177         --  completion, unless it has been removed by in-place expansion of
7178         --  an aggregate. A constant that is a renaming does not need
7179         --  initialization.
7180
7181         if Ekind (E) = E_Constant
7182           and then Comes_From_Source (E)
7183           and then No (Constant_Value (E))
7184           and then Is_Frozen (Etype (E))
7185           and then not In_Spec_Expression
7186           and then not Is_Imported (E)
7187           and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7188         then
7189            if No_Initialization (Parent (E))
7190              or else (Present (Full_View (E))
7191                        and then No_Initialization (Parent (Full_View (E))))
7192            then
7193               null;
7194            else
7195               Error_Msg_N (
7196                 "deferred constant is frozen before completion", N);
7197            end if;
7198         end if;
7199
7200         Eval_Entity_Name (N);
7201      end if;
7202
7203      Par := Parent (N);
7204
7205      --  When the entity appears in a parameter association, retrieve the
7206      --  related subprogram call.
7207
7208      if Nkind (Par) = N_Parameter_Association then
7209         Par := Parent (Par);
7210      end if;
7211
7212      if Comes_From_Source (N) then
7213
7214         --  The following checks are only relevant when SPARK_Mode is on as
7215         --  they are not standard Ada legality rules.
7216
7217         if SPARK_Mode = On then
7218
7219            --  An effectively volatile object subject to enabled properties
7220            --  Async_Writers or Effective_Reads must appear in non-interfering
7221            --  context (SPARK RM 7.1.3(12)).
7222
7223            if Is_Object (E)
7224              and then Is_Effectively_Volatile (E)
7225              and then (Async_Writers_Enabled (E)
7226                         or else Effective_Reads_Enabled (E))
7227              and then not Is_OK_Volatile_Context (Par, N)
7228            then
7229               SPARK_Msg_N
7230                 ("volatile object cannot appear in this context "
7231                  & "(SPARK RM 7.1.3(12))", N);
7232            end if;
7233
7234            --  Check for possible elaboration issues with respect to reads of
7235            --  variables. The act of renaming the variable is not considered a
7236            --  read as it simply establishes an alias.
7237
7238            if Ekind (E) = E_Variable
7239              and then Nkind (Par) /= N_Object_Renaming_Declaration
7240            then
7241               Check_Elab_Call (N);
7242            end if;
7243
7244            --  The variable may eventually become a constituent of a single
7245            --  protected/task type. Record the reference now and verify its
7246            --  legality when analyzing the contract of the variable
7247            --  (SPARK RM 9.3).
7248
7249            if Ekind (E) = E_Variable then
7250               Record_Possible_Part_Of_Reference (E, N);
7251            end if;
7252         end if;
7253
7254         --  A Ghost entity must appear in a specific context
7255
7256         if Is_Ghost_Entity (E) then
7257            Check_Ghost_Context (E, N);
7258         end if;
7259      end if;
7260   end Resolve_Entity_Name;
7261
7262   -------------------
7263   -- Resolve_Entry --
7264   -------------------
7265
7266   procedure Resolve_Entry (Entry_Name : Node_Id) is
7267      Loc    : constant Source_Ptr := Sloc (Entry_Name);
7268      Nam    : Entity_Id;
7269      New_N  : Node_Id;
7270      S      : Entity_Id;
7271      Tsk    : Entity_Id;
7272      E_Name : Node_Id;
7273      Index  : Node_Id;
7274
7275      function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7276      --  If the bounds of the entry family being called depend on task
7277      --  discriminants, build a new index subtype where a discriminant is
7278      --  replaced with the value of the discriminant of the target task.
7279      --  The target task is the prefix of the entry name in the call.
7280
7281      -----------------------
7282      -- Actual_Index_Type --
7283      -----------------------
7284
7285      function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7286         Typ   : constant Entity_Id := Entry_Index_Type (E);
7287         Tsk   : constant Entity_Id := Scope (E);
7288         Lo    : constant Node_Id   := Type_Low_Bound  (Typ);
7289         Hi    : constant Node_Id   := Type_High_Bound (Typ);
7290         New_T : Entity_Id;
7291
7292         function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7293         --  If the bound is given by a discriminant, replace with a reference
7294         --  to the discriminant of the same name in the target task. If the
7295         --  entry name is the target of a requeue statement and the entry is
7296         --  in the current protected object, the bound to be used is the
7297         --  discriminal of the object (see Apply_Range_Checks for details of
7298         --  the transformation).
7299
7300         -----------------------------
7301         -- Actual_Discriminant_Ref --
7302         -----------------------------
7303
7304         function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7305            Typ : constant Entity_Id := Etype (Bound);
7306            Ref : Node_Id;
7307
7308         begin
7309            Remove_Side_Effects (Bound);
7310
7311            if not Is_Entity_Name (Bound)
7312              or else Ekind (Entity (Bound)) /= E_Discriminant
7313            then
7314               return Bound;
7315
7316            elsif Is_Protected_Type (Tsk)
7317              and then In_Open_Scopes (Tsk)
7318              and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7319            then
7320               --  Note: here Bound denotes a discriminant of the corresponding
7321               --  record type tskV, whose discriminal is a formal of the
7322               --  init-proc tskVIP. What we want is the body discriminal,
7323               --  which is associated to the discriminant of the original
7324               --  concurrent type tsk.
7325
7326               return New_Occurrence_Of
7327                        (Find_Body_Discriminal (Entity (Bound)), Loc);
7328
7329            else
7330               Ref :=
7331                 Make_Selected_Component (Loc,
7332                   Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7333                   Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7334               Analyze (Ref);
7335               Resolve (Ref, Typ);
7336               return Ref;
7337            end if;
7338         end Actual_Discriminant_Ref;
7339
7340      --  Start of processing for Actual_Index_Type
7341
7342      begin
7343         if not Has_Discriminants (Tsk)
7344           or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7345         then
7346            return Entry_Index_Type (E);
7347
7348         else
7349            New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7350            Set_Etype        (New_T, Base_Type (Typ));
7351            Set_Size_Info    (New_T, Typ);
7352            Set_RM_Size      (New_T, RM_Size (Typ));
7353            Set_Scalar_Range (New_T,
7354              Make_Range (Sloc (Entry_Name),
7355                Low_Bound  => Actual_Discriminant_Ref (Lo),
7356                High_Bound => Actual_Discriminant_Ref (Hi)));
7357
7358            return New_T;
7359         end if;
7360      end Actual_Index_Type;
7361
7362   --  Start of processing for Resolve_Entry
7363
7364   begin
7365      --  Find name of entry being called, and resolve prefix of name with its
7366      --  own type. The prefix can be overloaded, and the name and signature of
7367      --  the entry must be taken into account.
7368
7369      if Nkind (Entry_Name) = N_Indexed_Component then
7370
7371         --  Case of dealing with entry family within the current tasks
7372
7373         E_Name := Prefix (Entry_Name);
7374
7375      else
7376         E_Name := Entry_Name;
7377      end if;
7378
7379      if Is_Entity_Name (E_Name) then
7380
7381         --  Entry call to an entry (or entry family) in the current task. This
7382         --  is legal even though the task will deadlock. Rewrite as call to
7383         --  current task.
7384
7385         --  This can also be a call to an entry in an enclosing task. If this
7386         --  is a single task, we have to retrieve its name, because the scope
7387         --  of the entry is the task type, not the object. If the enclosing
7388         --  task is a task type, the identity of the task is given by its own
7389         --  self variable.
7390
7391         --  Finally this can be a requeue on an entry of the same task or
7392         --  protected object.
7393
7394         S := Scope (Entity (E_Name));
7395
7396         for J in reverse 0 .. Scope_Stack.Last loop
7397            if Is_Task_Type (Scope_Stack.Table (J).Entity)
7398              and then not Comes_From_Source (S)
7399            then
7400               --  S is an enclosing task or protected object. The concurrent
7401               --  declaration has been converted into a type declaration, and
7402               --  the object itself has an object declaration that follows
7403               --  the type in the same declarative part.
7404
7405               Tsk := Next_Entity (S);
7406               while Etype (Tsk) /= S loop
7407                  Next_Entity (Tsk);
7408               end loop;
7409
7410               S := Tsk;
7411               exit;
7412
7413            elsif S = Scope_Stack.Table (J).Entity then
7414
7415               --  Call to current task. Will be transformed into call to Self
7416
7417               exit;
7418
7419            end if;
7420         end loop;
7421
7422         New_N :=
7423           Make_Selected_Component (Loc,
7424             Prefix => New_Occurrence_Of (S, Loc),
7425             Selector_Name =>
7426               New_Occurrence_Of (Entity (E_Name), Loc));
7427         Rewrite (E_Name, New_N);
7428         Analyze (E_Name);
7429
7430      elsif Nkind (Entry_Name) = N_Selected_Component
7431        and then Is_Overloaded (Prefix (Entry_Name))
7432      then
7433         --  Use the entry name (which must be unique at this point) to find
7434         --  the prefix that returns the corresponding task/protected type.
7435
7436         declare
7437            Pref : constant Node_Id := Prefix (Entry_Name);
7438            Ent  : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7439            I    : Interp_Index;
7440            It   : Interp;
7441
7442         begin
7443            Get_First_Interp (Pref, I, It);
7444            while Present (It.Typ) loop
7445               if Scope (Ent) = It.Typ then
7446                  Set_Etype (Pref, It.Typ);
7447                  exit;
7448               end if;
7449
7450               Get_Next_Interp (I, It);
7451            end loop;
7452         end;
7453      end if;
7454
7455      if Nkind (Entry_Name) = N_Selected_Component then
7456         Resolve (Prefix (Entry_Name));
7457
7458      else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7459         Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7460         Resolve (Prefix (Prefix (Entry_Name)));
7461         Index := First (Expressions (Entry_Name));
7462         Resolve (Index, Entry_Index_Type (Nam));
7463
7464         --  Up to this point the expression could have been the actual in a
7465         --  simple entry call, and be given by a named association.
7466
7467         if Nkind (Index) = N_Parameter_Association then
7468            Error_Msg_N ("expect expression for entry index", Index);
7469         else
7470            Apply_Range_Check (Index, Actual_Index_Type (Nam));
7471         end if;
7472      end if;
7473   end Resolve_Entry;
7474
7475   ------------------------
7476   -- Resolve_Entry_Call --
7477   ------------------------
7478
7479   procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7480      Entry_Name  : constant Node_Id    := Name (N);
7481      Loc         : constant Source_Ptr := Sloc (Entry_Name);
7482      Actuals     : List_Id;
7483      First_Named : Node_Id;
7484      Nam         : Entity_Id;
7485      Norm_OK     : Boolean;
7486      Obj         : Node_Id;
7487      Was_Over    : Boolean;
7488
7489   begin
7490      --  We kill all checks here, because it does not seem worth the effort to
7491      --  do anything better, an entry call is a big operation.
7492
7493      Kill_All_Checks;
7494
7495      --  Processing of the name is similar for entry calls and protected
7496      --  operation calls. Once the entity is determined, we can complete
7497      --  the resolution of the actuals.
7498
7499      --  The selector may be overloaded, in the case of a protected object
7500      --  with overloaded functions. The type of the context is used for
7501      --  resolution.
7502
7503      if Nkind (Entry_Name) = N_Selected_Component
7504        and then Is_Overloaded (Selector_Name (Entry_Name))
7505        and then Typ /= Standard_Void_Type
7506      then
7507         declare
7508            I  : Interp_Index;
7509            It : Interp;
7510
7511         begin
7512            Get_First_Interp (Selector_Name (Entry_Name), I, It);
7513            while Present (It.Typ) loop
7514               if Covers (Typ, It.Typ) then
7515                  Set_Entity (Selector_Name (Entry_Name), It.Nam);
7516                  Set_Etype  (Entry_Name, It.Typ);
7517
7518                  Generate_Reference (It.Typ, N, ' ');
7519               end if;
7520
7521               Get_Next_Interp (I, It);
7522            end loop;
7523         end;
7524      end if;
7525
7526      Resolve_Entry (Entry_Name);
7527
7528      if Nkind (Entry_Name) = N_Selected_Component then
7529
7530         --  Simple entry call
7531
7532         Nam := Entity (Selector_Name (Entry_Name));
7533         Obj := Prefix (Entry_Name);
7534         Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7535
7536      else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7537
7538         --  Call to member of entry family
7539
7540         Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7541         Obj := Prefix (Prefix (Entry_Name));
7542         Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7543      end if;
7544
7545      --  We cannot in general check the maximum depth of protected entry calls
7546      --  at compile time. But we can tell that any protected entry call at all
7547      --  violates a specified nesting depth of zero.
7548
7549      if Is_Protected_Type (Scope (Nam)) then
7550         Check_Restriction (Max_Entry_Queue_Length, N);
7551      end if;
7552
7553      --  Use context type to disambiguate a protected function that can be
7554      --  called without actuals and that returns an array type, and where the
7555      --  argument list may be an indexing of the returned value.
7556
7557      if Ekind (Nam) = E_Function
7558        and then Needs_No_Actuals (Nam)
7559        and then Present (Parameter_Associations (N))
7560        and then
7561          ((Is_Array_Type (Etype (Nam))
7562             and then Covers (Typ, Component_Type (Etype (Nam))))
7563
7564            or else (Is_Access_Type (Etype (Nam))
7565                      and then Is_Array_Type (Designated_Type (Etype (Nam)))
7566                      and then
7567                        Covers
7568                         (Typ,
7569                          Component_Type (Designated_Type (Etype (Nam))))))
7570      then
7571         declare
7572            Index_Node : Node_Id;
7573
7574         begin
7575            Index_Node :=
7576              Make_Indexed_Component (Loc,
7577                Prefix =>
7578                  Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7579                Expressions => Parameter_Associations (N));
7580
7581            --  Since we are correcting a node classification error made by the
7582            --  parser, we call Replace rather than Rewrite.
7583
7584            Replace (N, Index_Node);
7585            Set_Etype (Prefix (N), Etype (Nam));
7586            Set_Etype (N, Typ);
7587            Resolve_Indexed_Component (N, Typ);
7588            return;
7589         end;
7590      end if;
7591
7592      if Ekind_In (Nam, E_Entry, E_Entry_Family)
7593        and then Present (Contract_Wrapper (Nam))
7594        and then Current_Scope /= Contract_Wrapper (Nam)
7595      then
7596         --  Rewrite as call to the precondition wrapper, adding the task
7597         --  object to the list of actuals. If the call is to a member of an
7598         --  entry family, include the index as well.
7599
7600         declare
7601            New_Call    : Node_Id;
7602            New_Actuals : List_Id;
7603
7604         begin
7605            New_Actuals := New_List (Obj);
7606
7607            if Nkind (Entry_Name) = N_Indexed_Component then
7608               Append_To (New_Actuals,
7609                 New_Copy_Tree (First (Expressions (Entry_Name))));
7610            end if;
7611
7612            Append_List (Parameter_Associations (N), New_Actuals);
7613            New_Call :=
7614              Make_Procedure_Call_Statement (Loc,
7615                Name                   =>
7616                  New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7617                Parameter_Associations => New_Actuals);
7618            Rewrite (N, New_Call);
7619
7620            --  Preanalyze and resolve new call. Current procedure is called
7621            --  from Resolve_Call, after which expansion will take place.
7622
7623            Preanalyze_And_Resolve (N);
7624            return;
7625         end;
7626      end if;
7627
7628      --  The operation name may have been overloaded. Order the actuals
7629      --  according to the formals of the resolved entity, and set the return
7630      --  type to that of the operation.
7631
7632      if Was_Over then
7633         Normalize_Actuals (N, Nam, False, Norm_OK);
7634         pragma Assert (Norm_OK);
7635         Set_Etype (N, Etype (Nam));
7636      end if;
7637
7638      Resolve_Actuals (N, Nam);
7639      Check_Internal_Protected_Use (N, Nam);
7640
7641      --  Create a call reference to the entry
7642
7643      Generate_Reference (Nam, Entry_Name, 's');
7644
7645      if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7646         Check_Potentially_Blocking_Operation (N);
7647      end if;
7648
7649      --  Verify that a procedure call cannot masquerade as an entry
7650      --  call where an entry call is expected.
7651
7652      if Ekind (Nam) = E_Procedure then
7653         if Nkind (Parent (N)) = N_Entry_Call_Alternative
7654           and then N = Entry_Call_Statement (Parent (N))
7655         then
7656            Error_Msg_N ("entry call required in select statement", N);
7657
7658         elsif Nkind (Parent (N)) = N_Triggering_Alternative
7659           and then N = Triggering_Statement (Parent (N))
7660         then
7661            Error_Msg_N ("triggering statement cannot be procedure call", N);
7662
7663         elsif Ekind (Scope (Nam)) = E_Task_Type
7664           and then not In_Open_Scopes (Scope (Nam))
7665         then
7666            Error_Msg_N ("task has no entry with this name", Entry_Name);
7667         end if;
7668      end if;
7669
7670      --  After resolution, entry calls and protected procedure calls are
7671      --  changed into entry calls, for expansion. The structure of the node
7672      --  does not change, so it can safely be done in place. Protected
7673      --  function calls must keep their structure because they are
7674      --  subexpressions.
7675
7676      if Ekind (Nam) /= E_Function then
7677
7678         --  A protected operation that is not a function may modify the
7679         --  corresponding object, and cannot apply to a constant. If this
7680         --  is an internal call, the prefix is the type itself.
7681
7682         if Is_Protected_Type (Scope (Nam))
7683           and then not Is_Variable (Obj)
7684           and then (not Is_Entity_Name (Obj)
7685                       or else not Is_Type (Entity (Obj)))
7686         then
7687            Error_Msg_N
7688              ("prefix of protected procedure or entry call must be variable",
7689               Entry_Name);
7690         end if;
7691
7692         Actuals := Parameter_Associations (N);
7693         First_Named := First_Named_Actual (N);
7694
7695         Rewrite (N,
7696           Make_Entry_Call_Statement (Loc,
7697             Name                   => Entry_Name,
7698             Parameter_Associations => Actuals));
7699
7700         Set_First_Named_Actual (N, First_Named);
7701         Set_Analyzed (N, True);
7702
7703      --  Protected functions can return on the secondary stack, in which
7704      --  case we must trigger the transient scope mechanism.
7705
7706      elsif Expander_Active
7707        and then Requires_Transient_Scope (Etype (Nam))
7708      then
7709         Establish_Transient_Scope (N, Sec_Stack => True);
7710      end if;
7711   end Resolve_Entry_Call;
7712
7713   -------------------------
7714   -- Resolve_Equality_Op --
7715   -------------------------
7716
7717   --  Both arguments must have the same type, and the boolean context does
7718   --  not participate in the resolution. The first pass verifies that the
7719   --  interpretation is not ambiguous, and the type of the left argument is
7720   --  correctly set, or is Any_Type in case of ambiguity. If both arguments
7721   --  are strings or aggregates, allocators, or Null, they are ambiguous even
7722   --  though they carry a single (universal) type. Diagnose this case here.
7723
7724   procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7725      L : constant Node_Id   := Left_Opnd (N);
7726      R : constant Node_Id   := Right_Opnd (N);
7727      T : Entity_Id := Find_Unique_Type (L, R);
7728
7729      procedure Check_If_Expression (Cond : Node_Id);
7730      --  The resolution rule for if expressions requires that each such must
7731      --  have a unique type. This means that if several dependent expressions
7732      --  are of a non-null anonymous access type, and the context does not
7733      --  impose an expected type (as can be the case in an equality operation)
7734      --  the expression must be rejected.
7735
7736      procedure Explain_Redundancy (N : Node_Id);
7737      --  Attempt to explain the nature of a redundant comparison with True. If
7738      --  the expression N is too complex, this routine issues a general error
7739      --  message.
7740
7741      function Find_Unique_Access_Type return Entity_Id;
7742      --  In the case of allocators and access attributes, the context must
7743      --  provide an indication of the specific access type to be used. If
7744      --  one operand is of such a "generic" access type, check whether there
7745      --  is a specific visible access type that has the same designated type.
7746      --  This is semantically dubious, and of no interest to any real code,
7747      --  but c48008a makes it all worthwhile.
7748
7749      -------------------------
7750      -- Check_If_Expression --
7751      -------------------------
7752
7753      procedure Check_If_Expression (Cond : Node_Id) is
7754         Then_Expr : Node_Id;
7755         Else_Expr : Node_Id;
7756
7757      begin
7758         if Nkind (Cond) = N_If_Expression then
7759            Then_Expr := Next (First (Expressions (Cond)));
7760            Else_Expr := Next (Then_Expr);
7761
7762            if Nkind (Then_Expr) /= N_Null
7763              and then Nkind (Else_Expr) /= N_Null
7764            then
7765               Error_Msg_N ("cannot determine type of if expression", Cond);
7766            end if;
7767         end if;
7768      end Check_If_Expression;
7769
7770      ------------------------
7771      -- Explain_Redundancy --
7772      ------------------------
7773
7774      procedure Explain_Redundancy (N : Node_Id) is
7775         Error  : Name_Id;
7776         Val    : Node_Id;
7777         Val_Id : Entity_Id;
7778
7779      begin
7780         Val := N;
7781
7782         --  Strip the operand down to an entity
7783
7784         loop
7785            if Nkind (Val) = N_Selected_Component then
7786               Val := Selector_Name (Val);
7787            else
7788               exit;
7789            end if;
7790         end loop;
7791
7792         --  The construct denotes an entity
7793
7794         if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7795            Val_Id := Entity (Val);
7796
7797            --  Do not generate an error message when the comparison is done
7798            --  against the enumeration literal Standard.True.
7799
7800            if Ekind (Val_Id) /= E_Enumeration_Literal then
7801
7802               --  Build a customized error message
7803
7804               Name_Len := 0;
7805               Add_Str_To_Name_Buffer ("?r?");
7806
7807               if Ekind (Val_Id) = E_Component then
7808                  Add_Str_To_Name_Buffer ("component ");
7809
7810               elsif Ekind (Val_Id) = E_Constant then
7811                  Add_Str_To_Name_Buffer ("constant ");
7812
7813               elsif Ekind (Val_Id) = E_Discriminant then
7814                  Add_Str_To_Name_Buffer ("discriminant ");
7815
7816               elsif Is_Formal (Val_Id) then
7817                  Add_Str_To_Name_Buffer ("parameter ");
7818
7819               elsif Ekind (Val_Id) = E_Variable then
7820                  Add_Str_To_Name_Buffer ("variable ");
7821               end if;
7822
7823               Add_Str_To_Name_Buffer ("& is always True!");
7824               Error := Name_Find;
7825
7826               Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7827            end if;
7828
7829         --  The construct is too complex to disect, issue a general message
7830
7831         else
7832            Error_Msg_N ("?r?expression is always True!", Val);
7833         end if;
7834      end Explain_Redundancy;
7835
7836      -----------------------------
7837      -- Find_Unique_Access_Type --
7838      -----------------------------
7839
7840      function Find_Unique_Access_Type return Entity_Id is
7841         Acc : Entity_Id;
7842         E   : Entity_Id;
7843         S   : Entity_Id;
7844
7845      begin
7846         if Ekind_In (Etype (R), E_Allocator_Type,
7847                                 E_Access_Attribute_Type)
7848         then
7849            Acc := Designated_Type (Etype (R));
7850
7851         elsif Ekind_In (Etype (L), E_Allocator_Type,
7852                                    E_Access_Attribute_Type)
7853         then
7854            Acc := Designated_Type (Etype (L));
7855         else
7856            return Empty;
7857         end if;
7858
7859         S := Current_Scope;
7860         while S /= Standard_Standard loop
7861            E := First_Entity (S);
7862            while Present (E) loop
7863               if Is_Type (E)
7864                 and then Is_Access_Type (E)
7865                 and then Ekind (E) /= E_Allocator_Type
7866                 and then Designated_Type (E) = Base_Type (Acc)
7867               then
7868                  return E;
7869               end if;
7870
7871               Next_Entity (E);
7872            end loop;
7873
7874            S := Scope (S);
7875         end loop;
7876
7877         return Empty;
7878      end Find_Unique_Access_Type;
7879
7880   --  Start of processing for Resolve_Equality_Op
7881
7882   begin
7883      Set_Etype (N, Base_Type (Typ));
7884      Generate_Reference (T, N, ' ');
7885
7886      if T = Any_Fixed then
7887         T := Unique_Fixed_Point_Type (L);
7888      end if;
7889
7890      if T /= Any_Type then
7891         if T = Any_String    or else
7892            T = Any_Composite or else
7893            T = Any_Character
7894         then
7895            if T = Any_Character then
7896               Ambiguous_Character (L);
7897            else
7898               Error_Msg_N ("ambiguous operands for equality", N);
7899            end if;
7900
7901            Set_Etype (N, Any_Type);
7902            return;
7903
7904         elsif T = Any_Access
7905           or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7906         then
7907            T := Find_Unique_Access_Type;
7908
7909            if No (T) then
7910               Error_Msg_N ("ambiguous operands for equality", N);
7911               Set_Etype (N, Any_Type);
7912               return;
7913            end if;
7914
7915         --  If expressions must have a single type, and if the context does
7916         --  not impose one the dependent expressions cannot be anonymous
7917         --  access types.
7918
7919         --  Why no similar processing for case expressions???
7920
7921         elsif Ada_Version >= Ada_2012
7922           and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7923                                         E_Anonymous_Access_Subprogram_Type)
7924           and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7925                                         E_Anonymous_Access_Subprogram_Type)
7926         then
7927            Check_If_Expression (L);
7928            Check_If_Expression (R);
7929         end if;
7930
7931         Resolve (L, T);
7932         Resolve (R, T);
7933
7934         --  In SPARK, equality operators = and /= for array types other than
7935         --  String are only defined when, for each index position, the
7936         --  operands have equal static bounds.
7937
7938         if Is_Array_Type (T) then
7939
7940            --  Protect call to Matching_Static_Array_Bounds to avoid costly
7941            --  operation if not needed.
7942
7943            if Restriction_Check_Required (SPARK_05)
7944              and then Base_Type (T) /= Standard_String
7945              and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7946              and then Etype (L) /= Any_Composite  --  or else L in error
7947              and then Etype (R) /= Any_Composite  --  or else R in error
7948              and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7949            then
7950               Check_SPARK_05_Restriction
7951                 ("array types should have matching static bounds", N);
7952            end if;
7953         end if;
7954
7955         --  If the unique type is a class-wide type then it will be expanded
7956         --  into a dispatching call to the predefined primitive. Therefore we
7957         --  check here for potential violation of such restriction.
7958
7959         if Is_Class_Wide_Type (T) then
7960            Check_Restriction (No_Dispatching_Calls, N);
7961         end if;
7962
7963         if Warn_On_Redundant_Constructs
7964           and then Comes_From_Source (N)
7965           and then Comes_From_Source (R)
7966           and then Is_Entity_Name (R)
7967           and then Entity (R) = Standard_True
7968         then
7969            Error_Msg_N -- CODEFIX
7970              ("?r?comparison with True is redundant!", N);
7971            Explain_Redundancy (Original_Node (R));
7972         end if;
7973
7974         Check_Unset_Reference (L);
7975         Check_Unset_Reference (R);
7976         Generate_Operator_Reference (N, T);
7977         Check_Low_Bound_Tested (N);
7978
7979         --  If this is an inequality, it may be the implicit inequality
7980         --  created for a user-defined operation, in which case the corres-
7981         --  ponding equality operation is not intrinsic, and the operation
7982         --  cannot be constant-folded. Else fold.
7983
7984         if Nkind (N) = N_Op_Eq
7985           or else Comes_From_Source (Entity (N))
7986           or else Ekind (Entity (N)) = E_Operator
7987           or else Is_Intrinsic_Subprogram
7988                     (Corresponding_Equality (Entity (N)))
7989         then
7990            Analyze_Dimension (N);
7991            Eval_Relational_Op (N);
7992
7993         elsif Nkind (N) = N_Op_Ne
7994           and then Is_Abstract_Subprogram (Entity (N))
7995         then
7996            Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7997         end if;
7998
7999         --  Ada 2005: If one operand is an anonymous access type, convert the
8000         --  other operand to it, to ensure that the underlying types match in
8001         --  the back-end. Same for access_to_subprogram, and the conversion
8002         --  verifies that the types are subtype conformant.
8003
8004         --  We apply the same conversion in the case one of the operands is a
8005         --  private subtype of the type of the other.
8006
8007         --  Why the Expander_Active test here ???
8008
8009         if Expander_Active
8010           and then
8011             (Ekind_In (T, E_Anonymous_Access_Type,
8012                           E_Anonymous_Access_Subprogram_Type)
8013               or else Is_Private_Type (T))
8014         then
8015            if Etype (L) /= T then
8016               Rewrite (L,
8017                 Make_Unchecked_Type_Conversion (Sloc (L),
8018                   Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8019                   Expression   => Relocate_Node (L)));
8020               Analyze_And_Resolve (L, T);
8021            end if;
8022
8023            if (Etype (R)) /= T then
8024               Rewrite (R,
8025                  Make_Unchecked_Type_Conversion (Sloc (R),
8026                    Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8027                    Expression   => Relocate_Node (R)));
8028               Analyze_And_Resolve (R, T);
8029            end if;
8030         end if;
8031      end if;
8032   end Resolve_Equality_Op;
8033
8034   ----------------------------------
8035   -- Resolve_Explicit_Dereference --
8036   ----------------------------------
8037
8038   procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8039      Loc   : constant Source_Ptr := Sloc (N);
8040      New_N : Node_Id;
8041      P     : constant Node_Id := Prefix (N);
8042
8043      P_Typ : Entity_Id;
8044      --  The candidate prefix type, if overloaded
8045
8046      I     : Interp_Index;
8047      It    : Interp;
8048
8049   begin
8050      Check_Fully_Declared_Prefix (Typ, P);
8051      P_Typ := Empty;
8052
8053      --  A useful optimization:  check whether the dereference denotes an
8054      --  element of a container, and if so rewrite it as a call to the
8055      --  corresponding Element function.
8056
8057      --  Disabled for now, on advice of ARG. A more restricted form of the
8058      --  predicate might be acceptable ???
8059
8060      --  if Is_Container_Element (N) then
8061      --     return;
8062      --  end if;
8063
8064      if Is_Overloaded (P) then
8065
8066         --  Use the context type to select the prefix that has the correct
8067         --  designated type. Keep the first match, which will be the inner-
8068         --  most.
8069
8070         Get_First_Interp (P, I, It);
8071
8072         while Present (It.Typ) loop
8073            if Is_Access_Type (It.Typ)
8074              and then Covers (Typ, Designated_Type (It.Typ))
8075            then
8076               if No (P_Typ) then
8077                  P_Typ := It.Typ;
8078               end if;
8079
8080            --  Remove access types that do not match, but preserve access
8081            --  to subprogram interpretations, in case a further dereference
8082            --  is needed (see below).
8083
8084            elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8085               Remove_Interp (I);
8086            end if;
8087
8088            Get_Next_Interp (I, It);
8089         end loop;
8090
8091         if Present (P_Typ) then
8092            Resolve (P, P_Typ);
8093            Set_Etype (N, Designated_Type (P_Typ));
8094
8095         else
8096            --  If no interpretation covers the designated type of the prefix,
8097            --  this is the pathological case where not all implementations of
8098            --  the prefix allow the interpretation of the node as a call. Now
8099            --  that the expected type is known, Remove other interpretations
8100            --  from prefix, rewrite it as a call, and resolve again, so that
8101            --  the proper call node is generated.
8102
8103            Get_First_Interp (P, I, It);
8104            while Present (It.Typ) loop
8105               if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8106                  Remove_Interp (I);
8107               end if;
8108
8109               Get_Next_Interp (I, It);
8110            end loop;
8111
8112            New_N :=
8113              Make_Function_Call (Loc,
8114                Name =>
8115                  Make_Explicit_Dereference (Loc,
8116                    Prefix => P),
8117                Parameter_Associations => New_List);
8118
8119            Save_Interps (N, New_N);
8120            Rewrite (N, New_N);
8121            Analyze_And_Resolve (N, Typ);
8122            return;
8123         end if;
8124
8125      --  If not overloaded, resolve P with its own type
8126
8127      else
8128         Resolve (P);
8129      end if;
8130
8131      --  If the prefix might be null, add an access check
8132
8133      if Is_Access_Type (Etype (P))
8134        and then not Can_Never_Be_Null (Etype (P))
8135      then
8136         Apply_Access_Check (N);
8137      end if;
8138
8139      --  If the designated type is a packed unconstrained array type, and the
8140      --  explicit dereference is not in the context of an attribute reference,
8141      --  then we must compute and set the actual subtype, since it is needed
8142      --  by Gigi. The reason we exclude the attribute case is that this is
8143      --  handled fine by Gigi, and in fact we use such attributes to build the
8144      --  actual subtype. We also exclude generated code (which builds actual
8145      --  subtypes directly if they are needed).
8146
8147      if Is_Array_Type (Etype (N))
8148        and then Is_Packed (Etype (N))
8149        and then not Is_Constrained (Etype (N))
8150        and then Nkind (Parent (N)) /= N_Attribute_Reference
8151        and then Comes_From_Source (N)
8152      then
8153         Set_Etype (N, Get_Actual_Subtype (N));
8154      end if;
8155
8156      Analyze_Dimension (N);
8157
8158      --  Note: No Eval processing is required for an explicit dereference,
8159      --  because such a name can never be static.
8160
8161   end Resolve_Explicit_Dereference;
8162
8163   -------------------------------------
8164   -- Resolve_Expression_With_Actions --
8165   -------------------------------------
8166
8167   procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8168   begin
8169      Set_Etype (N, Typ);
8170
8171      --  If N has no actions, and its expression has been constant folded,
8172      --  then rewrite N as just its expression. Note, we can't do this in
8173      --  the general case of Is_Empty_List (Actions (N)) as this would cause
8174      --  Expression (N) to be expanded again.
8175
8176      if Is_Empty_List (Actions (N))
8177        and then Compile_Time_Known_Value (Expression (N))
8178      then
8179         Rewrite (N, Expression (N));
8180      end if;
8181   end Resolve_Expression_With_Actions;
8182
8183   ----------------------------------
8184   -- Resolve_Generalized_Indexing --
8185   ----------------------------------
8186
8187   procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8188      Indexing : constant Node_Id := Generalized_Indexing (N);
8189      Call     : Node_Id;
8190      Indexes  : List_Id;
8191      Pref     : Node_Id;
8192
8193   begin
8194      --  In ASIS mode, propagate the information about the indexes back to
8195      --  to the original indexing node. The generalized indexing is either
8196      --  a function call, or a dereference of one. The actuals include the
8197      --  prefix of the original node, which is the container expression.
8198
8199      if ASIS_Mode then
8200         Resolve (Indexing, Typ);
8201         Set_Etype  (N, Etype (Indexing));
8202         Set_Is_Overloaded (N, False);
8203
8204         Call := Indexing;
8205         while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8206         loop
8207            Call := Prefix (Call);
8208         end loop;
8209
8210         if Nkind (Call) = N_Function_Call then
8211            Indexes := Parameter_Associations (Call);
8212            Pref := Remove_Head (Indexes);
8213            Set_Expressions (N, Indexes);
8214
8215            --  If expression is to be reanalyzed, reset Generalized_Indexing
8216            --  to recreate call node, as is the case when the expression is
8217            --  part of an expression function.
8218
8219            if In_Spec_Expression then
8220               Set_Generalized_Indexing (N, Empty);
8221            end if;
8222
8223            Set_Prefix (N, Pref);
8224         end if;
8225
8226      else
8227         Rewrite (N, Indexing);
8228         Resolve (N, Typ);
8229      end if;
8230   end Resolve_Generalized_Indexing;
8231
8232   ---------------------------
8233   -- Resolve_If_Expression --
8234   ---------------------------
8235
8236   procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8237      Condition : constant Node_Id := First (Expressions (N));
8238      Then_Expr : constant Node_Id := Next (Condition);
8239      Else_Expr : Node_Id          := Next (Then_Expr);
8240      Else_Typ  : Entity_Id;
8241      Then_Typ  : Entity_Id;
8242
8243   begin
8244      Resolve (Condition, Any_Boolean);
8245      Resolve (Then_Expr, Typ);
8246      Then_Typ := Etype (Then_Expr);
8247
8248      --  When the "then" expression is of a scalar subtype different from the
8249      --  result subtype, then insert a conversion to ensure the generation of
8250      --  a constraint check. The same is done for the else part below, again
8251      --  comparing subtypes rather than base types.
8252
8253      if Is_Scalar_Type (Then_Typ)
8254        and then Then_Typ /= Typ
8255      then
8256         Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8257         Analyze_And_Resolve (Then_Expr, Typ);
8258      end if;
8259
8260      --  If ELSE expression present, just resolve using the determined type
8261
8262      if Present (Else_Expr) then
8263         Resolve (Else_Expr, Typ);
8264         Else_Typ := Etype (Else_Expr);
8265
8266         if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8267            Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8268            Analyze_And_Resolve (Else_Expr, Typ);
8269
8270         --  Apply RM 4.5.7 (17/3): whether the expression is statically or
8271         --  dynamically tagged must be known statically.
8272
8273         elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8274            if Is_Dynamically_Tagged (Then_Expr) /=
8275               Is_Dynamically_Tagged (Else_Expr)
8276            then
8277               Error_Msg_N ("all or none of the dependent expressions "
8278                            & "can be dynamically tagged", N);
8279            end if;
8280         end if;
8281
8282      --  If no ELSE expression is present, root type must be Standard.Boolean
8283      --  and we provide a Standard.True result converted to the appropriate
8284      --  Boolean type (in case it is a derived boolean type).
8285
8286      elsif Root_Type (Typ) = Standard_Boolean then
8287         Else_Expr :=
8288           Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8289         Analyze_And_Resolve (Else_Expr, Typ);
8290         Append_To (Expressions (N), Else_Expr);
8291
8292      else
8293         Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8294         Append_To (Expressions (N), Error);
8295      end if;
8296
8297      Set_Etype (N, Typ);
8298      Eval_If_Expression (N);
8299   end Resolve_If_Expression;
8300
8301   -------------------------------
8302   -- Resolve_Indexed_Component --
8303   -------------------------------
8304
8305   procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8306      Name       : constant Node_Id := Prefix  (N);
8307      Expr       : Node_Id;
8308      Array_Type : Entity_Id := Empty; -- to prevent junk warning
8309      Index      : Node_Id;
8310
8311   begin
8312      if Present (Generalized_Indexing (N)) then
8313         Resolve_Generalized_Indexing (N, Typ);
8314         return;
8315      end if;
8316
8317      if Is_Overloaded (Name) then
8318
8319         --  Use the context type to select the prefix that yields the correct
8320         --  component type.
8321
8322         declare
8323            I     : Interp_Index;
8324            It    : Interp;
8325            I1    : Interp_Index := 0;
8326            P     : constant Node_Id := Prefix (N);
8327            Found : Boolean := False;
8328
8329         begin
8330            Get_First_Interp (P, I, It);
8331            while Present (It.Typ) loop
8332               if (Is_Array_Type (It.Typ)
8333                     and then Covers (Typ, Component_Type (It.Typ)))
8334                 or else (Is_Access_Type (It.Typ)
8335                            and then Is_Array_Type (Designated_Type (It.Typ))
8336                            and then
8337                              Covers
8338                                (Typ,
8339                                 Component_Type (Designated_Type (It.Typ))))
8340               then
8341                  if Found then
8342                     It := Disambiguate (P, I1, I, Any_Type);
8343
8344                     if It = No_Interp then
8345                        Error_Msg_N ("ambiguous prefix for indexing",  N);
8346                        Set_Etype (N, Typ);
8347                        return;
8348
8349                     else
8350                        Found := True;
8351                        Array_Type := It.Typ;
8352                        I1 := I;
8353                     end if;
8354
8355                  else
8356                     Found := True;
8357                     Array_Type := It.Typ;
8358                     I1 := I;
8359                  end if;
8360               end if;
8361
8362               Get_Next_Interp (I, It);
8363            end loop;
8364         end;
8365
8366      else
8367         Array_Type := Etype (Name);
8368      end if;
8369
8370      Resolve (Name, Array_Type);
8371      Array_Type := Get_Actual_Subtype_If_Available (Name);
8372
8373      --  If prefix is access type, dereference to get real array type.
8374      --  Note: we do not apply an access check because the expander always
8375      --  introduces an explicit dereference, and the check will happen there.
8376
8377      if Is_Access_Type (Array_Type) then
8378         Array_Type := Designated_Type (Array_Type);
8379      end if;
8380
8381      --  If name was overloaded, set component type correctly now
8382      --  If a misplaced call to an entry family (which has no index types)
8383      --  return. Error will be diagnosed from calling context.
8384
8385      if Is_Array_Type (Array_Type) then
8386         Set_Etype (N, Component_Type (Array_Type));
8387      else
8388         return;
8389      end if;
8390
8391      Index := First_Index (Array_Type);
8392      Expr  := First (Expressions (N));
8393
8394      --  The prefix may have resolved to a string literal, in which case its
8395      --  etype has a special representation. This is only possible currently
8396      --  if the prefix is a static concatenation, written in functional
8397      --  notation.
8398
8399      if Ekind (Array_Type) = E_String_Literal_Subtype then
8400         Resolve (Expr, Standard_Positive);
8401
8402      else
8403         while Present (Index) and Present (Expr) loop
8404            Resolve (Expr, Etype (Index));
8405            Check_Unset_Reference (Expr);
8406
8407            if Is_Scalar_Type (Etype (Expr)) then
8408               Apply_Scalar_Range_Check (Expr, Etype (Index));
8409            else
8410               Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8411            end if;
8412
8413            Next_Index (Index);
8414            Next (Expr);
8415         end loop;
8416      end if;
8417
8418      Analyze_Dimension (N);
8419
8420      --  Do not generate the warning on suspicious index if we are analyzing
8421      --  package Ada.Tags; otherwise we will report the warning with the
8422      --  Prims_Ptr field of the dispatch table.
8423
8424      if Scope (Etype (Prefix (N))) = Standard_Standard
8425        or else not
8426          Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8427                  Ada_Tags)
8428      then
8429         Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8430         Eval_Indexed_Component (N);
8431      end if;
8432
8433      --  If the array type is atomic, and the component is not atomic, then
8434      --  this is worth a warning, since we have a situation where the access
8435      --  to the component may cause extra read/writes of the atomic array
8436      --  object, or partial word accesses, which could be unexpected.
8437
8438      if Nkind (N) = N_Indexed_Component
8439        and then Is_Atomic_Ref_With_Address (N)
8440        and then not (Has_Atomic_Components (Array_Type)
8441                       or else (Is_Entity_Name (Prefix (N))
8442                                 and then Has_Atomic_Components
8443                                            (Entity (Prefix (N)))))
8444        and then not Is_Atomic (Component_Type (Array_Type))
8445      then
8446         Error_Msg_N
8447           ("??access to non-atomic component of atomic array", Prefix (N));
8448         Error_Msg_N
8449           ("??\may cause unexpected accesses to atomic object", Prefix (N));
8450      end if;
8451   end Resolve_Indexed_Component;
8452
8453   -----------------------------
8454   -- Resolve_Integer_Literal --
8455   -----------------------------
8456
8457   procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8458   begin
8459      Set_Etype (N, Typ);
8460      Eval_Integer_Literal (N);
8461   end Resolve_Integer_Literal;
8462
8463   --------------------------------
8464   -- Resolve_Intrinsic_Operator --
8465   --------------------------------
8466
8467   procedure Resolve_Intrinsic_Operator  (N : Node_Id; Typ : Entity_Id) is
8468      Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8469      Op   : Entity_Id;
8470      Arg1 : Node_Id;
8471      Arg2 : Node_Id;
8472
8473      function Convert_Operand (Opnd : Node_Id) return Node_Id;
8474      --  If the operand is a literal, it cannot be the expression in a
8475      --  conversion. Use a qualified expression instead.
8476
8477      ---------------------
8478      -- Convert_Operand --
8479      ---------------------
8480
8481      function Convert_Operand (Opnd : Node_Id) return Node_Id is
8482         Loc : constant Source_Ptr := Sloc (Opnd);
8483         Res : Node_Id;
8484
8485      begin
8486         if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8487            Res :=
8488              Make_Qualified_Expression (Loc,
8489                Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8490                Expression   => Relocate_Node (Opnd));
8491            Analyze (Res);
8492
8493         else
8494            Res := Unchecked_Convert_To (Btyp, Opnd);
8495         end if;
8496
8497         return Res;
8498      end Convert_Operand;
8499
8500   --  Start of processing for Resolve_Intrinsic_Operator
8501
8502   begin
8503      --  We must preserve the original entity in a generic setting, so that
8504      --  the legality of the operation can be verified in an instance.
8505
8506      if not Expander_Active then
8507         return;
8508      end if;
8509
8510      Op := Entity (N);
8511      while Scope (Op) /= Standard_Standard loop
8512         Op := Homonym (Op);
8513         pragma Assert (Present (Op));
8514      end loop;
8515
8516      Set_Entity (N, Op);
8517      Set_Is_Overloaded (N, False);
8518
8519      --  If the result or operand types are private, rewrite with unchecked
8520      --  conversions on the operands and the result, to expose the proper
8521      --  underlying numeric type.
8522
8523      if Is_Private_Type (Typ)
8524        or else Is_Private_Type (Etype (Left_Opnd (N)))
8525        or else Is_Private_Type (Etype (Right_Opnd (N)))
8526      then
8527         Arg1 := Convert_Operand (Left_Opnd (N));
8528
8529         if Nkind (N) = N_Op_Expon then
8530            Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8531         else
8532            Arg2 := Convert_Operand (Right_Opnd (N));
8533         end if;
8534
8535         if Nkind (Arg1) = N_Type_Conversion then
8536            Save_Interps (Left_Opnd (N),  Expression (Arg1));
8537         end if;
8538
8539         if Nkind (Arg2) = N_Type_Conversion then
8540            Save_Interps (Right_Opnd (N), Expression (Arg2));
8541         end if;
8542
8543         Set_Left_Opnd  (N, Arg1);
8544         Set_Right_Opnd (N, Arg2);
8545
8546         Set_Etype (N, Btyp);
8547         Rewrite (N, Unchecked_Convert_To (Typ, N));
8548         Resolve (N, Typ);
8549
8550      elsif Typ /= Etype (Left_Opnd (N))
8551        or else Typ /= Etype (Right_Opnd (N))
8552      then
8553         --  Add explicit conversion where needed, and save interpretations in
8554         --  case operands are overloaded.
8555
8556         Arg1 := Convert_To (Typ, Left_Opnd  (N));
8557         Arg2 := Convert_To (Typ, Right_Opnd (N));
8558
8559         if Nkind (Arg1) = N_Type_Conversion then
8560            Save_Interps (Left_Opnd (N), Expression (Arg1));
8561         else
8562            Save_Interps (Left_Opnd (N), Arg1);
8563         end if;
8564
8565         if Nkind (Arg2) = N_Type_Conversion then
8566            Save_Interps (Right_Opnd (N), Expression (Arg2));
8567         else
8568            Save_Interps (Right_Opnd (N), Arg2);
8569         end if;
8570
8571         Rewrite (Left_Opnd  (N), Arg1);
8572         Rewrite (Right_Opnd (N), Arg2);
8573         Analyze (Arg1);
8574         Analyze (Arg2);
8575         Resolve_Arithmetic_Op (N, Typ);
8576
8577      else
8578         Resolve_Arithmetic_Op (N, Typ);
8579      end if;
8580   end Resolve_Intrinsic_Operator;
8581
8582   --------------------------------------
8583   -- Resolve_Intrinsic_Unary_Operator --
8584   --------------------------------------
8585
8586   procedure Resolve_Intrinsic_Unary_Operator
8587     (N   : Node_Id;
8588      Typ : Entity_Id)
8589   is
8590      Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8591      Op   : Entity_Id;
8592      Arg2 : Node_Id;
8593
8594   begin
8595      Op := Entity (N);
8596      while Scope (Op) /= Standard_Standard loop
8597         Op := Homonym (Op);
8598         pragma Assert (Present (Op));
8599      end loop;
8600
8601      Set_Entity (N, Op);
8602
8603      if Is_Private_Type (Typ) then
8604         Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8605         Save_Interps (Right_Opnd (N), Expression (Arg2));
8606
8607         Set_Right_Opnd (N, Arg2);
8608
8609         Set_Etype (N, Btyp);
8610         Rewrite (N, Unchecked_Convert_To (Typ, N));
8611         Resolve (N, Typ);
8612
8613      else
8614         Resolve_Unary_Op (N, Typ);
8615      end if;
8616   end Resolve_Intrinsic_Unary_Operator;
8617
8618   ------------------------
8619   -- Resolve_Logical_Op --
8620   ------------------------
8621
8622   procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8623      B_Typ : Entity_Id;
8624
8625   begin
8626      Check_No_Direct_Boolean_Operators (N);
8627
8628      --  Predefined operations on scalar types yield the base type. On the
8629      --  other hand, logical operations on arrays yield the type of the
8630      --  arguments (and the context).
8631
8632      if Is_Array_Type (Typ) then
8633         B_Typ := Typ;
8634      else
8635         B_Typ := Base_Type (Typ);
8636      end if;
8637
8638      --  The following test is required because the operands of the operation
8639      --  may be literals, in which case the resulting type appears to be
8640      --  compatible with a signed integer type, when in fact it is compatible
8641      --  only with modular types. If the context itself is universal, the
8642      --  operation is illegal.
8643
8644      if not Valid_Boolean_Arg (Typ) then
8645         Error_Msg_N ("invalid context for logical operation", N);
8646         Set_Etype (N, Any_Type);
8647         return;
8648
8649      elsif Typ = Any_Modular then
8650         Error_Msg_N
8651           ("no modular type available in this context", N);
8652         Set_Etype (N, Any_Type);
8653         return;
8654
8655      elsif Is_Modular_Integer_Type (Typ)
8656        and then Etype (Left_Opnd (N)) = Universal_Integer
8657        and then Etype (Right_Opnd (N)) = Universal_Integer
8658      then
8659         Check_For_Visible_Operator (N, B_Typ);
8660      end if;
8661
8662      --  Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8663      --  is active and the result type is standard Boolean (do not mess with
8664      --  ops that return a nonstandard Boolean type, because something strange
8665      --  is going on).
8666
8667      --  Note: you might expect this replacement to be done during expansion,
8668      --  but that doesn't work, because when the pragma Short_Circuit_And_Or
8669      --  is used, no part of the right operand of an "and" or "or" operator
8670      --  should be executed if the left operand would short-circuit the
8671      --  evaluation of the corresponding "and then" or "or else". If we left
8672      --  the replacement to expansion time, then run-time checks associated
8673      --  with such operands would be evaluated unconditionally, due to being
8674      --  before the condition prior to the rewriting as short-circuit forms
8675      --  during expansion.
8676
8677      if Short_Circuit_And_Or
8678        and then B_Typ = Standard_Boolean
8679        and then Nkind_In (N, N_Op_And, N_Op_Or)
8680      then
8681         --  Mark the corresponding putative SCO operator as truly a logical
8682         --  (and short-circuit) operator.
8683
8684         if Generate_SCO and then Comes_From_Source (N) then
8685            Set_SCO_Logical_Operator (N);
8686         end if;
8687
8688         if Nkind (N) = N_Op_And then
8689            Rewrite (N,
8690              Make_And_Then (Sloc (N),
8691                Left_Opnd  => Relocate_Node (Left_Opnd (N)),
8692                Right_Opnd => Relocate_Node (Right_Opnd (N))));
8693            Analyze_And_Resolve (N, B_Typ);
8694
8695         --  Case of OR changed to OR ELSE
8696
8697         else
8698            Rewrite (N,
8699              Make_Or_Else (Sloc (N),
8700                Left_Opnd  => Relocate_Node (Left_Opnd (N)),
8701                Right_Opnd => Relocate_Node (Right_Opnd (N))));
8702            Analyze_And_Resolve (N, B_Typ);
8703         end if;
8704
8705         --  Return now, since analysis of the rewritten ops will take care of
8706         --  other reference bookkeeping and expression folding.
8707
8708         return;
8709      end if;
8710
8711      Resolve (Left_Opnd (N), B_Typ);
8712      Resolve (Right_Opnd (N), B_Typ);
8713
8714      Check_Unset_Reference (Left_Opnd  (N));
8715      Check_Unset_Reference (Right_Opnd (N));
8716
8717      Set_Etype (N, B_Typ);
8718      Generate_Operator_Reference (N, B_Typ);
8719      Eval_Logical_Op (N);
8720
8721      --  In SPARK, logical operations AND, OR and XOR for arrays are defined
8722      --  only when both operands have same static lower and higher bounds. Of
8723      --  course the types have to match, so only check if operands are
8724      --  compatible and the node itself has no errors.
8725
8726      if Is_Array_Type (B_Typ)
8727        and then Nkind (N) in N_Binary_Op
8728      then
8729         declare
8730            Left_Typ  : constant Node_Id := Etype (Left_Opnd (N));
8731            Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8732
8733         begin
8734            --  Protect call to Matching_Static_Array_Bounds to avoid costly
8735            --  operation if not needed.
8736
8737            if Restriction_Check_Required (SPARK_05)
8738              and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8739              and then Left_Typ /= Any_Composite  --  or Left_Opnd in error
8740              and then Right_Typ /= Any_Composite  --  or Right_Opnd in error
8741              and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8742            then
8743               Check_SPARK_05_Restriction
8744                 ("array types should have matching static bounds", N);
8745            end if;
8746         end;
8747      end if;
8748   end Resolve_Logical_Op;
8749
8750   ---------------------------
8751   -- Resolve_Membership_Op --
8752   ---------------------------
8753
8754   --  The context can only be a boolean type, and does not determine the
8755   --  arguments. Arguments should be unambiguous, but the preference rule for
8756   --  universal types applies.
8757
8758   procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8759      pragma Warnings (Off, Typ);
8760
8761      L : constant Node_Id := Left_Opnd  (N);
8762      R : constant Node_Id := Right_Opnd (N);
8763      T : Entity_Id;
8764
8765      procedure Resolve_Set_Membership;
8766      --  Analysis has determined a unique type for the left operand. Use it to
8767      --  resolve the disjuncts.
8768
8769      ----------------------------
8770      -- Resolve_Set_Membership --
8771      ----------------------------
8772
8773      procedure Resolve_Set_Membership is
8774         Alt  : Node_Id;
8775         Ltyp : Entity_Id;
8776
8777      begin
8778         --  If the left operand is overloaded, find type compatible with not
8779         --  overloaded alternative of the right operand.
8780
8781         if Is_Overloaded (L) then
8782            Ltyp := Empty;
8783            Alt := First (Alternatives (N));
8784            while Present (Alt) loop
8785               if not Is_Overloaded (Alt) then
8786                  Ltyp := Intersect_Types (L, Alt);
8787                  exit;
8788               else
8789                  Next (Alt);
8790               end if;
8791            end loop;
8792
8793            --  Unclear how to resolve expression if all alternatives are also
8794            --  overloaded.
8795
8796            if No (Ltyp) then
8797               Error_Msg_N ("ambiguous expression", N);
8798            end if;
8799
8800         else
8801            Ltyp := Etype (L);
8802         end if;
8803
8804         Resolve (L, Ltyp);
8805
8806         Alt := First (Alternatives (N));
8807         while Present (Alt) loop
8808
8809            --  Alternative is an expression, a range
8810            --  or a subtype mark.
8811
8812            if not Is_Entity_Name (Alt)
8813              or else not Is_Type (Entity (Alt))
8814            then
8815               Resolve (Alt, Ltyp);
8816            end if;
8817
8818            Next (Alt);
8819         end loop;
8820
8821         --  Check for duplicates for discrete case
8822
8823         if Is_Discrete_Type (Ltyp) then
8824            declare
8825               type Ent is record
8826                  Alt : Node_Id;
8827                  Val : Uint;
8828               end record;
8829
8830               Alts  : array (0 .. List_Length (Alternatives (N))) of Ent;
8831               Nalts : Nat;
8832
8833            begin
8834               --  Loop checking duplicates. This is quadratic, but giant sets
8835               --  are unlikely in this context so it's a reasonable choice.
8836
8837               Nalts := 0;
8838               Alt := First (Alternatives (N));
8839               while Present (Alt) loop
8840                  if Is_OK_Static_Expression (Alt)
8841                    and then (Nkind_In (Alt, N_Integer_Literal,
8842                                             N_Character_Literal)
8843                               or else Nkind (Alt) in N_Has_Entity)
8844                  then
8845                     Nalts := Nalts + 1;
8846                     Alts (Nalts) := (Alt, Expr_Value (Alt));
8847
8848                     for J in 1 .. Nalts - 1 loop
8849                        if Alts (J).Val = Alts (Nalts).Val then
8850                           Error_Msg_Sloc := Sloc (Alts (J).Alt);
8851                           Error_Msg_N ("duplicate of value given#??", Alt);
8852                        end if;
8853                     end loop;
8854                  end if;
8855
8856                  Alt := Next (Alt);
8857               end loop;
8858            end;
8859         end if;
8860      end Resolve_Set_Membership;
8861
8862   --  Start of processing for Resolve_Membership_Op
8863
8864   begin
8865      if L = Error or else R = Error then
8866         return;
8867      end if;
8868
8869      if Present (Alternatives (N)) then
8870         Resolve_Set_Membership;
8871         goto SM_Exit;
8872
8873      elsif not Is_Overloaded (R)
8874        and then
8875          (Etype (R) = Universal_Integer
8876             or else
8877           Etype (R) = Universal_Real)
8878        and then Is_Overloaded (L)
8879      then
8880         T := Etype (R);
8881
8882      --  Ada 2005 (AI-251): Support the following case:
8883
8884      --      type I is interface;
8885      --      type T is tagged ...
8886
8887      --      function Test (O : I'Class) is
8888      --      begin
8889      --         return O in T'Class.
8890      --      end Test;
8891
8892      --  In this case we have nothing else to do. The membership test will be
8893      --  done at run time.
8894
8895      elsif Ada_Version >= Ada_2005
8896        and then Is_Class_Wide_Type (Etype (L))
8897        and then Is_Interface (Etype (L))
8898        and then Is_Class_Wide_Type (Etype (R))
8899        and then not Is_Interface (Etype (R))
8900      then
8901         return;
8902      else
8903         T := Intersect_Types (L, R);
8904      end if;
8905
8906      --  If mixed-mode operations are present and operands are all literal,
8907      --  the only interpretation involves Duration, which is probably not
8908      --  the intention of the programmer.
8909
8910      if T = Any_Fixed then
8911         T := Unique_Fixed_Point_Type (N);
8912
8913         if T = Any_Type then
8914            return;
8915         end if;
8916      end if;
8917
8918      Resolve (L, T);
8919      Check_Unset_Reference (L);
8920
8921      if Nkind (R) = N_Range
8922        and then not Is_Scalar_Type (T)
8923      then
8924         Error_Msg_N ("scalar type required for range", R);
8925      end if;
8926
8927      if Is_Entity_Name (R) then
8928         Freeze_Expression (R);
8929      else
8930         Resolve (R, T);
8931         Check_Unset_Reference (R);
8932      end if;
8933
8934      --  Here after resolving membership operation
8935
8936      <<SM_Exit>>
8937
8938      Eval_Membership_Op (N);
8939   end Resolve_Membership_Op;
8940
8941   ------------------
8942   -- Resolve_Null --
8943   ------------------
8944
8945   procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8946      Loc : constant Source_Ptr := Sloc (N);
8947
8948   begin
8949      --  Handle restriction against anonymous null access values This
8950      --  restriction can be turned off using -gnatdj.
8951
8952      --  Ada 2005 (AI-231): Remove restriction
8953
8954      if Ada_Version < Ada_2005
8955        and then not Debug_Flag_J
8956        and then Ekind (Typ) = E_Anonymous_Access_Type
8957        and then Comes_From_Source (N)
8958      then
8959         --  In the common case of a call which uses an explicitly null value
8960         --  for an access parameter, give specialized error message.
8961
8962         if Nkind (Parent (N)) in N_Subprogram_Call then
8963            Error_Msg_N
8964              ("null is not allowed as argument for an access parameter", N);
8965
8966         --  Standard message for all other cases (are there any?)
8967
8968         else
8969            Error_Msg_N
8970              ("null cannot be of an anonymous access type", N);
8971         end if;
8972      end if;
8973
8974      --  Ada 2005 (AI-231): Generate the null-excluding check in case of
8975      --  assignment to a null-excluding object
8976
8977      if Ada_Version >= Ada_2005
8978        and then Can_Never_Be_Null (Typ)
8979        and then Nkind (Parent (N)) = N_Assignment_Statement
8980      then
8981         if not Inside_Init_Proc then
8982            Insert_Action
8983              (Compile_Time_Constraint_Error (N,
8984                 "(Ada 2005) null not allowed in null-excluding objects??"),
8985               Make_Raise_Constraint_Error (Loc,
8986                 Reason => CE_Access_Check_Failed));
8987         else
8988            Insert_Action (N,
8989              Make_Raise_Constraint_Error (Loc,
8990                Reason => CE_Access_Check_Failed));
8991         end if;
8992      end if;
8993
8994      --  In a distributed context, null for a remote access to subprogram may
8995      --  need to be replaced with a special record aggregate. In this case,
8996      --  return after having done the transformation.
8997
8998      if (Ekind (Typ) = E_Record_Type
8999           or else Is_Remote_Access_To_Subprogram_Type (Typ))
9000        and then Remote_AST_Null_Value (N, Typ)
9001      then
9002         return;
9003      end if;
9004
9005      --  The null literal takes its type from the context
9006
9007      Set_Etype (N, Typ);
9008   end Resolve_Null;
9009
9010   -----------------------
9011   -- Resolve_Op_Concat --
9012   -----------------------
9013
9014   procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9015
9016      --  We wish to avoid deep recursion, because concatenations are often
9017      --  deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9018      --  operands nonrecursively until we find something that is not a simple
9019      --  concatenation (A in this case). We resolve that, and then walk back
9020      --  up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9021      --  to do the rest of the work at each level. The Parent pointers allow
9022      --  us to avoid recursion, and thus avoid running out of memory. See also
9023      --  Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9024
9025      NN  : Node_Id := N;
9026      Op1 : Node_Id;
9027
9028   begin
9029      --  The following code is equivalent to:
9030
9031      --    Resolve_Op_Concat_First (NN, Typ);
9032      --    Resolve_Op_Concat_Arg (N, ...);
9033      --    Resolve_Op_Concat_Rest (N, Typ);
9034
9035      --  where the Resolve_Op_Concat_Arg call recurses back here if the left
9036      --  operand is a concatenation.
9037
9038      --  Walk down left operands
9039
9040      loop
9041         Resolve_Op_Concat_First (NN, Typ);
9042         Op1 := Left_Opnd (NN);
9043         exit when not (Nkind (Op1) = N_Op_Concat
9044                         and then not Is_Array_Type (Component_Type (Typ))
9045                         and then Entity (Op1) = Entity (NN));
9046         NN := Op1;
9047      end loop;
9048
9049      --  Now (given the above example) NN is A&B and Op1 is A
9050
9051      --  First resolve Op1 ...
9052
9053      Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd  (NN));
9054
9055      --  ... then walk NN back up until we reach N (where we started), calling
9056      --  Resolve_Op_Concat_Rest along the way.
9057
9058      loop
9059         Resolve_Op_Concat_Rest (NN, Typ);
9060         exit when NN = N;
9061         NN := Parent (NN);
9062      end loop;
9063
9064      if Base_Type (Etype (N)) /= Standard_String then
9065         Check_SPARK_05_Restriction
9066           ("result of concatenation should have type String", N);
9067      end if;
9068   end Resolve_Op_Concat;
9069
9070   ---------------------------
9071   -- Resolve_Op_Concat_Arg --
9072   ---------------------------
9073
9074   procedure Resolve_Op_Concat_Arg
9075     (N       : Node_Id;
9076      Arg     : Node_Id;
9077      Typ     : Entity_Id;
9078      Is_Comp : Boolean)
9079   is
9080      Btyp : constant Entity_Id := Base_Type (Typ);
9081      Ctyp : constant Entity_Id := Component_Type (Typ);
9082
9083   begin
9084      if In_Instance then
9085         if Is_Comp
9086           or else (not Is_Overloaded (Arg)
9087                     and then Etype (Arg) /= Any_Composite
9088                     and then Covers (Ctyp, Etype (Arg)))
9089         then
9090            Resolve (Arg, Ctyp);
9091         else
9092            Resolve (Arg, Btyp);
9093         end if;
9094
9095      --  If both Array & Array and Array & Component are visible, there is a
9096      --  potential ambiguity that must be reported.
9097
9098      elsif Has_Compatible_Type (Arg, Ctyp) then
9099         if Nkind (Arg) = N_Aggregate
9100           and then Is_Composite_Type (Ctyp)
9101         then
9102            if Is_Private_Type (Ctyp) then
9103               Resolve (Arg, Btyp);
9104
9105            --  If the operation is user-defined and not overloaded use its
9106            --  profile. The operation may be a renaming, in which case it has
9107            --  been rewritten, and we want the original profile.
9108
9109            elsif not Is_Overloaded (N)
9110              and then Comes_From_Source (Entity (Original_Node (N)))
9111              and then Ekind (Entity (Original_Node (N))) = E_Function
9112            then
9113               Resolve (Arg,
9114                 Etype
9115                   (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9116               return;
9117
9118            --  Otherwise an aggregate may match both the array type and the
9119            --  component type.
9120
9121            else
9122               Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9123               Set_Etype (Arg, Any_Type);
9124            end if;
9125
9126         else
9127            if Is_Overloaded (Arg)
9128              and then Has_Compatible_Type (Arg, Typ)
9129              and then Etype (Arg) /= Any_Type
9130            then
9131               declare
9132                  I    : Interp_Index;
9133                  It   : Interp;
9134                  Func : Entity_Id;
9135
9136               begin
9137                  Get_First_Interp (Arg, I, It);
9138                  Func := It.Nam;
9139                  Get_Next_Interp (I, It);
9140
9141                  --  Special-case the error message when the overloading is
9142                  --  caused by a function that yields an array and can be
9143                  --  called without parameters.
9144
9145                  if It.Nam = Func then
9146                     Error_Msg_Sloc := Sloc (Func);
9147                     Error_Msg_N ("ambiguous call to function#", Arg);
9148                     Error_Msg_NE
9149                       ("\\interpretation as call yields&", Arg, Typ);
9150                     Error_Msg_NE
9151                       ("\\interpretation as indexing of call yields&",
9152                         Arg, Component_Type (Typ));
9153
9154                  else
9155                     Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9156
9157                     Get_First_Interp (Arg, I, It);
9158                     while Present (It.Nam) loop
9159                        Error_Msg_Sloc := Sloc (It.Nam);
9160
9161                        if Base_Type (It.Typ) = Btyp
9162                             or else
9163                           Base_Type (It.Typ) = Base_Type (Ctyp)
9164                        then
9165                           Error_Msg_N -- CODEFIX
9166                             ("\\possible interpretation#", Arg);
9167                        end if;
9168
9169                        Get_Next_Interp (I, It);
9170                     end loop;
9171                  end if;
9172               end;
9173            end if;
9174
9175            Resolve (Arg, Component_Type (Typ));
9176
9177            if Nkind (Arg) = N_String_Literal then
9178               Set_Etype (Arg, Component_Type (Typ));
9179            end if;
9180
9181            if Arg = Left_Opnd (N) then
9182               Set_Is_Component_Left_Opnd (N);
9183            else
9184               Set_Is_Component_Right_Opnd (N);
9185            end if;
9186         end if;
9187
9188      else
9189         Resolve (Arg, Btyp);
9190      end if;
9191
9192      --  Concatenation is restricted in SPARK: each operand must be either a
9193      --  string literal, the name of a string constant, a static character or
9194      --  string expression, or another concatenation. Arg cannot be a
9195      --  concatenation here as callers of Resolve_Op_Concat_Arg call it
9196      --  separately on each final operand, past concatenation operations.
9197
9198      if Is_Character_Type (Etype (Arg)) then
9199         if not Is_OK_Static_Expression (Arg) then
9200            Check_SPARK_05_Restriction
9201              ("character operand for concatenation should be static", Arg);
9202         end if;
9203
9204      elsif Is_String_Type (Etype (Arg)) then
9205         if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9206                  and then Is_Constant_Object (Entity (Arg)))
9207           and then not Is_OK_Static_Expression (Arg)
9208         then
9209            Check_SPARK_05_Restriction
9210              ("string operand for concatenation should be static", Arg);
9211         end if;
9212
9213      --  Do not issue error on an operand that is neither a character nor a
9214      --  string, as the error is issued in Resolve_Op_Concat.
9215
9216      else
9217         null;
9218      end if;
9219
9220      Check_Unset_Reference (Arg);
9221   end Resolve_Op_Concat_Arg;
9222
9223   -----------------------------
9224   -- Resolve_Op_Concat_First --
9225   -----------------------------
9226
9227   procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9228      Btyp : constant Entity_Id := Base_Type (Typ);
9229      Op1  : constant Node_Id := Left_Opnd (N);
9230      Op2  : constant Node_Id := Right_Opnd (N);
9231
9232   begin
9233      --  The parser folds an enormous sequence of concatenations of string
9234      --  literals into "" & "...", where the Is_Folded_In_Parser flag is set
9235      --  in the right operand. If the expression resolves to a predefined "&"
9236      --  operator, all is well. Otherwise, the parser's folding is wrong, so
9237      --  we give an error. See P_Simple_Expression in Par.Ch4.
9238
9239      if Nkind (Op2) = N_String_Literal
9240        and then Is_Folded_In_Parser (Op2)
9241        and then Ekind (Entity (N)) = E_Function
9242      then
9243         pragma Assert (Nkind (Op1) = N_String_Literal  --  should be ""
9244               and then String_Length (Strval (Op1)) = 0);
9245         Error_Msg_N ("too many user-defined concatenations", N);
9246         return;
9247      end if;
9248
9249      Set_Etype (N, Btyp);
9250
9251      if Is_Limited_Composite (Btyp) then
9252         Error_Msg_N ("concatenation not available for limited array", N);
9253         Explain_Limited_Type (Btyp, N);
9254      end if;
9255   end Resolve_Op_Concat_First;
9256
9257   ----------------------------
9258   -- Resolve_Op_Concat_Rest --
9259   ----------------------------
9260
9261   procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9262      Op1  : constant Node_Id := Left_Opnd (N);
9263      Op2  : constant Node_Id := Right_Opnd (N);
9264
9265   begin
9266      Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd  (N));
9267
9268      Generate_Operator_Reference (N, Typ);
9269
9270      if Is_String_Type (Typ) then
9271         Eval_Concatenation (N);
9272      end if;
9273
9274      --  If this is not a static concatenation, but the result is a string
9275      --  type (and not an array of strings) ensure that static string operands
9276      --  have their subtypes properly constructed.
9277
9278      if Nkind (N) /= N_String_Literal
9279        and then Is_Character_Type (Component_Type (Typ))
9280      then
9281         Set_String_Literal_Subtype (Op1, Typ);
9282         Set_String_Literal_Subtype (Op2, Typ);
9283      end if;
9284   end Resolve_Op_Concat_Rest;
9285
9286   ----------------------
9287   -- Resolve_Op_Expon --
9288   ----------------------
9289
9290   procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9291      B_Typ : constant Entity_Id := Base_Type (Typ);
9292
9293   begin
9294      --  Catch attempts to do fixed-point exponentiation with universal
9295      --  operands, which is a case where the illegality is not caught during
9296      --  normal operator analysis. This is not done in preanalysis mode
9297      --  since the tree is not fully decorated during preanalysis.
9298
9299      if Full_Analysis then
9300         if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9301            Error_Msg_N ("exponentiation not available for fixed point", N);
9302            return;
9303
9304         elsif Nkind (Parent (N)) in N_Op
9305           and then Is_Fixed_Point_Type (Etype (Parent (N)))
9306           and then Etype (N) = Universal_Real
9307           and then Comes_From_Source (N)
9308         then
9309            Error_Msg_N ("exponentiation not available for fixed point", N);
9310            return;
9311         end if;
9312      end if;
9313
9314      if Comes_From_Source (N)
9315        and then Ekind (Entity (N)) = E_Function
9316        and then Is_Imported (Entity (N))
9317        and then Is_Intrinsic_Subprogram (Entity (N))
9318      then
9319         Resolve_Intrinsic_Operator (N, Typ);
9320         return;
9321      end if;
9322
9323      if Etype (Left_Opnd (N)) = Universal_Integer
9324        or else Etype (Left_Opnd (N)) = Universal_Real
9325      then
9326         Check_For_Visible_Operator (N, B_Typ);
9327      end if;
9328
9329      --  We do the resolution using the base type, because intermediate values
9330      --  in expressions are always of the base type, not a subtype of it.
9331
9332      Resolve (Left_Opnd (N), B_Typ);
9333      Resolve (Right_Opnd (N), Standard_Integer);
9334
9335      --  For integer types, right argument must be in Natural range
9336
9337      if Is_Integer_Type (Typ) then
9338         Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9339      end if;
9340
9341      Check_Unset_Reference (Left_Opnd  (N));
9342      Check_Unset_Reference (Right_Opnd (N));
9343
9344      Set_Etype (N, B_Typ);
9345      Generate_Operator_Reference (N, B_Typ);
9346
9347      Analyze_Dimension (N);
9348
9349      if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9350         --  Evaluate the exponentiation operator for dimensioned type
9351
9352         Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9353      else
9354         Eval_Op_Expon (N);
9355      end if;
9356
9357      --  Set overflow checking bit. Much cleverer code needed here eventually
9358      --  and perhaps the Resolve routines should be separated for the various
9359      --  arithmetic operations, since they will need different processing. ???
9360
9361      if Nkind (N) in N_Op then
9362         if not Overflow_Checks_Suppressed (Etype (N)) then
9363            Enable_Overflow_Check (N);
9364         end if;
9365      end if;
9366   end Resolve_Op_Expon;
9367
9368   --------------------
9369   -- Resolve_Op_Not --
9370   --------------------
9371
9372   procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9373      B_Typ : Entity_Id;
9374
9375      function Parent_Is_Boolean return Boolean;
9376      --  This function determines if the parent node is a boolean operator or
9377      --  operation (comparison op, membership test, or short circuit form) and
9378      --  the not in question is the left operand of this operation. Note that
9379      --  if the not is in parens, then false is returned.
9380
9381      -----------------------
9382      -- Parent_Is_Boolean --
9383      -----------------------
9384
9385      function Parent_Is_Boolean return Boolean is
9386      begin
9387         if Paren_Count (N) /= 0 then
9388            return False;
9389
9390         else
9391            case Nkind (Parent (N)) is
9392               when N_Op_And   |
9393                    N_Op_Eq    |
9394                    N_Op_Ge    |
9395                    N_Op_Gt    |
9396                    N_Op_Le    |
9397                    N_Op_Lt    |
9398                    N_Op_Ne    |
9399                    N_Op_Or    |
9400                    N_Op_Xor   |
9401                    N_In       |
9402                    N_Not_In   |
9403                    N_And_Then |
9404                    N_Or_Else  =>
9405
9406                  return Left_Opnd (Parent (N)) = N;
9407
9408               when others =>
9409                  return False;
9410            end case;
9411         end if;
9412      end Parent_Is_Boolean;
9413
9414   --  Start of processing for Resolve_Op_Not
9415
9416   begin
9417      --  Predefined operations on scalar types yield the base type. On the
9418      --  other hand, logical operations on arrays yield the type of the
9419      --  arguments (and the context).
9420
9421      if Is_Array_Type (Typ) then
9422         B_Typ := Typ;
9423      else
9424         B_Typ := Base_Type (Typ);
9425      end if;
9426
9427      --  Straightforward case of incorrect arguments
9428
9429      if not Valid_Boolean_Arg (Typ) then
9430         Error_Msg_N ("invalid operand type for operator&", N);
9431         Set_Etype (N, Any_Type);
9432         return;
9433
9434      --  Special case of probable missing parens
9435
9436      elsif Typ = Universal_Integer or else Typ = Any_Modular then
9437         if Parent_Is_Boolean then
9438            Error_Msg_N
9439              ("operand of not must be enclosed in parentheses",
9440               Right_Opnd (N));
9441         else
9442            Error_Msg_N
9443              ("no modular type available in this context", N);
9444         end if;
9445
9446         Set_Etype (N, Any_Type);
9447         return;
9448
9449      --  OK resolution of NOT
9450
9451      else
9452         --  Warn if non-boolean types involved. This is a case like not a < b
9453         --  where a and b are modular, where we will get (not a) < b and most
9454         --  likely not (a < b) was intended.
9455
9456         if Warn_On_Questionable_Missing_Parens
9457           and then not Is_Boolean_Type (Typ)
9458           and then Parent_Is_Boolean
9459         then
9460            Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9461         end if;
9462
9463         --  Warn on double negation if checking redundant constructs
9464
9465         if Warn_On_Redundant_Constructs
9466           and then Comes_From_Source (N)
9467           and then Comes_From_Source (Right_Opnd (N))
9468           and then Root_Type (Typ) = Standard_Boolean
9469           and then Nkind (Right_Opnd (N)) = N_Op_Not
9470         then
9471            Error_Msg_N ("redundant double negation?r?", N);
9472         end if;
9473
9474         --  Complete resolution and evaluation of NOT
9475
9476         Resolve (Right_Opnd (N), B_Typ);
9477         Check_Unset_Reference (Right_Opnd (N));
9478         Set_Etype (N, B_Typ);
9479         Generate_Operator_Reference (N, B_Typ);
9480         Eval_Op_Not (N);
9481      end if;
9482   end Resolve_Op_Not;
9483
9484   -----------------------------
9485   -- Resolve_Operator_Symbol --
9486   -----------------------------
9487
9488   --  Nothing to be done, all resolved already
9489
9490   procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9491      pragma Warnings (Off, N);
9492      pragma Warnings (Off, Typ);
9493
9494   begin
9495      null;
9496   end Resolve_Operator_Symbol;
9497
9498   ----------------------------------
9499   -- Resolve_Qualified_Expression --
9500   ----------------------------------
9501
9502   procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9503      pragma Warnings (Off, Typ);
9504
9505      Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9506      Expr       : constant Node_Id   := Expression (N);
9507
9508   begin
9509      Resolve (Expr, Target_Typ);
9510
9511      --  Protect call to Matching_Static_Array_Bounds to avoid costly
9512      --  operation if not needed.
9513
9514      if Restriction_Check_Required (SPARK_05)
9515        and then Is_Array_Type (Target_Typ)
9516        and then Is_Array_Type (Etype (Expr))
9517        and then Etype (Expr) /= Any_Composite  --  or else Expr in error
9518        and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9519      then
9520         Check_SPARK_05_Restriction
9521           ("array types should have matching static bounds", N);
9522      end if;
9523
9524      --  A qualified expression requires an exact match of the type, class-
9525      --  wide matching is not allowed. However, if the qualifying type is
9526      --  specific and the expression has a class-wide type, it may still be
9527      --  okay, since it can be the result of the expansion of a call to a
9528      --  dispatching function, so we also have to check class-wideness of the
9529      --  type of the expression's original node.
9530
9531      if (Is_Class_Wide_Type (Target_Typ)
9532           or else
9533             (Is_Class_Wide_Type (Etype (Expr))
9534               and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9535        and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9536      then
9537         Wrong_Type (Expr, Target_Typ);
9538      end if;
9539
9540      --  If the target type is unconstrained, then we reset the type of the
9541      --  result from the type of the expression. For other cases, the actual
9542      --  subtype of the expression is the target type.
9543
9544      if Is_Composite_Type (Target_Typ)
9545        and then not Is_Constrained (Target_Typ)
9546      then
9547         Set_Etype (N, Etype (Expr));
9548      end if;
9549
9550      Analyze_Dimension (N);
9551      Eval_Qualified_Expression (N);
9552
9553      --  If we still have a qualified expression after the static evaluation,
9554      --  then apply a scalar range check if needed. The reason that we do this
9555      --  after the Eval call is that otherwise, the application of the range
9556      --  check may convert an illegal static expression and result in warning
9557      --  rather than giving an error (e.g Integer'(Integer'Last + 1)).
9558
9559      if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9560         Apply_Scalar_Range_Check (Expr, Typ);
9561      end if;
9562   end Resolve_Qualified_Expression;
9563
9564   ------------------------------
9565   -- Resolve_Raise_Expression --
9566   ------------------------------
9567
9568   procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9569   begin
9570      if Typ = Raise_Type then
9571         Error_Msg_N ("cannot find unique type for raise expression", N);
9572         Set_Etype (N, Any_Type);
9573      else
9574         Set_Etype (N, Typ);
9575      end if;
9576   end Resolve_Raise_Expression;
9577
9578   -------------------
9579   -- Resolve_Range --
9580   -------------------
9581
9582   procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9583      L : constant Node_Id := Low_Bound (N);
9584      H : constant Node_Id := High_Bound (N);
9585
9586      function First_Last_Ref return Boolean;
9587      --  Returns True if N is of the form X'First .. X'Last where X is the
9588      --  same entity for both attributes.
9589
9590      --------------------
9591      -- First_Last_Ref --
9592      --------------------
9593
9594      function First_Last_Ref return Boolean is
9595         Lorig : constant Node_Id := Original_Node (L);
9596         Horig : constant Node_Id := Original_Node (H);
9597
9598      begin
9599         if Nkind (Lorig) = N_Attribute_Reference
9600           and then Nkind (Horig) = N_Attribute_Reference
9601           and then Attribute_Name (Lorig) = Name_First
9602           and then Attribute_Name (Horig) = Name_Last
9603         then
9604            declare
9605               PL : constant Node_Id := Prefix (Lorig);
9606               PH : constant Node_Id := Prefix (Horig);
9607            begin
9608               if Is_Entity_Name (PL)
9609                 and then Is_Entity_Name (PH)
9610                 and then Entity (PL) = Entity (PH)
9611               then
9612                  return True;
9613               end if;
9614            end;
9615         end if;
9616
9617         return False;
9618      end First_Last_Ref;
9619
9620   --  Start of processing for Resolve_Range
9621
9622   begin
9623      Set_Etype (N, Typ);
9624      Resolve (L, Typ);
9625      Resolve (H, Typ);
9626
9627      --  Check for inappropriate range on unordered enumeration type
9628
9629      if Bad_Unordered_Enumeration_Reference (N, Typ)
9630
9631        --  Exclude X'First .. X'Last if X is the same entity for both
9632
9633        and then not First_Last_Ref
9634      then
9635         Error_Msg_Sloc := Sloc (Typ);
9636         Error_Msg_NE
9637           ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9638      end if;
9639
9640      Check_Unset_Reference (L);
9641      Check_Unset_Reference (H);
9642
9643      --  We have to check the bounds for being within the base range as
9644      --  required for a non-static context. Normally this is automatic and
9645      --  done as part of evaluating expressions, but the N_Range node is an
9646      --  exception, since in GNAT we consider this node to be a subexpression,
9647      --  even though in Ada it is not. The circuit in Sem_Eval could check for
9648      --  this, but that would put the test on the main evaluation path for
9649      --  expressions.
9650
9651      Check_Non_Static_Context (L);
9652      Check_Non_Static_Context (H);
9653
9654      --  Check for an ambiguous range over character literals. This will
9655      --  happen with a membership test involving only literals.
9656
9657      if Typ = Any_Character then
9658         Ambiguous_Character (L);
9659         Set_Etype (N, Any_Type);
9660         return;
9661      end if;
9662
9663      --  If bounds are static, constant-fold them, so size computations are
9664      --  identical between front-end and back-end. Do not perform this
9665      --  transformation while analyzing generic units, as type information
9666      --  would be lost when reanalyzing the constant node in the instance.
9667
9668      if Is_Discrete_Type (Typ) and then Expander_Active then
9669         if Is_OK_Static_Expression (L) then
9670            Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9671         end if;
9672
9673         if Is_OK_Static_Expression (H) then
9674            Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9675         end if;
9676      end if;
9677   end Resolve_Range;
9678
9679   --------------------------
9680   -- Resolve_Real_Literal --
9681   --------------------------
9682
9683   procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9684      Actual_Typ : constant Entity_Id := Etype (N);
9685
9686   begin
9687      --  Special processing for fixed-point literals to make sure that the
9688      --  value is an exact multiple of small where this is required. We skip
9689      --  this for the universal real case, and also for generic types.
9690
9691      if Is_Fixed_Point_Type (Typ)
9692        and then Typ /= Universal_Fixed
9693        and then Typ /= Any_Fixed
9694        and then not Is_Generic_Type (Typ)
9695      then
9696         declare
9697            Val   : constant Ureal := Realval (N);
9698            Cintr : constant Ureal := Val / Small_Value (Typ);
9699            Cint  : constant Uint  := UR_Trunc (Cintr);
9700            Den   : constant Uint  := Norm_Den (Cintr);
9701            Stat  : Boolean;
9702
9703         begin
9704            --  Case of literal is not an exact multiple of the Small
9705
9706            if Den /= 1 then
9707
9708               --  For a source program literal for a decimal fixed-point type,
9709               --  this is statically illegal (RM 4.9(36)).
9710
9711               if Is_Decimal_Fixed_Point_Type (Typ)
9712                 and then Actual_Typ = Universal_Real
9713                 and then Comes_From_Source (N)
9714               then
9715                  Error_Msg_N ("value has extraneous low order digits", N);
9716               end if;
9717
9718               --  Generate a warning if literal from source
9719
9720               if Is_OK_Static_Expression (N)
9721                 and then Warn_On_Bad_Fixed_Value
9722               then
9723                  Error_Msg_N
9724                    ("?b?static fixed-point value is not a multiple of Small!",
9725                     N);
9726               end if;
9727
9728               --  Replace literal by a value that is the exact representation
9729               --  of a value of the type, i.e. a multiple of the small value,
9730               --  by truncation, since Machine_Rounds is false for all GNAT
9731               --  fixed-point types (RM 4.9(38)).
9732
9733               Stat := Is_OK_Static_Expression (N);
9734               Rewrite (N,
9735                 Make_Real_Literal (Sloc (N),
9736                   Realval => Small_Value (Typ) * Cint));
9737
9738               Set_Is_Static_Expression (N, Stat);
9739            end if;
9740
9741            --  In all cases, set the corresponding integer field
9742
9743            Set_Corresponding_Integer_Value (N, Cint);
9744         end;
9745      end if;
9746
9747      --  Now replace the actual type by the expected type as usual
9748
9749      Set_Etype (N, Typ);
9750      Eval_Real_Literal (N);
9751   end Resolve_Real_Literal;
9752
9753   -----------------------
9754   -- Resolve_Reference --
9755   -----------------------
9756
9757   procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9758      P : constant Node_Id := Prefix (N);
9759
9760   begin
9761      --  Replace general access with specific type
9762
9763      if Ekind (Etype (N)) = E_Allocator_Type then
9764         Set_Etype (N, Base_Type (Typ));
9765      end if;
9766
9767      Resolve (P, Designated_Type (Etype (N)));
9768
9769      --  If we are taking the reference of a volatile entity, then treat it as
9770      --  a potential modification of this entity. This is too conservative,
9771      --  but necessary because remove side effects can cause transformations
9772      --  of normal assignments into reference sequences that otherwise fail to
9773      --  notice the modification.
9774
9775      if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9776         Note_Possible_Modification (P, Sure => False);
9777      end if;
9778   end Resolve_Reference;
9779
9780   --------------------------------
9781   -- Resolve_Selected_Component --
9782   --------------------------------
9783
9784   procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9785      Comp  : Entity_Id;
9786      Comp1 : Entity_Id        := Empty; -- prevent junk warning
9787      P     : constant Node_Id := Prefix (N);
9788      S     : constant Node_Id := Selector_Name (N);
9789      T     : Entity_Id        := Etype (P);
9790      I     : Interp_Index;
9791      I1    : Interp_Index := 0; -- prevent junk warning
9792      It    : Interp;
9793      It1   : Interp;
9794      Found : Boolean;
9795
9796      function Init_Component return Boolean;
9797      --  Check whether this is the initialization of a component within an
9798      --  init proc (by assignment or call to another init proc). If true,
9799      --  there is no need for a discriminant check.
9800
9801      --------------------
9802      -- Init_Component --
9803      --------------------
9804
9805      function Init_Component return Boolean is
9806      begin
9807         return Inside_Init_Proc
9808           and then Nkind (Prefix (N)) = N_Identifier
9809           and then Chars (Prefix (N)) = Name_uInit
9810           and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9811      end Init_Component;
9812
9813   --  Start of processing for Resolve_Selected_Component
9814
9815   begin
9816      if Is_Overloaded (P) then
9817
9818         --  Use the context type to select the prefix that has a selector
9819         --  of the correct name and type.
9820
9821         Found := False;
9822         Get_First_Interp (P, I, It);
9823
9824         Search : while Present (It.Typ) loop
9825            if Is_Access_Type (It.Typ) then
9826               T := Designated_Type (It.Typ);
9827            else
9828               T := It.Typ;
9829            end if;
9830
9831            --  Locate selected component. For a private prefix the selector
9832            --  can denote a discriminant.
9833
9834            if Is_Record_Type (T) or else Is_Private_Type (T) then
9835
9836               --  The visible components of a class-wide type are those of
9837               --  the root type.
9838
9839               if Is_Class_Wide_Type (T) then
9840                  T := Etype (T);
9841               end if;
9842
9843               Comp := First_Entity (T);
9844               while Present (Comp) loop
9845                  if Chars (Comp) = Chars (S)
9846                    and then Covers (Typ, Etype (Comp))
9847                  then
9848                     if not Found then
9849                        Found := True;
9850                        I1  := I;
9851                        It1 := It;
9852                        Comp1 := Comp;
9853
9854                     else
9855                        It := Disambiguate (P, I1, I, Any_Type);
9856
9857                        if It = No_Interp then
9858                           Error_Msg_N
9859                             ("ambiguous prefix for selected component",  N);
9860                           Set_Etype (N, Typ);
9861                           return;
9862
9863                        else
9864                           It1 := It;
9865
9866                           --  There may be an implicit dereference. Retrieve
9867                           --  designated record type.
9868
9869                           if Is_Access_Type (It1.Typ) then
9870                              T := Designated_Type (It1.Typ);
9871                           else
9872                              T := It1.Typ;
9873                           end if;
9874
9875                           if Scope (Comp1) /= T then
9876
9877                              --  Resolution chooses the new interpretation.
9878                              --  Find the component with the right name.
9879
9880                              Comp1 := First_Entity (T);
9881                              while Present (Comp1)
9882                                and then Chars (Comp1) /= Chars (S)
9883                              loop
9884                                 Comp1 := Next_Entity (Comp1);
9885                              end loop;
9886                           end if;
9887
9888                           exit Search;
9889                        end if;
9890                     end if;
9891                  end if;
9892
9893                  Comp := Next_Entity (Comp);
9894               end loop;
9895            end if;
9896
9897            Get_Next_Interp (I, It);
9898         end loop Search;
9899
9900         --  There must be a legal interpretation at this point
9901
9902         pragma Assert (Found);
9903         Resolve (P, It1.Typ);
9904         Set_Etype (N, Typ);
9905         Set_Entity_With_Checks (S, Comp1);
9906
9907      else
9908         --  Resolve prefix with its type
9909
9910         Resolve (P, T);
9911      end if;
9912
9913      --  Generate cross-reference. We needed to wait until full overloading
9914      --  resolution was complete to do this, since otherwise we can't tell if
9915      --  we are an lvalue or not.
9916
9917      if May_Be_Lvalue (N) then
9918         Generate_Reference (Entity (S), S, 'm');
9919      else
9920         Generate_Reference (Entity (S), S, 'r');
9921      end if;
9922
9923      --  If prefix is an access type, the node will be transformed into an
9924      --  explicit dereference during expansion. The type of the node is the
9925      --  designated type of that of the prefix.
9926
9927      if Is_Access_Type (Etype (P)) then
9928         T := Designated_Type (Etype (P));
9929         Check_Fully_Declared_Prefix (T, P);
9930      else
9931         T := Etype (P);
9932      end if;
9933
9934      --  Set flag for expander if discriminant check required on a component
9935      --  appearing within a variant.
9936
9937      if Has_Discriminants (T)
9938        and then Ekind (Entity (S)) = E_Component
9939        and then Present (Original_Record_Component (Entity (S)))
9940        and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9941        and then
9942          Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
9943        and then not Discriminant_Checks_Suppressed (T)
9944        and then not Init_Component
9945      then
9946         Set_Do_Discriminant_Check (N);
9947      end if;
9948
9949      if Ekind (Entity (S)) = E_Void then
9950         Error_Msg_N ("premature use of component", S);
9951      end if;
9952
9953      --  If the prefix is a record conversion, this may be a renamed
9954      --  discriminant whose bounds differ from those of the original
9955      --  one, so we must ensure that a range check is performed.
9956
9957      if Nkind (P) = N_Type_Conversion
9958        and then Ekind (Entity (S)) = E_Discriminant
9959        and then Is_Discrete_Type (Typ)
9960      then
9961         Set_Etype (N, Base_Type (Typ));
9962      end if;
9963
9964      --  Note: No Eval processing is required, because the prefix is of a
9965      --  record type, or protected type, and neither can possibly be static.
9966
9967      --  If the record type is atomic, and the component is non-atomic, then
9968      --  this is worth a warning, since we have a situation where the access
9969      --  to the component may cause extra read/writes of the atomic array
9970      --  object, or partial word accesses, both of which may be unexpected.
9971
9972      if Nkind (N) = N_Selected_Component
9973        and then Is_Atomic_Ref_With_Address (N)
9974        and then not Is_Atomic (Entity (S))
9975        and then not Is_Atomic (Etype (Entity (S)))
9976      then
9977         Error_Msg_N
9978           ("??access to non-atomic component of atomic record",
9979            Prefix (N));
9980         Error_Msg_N
9981           ("\??may cause unexpected accesses to atomic object",
9982            Prefix (N));
9983      end if;
9984
9985      Analyze_Dimension (N);
9986   end Resolve_Selected_Component;
9987
9988   -------------------
9989   -- Resolve_Shift --
9990   -------------------
9991
9992   procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9993      B_Typ : constant Entity_Id := Base_Type (Typ);
9994      L     : constant Node_Id   := Left_Opnd  (N);
9995      R     : constant Node_Id   := Right_Opnd (N);
9996
9997   begin
9998      --  We do the resolution using the base type, because intermediate values
9999      --  in expressions always are of the base type, not a subtype of it.
10000
10001      Resolve (L, B_Typ);
10002      Resolve (R, Standard_Natural);
10003
10004      Check_Unset_Reference (L);
10005      Check_Unset_Reference (R);
10006
10007      Set_Etype (N, B_Typ);
10008      Generate_Operator_Reference (N, B_Typ);
10009      Eval_Shift (N);
10010   end Resolve_Shift;
10011
10012   ---------------------------
10013   -- Resolve_Short_Circuit --
10014   ---------------------------
10015
10016   procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10017      B_Typ : constant Entity_Id := Base_Type (Typ);
10018      L     : constant Node_Id   := Left_Opnd  (N);
10019      R     : constant Node_Id   := Right_Opnd (N);
10020
10021   begin
10022      --  Ensure all actions associated with the left operand (e.g.
10023      --  finalization of transient controlled objects) are fully evaluated
10024      --  locally within an expression with actions. This is particularly
10025      --  helpful for coverage analysis. However this should not happen in
10026      --  generics.
10027
10028      if Expander_Active then
10029         declare
10030            Reloc_L : constant Node_Id := Relocate_Node (L);
10031         begin
10032            Save_Interps (Old_N => L, New_N => Reloc_L);
10033
10034            Rewrite (L,
10035              Make_Expression_With_Actions (Sloc (L),
10036                Actions    => New_List,
10037                Expression => Reloc_L));
10038
10039            --  Set Comes_From_Source on L to preserve warnings for unset
10040            --  reference.
10041
10042            Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10043         end;
10044      end if;
10045
10046      Resolve (L, B_Typ);
10047      Resolve (R, B_Typ);
10048
10049      --  Check for issuing warning for always False assert/check, this happens
10050      --  when assertions are turned off, in which case the pragma Assert/Check
10051      --  was transformed into:
10052
10053      --     if False and then <condition> then ...
10054
10055      --  and we detect this pattern
10056
10057      if Warn_On_Assertion_Failure
10058        and then Is_Entity_Name (R)
10059        and then Entity (R) = Standard_False
10060        and then Nkind (Parent (N)) = N_If_Statement
10061        and then Nkind (N) = N_And_Then
10062        and then Is_Entity_Name (L)
10063        and then Entity (L) = Standard_False
10064      then
10065         declare
10066            Orig : constant Node_Id := Original_Node (Parent (N));
10067
10068         begin
10069            --  Special handling of Asssert pragma
10070
10071            if Nkind (Orig) = N_Pragma
10072              and then Pragma_Name (Orig) = Name_Assert
10073            then
10074               declare
10075                  Expr : constant Node_Id :=
10076                           Original_Node
10077                             (Expression
10078                               (First (Pragma_Argument_Associations (Orig))));
10079
10080               begin
10081                  --  Don't warn if original condition is explicit False,
10082                  --  since obviously the failure is expected in this case.
10083
10084                  if Is_Entity_Name (Expr)
10085                    and then Entity (Expr) = Standard_False
10086                  then
10087                     null;
10088
10089                  --  Issue warning. We do not want the deletion of the
10090                  --  IF/AND-THEN to take this message with it. We achieve this
10091                  --  by making sure that the expanded code points to the Sloc
10092                  --  of the expression, not the original pragma.
10093
10094                  else
10095                     --  Note: Use Error_Msg_F here rather than Error_Msg_N.
10096                     --  The source location of the expression is not usually
10097                     --  the best choice here. For example, it gets located on
10098                     --  the last AND keyword in a chain of boolean expressiond
10099                     --  AND'ed together. It is best to put the message on the
10100                     --  first character of the assertion, which is the effect
10101                     --  of the First_Node call here.
10102
10103                     Error_Msg_F
10104                       ("?A?assertion would fail at run time!",
10105                        Expression
10106                          (First (Pragma_Argument_Associations (Orig))));
10107                  end if;
10108               end;
10109
10110            --  Similar processing for Check pragma
10111
10112            elsif Nkind (Orig) = N_Pragma
10113              and then Pragma_Name (Orig) = Name_Check
10114            then
10115               --  Don't want to warn if original condition is explicit False
10116
10117               declare
10118                  Expr : constant Node_Id :=
10119                    Original_Node
10120                      (Expression
10121                        (Next (First (Pragma_Argument_Associations (Orig)))));
10122               begin
10123                  if Is_Entity_Name (Expr)
10124                    and then Entity (Expr) = Standard_False
10125                  then
10126                     null;
10127
10128                  --  Post warning
10129
10130                  else
10131                     --  Again use Error_Msg_F rather than Error_Msg_N, see
10132                     --  comment above for an explanation of why we do this.
10133
10134                     Error_Msg_F
10135                       ("?A?check would fail at run time!",
10136                        Expression
10137                          (Last (Pragma_Argument_Associations (Orig))));
10138                  end if;
10139               end;
10140            end if;
10141         end;
10142      end if;
10143
10144      --  Continue with processing of short circuit
10145
10146      Check_Unset_Reference (L);
10147      Check_Unset_Reference (R);
10148
10149      Set_Etype (N, B_Typ);
10150      Eval_Short_Circuit (N);
10151   end Resolve_Short_Circuit;
10152
10153   -------------------
10154   -- Resolve_Slice --
10155   -------------------
10156
10157   procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10158      Drange     : constant Node_Id := Discrete_Range (N);
10159      Name       : constant Node_Id := Prefix (N);
10160      Array_Type : Entity_Id        := Empty;
10161      Dexpr      : Node_Id          := Empty;
10162      Index_Type : Entity_Id;
10163
10164   begin
10165      if Is_Overloaded (Name) then
10166
10167         --  Use the context type to select the prefix that yields the correct
10168         --  array type.
10169
10170         declare
10171            I      : Interp_Index;
10172            I1     : Interp_Index := 0;
10173            It     : Interp;
10174            P      : constant Node_Id := Prefix (N);
10175            Found  : Boolean := False;
10176
10177         begin
10178            Get_First_Interp (P, I,  It);
10179            while Present (It.Typ) loop
10180               if (Is_Array_Type (It.Typ)
10181                    and then Covers (Typ,  It.Typ))
10182                 or else (Is_Access_Type (It.Typ)
10183                           and then Is_Array_Type (Designated_Type (It.Typ))
10184                           and then Covers (Typ, Designated_Type (It.Typ)))
10185               then
10186                  if Found then
10187                     It := Disambiguate (P, I1, I, Any_Type);
10188
10189                     if It = No_Interp then
10190                        Error_Msg_N ("ambiguous prefix for slicing",  N);
10191                        Set_Etype (N, Typ);
10192                        return;
10193                     else
10194                        Found := True;
10195                        Array_Type := It.Typ;
10196                        I1 := I;
10197                     end if;
10198                  else
10199                     Found := True;
10200                     Array_Type := It.Typ;
10201                     I1 := I;
10202                  end if;
10203               end if;
10204
10205               Get_Next_Interp (I, It);
10206            end loop;
10207         end;
10208
10209      else
10210         Array_Type := Etype (Name);
10211      end if;
10212
10213      Resolve (Name, Array_Type);
10214
10215      if Is_Access_Type (Array_Type) then
10216         Apply_Access_Check (N);
10217         Array_Type := Designated_Type (Array_Type);
10218
10219         --  If the prefix is an access to an unconstrained array, we must use
10220         --  the actual subtype of the object to perform the index checks. The
10221         --  object denoted by the prefix is implicit in the node, so we build
10222         --  an explicit representation for it in order to compute the actual
10223         --  subtype.
10224
10225         if not Is_Constrained (Array_Type) then
10226            Remove_Side_Effects (Prefix (N));
10227
10228            declare
10229               Obj : constant Node_Id :=
10230                       Make_Explicit_Dereference (Sloc (N),
10231                         Prefix => New_Copy_Tree (Prefix (N)));
10232            begin
10233               Set_Etype (Obj, Array_Type);
10234               Set_Parent (Obj, Parent (N));
10235               Array_Type := Get_Actual_Subtype (Obj);
10236            end;
10237         end if;
10238
10239      elsif Is_Entity_Name (Name)
10240        or else Nkind (Name) = N_Explicit_Dereference
10241        or else (Nkind (Name) = N_Function_Call
10242                  and then not Is_Constrained (Etype (Name)))
10243      then
10244         Array_Type := Get_Actual_Subtype (Name);
10245
10246      --  If the name is a selected component that depends on discriminants,
10247      --  build an actual subtype for it. This can happen only when the name
10248      --  itself is overloaded; otherwise the actual subtype is created when
10249      --  the selected component is analyzed.
10250
10251      elsif Nkind (Name) = N_Selected_Component
10252        and then Full_Analysis
10253        and then Depends_On_Discriminant (First_Index (Array_Type))
10254      then
10255         declare
10256            Act_Decl : constant Node_Id :=
10257                         Build_Actual_Subtype_Of_Component (Array_Type, Name);
10258         begin
10259            Insert_Action (N, Act_Decl);
10260            Array_Type := Defining_Identifier (Act_Decl);
10261         end;
10262
10263      --  Maybe this should just be "else", instead of checking for the
10264      --  specific case of slice??? This is needed for the case where the
10265      --  prefix is an Image attribute, which gets expanded to a slice, and so
10266      --  has a constrained subtype which we want to use for the slice range
10267      --  check applied below (the range check won't get done if the
10268      --  unconstrained subtype of the 'Image is used).
10269
10270      elsif Nkind (Name) = N_Slice then
10271         Array_Type := Etype (Name);
10272      end if;
10273
10274      --  Obtain the type of the array index
10275
10276      if Ekind (Array_Type) = E_String_Literal_Subtype then
10277         Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10278      else
10279         Index_Type := Etype (First_Index (Array_Type));
10280      end if;
10281
10282      --  If name was overloaded, set slice type correctly now
10283
10284      Set_Etype (N, Array_Type);
10285
10286      --  Handle the generation of a range check that compares the array index
10287      --  against the discrete_range. The check is not applied to internally
10288      --  built nodes associated with the expansion of dispatch tables. Check
10289      --  that Ada.Tags has already been loaded to avoid extra dependencies on
10290      --  the unit.
10291
10292      if Tagged_Type_Expansion
10293        and then RTU_Loaded (Ada_Tags)
10294        and then Nkind (Prefix (N)) = N_Selected_Component
10295        and then Present (Entity (Selector_Name (Prefix (N))))
10296        and then Entity (Selector_Name (Prefix (N))) =
10297                   RTE_Record_Component (RE_Prims_Ptr)
10298      then
10299         null;
10300
10301      --  The discrete_range is specified by a subtype indication. Create a
10302      --  shallow copy and inherit the type, parent and source location from
10303      --  the discrete_range. This ensures that the range check is inserted
10304      --  relative to the slice and that the runtime exception points to the
10305      --  proper construct.
10306
10307      elsif Is_Entity_Name (Drange) then
10308         Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10309
10310         Set_Etype  (Dexpr, Etype  (Drange));
10311         Set_Parent (Dexpr, Parent (Drange));
10312         Set_Sloc   (Dexpr, Sloc   (Drange));
10313
10314      --  The discrete_range is a regular range. Resolve the bounds and remove
10315      --  their side effects.
10316
10317      else
10318         Resolve (Drange, Base_Type (Index_Type));
10319
10320         if Nkind (Drange) = N_Range then
10321            Force_Evaluation (Low_Bound  (Drange));
10322            Force_Evaluation (High_Bound (Drange));
10323
10324            Dexpr := Drange;
10325         end if;
10326      end if;
10327
10328      if Present (Dexpr) then
10329         Apply_Range_Check (Dexpr, Index_Type);
10330      end if;
10331
10332      Set_Slice_Subtype (N);
10333
10334      --  Check bad use of type with predicates
10335
10336      declare
10337         Subt : Entity_Id;
10338
10339      begin
10340         if Nkind (Drange) = N_Subtype_Indication
10341           and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10342         then
10343            Subt := Entity (Subtype_Mark (Drange));
10344         else
10345            Subt := Etype (Drange);
10346         end if;
10347
10348         if Has_Predicates (Subt) then
10349            Bad_Predicated_Subtype_Use
10350              ("subtype& has predicate, not allowed in slice", Drange, Subt);
10351         end if;
10352      end;
10353
10354      --  Otherwise here is where we check suspicious indexes
10355
10356      if Nkind (Drange) = N_Range then
10357         Warn_On_Suspicious_Index (Name, Low_Bound  (Drange));
10358         Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10359      end if;
10360
10361      Analyze_Dimension (N);
10362      Eval_Slice (N);
10363   end Resolve_Slice;
10364
10365   ----------------------------
10366   -- Resolve_String_Literal --
10367   ----------------------------
10368
10369   procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10370      C_Typ      : constant Entity_Id  := Component_Type (Typ);
10371      R_Typ      : constant Entity_Id  := Root_Type (C_Typ);
10372      Loc        : constant Source_Ptr := Sloc (N);
10373      Str        : constant String_Id  := Strval (N);
10374      Strlen     : constant Nat        := String_Length (Str);
10375      Subtype_Id : Entity_Id;
10376      Need_Check : Boolean;
10377
10378   begin
10379      --  For a string appearing in a concatenation, defer creation of the
10380      --  string_literal_subtype until the end of the resolution of the
10381      --  concatenation, because the literal may be constant-folded away. This
10382      --  is a useful optimization for long concatenation expressions.
10383
10384      --  If the string is an aggregate built for a single character (which
10385      --  happens in a non-static context) or a is null string to which special
10386      --  checks may apply, we build the subtype. Wide strings must also get a
10387      --  string subtype if they come from a one character aggregate. Strings
10388      --  generated by attributes might be static, but it is often hard to
10389      --  determine whether the enclosing context is static, so we generate
10390      --  subtypes for them as well, thus losing some rarer optimizations ???
10391      --  Same for strings that come from a static conversion.
10392
10393      Need_Check :=
10394        (Strlen = 0 and then Typ /= Standard_String)
10395          or else Nkind (Parent (N)) /= N_Op_Concat
10396          or else (N /= Left_Opnd (Parent (N))
10397                    and then N /= Right_Opnd (Parent (N)))
10398          or else ((Typ = Standard_Wide_String
10399                      or else Typ = Standard_Wide_Wide_String)
10400                    and then Nkind (Original_Node (N)) /= N_String_Literal);
10401
10402      --  If the resolving type is itself a string literal subtype, we can just
10403      --  reuse it, since there is no point in creating another.
10404
10405      if Ekind (Typ) = E_String_Literal_Subtype then
10406         Subtype_Id := Typ;
10407
10408      elsif Nkind (Parent (N)) = N_Op_Concat
10409        and then not Need_Check
10410        and then not Nkind_In (Original_Node (N), N_Character_Literal,
10411                                                  N_Attribute_Reference,
10412                                                  N_Qualified_Expression,
10413                                                  N_Type_Conversion)
10414      then
10415         Subtype_Id := Typ;
10416
10417      --  Do not generate a string literal subtype for the default expression
10418      --  of a formal parameter in GNATprove mode. This is because the string
10419      --  subtype is associated with the freezing actions of the subprogram,
10420      --  however freezing is disabled in GNATprove mode and as a result the
10421      --  subtype is unavailable.
10422
10423      elsif GNATprove_Mode
10424        and then Nkind (Parent (N)) = N_Parameter_Specification
10425      then
10426         Subtype_Id := Typ;
10427
10428      --  Otherwise we must create a string literal subtype. Note that the
10429      --  whole idea of string literal subtypes is simply to avoid the need
10430      --  for building a full fledged array subtype for each literal.
10431
10432      else
10433         Set_String_Literal_Subtype (N, Typ);
10434         Subtype_Id := Etype (N);
10435      end if;
10436
10437      if Nkind (Parent (N)) /= N_Op_Concat
10438        or else Need_Check
10439      then
10440         Set_Etype (N, Subtype_Id);
10441         Eval_String_Literal (N);
10442      end if;
10443
10444      if Is_Limited_Composite (Typ)
10445        or else Is_Private_Composite (Typ)
10446      then
10447         Error_Msg_N ("string literal not available for private array", N);
10448         Set_Etype (N, Any_Type);
10449         return;
10450      end if;
10451
10452      --  The validity of a null string has been checked in the call to
10453      --  Eval_String_Literal.
10454
10455      if Strlen = 0 then
10456         return;
10457
10458      --  Always accept string literal with component type Any_Character, which
10459      --  occurs in error situations and in comparisons of literals, both of
10460      --  which should accept all literals.
10461
10462      elsif R_Typ = Any_Character then
10463         return;
10464
10465      --  If the type is bit-packed, then we always transform the string
10466      --  literal into a full fledged aggregate.
10467
10468      elsif Is_Bit_Packed_Array (Typ) then
10469         null;
10470
10471      --  Deal with cases of Wide_Wide_String, Wide_String, and String
10472
10473      else
10474         --  For Standard.Wide_Wide_String, or any other type whose component
10475         --  type is Standard.Wide_Wide_Character, we know that all the
10476         --  characters in the string must be acceptable, since the parser
10477         --  accepted the characters as valid character literals.
10478
10479         if R_Typ = Standard_Wide_Wide_Character then
10480            null;
10481
10482         --  For the case of Standard.String, or any other type whose component
10483         --  type is Standard.Character, we must make sure that there are no
10484         --  wide characters in the string, i.e. that it is entirely composed
10485         --  of characters in range of type Character.
10486
10487         --  If the string literal is the result of a static concatenation, the
10488         --  test has already been performed on the components, and need not be
10489         --  repeated.
10490
10491         elsif R_Typ = Standard_Character
10492           and then Nkind (Original_Node (N)) /= N_Op_Concat
10493         then
10494            for J in 1 .. Strlen loop
10495               if not In_Character_Range (Get_String_Char (Str, J)) then
10496
10497                  --  If we are out of range, post error. This is one of the
10498                  --  very few places that we place the flag in the middle of
10499                  --  a token, right under the offending wide character. Not
10500                  --  quite clear if this is right wrt wide character encoding
10501                  --  sequences, but it's only an error message.
10502
10503                  Error_Msg
10504                    ("literal out of range of type Standard.Character",
10505                     Source_Ptr (Int (Loc) + J));
10506                  return;
10507               end if;
10508            end loop;
10509
10510         --  For the case of Standard.Wide_String, or any other type whose
10511         --  component type is Standard.Wide_Character, we must make sure that
10512         --  there are no wide characters in the string, i.e. that it is
10513         --  entirely composed of characters in range of type Wide_Character.
10514
10515         --  If the string literal is the result of a static concatenation,
10516         --  the test has already been performed on the components, and need
10517         --  not be repeated.
10518
10519         elsif R_Typ = Standard_Wide_Character
10520           and then Nkind (Original_Node (N)) /= N_Op_Concat
10521         then
10522            for J in 1 .. Strlen loop
10523               if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10524
10525                  --  If we are out of range, post error. This is one of the
10526                  --  very few places that we place the flag in the middle of
10527                  --  a token, right under the offending wide character.
10528
10529                  --  This is not quite right, because characters in general
10530                  --  will take more than one character position ???
10531
10532                  Error_Msg
10533                    ("literal out of range of type Standard.Wide_Character",
10534                     Source_Ptr (Int (Loc) + J));
10535                  return;
10536               end if;
10537            end loop;
10538
10539         --  If the root type is not a standard character, then we will convert
10540         --  the string into an aggregate and will let the aggregate code do
10541         --  the checking. Standard Wide_Wide_Character is also OK here.
10542
10543         else
10544            null;
10545         end if;
10546
10547         --  See if the component type of the array corresponding to the string
10548         --  has compile time known bounds. If yes we can directly check
10549         --  whether the evaluation of the string will raise constraint error.
10550         --  Otherwise we need to transform the string literal into the
10551         --  corresponding character aggregate and let the aggregate code do
10552         --  the checking.
10553
10554         if Is_Standard_Character_Type (R_Typ) then
10555
10556            --  Check for the case of full range, where we are definitely OK
10557
10558            if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10559               return;
10560            end if;
10561
10562            --  Here the range is not the complete base type range, so check
10563
10564            declare
10565               Comp_Typ_Lo : constant Node_Id :=
10566                               Type_Low_Bound (Component_Type (Typ));
10567               Comp_Typ_Hi : constant Node_Id :=
10568                               Type_High_Bound (Component_Type (Typ));
10569
10570               Char_Val : Uint;
10571
10572            begin
10573               if Compile_Time_Known_Value (Comp_Typ_Lo)
10574                 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10575               then
10576                  for J in 1 .. Strlen loop
10577                     Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10578
10579                     if Char_Val < Expr_Value (Comp_Typ_Lo)
10580                       or else Char_Val > Expr_Value (Comp_Typ_Hi)
10581                     then
10582                        Apply_Compile_Time_Constraint_Error
10583                          (N, "character out of range??",
10584                           CE_Range_Check_Failed,
10585                           Loc => Source_Ptr (Int (Loc) + J));
10586                     end if;
10587                  end loop;
10588
10589                  return;
10590               end if;
10591            end;
10592         end if;
10593      end if;
10594
10595      --  If we got here we meed to transform the string literal into the
10596      --  equivalent qualified positional array aggregate. This is rather
10597      --  heavy artillery for this situation, but it is hard work to avoid.
10598
10599      declare
10600         Lits : constant List_Id    := New_List;
10601         P    : Source_Ptr := Loc + 1;
10602         C    : Char_Code;
10603
10604      begin
10605         --  Build the character literals, we give them source locations that
10606         --  correspond to the string positions, which is a bit tricky given
10607         --  the possible presence of wide character escape sequences.
10608
10609         for J in 1 .. Strlen loop
10610            C := Get_String_Char (Str, J);
10611            Set_Character_Literal_Name (C);
10612
10613            Append_To (Lits,
10614              Make_Character_Literal (P,
10615                Chars              => Name_Find,
10616                Char_Literal_Value => UI_From_CC (C)));
10617
10618            if In_Character_Range (C) then
10619               P := P + 1;
10620
10621            --  Should we have a call to Skip_Wide here ???
10622
10623            --  ???     else
10624            --             Skip_Wide (P);
10625
10626            end if;
10627         end loop;
10628
10629         Rewrite (N,
10630           Make_Qualified_Expression (Loc,
10631             Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10632             Expression   =>
10633               Make_Aggregate (Loc, Expressions => Lits)));
10634
10635         Analyze_And_Resolve (N, Typ);
10636      end;
10637   end Resolve_String_Literal;
10638
10639   -----------------------------
10640   -- Resolve_Type_Conversion --
10641   -----------------------------
10642
10643   procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10644      Conv_OK     : constant Boolean   := Conversion_OK (N);
10645      Operand     : constant Node_Id   := Expression (N);
10646      Operand_Typ : constant Entity_Id := Etype (Operand);
10647      Target_Typ  : constant Entity_Id := Etype (N);
10648      Rop         : Node_Id;
10649      Orig_N      : Node_Id;
10650      Orig_T      : Node_Id;
10651
10652      Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10653      --  Set to False to suppress cases where we want to suppress the test
10654      --  for redundancy to avoid possible false positives on this warning.
10655
10656   begin
10657      if not Conv_OK
10658        and then not Valid_Conversion (N, Target_Typ, Operand)
10659      then
10660         return;
10661      end if;
10662
10663      --  If the Operand Etype is Universal_Fixed, then the conversion is
10664      --  never redundant. We need this check because by the time we have
10665      --  finished the rather complex transformation, the conversion looks
10666      --  redundant when it is not.
10667
10668      if Operand_Typ = Universal_Fixed then
10669         Test_Redundant := False;
10670
10671      --  If the operand is marked as Any_Fixed, then special processing is
10672      --  required. This is also a case where we suppress the test for a
10673      --  redundant conversion, since most certainly it is not redundant.
10674
10675      elsif Operand_Typ = Any_Fixed then
10676         Test_Redundant := False;
10677
10678         --  Mixed-mode operation involving a literal. Context must be a fixed
10679         --  type which is applied to the literal subsequently.
10680
10681         if Is_Fixed_Point_Type (Typ) then
10682            Set_Etype (Operand, Universal_Real);
10683
10684         elsif Is_Numeric_Type (Typ)
10685           and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10686           and then (Etype (Right_Opnd (Operand)) = Universal_Real
10687                       or else
10688                     Etype (Left_Opnd  (Operand)) = Universal_Real)
10689         then
10690            --  Return if expression is ambiguous
10691
10692            if Unique_Fixed_Point_Type (N) = Any_Type then
10693               return;
10694
10695            --  If nothing else, the available fixed type is Duration
10696
10697            else
10698               Set_Etype (Operand, Standard_Duration);
10699            end if;
10700
10701            --  Resolve the real operand with largest available precision
10702
10703            if Etype (Right_Opnd (Operand)) = Universal_Real then
10704               Rop := New_Copy_Tree (Right_Opnd (Operand));
10705            else
10706               Rop := New_Copy_Tree (Left_Opnd (Operand));
10707            end if;
10708
10709            Resolve (Rop, Universal_Real);
10710
10711            --  If the operand is a literal (it could be a non-static and
10712            --  illegal exponentiation) check whether the use of Duration
10713            --  is potentially inaccurate.
10714
10715            if Nkind (Rop) = N_Real_Literal
10716              and then Realval (Rop) /= Ureal_0
10717              and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10718            then
10719               Error_Msg_N
10720                 ("??universal real operand can only "
10721                  & "be interpreted as Duration!", Rop);
10722               Error_Msg_N
10723                 ("\??precision will be lost in the conversion!", Rop);
10724            end if;
10725
10726         elsif Is_Numeric_Type (Typ)
10727           and then Nkind (Operand) in N_Op
10728           and then Unique_Fixed_Point_Type (N) /= Any_Type
10729         then
10730            Set_Etype (Operand, Standard_Duration);
10731
10732         else
10733            Error_Msg_N ("invalid context for mixed mode operation", N);
10734            Set_Etype (Operand, Any_Type);
10735            return;
10736         end if;
10737      end if;
10738
10739      Resolve (Operand);
10740
10741      --  In SPARK, a type conversion between array types should be restricted
10742      --  to types which have matching static bounds.
10743
10744      --  Protect call to Matching_Static_Array_Bounds to avoid costly
10745      --  operation if not needed.
10746
10747      if Restriction_Check_Required (SPARK_05)
10748        and then Is_Array_Type (Target_Typ)
10749        and then Is_Array_Type (Operand_Typ)
10750        and then Operand_Typ /= Any_Composite  --  or else Operand in error
10751        and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10752      then
10753         Check_SPARK_05_Restriction
10754           ("array types should have matching static bounds", N);
10755      end if;
10756
10757      --  In formal mode, the operand of an ancestor type conversion must be an
10758      --  object (not an expression).
10759
10760      if Is_Tagged_Type (Target_Typ)
10761        and then not Is_Class_Wide_Type (Target_Typ)
10762        and then Is_Tagged_Type (Operand_Typ)
10763        and then not Is_Class_Wide_Type (Operand_Typ)
10764        and then Is_Ancestor (Target_Typ, Operand_Typ)
10765        and then not Is_SPARK_05_Object_Reference (Operand)
10766      then
10767         Check_SPARK_05_Restriction ("object required", Operand);
10768      end if;
10769
10770      Analyze_Dimension (N);
10771
10772      --  Note: we do the Eval_Type_Conversion call before applying the
10773      --  required checks for a subtype conversion. This is important, since
10774      --  both are prepared under certain circumstances to change the type
10775      --  conversion to a constraint error node, but in the case of
10776      --  Eval_Type_Conversion this may reflect an illegality in the static
10777      --  case, and we would miss the illegality (getting only a warning
10778      --  message), if we applied the type conversion checks first.
10779
10780      Eval_Type_Conversion (N);
10781
10782      --  Even when evaluation is not possible, we may be able to simplify the
10783      --  conversion or its expression. This needs to be done before applying
10784      --  checks, since otherwise the checks may use the original expression
10785      --  and defeat the simplifications. This is specifically the case for
10786      --  elimination of the floating-point Truncation attribute in
10787      --  float-to-int conversions.
10788
10789      Simplify_Type_Conversion (N);
10790
10791      --  If after evaluation we still have a type conversion, then we may need
10792      --  to apply checks required for a subtype conversion.
10793
10794      --  Skip these type conversion checks if universal fixed operands
10795      --  operands involved, since range checks are handled separately for
10796      --  these cases (in the appropriate Expand routines in unit Exp_Fixd).
10797
10798      if Nkind (N) = N_Type_Conversion
10799        and then not Is_Generic_Type (Root_Type (Target_Typ))
10800        and then Target_Typ  /= Universal_Fixed
10801        and then Operand_Typ /= Universal_Fixed
10802      then
10803         Apply_Type_Conversion_Checks (N);
10804      end if;
10805
10806      --  Issue warning for conversion of simple object to its own type. We
10807      --  have to test the original nodes, since they may have been rewritten
10808      --  by various optimizations.
10809
10810      Orig_N := Original_Node (N);
10811
10812      --  Here we test for a redundant conversion if the warning mode is
10813      --  active (and was not locally reset), and we have a type conversion
10814      --  from source not appearing in a generic instance.
10815
10816      if Test_Redundant
10817        and then Nkind (Orig_N) = N_Type_Conversion
10818        and then Comes_From_Source (Orig_N)
10819        and then not In_Instance
10820      then
10821         Orig_N := Original_Node (Expression (Orig_N));
10822         Orig_T := Target_Typ;
10823
10824         --  If the node is part of a larger expression, the Target_Type
10825         --  may not be the original type of the node if the context is a
10826         --  condition. Recover original type to see if conversion is needed.
10827
10828         if Is_Boolean_Type (Orig_T)
10829          and then Nkind (Parent (N)) in N_Op
10830         then
10831            Orig_T := Etype (Parent (N));
10832         end if;
10833
10834         --  If we have an entity name, then give the warning if the entity
10835         --  is the right type, or if it is a loop parameter covered by the
10836         --  original type (that's needed because loop parameters have an
10837         --  odd subtype coming from the bounds).
10838
10839         if (Is_Entity_Name (Orig_N)
10840              and then
10841                (Etype (Entity (Orig_N)) = Orig_T
10842                  or else
10843                    (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10844                      and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10845
10846           --  If not an entity, then type of expression must match
10847
10848           or else Etype (Orig_N) = Orig_T
10849         then
10850            --  One more check, do not give warning if the analyzed conversion
10851            --  has an expression with non-static bounds, and the bounds of the
10852            --  target are static. This avoids junk warnings in cases where the
10853            --  conversion is necessary to establish staticness, for example in
10854            --  a case statement.
10855
10856            if not Is_OK_Static_Subtype (Operand_Typ)
10857              and then Is_OK_Static_Subtype (Target_Typ)
10858            then
10859               null;
10860
10861            --  Finally, if this type conversion occurs in a context requiring
10862            --  a prefix, and the expression is a qualified expression then the
10863            --  type conversion is not redundant, since a qualified expression
10864            --  is not a prefix, whereas a type conversion is. For example, "X
10865            --  := T'(Funx(...)).Y;" is illegal because a selected component
10866            --  requires a prefix, but a type conversion makes it legal: "X :=
10867            --  T(T'(Funx(...))).Y;"
10868
10869            --  In Ada 2012, a qualified expression is a name, so this idiom is
10870            --  no longer needed, but we still suppress the warning because it
10871            --  seems unfriendly for warnings to pop up when you switch to the
10872            --  newer language version.
10873
10874            elsif Nkind (Orig_N) = N_Qualified_Expression
10875              and then Nkind_In (Parent (N), N_Attribute_Reference,
10876                                             N_Indexed_Component,
10877                                             N_Selected_Component,
10878                                             N_Slice,
10879                                             N_Explicit_Dereference)
10880            then
10881               null;
10882
10883            --  Never warn on conversion to Long_Long_Integer'Base since
10884            --  that is most likely an artifact of the extended overflow
10885            --  checking and comes from complex expanded code.
10886
10887            elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10888               null;
10889
10890            --  Here we give the redundant conversion warning. If it is an
10891            --  entity, give the name of the entity in the message. If not,
10892            --  just mention the expression.
10893
10894            --  Shoudn't we test Warn_On_Redundant_Constructs here ???
10895
10896            else
10897               if Is_Entity_Name (Orig_N) then
10898                  Error_Msg_Node_2 := Orig_T;
10899                  Error_Msg_NE -- CODEFIX
10900                    ("??redundant conversion, & is of type &!",
10901                     N, Entity (Orig_N));
10902               else
10903                  Error_Msg_NE
10904                    ("??redundant conversion, expression is of type&!",
10905                     N, Orig_T);
10906               end if;
10907            end if;
10908         end if;
10909      end if;
10910
10911      --  Ada 2005 (AI-251): Handle class-wide interface type conversions.
10912      --  No need to perform any interface conversion if the type of the
10913      --  expression coincides with the target type.
10914
10915      if Ada_Version >= Ada_2005
10916        and then Expander_Active
10917        and then Operand_Typ /= Target_Typ
10918      then
10919         declare
10920            Opnd   : Entity_Id := Operand_Typ;
10921            Target : Entity_Id := Target_Typ;
10922
10923         begin
10924            --  If the type of the operand is a limited view, use nonlimited
10925            --  view when available. If it is a class-wide type, recover the
10926            --  class-wide type of the nonlimited view.
10927
10928            if From_Limited_With (Opnd)
10929              and then Has_Non_Limited_View (Opnd)
10930            then
10931               Opnd := Non_Limited_View (Opnd);
10932               Set_Etype (Expression (N), Opnd);
10933            end if;
10934
10935            if Is_Access_Type (Opnd) then
10936               Opnd := Designated_Type (Opnd);
10937            end if;
10938
10939            if Is_Access_Type (Target_Typ) then
10940               Target := Designated_Type (Target);
10941            end if;
10942
10943            if Opnd = Target then
10944               null;
10945
10946            --  Conversion from interface type
10947
10948            elsif Is_Interface (Opnd) then
10949
10950               --  Ada 2005 (AI-217): Handle entities from limited views
10951
10952               if From_Limited_With (Opnd) then
10953                  Error_Msg_Qual_Level := 99;
10954                  Error_Msg_NE -- CODEFIX
10955                    ("missing WITH clause on package &", N,
10956                    Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10957                  Error_Msg_N
10958                    ("type conversions require visibility of the full view",
10959                     N);
10960
10961               elsif From_Limited_With (Target)
10962                 and then not
10963                   (Is_Access_Type (Target_Typ)
10964                      and then Present (Non_Limited_View (Etype (Target))))
10965               then
10966                  Error_Msg_Qual_Level := 99;
10967                  Error_Msg_NE -- CODEFIX
10968                    ("missing WITH clause on package &", N,
10969                    Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10970                  Error_Msg_N
10971                    ("type conversions require visibility of the full view",
10972                     N);
10973
10974               else
10975                  Expand_Interface_Conversion (N);
10976               end if;
10977
10978            --  Conversion to interface type
10979
10980            elsif Is_Interface (Target) then
10981
10982               --  Handle subtypes
10983
10984               if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10985                  Opnd := Etype (Opnd);
10986               end if;
10987
10988               if Is_Class_Wide_Type (Opnd)
10989                 or else Interface_Present_In_Ancestor
10990                           (Typ   => Opnd,
10991                            Iface => Target)
10992               then
10993                  Expand_Interface_Conversion (N);
10994               else
10995                  Error_Msg_Name_1 := Chars (Etype (Target));
10996                  Error_Msg_Name_2 := Chars (Opnd);
10997                  Error_Msg_N
10998                    ("wrong interface conversion (% is not a progenitor "
10999                     & "of %)", N);
11000               end if;
11001            end if;
11002         end;
11003      end if;
11004
11005      --  Ada 2012: if target type has predicates, the result requires a
11006      --  predicate check. If the context is a call to another predicate
11007      --  check we must prevent infinite recursion.
11008
11009      if Has_Predicates (Target_Typ) then
11010         if Nkind (Parent (N)) = N_Function_Call
11011           and then Present (Name (Parent (N)))
11012           and then (Is_Predicate_Function (Entity (Name (Parent (N))))
11013                       or else
11014                     Is_Predicate_Function_M (Entity (Name (Parent (N)))))
11015         then
11016            null;
11017
11018         else
11019            Apply_Predicate_Check (N, Target_Typ);
11020         end if;
11021      end if;
11022
11023      --  If at this stage we have a real to integer conversion, make sure
11024      --  that the Do_Range_Check flag is set, because such conversions in
11025      --  general need a range check. We only need this if expansion is off
11026      --  or we are in GNATProve mode.
11027
11028      if Nkind (N) = N_Type_Conversion
11029        and then (GNATprove_Mode or not Expander_Active)
11030        and then Is_Integer_Type (Target_Typ)
11031        and then Is_Real_Type (Operand_Typ)
11032      then
11033         Set_Do_Range_Check (Operand);
11034      end if;
11035   end Resolve_Type_Conversion;
11036
11037   ----------------------
11038   -- Resolve_Unary_Op --
11039   ----------------------
11040
11041   procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11042      B_Typ : constant Entity_Id := Base_Type (Typ);
11043      R     : constant Node_Id   := Right_Opnd (N);
11044      OK    : Boolean;
11045      Lo    : Uint;
11046      Hi    : Uint;
11047
11048   begin
11049      if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11050         Error_Msg_Name_1 := Chars (Typ);
11051         Check_SPARK_05_Restriction
11052           ("unary operator not defined for modular type%", N);
11053      end if;
11054
11055      --  Deal with intrinsic unary operators
11056
11057      if Comes_From_Source (N)
11058        and then Ekind (Entity (N)) = E_Function
11059        and then Is_Imported (Entity (N))
11060        and then Is_Intrinsic_Subprogram (Entity (N))
11061      then
11062         Resolve_Intrinsic_Unary_Operator (N, Typ);
11063         return;
11064      end if;
11065
11066      --  Deal with universal cases
11067
11068      if Etype (R) = Universal_Integer
11069           or else
11070         Etype (R) = Universal_Real
11071      then
11072         Check_For_Visible_Operator (N, B_Typ);
11073      end if;
11074
11075      Set_Etype (N, B_Typ);
11076      Resolve (R, B_Typ);
11077
11078      --  Generate warning for expressions like abs (x mod 2)
11079
11080      if Warn_On_Redundant_Constructs
11081        and then Nkind (N) = N_Op_Abs
11082      then
11083         Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11084
11085         if OK and then Hi >= Lo and then Lo >= 0 then
11086            Error_Msg_N -- CODEFIX
11087             ("?r?abs applied to known non-negative value has no effect", N);
11088         end if;
11089      end if;
11090
11091      --  Deal with reference generation
11092
11093      Check_Unset_Reference (R);
11094      Generate_Operator_Reference (N, B_Typ);
11095      Analyze_Dimension (N);
11096      Eval_Unary_Op (N);
11097
11098      --  Set overflow checking bit. Much cleverer code needed here eventually
11099      --  and perhaps the Resolve routines should be separated for the various
11100      --  arithmetic operations, since they will need different processing ???
11101
11102      if Nkind (N) in N_Op then
11103         if not Overflow_Checks_Suppressed (Etype (N)) then
11104            Enable_Overflow_Check (N);
11105         end if;
11106      end if;
11107
11108      --  Generate warning for expressions like -5 mod 3 for integers. No need
11109      --  to worry in the floating-point case, since parens do not affect the
11110      --  result so there is no point in giving in a warning.
11111
11112      declare
11113         Norig : constant Node_Id := Original_Node (N);
11114         Rorig : Node_Id;
11115         Val   : Uint;
11116         HB    : Uint;
11117         LB    : Uint;
11118         Lval  : Uint;
11119         Opnd  : Node_Id;
11120
11121      begin
11122         if Warn_On_Questionable_Missing_Parens
11123           and then Comes_From_Source (Norig)
11124           and then Is_Integer_Type (Typ)
11125           and then Nkind (Norig) = N_Op_Minus
11126         then
11127            Rorig := Original_Node (Right_Opnd (Norig));
11128
11129            --  We are looking for cases where the right operand is not
11130            --  parenthesized, and is a binary operator, multiply, divide, or
11131            --  mod. These are the cases where the grouping can affect results.
11132
11133            if Paren_Count (Rorig) = 0
11134              and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11135            then
11136               --  For mod, we always give the warning, since the value is
11137               --  affected by the parenthesization (e.g. (-5) mod 315 /=
11138               --  -(5 mod 315)). But for the other cases, the only concern is
11139               --  overflow, e.g. for the case of 8 big signed (-(2 * 64)
11140               --  overflows, but (-2) * 64 does not). So we try to give the
11141               --  message only when overflow is possible.
11142
11143               if Nkind (Rorig) /= N_Op_Mod
11144                 and then Compile_Time_Known_Value (R)
11145               then
11146                  Val := Expr_Value (R);
11147
11148                  if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11149                     HB := Expr_Value (Type_High_Bound (Typ));
11150                  else
11151                     HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11152                  end if;
11153
11154                  if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11155                     LB := Expr_Value (Type_Low_Bound (Typ));
11156                  else
11157                     LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11158                  end if;
11159
11160                  --  Note that the test below is deliberately excluding the
11161                  --  largest negative number, since that is a potentially
11162                  --  troublesome case (e.g. -2 * x, where the result is the
11163                  --  largest negative integer has an overflow with 2 * x).
11164
11165                  if Val > LB and then Val <= HB then
11166                     return;
11167                  end if;
11168               end if;
11169
11170               --  For the multiplication case, the only case we have to worry
11171               --  about is when (-a)*b is exactly the largest negative number
11172               --  so that -(a*b) can cause overflow. This can only happen if
11173               --  a is a power of 2, and more generally if any operand is a
11174               --  constant that is not a power of 2, then the parentheses
11175               --  cannot affect whether overflow occurs. We only bother to
11176               --  test the left most operand
11177
11178               --  Loop looking at left operands for one that has known value
11179
11180               Opnd := Rorig;
11181               Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11182                  if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11183                     Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11184
11185                     --  Operand value of 0 or 1 skips warning
11186
11187                     if Lval <= 1 then
11188                        return;
11189
11190                     --  Otherwise check power of 2, if power of 2, warn, if
11191                     --  anything else, skip warning.
11192
11193                     else
11194                        while Lval /= 2 loop
11195                           if Lval mod 2 = 1 then
11196                              return;
11197                           else
11198                              Lval := Lval / 2;
11199                           end if;
11200                        end loop;
11201
11202                        exit Opnd_Loop;
11203                     end if;
11204                  end if;
11205
11206                  --  Keep looking at left operands
11207
11208                  Opnd := Left_Opnd (Opnd);
11209               end loop Opnd_Loop;
11210
11211               --  For rem or "/" we can only have a problematic situation
11212               --  if the divisor has a value of minus one or one. Otherwise
11213               --  overflow is impossible (divisor > 1) or we have a case of
11214               --  division by zero in any case.
11215
11216               if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11217                 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11218                 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11219               then
11220                  return;
11221               end if;
11222
11223               --  If we fall through warning should be issued
11224
11225               --  Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11226
11227               Error_Msg_N
11228                 ("??unary minus expression should be parenthesized here!", N);
11229            end if;
11230         end if;
11231      end;
11232   end Resolve_Unary_Op;
11233
11234   ----------------------------------
11235   -- Resolve_Unchecked_Expression --
11236   ----------------------------------
11237
11238   procedure Resolve_Unchecked_Expression
11239     (N   : Node_Id;
11240      Typ : Entity_Id)
11241   is
11242   begin
11243      Resolve (Expression (N), Typ, Suppress => All_Checks);
11244      Set_Etype (N, Typ);
11245   end Resolve_Unchecked_Expression;
11246
11247   ---------------------------------------
11248   -- Resolve_Unchecked_Type_Conversion --
11249   ---------------------------------------
11250
11251   procedure Resolve_Unchecked_Type_Conversion
11252     (N   : Node_Id;
11253      Typ : Entity_Id)
11254   is
11255      pragma Warnings (Off, Typ);
11256
11257      Operand   : constant Node_Id   := Expression (N);
11258      Opnd_Type : constant Entity_Id := Etype (Operand);
11259
11260   begin
11261      --  Resolve operand using its own type
11262
11263      Resolve (Operand, Opnd_Type);
11264
11265      --  In an inlined context, the unchecked conversion may be applied
11266      --  to a literal, in which case its type is the type of the context.
11267      --  (In other contexts conversions cannot apply to literals).
11268
11269      if In_Inlined_Body
11270        and then (Opnd_Type = Any_Character or else
11271                  Opnd_Type = Any_Integer   or else
11272                  Opnd_Type = Any_Real)
11273      then
11274         Set_Etype (Operand, Typ);
11275      end if;
11276
11277      Analyze_Dimension (N);
11278      Eval_Unchecked_Conversion (N);
11279   end Resolve_Unchecked_Type_Conversion;
11280
11281   ------------------------------
11282   -- Rewrite_Operator_As_Call --
11283   ------------------------------
11284
11285   procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11286      Loc     : constant Source_Ptr := Sloc (N);
11287      Actuals : constant List_Id    := New_List;
11288      New_N   : Node_Id;
11289
11290   begin
11291      if Nkind (N) in N_Binary_Op then
11292         Append (Left_Opnd (N), Actuals);
11293      end if;
11294
11295      Append (Right_Opnd (N), Actuals);
11296
11297      New_N :=
11298        Make_Function_Call (Sloc => Loc,
11299          Name => New_Occurrence_Of (Nam, Loc),
11300          Parameter_Associations => Actuals);
11301
11302      Preserve_Comes_From_Source (New_N, N);
11303      Preserve_Comes_From_Source (Name (New_N), N);
11304      Rewrite (N, New_N);
11305      Set_Etype (N, Etype (Nam));
11306   end Rewrite_Operator_As_Call;
11307
11308   ------------------------------
11309   -- Rewrite_Renamed_Operator --
11310   ------------------------------
11311
11312   procedure Rewrite_Renamed_Operator
11313     (N   : Node_Id;
11314      Op  : Entity_Id;
11315      Typ : Entity_Id)
11316   is
11317      Nam       : constant Name_Id := Chars (Op);
11318      Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11319      Op_Node   : Node_Id;
11320
11321   begin
11322      --  Do not perform this transformation within a pre/postcondition,
11323      --  because the expression will be re-analyzed, and the transformation
11324      --  might affect the visibility of the operator, e.g. in an instance.
11325
11326      if In_Assertion_Expr > 0 then
11327         return;
11328      end if;
11329
11330      --  Rewrite the operator node using the real operator, not its renaming.
11331      --  Exclude user-defined intrinsic operations of the same name, which are
11332      --  treated separately and rewritten as calls.
11333
11334      if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11335         Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11336         Set_Chars      (Op_Node, Nam);
11337         Set_Etype      (Op_Node, Etype (N));
11338         Set_Entity     (Op_Node, Op);
11339         Set_Right_Opnd (Op_Node, Right_Opnd (N));
11340
11341         --  Indicate that both the original entity and its renaming are
11342         --  referenced at this point.
11343
11344         Generate_Reference (Entity (N), N);
11345         Generate_Reference (Op, N);
11346
11347         if Is_Binary then
11348            Set_Left_Opnd  (Op_Node, Left_Opnd  (N));
11349         end if;
11350
11351         Rewrite (N, Op_Node);
11352
11353         --  If the context type is private, add the appropriate conversions so
11354         --  that the operator is applied to the full view. This is done in the
11355         --  routines that resolve intrinsic operators.
11356
11357         if Is_Intrinsic_Subprogram (Op)
11358           and then Is_Private_Type (Typ)
11359         then
11360            case Nkind (N) is
11361               when N_Op_Add   | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11362                    N_Op_Expon | N_Op_Mod      | N_Op_Rem      =>
11363                  Resolve_Intrinsic_Operator (N, Typ);
11364
11365               when N_Op_Plus  | N_Op_Minus    | N_Op_Abs      =>
11366                  Resolve_Intrinsic_Unary_Operator (N, Typ);
11367
11368               when others =>
11369                  Resolve (N, Typ);
11370            end case;
11371         end if;
11372
11373      elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11374
11375         --  Operator renames a user-defined operator of the same name. Use the
11376         --  original operator in the node, which is the one Gigi knows about.
11377
11378         Set_Entity (N, Op);
11379         Set_Is_Overloaded (N, False);
11380      end if;
11381   end Rewrite_Renamed_Operator;
11382
11383   -----------------------
11384   -- Set_Slice_Subtype --
11385   -----------------------
11386
11387   --  Build an implicit subtype declaration to represent the type delivered by
11388   --  the slice. This is an abbreviated version of an array subtype. We define
11389   --  an index subtype for the slice, using either the subtype name or the
11390   --  discrete range of the slice. To be consistent with index usage elsewhere
11391   --  we create a list header to hold the single index. This list is not
11392   --  otherwise attached to the syntax tree.
11393
11394   procedure Set_Slice_Subtype (N : Node_Id) is
11395      Loc           : constant Source_Ptr := Sloc (N);
11396      Index_List    : constant List_Id    := New_List;
11397      Index         : Node_Id;
11398      Index_Subtype : Entity_Id;
11399      Index_Type    : Entity_Id;
11400      Slice_Subtype : Entity_Id;
11401      Drange        : constant Node_Id := Discrete_Range (N);
11402
11403   begin
11404      Index_Type := Base_Type (Etype (Drange));
11405
11406      if Is_Entity_Name (Drange) then
11407         Index_Subtype := Entity (Drange);
11408
11409      else
11410         --  We force the evaluation of a range. This is definitely needed in
11411         --  the renamed case, and seems safer to do unconditionally. Note in
11412         --  any case that since we will create and insert an Itype referring
11413         --  to this range, we must make sure any side effect removal actions
11414         --  are inserted before the Itype definition.
11415
11416         if Nkind (Drange) = N_Range then
11417            Force_Evaluation (Low_Bound (Drange));
11418            Force_Evaluation (High_Bound (Drange));
11419
11420         --  If the discrete range is given by a subtype indication, the
11421         --  type of the slice is the base of the subtype mark.
11422
11423         elsif Nkind (Drange) = N_Subtype_Indication then
11424            declare
11425               R : constant Node_Id := Range_Expression (Constraint (Drange));
11426            begin
11427               Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11428               Force_Evaluation (Low_Bound  (R));
11429               Force_Evaluation (High_Bound (R));
11430            end;
11431         end if;
11432
11433         Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11434
11435         --  Take a new copy of Drange (where bounds have been rewritten to
11436         --  reference side-effect-free names). Using a separate tree ensures
11437         --  that further expansion (e.g. while rewriting a slice assignment
11438         --  into a FOR loop) does not attempt to remove side effects on the
11439         --  bounds again (which would cause the bounds in the index subtype
11440         --  definition to refer to temporaries before they are defined) (the
11441         --  reason is that some names are considered side effect free here
11442         --  for the subtype, but not in the context of a loop iteration
11443         --  scheme).
11444
11445         Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11446         Set_Parent       (Scalar_Range (Index_Subtype), Index_Subtype);
11447         Set_Etype        (Index_Subtype, Index_Type);
11448         Set_Size_Info    (Index_Subtype, Index_Type);
11449         Set_RM_Size      (Index_Subtype, RM_Size (Index_Type));
11450      end if;
11451
11452      Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11453
11454      Index := New_Occurrence_Of (Index_Subtype, Loc);
11455      Set_Etype (Index, Index_Subtype);
11456      Append (Index, Index_List);
11457
11458      Set_First_Index    (Slice_Subtype, Index);
11459      Set_Etype          (Slice_Subtype, Base_Type (Etype (N)));
11460      Set_Is_Constrained (Slice_Subtype, True);
11461
11462      Check_Compile_Time_Size (Slice_Subtype);
11463
11464      --  The Etype of the existing Slice node is reset to this slice subtype.
11465      --  Its bounds are obtained from its first index.
11466
11467      Set_Etype (N, Slice_Subtype);
11468
11469      --  For packed slice subtypes, freeze immediately (except in the case of
11470      --  being in a "spec expression" where we never freeze when we first see
11471      --  the expression).
11472
11473      if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11474         Freeze_Itype (Slice_Subtype, N);
11475
11476      --  For all other cases insert an itype reference in the slice's actions
11477      --  so that the itype is frozen at the proper place in the tree (i.e. at
11478      --  the point where actions for the slice are analyzed). Note that this
11479      --  is different from freezing the itype immediately, which might be
11480      --  premature (e.g. if the slice is within a transient scope). This needs
11481      --  to be done only if expansion is enabled.
11482
11483      elsif Expander_Active then
11484         Ensure_Defined (Typ => Slice_Subtype, N => N);
11485      end if;
11486   end Set_Slice_Subtype;
11487
11488   --------------------------------
11489   -- Set_String_Literal_Subtype --
11490   --------------------------------
11491
11492   procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11493      Loc        : constant Source_Ptr := Sloc (N);
11494      Low_Bound  : constant Node_Id :=
11495                     Type_Low_Bound (Etype (First_Index (Typ)));
11496      Subtype_Id : Entity_Id;
11497
11498   begin
11499      if Nkind (N) /= N_String_Literal then
11500         return;
11501      end if;
11502
11503      Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11504      Set_String_Literal_Length (Subtype_Id, UI_From_Int
11505                                               (String_Length (Strval (N))));
11506      Set_Etype          (Subtype_Id, Base_Type (Typ));
11507      Set_Is_Constrained (Subtype_Id);
11508      Set_Etype          (N, Subtype_Id);
11509
11510      --  The low bound is set from the low bound of the corresponding index
11511      --  type. Note that we do not store the high bound in the string literal
11512      --  subtype, but it can be deduced if necessary from the length and the
11513      --  low bound.
11514
11515      if Is_OK_Static_Expression (Low_Bound) then
11516         Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11517
11518      --  If the lower bound is not static we create a range for the string
11519      --  literal, using the index type and the known length of the literal.
11520      --  The index type is not necessarily Positive, so the upper bound is
11521      --  computed as T'Val (T'Pos (Low_Bound) + L - 1).
11522
11523      else
11524         declare
11525            Index_List : constant List_Id   := New_List;
11526            Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11527            High_Bound : constant Node_Id   :=
11528                           Make_Attribute_Reference (Loc,
11529                             Attribute_Name => Name_Val,
11530                             Prefix         =>
11531                               New_Occurrence_Of (Index_Type, Loc),
11532                             Expressions    => New_List (
11533                               Make_Op_Add (Loc,
11534                                 Left_Opnd  =>
11535                                   Make_Attribute_Reference (Loc,
11536                                     Attribute_Name => Name_Pos,
11537                                     Prefix         =>
11538                                       New_Occurrence_Of (Index_Type, Loc),
11539                                     Expressions    =>
11540                                       New_List (New_Copy_Tree (Low_Bound))),
11541                                 Right_Opnd =>
11542                                   Make_Integer_Literal (Loc,
11543                                     String_Length (Strval (N)) - 1))));
11544
11545            Array_Subtype : Entity_Id;
11546            Drange        : Node_Id;
11547            Index         : Node_Id;
11548            Index_Subtype : Entity_Id;
11549
11550         begin
11551            if Is_Integer_Type (Index_Type) then
11552               Set_String_Literal_Low_Bound
11553                 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11554
11555            else
11556               --  If the index type is an enumeration type, build bounds
11557               --  expression with attributes.
11558
11559               Set_String_Literal_Low_Bound
11560                 (Subtype_Id,
11561                  Make_Attribute_Reference (Loc,
11562                    Attribute_Name => Name_First,
11563                    Prefix         =>
11564                      New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11565               Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11566            end if;
11567
11568            Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11569
11570            --  Build bona fide subtype for the string, and wrap it in an
11571            --  unchecked conversion, because the backend expects the
11572            --  String_Literal_Subtype to have a static lower bound.
11573
11574            Index_Subtype :=
11575              Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11576            Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11577            Set_Scalar_Range (Index_Subtype, Drange);
11578            Set_Parent (Drange, N);
11579            Analyze_And_Resolve (Drange, Index_Type);
11580
11581            --  In the context, the Index_Type may already have a constraint,
11582            --  so use common base type on string subtype. The base type may
11583            --  be used when generating attributes of the string, for example
11584            --  in the context of a slice assignment.
11585
11586            Set_Etype     (Index_Subtype, Base_Type (Index_Type));
11587            Set_Size_Info (Index_Subtype, Index_Type);
11588            Set_RM_Size   (Index_Subtype, RM_Size (Index_Type));
11589
11590            Array_Subtype := Create_Itype (E_Array_Subtype, N);
11591
11592            Index := New_Occurrence_Of (Index_Subtype, Loc);
11593            Set_Etype (Index, Index_Subtype);
11594            Append (Index, Index_List);
11595
11596            Set_First_Index    (Array_Subtype, Index);
11597            Set_Etype          (Array_Subtype, Base_Type (Typ));
11598            Set_Is_Constrained (Array_Subtype, True);
11599
11600            Rewrite (N,
11601              Make_Unchecked_Type_Conversion (Loc,
11602                Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11603                Expression   => Relocate_Node (N)));
11604            Set_Etype (N, Array_Subtype);
11605         end;
11606      end if;
11607   end Set_String_Literal_Subtype;
11608
11609   ------------------------------
11610   -- Simplify_Type_Conversion --
11611   ------------------------------
11612
11613   procedure Simplify_Type_Conversion (N : Node_Id) is
11614   begin
11615      if Nkind (N) = N_Type_Conversion then
11616         declare
11617            Operand    : constant Node_Id   := Expression (N);
11618            Target_Typ : constant Entity_Id := Etype (N);
11619            Opnd_Typ   : constant Entity_Id := Etype (Operand);
11620
11621         begin
11622            --  Special processing if the conversion is the expression of a
11623            --  Rounding or Truncation attribute reference. In this case we
11624            --  replace:
11625
11626            --     ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11627
11628            --  by
11629
11630            --     ityp (x)
11631
11632            --  with the Float_Truncate flag set to False or True respectively,
11633            --  which is more efficient.
11634
11635            if Is_Floating_Point_Type (Opnd_Typ)
11636              and then
11637                (Is_Integer_Type (Target_Typ)
11638                  or else (Is_Fixed_Point_Type (Target_Typ)
11639                            and then Conversion_OK (N)))
11640              and then Nkind (Operand) = N_Attribute_Reference
11641              and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11642                                                         Name_Truncation)
11643            then
11644               declare
11645                  Truncate : constant Boolean :=
11646                               Attribute_Name (Operand) = Name_Truncation;
11647               begin
11648                  Rewrite (Operand,
11649                    Relocate_Node (First (Expressions (Operand))));
11650                  Set_Float_Truncate (N, Truncate);
11651               end;
11652            end if;
11653         end;
11654      end if;
11655   end Simplify_Type_Conversion;
11656
11657   -----------------------------
11658   -- Unique_Fixed_Point_Type --
11659   -----------------------------
11660
11661   function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11662      T1   : Entity_Id := Empty;
11663      T2   : Entity_Id;
11664      Item : Node_Id;
11665      Scop : Entity_Id;
11666
11667      procedure Fixed_Point_Error;
11668      --  Give error messages for true ambiguity. Messages are posted on node
11669      --  N, and entities T1, T2 are the possible interpretations.
11670
11671      -----------------------
11672      -- Fixed_Point_Error --
11673      -----------------------
11674
11675      procedure Fixed_Point_Error is
11676      begin
11677         Error_Msg_N ("ambiguous universal_fixed_expression", N);
11678         Error_Msg_NE ("\\possible interpretation as}", N, T1);
11679         Error_Msg_NE ("\\possible interpretation as}", N, T2);
11680      end Fixed_Point_Error;
11681
11682   --  Start of processing for Unique_Fixed_Point_Type
11683
11684   begin
11685      --  The operations on Duration are visible, so Duration is always a
11686      --  possible interpretation.
11687
11688      T1 := Standard_Duration;
11689
11690      --  Look for fixed-point types in enclosing scopes
11691
11692      Scop := Current_Scope;
11693      while Scop /= Standard_Standard loop
11694         T2 := First_Entity (Scop);
11695         while Present (T2) loop
11696            if Is_Fixed_Point_Type (T2)
11697              and then Current_Entity (T2) = T2
11698              and then Scope (Base_Type (T2)) = Scop
11699            then
11700               if Present (T1) then
11701                  Fixed_Point_Error;
11702                  return Any_Type;
11703               else
11704                  T1 := T2;
11705               end if;
11706            end if;
11707
11708            Next_Entity (T2);
11709         end loop;
11710
11711         Scop := Scope (Scop);
11712      end loop;
11713
11714      --  Look for visible fixed type declarations in the context
11715
11716      Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11717      while Present (Item) loop
11718         if Nkind (Item) = N_With_Clause then
11719            Scop := Entity (Name (Item));
11720            T2 := First_Entity (Scop);
11721            while Present (T2) loop
11722               if Is_Fixed_Point_Type (T2)
11723                 and then Scope (Base_Type (T2)) = Scop
11724                 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11725               then
11726                  if Present (T1) then
11727                     Fixed_Point_Error;
11728                     return Any_Type;
11729                  else
11730                     T1 := T2;
11731                  end if;
11732               end if;
11733
11734               Next_Entity (T2);
11735            end loop;
11736         end if;
11737
11738         Next (Item);
11739      end loop;
11740
11741      if Nkind (N) = N_Real_Literal then
11742         Error_Msg_NE
11743           ("??real literal interpreted as }!", N, T1);
11744      else
11745         Error_Msg_NE
11746           ("??universal_fixed expression interpreted as }!", N, T1);
11747      end if;
11748
11749      return T1;
11750   end Unique_Fixed_Point_Type;
11751
11752   ----------------------
11753   -- Valid_Conversion --
11754   ----------------------
11755
11756   function Valid_Conversion
11757     (N           : Node_Id;
11758      Target      : Entity_Id;
11759      Operand     : Node_Id;
11760      Report_Errs : Boolean := True) return Boolean
11761   is
11762      Target_Type  : constant Entity_Id := Base_Type (Target);
11763      Opnd_Type    : Entity_Id          := Etype (Operand);
11764      Inc_Ancestor : Entity_Id;
11765
11766      function Conversion_Check
11767        (Valid : Boolean;
11768         Msg   : String) return Boolean;
11769      --  Little routine to post Msg if Valid is False, returns Valid value
11770
11771      procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11772      --  If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11773
11774      procedure Conversion_Error_NE
11775        (Msg : String;
11776         N   : Node_Or_Entity_Id;
11777         E   : Node_Or_Entity_Id);
11778      --  If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11779
11780      function Valid_Tagged_Conversion
11781        (Target_Type : Entity_Id;
11782         Opnd_Type   : Entity_Id) return Boolean;
11783      --  Specifically test for validity of tagged conversions
11784
11785      function Valid_Array_Conversion return Boolean;
11786      --  Check index and component conformance, and accessibility levels if
11787      --  the component types are anonymous access types (Ada 2005).
11788
11789      ----------------------
11790      -- Conversion_Check --
11791      ----------------------
11792
11793      function Conversion_Check
11794        (Valid : Boolean;
11795         Msg   : String) return Boolean
11796      is
11797      begin
11798         if not Valid
11799
11800            --  A generic unit has already been analyzed and we have verified
11801            --  that a particular conversion is OK in that context. Since the
11802            --  instance is reanalyzed without relying on the relationships
11803            --  established during the analysis of the generic, it is possible
11804            --  to end up with inconsistent views of private types. Do not emit
11805            --  the error message in such cases. The rest of the machinery in
11806            --  Valid_Conversion still ensures the proper compatibility of
11807            --  target and operand types.
11808
11809           and then not In_Instance
11810         then
11811            Conversion_Error_N (Msg, Operand);
11812         end if;
11813
11814         return Valid;
11815      end Conversion_Check;
11816
11817      ------------------------
11818      -- Conversion_Error_N --
11819      ------------------------
11820
11821      procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11822      begin
11823         if Report_Errs then
11824            Error_Msg_N (Msg, N);
11825         end if;
11826      end Conversion_Error_N;
11827
11828      -------------------------
11829      -- Conversion_Error_NE --
11830      -------------------------
11831
11832      procedure Conversion_Error_NE
11833        (Msg : String;
11834         N   : Node_Or_Entity_Id;
11835         E   : Node_Or_Entity_Id)
11836      is
11837      begin
11838         if Report_Errs then
11839            Error_Msg_NE (Msg, N, E);
11840         end if;
11841      end Conversion_Error_NE;
11842
11843      ----------------------------
11844      -- Valid_Array_Conversion --
11845      ----------------------------
11846
11847      function Valid_Array_Conversion return Boolean
11848      is
11849         Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11850         Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11851
11852         Opnd_Index      : Node_Id;
11853         Opnd_Index_Type : Entity_Id;
11854
11855         Target_Comp_Type : constant Entity_Id :=
11856                              Component_Type (Target_Type);
11857         Target_Comp_Base : constant Entity_Id :=
11858                              Base_Type (Target_Comp_Type);
11859
11860         Target_Index      : Node_Id;
11861         Target_Index_Type : Entity_Id;
11862
11863      begin
11864         --  Error if wrong number of dimensions
11865
11866         if
11867           Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11868         then
11869            Conversion_Error_N
11870              ("incompatible number of dimensions for conversion", Operand);
11871            return False;
11872
11873         --  Number of dimensions matches
11874
11875         else
11876            --  Loop through indexes of the two arrays
11877
11878            Target_Index := First_Index (Target_Type);
11879            Opnd_Index   := First_Index (Opnd_Type);
11880            while Present (Target_Index) and then Present (Opnd_Index) loop
11881               Target_Index_Type := Etype (Target_Index);
11882               Opnd_Index_Type   := Etype (Opnd_Index);
11883
11884               --  Error if index types are incompatible
11885
11886               if not (Is_Integer_Type (Target_Index_Type)
11887                       and then Is_Integer_Type (Opnd_Index_Type))
11888                 and then (Root_Type (Target_Index_Type)
11889                           /= Root_Type (Opnd_Index_Type))
11890               then
11891                  Conversion_Error_N
11892                    ("incompatible index types for array conversion",
11893                     Operand);
11894                  return False;
11895               end if;
11896
11897               Next_Index (Target_Index);
11898               Next_Index (Opnd_Index);
11899            end loop;
11900
11901            --  If component types have same base type, all set
11902
11903            if Target_Comp_Base  = Opnd_Comp_Base then
11904               null;
11905
11906               --  Here if base types of components are not the same. The only
11907               --  time this is allowed is if we have anonymous access types.
11908
11909               --  The conversion of arrays of anonymous access types can lead
11910               --  to dangling pointers. AI-392 formalizes the accessibility
11911               --  checks that must be applied to such conversions to prevent
11912               --  out-of-scope references.
11913
11914            elsif Ekind_In
11915                    (Target_Comp_Base, E_Anonymous_Access_Type,
11916                                       E_Anonymous_Access_Subprogram_Type)
11917              and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11918              and then
11919                Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11920            then
11921               if Type_Access_Level (Target_Type) <
11922                    Deepest_Type_Access_Level (Opnd_Type)
11923               then
11924                  if In_Instance_Body then
11925                     Error_Msg_Warn := SPARK_Mode /= On;
11926                     Conversion_Error_N
11927                       ("source array type has deeper accessibility "
11928                        & "level than target<<", Operand);
11929                     Conversion_Error_N ("\Program_Error [<<", Operand);
11930                     Rewrite (N,
11931                       Make_Raise_Program_Error (Sloc (N),
11932                         Reason => PE_Accessibility_Check_Failed));
11933                     Set_Etype (N, Target_Type);
11934                     return False;
11935
11936                  --  Conversion not allowed because of accessibility levels
11937
11938                  else
11939                     Conversion_Error_N
11940                       ("source array type has deeper accessibility "
11941                        & "level than target", Operand);
11942                     return False;
11943                  end if;
11944
11945               else
11946                  null;
11947               end if;
11948
11949            --  All other cases where component base types do not match
11950
11951            else
11952               Conversion_Error_N
11953                 ("incompatible component types for array conversion",
11954                  Operand);
11955               return False;
11956            end if;
11957
11958            --  Check that component subtypes statically match. For numeric
11959            --  types this means that both must be either constrained or
11960            --  unconstrained. For enumeration types the bounds must match.
11961            --  All of this is checked in Subtypes_Statically_Match.
11962
11963            if not Subtypes_Statically_Match
11964                     (Target_Comp_Type, Opnd_Comp_Type)
11965            then
11966               Conversion_Error_N
11967                 ("component subtypes must statically match", Operand);
11968               return False;
11969            end if;
11970         end if;
11971
11972         return True;
11973      end Valid_Array_Conversion;
11974
11975      -----------------------------
11976      -- Valid_Tagged_Conversion --
11977      -----------------------------
11978
11979      function Valid_Tagged_Conversion
11980        (Target_Type : Entity_Id;
11981         Opnd_Type   : Entity_Id) return Boolean
11982      is
11983      begin
11984         --  Upward conversions are allowed (RM 4.6(22))
11985
11986         if Covers (Target_Type, Opnd_Type)
11987           or else Is_Ancestor (Target_Type, Opnd_Type)
11988         then
11989            return True;
11990
11991         --  Downward conversion are allowed if the operand is class-wide
11992         --  (RM 4.6(23)).
11993
11994         elsif Is_Class_Wide_Type (Opnd_Type)
11995           and then Covers (Opnd_Type, Target_Type)
11996         then
11997            return True;
11998
11999         elsif Covers (Opnd_Type, Target_Type)
12000           or else Is_Ancestor (Opnd_Type, Target_Type)
12001         then
12002            return
12003              Conversion_Check (False,
12004                "downward conversion of tagged objects not allowed");
12005
12006         --  Ada 2005 (AI-251): The conversion to/from interface types is
12007         --  always valid
12008
12009         elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
12010            return True;
12011
12012         --  If the operand is a class-wide type obtained through a limited_
12013         --  with clause, and the context includes the nonlimited view, use
12014         --  it to determine whether the conversion is legal.
12015
12016         elsif Is_Class_Wide_Type (Opnd_Type)
12017           and then From_Limited_With (Opnd_Type)
12018           and then Present (Non_Limited_View (Etype (Opnd_Type)))
12019           and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12020         then
12021            return True;
12022
12023         elsif Is_Access_Type (Opnd_Type)
12024           and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12025         then
12026            return True;
12027
12028         else
12029            Conversion_Error_NE
12030              ("invalid tagged conversion, not compatible with}",
12031               N, First_Subtype (Opnd_Type));
12032            return False;
12033         end if;
12034      end Valid_Tagged_Conversion;
12035
12036   --  Start of processing for Valid_Conversion
12037
12038   begin
12039      Check_Parameterless_Call (Operand);
12040
12041      if Is_Overloaded (Operand) then
12042         declare
12043            I   : Interp_Index;
12044            I1  : Interp_Index;
12045            It  : Interp;
12046            It1 : Interp;
12047            N1  : Entity_Id;
12048            T1  : Entity_Id;
12049
12050         begin
12051            --  Remove procedure calls, which syntactically cannot appear in
12052            --  this context, but which cannot be removed by type checking,
12053            --  because the context does not impose a type.
12054
12055            --  The node may be labelled overloaded, but still contain only one
12056            --  interpretation because others were discarded earlier. If this
12057            --  is the case, retain the single interpretation if legal.
12058
12059            Get_First_Interp (Operand, I, It);
12060            Opnd_Type := It.Typ;
12061            Get_Next_Interp (I, It);
12062
12063            if Present (It.Typ)
12064              and then Opnd_Type /= Standard_Void_Type
12065            then
12066               --  More than one candidate interpretation is available
12067
12068               Get_First_Interp (Operand, I, It);
12069               while Present (It.Typ) loop
12070                  if It.Typ = Standard_Void_Type then
12071                     Remove_Interp (I);
12072                  end if;
12073
12074                  --  When compiling for a system where Address is of a visible
12075                  --  integer type, spurious ambiguities can be produced when
12076                  --  arithmetic operations have a literal operand and return
12077                  --  System.Address or a descendant of it. These ambiguities
12078                  --  are usually resolved by the context, but for conversions
12079                  --  there is no context type and the removal of the spurious
12080                  --  operations must be done explicitly here.
12081
12082                  if not Address_Is_Private
12083                    and then Is_Descendent_Of_Address (It.Typ)
12084                  then
12085                     Remove_Interp (I);
12086                  end if;
12087
12088                  Get_Next_Interp (I, It);
12089               end loop;
12090            end if;
12091
12092            Get_First_Interp (Operand, I, It);
12093            I1  := I;
12094            It1 := It;
12095
12096            if No (It.Typ) then
12097               Conversion_Error_N ("illegal operand in conversion", Operand);
12098               return False;
12099            end if;
12100
12101            Get_Next_Interp (I, It);
12102
12103            if Present (It.Typ) then
12104               N1  := It1.Nam;
12105               T1  := It1.Typ;
12106               It1 := Disambiguate (Operand, I1, I, Any_Type);
12107
12108               if It1 = No_Interp then
12109                  Conversion_Error_N
12110                    ("ambiguous operand in conversion", Operand);
12111
12112                  --  If the interpretation involves a standard operator, use
12113                  --  the location of the type, which may be user-defined.
12114
12115                  if Sloc (It.Nam) = Standard_Location then
12116                     Error_Msg_Sloc := Sloc (It.Typ);
12117                  else
12118                     Error_Msg_Sloc := Sloc (It.Nam);
12119                  end if;
12120
12121                  Conversion_Error_N -- CODEFIX
12122                    ("\\possible interpretation#!", Operand);
12123
12124                  if Sloc (N1) = Standard_Location then
12125                     Error_Msg_Sloc := Sloc (T1);
12126                  else
12127                     Error_Msg_Sloc := Sloc (N1);
12128                  end if;
12129
12130                  Conversion_Error_N -- CODEFIX
12131                    ("\\possible interpretation#!", Operand);
12132
12133                  return False;
12134               end if;
12135            end if;
12136
12137            Set_Etype (Operand, It1.Typ);
12138            Opnd_Type := It1.Typ;
12139         end;
12140      end if;
12141
12142      --  Deal with conversion of integer type to address if the pragma
12143      --  Allow_Integer_Address is in effect. We convert the conversion to
12144      --  an unchecked conversion in this case and we are all done.
12145
12146      if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12147         Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12148         Analyze_And_Resolve (N, Target_Type);
12149         return True;
12150      end if;
12151
12152      --  If we are within a child unit, check whether the type of the
12153      --  expression has an ancestor in a parent unit, in which case it
12154      --  belongs to its derivation class even if the ancestor is private.
12155      --  See RM 7.3.1 (5.2/3).
12156
12157      Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12158
12159      --  Numeric types
12160
12161      if Is_Numeric_Type (Target_Type) then
12162
12163         --  A universal fixed expression can be converted to any numeric type
12164
12165         if Opnd_Type = Universal_Fixed then
12166            return True;
12167
12168         --  Also no need to check when in an instance or inlined body, because
12169         --  the legality has been established when the template was analyzed.
12170         --  Furthermore, numeric conversions may occur where only a private
12171         --  view of the operand type is visible at the instantiation point.
12172         --  This results in a spurious error if we check that the operand type
12173         --  is a numeric type.
12174
12175         --  Note: in a previous version of this unit, the following tests were
12176         --  applied only for generated code (Comes_From_Source set to False),
12177         --  but in fact the test is required for source code as well, since
12178         --  this situation can arise in source code.
12179
12180         elsif In_Instance or else In_Inlined_Body then
12181            return True;
12182
12183         --  Otherwise we need the conversion check
12184
12185         else
12186            return Conversion_Check
12187                     (Is_Numeric_Type (Opnd_Type)
12188                       or else
12189                         (Present (Inc_Ancestor)
12190                           and then Is_Numeric_Type (Inc_Ancestor)),
12191                      "illegal operand for numeric conversion");
12192         end if;
12193
12194      --  Array types
12195
12196      elsif Is_Array_Type (Target_Type) then
12197         if not Is_Array_Type (Opnd_Type)
12198           or else Opnd_Type = Any_Composite
12199           or else Opnd_Type = Any_String
12200         then
12201            Conversion_Error_N
12202              ("illegal operand for array conversion", Operand);
12203            return False;
12204
12205         else
12206            return Valid_Array_Conversion;
12207         end if;
12208
12209      --  Ada 2005 (AI-251): Internally generated conversions of access to
12210      --  interface types added to force the displacement of the pointer to
12211      --  reference the corresponding dispatch table.
12212
12213      elsif not Comes_From_Source (N)
12214         and then Is_Access_Type (Target_Type)
12215         and then Is_Interface (Designated_Type (Target_Type))
12216      then
12217         return True;
12218
12219      --  Ada 2005 (AI-251): Anonymous access types where target references an
12220      --  interface type.
12221
12222      elsif Is_Access_Type (Opnd_Type)
12223        and then Ekind_In (Target_Type, E_General_Access_Type,
12224                                        E_Anonymous_Access_Type)
12225        and then Is_Interface (Directly_Designated_Type (Target_Type))
12226      then
12227         --  Check the static accessibility rule of 4.6(17). Note that the
12228         --  check is not enforced when within an instance body, since the
12229         --  RM requires such cases to be caught at run time.
12230
12231         --  If the operand is a rewriting of an allocator no check is needed
12232         --  because there are no accessibility issues.
12233
12234         if Nkind (Original_Node (N)) = N_Allocator then
12235            null;
12236
12237         elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12238            if Type_Access_Level (Opnd_Type) >
12239               Deepest_Type_Access_Level (Target_Type)
12240            then
12241               --  In an instance, this is a run-time check, but one we know
12242               --  will fail, so generate an appropriate warning. The raise
12243               --  will be generated by Expand_N_Type_Conversion.
12244
12245               if In_Instance_Body then
12246                  Error_Msg_Warn := SPARK_Mode /= On;
12247                  Conversion_Error_N
12248                    ("cannot convert local pointer to non-local access type<<",
12249                     Operand);
12250                  Conversion_Error_N ("\Program_Error [<<", Operand);
12251
12252               else
12253                  Conversion_Error_N
12254                    ("cannot convert local pointer to non-local access type",
12255                     Operand);
12256                  return False;
12257               end if;
12258
12259            --  Special accessibility checks are needed in the case of access
12260            --  discriminants declared for a limited type.
12261
12262            elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12263              and then not Is_Local_Anonymous_Access (Opnd_Type)
12264            then
12265               --  When the operand is a selected access discriminant the check
12266               --  needs to be made against the level of the object denoted by
12267               --  the prefix of the selected name (Object_Access_Level handles
12268               --  checking the prefix of the operand for this case).
12269
12270               if Nkind (Operand) = N_Selected_Component
12271                 and then Object_Access_Level (Operand) >
12272                   Deepest_Type_Access_Level (Target_Type)
12273               then
12274                  --  In an instance, this is a run-time check, but one we know
12275                  --  will fail, so generate an appropriate warning. The raise
12276                  --  will be generated by Expand_N_Type_Conversion.
12277
12278                  if In_Instance_Body then
12279                     Error_Msg_Warn := SPARK_Mode /= On;
12280                     Conversion_Error_N
12281                       ("cannot convert access discriminant to non-local "
12282                        & "access type<<", Operand);
12283                     Conversion_Error_N ("\Program_Error [<<", Operand);
12284
12285                  --  Real error if not in instance body
12286
12287                  else
12288                     Conversion_Error_N
12289                       ("cannot convert access discriminant to non-local "
12290                        & "access type", Operand);
12291                     return False;
12292                  end if;
12293               end if;
12294
12295               --  The case of a reference to an access discriminant from
12296               --  within a limited type declaration (which will appear as
12297               --  a discriminal) is always illegal because the level of the
12298               --  discriminant is considered to be deeper than any (nameable)
12299               --  access type.
12300
12301               if Is_Entity_Name (Operand)
12302                 and then not Is_Local_Anonymous_Access (Opnd_Type)
12303                 and then
12304                   Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12305                 and then Present (Discriminal_Link (Entity (Operand)))
12306               then
12307                  Conversion_Error_N
12308                    ("discriminant has deeper accessibility level than target",
12309                     Operand);
12310                  return False;
12311               end if;
12312            end if;
12313         end if;
12314
12315         return True;
12316
12317      --  General and anonymous access types
12318
12319      elsif Ekind_In (Target_Type, E_General_Access_Type,
12320                                   E_Anonymous_Access_Type)
12321          and then
12322            Conversion_Check
12323              (Is_Access_Type (Opnd_Type)
12324                and then not
12325                  Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12326                                       E_Access_Protected_Subprogram_Type),
12327               "must be an access-to-object type")
12328      then
12329         if Is_Access_Constant (Opnd_Type)
12330           and then not Is_Access_Constant (Target_Type)
12331         then
12332            Conversion_Error_N
12333              ("access-to-constant operand type not allowed", Operand);
12334            return False;
12335         end if;
12336
12337         --  Check the static accessibility rule of 4.6(17). Note that the
12338         --  check is not enforced when within an instance body, since the RM
12339         --  requires such cases to be caught at run time.
12340
12341         if Ekind (Target_Type) /= E_Anonymous_Access_Type
12342           or else Is_Local_Anonymous_Access (Target_Type)
12343           or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12344                     N_Object_Declaration
12345         then
12346            --  Ada 2012 (AI05-0149): Perform legality checking on implicit
12347            --  conversions from an anonymous access type to a named general
12348            --  access type. Such conversions are not allowed in the case of
12349            --  access parameters and stand-alone objects of an anonymous
12350            --  access type. The implicit conversion case is recognized by
12351            --  testing that Comes_From_Source is False and that it's been
12352            --  rewritten. The Comes_From_Source test isn't sufficient because
12353            --  nodes in inlined calls to predefined library routines can have
12354            --  Comes_From_Source set to False. (Is there a better way to test
12355            --  for implicit conversions???)
12356
12357            if Ada_Version >= Ada_2012
12358              and then not Comes_From_Source (N)
12359              and then N /= Original_Node (N)
12360              and then Ekind (Target_Type) = E_General_Access_Type
12361              and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12362            then
12363               if Is_Itype (Opnd_Type) then
12364
12365                  --  Implicit conversions aren't allowed for objects of an
12366                  --  anonymous access type, since such objects have nonstatic
12367                  --  levels in Ada 2012.
12368
12369                  if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12370                       N_Object_Declaration
12371                  then
12372                     Conversion_Error_N
12373                       ("implicit conversion of stand-alone anonymous "
12374                        & "access object not allowed", Operand);
12375                     return False;
12376
12377                  --  Implicit conversions aren't allowed for anonymous access
12378                  --  parameters. The "not Is_Local_Anonymous_Access_Type" test
12379                  --  is done to exclude anonymous access results.
12380
12381                  elsif not Is_Local_Anonymous_Access (Opnd_Type)
12382                    and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12383                                       N_Function_Specification,
12384                                       N_Procedure_Specification)
12385                  then
12386                     Conversion_Error_N
12387                       ("implicit conversion of anonymous access formal "
12388                        & "not allowed", Operand);
12389                     return False;
12390
12391                  --  This is a case where there's an enclosing object whose
12392                  --  to which the "statically deeper than" relationship does
12393                  --  not apply (such as an access discriminant selected from
12394                  --  a dereference of an access parameter).
12395
12396                  elsif Object_Access_Level (Operand)
12397                          = Scope_Depth (Standard_Standard)
12398                  then
12399                     Conversion_Error_N
12400                       ("implicit conversion of anonymous access value "
12401                        & "not allowed", Operand);
12402                     return False;
12403
12404                  --  In other cases, the level of the operand's type must be
12405                  --  statically less deep than that of the target type, else
12406                  --  implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12407
12408                  elsif Type_Access_Level (Opnd_Type) >
12409                        Deepest_Type_Access_Level (Target_Type)
12410                  then
12411                     Conversion_Error_N
12412                       ("implicit conversion of anonymous access value "
12413                        & "violates accessibility", Operand);
12414                     return False;
12415                  end if;
12416               end if;
12417
12418            elsif Type_Access_Level (Opnd_Type) >
12419                    Deepest_Type_Access_Level (Target_Type)
12420            then
12421               --  In an instance, this is a run-time check, but one we know
12422               --  will fail, so generate an appropriate warning. The raise
12423               --  will be generated by Expand_N_Type_Conversion.
12424
12425               if In_Instance_Body then
12426                  Error_Msg_Warn := SPARK_Mode /= On;
12427                  Conversion_Error_N
12428                    ("cannot convert local pointer to non-local access type<<",
12429                     Operand);
12430                  Conversion_Error_N ("\Program_Error [<<", Operand);
12431
12432               --  If not in an instance body, this is a real error
12433
12434               else
12435                  --  Avoid generation of spurious error message
12436
12437                  if not Error_Posted (N) then
12438                     Conversion_Error_N
12439                      ("cannot convert local pointer to non-local access type",
12440                       Operand);
12441                  end if;
12442
12443                  return False;
12444               end if;
12445
12446            --  Special accessibility checks are needed in the case of access
12447            --  discriminants declared for a limited type.
12448
12449            elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12450              and then not Is_Local_Anonymous_Access (Opnd_Type)
12451            then
12452               --  When the operand is a selected access discriminant the check
12453               --  needs to be made against the level of the object denoted by
12454               --  the prefix of the selected name (Object_Access_Level handles
12455               --  checking the prefix of the operand for this case).
12456
12457               if Nkind (Operand) = N_Selected_Component
12458                 and then Object_Access_Level (Operand) >
12459                          Deepest_Type_Access_Level (Target_Type)
12460               then
12461                  --  In an instance, this is a run-time check, but one we know
12462                  --  will fail, so generate an appropriate warning. The raise
12463                  --  will be generated by Expand_N_Type_Conversion.
12464
12465                  if In_Instance_Body then
12466                     Error_Msg_Warn := SPARK_Mode /= On;
12467                     Conversion_Error_N
12468                       ("cannot convert access discriminant to non-local "
12469                        & "access type<<", Operand);
12470                     Conversion_Error_N ("\Program_Error [<<", Operand);
12471
12472                  --  If not in an instance body, this is a real error
12473
12474                  else
12475                     Conversion_Error_N
12476                       ("cannot convert access discriminant to non-local "
12477                        & "access type", Operand);
12478                     return False;
12479                  end if;
12480               end if;
12481
12482               --  The case of a reference to an access discriminant from
12483               --  within a limited type declaration (which will appear as
12484               --  a discriminal) is always illegal because the level of the
12485               --  discriminant is considered to be deeper than any (nameable)
12486               --  access type.
12487
12488               if Is_Entity_Name (Operand)
12489                 and then
12490                   Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12491                 and then Present (Discriminal_Link (Entity (Operand)))
12492               then
12493                  Conversion_Error_N
12494                    ("discriminant has deeper accessibility level than target",
12495                     Operand);
12496                  return False;
12497               end if;
12498            end if;
12499         end if;
12500
12501         --  In the presence of limited_with clauses we have to use nonlimited
12502         --  views, if available.
12503
12504         Check_Limited : declare
12505            function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12506            --  Helper function to handle limited views
12507
12508            --------------------------
12509            -- Full_Designated_Type --
12510            --------------------------
12511
12512            function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12513               Desig : constant Entity_Id := Designated_Type (T);
12514
12515            begin
12516               --  Handle the limited view of a type
12517
12518               if From_Limited_With (Desig)
12519                 and then Has_Non_Limited_View (Desig)
12520               then
12521                  return Available_View (Desig);
12522               else
12523                  return Desig;
12524               end if;
12525            end Full_Designated_Type;
12526
12527            --  Local Declarations
12528
12529            Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12530            Opnd   : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12531
12532            Same_Base : constant Boolean :=
12533                          Base_Type (Target) = Base_Type (Opnd);
12534
12535         --  Start of processing for Check_Limited
12536
12537         begin
12538            if Is_Tagged_Type (Target) then
12539               return Valid_Tagged_Conversion (Target, Opnd);
12540
12541            else
12542               if not Same_Base then
12543                  Conversion_Error_NE
12544                    ("target designated type not compatible with }",
12545                     N, Base_Type (Opnd));
12546                  return False;
12547
12548               --  Ada 2005 AI-384: legality rule is symmetric in both
12549               --  designated types. The conversion is legal (with possible
12550               --  constraint check) if either designated type is
12551               --  unconstrained.
12552
12553               elsif Subtypes_Statically_Match (Target, Opnd)
12554                 or else
12555                   (Has_Discriminants (Target)
12556                     and then
12557                      (not Is_Constrained (Opnd)
12558                        or else not Is_Constrained (Target)))
12559               then
12560                  --  Special case, if Value_Size has been used to make the
12561                  --  sizes different, the conversion is not allowed even
12562                  --  though the subtypes statically match.
12563
12564                  if Known_Static_RM_Size (Target)
12565                    and then Known_Static_RM_Size (Opnd)
12566                    and then RM_Size (Target) /= RM_Size (Opnd)
12567                  then
12568                     Conversion_Error_NE
12569                       ("target designated subtype not compatible with }",
12570                        N, Opnd);
12571                     Conversion_Error_NE
12572                       ("\because sizes of the two designated subtypes differ",
12573                        N, Opnd);
12574                     return False;
12575
12576                  --  Normal case where conversion is allowed
12577
12578                  else
12579                     return True;
12580                  end if;
12581
12582               else
12583                  Error_Msg_NE
12584                    ("target designated subtype not compatible with }",
12585                     N, Opnd);
12586                  return False;
12587               end if;
12588            end if;
12589         end Check_Limited;
12590
12591      --  Access to subprogram types. If the operand is an access parameter,
12592      --  the type has a deeper accessibility that any master, and cannot be
12593      --  assigned. We must make an exception if the conversion is part of an
12594      --  assignment and the target is the return object of an extended return
12595      --  statement, because in that case the accessibility check takes place
12596      --  after the return.
12597
12598      elsif Is_Access_Subprogram_Type (Target_Type)
12599
12600        --  Note: this test of Opnd_Type is there to prevent entering this
12601        --  branch in the case of a remote access to subprogram type, which
12602        --  is internally represented as an E_Record_Type.
12603
12604        and then Is_Access_Type (Opnd_Type)
12605      then
12606         if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12607           and then Is_Entity_Name (Operand)
12608           and then Ekind (Entity (Operand)) = E_In_Parameter
12609           and then
12610             (Nkind (Parent (N)) /= N_Assignment_Statement
12611               or else not Is_Entity_Name (Name (Parent (N)))
12612               or else not Is_Return_Object (Entity (Name (Parent (N)))))
12613         then
12614            Conversion_Error_N
12615              ("illegal attempt to store anonymous access to subprogram",
12616               Operand);
12617            Conversion_Error_N
12618              ("\value has deeper accessibility than any master "
12619               & "(RM 3.10.2 (13))",
12620               Operand);
12621
12622            Error_Msg_NE
12623             ("\use named access type for& instead of access parameter",
12624               Operand, Entity (Operand));
12625         end if;
12626
12627         --  Check that the designated types are subtype conformant
12628
12629         Check_Subtype_Conformant (New_Id  => Designated_Type (Target_Type),
12630                                   Old_Id  => Designated_Type (Opnd_Type),
12631                                   Err_Loc => N);
12632
12633         --  Check the static accessibility rule of 4.6(20)
12634
12635         if Type_Access_Level (Opnd_Type) >
12636            Deepest_Type_Access_Level (Target_Type)
12637         then
12638            Conversion_Error_N
12639              ("operand type has deeper accessibility level than target",
12640               Operand);
12641
12642         --  Check that if the operand type is declared in a generic body,
12643         --  then the target type must be declared within that same body
12644         --  (enforces last sentence of 4.6(20)).
12645
12646         elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12647            declare
12648               O_Gen : constant Node_Id :=
12649                         Enclosing_Generic_Body (Opnd_Type);
12650
12651               T_Gen : Node_Id;
12652
12653            begin
12654               T_Gen := Enclosing_Generic_Body (Target_Type);
12655               while Present (T_Gen) and then T_Gen /= O_Gen loop
12656                  T_Gen := Enclosing_Generic_Body (T_Gen);
12657               end loop;
12658
12659               if T_Gen /= O_Gen then
12660                  Conversion_Error_N
12661                    ("target type must be declared in same generic body "
12662                     & "as operand type", N);
12663               end if;
12664            end;
12665         end if;
12666
12667         return True;
12668
12669      --  Remote access to subprogram types
12670
12671      elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12672        and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12673      then
12674         --  It is valid to convert from one RAS type to another provided
12675         --  that their specification statically match.
12676
12677         --  Note: at this point, remote access to subprogram types have been
12678         --  expanded to their E_Record_Type representation, and we need to
12679         --  go back to the original access type definition using the
12680         --  Corresponding_Remote_Type attribute in order to check that the
12681         --  designated profiles match.
12682
12683         pragma Assert (Ekind (Target_Type) = E_Record_Type);
12684         pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12685
12686         Check_Subtype_Conformant
12687           (New_Id  =>
12688              Designated_Type (Corresponding_Remote_Type (Target_Type)),
12689            Old_Id  =>
12690              Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12691            Err_Loc =>
12692              N);
12693         return True;
12694
12695      --  If it was legal in the generic, it's legal in the instance
12696
12697      elsif In_Instance_Body then
12698         return True;
12699
12700      --  If both are tagged types, check legality of view conversions
12701
12702      elsif Is_Tagged_Type (Target_Type)
12703              and then
12704            Is_Tagged_Type (Opnd_Type)
12705      then
12706         return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12707
12708      --  Types derived from the same root type are convertible
12709
12710      elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12711         return True;
12712
12713      --  In an instance or an inlined body, there may be inconsistent views of
12714      --  the same type, or of types derived from a common root.
12715
12716      elsif (In_Instance or In_Inlined_Body)
12717        and then
12718          Root_Type (Underlying_Type (Target_Type)) =
12719          Root_Type (Underlying_Type (Opnd_Type))
12720      then
12721         return True;
12722
12723      --  Special check for common access type error case
12724
12725      elsif Ekind (Target_Type) = E_Access_Type
12726         and then Is_Access_Type (Opnd_Type)
12727      then
12728         Conversion_Error_N ("target type must be general access type!", N);
12729         Conversion_Error_NE -- CODEFIX
12730            ("add ALL to }!", N, Target_Type);
12731         return False;
12732
12733      --  Here we have a real conversion error
12734
12735      else
12736         Conversion_Error_NE
12737           ("invalid conversion, not compatible with }", N, Opnd_Type);
12738         return False;
12739      end if;
12740   end Valid_Conversion;
12741
12742end Sem_Res;
12743