1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ T Y P E                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Alloc;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Nlists;   use Nlists;
32with Errout;   use Errout;
33with Lib;      use Lib;
34with Namet;    use Namet;
35with Opt;      use Opt;
36with Output;   use Output;
37with Sem;      use Sem;
38with Sem_Aux;  use Sem_Aux;
39with Sem_Ch6;  use Sem_Ch6;
40with Sem_Ch8;  use Sem_Ch8;
41with Sem_Ch12; use Sem_Ch12;
42with Sem_Disp; use Sem_Disp;
43with Sem_Dist; use Sem_Dist;
44with Sem_Util; use Sem_Util;
45with Stand;    use Stand;
46with Sinfo;    use Sinfo;
47with Snames;   use Snames;
48with Table;
49with Treepr;   use Treepr;
50with Uintp;    use Uintp;
51
52package body Sem_Type is
53
54   ---------------------
55   -- Data Structures --
56   ---------------------
57
58   --  The following data structures establish a mapping between nodes and
59   --  their interpretations. An overloaded node has an entry in Interp_Map,
60   --  which in turn contains a pointer into the All_Interp array. The
61   --  interpretations of a given node are contiguous in All_Interp. Each set
62   --  of interpretations is terminated with the marker No_Interp. In order to
63   --  speed up the retrieval of the interpretations of an overloaded node, the
64   --  Interp_Map table is accessed by means of a simple hashing scheme, and
65   --  the entries in Interp_Map are chained. The heads of clash lists are
66   --  stored in array Headers.
67
68   --              Headers        Interp_Map          All_Interp
69
70   --                 _            +-----+             +--------+
71   --                |_|           |_____|         --->|interp1 |
72   --                |_|---------->|node |         |   |interp2 |
73   --                |_|           |index|---------|   |nointerp|
74   --                |_|           |next |             |        |
75   --                              |-----|             |        |
76   --                              +-----+             +--------+
77
78   --  This scheme does not currently reclaim interpretations. In principle,
79   --  after a unit is compiled, all overloadings have been resolved, and the
80   --  candidate interpretations should be deleted. This should be easier
81   --  now than with the previous scheme???
82
83   package All_Interp is new Table.Table (
84     Table_Component_Type => Interp,
85     Table_Index_Type     => Interp_Index,
86     Table_Low_Bound      => 0,
87     Table_Initial        => Alloc.All_Interp_Initial,
88     Table_Increment      => Alloc.All_Interp_Increment,
89     Table_Name           => "All_Interp");
90
91   type Interp_Ref is record
92      Node  : Node_Id;
93      Index : Interp_Index;
94      Next  : Int;
95   end record;
96
97   Header_Size : constant Int := 2 ** 12;
98   No_Entry    : constant Int := -1;
99   Headers     : array (0 .. Header_Size) of Int := (others => No_Entry);
100
101   package Interp_Map is new Table.Table (
102     Table_Component_Type => Interp_Ref,
103     Table_Index_Type     => Int,
104     Table_Low_Bound      => 0,
105     Table_Initial        => Alloc.Interp_Map_Initial,
106     Table_Increment      => Alloc.Interp_Map_Increment,
107     Table_Name           => "Interp_Map");
108
109   function Hash (N : Node_Id) return Int;
110   --  A trivial hashing function for nodes, used to insert an overloaded
111   --  node into the Interp_Map table.
112
113   -------------------------------------
114   -- Handling of Overload Resolution --
115   -------------------------------------
116
117   --  Overload resolution uses two passes over the syntax tree of a complete
118   --  context. In the first, bottom-up pass, the types of actuals in calls
119   --  are used to resolve possibly overloaded subprogram and operator names.
120   --  In the second top-down pass, the type of the context (for example the
121   --  condition in a while statement) is used to resolve a possibly ambiguous
122   --  call, and the unique subprogram name in turn imposes a specific context
123   --  on each of its actuals.
124
125   --  Most expressions are in fact unambiguous, and the bottom-up pass is
126   --  sufficient  to resolve most everything. To simplify the common case,
127   --  names and expressions carry a flag Is_Overloaded to indicate whether
128   --  they have more than one interpretation. If the flag is off, then each
129   --  name has already a unique meaning and type, and the bottom-up pass is
130   --  sufficient (and much simpler).
131
132   --------------------------
133   -- Operator Overloading --
134   --------------------------
135
136   --  The visibility of operators is handled differently from that of other
137   --  entities. We do not introduce explicit versions of primitive operators
138   --  for each type definition. As a result, there is only one entity
139   --  corresponding to predefined addition on all numeric types, etc. The
140   --  back end resolves predefined operators according to their type. The
141   --  visibility of primitive operations then reduces to the visibility of the
142   --  resulting type: (a + b) is a legal interpretation of some primitive
143   --  operator + if the type of the result (which must also be the type of a
144   --  and b) is directly visible (either immediately visible or use-visible).
145
146   --  User-defined operators are treated like other functions, but the
147   --  visibility of these user-defined operations must be special-cased
148   --  to determine whether they hide or are hidden by predefined operators.
149   --  The form P."+" (x, y) requires additional handling.
150
151   --  Concatenation is treated more conventionally: for every one-dimensional
152   --  array type we introduce a explicit concatenation operator. This is
153   --  necessary to handle the case of (element & element => array) which
154   --  cannot be handled conveniently if there is no explicit instance of
155   --  resulting type of the operation.
156
157   -----------------------
158   -- Local Subprograms --
159   -----------------------
160
161   procedure All_Overloads;
162   pragma Warnings (Off, All_Overloads);
163   --  Debugging procedure: list full contents of Overloads table
164
165   function Binary_Op_Interp_Has_Abstract_Op
166     (N : Node_Id;
167      E : Entity_Id) return Entity_Id;
168   --  Given the node and entity of a binary operator, determine whether the
169   --  actuals of E contain an abstract interpretation with regards to the
170   --  types of their corresponding formals. Return the abstract operation or
171   --  Empty.
172
173   function Function_Interp_Has_Abstract_Op
174     (N : Node_Id;
175      E : Entity_Id) return Entity_Id;
176   --  Given the node and entity of a function call, determine whether the
177   --  actuals of E contain an abstract interpretation with regards to the
178   --  types of their corresponding formals. Return the abstract operation or
179   --  Empty.
180
181   function Has_Abstract_Op
182     (N   : Node_Id;
183      Typ : Entity_Id) return Entity_Id;
184   --  Subsidiary routine to Binary_Op_Interp_Has_Abstract_Op and Function_
185   --  Interp_Has_Abstract_Op. Determine whether an overloaded node has an
186   --  abstract interpretation which yields type Typ.
187
188   procedure New_Interps (N : Node_Id);
189   --  Initialize collection of interpretations for the given node, which is
190   --  either an overloaded entity, or an operation whose arguments have
191   --  multiple interpretations. Interpretations can be added to only one
192   --  node at a time.
193
194   function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id;
195   --  If Typ_1 and Typ_2 are compatible, return the one that is not universal
196   --  or is not a "class" type (any_character, etc).
197
198   --------------------
199   -- Add_One_Interp --
200   --------------------
201
202   procedure Add_One_Interp
203     (N         : Node_Id;
204      E         : Entity_Id;
205      T         : Entity_Id;
206      Opnd_Type : Entity_Id := Empty)
207   is
208      Vis_Type : Entity_Id;
209
210      procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id);
211      --  Add one interpretation to an overloaded node. Add a new entry if
212      --  not hidden by previous one, and remove previous one if hidden by
213      --  new one.
214
215      function Is_Universal_Operation (Op : Entity_Id) return Boolean;
216      --  True if the entity is a predefined operator and the operands have
217      --  a universal Interpretation.
218
219      ---------------
220      -- Add_Entry --
221      ---------------
222
223      procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id) is
224         Abstr_Op : Entity_Id := Empty;
225         I        : Interp_Index;
226         It       : Interp;
227
228      --  Start of processing for Add_Entry
229
230      begin
231         --  Find out whether the new entry references interpretations that
232         --  are abstract or disabled by abstract operators.
233
234         if Ada_Version >= Ada_2005 then
235            if Nkind (N) in N_Binary_Op then
236               Abstr_Op := Binary_Op_Interp_Has_Abstract_Op (N, Name);
237            elsif Nkind (N) = N_Function_Call then
238               Abstr_Op := Function_Interp_Has_Abstract_Op (N, Name);
239            end if;
240         end if;
241
242         Get_First_Interp (N, I, It);
243         while Present (It.Nam) loop
244
245            --  A user-defined subprogram hides another declared at an outer
246            --  level, or one that is use-visible. So return if previous
247            --  definition hides new one (which is either in an outer
248            --  scope, or use-visible). Note that for functions use-visible
249            --  is the same as potentially use-visible. If new one hides
250            --  previous one, replace entry in table of interpretations.
251            --  If this is a universal operation, retain the operator in case
252            --  preference rule applies.
253
254            if (((Ekind (Name) = E_Function or else Ekind (Name) = E_Procedure)
255                   and then Ekind (Name) = Ekind (It.Nam))
256                 or else (Ekind (Name) = E_Operator
257                           and then Ekind (It.Nam) = E_Function))
258              and then Is_Immediately_Visible (It.Nam)
259              and then Type_Conformant (Name, It.Nam)
260              and then Base_Type (It.Typ) = Base_Type (T)
261            then
262               if Is_Universal_Operation (Name) then
263                  exit;
264
265               --  If node is an operator symbol, we have no actuals with
266               --  which to check hiding, and this is done in full in the
267               --  caller (Analyze_Subprogram_Renaming) so we include the
268               --  predefined operator in any case.
269
270               elsif Nkind (N) = N_Operator_Symbol
271                 or else
272                   (Nkind (N) = N_Expanded_Name
273                     and then Nkind (Selector_Name (N)) = N_Operator_Symbol)
274               then
275                  exit;
276
277               elsif not In_Open_Scopes (Scope (Name))
278                 or else Scope_Depth (Scope (Name)) <=
279                         Scope_Depth (Scope (It.Nam))
280               then
281                  --  If ambiguity within instance, and entity is not an
282                  --  implicit operation, save for later disambiguation.
283
284                  if Scope (Name) = Scope (It.Nam)
285                    and then not Is_Inherited_Operation (Name)
286                    and then In_Instance
287                  then
288                     exit;
289                  else
290                     return;
291                  end if;
292
293               else
294                  All_Interp.Table (I).Nam := Name;
295                  return;
296               end if;
297
298            --  Avoid making duplicate entries in overloads
299
300            elsif Name = It.Nam
301              and then Base_Type (It.Typ) = Base_Type (T)
302            then
303               return;
304
305            --  Otherwise keep going
306
307            else
308               Get_Next_Interp (I, It);
309            end if;
310
311         end loop;
312
313         All_Interp.Table (All_Interp.Last) := (Name, Typ, Abstr_Op);
314         All_Interp.Append (No_Interp);
315      end Add_Entry;
316
317      ----------------------------
318      -- Is_Universal_Operation --
319      ----------------------------
320
321      function Is_Universal_Operation (Op : Entity_Id) return Boolean is
322         Arg : Node_Id;
323
324      begin
325         if Ekind (Op) /= E_Operator then
326            return False;
327
328         elsif Nkind (N) in N_Binary_Op then
329            return Present (Universal_Interpretation (Left_Opnd (N)))
330              and then Present (Universal_Interpretation (Right_Opnd (N)));
331
332         elsif Nkind (N) in N_Unary_Op then
333            return Present (Universal_Interpretation (Right_Opnd (N)));
334
335         elsif Nkind (N) = N_Function_Call then
336            Arg := First_Actual (N);
337            while Present (Arg) loop
338               if No (Universal_Interpretation (Arg)) then
339                  return False;
340               end if;
341
342               Next_Actual (Arg);
343            end loop;
344
345            return True;
346
347         else
348            return False;
349         end if;
350      end Is_Universal_Operation;
351
352   --  Start of processing for Add_One_Interp
353
354   begin
355      --  If the interpretation is a predefined operator, verify that the
356      --  result type is visible, or that the entity has already been
357      --  resolved (case of an instantiation node that refers to a predefined
358      --  operation, or an internally generated operator node, or an operator
359      --  given as an expanded name). If the operator is a comparison or
360      --  equality, it is the type of the operand that matters to determine
361      --  whether the operator is visible. In an instance, the check is not
362      --  performed, given that the operator was visible in the generic.
363
364      if Ekind (E) = E_Operator then
365         if Present (Opnd_Type) then
366            Vis_Type := Opnd_Type;
367         else
368            Vis_Type := Base_Type (T);
369         end if;
370
371         if In_Open_Scopes (Scope (Vis_Type))
372           or else Is_Potentially_Use_Visible (Vis_Type)
373           or else In_Use (Vis_Type)
374           or else (In_Use (Scope (Vis_Type))
375                     and then not Is_Hidden (Vis_Type))
376           or else Nkind (N) = N_Expanded_Name
377           or else (Nkind (N) in N_Op and then E = Entity (N))
378           or else In_Instance
379           or else Ekind (Vis_Type) = E_Anonymous_Access_Type
380         then
381            null;
382
383         --  If the node is given in functional notation and the prefix
384         --  is an expanded name, then the operator is visible if the
385         --  prefix is the scope of the result type as well. If the
386         --  operator is (implicitly) defined in an extension of system,
387         --  it is know to be valid (see Defined_In_Scope, sem_ch4.adb).
388
389         elsif Nkind (N) = N_Function_Call
390           and then Nkind (Name (N)) = N_Expanded_Name
391           and then (Entity (Prefix (Name (N))) = Scope (Base_Type (T))
392                      or else Entity (Prefix (Name (N))) = Scope (Vis_Type)
393                      or else Scope (Vis_Type) = System_Aux_Id)
394         then
395            null;
396
397         --  Save type for subsequent error message, in case no other
398         --  interpretation is found.
399
400         else
401            Candidate_Type := Vis_Type;
402            return;
403         end if;
404
405      --  In an instance, an abstract non-dispatching operation cannot be a
406      --  candidate interpretation, because it could not have been one in the
407      --  generic (it may be a spurious overloading in the instance).
408
409      elsif In_Instance
410        and then Is_Overloadable (E)
411        and then Is_Abstract_Subprogram (E)
412        and then not Is_Dispatching_Operation (E)
413      then
414         return;
415
416      --  An inherited interface operation that is implemented by some derived
417      --  type does not participate in overload resolution, only the
418      --  implementation operation does.
419
420      elsif Is_Hidden (E)
421        and then Is_Subprogram (E)
422        and then Present (Interface_Alias (E))
423      then
424         --  Ada 2005 (AI-251): If this primitive operation corresponds with
425         --  an immediate ancestor interface there is no need to add it to the
426         --  list of interpretations. The corresponding aliased primitive is
427         --  also in this list of primitive operations and will be used instead
428         --  because otherwise we have a dummy ambiguity between the two
429         --  subprograms which are in fact the same.
430
431         if not Is_Ancestor
432                  (Find_Dispatching_Type (Interface_Alias (E)),
433                   Find_Dispatching_Type (E))
434         then
435            Add_One_Interp (N, Interface_Alias (E), T);
436         end if;
437
438         return;
439
440      --  Calling stubs for an RACW operation never participate in resolution,
441      --  they are executed only through dispatching calls.
442
443      elsif Is_RACW_Stub_Type_Operation (E) then
444         return;
445      end if;
446
447      --  If this is the first interpretation of N, N has type Any_Type.
448      --  In that case place the new type on the node. If one interpretation
449      --  already exists, indicate that the node is overloaded, and store
450      --  both the previous and the new interpretation in All_Interp. If
451      --  this is a later interpretation, just add it to the set.
452
453      if Etype (N) = Any_Type then
454         if Is_Type (E) then
455            Set_Etype (N, T);
456
457         else
458            --  Record both the operator or subprogram name, and its type
459
460            if Nkind (N) in N_Op or else Is_Entity_Name (N) then
461               Set_Entity (N, E);
462            end if;
463
464            Set_Etype (N, T);
465         end if;
466
467      --  Either there is no current interpretation in the table for any
468      --  node or the interpretation that is present is for a different
469      --  node. In both cases add a new interpretation to the table.
470
471      elsif Interp_Map.Last < 0
472        or else
473          (Interp_Map.Table (Interp_Map.Last).Node /= N
474            and then not Is_Overloaded (N))
475      then
476         New_Interps (N);
477
478         if (Nkind (N) in N_Op or else Is_Entity_Name (N))
479           and then Present (Entity (N))
480         then
481            Add_Entry (Entity (N), Etype (N));
482
483         elsif Nkind (N) in N_Subprogram_Call
484           and then Is_Entity_Name (Name (N))
485         then
486            Add_Entry (Entity (Name (N)), Etype (N));
487
488         --  If this is an indirect call there will be no name associated
489         --  with the previous entry. To make diagnostics clearer, save
490         --  Subprogram_Type of first interpretation, so that the error will
491         --  point to the anonymous access to subprogram, not to the result
492         --  type of the call itself.
493
494         elsif (Nkind (N)) = N_Function_Call
495           and then Nkind (Name (N)) = N_Explicit_Dereference
496           and then Is_Overloaded (Name (N))
497         then
498            declare
499               It : Interp;
500
501               Itn : Interp_Index;
502               pragma Warnings (Off, Itn);
503
504            begin
505               Get_First_Interp (Name (N), Itn, It);
506               Add_Entry (It.Nam, Etype (N));
507            end;
508
509         else
510            --  Overloaded prefix in indexed or selected component, or call
511            --  whose name is an expression or another call.
512
513            Add_Entry (Etype (N), Etype (N));
514         end if;
515
516         Add_Entry (E, T);
517
518      else
519         Add_Entry (E, T);
520      end if;
521   end Add_One_Interp;
522
523   -------------------
524   -- All_Overloads --
525   -------------------
526
527   procedure All_Overloads is
528   begin
529      for J in All_Interp.First .. All_Interp.Last loop
530
531         if Present (All_Interp.Table (J).Nam) then
532            Write_Entity_Info (All_Interp.Table (J). Nam, " ");
533         else
534            Write_Str ("No Interp");
535            Write_Eol;
536         end if;
537
538         Write_Str ("=================");
539         Write_Eol;
540      end loop;
541   end All_Overloads;
542
543   --------------------------------------
544   -- Binary_Op_Interp_Has_Abstract_Op --
545   --------------------------------------
546
547   function Binary_Op_Interp_Has_Abstract_Op
548     (N : Node_Id;
549      E : Entity_Id) return Entity_Id
550   is
551      Abstr_Op : Entity_Id;
552      E_Left   : constant Node_Id := First_Formal (E);
553      E_Right  : constant Node_Id := Next_Formal (E_Left);
554
555   begin
556      Abstr_Op := Has_Abstract_Op (Left_Opnd (N), Etype (E_Left));
557      if Present (Abstr_Op) then
558         return Abstr_Op;
559      end if;
560
561      return Has_Abstract_Op (Right_Opnd (N), Etype (E_Right));
562   end Binary_Op_Interp_Has_Abstract_Op;
563
564   ---------------------
565   -- Collect_Interps --
566   ---------------------
567
568   procedure Collect_Interps (N : Node_Id) is
569      Ent          : constant Entity_Id := Entity (N);
570      H            : Entity_Id;
571      First_Interp : Interp_Index;
572
573      function Within_Instance (E : Entity_Id) return Boolean;
574      --  Within an instance there can be spurious ambiguities between a local
575      --  entity and one declared outside of the instance. This can only happen
576      --  for subprograms, because otherwise the local entity hides the outer
577      --  one. For an overloadable entity, this predicate determines whether it
578      --  is a candidate within the instance, or must be ignored.
579
580      ---------------------
581      -- Within_Instance --
582      ---------------------
583
584      function Within_Instance (E : Entity_Id) return Boolean is
585         Inst : Entity_Id;
586         Scop : Entity_Id;
587
588      begin
589         if not In_Instance then
590            return False;
591         end if;
592
593         Inst := Current_Scope;
594         while Present (Inst) and then not Is_Generic_Instance (Inst) loop
595            Inst := Scope (Inst);
596         end loop;
597
598         Scop := Scope (E);
599         while Present (Scop) and then Scop /= Standard_Standard loop
600            if Scop = Inst then
601               return True;
602            end if;
603
604            Scop := Scope (Scop);
605         end loop;
606
607         return False;
608      end Within_Instance;
609
610   --  Start of processing for Collect_Interps
611
612   begin
613      New_Interps (N);
614
615      --  Unconditionally add the entity that was initially matched
616
617      First_Interp := All_Interp.Last;
618      Add_One_Interp (N, Ent, Etype (N));
619
620      --  For expanded name, pick up all additional entities from the
621      --  same scope, since these are obviously also visible. Note that
622      --  these are not necessarily contiguous on the homonym chain.
623
624      if Nkind (N) = N_Expanded_Name then
625         H := Homonym (Ent);
626         while Present (H) loop
627            if Scope (H) = Scope (Entity (N)) then
628               Add_One_Interp (N, H, Etype (H));
629            end if;
630
631            H := Homonym (H);
632         end loop;
633
634      --  Case of direct name
635
636      else
637         --  First, search the homonym chain for directly visible entities
638
639         H := Current_Entity (Ent);
640         while Present (H) loop
641            exit when (not Is_Overloadable (H))
642              and then Is_Immediately_Visible (H);
643
644            if Is_Immediately_Visible (H) and then H /= Ent then
645
646               --  Only add interpretation if not hidden by an inner
647               --  immediately visible one.
648
649               for J in First_Interp .. All_Interp.Last - 1 loop
650
651                  --  Current homograph is not hidden. Add to overloads
652
653                  if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
654                     exit;
655
656                  --  Homograph is hidden, unless it is a predefined operator
657
658                  elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
659
660                     --  A homograph in the same scope can occur within an
661                     --  instantiation, the resulting ambiguity has to be
662                     --  resolved later. The homographs may both be local
663                     --  functions or actuals, or may be declared at different
664                     --  levels within the instance. The renaming of an actual
665                     --  within the instance must not be included.
666
667                     if Within_Instance (H)
668                       and then H /= Renamed_Entity (Ent)
669                       and then not Is_Inherited_Operation (H)
670                     then
671                        All_Interp.Table (All_Interp.Last) :=
672                          (H, Etype (H), Empty);
673                        All_Interp.Append (No_Interp);
674                        goto Next_Homograph;
675
676                     elsif Scope (H) /= Standard_Standard then
677                        goto Next_Homograph;
678                     end if;
679                  end if;
680               end loop;
681
682               --  On exit, we know that current homograph is not hidden
683
684               Add_One_Interp (N, H, Etype (H));
685
686               if Debug_Flag_E then
687                  Write_Str ("Add overloaded interpretation ");
688                  Write_Int (Int (H));
689                  Write_Eol;
690               end if;
691            end if;
692
693            <<Next_Homograph>>
694               H := Homonym (H);
695         end loop;
696
697         --  Scan list of homographs for use-visible entities only
698
699         H := Current_Entity (Ent);
700
701         while Present (H) loop
702            if Is_Potentially_Use_Visible (H)
703              and then H /= Ent
704              and then Is_Overloadable (H)
705            then
706               for J in First_Interp .. All_Interp.Last - 1 loop
707
708                  if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
709                     exit;
710
711                  elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
712                     goto Next_Use_Homograph;
713                  end if;
714               end loop;
715
716               Add_One_Interp (N, H, Etype (H));
717            end if;
718
719            <<Next_Use_Homograph>>
720               H := Homonym (H);
721         end loop;
722      end if;
723
724      if All_Interp.Last = First_Interp + 1 then
725
726         --  The final interpretation is in fact not overloaded. Note that the
727         --  unique legal interpretation may or may not be the original one,
728         --  so we need to update N's entity and etype now, because once N
729         --  is marked as not overloaded it is also expected to carry the
730         --  proper interpretation.
731
732         Set_Is_Overloaded (N, False);
733         Set_Entity (N, All_Interp.Table (First_Interp).Nam);
734         Set_Etype  (N, All_Interp.Table (First_Interp).Typ);
735      end if;
736   end Collect_Interps;
737
738   ------------
739   -- Covers --
740   ------------
741
742   function Covers (T1, T2 : Entity_Id) return Boolean is
743      BT1 : Entity_Id;
744      BT2 : Entity_Id;
745
746      function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean;
747      --  In an instance the proper view may not always be correct for
748      --  private types, but private and full view are compatible. This
749      --  removes spurious errors from nested instantiations that involve,
750      --  among other things, types derived from private types.
751
752      function Real_Actual (T : Entity_Id) return Entity_Id;
753      --  If an actual in an inner instance is the formal of an enclosing
754      --  generic, the actual in the enclosing instance is the one that can
755      --  create an accidental ambiguity, and the check on compatibily of
756      --  generic actual types must use this enclosing actual.
757
758      ----------------------
759      -- Full_View_Covers --
760      ----------------------
761
762      function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean is
763      begin
764         return
765           Is_Private_Type (Typ1)
766             and then
767              ((Present (Full_View (Typ1))
768                 and then Covers (Full_View (Typ1), Typ2))
769                or else (Present (Underlying_Full_View (Typ1))
770                          and then Covers (Underlying_Full_View (Typ1), Typ2))
771                or else Base_Type (Typ1) = Typ2
772                or else Base_Type (Typ2) = Typ1);
773      end Full_View_Covers;
774
775      -----------------
776      -- Real_Actual --
777      -----------------
778
779      function Real_Actual (T : Entity_Id) return Entity_Id is
780         Par : constant Node_Id := Parent (T);
781         RA  : Entity_Id;
782
783      begin
784         --  Retrieve parent subtype from subtype declaration for actual
785
786         if Nkind (Par) = N_Subtype_Declaration
787           and then not Comes_From_Source (Par)
788           and then Is_Entity_Name (Subtype_Indication (Par))
789         then
790            RA := Entity (Subtype_Indication (Par));
791
792            if Is_Generic_Actual_Type (RA) then
793               return RA;
794            end if;
795         end if;
796
797         --  Otherwise actual is not the actual of an enclosing instance
798
799         return T;
800      end Real_Actual;
801
802   --  Start of processing for Covers
803
804   begin
805      --  If either operand missing, then this is an error, but ignore it (and
806      --  pretend we have a cover) if errors already detected, since this may
807      --  simply mean we have malformed trees or a semantic error upstream.
808
809      if No (T1) or else No (T2) then
810         if Total_Errors_Detected /= 0 then
811            return True;
812         else
813            raise Program_Error;
814         end if;
815      end if;
816
817      --  Trivial case: same types are always compatible
818
819      if T1 = T2 then
820         return True;
821      end if;
822
823      --  First check for Standard_Void_Type, which is special. Subsequent
824      --  processing in this routine assumes T1 and T2 are bona fide types;
825      --  Standard_Void_Type is a special entity that has some, but not all,
826      --  properties of types.
827
828      if (T1 = Standard_Void_Type) /= (T2 = Standard_Void_Type) then
829         return False;
830      end if;
831
832      BT1 := Base_Type (T1);
833      BT2 := Base_Type (T2);
834
835      --  Handle underlying view of records with unknown discriminants
836      --  using the original entity that motivated the construction of
837      --  this underlying record view (see Build_Derived_Private_Type).
838
839      if Is_Underlying_Record_View (BT1) then
840         BT1 := Underlying_Record_View (BT1);
841      end if;
842
843      if Is_Underlying_Record_View (BT2) then
844         BT2 := Underlying_Record_View (BT2);
845      end if;
846
847      --  Simplest case: types that have the same base type and are not generic
848      --  actuals are compatible. Generic actuals belong to their class but are
849      --  not compatible with other types of their class, and in particular
850      --  with other generic actuals. They are however compatible with their
851      --  own subtypes, and itypes with the same base are compatible as well.
852      --  Similarly, constrained subtypes obtained from expressions of an
853      --  unconstrained nominal type are compatible with the base type (may
854      --  lead to spurious ambiguities in obscure cases ???)
855
856      --  Generic actuals require special treatment to avoid spurious ambi-
857      --  guities in an instance, when two formal types are instantiated with
858      --  the same actual, so that different subprograms end up with the same
859      --  signature in the instance. If a generic actual is the actual of an
860      --  enclosing instance, it is that actual that we must compare: generic
861      --  actuals are only incompatible if they appear in the same instance.
862
863      if BT1 = BT2
864        or else BT1 = T2
865        or else BT2 = T1
866      then
867         if not Is_Generic_Actual_Type (T1)
868              or else
869            not Is_Generic_Actual_Type (T2)
870         then
871            return True;
872
873         --  Both T1 and T2 are generic actual types
874
875         else
876            declare
877               RT1 : constant Entity_Id := Real_Actual (T1);
878               RT2 : constant Entity_Id := Real_Actual (T2);
879            begin
880               return RT1 = RT2
881                  or else Is_Itype (T1)
882                  or else Is_Itype (T2)
883                  or else Is_Constr_Subt_For_U_Nominal (T1)
884                  or else Is_Constr_Subt_For_U_Nominal (T2)
885                  or else Scope (RT1) /= Scope (RT2);
886            end;
887         end if;
888
889      --  Literals are compatible with types in a given "class"
890
891      elsif     (T2 = Universal_Integer and then Is_Integer_Type (T1))
892        or else (T2 = Universal_Real    and then Is_Real_Type (T1))
893        or else (T2 = Universal_Fixed   and then Is_Fixed_Point_Type (T1))
894        or else (T2 = Any_Fixed         and then Is_Fixed_Point_Type (T1))
895        or else (T2 = Any_String        and then Is_String_Type (T1))
896        or else (T2 = Any_Character     and then Is_Character_Type (T1))
897        or else (T2 = Any_Access        and then Is_Access_Type (T1))
898      then
899         return True;
900
901      --  The context may be class wide, and a class-wide type is compatible
902      --  with any member of the class.
903
904      elsif Is_Class_Wide_Type (T1)
905        and then Is_Ancestor (Root_Type (T1), T2)
906      then
907         return True;
908
909      elsif Is_Class_Wide_Type (T1)
910        and then Is_Class_Wide_Type (T2)
911        and then Base_Type (Etype (T1)) = Base_Type (Etype (T2))
912      then
913         return True;
914
915      --  Ada 2005 (AI-345): A class-wide abstract interface type covers a
916      --  task_type or protected_type that implements the interface.
917
918      elsif Ada_Version >= Ada_2005
919        and then Is_Class_Wide_Type (T1)
920        and then Is_Interface (Etype (T1))
921        and then Is_Concurrent_Type (T2)
922        and then Interface_Present_In_Ancestor
923                   (Typ => BT2, Iface => Etype (T1))
924      then
925         return True;
926
927      --  Ada 2005 (AI-251): A class-wide abstract interface type T1 covers an
928      --  object T2 implementing T1.
929
930      elsif Ada_Version >= Ada_2005
931        and then Is_Class_Wide_Type (T1)
932        and then Is_Interface (Etype (T1))
933        and then Is_Tagged_Type (T2)
934      then
935         if Interface_Present_In_Ancestor (Typ   => T2,
936                                           Iface => Etype (T1))
937         then
938            return True;
939         end if;
940
941         declare
942            E    : Entity_Id;
943            Elmt : Elmt_Id;
944
945         begin
946            if Is_Concurrent_Type (BT2) then
947               E := Corresponding_Record_Type (BT2);
948            else
949               E := BT2;
950            end if;
951
952            --  Ada 2005 (AI-251): A class-wide abstract interface type T1
953            --  covers an object T2 that implements a direct derivation of T1.
954            --  Note: test for presence of E is defense against previous error.
955
956            if No (E) then
957
958               --  If expansion is disabled the Corresponding_Record_Type may
959               --  not be available yet, so use the interface list in the
960               --  declaration directly.
961
962               if ASIS_Mode
963                 and then Nkind (Parent (BT2)) = N_Protected_Type_Declaration
964                 and then Present (Interface_List (Parent (BT2)))
965               then
966                  declare
967                     Intf : Node_Id := First (Interface_List (Parent (BT2)));
968                  begin
969                     while Present (Intf) loop
970                        if Is_Ancestor (Etype (T1), Entity (Intf)) then
971                           return True;
972                        else
973                           Next (Intf);
974                        end if;
975                     end loop;
976                  end;
977
978                  return False;
979
980               else
981                  Check_Error_Detected;
982               end if;
983
984            --  Here we have a corresponding record type
985
986            elsif Present (Interfaces (E)) then
987               Elmt := First_Elmt (Interfaces (E));
988               while Present (Elmt) loop
989                  if Is_Ancestor (Etype (T1), Node (Elmt)) then
990                     return True;
991                  else
992                     Next_Elmt (Elmt);
993                  end if;
994               end loop;
995            end if;
996
997            --  We should also check the case in which T1 is an ancestor of
998            --  some implemented interface???
999
1000            return False;
1001         end;
1002
1003      --  In a dispatching call, the formal is of some specific type, and the
1004      --  actual is of the corresponding class-wide type, including a subtype
1005      --  of the class-wide type.
1006
1007      elsif Is_Class_Wide_Type (T2)
1008        and then
1009          (Class_Wide_Type (T1) = Class_Wide_Type (T2)
1010            or else Base_Type (Root_Type (T2)) = BT1)
1011      then
1012         return True;
1013
1014      --  Some contexts require a class of types rather than a specific type.
1015      --  For example, conditions require any boolean type, fixed point
1016      --  attributes require some real type, etc. The built-in types Any_XXX
1017      --  represent these classes.
1018
1019      elsif     (T1 = Any_Integer  and then Is_Integer_Type     (T2))
1020        or else (T1 = Any_Boolean  and then Is_Boolean_Type     (T2))
1021        or else (T1 = Any_Real     and then Is_Real_Type        (T2))
1022        or else (T1 = Any_Fixed    and then Is_Fixed_Point_Type (T2))
1023        or else (T1 = Any_Discrete and then Is_Discrete_Type    (T2))
1024      then
1025         return True;
1026
1027      --  An aggregate is compatible with an array or record type
1028
1029      elsif T2 = Any_Composite and then Is_Aggregate_Type (T1) then
1030         return True;
1031
1032      --  If the expected type is an anonymous access, the designated type must
1033      --  cover that of the expression. Use the base type for this check: even
1034      --  though access subtypes are rare in sources, they are generated for
1035      --  actuals in instantiations.
1036
1037      elsif Ekind (BT1) = E_Anonymous_Access_Type
1038        and then Is_Access_Type (T2)
1039        and then Covers (Designated_Type (T1), Designated_Type (T2))
1040      then
1041         return True;
1042
1043      --  Ada 2012 (AI05-0149): Allow an anonymous access type in the context
1044      --  of a named general access type. An implicit conversion will be
1045      --  applied. For the resolution, one designated type must cover the
1046      --  other.
1047
1048      elsif Ada_Version >= Ada_2012
1049        and then Ekind (BT1) = E_General_Access_Type
1050        and then Ekind (BT2) = E_Anonymous_Access_Type
1051        and then (Covers (Designated_Type (T1), Designated_Type (T2))
1052                    or else
1053                  Covers (Designated_Type (T2), Designated_Type (T1)))
1054      then
1055         return True;
1056
1057      --  An Access_To_Subprogram is compatible with itself, or with an
1058      --  anonymous type created for an attribute reference Access.
1059
1060      elsif Ekind_In (BT1, E_Access_Subprogram_Type,
1061                           E_Access_Protected_Subprogram_Type)
1062        and then Is_Access_Type (T2)
1063        and then (not Comes_From_Source (T1)
1064                   or else not Comes_From_Source (T2))
1065        and then (Is_Overloadable (Designated_Type (T2))
1066                   or else Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1067        and then Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1068        and then Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1069      then
1070         return True;
1071
1072      --  Ada 2005 (AI-254): An Anonymous_Access_To_Subprogram is compatible
1073      --  with itself, or with an anonymous type created for an attribute
1074      --  reference Access.
1075
1076      elsif Ekind_In (BT1, E_Anonymous_Access_Subprogram_Type,
1077                           E_Anonymous_Access_Protected_Subprogram_Type)
1078        and then Is_Access_Type (T2)
1079        and then (not Comes_From_Source (T1)
1080                   or else not Comes_From_Source (T2))
1081        and then (Is_Overloadable (Designated_Type (T2))
1082                   or else Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1083        and then Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1084        and then Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1085      then
1086         return True;
1087
1088      --  The context can be a remote access type, and the expression the
1089      --  corresponding source type declared in a categorized package, or
1090      --  vice versa.
1091
1092      elsif Is_Record_Type (T1)
1093        and then (Is_Remote_Call_Interface (T1) or else Is_Remote_Types (T1))
1094        and then Present (Corresponding_Remote_Type (T1))
1095      then
1096         return Covers (Corresponding_Remote_Type (T1), T2);
1097
1098      --  and conversely.
1099
1100      elsif Is_Record_Type (T2)
1101        and then (Is_Remote_Call_Interface (T2) or else Is_Remote_Types (T2))
1102        and then Present (Corresponding_Remote_Type (T2))
1103      then
1104         return Covers (Corresponding_Remote_Type (T2), T1);
1105
1106      --  Synchronized types are represented at run time by their corresponding
1107      --  record type. During expansion one is replaced with the other, but
1108      --  they are compatible views of the same type.
1109
1110      elsif Is_Record_Type (T1)
1111        and then Is_Concurrent_Type (T2)
1112        and then Present (Corresponding_Record_Type (T2))
1113      then
1114         return Covers (T1, Corresponding_Record_Type (T2));
1115
1116      elsif Is_Concurrent_Type (T1)
1117        and then Present (Corresponding_Record_Type (T1))
1118        and then Is_Record_Type (T2)
1119      then
1120         return Covers (Corresponding_Record_Type (T1), T2);
1121
1122      --  During analysis, an attribute reference 'Access has a special type
1123      --  kind: Access_Attribute_Type, to be replaced eventually with the type
1124      --  imposed by context.
1125
1126      elsif Ekind (T2) = E_Access_Attribute_Type
1127        and then Ekind_In (BT1, E_General_Access_Type, E_Access_Type)
1128        and then Covers (Designated_Type (T1), Designated_Type (T2))
1129      then
1130         --  If the target type is a RACW type while the source is an access
1131         --  attribute type, we are building a RACW that may be exported.
1132
1133         if Is_Remote_Access_To_Class_Wide_Type (BT1) then
1134            Set_Has_RACW (Current_Sem_Unit);
1135         end if;
1136
1137         return True;
1138
1139      --  Ditto for allocators, which eventually resolve to the context type
1140
1141      elsif Ekind (T2) = E_Allocator_Type and then Is_Access_Type (T1) then
1142         return Covers (Designated_Type (T1), Designated_Type (T2))
1143           or else
1144             (From_Limited_With (Designated_Type (T1))
1145               and then Covers (Designated_Type (T2), Designated_Type (T1)));
1146
1147      --  A boolean operation on integer literals is compatible with modular
1148      --  context.
1149
1150      elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
1151         return True;
1152
1153      --  The actual type may be the result of a previous error
1154
1155      elsif BT2 = Any_Type then
1156         return True;
1157
1158      --  A Raise_Expressions is legal in any expression context
1159
1160      elsif BT2 = Raise_Type then
1161         return True;
1162
1163      --  A packed array type covers its corresponding non-packed type. This is
1164      --  not legitimate Ada, but allows the omission of a number of otherwise
1165      --  useless unchecked conversions, and since this can only arise in
1166      --  (known correct) expanded code, no harm is done.
1167
1168      elsif Is_Array_Type (T2)
1169        and then Is_Packed (T2)
1170        and then T1 = Packed_Array_Impl_Type (T2)
1171      then
1172         return True;
1173
1174      --  Similarly an array type covers its corresponding packed array type
1175
1176      elsif Is_Array_Type (T1)
1177        and then Is_Packed (T1)
1178        and then T2 = Packed_Array_Impl_Type (T1)
1179      then
1180         return True;
1181
1182      --  In instances, or with types exported from instantiations, check
1183      --  whether a partial and a full view match. Verify that types are
1184      --  legal, to prevent cascaded errors.
1185
1186      elsif In_Instance
1187        and then (Full_View_Covers (T1, T2) or else Full_View_Covers (T2, T1))
1188      then
1189         return True;
1190
1191      elsif Is_Type (T2)
1192        and then Is_Generic_Actual_Type (T2)
1193        and then Full_View_Covers (T1, T2)
1194      then
1195         return True;
1196
1197      elsif Is_Type (T1)
1198        and then Is_Generic_Actual_Type (T1)
1199        and then Full_View_Covers (T2, T1)
1200      then
1201         return True;
1202
1203      --  In the expansion of inlined bodies, types are compatible if they
1204      --  are structurally equivalent.
1205
1206      elsif In_Inlined_Body
1207        and then (Underlying_Type (T1) = Underlying_Type (T2)
1208                   or else
1209                     (Is_Access_Type (T1)
1210                       and then Is_Access_Type (T2)
1211                       and then Designated_Type (T1) = Designated_Type (T2))
1212                   or else
1213                     (T1 = Any_Access
1214                       and then Is_Access_Type (Underlying_Type (T2)))
1215                   or else
1216                     (T2 = Any_Composite
1217                       and then Is_Composite_Type (Underlying_Type (T1))))
1218      then
1219         return True;
1220
1221      --  Ada 2005 (AI-50217): Additional branches to make the shadow entity
1222      --  obtained through a limited_with compatible with its real entity.
1223
1224      elsif From_Limited_With (T1) then
1225
1226         --  If the expected type is the nonlimited view of a type, the
1227         --  expression may have the limited view. If that one in turn is
1228         --  incomplete, get full view if available.
1229
1230         return Has_Non_Limited_View (T1)
1231           and then Covers (Get_Full_View (Non_Limited_View (T1)), T2);
1232
1233      elsif From_Limited_With (T2) then
1234
1235         --  If units in the context have Limited_With clauses on each other,
1236         --  either type might have a limited view. Checks performed elsewhere
1237         --  verify that the context type is the nonlimited view.
1238
1239         return Has_Non_Limited_View (T2)
1240           and then Covers (T1, Get_Full_View (Non_Limited_View (T2)));
1241
1242      --  Ada 2005 (AI-412): Coverage for regular incomplete subtypes
1243
1244      elsif Ekind (T1) = E_Incomplete_Subtype then
1245         return Covers (Full_View (Etype (T1)), T2);
1246
1247      elsif Ekind (T2) = E_Incomplete_Subtype then
1248         return Covers (T1, Full_View (Etype (T2)));
1249
1250      --  Ada 2005 (AI-423): Coverage of formal anonymous access types
1251      --  and actual anonymous access types in the context of generic
1252      --  instantiations. We have the following situation:
1253
1254      --     generic
1255      --        type Formal is private;
1256      --        Formal_Obj : access Formal;  --  T1
1257      --     package G is ...
1258
1259      --     package P is
1260      --        type Actual is ...
1261      --        Actual_Obj : access Actual;  --  T2
1262      --        package Instance is new G (Formal     => Actual,
1263      --                                   Formal_Obj => Actual_Obj);
1264
1265      elsif Ada_Version >= Ada_2005
1266        and then Ekind (T1) = E_Anonymous_Access_Type
1267        and then Ekind (T2) = E_Anonymous_Access_Type
1268        and then Is_Generic_Type (Directly_Designated_Type (T1))
1269        and then Get_Instance_Of (Directly_Designated_Type (T1)) =
1270                                               Directly_Designated_Type (T2)
1271      then
1272         return True;
1273
1274      --  Otherwise, types are not compatible
1275
1276      else
1277         return False;
1278      end if;
1279   end Covers;
1280
1281   ------------------
1282   -- Disambiguate --
1283   ------------------
1284
1285   function Disambiguate
1286     (N      : Node_Id;
1287      I1, I2 : Interp_Index;
1288      Typ    : Entity_Id) return Interp
1289   is
1290      I           : Interp_Index;
1291      It          : Interp;
1292      It1, It2    : Interp;
1293      Nam1, Nam2  : Entity_Id;
1294      Predef_Subp : Entity_Id;
1295      User_Subp   : Entity_Id;
1296
1297      function Inherited_From_Actual (S : Entity_Id) return Boolean;
1298      --  Determine whether one of the candidates is an operation inherited by
1299      --  a type that is derived from an actual in an instantiation.
1300
1301      function In_Same_Declaration_List
1302        (Typ     : Entity_Id;
1303         Op_Decl : Entity_Id) return Boolean;
1304      --  AI05-0020: a spurious ambiguity may arise when equality on anonymous
1305      --  access types is declared on the partial view of a designated type, so
1306      --  that the type declaration and equality are not in the same list of
1307      --  declarations. This AI gives a preference rule for the user-defined
1308      --  operation. Same rule applies for arithmetic operations on private
1309      --  types completed with fixed-point types: the predefined operation is
1310      --  hidden;  this is already handled properly in GNAT.
1311
1312      function Is_Actual_Subprogram (S : Entity_Id) return Boolean;
1313      --  Determine whether a subprogram is an actual in an enclosing instance.
1314      --  An overloading between such a subprogram and one declared outside the
1315      --  instance is resolved in favor of the first, because it resolved in
1316      --  the generic. Within the instance the actual is represented by a
1317      --  constructed subprogram renaming.
1318
1319      function Matches (Actual, Formal : Node_Id) return Boolean;
1320      --  Look for exact type match in an instance, to remove spurious
1321      --  ambiguities when two formal types have the same actual.
1322
1323      function Operand_Type return Entity_Id;
1324      --  Determine type of operand for an equality operation, to apply
1325      --  Ada 2005 rules to equality on anonymous access types.
1326
1327      function Standard_Operator return Boolean;
1328      --  Check whether subprogram is predefined operator declared in Standard.
1329      --  It may given by an operator name, or by an expanded name whose prefix
1330      --  is Standard.
1331
1332      function Remove_Conversions return Interp;
1333      --  Last chance for pathological cases involving comparisons on literals,
1334      --  and user overloadings of the same operator. Such pathologies have
1335      --  been removed from the ACVC, but still appear in two DEC tests, with
1336      --  the following notable quote from Ben Brosgol:
1337      --
1338      --  [Note: I disclaim all credit/responsibility/blame for coming up with
1339      --  this example; Robert Dewar brought it to our attention, since it is
1340      --  apparently found in the ACVC 1.5. I did not attempt to find the
1341      --  reason in the Reference Manual that makes the example legal, since I
1342      --  was too nauseated by it to want to pursue it further.]
1343      --
1344      --  Accordingly, this is not a fully recursive solution, but it handles
1345      --  DEC tests c460vsa, c460vsb. It also handles ai00136a, which pushes
1346      --  pathology in the other direction with calls whose multiple overloaded
1347      --  actuals make them truly unresolvable.
1348
1349      --  The new rules concerning abstract operations create additional need
1350      --  for special handling of expressions with universal operands, see
1351      --  comments to Has_Abstract_Interpretation below.
1352
1353      ---------------------------
1354      -- Inherited_From_Actual --
1355      ---------------------------
1356
1357      function Inherited_From_Actual (S : Entity_Id) return Boolean is
1358         Par : constant Node_Id := Parent (S);
1359      begin
1360         if Nkind (Par) /= N_Full_Type_Declaration
1361           or else Nkind (Type_Definition (Par)) /= N_Derived_Type_Definition
1362         then
1363            return False;
1364         else
1365            return Is_Entity_Name (Subtype_Indication (Type_Definition (Par)))
1366              and then
1367                Is_Generic_Actual_Type (
1368                  Entity (Subtype_Indication (Type_Definition (Par))));
1369         end if;
1370      end Inherited_From_Actual;
1371
1372      ------------------------------
1373      -- In_Same_Declaration_List --
1374      ------------------------------
1375
1376      function In_Same_Declaration_List
1377        (Typ     : Entity_Id;
1378         Op_Decl : Entity_Id) return Boolean
1379      is
1380         Scop : constant Entity_Id := Scope (Typ);
1381
1382      begin
1383         return In_Same_List (Parent (Typ), Op_Decl)
1384           or else
1385             (Ekind_In (Scop, E_Package, E_Generic_Package)
1386               and then List_Containing (Op_Decl) =
1387                              Visible_Declarations (Parent (Scop))
1388               and then List_Containing (Parent (Typ)) =
1389                              Private_Declarations (Parent (Scop)));
1390      end In_Same_Declaration_List;
1391
1392      --------------------------
1393      -- Is_Actual_Subprogram --
1394      --------------------------
1395
1396      function Is_Actual_Subprogram (S : Entity_Id) return Boolean is
1397      begin
1398         return In_Open_Scopes (Scope (S))
1399           and then Nkind (Unit_Declaration_Node (S)) =
1400                                         N_Subprogram_Renaming_Declaration
1401
1402           --  Why the Comes_From_Source test here???
1403
1404           and then not Comes_From_Source (Unit_Declaration_Node (S))
1405
1406           and then
1407             (Is_Generic_Instance (Scope (S))
1408               or else Is_Wrapper_Package (Scope (S)));
1409      end Is_Actual_Subprogram;
1410
1411      -------------
1412      -- Matches --
1413      -------------
1414
1415      function Matches (Actual, Formal : Node_Id) return Boolean is
1416         T1 : constant Entity_Id := Etype (Actual);
1417         T2 : constant Entity_Id := Etype (Formal);
1418      begin
1419         return T1 = T2
1420           or else
1421             (Is_Numeric_Type (T2)
1422               and then (T1 = Universal_Real or else T1 = Universal_Integer));
1423      end Matches;
1424
1425      ------------------
1426      -- Operand_Type --
1427      ------------------
1428
1429      function Operand_Type return Entity_Id is
1430         Opnd : Node_Id;
1431
1432      begin
1433         if Nkind (N) = N_Function_Call then
1434            Opnd := First_Actual (N);
1435         else
1436            Opnd := Left_Opnd (N);
1437         end if;
1438
1439         return Etype (Opnd);
1440      end Operand_Type;
1441
1442      ------------------------
1443      -- Remove_Conversions --
1444      ------------------------
1445
1446      function Remove_Conversions return Interp is
1447         I    : Interp_Index;
1448         It   : Interp;
1449         It1  : Interp;
1450         F1   : Entity_Id;
1451         Act1 : Node_Id;
1452         Act2 : Node_Id;
1453
1454         function Has_Abstract_Interpretation (N : Node_Id) return Boolean;
1455         --  If an operation has universal operands the universal operation
1456         --  is present among its interpretations. If there is an abstract
1457         --  interpretation for the operator, with a numeric result, this
1458         --  interpretation was already removed in sem_ch4, but the universal
1459         --  one is still visible. We must rescan the list of operators and
1460         --  remove the universal interpretation to resolve the ambiguity.
1461
1462         ---------------------------------
1463         -- Has_Abstract_Interpretation --
1464         ---------------------------------
1465
1466         function Has_Abstract_Interpretation (N : Node_Id) return Boolean is
1467            E : Entity_Id;
1468
1469         begin
1470            if Nkind (N) not in N_Op
1471              or else Ada_Version < Ada_2005
1472              or else not Is_Overloaded (N)
1473              or else No (Universal_Interpretation (N))
1474            then
1475               return False;
1476
1477            else
1478               E := Get_Name_Entity_Id (Chars (N));
1479               while Present (E) loop
1480                  if Is_Overloadable (E)
1481                    and then Is_Abstract_Subprogram (E)
1482                    and then Is_Numeric_Type (Etype (E))
1483                  then
1484                     return True;
1485                  else
1486                     E := Homonym (E);
1487                  end if;
1488               end loop;
1489
1490               --  Finally, if an operand of the binary operator is itself
1491               --  an operator, recurse to see whether its own abstract
1492               --  interpretation is responsible for the spurious ambiguity.
1493
1494               if Nkind (N) in N_Binary_Op then
1495                  return Has_Abstract_Interpretation (Left_Opnd (N))
1496                    or else Has_Abstract_Interpretation (Right_Opnd (N));
1497
1498               elsif Nkind (N) in N_Unary_Op then
1499                  return Has_Abstract_Interpretation (Right_Opnd (N));
1500
1501               else
1502                  return False;
1503               end if;
1504            end if;
1505         end Has_Abstract_Interpretation;
1506
1507      --  Start of processing for Remove_Conversions
1508
1509      begin
1510         It1 := No_Interp;
1511
1512         Get_First_Interp (N, I, It);
1513         while Present (It.Typ) loop
1514            if not Is_Overloadable (It.Nam) then
1515               return No_Interp;
1516            end if;
1517
1518            F1 := First_Formal (It.Nam);
1519
1520            if No (F1) then
1521               return It1;
1522
1523            else
1524               if Nkind (N) in N_Subprogram_Call then
1525                  Act1 := First_Actual (N);
1526
1527                  if Present (Act1) then
1528                     Act2 := Next_Actual (Act1);
1529                  else
1530                     Act2 := Empty;
1531                  end if;
1532
1533               elsif Nkind (N) in N_Unary_Op then
1534                  Act1 := Right_Opnd (N);
1535                  Act2 := Empty;
1536
1537               elsif Nkind (N) in N_Binary_Op then
1538                  Act1 := Left_Opnd (N);
1539                  Act2 := Right_Opnd (N);
1540
1541                  --  Use type of second formal, so as to include
1542                  --  exponentiation, where the exponent may be
1543                  --  ambiguous and the result non-universal.
1544
1545                  Next_Formal (F1);
1546
1547               else
1548                  return It1;
1549               end if;
1550
1551               if Nkind (Act1) in N_Op
1552                 and then Is_Overloaded (Act1)
1553                 and then Nkind_In (Left_Opnd (Act1), N_Integer_Literal,
1554                                                      N_Real_Literal)
1555                 and then Nkind_In (Right_Opnd (Act1), N_Integer_Literal,
1556                                                       N_Real_Literal)
1557                 and then Has_Compatible_Type (Act1, Standard_Boolean)
1558                 and then Etype (F1) = Standard_Boolean
1559               then
1560                  --  If the two candidates are the original ones, the
1561                  --  ambiguity is real. Otherwise keep the original, further
1562                  --  calls to Disambiguate will take care of others in the
1563                  --  list of candidates.
1564
1565                  if It1 /= No_Interp then
1566                     if It = Disambiguate.It1
1567                       or else It = Disambiguate.It2
1568                     then
1569                        if It1 = Disambiguate.It1
1570                          or else It1 = Disambiguate.It2
1571                        then
1572                           return No_Interp;
1573                        else
1574                           It1 := It;
1575                        end if;
1576                     end if;
1577
1578                  elsif Present (Act2)
1579                    and then Nkind (Act2) in N_Op
1580                    and then Is_Overloaded (Act2)
1581                    and then Nkind_In (Right_Opnd (Act2), N_Integer_Literal,
1582                                                          N_Real_Literal)
1583                    and then Has_Compatible_Type (Act2, Standard_Boolean)
1584                  then
1585                     --  The preference rule on the first actual is not
1586                     --  sufficient to disambiguate.
1587
1588                     goto Next_Interp;
1589
1590                  else
1591                     It1 := It;
1592                  end if;
1593
1594               elsif Is_Numeric_Type (Etype (F1))
1595                 and then Has_Abstract_Interpretation (Act1)
1596               then
1597                  --  Current interpretation is not the right one because it
1598                  --  expects a numeric operand. Examine all the other ones.
1599
1600                  declare
1601                     I  : Interp_Index;
1602                     It : Interp;
1603
1604                  begin
1605                     Get_First_Interp (N, I, It);
1606                     while Present (It.Typ) loop
1607                        if
1608                          not Is_Numeric_Type (Etype (First_Formal (It.Nam)))
1609                        then
1610                           if No (Act2)
1611                             or else not Has_Abstract_Interpretation (Act2)
1612                             or else not
1613                               Is_Numeric_Type
1614                                 (Etype (Next_Formal (First_Formal (It.Nam))))
1615                           then
1616                              return It;
1617                           end if;
1618                        end if;
1619
1620                        Get_Next_Interp (I, It);
1621                     end loop;
1622
1623                     return No_Interp;
1624                  end;
1625               end if;
1626            end if;
1627
1628            <<Next_Interp>>
1629               Get_Next_Interp (I, It);
1630         end loop;
1631
1632         --  After some error, a formal may have Any_Type and yield a spurious
1633         --  match. To avoid cascaded errors if possible, check for such a
1634         --  formal in either candidate.
1635
1636         if Serious_Errors_Detected > 0 then
1637            declare
1638               Formal : Entity_Id;
1639
1640            begin
1641               Formal := First_Formal (Nam1);
1642               while Present (Formal) loop
1643                  if Etype (Formal) = Any_Type then
1644                     return Disambiguate.It2;
1645                  end if;
1646
1647                  Next_Formal (Formal);
1648               end loop;
1649
1650               Formal := First_Formal (Nam2);
1651               while Present (Formal) loop
1652                  if Etype (Formal) = Any_Type then
1653                     return Disambiguate.It1;
1654                  end if;
1655
1656                  Next_Formal (Formal);
1657               end loop;
1658            end;
1659         end if;
1660
1661         return It1;
1662      end Remove_Conversions;
1663
1664      -----------------------
1665      -- Standard_Operator --
1666      -----------------------
1667
1668      function Standard_Operator return Boolean is
1669         Nam : Node_Id;
1670
1671      begin
1672         if Nkind (N) in N_Op then
1673            return True;
1674
1675         elsif Nkind (N) = N_Function_Call then
1676            Nam := Name (N);
1677
1678            if Nkind (Nam) /= N_Expanded_Name then
1679               return True;
1680            else
1681               return Entity (Prefix (Nam)) = Standard_Standard;
1682            end if;
1683         else
1684            return False;
1685         end if;
1686      end Standard_Operator;
1687
1688   --  Start of processing for Disambiguate
1689
1690   begin
1691      --  Recover the two legal interpretations
1692
1693      Get_First_Interp (N, I, It);
1694      while I /= I1 loop
1695         Get_Next_Interp (I, It);
1696      end loop;
1697
1698      It1  := It;
1699      Nam1 := It.Nam;
1700      while I /= I2 loop
1701         Get_Next_Interp (I, It);
1702      end loop;
1703
1704      It2  := It;
1705      Nam2 := It.Nam;
1706
1707      --  Check whether one of the entities is an Ada 2005/2012 and we are
1708      --  operating in an earlier mode, in which case we discard the Ada
1709      --  2005/2012 entity, so that we get proper Ada 95 overload resolution.
1710
1711      if Ada_Version < Ada_2005 then
1712         if Is_Ada_2005_Only (Nam1) or else Is_Ada_2012_Only (Nam1) then
1713            return It2;
1714         elsif Is_Ada_2005_Only (Nam2) or else Is_Ada_2012_Only (Nam1) then
1715            return It1;
1716         end if;
1717      end if;
1718
1719      --  Check whether one of the entities is an Ada 2012 entity and we are
1720      --  operating in Ada 2005 mode, in which case we discard the Ada 2012
1721      --  entity, so that we get proper Ada 2005 overload resolution.
1722
1723      if Ada_Version = Ada_2005 then
1724         if Is_Ada_2012_Only (Nam1) then
1725            return It2;
1726         elsif Is_Ada_2012_Only (Nam2) then
1727            return It1;
1728         end if;
1729      end if;
1730
1731      --  If the context is universal, the predefined operator is preferred.
1732      --  This includes bounds in numeric type declarations, and expressions
1733      --  in type conversions. If no interpretation yields a universal type,
1734      --  then we must check whether the user-defined entity hides the prede-
1735      --  fined one.
1736
1737      if Chars (Nam1) in Any_Operator_Name and then Standard_Operator then
1738         if        Typ = Universal_Integer
1739           or else Typ = Universal_Real
1740           or else Typ = Any_Integer
1741           or else Typ = Any_Discrete
1742           or else Typ = Any_Real
1743           or else Typ = Any_Type
1744         then
1745            --  Find an interpretation that yields the universal type, or else
1746            --  a predefined operator that yields a predefined numeric type.
1747
1748            declare
1749               Candidate : Interp := No_Interp;
1750
1751            begin
1752               Get_First_Interp (N, I, It);
1753               while Present (It.Typ) loop
1754                  if (Covers (Typ, It.Typ) or else Typ = Any_Type)
1755                    and then
1756                     (It.Typ = Universal_Integer
1757                       or else It.Typ = Universal_Real)
1758                  then
1759                     return It;
1760
1761                  elsif Covers (Typ, It.Typ)
1762                    and then Scope (It.Typ) = Standard_Standard
1763                    and then Scope (It.Nam) = Standard_Standard
1764                    and then Is_Numeric_Type (It.Typ)
1765                  then
1766                     Candidate := It;
1767                  end if;
1768
1769                  Get_Next_Interp (I, It);
1770               end loop;
1771
1772               if Candidate /= No_Interp then
1773                  return Candidate;
1774               end if;
1775            end;
1776
1777         elsif Chars (Nam1) /= Name_Op_Not
1778           and then (Typ = Standard_Boolean or else Typ = Any_Boolean)
1779         then
1780            --  Equality or comparison operation. Choose predefined operator if
1781            --  arguments are universal. The node may be an operator, name, or
1782            --  a function call, so unpack arguments accordingly.
1783
1784            declare
1785               Arg1, Arg2 : Node_Id;
1786
1787            begin
1788               if Nkind (N) in N_Op then
1789                  Arg1 := Left_Opnd  (N);
1790                  Arg2 := Right_Opnd (N);
1791
1792               elsif Is_Entity_Name (N) then
1793                  Arg1 := First_Entity (Entity (N));
1794                  Arg2 := Next_Entity (Arg1);
1795
1796               else
1797                  Arg1 := First_Actual (N);
1798                  Arg2 := Next_Actual (Arg1);
1799               end if;
1800
1801               if Present (Arg2)
1802                 and then Present (Universal_Interpretation (Arg1))
1803                 and then Universal_Interpretation (Arg2) =
1804                          Universal_Interpretation (Arg1)
1805               then
1806                  Get_First_Interp (N, I, It);
1807                  while Scope (It.Nam) /= Standard_Standard loop
1808                     Get_Next_Interp (I, It);
1809                  end loop;
1810
1811                  return It;
1812               end if;
1813            end;
1814         end if;
1815      end if;
1816
1817      --  If no universal interpretation, check whether user-defined operator
1818      --  hides predefined one, as well as other special cases. If the node
1819      --  is a range, then one or both bounds are ambiguous. Each will have
1820      --  to be disambiguated w.r.t. the context type. The type of the range
1821      --  itself is imposed by the context, so we can return either legal
1822      --  interpretation.
1823
1824      if Ekind (Nam1) = E_Operator then
1825         Predef_Subp := Nam1;
1826         User_Subp   := Nam2;
1827
1828      elsif Ekind (Nam2) = E_Operator then
1829         Predef_Subp := Nam2;
1830         User_Subp   := Nam1;
1831
1832      elsif Nkind (N) = N_Range then
1833         return It1;
1834
1835      --  Implement AI05-105: A renaming declaration with an access
1836      --  definition must resolve to an anonymous access type. This
1837      --  is a resolution rule and can be used to disambiguate.
1838
1839      elsif Nkind (Parent (N)) = N_Object_Renaming_Declaration
1840        and then Present (Access_Definition (Parent (N)))
1841      then
1842         if Ekind_In (It1.Typ, E_Anonymous_Access_Type,
1843                               E_Anonymous_Access_Subprogram_Type)
1844         then
1845            if Ekind (It2.Typ) = Ekind (It1.Typ) then
1846
1847               --  True ambiguity
1848
1849               return No_Interp;
1850
1851            else
1852               return It1;
1853            end if;
1854
1855         elsif Ekind_In (It2.Typ, E_Anonymous_Access_Type,
1856                                  E_Anonymous_Access_Subprogram_Type)
1857         then
1858            return It2;
1859
1860         --  No legal interpretation
1861
1862         else
1863            return No_Interp;
1864         end if;
1865
1866      --  If two user defined-subprograms are visible, it is a true ambiguity,
1867      --  unless one of them is an entry and the context is a conditional or
1868      --  timed entry call, or unless we are within an instance and this is
1869      --  results from two formals types with the same actual.
1870
1871      else
1872         if Nkind (N) = N_Procedure_Call_Statement
1873           and then Nkind (Parent (N)) = N_Entry_Call_Alternative
1874           and then N = Entry_Call_Statement (Parent (N))
1875         then
1876            if Ekind (Nam2) = E_Entry then
1877               return It2;
1878            elsif Ekind (Nam1) = E_Entry then
1879               return It1;
1880            else
1881               return No_Interp;
1882            end if;
1883
1884         --  If the ambiguity occurs within an instance, it is due to several
1885         --  formal types with the same actual. Look for an exact match between
1886         --  the types of the formals of the overloadable entities, and the
1887         --  actuals in the call, to recover the unambiguous match in the
1888         --  original generic.
1889
1890         --  The ambiguity can also be due to an overloading between a formal
1891         --  subprogram and a subprogram declared outside the generic. If the
1892         --  node is overloaded, it did not resolve to the global entity in
1893         --  the generic, and we choose the formal subprogram.
1894
1895         --  Finally, the ambiguity can be between an explicit subprogram and
1896         --  one inherited (with different defaults) from an actual. In this
1897         --  case the resolution was to the explicit declaration in the
1898         --  generic, and remains so in the instance.
1899
1900         --  The same sort of disambiguation needed for calls is also required
1901         --  for the name given in a subprogram renaming, and that case is
1902         --  handled here as well. We test Comes_From_Source to exclude this
1903         --  treatment for implicit renamings created for formal subprograms.
1904
1905         elsif In_Instance and then not In_Generic_Actual (N) then
1906            if Nkind (N) in N_Subprogram_Call
1907              or else
1908                (Nkind (N) in N_Has_Entity
1909                  and then
1910                    Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
1911                  and then Comes_From_Source (Parent (N)))
1912            then
1913               declare
1914                  Actual  : Node_Id;
1915                  Formal  : Entity_Id;
1916                  Renam   : Entity_Id        := Empty;
1917                  Is_Act1 : constant Boolean := Is_Actual_Subprogram (Nam1);
1918                  Is_Act2 : constant Boolean := Is_Actual_Subprogram (Nam2);
1919
1920               begin
1921                  if Is_Act1 and then not Is_Act2 then
1922                     return It1;
1923
1924                  elsif Is_Act2 and then not Is_Act1 then
1925                     return It2;
1926
1927                  elsif Inherited_From_Actual (Nam1)
1928                    and then Comes_From_Source (Nam2)
1929                  then
1930                     return It2;
1931
1932                  elsif Inherited_From_Actual (Nam2)
1933                    and then Comes_From_Source (Nam1)
1934                  then
1935                     return It1;
1936                  end if;
1937
1938                  --  In the case of a renamed subprogram, pick up the entity
1939                  --  of the renaming declaration so we can traverse its
1940                  --  formal parameters.
1941
1942                  if Nkind (N) in N_Has_Entity then
1943                     Renam := Defining_Unit_Name (Specification (Parent (N)));
1944                  end if;
1945
1946                  if Present (Renam) then
1947                     Actual := First_Formal (Renam);
1948                  else
1949                     Actual := First_Actual (N);
1950                  end if;
1951
1952                  Formal := First_Formal (Nam1);
1953                  while Present (Actual) loop
1954                     if Etype (Actual) /= Etype (Formal) then
1955                        return It2;
1956                     end if;
1957
1958                     if Present (Renam) then
1959                        Next_Formal (Actual);
1960                     else
1961                        Next_Actual (Actual);
1962                     end if;
1963
1964                     Next_Formal (Formal);
1965                  end loop;
1966
1967                  return It1;
1968               end;
1969
1970            elsif Nkind (N) in N_Binary_Op then
1971               if Matches (Left_Opnd (N), First_Formal (Nam1))
1972                 and then
1973                   Matches (Right_Opnd (N), Next_Formal (First_Formal (Nam1)))
1974               then
1975                  return It1;
1976               else
1977                  return It2;
1978               end if;
1979
1980            elsif Nkind (N) in N_Unary_Op then
1981               if Etype (Right_Opnd (N)) = Etype (First_Formal (Nam1)) then
1982                  return It1;
1983               else
1984                  return It2;
1985               end if;
1986
1987            else
1988               return Remove_Conversions;
1989            end if;
1990         else
1991            return Remove_Conversions;
1992         end if;
1993      end if;
1994
1995      --  An implicit concatenation operator on a string type cannot be
1996      --  disambiguated from the predefined concatenation. This can only
1997      --  happen with concatenation of string literals.
1998
1999      if Chars (User_Subp) = Name_Op_Concat
2000        and then Ekind (User_Subp) = E_Operator
2001        and then Is_String_Type (Etype (First_Formal (User_Subp)))
2002      then
2003         return No_Interp;
2004
2005      --  If the user-defined operator is in an open scope, or in the scope
2006      --  of the resulting type, or given by an expanded name that names its
2007      --  scope, it hides the predefined operator for the type. Exponentiation
2008      --  has to be special-cased because the implicit operator does not have
2009      --  a symmetric signature, and may not be hidden by the explicit one.
2010
2011      elsif (Nkind (N) = N_Function_Call
2012              and then Nkind (Name (N)) = N_Expanded_Name
2013              and then (Chars (Predef_Subp) /= Name_Op_Expon
2014                         or else Hides_Op (User_Subp, Predef_Subp))
2015              and then Scope (User_Subp) = Entity (Prefix (Name (N))))
2016        or else Hides_Op (User_Subp, Predef_Subp)
2017      then
2018         if It1.Nam = User_Subp then
2019            return It1;
2020         else
2021            return It2;
2022         end if;
2023
2024      --  Otherwise, the predefined operator has precedence, or if the user-
2025      --  defined operation is directly visible we have a true ambiguity.
2026
2027      --  If this is a fixed-point multiplication and division in Ada 83 mode,
2028      --  exclude the universal_fixed operator, which often causes ambiguities
2029      --  in legacy code.
2030
2031      --  Ditto in Ada 2012, where an ambiguity may arise for an operation
2032      --  on a partial view that is completed with a fixed point type. See
2033      --  AI05-0020 and AI05-0209. The ambiguity is resolved in favor of the
2034      --  user-defined type and subprogram, so that a client of the package
2035      --  has the same resolution as the body of the package.
2036
2037      else
2038         if (In_Open_Scopes (Scope (User_Subp))
2039              or else Is_Potentially_Use_Visible (User_Subp))
2040           and then not In_Instance
2041         then
2042            if Is_Fixed_Point_Type (Typ)
2043              and then Nam_In (Chars (Nam1), Name_Op_Multiply, Name_Op_Divide)
2044              and then
2045                (Ada_Version = Ada_83
2046                  or else (Ada_Version >= Ada_2012
2047                            and then In_Same_Declaration_List
2048                                       (First_Subtype (Typ),
2049                                          Unit_Declaration_Node (User_Subp))))
2050            then
2051               if It2.Nam = Predef_Subp then
2052                  return It1;
2053               else
2054                  return It2;
2055               end if;
2056
2057            --  Ada 2005, AI-420: preference rule for "=" on Universal_Access
2058            --  states that the operator defined in Standard is not available
2059            --  if there is a user-defined equality with the proper signature,
2060            --  declared in the same declarative list as the type. The node
2061            --  may be an operator or a function call.
2062
2063            elsif Nam_In (Chars (Nam1), Name_Op_Eq, Name_Op_Ne)
2064              and then Ada_Version >= Ada_2005
2065              and then Etype (User_Subp) = Standard_Boolean
2066              and then Ekind (Operand_Type) = E_Anonymous_Access_Type
2067              and then
2068                In_Same_Declaration_List
2069                  (Designated_Type (Operand_Type),
2070                   Unit_Declaration_Node (User_Subp))
2071            then
2072               if It2.Nam = Predef_Subp then
2073                  return It1;
2074               else
2075                  return It2;
2076               end if;
2077
2078            --  An immediately visible operator hides a use-visible user-
2079            --  defined operation. This disambiguation cannot take place
2080            --  earlier because the visibility of the predefined operator
2081            --  can only be established when operand types are known.
2082
2083            elsif Ekind (User_Subp) = E_Function
2084              and then Ekind (Predef_Subp) = E_Operator
2085              and then Nkind (N) in N_Op
2086              and then not Is_Overloaded (Right_Opnd (N))
2087              and then
2088                Is_Immediately_Visible (Base_Type (Etype (Right_Opnd (N))))
2089              and then Is_Potentially_Use_Visible (User_Subp)
2090            then
2091               if It2.Nam = Predef_Subp then
2092                  return It1;
2093               else
2094                  return It2;
2095               end if;
2096
2097            else
2098               return No_Interp;
2099            end if;
2100
2101         elsif It1.Nam = Predef_Subp then
2102            return It1;
2103
2104         else
2105            return It2;
2106         end if;
2107      end if;
2108   end Disambiguate;
2109
2110   ---------------------
2111   -- End_Interp_List --
2112   ---------------------
2113
2114   procedure End_Interp_List is
2115   begin
2116      All_Interp.Table (All_Interp.Last) := No_Interp;
2117      All_Interp.Increment_Last;
2118   end End_Interp_List;
2119
2120   -------------------------
2121   -- Entity_Matches_Spec --
2122   -------------------------
2123
2124   function Entity_Matches_Spec (Old_S, New_S : Entity_Id) return Boolean is
2125   begin
2126      --  Simple case: same entity kinds, type conformance is required. A
2127      --  parameterless function can also rename a literal.
2128
2129      if Ekind (Old_S) = Ekind (New_S)
2130        or else (Ekind (New_S) = E_Function
2131                  and then Ekind (Old_S) = E_Enumeration_Literal)
2132      then
2133         return Type_Conformant (New_S, Old_S);
2134
2135      elsif Ekind (New_S) = E_Function and then Ekind (Old_S) = E_Operator then
2136         return Operator_Matches_Spec (Old_S, New_S);
2137
2138      elsif Ekind (New_S) = E_Procedure and then Is_Entry (Old_S) then
2139         return Type_Conformant (New_S, Old_S);
2140
2141      else
2142         return False;
2143      end if;
2144   end Entity_Matches_Spec;
2145
2146   ----------------------
2147   -- Find_Unique_Type --
2148   ----------------------
2149
2150   function Find_Unique_Type (L : Node_Id; R : Node_Id) return Entity_Id is
2151      T  : constant Entity_Id := Etype (L);
2152      I  : Interp_Index;
2153      It : Interp;
2154      TR : Entity_Id := Any_Type;
2155
2156   begin
2157      if Is_Overloaded (R) then
2158         Get_First_Interp (R, I, It);
2159         while Present (It.Typ) loop
2160            if Covers (T, It.Typ) or else Covers (It.Typ, T) then
2161
2162               --  If several interpretations are possible and L is universal,
2163               --  apply preference rule.
2164
2165               if TR /= Any_Type then
2166                  if (T = Universal_Integer or else T = Universal_Real)
2167                    and then It.Typ = T
2168                  then
2169                     TR := It.Typ;
2170                  end if;
2171
2172               else
2173                  TR := It.Typ;
2174               end if;
2175            end if;
2176
2177            Get_Next_Interp (I, It);
2178         end loop;
2179
2180         Set_Etype (R, TR);
2181
2182      --  In the non-overloaded case, the Etype of R is already set correctly
2183
2184      else
2185         null;
2186      end if;
2187
2188      --  If one of the operands is Universal_Fixed, the type of the other
2189      --  operand provides the context.
2190
2191      if Etype (R) = Universal_Fixed then
2192         return T;
2193
2194      elsif T = Universal_Fixed then
2195         return Etype (R);
2196
2197      --  Ada 2005 (AI-230): Support the following operators:
2198
2199      --    function "="  (L, R : universal_access) return Boolean;
2200      --    function "/=" (L, R : universal_access) return Boolean;
2201
2202      --  Pool specific access types (E_Access_Type) are not covered by these
2203      --  operators because of the legality rule of 4.5.2(9.2): "The operands
2204      --  of the equality operators for universal_access shall be convertible
2205      --  to one another (see 4.6)". For example, considering the type decla-
2206      --  ration "type P is access Integer" and an anonymous access to Integer,
2207      --  P is convertible to "access Integer" by 4.6 (24.11-24.15), but there
2208      --  is no rule in 4.6 that allows "access Integer" to be converted to P.
2209
2210      elsif Ada_Version >= Ada_2005
2211        and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
2212                                      E_Anonymous_Access_Subprogram_Type)
2213        and then Is_Access_Type (Etype (R))
2214        and then Ekind (Etype (R)) /= E_Access_Type
2215      then
2216         return Etype (L);
2217
2218      elsif Ada_Version >= Ada_2005
2219        and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
2220                                      E_Anonymous_Access_Subprogram_Type)
2221        and then Is_Access_Type (Etype (L))
2222        and then Ekind (Etype (L)) /= E_Access_Type
2223      then
2224         return Etype (R);
2225
2226      --  If one operand is a raise_expression, use type of other operand
2227
2228      elsif Nkind (L) = N_Raise_Expression then
2229         return Etype (R);
2230
2231      else
2232         return Specific_Type (T, Etype (R));
2233      end if;
2234   end Find_Unique_Type;
2235
2236   -------------------------------------
2237   -- Function_Interp_Has_Abstract_Op --
2238   -------------------------------------
2239
2240   function Function_Interp_Has_Abstract_Op
2241     (N : Node_Id;
2242      E : Entity_Id) return Entity_Id
2243   is
2244      Abstr_Op  : Entity_Id;
2245      Act       : Node_Id;
2246      Act_Parm  : Node_Id;
2247      Form_Parm : Node_Id;
2248
2249   begin
2250      --  Why is check on E needed below ???
2251      --  In any case this para needs comments ???
2252
2253      if Is_Overloaded (N) and then Is_Overloadable (E) then
2254         Act_Parm  := First_Actual (N);
2255         Form_Parm := First_Formal (E);
2256         while Present (Act_Parm) and then Present (Form_Parm) loop
2257            Act := Act_Parm;
2258
2259            if Nkind (Act) = N_Parameter_Association then
2260               Act := Explicit_Actual_Parameter (Act);
2261            end if;
2262
2263            Abstr_Op := Has_Abstract_Op (Act, Etype (Form_Parm));
2264
2265            if Present (Abstr_Op) then
2266               return Abstr_Op;
2267            end if;
2268
2269            Next_Actual (Act_Parm);
2270            Next_Formal (Form_Parm);
2271         end loop;
2272      end if;
2273
2274      return Empty;
2275   end Function_Interp_Has_Abstract_Op;
2276
2277   ----------------------
2278   -- Get_First_Interp --
2279   ----------------------
2280
2281   procedure Get_First_Interp
2282     (N  : Node_Id;
2283      I  : out Interp_Index;
2284      It : out Interp)
2285   is
2286      Int_Ind : Interp_Index;
2287      Map_Ptr : Int;
2288      O_N     : Node_Id;
2289
2290   begin
2291      --  If a selected component is overloaded because the selector has
2292      --  multiple interpretations, the node is a call to a protected
2293      --  operation or an indirect call. Retrieve the interpretation from
2294      --  the selector name. The selected component may be overloaded as well
2295      --  if the prefix is overloaded. That case is unchanged.
2296
2297      if Nkind (N) = N_Selected_Component
2298        and then Is_Overloaded (Selector_Name (N))
2299      then
2300         O_N := Selector_Name (N);
2301      else
2302         O_N := N;
2303      end if;
2304
2305      Map_Ptr := Headers (Hash (O_N));
2306      while Map_Ptr /= No_Entry loop
2307         if Interp_Map.Table (Map_Ptr).Node = O_N then
2308            Int_Ind := Interp_Map.Table (Map_Ptr).Index;
2309            It := All_Interp.Table (Int_Ind);
2310            I := Int_Ind;
2311            return;
2312         else
2313            Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
2314         end if;
2315      end loop;
2316
2317      --  Procedure should never be called if the node has no interpretations
2318
2319      raise Program_Error;
2320   end Get_First_Interp;
2321
2322   ---------------------
2323   -- Get_Next_Interp --
2324   ---------------------
2325
2326   procedure Get_Next_Interp (I : in out Interp_Index; It : out Interp) is
2327   begin
2328      I  := I + 1;
2329      It := All_Interp.Table (I);
2330   end Get_Next_Interp;
2331
2332   -------------------------
2333   -- Has_Compatible_Type --
2334   -------------------------
2335
2336   function Has_Compatible_Type
2337     (N   : Node_Id;
2338      Typ : Entity_Id) return Boolean
2339   is
2340      I  : Interp_Index;
2341      It : Interp;
2342
2343   begin
2344      if N = Error then
2345         return False;
2346      end if;
2347
2348      if Nkind (N) = N_Subtype_Indication
2349        or else not Is_Overloaded (N)
2350      then
2351         return
2352           Covers (Typ, Etype (N))
2353
2354            --  Ada 2005 (AI-345): The context may be a synchronized interface.
2355            --  If the type is already frozen use the corresponding_record
2356            --  to check whether it is a proper descendant.
2357
2358           or else
2359             (Is_Record_Type (Typ)
2360               and then Is_Concurrent_Type (Etype (N))
2361               and then Present (Corresponding_Record_Type (Etype (N)))
2362               and then Covers (Typ, Corresponding_Record_Type (Etype (N))))
2363
2364           or else
2365             (Is_Concurrent_Type (Typ)
2366               and then Is_Record_Type (Etype (N))
2367               and then Present (Corresponding_Record_Type (Typ))
2368               and then Covers (Corresponding_Record_Type (Typ), Etype (N)))
2369
2370           or else
2371             (not Is_Tagged_Type (Typ)
2372               and then Ekind (Typ) /= E_Anonymous_Access_Type
2373               and then Covers (Etype (N), Typ));
2374
2375      --  Overloaded case
2376
2377      else
2378         Get_First_Interp (N, I, It);
2379         while Present (It.Typ) loop
2380            if (Covers (Typ, It.Typ)
2381                 and then
2382                   (Scope (It.Nam) /= Standard_Standard
2383                     or else not Is_Invisible_Operator (N, Base_Type (Typ))))
2384
2385               --  Ada 2005 (AI-345)
2386
2387              or else
2388                (Is_Concurrent_Type (It.Typ)
2389                  and then Present (Corresponding_Record_Type
2390                                                             (Etype (It.Typ)))
2391                  and then Covers (Typ, Corresponding_Record_Type
2392                                                             (Etype (It.Typ))))
2393
2394              or else (not Is_Tagged_Type (Typ)
2395                         and then Ekind (Typ) /= E_Anonymous_Access_Type
2396                         and then Covers (It.Typ, Typ))
2397            then
2398               return True;
2399            end if;
2400
2401            Get_Next_Interp (I, It);
2402         end loop;
2403
2404         return False;
2405      end if;
2406   end Has_Compatible_Type;
2407
2408   ---------------------
2409   -- Has_Abstract_Op --
2410   ---------------------
2411
2412   function Has_Abstract_Op
2413     (N   : Node_Id;
2414      Typ : Entity_Id) return Entity_Id
2415   is
2416      I  : Interp_Index;
2417      It : Interp;
2418
2419   begin
2420      if Is_Overloaded (N) then
2421         Get_First_Interp (N, I, It);
2422         while Present (It.Nam) loop
2423            if Present (It.Abstract_Op)
2424              and then Etype (It.Abstract_Op) = Typ
2425            then
2426               return It.Abstract_Op;
2427            end if;
2428
2429            Get_Next_Interp (I, It);
2430         end loop;
2431      end if;
2432
2433      return Empty;
2434   end Has_Abstract_Op;
2435
2436   ----------
2437   -- Hash --
2438   ----------
2439
2440   function Hash (N : Node_Id) return Int is
2441   begin
2442      --  Nodes have a size that is power of two, so to select significant
2443      --  bits only we remove the low-order bits.
2444
2445      return ((Int (N) / 2 ** 5) mod Header_Size);
2446   end Hash;
2447
2448   --------------
2449   -- Hides_Op --
2450   --------------
2451
2452   function Hides_Op (F : Entity_Id; Op : Entity_Id) return Boolean is
2453      Btyp : constant Entity_Id := Base_Type (Etype (First_Formal (F)));
2454   begin
2455      return Operator_Matches_Spec (Op, F)
2456        and then (In_Open_Scopes (Scope (F))
2457                   or else Scope (F) = Scope (Btyp)
2458                   or else (not In_Open_Scopes (Scope (Btyp))
2459                             and then not In_Use (Btyp)
2460                             and then not In_Use (Scope (Btyp))));
2461   end Hides_Op;
2462
2463   ------------------------
2464   -- Init_Interp_Tables --
2465   ------------------------
2466
2467   procedure Init_Interp_Tables is
2468   begin
2469      All_Interp.Init;
2470      Interp_Map.Init;
2471      Headers := (others => No_Entry);
2472   end Init_Interp_Tables;
2473
2474   -----------------------------------
2475   -- Interface_Present_In_Ancestor --
2476   -----------------------------------
2477
2478   function Interface_Present_In_Ancestor
2479     (Typ   : Entity_Id;
2480      Iface : Entity_Id) return Boolean
2481   is
2482      Target_Typ : Entity_Id;
2483      Iface_Typ  : Entity_Id;
2484
2485      function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean;
2486      --  Returns True if Typ or some ancestor of Typ implements Iface
2487
2488      -------------------------------
2489      -- Iface_Present_In_Ancestor --
2490      -------------------------------
2491
2492      function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean is
2493         E    : Entity_Id;
2494         AI   : Entity_Id;
2495         Elmt : Elmt_Id;
2496
2497      begin
2498         if Typ = Iface_Typ then
2499            return True;
2500         end if;
2501
2502         --  Handle private types
2503
2504         if Present (Full_View (Typ))
2505           and then not Is_Concurrent_Type (Full_View (Typ))
2506         then
2507            E := Full_View (Typ);
2508         else
2509            E := Typ;
2510         end if;
2511
2512         loop
2513            if Present (Interfaces (E))
2514              and then Present (Interfaces (E))
2515              and then not Is_Empty_Elmt_List (Interfaces (E))
2516            then
2517               Elmt := First_Elmt (Interfaces (E));
2518               while Present (Elmt) loop
2519                  AI := Node (Elmt);
2520
2521                  if AI = Iface_Typ or else Is_Ancestor (Iface_Typ, AI) then
2522                     return True;
2523                  end if;
2524
2525                  Next_Elmt (Elmt);
2526               end loop;
2527            end if;
2528
2529            exit when Etype (E) = E
2530
2531               --  Handle private types
2532
2533               or else (Present (Full_View (Etype (E)))
2534                         and then Full_View (Etype (E)) = E);
2535
2536            --  Check if the current type is a direct derivation of the
2537            --  interface
2538
2539            if Etype (E) = Iface_Typ then
2540               return True;
2541            end if;
2542
2543            --  Climb to the immediate ancestor handling private types
2544
2545            if Present (Full_View (Etype (E))) then
2546               E := Full_View (Etype (E));
2547            else
2548               E := Etype (E);
2549            end if;
2550         end loop;
2551
2552         return False;
2553      end Iface_Present_In_Ancestor;
2554
2555   --  Start of processing for Interface_Present_In_Ancestor
2556
2557   begin
2558      --  Iface might be a class-wide subtype, so we have to apply Base_Type
2559
2560      if Is_Class_Wide_Type (Iface) then
2561         Iface_Typ := Etype (Base_Type (Iface));
2562      else
2563         Iface_Typ := Iface;
2564      end if;
2565
2566      --  Handle subtypes
2567
2568      Iface_Typ := Base_Type (Iface_Typ);
2569
2570      if Is_Access_Type (Typ) then
2571         Target_Typ := Etype (Directly_Designated_Type (Typ));
2572      else
2573         Target_Typ := Typ;
2574      end if;
2575
2576      if Is_Concurrent_Record_Type (Target_Typ) then
2577         Target_Typ := Corresponding_Concurrent_Type (Target_Typ);
2578      end if;
2579
2580      Target_Typ := Base_Type (Target_Typ);
2581
2582      --  In case of concurrent types we can't use the Corresponding Record_Typ
2583      --  to look for the interface because it is built by the expander (and
2584      --  hence it is not always available). For this reason we traverse the
2585      --  list of interfaces (available in the parent of the concurrent type)
2586
2587      if Is_Concurrent_Type (Target_Typ) then
2588         if Present (Interface_List (Parent (Target_Typ))) then
2589            declare
2590               AI : Node_Id;
2591
2592            begin
2593               AI := First (Interface_List (Parent (Target_Typ)));
2594
2595               --  The progenitor itself may be a subtype of an interface type.
2596
2597               while Present (AI) loop
2598                  if Etype (AI) = Iface_Typ
2599                    or else Base_Type (Etype (AI)) = Iface_Typ
2600                  then
2601                     return True;
2602
2603                  elsif Present (Interfaces (Etype (AI)))
2604                    and then Iface_Present_In_Ancestor (Etype (AI))
2605                  then
2606                     return True;
2607                  end if;
2608
2609                  Next (AI);
2610               end loop;
2611            end;
2612         end if;
2613
2614         return False;
2615      end if;
2616
2617      if Is_Class_Wide_Type (Target_Typ) then
2618         Target_Typ := Etype (Target_Typ);
2619      end if;
2620
2621      if Ekind (Target_Typ) = E_Incomplete_Type then
2622
2623         --  We must have either a full view or a nonlimited view of the type
2624         --  to locate the list of ancestors.
2625
2626         if Present (Full_View (Target_Typ)) then
2627            Target_Typ := Full_View (Target_Typ);
2628         else
2629            pragma Assert (Present (Non_Limited_View (Target_Typ)));
2630            Target_Typ := Non_Limited_View (Target_Typ);
2631         end if;
2632
2633         --  Protect the front end against previously detected errors
2634
2635         if Ekind (Target_Typ) = E_Incomplete_Type then
2636            return False;
2637         end if;
2638      end if;
2639
2640      return Iface_Present_In_Ancestor (Target_Typ);
2641   end Interface_Present_In_Ancestor;
2642
2643   ---------------------
2644   -- Intersect_Types --
2645   ---------------------
2646
2647   function Intersect_Types (L, R : Node_Id) return Entity_Id is
2648      Index : Interp_Index;
2649      It    : Interp;
2650      Typ   : Entity_Id;
2651
2652      function Check_Right_Argument (T : Entity_Id) return Entity_Id;
2653      --  Find interpretation of right arg that has type compatible with T
2654
2655      --------------------------
2656      -- Check_Right_Argument --
2657      --------------------------
2658
2659      function Check_Right_Argument (T : Entity_Id) return Entity_Id is
2660         Index : Interp_Index;
2661         It    : Interp;
2662         T2    : Entity_Id;
2663
2664      begin
2665         if not Is_Overloaded (R) then
2666            return Specific_Type (T, Etype (R));
2667
2668         else
2669            Get_First_Interp (R, Index, It);
2670            loop
2671               T2 := Specific_Type (T, It.Typ);
2672
2673               if T2 /= Any_Type then
2674                  return T2;
2675               end if;
2676
2677               Get_Next_Interp (Index, It);
2678               exit when No (It.Typ);
2679            end loop;
2680
2681            return Any_Type;
2682         end if;
2683      end Check_Right_Argument;
2684
2685   --  Start of processing for Intersect_Types
2686
2687   begin
2688      if Etype (L) = Any_Type or else Etype (R) = Any_Type then
2689         return Any_Type;
2690      end if;
2691
2692      if not Is_Overloaded (L) then
2693         Typ := Check_Right_Argument (Etype (L));
2694
2695      else
2696         Typ := Any_Type;
2697         Get_First_Interp (L, Index, It);
2698         while Present (It.Typ) loop
2699            Typ := Check_Right_Argument (It.Typ);
2700            exit when Typ /= Any_Type;
2701            Get_Next_Interp (Index, It);
2702         end loop;
2703
2704      end if;
2705
2706      --  If Typ is Any_Type, it means no compatible pair of types was found
2707
2708      if Typ = Any_Type then
2709         if Nkind (Parent (L)) in N_Op then
2710            Error_Msg_N ("incompatible types for operator", Parent (L));
2711
2712         elsif Nkind (Parent (L)) = N_Range then
2713            Error_Msg_N ("incompatible types given in constraint", Parent (L));
2714
2715         --  Ada 2005 (AI-251): Complete the error notification
2716
2717         elsif Is_Class_Wide_Type (Etype (R))
2718           and then Is_Interface (Etype (Class_Wide_Type (Etype (R))))
2719         then
2720            Error_Msg_NE ("(Ada 2005) does not implement interface }",
2721                          L, Etype (Class_Wide_Type (Etype (R))));
2722
2723         --  Specialize message if one operand is a limited view, a priori
2724         --  unrelated to all other types.
2725
2726         elsif From_Limited_With (Etype (R)) then
2727            Error_Msg_NE ("limited view of& not compatible with context",
2728                           R, Etype (R));
2729
2730         elsif From_Limited_With (Etype (L)) then
2731            Error_Msg_NE ("limited view of& not compatible with context",
2732                           L, Etype (L));
2733         else
2734            Error_Msg_N ("incompatible types", Parent (L));
2735         end if;
2736      end if;
2737
2738      return Typ;
2739   end Intersect_Types;
2740
2741   -----------------------
2742   -- In_Generic_Actual --
2743   -----------------------
2744
2745   function In_Generic_Actual (Exp : Node_Id) return Boolean is
2746      Par : constant Node_Id := Parent (Exp);
2747
2748   begin
2749      if No (Par) then
2750         return False;
2751
2752      elsif Nkind (Par) in N_Declaration then
2753         if Nkind (Par) = N_Object_Declaration then
2754            return Present (Corresponding_Generic_Association (Par));
2755         else
2756            return False;
2757         end if;
2758
2759      elsif Nkind (Par) = N_Object_Renaming_Declaration then
2760         return Present (Corresponding_Generic_Association (Par));
2761
2762      elsif Nkind (Par) in N_Statement_Other_Than_Procedure_Call then
2763         return False;
2764
2765      else
2766         return In_Generic_Actual (Parent (Par));
2767      end if;
2768   end In_Generic_Actual;
2769
2770   -----------------
2771   -- Is_Ancestor --
2772   -----------------
2773
2774   function Is_Ancestor
2775     (T1            : Entity_Id;
2776      T2            : Entity_Id;
2777      Use_Full_View : Boolean := False) return Boolean
2778   is
2779      BT1 : Entity_Id;
2780      BT2 : Entity_Id;
2781      Par : Entity_Id;
2782
2783   begin
2784      BT1 := Base_Type (T1);
2785      BT2 := Base_Type (T2);
2786
2787      --  Handle underlying view of records with unknown discriminants using
2788      --  the original entity that motivated the construction of this
2789      --  underlying record view (see Build_Derived_Private_Type).
2790
2791      if Is_Underlying_Record_View (BT1) then
2792         BT1 := Underlying_Record_View (BT1);
2793      end if;
2794
2795      if Is_Underlying_Record_View (BT2) then
2796         BT2 := Underlying_Record_View (BT2);
2797      end if;
2798
2799      if BT1 = BT2 then
2800         return True;
2801
2802      --  The predicate must look past privacy
2803
2804      elsif Is_Private_Type (T1)
2805        and then Present (Full_View (T1))
2806        and then BT2 = Base_Type (Full_View (T1))
2807      then
2808         return True;
2809
2810      elsif Is_Private_Type (T2)
2811        and then Present (Full_View (T2))
2812        and then BT1 = Base_Type (Full_View (T2))
2813      then
2814         return True;
2815
2816      else
2817         --  Obtain the parent of the base type of T2 (use the full view if
2818         --  allowed).
2819
2820         if Use_Full_View
2821           and then Is_Private_Type (BT2)
2822           and then Present (Full_View (BT2))
2823         then
2824            --  No climbing needed if its full view is the root type
2825
2826            if Full_View (BT2) = Root_Type (Full_View (BT2)) then
2827               return False;
2828            end if;
2829
2830            Par := Etype (Full_View (BT2));
2831
2832         else
2833            Par := Etype (BT2);
2834         end if;
2835
2836         loop
2837            --  If there was a error on the type declaration, do not recurse
2838
2839            if Error_Posted (Par) then
2840               return False;
2841
2842            elsif BT1 = Base_Type (Par)
2843              or else (Is_Private_Type (T1)
2844                        and then Present (Full_View (T1))
2845                        and then Base_Type (Par) = Base_Type (Full_View (T1)))
2846            then
2847               return True;
2848
2849            elsif Is_Private_Type (Par)
2850              and then Present (Full_View (Par))
2851              and then Full_View (Par) = BT1
2852            then
2853               return True;
2854
2855            --  Root type found
2856
2857            elsif Par = Root_Type (Par) then
2858               return False;
2859
2860            --  Continue climbing
2861
2862            else
2863               --  Use the full-view of private types (if allowed)
2864
2865               if Use_Full_View
2866                 and then Is_Private_Type (Par)
2867                 and then Present (Full_View (Par))
2868               then
2869                  Par := Etype (Full_View (Par));
2870               else
2871                  Par := Etype (Par);
2872               end if;
2873            end if;
2874         end loop;
2875      end if;
2876   end Is_Ancestor;
2877
2878   ---------------------------
2879   -- Is_Invisible_Operator --
2880   ---------------------------
2881
2882   function Is_Invisible_Operator
2883     (N : Node_Id;
2884      T : Entity_Id) return Boolean
2885   is
2886      Orig_Node : constant Node_Id := Original_Node (N);
2887
2888   begin
2889      if Nkind (N) not in N_Op then
2890         return False;
2891
2892      elsif not Comes_From_Source (N) then
2893         return False;
2894
2895      elsif No (Universal_Interpretation (Right_Opnd (N))) then
2896         return False;
2897
2898      elsif Nkind (N) in N_Binary_Op
2899        and then No (Universal_Interpretation (Left_Opnd (N)))
2900      then
2901         return False;
2902
2903      else
2904         return Is_Numeric_Type (T)
2905           and then not In_Open_Scopes (Scope (T))
2906           and then not Is_Potentially_Use_Visible (T)
2907           and then not In_Use (T)
2908           and then not In_Use (Scope (T))
2909           and then
2910            (Nkind (Orig_Node) /= N_Function_Call
2911              or else Nkind (Name (Orig_Node)) /= N_Expanded_Name
2912              or else Entity (Prefix (Name (Orig_Node))) /= Scope (T))
2913           and then not In_Instance;
2914      end if;
2915   end Is_Invisible_Operator;
2916
2917   --------------------
2918   --  Is_Progenitor --
2919   --------------------
2920
2921   function Is_Progenitor
2922     (Iface : Entity_Id;
2923      Typ   : Entity_Id) return Boolean
2924   is
2925   begin
2926      return Implements_Interface (Typ, Iface, Exclude_Parents => True);
2927   end Is_Progenitor;
2928
2929   -------------------
2930   -- Is_Subtype_Of --
2931   -------------------
2932
2933   function Is_Subtype_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
2934      S : Entity_Id;
2935
2936   begin
2937      S := Ancestor_Subtype (T1);
2938      while Present (S) loop
2939         if S = T2 then
2940            return True;
2941         else
2942            S := Ancestor_Subtype (S);
2943         end if;
2944      end loop;
2945
2946      return False;
2947   end Is_Subtype_Of;
2948
2949   ------------------
2950   -- List_Interps --
2951   ------------------
2952
2953   procedure List_Interps (Nam : Node_Id; Err : Node_Id) is
2954      Index : Interp_Index;
2955      It    : Interp;
2956
2957   begin
2958      Get_First_Interp (Nam, Index, It);
2959      while Present (It.Nam) loop
2960         if Scope (It.Nam) = Standard_Standard
2961           and then Scope (It.Typ) /= Standard_Standard
2962         then
2963            Error_Msg_Sloc := Sloc (Parent (It.Typ));
2964            Error_Msg_NE ("\\& (inherited) declared#!", Err, It.Nam);
2965
2966         else
2967            Error_Msg_Sloc := Sloc (It.Nam);
2968            Error_Msg_NE ("\\& declared#!", Err, It.Nam);
2969         end if;
2970
2971         Get_Next_Interp (Index, It);
2972      end loop;
2973   end List_Interps;
2974
2975   -----------------
2976   -- New_Interps --
2977   -----------------
2978
2979   procedure New_Interps (N : Node_Id)  is
2980      Map_Ptr : Int;
2981
2982   begin
2983      All_Interp.Append (No_Interp);
2984
2985      Map_Ptr := Headers (Hash (N));
2986
2987      if Map_Ptr = No_Entry then
2988
2989         --  Place new node at end of table
2990
2991         Interp_Map.Increment_Last;
2992         Headers (Hash (N)) := Interp_Map.Last;
2993
2994      else
2995         --   Place node at end of chain, or locate its previous entry
2996
2997         loop
2998            if Interp_Map.Table (Map_Ptr).Node = N then
2999
3000               --  Node is already in the table, and is being rewritten.
3001               --  Start a new interp section, retain hash link.
3002
3003               Interp_Map.Table (Map_Ptr).Node  := N;
3004               Interp_Map.Table (Map_Ptr).Index := All_Interp.Last;
3005               Set_Is_Overloaded (N, True);
3006               return;
3007
3008            else
3009               exit when Interp_Map.Table (Map_Ptr).Next = No_Entry;
3010               Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
3011            end if;
3012         end loop;
3013
3014         --  Chain the new node
3015
3016         Interp_Map.Increment_Last;
3017         Interp_Map.Table (Map_Ptr).Next := Interp_Map.Last;
3018      end if;
3019
3020      Interp_Map.Table (Interp_Map.Last) := (N, All_Interp.Last, No_Entry);
3021      Set_Is_Overloaded (N, True);
3022   end New_Interps;
3023
3024   ---------------------------
3025   -- Operator_Matches_Spec --
3026   ---------------------------
3027
3028   function Operator_Matches_Spec (Op, New_S : Entity_Id) return Boolean is
3029      Op_Name : constant Name_Id   := Chars (Op);
3030      T       : constant Entity_Id := Etype (New_S);
3031      New_F   : Entity_Id;
3032      Old_F   : Entity_Id;
3033      Num     : Int;
3034      T1      : Entity_Id;
3035      T2      : Entity_Id;
3036
3037   begin
3038      --  To verify that a predefined operator matches a given signature,
3039      --  do a case analysis of the operator classes. Function can have one
3040      --  or two formals and must have the proper result type.
3041
3042      New_F := First_Formal (New_S);
3043      Old_F := First_Formal (Op);
3044      Num := 0;
3045      while Present (New_F) and then Present (Old_F) loop
3046         Num := Num + 1;
3047         Next_Formal (New_F);
3048         Next_Formal (Old_F);
3049      end loop;
3050
3051      --  Definite mismatch if different number of parameters
3052
3053      if Present (Old_F) or else Present (New_F) then
3054         return False;
3055
3056      --  Unary operators
3057
3058      elsif Num = 1 then
3059         T1 := Etype (First_Formal (New_S));
3060
3061         if Nam_In (Op_Name, Name_Op_Subtract, Name_Op_Add, Name_Op_Abs) then
3062            return Base_Type (T1) = Base_Type (T)
3063              and then Is_Numeric_Type (T);
3064
3065         elsif Op_Name = Name_Op_Not then
3066            return Base_Type (T1) = Base_Type (T)
3067              and then Valid_Boolean_Arg (Base_Type (T));
3068
3069         else
3070            return False;
3071         end if;
3072
3073      --  Binary operators
3074
3075      else
3076         T1 := Etype (First_Formal (New_S));
3077         T2 := Etype (Next_Formal (First_Formal (New_S)));
3078
3079         if Nam_In (Op_Name, Name_Op_And, Name_Op_Or, Name_Op_Xor) then
3080            return Base_Type (T1) = Base_Type (T2)
3081              and then Base_Type (T1) = Base_Type (T)
3082              and then Valid_Boolean_Arg (Base_Type (T));
3083
3084         elsif Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne) then
3085            return Base_Type (T1) = Base_Type (T2)
3086              and then not Is_Limited_Type (T1)
3087              and then Is_Boolean_Type (T);
3088
3089         elsif Nam_In (Op_Name, Name_Op_Lt, Name_Op_Le,
3090                                Name_Op_Gt, Name_Op_Ge)
3091         then
3092            return Base_Type (T1) = Base_Type (T2)
3093              and then Valid_Comparison_Arg (T1)
3094              and then Is_Boolean_Type (T);
3095
3096         elsif Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
3097            return Base_Type (T1) = Base_Type (T2)
3098              and then Base_Type (T1) = Base_Type (T)
3099              and then Is_Numeric_Type (T);
3100
3101         --  For division and multiplication, a user-defined function does not
3102         --  match the predefined universal_fixed operation, except in Ada 83.
3103
3104         elsif Op_Name = Name_Op_Divide then
3105            return (Base_Type (T1) = Base_Type (T2)
3106              and then Base_Type (T1) = Base_Type (T)
3107              and then Is_Numeric_Type (T)
3108              and then (not Is_Fixed_Point_Type (T)
3109                         or else Ada_Version = Ada_83))
3110
3111            --  Mixed_Mode operations on fixed-point types
3112
3113              or else (Base_Type (T1) = Base_Type (T)
3114                        and then Base_Type (T2) = Base_Type (Standard_Integer)
3115                        and then Is_Fixed_Point_Type (T))
3116
3117            --  A user defined operator can also match (and hide) a mixed
3118            --  operation on universal literals.
3119
3120              or else (Is_Integer_Type (T2)
3121                        and then Is_Floating_Point_Type (T1)
3122                        and then Base_Type (T1) = Base_Type (T));
3123
3124         elsif Op_Name = Name_Op_Multiply then
3125            return (Base_Type (T1) = Base_Type (T2)
3126              and then Base_Type (T1) = Base_Type (T)
3127              and then Is_Numeric_Type (T)
3128              and then (not Is_Fixed_Point_Type (T)
3129                         or else Ada_Version = Ada_83))
3130
3131            --  Mixed_Mode operations on fixed-point types
3132
3133              or else (Base_Type (T1) = Base_Type (T)
3134                        and then Base_Type (T2) = Base_Type (Standard_Integer)
3135                        and then Is_Fixed_Point_Type (T))
3136
3137              or else (Base_Type (T2) = Base_Type (T)
3138                        and then Base_Type (T1) = Base_Type (Standard_Integer)
3139                        and then Is_Fixed_Point_Type (T))
3140
3141              or else (Is_Integer_Type (T2)
3142                        and then Is_Floating_Point_Type (T1)
3143                        and then Base_Type (T1) = Base_Type (T))
3144
3145              or else (Is_Integer_Type (T1)
3146                        and then Is_Floating_Point_Type (T2)
3147                        and then Base_Type (T2) = Base_Type (T));
3148
3149         elsif Nam_In (Op_Name, Name_Op_Mod, Name_Op_Rem) then
3150            return Base_Type (T1) = Base_Type (T2)
3151              and then Base_Type (T1) = Base_Type (T)
3152              and then Is_Integer_Type (T);
3153
3154         elsif Op_Name = Name_Op_Expon then
3155            return Base_Type (T1) = Base_Type (T)
3156              and then Is_Numeric_Type (T)
3157              and then Base_Type (T2) = Base_Type (Standard_Integer);
3158
3159         elsif Op_Name = Name_Op_Concat then
3160            return Is_Array_Type (T)
3161              and then (Base_Type (T) = Base_Type (Etype (Op)))
3162              and then (Base_Type (T1) = Base_Type (T)
3163                          or else
3164                        Base_Type (T1) = Base_Type (Component_Type (T)))
3165              and then (Base_Type (T2) = Base_Type (T)
3166                          or else
3167                        Base_Type (T2) = Base_Type (Component_Type (T)));
3168
3169         else
3170            return False;
3171         end if;
3172      end if;
3173   end Operator_Matches_Spec;
3174
3175   -------------------
3176   -- Remove_Interp --
3177   -------------------
3178
3179   procedure Remove_Interp (I : in out Interp_Index) is
3180      II : Interp_Index;
3181
3182   begin
3183      --  Find end of interp list and copy downward to erase the discarded one
3184
3185      II := I + 1;
3186      while Present (All_Interp.Table (II).Typ) loop
3187         II := II + 1;
3188      end loop;
3189
3190      for J in I + 1 .. II loop
3191         All_Interp.Table (J - 1) := All_Interp.Table (J);
3192      end loop;
3193
3194      --  Back up interp index to insure that iterator will pick up next
3195      --  available interpretation.
3196
3197      I := I - 1;
3198   end Remove_Interp;
3199
3200   ------------------
3201   -- Save_Interps --
3202   ------------------
3203
3204   procedure Save_Interps (Old_N : Node_Id; New_N : Node_Id) is
3205      Map_Ptr : Int;
3206      O_N     : Node_Id := Old_N;
3207
3208   begin
3209      if Is_Overloaded (Old_N) then
3210         Set_Is_Overloaded (New_N);
3211
3212         if Nkind (Old_N) = N_Selected_Component
3213           and then Is_Overloaded (Selector_Name (Old_N))
3214         then
3215            O_N := Selector_Name (Old_N);
3216         end if;
3217
3218         Map_Ptr := Headers (Hash (O_N));
3219
3220         while Interp_Map.Table (Map_Ptr).Node /= O_N loop
3221            Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
3222            pragma Assert (Map_Ptr /= No_Entry);
3223         end loop;
3224
3225         New_Interps (New_N);
3226         Interp_Map.Table (Interp_Map.Last).Index :=
3227           Interp_Map.Table (Map_Ptr).Index;
3228      end if;
3229   end Save_Interps;
3230
3231   -------------------
3232   -- Specific_Type --
3233   -------------------
3234
3235   function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id is
3236      T1 : constant Entity_Id := Available_View (Typ_1);
3237      T2 : constant Entity_Id := Available_View (Typ_2);
3238      B1 : constant Entity_Id := Base_Type (T1);
3239      B2 : constant Entity_Id := Base_Type (T2);
3240
3241      function Is_Remote_Access (T : Entity_Id) return Boolean;
3242      --  Check whether T is the equivalent type of a remote access type.
3243      --  If distribution is enabled, T is a legal context for Null.
3244
3245      ----------------------
3246      -- Is_Remote_Access --
3247      ----------------------
3248
3249      function Is_Remote_Access (T : Entity_Id) return Boolean is
3250      begin
3251         return Is_Record_Type (T)
3252           and then (Is_Remote_Call_Interface (T)
3253                      or else Is_Remote_Types (T))
3254           and then Present (Corresponding_Remote_Type (T))
3255           and then Is_Access_Type (Corresponding_Remote_Type (T));
3256      end Is_Remote_Access;
3257
3258   --  Start of processing for Specific_Type
3259
3260   begin
3261      if T1 = Any_Type or else T2 = Any_Type then
3262         return Any_Type;
3263      end if;
3264
3265      if B1 = B2 then
3266         return B1;
3267
3268      elsif     (T1 = Universal_Integer and then Is_Integer_Type (T2))
3269        or else (T1 = Universal_Real    and then Is_Real_Type (T2))
3270        or else (T1 = Universal_Fixed   and then Is_Fixed_Point_Type (T2))
3271        or else (T1 = Any_Fixed         and then Is_Fixed_Point_Type (T2))
3272      then
3273         return B2;
3274
3275      elsif     (T2 = Universal_Integer and then Is_Integer_Type (T1))
3276        or else (T2 = Universal_Real    and then Is_Real_Type (T1))
3277        or else (T2 = Universal_Fixed   and then Is_Fixed_Point_Type (T1))
3278        or else (T2 = Any_Fixed         and then Is_Fixed_Point_Type (T1))
3279      then
3280         return B1;
3281
3282      elsif T2 = Any_String and then Is_String_Type (T1) then
3283         return B1;
3284
3285      elsif T1 = Any_String and then Is_String_Type (T2) then
3286         return B2;
3287
3288      elsif T2 = Any_Character and then Is_Character_Type (T1) then
3289         return B1;
3290
3291      elsif T1 = Any_Character and then Is_Character_Type (T2) then
3292         return B2;
3293
3294      elsif T1 = Any_Access
3295        and then (Is_Access_Type (T2) or else Is_Remote_Access (T2))
3296      then
3297         return T2;
3298
3299      elsif T2 = Any_Access
3300        and then (Is_Access_Type (T1) or else Is_Remote_Access (T1))
3301      then
3302         return T1;
3303
3304      --  In an instance, the specific type may have a private view. Use full
3305      --  view to check legality.
3306
3307      elsif T2 = Any_Access
3308        and then Is_Private_Type (T1)
3309        and then Present (Full_View (T1))
3310        and then Is_Access_Type (Full_View (T1))
3311        and then In_Instance
3312      then
3313         return T1;
3314
3315      elsif T2 = Any_Composite and then Is_Aggregate_Type (T1) then
3316         return T1;
3317
3318      elsif T1 = Any_Composite and then Is_Aggregate_Type (T2) then
3319         return T2;
3320
3321      elsif T1 = Any_Modular and then Is_Modular_Integer_Type (T2) then
3322         return T2;
3323
3324      elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
3325         return T1;
3326
3327      --  ----------------------------------------------------------
3328      --  Special cases for equality operators (all other predefined
3329      --  operators can never apply to tagged types)
3330      --  ----------------------------------------------------------
3331
3332      --  Ada 2005 (AI-251): T1 and T2 are class-wide types, and T2 is an
3333      --  interface
3334
3335      elsif Is_Class_Wide_Type (T1)
3336        and then Is_Class_Wide_Type (T2)
3337        and then Is_Interface (Etype (T2))
3338      then
3339         return T1;
3340
3341      --  Ada 2005 (AI-251): T1 is a concrete type that implements the
3342      --  class-wide interface T2
3343
3344      elsif Is_Class_Wide_Type (T2)
3345        and then Is_Interface (Etype (T2))
3346        and then Interface_Present_In_Ancestor (Typ   => T1,
3347                                                Iface => Etype (T2))
3348      then
3349         return T1;
3350
3351      elsif Is_Class_Wide_Type (T1)
3352        and then Is_Ancestor (Root_Type (T1), T2)
3353      then
3354         return T1;
3355
3356      elsif Is_Class_Wide_Type (T2)
3357        and then Is_Ancestor (Root_Type (T2), T1)
3358      then
3359         return T2;
3360
3361      elsif Ekind_In (B1, E_Access_Subprogram_Type,
3362                          E_Access_Protected_Subprogram_Type)
3363        and then Ekind (Designated_Type (B1)) /= E_Subprogram_Type
3364        and then Is_Access_Type (T2)
3365      then
3366         return T2;
3367
3368      elsif Ekind_In (B2, E_Access_Subprogram_Type,
3369                          E_Access_Protected_Subprogram_Type)
3370        and then Ekind (Designated_Type (B2)) /= E_Subprogram_Type
3371        and then Is_Access_Type (T1)
3372      then
3373         return T1;
3374
3375      elsif Ekind_In (T1, E_Allocator_Type,
3376                          E_Access_Attribute_Type,
3377                          E_Anonymous_Access_Type)
3378        and then Is_Access_Type (T2)
3379      then
3380         return T2;
3381
3382      elsif Ekind_In (T2, E_Allocator_Type,
3383                          E_Access_Attribute_Type,
3384                          E_Anonymous_Access_Type)
3385        and then Is_Access_Type (T1)
3386      then
3387         return T1;
3388
3389      --  If none of the above cases applies, types are not compatible
3390
3391      else
3392         return Any_Type;
3393      end if;
3394   end Specific_Type;
3395
3396   ---------------------
3397   -- Set_Abstract_Op --
3398   ---------------------
3399
3400   procedure Set_Abstract_Op (I : Interp_Index; V : Entity_Id) is
3401   begin
3402      All_Interp.Table (I).Abstract_Op := V;
3403   end Set_Abstract_Op;
3404
3405   -----------------------
3406   -- Valid_Boolean_Arg --
3407   -----------------------
3408
3409   --  In addition to booleans and arrays of booleans, we must include
3410   --  aggregates as valid boolean arguments, because in the first pass of
3411   --  resolution their components are not examined. If it turns out not to be
3412   --  an aggregate of booleans, this will be diagnosed in Resolve.
3413   --  Any_Composite must be checked for prior to the array type checks because
3414   --  Any_Composite does not have any associated indexes.
3415
3416   function Valid_Boolean_Arg (T : Entity_Id) return Boolean is
3417   begin
3418      if Is_Boolean_Type (T)
3419        or else Is_Modular_Integer_Type (T)
3420        or else T = Universal_Integer
3421        or else T = Any_Composite
3422      then
3423         return True;
3424
3425      elsif Is_Array_Type (T)
3426        and then T /= Any_String
3427        and then Number_Dimensions (T) = 1
3428        and then Is_Boolean_Type (Component_Type (T))
3429        and then
3430         ((not Is_Private_Composite (T) and then not Is_Limited_Composite (T))
3431           or else In_Instance
3432           or else Available_Full_View_Of_Component (T))
3433      then
3434         return True;
3435
3436      else
3437         return False;
3438      end if;
3439   end Valid_Boolean_Arg;
3440
3441   --------------------------
3442   -- Valid_Comparison_Arg --
3443   --------------------------
3444
3445   function Valid_Comparison_Arg (T : Entity_Id) return Boolean is
3446   begin
3447
3448      if T = Any_Composite then
3449         return False;
3450
3451      elsif Is_Discrete_Type (T)
3452        or else Is_Real_Type (T)
3453      then
3454         return True;
3455
3456      elsif Is_Array_Type (T)
3457          and then Number_Dimensions (T) = 1
3458          and then Is_Discrete_Type (Component_Type (T))
3459          and then (not Is_Private_Composite (T) or else In_Instance)
3460          and then (not Is_Limited_Composite (T) or else In_Instance)
3461      then
3462         return True;
3463
3464      elsif Is_Array_Type (T)
3465        and then Number_Dimensions (T) = 1
3466        and then Is_Discrete_Type (Component_Type (T))
3467        and then Available_Full_View_Of_Component (T)
3468      then
3469         return True;
3470
3471      elsif Is_String_Type (T) then
3472         return True;
3473      else
3474         return False;
3475      end if;
3476   end Valid_Comparison_Arg;
3477
3478   ------------------
3479   -- Write_Interp --
3480   ------------------
3481
3482   procedure Write_Interp (It : Interp) is
3483   begin
3484      Write_Str ("Nam: ");
3485      Print_Tree_Node (It.Nam);
3486      Write_Str ("Typ: ");
3487      Print_Tree_Node (It.Typ);
3488      Write_Str ("Abstract_Op: ");
3489      Print_Tree_Node (It.Abstract_Op);
3490   end Write_Interp;
3491
3492   ----------------------
3493   -- Write_Interp_Ref --
3494   ----------------------
3495
3496   procedure Write_Interp_Ref (Map_Ptr : Int) is
3497   begin
3498      Write_Str (" Node:  ");
3499      Write_Int (Int (Interp_Map.Table (Map_Ptr).Node));
3500      Write_Str (" Index: ");
3501      Write_Int (Int (Interp_Map.Table (Map_Ptr).Index));
3502      Write_Str (" Next:  ");
3503      Write_Int (Interp_Map.Table (Map_Ptr).Next);
3504      Write_Eol;
3505   end Write_Interp_Ref;
3506
3507   ---------------------
3508   -- Write_Overloads --
3509   ---------------------
3510
3511   procedure Write_Overloads (N : Node_Id) is
3512      I   : Interp_Index;
3513      It  : Interp;
3514      Nam : Entity_Id;
3515
3516   begin
3517      Write_Str ("Overloads: ");
3518      Print_Node_Briefly (N);
3519
3520      if not Is_Overloaded (N) then
3521         Write_Line ("Non-overloaded entity ");
3522         Write_Entity_Info (Entity (N), " ");
3523
3524      elsif Nkind (N) not in N_Has_Entity then
3525         Get_First_Interp (N, I, It);
3526         while Present (It.Nam) loop
3527            Write_Int (Int (It.Typ));
3528            Write_Str ("   ");
3529            Write_Name (Chars (It.Typ));
3530            Write_Eol;
3531            Get_Next_Interp (I, It);
3532         end loop;
3533
3534      else
3535         Get_First_Interp (N, I, It);
3536         Write_Line ("Overloaded entity ");
3537         Write_Line ("      Name           Type           Abstract Op");
3538         Write_Line ("===============================================");
3539         Nam := It.Nam;
3540
3541         while Present (Nam) loop
3542            Write_Int (Int (Nam));
3543            Write_Str ("   ");
3544            Write_Name (Chars (Nam));
3545            Write_Str ("   ");
3546            Write_Int (Int (It.Typ));
3547            Write_Str ("   ");
3548            Write_Name (Chars (It.Typ));
3549
3550            if Present (It.Abstract_Op) then
3551               Write_Str ("   ");
3552               Write_Int (Int (It.Abstract_Op));
3553               Write_Str ("   ");
3554               Write_Name (Chars (It.Abstract_Op));
3555            end if;
3556
3557            Write_Eol;
3558            Get_Next_Interp (I, It);
3559            Nam := It.Nam;
3560         end loop;
3561      end if;
3562   end Write_Overloads;
3563
3564end Sem_Type;
3565