1 /* Loop manipulation code for GNU compiler.
2    Copyright (C) 2002-2016 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34 
35 static void copy_loops_to (struct loop **, int,
36 			   struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
44 
45 /* Checks whether basic block BB is dominated by DATA.  */
46 static bool
rpe_enum_p(const_basic_block bb,const void * data)47 rpe_enum_p (const_basic_block bb, const void *data)
48 {
49   return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
50 }
51 
52 /* Remove basic blocks BBS.  NBBS is the number of the basic blocks.  */
53 
54 static void
remove_bbs(basic_block * bbs,int nbbs)55 remove_bbs (basic_block *bbs, int nbbs)
56 {
57   int i;
58 
59   for (i = 0; i < nbbs; i++)
60     delete_basic_block (bbs[i]);
61 }
62 
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64    into array BBS, that will be allocated large enough to contain them.
65    E->dest must have exactly one predecessor for this to work (it is
66    easy to achieve and we do not put it here because we do not want to
67    alter anything by this function).  The number of basic blocks in the
68    path is returned.  */
69 static int
find_path(edge e,basic_block ** bbs)70 find_path (edge e, basic_block **bbs)
71 {
72   gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73 
74   /* Find bbs in the path.  */
75   *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76   return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 			     n_basic_blocks_for_fn (cfun), e->dest);
78 }
79 
80 /* Fix placement of basic block BB inside loop hierarchy --
81    Let L be a loop to that BB belongs.  Then every successor of BB must either
82      1) belong to some superloop of loop L, or
83      2) be a header of loop K such that K->outer is superloop of L
84    Returns true if we had to move BB into other loop to enforce this condition,
85    false if the placement of BB was already correct (provided that placements
86    of its successors are correct).  */
87 static bool
fix_bb_placement(basic_block bb)88 fix_bb_placement (basic_block bb)
89 {
90   edge e;
91   edge_iterator ei;
92   struct loop *loop = current_loops->tree_root, *act;
93 
94   FOR_EACH_EDGE (e, ei, bb->succs)
95     {
96       if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 	continue;
98 
99       act = e->dest->loop_father;
100       if (act->header == e->dest)
101 	act = loop_outer (act);
102 
103       if (flow_loop_nested_p (loop, act))
104 	loop = act;
105     }
106 
107   if (loop == bb->loop_father)
108     return false;
109 
110   remove_bb_from_loops (bb);
111   add_bb_to_loop (bb, loop);
112 
113   return true;
114 }
115 
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117    of LOOP to that leads at least one exit edge of LOOP, and set it
118    as the immediate superloop of LOOP.  Return true if the immediate superloop
119    of LOOP changed.
120 
121    IRRED_INVALIDATED is set to true if a change in the loop structures might
122    invalidate the information about irreducible regions.  */
123 
124 static bool
fix_loop_placement(struct loop * loop,bool * irred_invalidated)125 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
126 {
127   unsigned i;
128   edge e;
129   vec<edge> exits = get_loop_exit_edges (loop);
130   struct loop *father = current_loops->tree_root, *act;
131   bool ret = false;
132 
133   FOR_EACH_VEC_ELT (exits, i, e)
134     {
135       act = find_common_loop (loop, e->dest->loop_father);
136       if (flow_loop_nested_p (father, act))
137 	father = act;
138     }
139 
140   if (father != loop_outer (loop))
141     {
142       for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 	act->num_nodes -= loop->num_nodes;
144       flow_loop_tree_node_remove (loop);
145       flow_loop_tree_node_add (father, loop);
146 
147       /* The exit edges of LOOP no longer exits its original immediate
148 	 superloops; remove them from the appropriate exit lists.  */
149       FOR_EACH_VEC_ELT (exits, i, e)
150 	{
151 	  /* We may need to recompute irreducible loops.  */
152 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 	    *irred_invalidated = true;
154 	  rescan_loop_exit (e, false, false);
155 	}
156 
157       ret = true;
158     }
159 
160   exits.release ();
161   return ret;
162 }
163 
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165    enforce condition stated in description of fix_bb_placement. We
166    start from basic block FROM that had some of its successors removed, so that
167    his placement no longer has to be correct, and iteratively fix placement of
168    its predecessors that may change if placement of FROM changed.  Also fix
169    placement of subloops of FROM->loop_father, that might also be altered due
170    to this change; the condition for them is similar, except that instead of
171    successors we consider edges coming out of the loops.
172 
173    If the changes may invalidate the information about irreducible regions,
174    IRRED_INVALIDATED is set to true.
175 
176    If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177    changed loop_father are collected there. */
178 
179 static void
fix_bb_placements(basic_block from,bool * irred_invalidated,bitmap loop_closed_ssa_invalidated)180 fix_bb_placements (basic_block from,
181 		   bool *irred_invalidated,
182 		   bitmap loop_closed_ssa_invalidated)
183 {
184   sbitmap in_queue;
185   basic_block *queue, *qtop, *qbeg, *qend;
186   struct loop *base_loop, *target_loop;
187   edge e;
188 
189   /* We pass through blocks back-reachable from FROM, testing whether some
190      of their successors moved to outer loop.  It may be necessary to
191      iterate several times, but it is finite, as we stop unless we move
192      the basic block up the loop structure.  The whole story is a bit
193      more complicated due to presence of subloops, those are moved using
194      fix_loop_placement.  */
195 
196   base_loop = from->loop_father;
197   /* If we are already in the outermost loop, the basic blocks cannot be moved
198      outside of it.  If FROM is the header of the base loop, it cannot be moved
199      outside of it, either.  In both cases, we can end now.  */
200   if (base_loop == current_loops->tree_root
201       || from == base_loop->header)
202     return;
203 
204   in_queue = sbitmap_alloc (last_basic_block_for_fn (cfun));
205   bitmap_clear (in_queue);
206   bitmap_set_bit (in_queue, from->index);
207   /* Prevent us from going out of the base_loop.  */
208   bitmap_set_bit (in_queue, base_loop->header->index);
209 
210   queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
211   qtop = queue + base_loop->num_nodes + 1;
212   qbeg = queue;
213   qend = queue + 1;
214   *qbeg = from;
215 
216   while (qbeg != qend)
217     {
218       edge_iterator ei;
219       from = *qbeg;
220       qbeg++;
221       if (qbeg == qtop)
222 	qbeg = queue;
223       bitmap_clear_bit (in_queue, from->index);
224 
225       if (from->loop_father->header == from)
226 	{
227 	  /* Subloop header, maybe move the loop upward.  */
228 	  if (!fix_loop_placement (from->loop_father, irred_invalidated))
229 	    continue;
230 	  target_loop = loop_outer (from->loop_father);
231 	  if (loop_closed_ssa_invalidated)
232 	    {
233 	      basic_block *bbs = get_loop_body (from->loop_father);
234 	      for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
235 		bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
236 	      free (bbs);
237 	    }
238 	}
239       else
240 	{
241 	  /* Ordinary basic block.  */
242 	  if (!fix_bb_placement (from))
243 	    continue;
244 	  target_loop = from->loop_father;
245 	  if (loop_closed_ssa_invalidated)
246 	    bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
247 	}
248 
249       FOR_EACH_EDGE (e, ei, from->succs)
250 	{
251 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
252 	    *irred_invalidated = true;
253 	}
254 
255       /* Something has changed, insert predecessors into queue.  */
256       FOR_EACH_EDGE (e, ei, from->preds)
257 	{
258 	  basic_block pred = e->src;
259 	  struct loop *nca;
260 
261 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
262 	    *irred_invalidated = true;
263 
264 	  if (bitmap_bit_p (in_queue, pred->index))
265 	    continue;
266 
267 	  /* If it is subloop, then it either was not moved, or
268 	     the path up the loop tree from base_loop do not contain
269 	     it.  */
270 	  nca = find_common_loop (pred->loop_father, base_loop);
271 	  if (pred->loop_father != base_loop
272 	      && (nca == base_loop
273 		  || nca != pred->loop_father))
274 	    pred = pred->loop_father->header;
275 	  else if (!flow_loop_nested_p (target_loop, pred->loop_father))
276 	    {
277 	      /* If PRED is already higher in the loop hierarchy than the
278 		 TARGET_LOOP to that we moved FROM, the change of the position
279 		 of FROM does not affect the position of PRED, so there is no
280 		 point in processing it.  */
281 	      continue;
282 	    }
283 
284 	  if (bitmap_bit_p (in_queue, pred->index))
285 	    continue;
286 
287 	  /* Schedule the basic block.  */
288 	  *qend = pred;
289 	  qend++;
290 	  if (qend == qtop)
291 	    qend = queue;
292 	  bitmap_set_bit (in_queue, pred->index);
293 	}
294     }
295   free (in_queue);
296   free (queue);
297 }
298 
299 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
300    and update loop structures and dominators.  Return true if we were able
301    to remove the path, false otherwise (and nothing is affected then).  */
302 bool
remove_path(edge e)303 remove_path (edge e)
304 {
305   edge ae;
306   basic_block *rem_bbs, *bord_bbs, from, bb;
307   vec<basic_block> dom_bbs;
308   int i, nrem, n_bord_bbs;
309   sbitmap seen;
310   bool irred_invalidated = false;
311   edge_iterator ei;
312   struct loop *l, *f;
313 
314   if (!can_remove_branch_p (e))
315     return false;
316 
317   /* Keep track of whether we need to update information about irreducible
318      regions.  This is the case if the removed area is a part of the
319      irreducible region, or if the set of basic blocks that belong to a loop
320      that is inside an irreducible region is changed, or if such a loop is
321      removed.  */
322   if (e->flags & EDGE_IRREDUCIBLE_LOOP)
323     irred_invalidated = true;
324 
325   /* We need to check whether basic blocks are dominated by the edge
326      e, but we only have basic block dominators.  This is easy to
327      fix -- when e->dest has exactly one predecessor, this corresponds
328      to blocks dominated by e->dest, if not, split the edge.  */
329   if (!single_pred_p (e->dest))
330     e = single_pred_edge (split_edge (e));
331 
332   /* It may happen that by removing path we remove one or more loops
333      we belong to.  In this case first unloop the loops, then proceed
334      normally.   We may assume that e->dest is not a header of any loop,
335      as it now has exactly one predecessor.  */
336   for (l = e->src->loop_father; loop_outer (l); l = f)
337     {
338       f = loop_outer (l);
339       if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
340         unloop (l, &irred_invalidated, NULL);
341     }
342 
343   /* Identify the path.  */
344   nrem = find_path (e, &rem_bbs);
345 
346   n_bord_bbs = 0;
347   bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
348   seen = sbitmap_alloc (last_basic_block_for_fn (cfun));
349   bitmap_clear (seen);
350 
351   /* Find "border" hexes -- i.e. those with predecessor in removed path.  */
352   for (i = 0; i < nrem; i++)
353     bitmap_set_bit (seen, rem_bbs[i]->index);
354   if (!irred_invalidated)
355     FOR_EACH_EDGE (ae, ei, e->src->succs)
356       if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
357 	  && !bitmap_bit_p (seen, ae->dest->index)
358 	  && ae->flags & EDGE_IRREDUCIBLE_LOOP)
359 	{
360 	  irred_invalidated = true;
361 	  break;
362 	}
363 
364   for (i = 0; i < nrem; i++)
365     {
366       bb = rem_bbs[i];
367       FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
368 	if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
369 	    && !bitmap_bit_p (seen, ae->dest->index))
370 	  {
371 	    bitmap_set_bit (seen, ae->dest->index);
372 	    bord_bbs[n_bord_bbs++] = ae->dest;
373 
374 	    if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
375 	      irred_invalidated = true;
376 	  }
377     }
378 
379   /* Remove the path.  */
380   from = e->src;
381   remove_branch (e);
382   dom_bbs.create (0);
383 
384   /* Cancel loops contained in the path.  */
385   for (i = 0; i < nrem; i++)
386     if (rem_bbs[i]->loop_father->header == rem_bbs[i])
387       cancel_loop_tree (rem_bbs[i]->loop_father);
388 
389   remove_bbs (rem_bbs, nrem);
390   free (rem_bbs);
391 
392   /* Find blocks whose dominators may be affected.  */
393   bitmap_clear (seen);
394   for (i = 0; i < n_bord_bbs; i++)
395     {
396       basic_block ldom;
397 
398       bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
399       if (bitmap_bit_p (seen, bb->index))
400 	continue;
401       bitmap_set_bit (seen, bb->index);
402 
403       for (ldom = first_dom_son (CDI_DOMINATORS, bb);
404 	   ldom;
405 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
406 	if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
407 	  dom_bbs.safe_push (ldom);
408     }
409 
410   free (seen);
411 
412   /* Recount dominators.  */
413   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
414   dom_bbs.release ();
415   free (bord_bbs);
416 
417   /* Fix placements of basic blocks inside loops and the placement of
418      loops in the loop tree.  */
419   fix_bb_placements (from, &irred_invalidated, NULL);
420   fix_loop_placements (from->loop_father, &irred_invalidated);
421 
422   if (irred_invalidated
423       && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
424     mark_irreducible_loops ();
425 
426   return true;
427 }
428 
429 /* Creates place for a new LOOP in loops structure of FN.  */
430 
431 void
place_new_loop(struct function * fn,struct loop * loop)432 place_new_loop (struct function *fn, struct loop *loop)
433 {
434   loop->num = number_of_loops (fn);
435   vec_safe_push (loops_for_fn (fn)->larray, loop);
436 }
437 
438 /* Given LOOP structure with filled header and latch, find the body of the
439    corresponding loop and add it to loops tree.  Insert the LOOP as a son of
440    outer.  */
441 
442 void
add_loop(struct loop * loop,struct loop * outer)443 add_loop (struct loop *loop, struct loop *outer)
444 {
445   basic_block *bbs;
446   int i, n;
447   struct loop *subloop;
448   edge e;
449   edge_iterator ei;
450 
451   /* Add it to loop structure.  */
452   place_new_loop (cfun, loop);
453   flow_loop_tree_node_add (outer, loop);
454 
455   /* Find its nodes.  */
456   bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
457   n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
458 
459   for (i = 0; i < n; i++)
460     {
461       if (bbs[i]->loop_father == outer)
462 	{
463 	  remove_bb_from_loops (bbs[i]);
464 	  add_bb_to_loop (bbs[i], loop);
465 	  continue;
466 	}
467 
468       loop->num_nodes++;
469 
470       /* If we find a direct subloop of OUTER, move it to LOOP.  */
471       subloop = bbs[i]->loop_father;
472       if (loop_outer (subloop) == outer
473 	  && subloop->header == bbs[i])
474 	{
475 	  flow_loop_tree_node_remove (subloop);
476 	  flow_loop_tree_node_add (loop, subloop);
477 	}
478     }
479 
480   /* Update the information about loop exit edges.  */
481   for (i = 0; i < n; i++)
482     {
483       FOR_EACH_EDGE (e, ei, bbs[i]->succs)
484 	{
485 	  rescan_loop_exit (e, false, false);
486 	}
487     }
488 
489   free (bbs);
490 }
491 
492 /* Multiply all frequencies in LOOP by NUM/DEN.  */
493 
494 void
scale_loop_frequencies(struct loop * loop,int num,int den)495 scale_loop_frequencies (struct loop *loop, int num, int den)
496 {
497   basic_block *bbs;
498 
499   bbs = get_loop_body (loop);
500   scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
501   free (bbs);
502 }
503 
504 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
505    If ITERATION_BOUND is non-zero, scale even further if loop is predicted
506    to iterate too many times.  */
507 
508 void
scale_loop_profile(struct loop * loop,int scale,gcov_type iteration_bound)509 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound)
510 {
511   gcov_type iterations = expected_loop_iterations_unbounded (loop);
512   edge e;
513   edge_iterator ei;
514 
515   if (dump_file && (dump_flags & TDF_DETAILS))
516     fprintf (dump_file, ";; Scaling loop %i with scale %f, "
517 	     "bounding iterations to %i from guessed %i\n",
518 	     loop->num, (double)scale / REG_BR_PROB_BASE,
519 	     (int)iteration_bound, (int)iterations);
520 
521   /* See if loop is predicted to iterate too many times.  */
522   if (iteration_bound && iterations > 0
523       && apply_probability (iterations, scale) > iteration_bound)
524     {
525       /* Fixing loop profile for different trip count is not trivial; the exit
526 	 probabilities has to be updated to match and frequencies propagated down
527 	 to the loop body.
528 
529 	 We fully update only the simple case of loop with single exit that is
530 	 either from the latch or BB just before latch and leads from BB with
531 	 simple conditional jump.   This is OK for use in vectorizer.  */
532       e = single_exit (loop);
533       if (e)
534 	{
535 	  edge other_e;
536 	  int freq_delta;
537 	  gcov_type count_delta;
538 
539           FOR_EACH_EDGE (other_e, ei, e->src->succs)
540 	    if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
541 		&& e != other_e)
542 	      break;
543 
544 	  /* Probability of exit must be 1/iterations.  */
545 	  freq_delta = EDGE_FREQUENCY (e);
546 	  e->probability = REG_BR_PROB_BASE / iteration_bound;
547 	  other_e->probability = inverse_probability (e->probability);
548 	  freq_delta -= EDGE_FREQUENCY (e);
549 
550 	  /* Adjust counts accordingly.  */
551 	  count_delta = e->count;
552 	  e->count = apply_probability (e->src->count, e->probability);
553 	  other_e->count = apply_probability (e->src->count, other_e->probability);
554 	  count_delta -= e->count;
555 
556 	  /* If latch exists, change its frequency and count, since we changed
557 	     probability of exit.  Theoretically we should update everything from
558 	     source of exit edge to latch, but for vectorizer this is enough.  */
559 	  if (loop->latch
560 	      && loop->latch != e->src)
561 	    {
562 	      loop->latch->frequency += freq_delta;
563 	      if (loop->latch->frequency < 0)
564 		loop->latch->frequency = 0;
565 	      loop->latch->count += count_delta;
566 	      if (loop->latch->count < 0)
567 		loop->latch->count = 0;
568 	    }
569 	}
570 
571       /* Roughly speaking we want to reduce the loop body profile by the
572 	 difference of loop iterations.  We however can do better if
573 	 we look at the actual profile, if it is available.  */
574       scale = RDIV (iteration_bound * scale, iterations);
575       if (loop->header->count)
576 	{
577 	  gcov_type count_in = 0;
578 
579 	  FOR_EACH_EDGE (e, ei, loop->header->preds)
580 	    if (e->src != loop->latch)
581 	      count_in += e->count;
582 
583 	  if (count_in != 0)
584 	    scale = GCOV_COMPUTE_SCALE (count_in * iteration_bound,
585                                         loop->header->count);
586 	}
587       else if (loop->header->frequency)
588 	{
589 	  int freq_in = 0;
590 
591 	  FOR_EACH_EDGE (e, ei, loop->header->preds)
592 	    if (e->src != loop->latch)
593 	      freq_in += EDGE_FREQUENCY (e);
594 
595 	  if (freq_in != 0)
596 	    scale = GCOV_COMPUTE_SCALE (freq_in * iteration_bound,
597                                         loop->header->frequency);
598 	}
599       if (!scale)
600 	scale = 1;
601     }
602 
603   if (scale == REG_BR_PROB_BASE)
604     return;
605 
606   /* Scale the actual probabilities.  */
607   scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
608   if (dump_file && (dump_flags & TDF_DETAILS))
609     fprintf (dump_file, ";; guessed iterations are now %i\n",
610 	     (int)expected_loop_iterations_unbounded (loop));
611 }
612 
613 /* Recompute dominance information for basic blocks outside LOOP.  */
614 
615 static void
update_dominators_in_loop(struct loop * loop)616 update_dominators_in_loop (struct loop *loop)
617 {
618   vec<basic_block> dom_bbs = vNULL;
619   sbitmap seen;
620   basic_block *body;
621   unsigned i;
622 
623   seen = sbitmap_alloc (last_basic_block_for_fn (cfun));
624   bitmap_clear (seen);
625   body = get_loop_body (loop);
626 
627   for (i = 0; i < loop->num_nodes; i++)
628     bitmap_set_bit (seen, body[i]->index);
629 
630   for (i = 0; i < loop->num_nodes; i++)
631     {
632       basic_block ldom;
633 
634       for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
635 	   ldom;
636 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
637 	if (!bitmap_bit_p (seen, ldom->index))
638 	  {
639 	    bitmap_set_bit (seen, ldom->index);
640 	    dom_bbs.safe_push (ldom);
641 	  }
642     }
643 
644   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
645   free (body);
646   free (seen);
647   dom_bbs.release ();
648 }
649 
650 /* Creates an if region as shown above. CONDITION is used to create
651    the test for the if.
652 
653    |
654    |     -------------                 -------------
655    |     |  pred_bb  |                 |  pred_bb  |
656    |     -------------                 -------------
657    |           |                             |
658    |           |                             | ENTRY_EDGE
659    |           | ENTRY_EDGE                  V
660    |           |             ====>     -------------
661    |           |                       |  cond_bb  |
662    |           |                       | CONDITION |
663    |           |                       -------------
664    |           V                        /         \
665    |     -------------         e_false /           \ e_true
666    |     |  succ_bb  |                V             V
667    |     -------------         -----------       -----------
668    |                           | false_bb |      | true_bb |
669    |                           -----------       -----------
670    |                                   \           /
671    |                                    \         /
672    |                                     V       V
673    |                                   -------------
674    |                                   |  join_bb  |
675    |                                   -------------
676    |                                         | exit_edge (result)
677    |                                         V
678    |                                    -----------
679    |                                    | succ_bb |
680    |                                    -----------
681    |
682  */
683 
684 edge
create_empty_if_region_on_edge(edge entry_edge,tree condition)685 create_empty_if_region_on_edge (edge entry_edge, tree condition)
686 {
687 
688   basic_block cond_bb, true_bb, false_bb, join_bb;
689   edge e_true, e_false, exit_edge;
690   gcond *cond_stmt;
691   tree simple_cond;
692   gimple_stmt_iterator gsi;
693 
694   cond_bb = split_edge (entry_edge);
695 
696   /* Insert condition in cond_bb.  */
697   gsi = gsi_last_bb (cond_bb);
698   simple_cond =
699     force_gimple_operand_gsi (&gsi, condition, true, NULL,
700 			      false, GSI_NEW_STMT);
701   cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
702   gsi = gsi_last_bb (cond_bb);
703   gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
704 
705   join_bb = split_edge (single_succ_edge (cond_bb));
706 
707   e_true = single_succ_edge (cond_bb);
708   true_bb = split_edge (e_true);
709 
710   e_false = make_edge (cond_bb, join_bb, 0);
711   false_bb = split_edge (e_false);
712 
713   e_true->flags &= ~EDGE_FALLTHRU;
714   e_true->flags |= EDGE_TRUE_VALUE;
715   e_false->flags &= ~EDGE_FALLTHRU;
716   e_false->flags |= EDGE_FALSE_VALUE;
717 
718   set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
719   set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
720   set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
721   set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
722 
723   exit_edge = single_succ_edge (join_bb);
724 
725   if (single_pred_p (exit_edge->dest))
726     set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
727 
728   return exit_edge;
729 }
730 
731 /* create_empty_loop_on_edge
732    |
733    |    - pred_bb -                   ------ pred_bb ------
734    |   |           |                 | iv0 = initial_value |
735    |    -----|-----                   ---------|-----------
736    |         |                       ______    | entry_edge
737    |         | entry_edge           /      |   |
738    |         |             ====>   |      -V---V- loop_header -------------
739    |         V                     |     | iv_before = phi (iv0, iv_after) |
740    |    - succ_bb -                |      ---|-----------------------------
741    |   |           |               |         |
742    |    -----------                |      ---V--- loop_body ---------------
743    |                               |     | iv_after = iv_before + stride   |
744    |                               |     | if (iv_before < upper_bound)    |
745    |                               |      ---|--------------\--------------
746    |                               |         |               \ exit_e
747    |                               |         V                \
748    |                               |       - loop_latch -      V- succ_bb -
749    |                               |      |              |     |           |
750    |                               |       /-------------       -----------
751    |                                \ ___ /
752 
753    Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
754    that is used before the increment of IV. IV_BEFORE should be used for
755    adding code to the body that uses the IV.  OUTER is the outer loop in
756    which the new loop should be inserted.
757 
758    Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
759    inserted on the loop entry edge.  This implies that this function
760    should be used only when the UPPER_BOUND expression is a loop
761    invariant.  */
762 
763 struct loop *
create_empty_loop_on_edge(edge entry_edge,tree initial_value,tree stride,tree upper_bound,tree iv,tree * iv_before,tree * iv_after,struct loop * outer)764 create_empty_loop_on_edge (edge entry_edge,
765 			   tree initial_value,
766 			   tree stride, tree upper_bound,
767 			   tree iv,
768 			   tree *iv_before,
769 			   tree *iv_after,
770 			   struct loop *outer)
771 {
772   basic_block loop_header, loop_latch, succ_bb, pred_bb;
773   struct loop *loop;
774   gimple_stmt_iterator gsi;
775   gimple_seq stmts;
776   gcond *cond_expr;
777   tree exit_test;
778   edge exit_e;
779   int prob;
780 
781   gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
782 
783   /* Create header, latch and wire up the loop.  */
784   pred_bb = entry_edge->src;
785   loop_header = split_edge (entry_edge);
786   loop_latch = split_edge (single_succ_edge (loop_header));
787   succ_bb = single_succ (loop_latch);
788   make_edge (loop_header, succ_bb, 0);
789   redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
790 
791   /* Set immediate dominator information.  */
792   set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
793   set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
794   set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
795 
796   /* Initialize a loop structure and put it in a loop hierarchy.  */
797   loop = alloc_loop ();
798   loop->header = loop_header;
799   loop->latch = loop_latch;
800   add_loop (loop, outer);
801 
802   /* TODO: Fix frequencies and counts.  */
803   prob = REG_BR_PROB_BASE / 2;
804 
805   scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
806 
807   /* Update dominators.  */
808   update_dominators_in_loop (loop);
809 
810   /* Modify edge flags.  */
811   exit_e = single_exit (loop);
812   exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
813   single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
814 
815   /* Construct IV code in loop.  */
816   initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
817   if (stmts)
818     {
819       gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
820       gsi_commit_edge_inserts ();
821     }
822 
823   upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
824   if (stmts)
825     {
826       gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
827       gsi_commit_edge_inserts ();
828     }
829 
830   gsi = gsi_last_bb (loop_header);
831   create_iv (initial_value, stride, iv, loop, &gsi, false,
832 	     iv_before, iv_after);
833 
834   /* Insert loop exit condition.  */
835   cond_expr = gimple_build_cond
836     (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
837 
838   exit_test = gimple_cond_lhs (cond_expr);
839   exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
840 					false, GSI_NEW_STMT);
841   gimple_cond_set_lhs (cond_expr, exit_test);
842   gsi = gsi_last_bb (exit_e->src);
843   gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
844 
845   split_block_after_labels (loop_header);
846 
847   return loop;
848 }
849 
850 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
851    latch to header and update loop tree and dominators
852    accordingly. Everything between them plus LATCH_EDGE destination must
853    be dominated by HEADER_EDGE destination, and back-reachable from
854    LATCH_EDGE source.  HEADER_EDGE is redirected to basic block SWITCH_BB,
855    FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
856    TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
857    Returns the newly created loop.  Frequencies and counts in the new loop
858    are scaled by FALSE_SCALE and in the old one by TRUE_SCALE.  */
859 
860 struct loop *
loopify(edge latch_edge,edge header_edge,basic_block switch_bb,edge true_edge,edge false_edge,bool redirect_all_edges,unsigned true_scale,unsigned false_scale)861 loopify (edge latch_edge, edge header_edge,
862 	 basic_block switch_bb, edge true_edge, edge false_edge,
863 	 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
864 {
865   basic_block succ_bb = latch_edge->dest;
866   basic_block pred_bb = header_edge->src;
867   struct loop *loop = alloc_loop ();
868   struct loop *outer = loop_outer (succ_bb->loop_father);
869   int freq;
870   gcov_type cnt;
871   edge e;
872   edge_iterator ei;
873 
874   loop->header = header_edge->dest;
875   loop->latch = latch_edge->src;
876 
877   freq = EDGE_FREQUENCY (header_edge);
878   cnt = header_edge->count;
879 
880   /* Redirect edges.  */
881   loop_redirect_edge (latch_edge, loop->header);
882   loop_redirect_edge (true_edge, succ_bb);
883 
884   /* During loop versioning, one of the switch_bb edge is already properly
885      set. Do not redirect it again unless redirect_all_edges is true.  */
886   if (redirect_all_edges)
887     {
888       loop_redirect_edge (header_edge, switch_bb);
889       loop_redirect_edge (false_edge, loop->header);
890 
891       /* Update dominators.  */
892       set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
893       set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
894     }
895 
896   set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
897 
898   /* Compute new loop.  */
899   add_loop (loop, outer);
900 
901   /* Add switch_bb to appropriate loop.  */
902   if (switch_bb->loop_father)
903     remove_bb_from_loops (switch_bb);
904   add_bb_to_loop (switch_bb, outer);
905 
906   /* Fix frequencies.  */
907   if (redirect_all_edges)
908     {
909       switch_bb->frequency = freq;
910       switch_bb->count = cnt;
911       FOR_EACH_EDGE (e, ei, switch_bb->succs)
912 	{
913 	  e->count = apply_probability (switch_bb->count, e->probability);
914 	}
915     }
916   scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
917   scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
918   update_dominators_in_loop (loop);
919 
920   return loop;
921 }
922 
923 /* Remove the latch edge of a LOOP and update loops to indicate that
924    the LOOP was removed.  After this function, original loop latch will
925    have no successor, which caller is expected to fix somehow.
926 
927    If this may cause the information about irreducible regions to become
928    invalid, IRRED_INVALIDATED is set to true.
929 
930    LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
931    basic blocks that had non-trivial update on their loop_father.*/
932 
933 void
unloop(struct loop * loop,bool * irred_invalidated,bitmap loop_closed_ssa_invalidated)934 unloop (struct loop *loop, bool *irred_invalidated,
935 	bitmap loop_closed_ssa_invalidated)
936 {
937   basic_block *body;
938   struct loop *ploop;
939   unsigned i, n;
940   basic_block latch = loop->latch;
941   bool dummy = false;
942 
943   if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
944     *irred_invalidated = true;
945 
946   /* This is relatively straightforward.  The dominators are unchanged, as
947      loop header dominates loop latch, so the only thing we have to care of
948      is the placement of loops and basic blocks inside the loop tree.  We
949      move them all to the loop->outer, and then let fix_bb_placements do
950      its work.  */
951 
952   body = get_loop_body (loop);
953   n = loop->num_nodes;
954   for (i = 0; i < n; i++)
955     if (body[i]->loop_father == loop)
956       {
957 	remove_bb_from_loops (body[i]);
958 	add_bb_to_loop (body[i], loop_outer (loop));
959       }
960   free (body);
961 
962   while (loop->inner)
963     {
964       ploop = loop->inner;
965       flow_loop_tree_node_remove (ploop);
966       flow_loop_tree_node_add (loop_outer (loop), ploop);
967     }
968 
969   /* Remove the loop and free its data.  */
970   delete_loop (loop);
971 
972   remove_edge (single_succ_edge (latch));
973 
974   /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
975      there is an irreducible region inside the cancelled loop, the flags will
976      be still correct.  */
977   fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
978 }
979 
980 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
981    condition stated in description of fix_loop_placement holds for them.
982    It is used in case when we removed some edges coming out of LOOP, which
983    may cause the right placement of LOOP inside loop tree to change.
984 
985    IRRED_INVALIDATED is set to true if a change in the loop structures might
986    invalidate the information about irreducible regions.  */
987 
988 static void
fix_loop_placements(struct loop * loop,bool * irred_invalidated)989 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
990 {
991   struct loop *outer;
992 
993   while (loop_outer (loop))
994     {
995       outer = loop_outer (loop);
996       if (!fix_loop_placement (loop, irred_invalidated))
997 	break;
998 
999       /* Changing the placement of a loop in the loop tree may alter the
1000 	 validity of condition 2) of the description of fix_bb_placement
1001 	 for its preheader, because the successor is the header and belongs
1002 	 to the loop.  So call fix_bb_placements to fix up the placement
1003 	 of the preheader and (possibly) of its predecessors.  */
1004       fix_bb_placements (loop_preheader_edge (loop)->src,
1005 			 irred_invalidated, NULL);
1006       loop = outer;
1007     }
1008 }
1009 
1010 /* Duplicate loop bounds and other information we store about
1011    the loop into its duplicate.  */
1012 
1013 void
copy_loop_info(struct loop * loop,struct loop * target)1014 copy_loop_info (struct loop *loop, struct loop *target)
1015 {
1016   gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1017   target->any_upper_bound = loop->any_upper_bound;
1018   target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1019   target->any_estimate = loop->any_estimate;
1020   target->nb_iterations_estimate = loop->nb_iterations_estimate;
1021   target->estimate_state = loop->estimate_state;
1022   target->warned_aggressive_loop_optimizations
1023     |= loop->warned_aggressive_loop_optimizations;
1024   target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1025 }
1026 
1027 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1028    created loop into loops structure.  */
1029 struct loop *
duplicate_loop(struct loop * loop,struct loop * target)1030 duplicate_loop (struct loop *loop, struct loop *target)
1031 {
1032   struct loop *cloop;
1033   cloop = alloc_loop ();
1034   place_new_loop (cfun, cloop);
1035 
1036   copy_loop_info (loop, cloop);
1037 
1038   /* Mark the new loop as copy of LOOP.  */
1039   set_loop_copy (loop, cloop);
1040 
1041   /* Add it to target.  */
1042   flow_loop_tree_node_add (target, cloop);
1043 
1044   return cloop;
1045 }
1046 
1047 /* Copies structure of subloops of LOOP into TARGET loop, placing
1048    newly created loops into loop tree.  */
1049 void
duplicate_subloops(struct loop * loop,struct loop * target)1050 duplicate_subloops (struct loop *loop, struct loop *target)
1051 {
1052   struct loop *aloop, *cloop;
1053 
1054   for (aloop = loop->inner; aloop; aloop = aloop->next)
1055     {
1056       cloop = duplicate_loop (aloop, target);
1057       duplicate_subloops (aloop, cloop);
1058     }
1059 }
1060 
1061 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1062    into TARGET loop, placing newly created loops into loop tree.  */
1063 static void
copy_loops_to(struct loop ** copied_loops,int n,struct loop * target)1064 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1065 {
1066   struct loop *aloop;
1067   int i;
1068 
1069   for (i = 0; i < n; i++)
1070     {
1071       aloop = duplicate_loop (copied_loops[i], target);
1072       duplicate_subloops (copied_loops[i], aloop);
1073     }
1074 }
1075 
1076 /* Redirects edge E to basic block DEST.  */
1077 static void
loop_redirect_edge(edge e,basic_block dest)1078 loop_redirect_edge (edge e, basic_block dest)
1079 {
1080   if (e->dest == dest)
1081     return;
1082 
1083   redirect_edge_and_branch_force (e, dest);
1084 }
1085 
1086 /* Check whether LOOP's body can be duplicated.  */
1087 bool
can_duplicate_loop_p(const struct loop * loop)1088 can_duplicate_loop_p (const struct loop *loop)
1089 {
1090   int ret;
1091   basic_block *bbs = get_loop_body (loop);
1092 
1093   ret = can_copy_bbs_p (bbs, loop->num_nodes);
1094   free (bbs);
1095 
1096   return ret;
1097 }
1098 
1099 /* Sets probability and count of edge E to zero.  The probability and count
1100    is redistributed evenly to the remaining edges coming from E->src.  */
1101 
1102 static void
set_zero_probability(edge e)1103 set_zero_probability (edge e)
1104 {
1105   basic_block bb = e->src;
1106   edge_iterator ei;
1107   edge ae, last = NULL;
1108   unsigned n = EDGE_COUNT (bb->succs);
1109   gcov_type cnt = e->count, cnt1;
1110   unsigned prob = e->probability, prob1;
1111 
1112   gcc_assert (n > 1);
1113   cnt1 = cnt / (n - 1);
1114   prob1 = prob / (n - 1);
1115 
1116   FOR_EACH_EDGE (ae, ei, bb->succs)
1117     {
1118       if (ae == e)
1119 	continue;
1120 
1121       ae->probability += prob1;
1122       ae->count += cnt1;
1123       last = ae;
1124     }
1125 
1126   /* Move the rest to one of the edges.  */
1127   last->probability += prob % (n - 1);
1128   last->count += cnt % (n - 1);
1129 
1130   e->probability = 0;
1131   e->count = 0;
1132 }
1133 
1134 /* Duplicates body of LOOP to given edge E NDUPL times.  Takes care of updating
1135    loop structure and dominators.  E's destination must be LOOP header for
1136    this to work, i.e. it must be entry or latch edge of this loop; these are
1137    unique, as the loops must have preheaders for this function to work
1138    correctly (in case E is latch, the function unrolls the loop, if E is entry
1139    edge, it peels the loop).  Store edges created by copying ORIG edge from
1140    copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1141    original LOOP body, the other copies are numbered in order given by control
1142    flow through them) into TO_REMOVE array.  Returns false if duplication is
1143    impossible.  */
1144 
1145 bool
duplicate_loop_to_header_edge(struct loop * loop,edge e,unsigned int ndupl,sbitmap wont_exit,edge orig,vec<edge> * to_remove,int flags)1146 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1147 			       unsigned int ndupl, sbitmap wont_exit,
1148 			       edge orig, vec<edge> *to_remove,
1149 			       int flags)
1150 {
1151   struct loop *target, *aloop;
1152   struct loop **orig_loops;
1153   unsigned n_orig_loops;
1154   basic_block header = loop->header, latch = loop->latch;
1155   basic_block *new_bbs, *bbs, *first_active;
1156   basic_block new_bb, bb, first_active_latch = NULL;
1157   edge ae, latch_edge;
1158   edge spec_edges[2], new_spec_edges[2];
1159 #define SE_LATCH 0
1160 #define SE_ORIG 1
1161   unsigned i, j, n;
1162   int is_latch = (latch == e->src);
1163   int scale_act = 0, *scale_step = NULL, scale_main = 0;
1164   int scale_after_exit = 0;
1165   int p, freq_in, freq_le, freq_out_orig;
1166   int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1167   int add_irreducible_flag;
1168   basic_block place_after;
1169   bitmap bbs_to_scale = NULL;
1170   bitmap_iterator bi;
1171 
1172   gcc_assert (e->dest == loop->header);
1173   gcc_assert (ndupl > 0);
1174 
1175   if (orig)
1176     {
1177       /* Orig must be edge out of the loop.  */
1178       gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1179       gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1180     }
1181 
1182   n = loop->num_nodes;
1183   bbs = get_loop_body_in_dom_order (loop);
1184   gcc_assert (bbs[0] == loop->header);
1185   gcc_assert (bbs[n  - 1] == loop->latch);
1186 
1187   /* Check whether duplication is possible.  */
1188   if (!can_copy_bbs_p (bbs, loop->num_nodes))
1189     {
1190       free (bbs);
1191       return false;
1192     }
1193   new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1194 
1195   /* In case we are doing loop peeling and the loop is in the middle of
1196      irreducible region, the peeled copies will be inside it too.  */
1197   add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1198   gcc_assert (!is_latch || !add_irreducible_flag);
1199 
1200   /* Find edge from latch.  */
1201   latch_edge = loop_latch_edge (loop);
1202 
1203   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1204     {
1205       /* Calculate coefficients by that we have to scale frequencies
1206 	 of duplicated loop bodies.  */
1207       freq_in = header->frequency;
1208       freq_le = EDGE_FREQUENCY (latch_edge);
1209       if (freq_in == 0)
1210 	freq_in = 1;
1211       if (freq_in < freq_le)
1212 	freq_in = freq_le;
1213       freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1214       if (freq_out_orig > freq_in - freq_le)
1215 	freq_out_orig = freq_in - freq_le;
1216       prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1217       prob_pass_wont_exit =
1218 	      RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1219 
1220       if (orig
1221 	  && REG_BR_PROB_BASE - orig->probability != 0)
1222 	{
1223 	  /* The blocks that are dominated by a removed exit edge ORIG have
1224 	     frequencies scaled by this.  */
1225 	  scale_after_exit
1226               = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE,
1227                                     REG_BR_PROB_BASE - orig->probability);
1228 	  bbs_to_scale = BITMAP_ALLOC (NULL);
1229 	  for (i = 0; i < n; i++)
1230 	    {
1231 	      if (bbs[i] != orig->src
1232 		  && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1233 		bitmap_set_bit (bbs_to_scale, i);
1234 	    }
1235 	}
1236 
1237       scale_step = XNEWVEC (int, ndupl);
1238 
1239       for (i = 1; i <= ndupl; i++)
1240 	scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1241 				? prob_pass_wont_exit
1242 				: prob_pass_thru;
1243 
1244       /* Complete peeling is special as the probability of exit in last
1245 	 copy becomes 1.  */
1246       if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1247 	{
1248 	  int wanted_freq = EDGE_FREQUENCY (e);
1249 
1250 	  if (wanted_freq > freq_in)
1251 	    wanted_freq = freq_in;
1252 
1253 	  gcc_assert (!is_latch);
1254 	  /* First copy has frequency of incoming edge.  Each subsequent
1255 	     frequency should be reduced by prob_pass_wont_exit.  Caller
1256 	     should've managed the flags so all except for original loop
1257 	     has won't exist set.  */
1258 	  scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1259 	  /* Now simulate the duplication adjustments and compute header
1260 	     frequency of the last copy.  */
1261 	  for (i = 0; i < ndupl; i++)
1262 	    wanted_freq = combine_probabilities (wanted_freq, scale_step[i]);
1263 	  scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1264 	}
1265       else if (is_latch)
1266 	{
1267 	  prob_pass_main = bitmap_bit_p (wont_exit, 0)
1268 				? prob_pass_wont_exit
1269 				: prob_pass_thru;
1270 	  p = prob_pass_main;
1271 	  scale_main = REG_BR_PROB_BASE;
1272 	  for (i = 0; i < ndupl; i++)
1273 	    {
1274 	      scale_main += p;
1275 	      p = combine_probabilities (p, scale_step[i]);
1276 	    }
1277 	  scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main);
1278 	  scale_act = combine_probabilities (scale_main, prob_pass_main);
1279 	}
1280       else
1281 	{
1282 	  scale_main = REG_BR_PROB_BASE;
1283 	  for (i = 0; i < ndupl; i++)
1284 	    scale_main = combine_probabilities (scale_main, scale_step[i]);
1285 	  scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1286 	}
1287       for (i = 0; i < ndupl; i++)
1288 	gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1289       gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1290 		  && scale_act >= 0  && scale_act <= REG_BR_PROB_BASE);
1291     }
1292 
1293   /* Loop the new bbs will belong to.  */
1294   target = e->src->loop_father;
1295 
1296   /* Original loops.  */
1297   n_orig_loops = 0;
1298   for (aloop = loop->inner; aloop; aloop = aloop->next)
1299     n_orig_loops++;
1300   orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1301   for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1302     orig_loops[i] = aloop;
1303 
1304   set_loop_copy (loop, target);
1305 
1306   first_active = XNEWVEC (basic_block, n);
1307   if (is_latch)
1308     {
1309       memcpy (first_active, bbs, n * sizeof (basic_block));
1310       first_active_latch = latch;
1311     }
1312 
1313   spec_edges[SE_ORIG] = orig;
1314   spec_edges[SE_LATCH] = latch_edge;
1315 
1316   place_after = e->src;
1317   for (j = 0; j < ndupl; j++)
1318     {
1319       /* Copy loops.  */
1320       copy_loops_to (orig_loops, n_orig_loops, target);
1321 
1322       /* Copy bbs.  */
1323       copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1324 		place_after, true);
1325       place_after = new_spec_edges[SE_LATCH]->src;
1326 
1327       if (flags & DLTHE_RECORD_COPY_NUMBER)
1328 	for (i = 0; i < n; i++)
1329 	  {
1330 	    gcc_assert (!new_bbs[i]->aux);
1331 	    new_bbs[i]->aux = (void *)(size_t)(j + 1);
1332 	  }
1333 
1334       /* Note whether the blocks and edges belong to an irreducible loop.  */
1335       if (add_irreducible_flag)
1336 	{
1337 	  for (i = 0; i < n; i++)
1338 	    new_bbs[i]->flags |= BB_DUPLICATED;
1339 	  for (i = 0; i < n; i++)
1340 	    {
1341 	      edge_iterator ei;
1342 	      new_bb = new_bbs[i];
1343 	      if (new_bb->loop_father == target)
1344 		new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1345 
1346 	      FOR_EACH_EDGE (ae, ei, new_bb->succs)
1347 		if ((ae->dest->flags & BB_DUPLICATED)
1348 		    && (ae->src->loop_father == target
1349 			|| ae->dest->loop_father == target))
1350 		  ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1351 	    }
1352 	  for (i = 0; i < n; i++)
1353 	    new_bbs[i]->flags &= ~BB_DUPLICATED;
1354 	}
1355 
1356       /* Redirect the special edges.  */
1357       if (is_latch)
1358 	{
1359 	  redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1360 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1361 					  loop->header);
1362 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1363 	  latch = loop->latch = new_bbs[n - 1];
1364 	  e = latch_edge = new_spec_edges[SE_LATCH];
1365 	}
1366       else
1367 	{
1368 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1369 					  loop->header);
1370 	  redirect_edge_and_branch_force (e, new_bbs[0]);
1371 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1372 	  e = new_spec_edges[SE_LATCH];
1373 	}
1374 
1375       /* Record exit edge in this copy.  */
1376       if (orig && bitmap_bit_p (wont_exit, j + 1))
1377 	{
1378 	  if (to_remove)
1379 	    to_remove->safe_push (new_spec_edges[SE_ORIG]);
1380 	  set_zero_probability (new_spec_edges[SE_ORIG]);
1381 
1382 	  /* Scale the frequencies of the blocks dominated by the exit.  */
1383 	  if (bbs_to_scale)
1384 	    {
1385 	      EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1386 		{
1387 		  scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1388 					     REG_BR_PROB_BASE);
1389 		}
1390 	    }
1391 	}
1392 
1393       /* Record the first copy in the control flow order if it is not
1394 	 the original loop (i.e. in case of peeling).  */
1395       if (!first_active_latch)
1396 	{
1397 	  memcpy (first_active, new_bbs, n * sizeof (basic_block));
1398 	  first_active_latch = new_bbs[n - 1];
1399 	}
1400 
1401       /* Set counts and frequencies.  */
1402       if (flags & DLTHE_FLAG_UPDATE_FREQ)
1403 	{
1404 	  scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1405 	  scale_act = combine_probabilities (scale_act, scale_step[j]);
1406 	}
1407     }
1408   free (new_bbs);
1409   free (orig_loops);
1410 
1411   /* Record the exit edge in the original loop body, and update the frequencies.  */
1412   if (orig && bitmap_bit_p (wont_exit, 0))
1413     {
1414       if (to_remove)
1415 	to_remove->safe_push (orig);
1416       set_zero_probability (orig);
1417 
1418       /* Scale the frequencies of the blocks dominated by the exit.  */
1419       if (bbs_to_scale)
1420 	{
1421 	  EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1422 	    {
1423 	      scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1424 					 REG_BR_PROB_BASE);
1425 	    }
1426 	}
1427     }
1428 
1429   /* Update the original loop.  */
1430   if (!is_latch)
1431     set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1432   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1433     {
1434       scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1435       free (scale_step);
1436     }
1437 
1438   /* Update dominators of outer blocks if affected.  */
1439   for (i = 0; i < n; i++)
1440     {
1441       basic_block dominated, dom_bb;
1442       vec<basic_block> dom_bbs;
1443       unsigned j;
1444 
1445       bb = bbs[i];
1446       bb->aux = 0;
1447 
1448       dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1449       FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1450 	{
1451 	  if (flow_bb_inside_loop_p (loop, dominated))
1452 	    continue;
1453 	  dom_bb = nearest_common_dominator (
1454 			CDI_DOMINATORS, first_active[i], first_active_latch);
1455 	  set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1456 	}
1457       dom_bbs.release ();
1458     }
1459   free (first_active);
1460 
1461   free (bbs);
1462   BITMAP_FREE (bbs_to_scale);
1463 
1464   return true;
1465 }
1466 
1467 /* A callback for make_forwarder block, to redirect all edges except for
1468    MFB_KJ_EDGE to the entry part.  E is the edge for that we should decide
1469    whether to redirect it.  */
1470 
1471 edge mfb_kj_edge;
1472 bool
mfb_keep_just(edge e)1473 mfb_keep_just (edge e)
1474 {
1475   return e != mfb_kj_edge;
1476 }
1477 
1478 /* True when a candidate preheader BLOCK has predecessors from LOOP.  */
1479 
1480 static bool
has_preds_from_loop(basic_block block,struct loop * loop)1481 has_preds_from_loop (basic_block block, struct loop *loop)
1482 {
1483   edge e;
1484   edge_iterator ei;
1485 
1486   FOR_EACH_EDGE (e, ei, block->preds)
1487     if (e->src->loop_father == loop)
1488       return true;
1489   return false;
1490 }
1491 
1492 /* Creates a pre-header for a LOOP.  Returns newly created block.  Unless
1493    CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1494    entry; otherwise we also force preheader block to have only one successor.
1495    When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1496    to be a fallthru predecessor to the loop header and to have only
1497    predecessors from outside of the loop.
1498    The function also updates dominators.  */
1499 
1500 basic_block
create_preheader(struct loop * loop,int flags)1501 create_preheader (struct loop *loop, int flags)
1502 {
1503   edge e, fallthru;
1504   basic_block dummy;
1505   int nentry = 0;
1506   bool irred = false;
1507   bool latch_edge_was_fallthru;
1508   edge one_succ_pred = NULL, single_entry = NULL;
1509   edge_iterator ei;
1510 
1511   FOR_EACH_EDGE (e, ei, loop->header->preds)
1512     {
1513       if (e->src == loop->latch)
1514 	continue;
1515       irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1516       nentry++;
1517       single_entry = e;
1518       if (single_succ_p (e->src))
1519 	one_succ_pred = e;
1520     }
1521   gcc_assert (nentry);
1522   if (nentry == 1)
1523     {
1524       bool need_forwarder_block = false;
1525 
1526       /* We do not allow entry block to be the loop preheader, since we
1527 	     cannot emit code there.  */
1528       if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1529         need_forwarder_block = true;
1530       else
1531         {
1532           /* If we want simple preheaders, also force the preheader to have
1533              just a single successor.  */
1534           if ((flags & CP_SIMPLE_PREHEADERS)
1535               && !single_succ_p (single_entry->src))
1536             need_forwarder_block = true;
1537           /* If we want fallthru preheaders, also create forwarder block when
1538              preheader ends with a jump or has predecessors from loop.  */
1539           else if ((flags & CP_FALLTHRU_PREHEADERS)
1540                    && (JUMP_P (BB_END (single_entry->src))
1541                        || has_preds_from_loop (single_entry->src, loop)))
1542             need_forwarder_block = true;
1543         }
1544       if (! need_forwarder_block)
1545 	return NULL;
1546     }
1547 
1548   mfb_kj_edge = loop_latch_edge (loop);
1549   latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1550   fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1551   dummy = fallthru->src;
1552   loop->header = fallthru->dest;
1553 
1554   /* Try to be clever in placing the newly created preheader.  The idea is to
1555      avoid breaking any "fallthruness" relationship between blocks.
1556 
1557      The preheader was created just before the header and all incoming edges
1558      to the header were redirected to the preheader, except the latch edge.
1559      So the only problematic case is when this latch edge was a fallthru
1560      edge: it is not anymore after the preheader creation so we have broken
1561      the fallthruness.  We're therefore going to look for a better place.  */
1562   if (latch_edge_was_fallthru)
1563     {
1564       if (one_succ_pred)
1565 	e = one_succ_pred;
1566       else
1567 	e = EDGE_PRED (dummy, 0);
1568 
1569       move_block_after (dummy, e->src);
1570     }
1571 
1572   if (irred)
1573     {
1574       dummy->flags |= BB_IRREDUCIBLE_LOOP;
1575       single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1576     }
1577 
1578   if (dump_file)
1579     fprintf (dump_file, "Created preheader block for loop %i\n",
1580 	     loop->num);
1581 
1582   if (flags & CP_FALLTHRU_PREHEADERS)
1583     gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1584                 && !JUMP_P (BB_END (dummy)));
1585 
1586   return dummy;
1587 }
1588 
1589 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader.  */
1590 
1591 void
create_preheaders(int flags)1592 create_preheaders (int flags)
1593 {
1594   struct loop *loop;
1595 
1596   if (!current_loops)
1597     return;
1598 
1599   FOR_EACH_LOOP (loop, 0)
1600     create_preheader (loop, flags);
1601   loops_state_set (LOOPS_HAVE_PREHEADERS);
1602 }
1603 
1604 /* Forces all loop latches to have only single successor.  */
1605 
1606 void
force_single_succ_latches(void)1607 force_single_succ_latches (void)
1608 {
1609   struct loop *loop;
1610   edge e;
1611 
1612   FOR_EACH_LOOP (loop, 0)
1613     {
1614       if (loop->latch != loop->header && single_succ_p (loop->latch))
1615 	continue;
1616 
1617       e = find_edge (loop->latch, loop->header);
1618       gcc_checking_assert (e != NULL);
1619 
1620       split_edge (e);
1621     }
1622   loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1623 }
1624 
1625 /* This function is called from loop_version.  It splits the entry edge
1626    of the loop we want to version, adds the versioning condition, and
1627    adjust the edges to the two versions of the loop appropriately.
1628    e is an incoming edge. Returns the basic block containing the
1629    condition.
1630 
1631    --- edge e ---- > [second_head]
1632 
1633    Split it and insert new conditional expression and adjust edges.
1634 
1635     --- edge e ---> [cond expr] ---> [first_head]
1636 			|
1637 			+---------> [second_head]
1638 
1639   THEN_PROB is the probability of then branch of the condition.  */
1640 
1641 static basic_block
lv_adjust_loop_entry_edge(basic_block first_head,basic_block second_head,edge e,void * cond_expr,unsigned then_prob)1642 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1643 			   edge e, void *cond_expr, unsigned then_prob)
1644 {
1645   basic_block new_head = NULL;
1646   edge e1;
1647 
1648   gcc_assert (e->dest == second_head);
1649 
1650   /* Split edge 'e'. This will create a new basic block, where we can
1651      insert conditional expr.  */
1652   new_head = split_edge (e);
1653 
1654   lv_add_condition_to_bb (first_head, second_head, new_head,
1655 			  cond_expr);
1656 
1657   /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there.  */
1658   e = single_succ_edge (new_head);
1659   e1 = make_edge (new_head, first_head,
1660 		  current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1661   e1->probability = then_prob;
1662   e->probability = REG_BR_PROB_BASE - then_prob;
1663   e1->count = apply_probability (e->count, e1->probability);
1664   e->count = apply_probability (e->count, e->probability);
1665 
1666   set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1667   set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1668 
1669   /* Adjust loop header phi nodes.  */
1670   lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1671 
1672   return new_head;
1673 }
1674 
1675 /* Main entry point for Loop Versioning transformation.
1676 
1677    This transformation given a condition and a loop, creates
1678    -if (condition) { loop_copy1 } else { loop_copy2 },
1679    where loop_copy1 is the loop transformed in one way, and loop_copy2
1680    is the loop transformed in another way (or unchanged). 'condition'
1681    may be a run time test for things that were not resolved by static
1682    analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1683 
1684    THEN_PROB is the probability of the then edge of the if.  THEN_SCALE
1685    is the ratio by that the frequencies in the original loop should
1686    be scaled.  ELSE_SCALE is the ratio by that the frequencies in the
1687    new loop should be scaled.
1688 
1689    If PLACE_AFTER is true, we place the new loop after LOOP in the
1690    instruction stream, otherwise it is placed before LOOP.  */
1691 
1692 struct loop *
loop_version(struct loop * loop,void * cond_expr,basic_block * condition_bb,unsigned then_prob,unsigned then_scale,unsigned else_scale,bool place_after)1693 loop_version (struct loop *loop,
1694 	      void *cond_expr, basic_block *condition_bb,
1695 	      unsigned then_prob, unsigned then_scale, unsigned else_scale,
1696 	      bool place_after)
1697 {
1698   basic_block first_head, second_head;
1699   edge entry, latch_edge, true_edge, false_edge;
1700   int irred_flag;
1701   struct loop *nloop;
1702   basic_block cond_bb;
1703 
1704   /* Record entry and latch edges for the loop */
1705   entry = loop_preheader_edge (loop);
1706   irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1707   entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1708 
1709   /* Note down head of loop as first_head.  */
1710   first_head = entry->dest;
1711 
1712   /* Duplicate loop.  */
1713   if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1714 					       NULL, NULL, NULL, 0))
1715     {
1716       entry->flags |= irred_flag;
1717       return NULL;
1718     }
1719 
1720   /* After duplication entry edge now points to new loop head block.
1721      Note down new head as second_head.  */
1722   second_head = entry->dest;
1723 
1724   /* Split loop entry edge and insert new block with cond expr.  */
1725   cond_bb =  lv_adjust_loop_entry_edge (first_head, second_head,
1726 					entry, cond_expr, then_prob);
1727   if (condition_bb)
1728     *condition_bb = cond_bb;
1729 
1730   if (!cond_bb)
1731     {
1732       entry->flags |= irred_flag;
1733       return NULL;
1734     }
1735 
1736   latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1737 
1738   extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1739   nloop = loopify (latch_edge,
1740 		   single_pred_edge (get_bb_copy (loop->header)),
1741 		   cond_bb, true_edge, false_edge,
1742 		   false /* Do not redirect all edges.  */,
1743 		   then_scale, else_scale);
1744 
1745   copy_loop_info (loop, nloop);
1746 
1747   /* loopify redirected latch_edge. Update its PENDING_STMTS.  */
1748   lv_flush_pending_stmts (latch_edge);
1749 
1750   /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS.  */
1751   extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1752   lv_flush_pending_stmts (false_edge);
1753   /* Adjust irreducible flag.  */
1754   if (irred_flag)
1755     {
1756       cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1757       loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1758       loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1759       single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1760     }
1761 
1762   if (place_after)
1763     {
1764       basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1765       unsigned i;
1766 
1767       after = loop->latch;
1768 
1769       for (i = 0; i < nloop->num_nodes; i++)
1770 	{
1771 	  move_block_after (bbs[i], after);
1772 	  after = bbs[i];
1773 	}
1774       free (bbs);
1775     }
1776 
1777   /* At this point condition_bb is loop preheader with two successors,
1778      first_head and second_head.   Make sure that loop preheader has only
1779      one successor.  */
1780   split_edge (loop_preheader_edge (loop));
1781   split_edge (loop_preheader_edge (nloop));
1782 
1783   return nloop;
1784 }
1785