1;; Predicate definitions for SPARC.
2;; Copyright (C) 2005-2016 Free Software Foundation, Inc.
3;;
4;; This file is part of GCC.
5;;
6;; GCC is free software; you can redistribute it and/or modify
7;; it under the terms of the GNU General Public License as published by
8;; the Free Software Foundation; either version 3, or (at your option)
9;; any later version.
10;;
11;; GCC is distributed in the hope that it will be useful,
12;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14;; GNU General Public License for more details.
15;;
16;; You should have received a copy of the GNU General Public License
17;; along with GCC; see the file COPYING3.  If not see
18;; <http://www.gnu.org/licenses/>.
19
20;; Predicates for numerical constants.
21
22;; Return true if OP is the zero constant for MODE.
23(define_predicate "const_zero_operand"
24  (and (match_code "const_int,const_wide_int,const_double,const_vector")
25       (match_test "op == CONST0_RTX (mode)")))
26
27;; Return true if the integer representation of OP is all ones.
28(define_predicate "const_all_ones_operand"
29  (and (match_code "const_int,const_wide_int,const_double,const_vector")
30       (match_test "INTEGRAL_MODE_P (GET_MODE (op))")
31       (match_test "op == CONSTM1_RTX (GET_MODE (op))")))
32
33;; Return true if OP is the integer constant 4096.
34(define_predicate "const_4096_operand"
35  (and (match_code "const_int")
36       (match_test "INTVAL (op) == 4096")))
37
38;; Return true if OP is a constant that is representable by a 13-bit
39;; signed field.  This is an acceptable immediate operand for most
40;; 3-address instructions.
41(define_predicate "small_int_operand"
42  (and (match_code "const_int")
43       (match_test "SPARC_SIMM13_P (INTVAL (op))")))
44
45;; Return true if OP is a constant operand for the umul instruction.  That
46;; instruction sign-extends immediate values just like all other SPARC
47;; instructions, but interprets the extended result as an unsigned number.
48(define_predicate "uns_small_int_operand"
49  (and (match_code "const_int")
50       (match_test "((INTVAL (op) >= 0 && INTVAL (op) < 0x1000)
51		    || (INTVAL (op) >= 0xFFFFF000
52			&& INTVAL (op) <= 0xFFFFFFFF))")))
53
54;; Return true if OP is a constant that can be loaded by the sethi instruction.
55;; The first test avoids emitting sethi to load zero for example.
56(define_predicate "const_high_operand"
57  (and (match_code "const_int")
58       (and (not (match_operand 0 "small_int_operand"))
59            (match_test "SPARC_SETHI_P (INTVAL (op) & GET_MODE_MASK (mode))"))))
60
61;; Return true if OP is a constant whose 1's complement can be loaded by the
62;; sethi instruction.
63(define_predicate "const_compl_high_operand"
64  (and (match_code "const_int")
65       (and (not (match_operand 0 "small_int_operand"))
66            (match_test "SPARC_SETHI_P (~INTVAL (op) & GET_MODE_MASK (mode))"))))
67
68;; Return true if OP is a FP constant that needs to be loaded by the sethi/losum
69;; pair of instructions.
70(define_predicate "fp_const_high_losum_operand"
71  (match_operand 0 "const_double_operand")
72{
73  gcc_assert (mode == SFmode);
74  return fp_high_losum_p (op);
75})
76
77;; Return true if OP is a const_double or const_vector.
78(define_predicate "const_double_or_vector_operand"
79  (match_code "const_double,const_vector"))
80
81;; Return true if OP is Zero, or if the target is V7.
82(define_predicate "zero_or_v7_operand"
83  (and (match_code "const_int")
84       (ior (match_test "INTVAL (op) == 0")
85	    (match_test "!TARGET_V8 && !TARGET_V9"))))
86
87;; Predicates for symbolic constants.
88
89;; Return true if OP is either a symbol reference or a sum of a symbol
90;; reference and a constant.
91(define_predicate "symbolic_operand"
92  (match_code "symbol_ref,label_ref,const")
93{
94  machine_mode omode = GET_MODE (op);
95
96  if (omode != mode && omode != VOIDmode && mode != VOIDmode)
97    return false;
98
99  switch (GET_CODE (op))
100    {
101    case SYMBOL_REF:
102      return !SYMBOL_REF_TLS_MODEL (op);
103
104    case LABEL_REF:
105      return true;
106
107    case CONST:
108      op = XEXP (op, 0);
109      return (((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
110		&& !SYMBOL_REF_TLS_MODEL (XEXP (op, 0)))
111	       || GET_CODE (XEXP (op, 0)) == LABEL_REF)
112	      && GET_CODE (XEXP (op, 1)) == CONST_INT);
113
114    default:
115      gcc_unreachable ();
116    }
117})
118
119;; Return true if OP is a symbolic operand for the TLS Global Dynamic model.
120(define_predicate "tgd_symbolic_operand"
121  (and (match_code "symbol_ref")
122       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_GLOBAL_DYNAMIC")))
123
124;; Return true if OP is a symbolic operand for the TLS Local Dynamic model.
125(define_predicate "tld_symbolic_operand"
126  (and (match_code "symbol_ref")
127       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_LOCAL_DYNAMIC")))
128
129;; Return true if OP is a symbolic operand for the TLS Initial Exec model.
130(define_predicate "tie_symbolic_operand"
131  (and (match_code "symbol_ref")
132       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_INITIAL_EXEC")))
133
134;; Return true if OP is a symbolic operand for the TLS Local Exec model.
135(define_predicate "tle_symbolic_operand"
136  (and (match_code "symbol_ref")
137       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_LOCAL_EXEC")))
138
139;; Return true if the operand is an argument used in generating PIC references
140;; in either the medium/low or embedded medium/anywhere code models on V9.
141;; Check for (const (minus (symbol_ref:GOT)
142;;                         (const (minus (label) (pc)))))
143(define_predicate "medium_pic_operand"
144  (match_code "const")
145{
146  /* Check for (const (minus (symbol_ref:GOT)
147                             (const (minus (label) (pc))))).  */
148  op = XEXP (op, 0);
149  return GET_CODE (op) == MINUS
150         && GET_CODE (XEXP (op, 0)) == SYMBOL_REF
151         && GET_CODE (XEXP (op, 1)) == CONST
152         && GET_CODE (XEXP (XEXP (op, 1), 0)) == MINUS;
153})
154
155;; Return true if OP is a LABEL_REF of mode MODE.
156(define_predicate "label_ref_operand"
157  (and (match_code "label_ref")
158       (match_test "GET_MODE (op) == mode")))
159
160;; Return true if OP is a data segment reference.  This includes the readonly
161;; data segment or, in other words, anything but the text segment.
162;; This is needed in the embedded medium/anywhere code model on V9.  These
163;; values are accessed with EMBMEDANY_BASE_REG.  */
164(define_predicate "data_segment_operand"
165  (match_code "symbol_ref,plus,const")
166{
167  switch (GET_CODE (op))
168    {
169    case SYMBOL_REF :
170      return ! SYMBOL_REF_FUNCTION_P (op);
171    case PLUS :
172      /* Assume canonical format of symbol + constant.
173	 Fall through.  */
174    case CONST :
175      return data_segment_operand (XEXP (op, 0), VOIDmode);
176    default :
177      gcc_unreachable ();
178    }
179})
180
181;; Return true if OP is a text segment reference.
182;; This is needed in the embedded medium/anywhere code model on V9.
183(define_predicate "text_segment_operand"
184  (match_code "label_ref,symbol_ref,plus,const")
185{
186  switch (GET_CODE (op))
187    {
188    case LABEL_REF :
189      return true;
190    case SYMBOL_REF :
191      return SYMBOL_REF_FUNCTION_P (op);
192    case PLUS :
193      /* Assume canonical format of symbol + constant.
194	 Fall through.  */
195    case CONST :
196      return text_segment_operand (XEXP (op, 0), VOIDmode);
197    default :
198      gcc_unreachable ();
199    }
200})
201
202
203;; Predicates for registers.
204
205;; Return true if OP is either the zero constant or a register.
206(define_predicate "register_or_zero_operand"
207  (ior (match_operand 0 "register_operand")
208       (match_operand 0 "const_zero_operand")))
209
210(define_predicate "register_or_v9_zero_operand"
211  (ior (match_operand 0 "register_operand")
212       (and (match_test "TARGET_V9")
213	    (match_operand 0 "const_zero_operand"))))
214
215;; Return true if OP is either the zero constant, the all-ones
216;; constant, or a register.
217(define_predicate "register_or_zero_or_all_ones_operand"
218  (ior (match_operand 0 "register_or_zero_operand")
219       (match_operand 0 "const_all_ones_operand")))
220
221;; Return true if OP is a register operand in a floating point register.
222(define_predicate "fp_register_operand"
223  (match_operand 0 "register_operand")
224{
225  if (GET_CODE (op) == SUBREG)
226    op = SUBREG_REG (op); /* Possibly a MEM */
227  return REG_P (op) && SPARC_FP_REG_P (REGNO (op));
228})
229
230;; Return true if OP is an integer register of the appropriate mode
231;; for a cstore result.
232(define_special_predicate "cstore_result_operand"
233  (match_test "register_operand (op, TARGET_ARCH64 ? DImode : SImode)"))
234
235;; Return true if OP is a floating point condition code register.
236(define_predicate "fcc_register_operand"
237  (match_code "reg")
238{
239  if (mode != VOIDmode && mode != GET_MODE (op))
240    return false;
241  if (mode == VOIDmode
242      && (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode))
243    return false;
244
245#if 0 /* ??? 1 when %fcc0-3 are pseudos first.  See gen_compare_reg().  */
246  if (reg_renumber == 0)
247    return REGNO (op) >= FIRST_PSEUDO_REGISTER;
248  return REGNO_OK_FOR_CCFP_P (REGNO (op));
249#else
250  return ((unsigned) REGNO (op) - SPARC_FIRST_V9_FCC_REG) < 4;
251#endif
252})
253
254;; Return true if OP is the floating point condition code register fcc0.
255(define_predicate "fcc0_register_operand"
256  (match_code "reg")
257{
258  if (mode != VOIDmode && mode != GET_MODE (op))
259    return false;
260  if (mode == VOIDmode
261      && (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode))
262    return false;
263
264  return REGNO (op) == SPARC_FCC_REG;
265})
266
267;; Return true if OP is an integer or floating point condition code register.
268(define_predicate "icc_or_fcc_register_operand"
269  (match_code "reg")
270{
271  if (REGNO (op) == SPARC_ICC_REG)
272    {
273      if (mode != VOIDmode && mode != GET_MODE (op))
274	return false;
275      if (mode == VOIDmode
276	  && GET_MODE (op) != CCmode && GET_MODE (op) != CCXmode)
277	return false;
278
279      return true;
280    }
281
282  return fcc_register_operand (op, mode);
283})
284
285
286;; Predicates for arithmetic instructions.
287
288;; Return true if OP is a register, or is a constant that is representable
289;; by a 13-bit signed field.  This is an acceptable operand for most
290;; 3-address instructions.
291(define_predicate "arith_operand"
292  (ior (match_operand 0 "register_operand")
293       (match_operand 0 "small_int_operand")))
294
295;; 64-bit: Same as above.
296;; 32-bit: Return true if OP is a register, or is a constant that is
297;; representable by a couple of 13-bit signed fields.  This is an
298;; acceptable operand for most 3-address splitters.
299(define_predicate "arith_double_operand"
300  (match_code "const_int,reg,subreg")
301{
302  bool arith_simple_operand = arith_operand (op, mode);
303  HOST_WIDE_INT m1, m2;
304
305  if (TARGET_ARCH64 || arith_simple_operand)
306    return arith_simple_operand;
307
308  if (GET_CODE (op) != CONST_INT)
309    return false;
310
311  m1 = trunc_int_for_mode (INTVAL (op), SImode);
312  m2 = trunc_int_for_mode (INTVAL (op) >> 32, SImode);
313
314  return SPARC_SIMM13_P (m1) && SPARC_SIMM13_P (m2);
315})
316
317;; Return true if OP is suitable as second operand for add/sub.
318(define_predicate "arith_add_operand"
319  (ior (match_operand 0 "arith_operand")
320       (match_operand 0 "const_4096_operand")))
321
322;; Return true if OP is suitable as second double operand for add/sub.
323(define_predicate "arith_double_add_operand"
324  (match_code "const_int,reg,subreg")
325{
326  if (arith_double_operand (op, mode))
327    return true;
328
329  return TARGET_ARCH64 && const_4096_operand (op, mode);
330})
331
332;; Return true if OP is a register, or is a CONST_INT that can fit in a
333;; signed 10-bit immediate field.  This is an acceptable SImode operand for
334;; the movrcc instructions.
335(define_predicate "arith10_operand"
336  (ior (match_operand 0 "register_operand")
337       (and (match_code "const_int")
338            (match_test "SPARC_SIMM10_P (INTVAL (op))"))))
339
340;; Return true if OP is a register, or is a CONST_INT that can fit in a
341;; signed 11-bit immediate field.  This is an acceptable SImode operand for
342;; the movcc instructions.
343(define_predicate "arith11_operand"
344  (ior (match_operand 0 "register_operand")
345       (and (match_code "const_int")
346            (match_test "SPARC_SIMM11_P (INTVAL (op))"))))
347
348;; Return true if OP is a register or a constant for the umul instruction.
349(define_predicate "uns_arith_operand"
350  (ior (match_operand 0 "register_operand")
351       (match_operand 0 "uns_small_int_operand")))
352
353;; Return true if OP is a register, or is a CONST_INT that can fit in a
354;; signed 5-bit immediate field.  This is an acceptable second operand for
355;; the cbcond instructions.
356(define_predicate "arith5_operand"
357  (ior (match_operand 0 "register_operand")
358       (and (match_code "const_int")
359            (match_test "SPARC_SIMM5_P (INTVAL (op))"))))
360
361
362;; Predicates for miscellaneous instructions.
363
364;; Return true if OP is valid for the lhs of a comparison insn.
365(define_predicate "compare_operand"
366  (match_code "reg,subreg,zero_extract")
367{
368  if (GET_CODE (op) == ZERO_EXTRACT)
369    return (register_operand (XEXP (op, 0), mode)
370	    && small_int_operand (XEXP (op, 1), mode)
371	    && small_int_operand (XEXP (op, 2), mode)
372	    /* This matches cmp_zero_extract.  */
373	    && ((mode == SImode
374		 && INTVAL (XEXP (op, 2)) > 19)
375		/* This matches cmp_zero_extract_sp64.  */
376		|| (TARGET_ARCH64
377		    && mode == DImode
378		    && INTVAL (XEXP (op, 2)) > 51)));
379
380  return register_operand (op, mode);
381})
382
383;; Return true if OP is a valid operand for the source of a move insn.
384(define_predicate "input_operand"
385  (match_code "const_int,const_double,const_vector,reg,subreg,mem")
386{
387  enum mode_class mclass;
388
389  /* If both modes are non-void they must be the same.  */
390  if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
391    return false;
392
393  mclass = GET_MODE_CLASS (mode);
394
395  /* Allow any 1-instruction integer constant.  */
396  if (mclass == MODE_INT
397      && mode != TImode
398      && (small_int_operand (op, mode) || const_high_operand (op, mode)))
399    return true;
400
401  /* If 32-bit mode and this is a DImode constant, allow it
402     so that the splits can be generated.  */
403  if (TARGET_ARCH32 && mode == DImode && GET_CODE (op) == CONST_INT)
404    return true;
405
406  if (mclass == MODE_FLOAT && GET_CODE (op) == CONST_DOUBLE)
407    return true;
408
409  if (mclass == MODE_VECTOR_INT && const_all_ones_operand (op, mode))
410    return true;
411
412  if (register_or_zero_operand (op, mode))
413    return true;
414
415  /* If this is a SUBREG, look inside so that we handle paradoxical ones.  */
416  if (GET_CODE (op) == SUBREG)
417    op = SUBREG_REG (op);
418
419  /* Check for valid MEM forms.  */
420  if (GET_CODE (op) == MEM)
421    return memory_address_p (mode, XEXP (op, 0));
422
423  return false;
424})
425
426;; Return true if OP is an address suitable for a call insn.
427;; Call insn on SPARC can take a PC-relative constant address
428;; or any regular memory address.
429(define_predicate "call_address_operand"
430  (ior (match_operand 0 "symbolic_operand")
431       (match_test "memory_address_p (Pmode, op)")))
432
433;; Return true if OP is an operand suitable for a call insn.
434(define_predicate "call_operand"
435  (and (match_code "mem")
436       (match_test "call_address_operand (XEXP (op, 0), mode)")))
437
438
439(define_predicate "mem_noofs_operand"
440  (and (match_code "mem")
441       (match_code "reg" "0")))
442
443;; Predicates for operators.
444
445;; Return true if OP is a comparison operator.  This allows the use of
446;; MATCH_OPERATOR to recognize all the branch insns.
447(define_predicate "noov_compare_operator"
448  (match_code "ne,eq,ge,gt,le,lt,geu,gtu,leu,ltu")
449{
450  enum rtx_code code = GET_CODE (op);
451  if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode
452      || GET_MODE (XEXP (op, 0)) == CCX_NOOVmode)
453    /* These are the only branches which work with CC_NOOVmode.  */
454    return (code == EQ || code == NE || code == GE || code == LT);
455  return true;
456})
457
458;; Return true if OP is a 64-bit comparison operator.  This allows the use of
459;; MATCH_OPERATOR to recognize all the branch insns.
460(define_predicate "noov_compare64_operator"
461  (and (match_code "ne,eq,ge,gt,le,lt,geu,gtu,leu,ltu")
462       (match_test "TARGET_V9"))
463{
464  enum rtx_code code = GET_CODE (op);
465  if (GET_MODE (XEXP (op, 0)) == CCX_NOOVmode)
466    /* These are the only branches which work with CCX_NOOVmode.  */
467    return (code == EQ || code == NE || code == GE || code == LT);
468  return (GET_MODE (XEXP (op, 0)) == CCXmode);
469})
470
471;; Return true if OP is a comparison operator suitable for use in V9
472;; conditional move or branch on register contents instructions.
473(define_predicate "v9_register_compare_operator"
474  (match_code "eq,ne,ge,lt,le,gt"))
475
476;; Return true if OP is an operator which can set the condition codes
477;; explicitly.  We do not include PLUS and MINUS because these
478;; require CC_NOOVmode, which we handle explicitly.
479(define_predicate "cc_arith_operator"
480  (match_code "and,ior,xor"))
481
482;; Return true if OP is an operator which can bitwise complement its
483;; second operand and set the condition codes explicitly.
484;; XOR is not here because combine canonicalizes (xor (not ...) ...)
485;; and (xor ... (not ...)) to (not (xor ...)).  */
486(define_predicate "cc_arith_not_operator"
487  (match_code "and,ior"))
488