1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "expmed.h"
30 #include "optabs.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
33 #include "diagnostic-core.h"
34 #include "stor-layout.h"
35 #include "except.h"
36 #include "dojump.h"
37 #include "explow.h"
38 #include "expr.h"
39 #include "common/common-target.h"
40 #include "output.h"
41
42 static rtx break_out_memory_refs (rtx);
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
trunc_int_for_mode(HOST_WIDE_INT c,machine_mode mode)48 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
49 {
50 int width = GET_MODE_PRECISION (mode);
51
52 /* You want to truncate to a _what_? */
53 gcc_assert (SCALAR_INT_MODE_P (mode)
54 || POINTER_BOUNDS_MODE_P (mode));
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C, given that X has
75 mode MODE. INPLACE is true if X can be modified inplace or false
76 if it must be treated as immutable. */
77
78 rtx
plus_constant(machine_mode mode,rtx x,HOST_WIDE_INT c,bool inplace)79 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
80 bool inplace)
81 {
82 RTX_CODE code;
83 rtx y;
84 rtx tem;
85 int all_constant = 0;
86
87 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
88
89 if (c == 0)
90 return x;
91
92 restart:
93
94 code = GET_CODE (x);
95 y = x;
96
97 switch (code)
98 {
99 CASE_CONST_SCALAR_INT:
100 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
101 mode);
102 case MEM:
103 /* If this is a reference to the constant pool, try replacing it with
104 a reference to a new constant. If the resulting address isn't
105 valid, don't return it because we have no way to validize it. */
106 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
107 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
108 {
109 rtx cst = get_pool_constant (XEXP (x, 0));
110
111 if (GET_CODE (cst) == CONST_VECTOR
112 && GET_MODE_INNER (GET_MODE (cst)) == mode)
113 {
114 cst = gen_lowpart (mode, cst);
115 gcc_assert (cst);
116 }
117 tem = plus_constant (mode, cst, c);
118 tem = force_const_mem (GET_MODE (x), tem);
119 /* Targets may disallow some constants in the constant pool, thus
120 force_const_mem may return NULL_RTX. */
121 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
122 return tem;
123 }
124 break;
125
126 case CONST:
127 /* If adding to something entirely constant, set a flag
128 so that we can add a CONST around the result. */
129 if (inplace && shared_const_p (x))
130 inplace = false;
131 x = XEXP (x, 0);
132 all_constant = 1;
133 goto restart;
134
135 case SYMBOL_REF:
136 case LABEL_REF:
137 all_constant = 1;
138 break;
139
140 case PLUS:
141 /* The interesting case is adding the integer to a sum. Look
142 for constant term in the sum and combine with C. For an
143 integer constant term or a constant term that is not an
144 explicit integer, we combine or group them together anyway.
145
146 We may not immediately return from the recursive call here, lest
147 all_constant gets lost. */
148
149 if (CONSTANT_P (XEXP (x, 1)))
150 {
151 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
152 if (term == const0_rtx)
153 x = XEXP (x, 0);
154 else if (inplace)
155 XEXP (x, 1) = term;
156 else
157 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
158 c = 0;
159 }
160 else if (rtx *const_loc = find_constant_term_loc (&y))
161 {
162 if (!inplace)
163 {
164 /* We need to be careful since X may be shared and we can't
165 modify it in place. */
166 x = copy_rtx (x);
167 const_loc = find_constant_term_loc (&x);
168 }
169 *const_loc = plus_constant (mode, *const_loc, c, true);
170 c = 0;
171 }
172 break;
173
174 default:
175 break;
176 }
177
178 if (c != 0)
179 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
180
181 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
182 return x;
183 else if (all_constant)
184 return gen_rtx_CONST (mode, x);
185 else
186 return x;
187 }
188
189 /* If X is a sum, return a new sum like X but lacking any constant terms.
190 Add all the removed constant terms into *CONSTPTR.
191 X itself is not altered. The result != X if and only if
192 it is not isomorphic to X. */
193
194 rtx
eliminate_constant_term(rtx x,rtx * constptr)195 eliminate_constant_term (rtx x, rtx *constptr)
196 {
197 rtx x0, x1;
198 rtx tem;
199
200 if (GET_CODE (x) != PLUS)
201 return x;
202
203 /* First handle constants appearing at this level explicitly. */
204 if (CONST_INT_P (XEXP (x, 1))
205 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
206 XEXP (x, 1)))
207 && CONST_INT_P (tem))
208 {
209 *constptr = tem;
210 return eliminate_constant_term (XEXP (x, 0), constptr);
211 }
212
213 tem = const0_rtx;
214 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
215 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
216 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
217 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
218 *constptr, tem))
219 && CONST_INT_P (tem))
220 {
221 *constptr = tem;
222 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
223 }
224
225 return x;
226 }
227
228
229 /* Return a copy of X in which all memory references
230 and all constants that involve symbol refs
231 have been replaced with new temporary registers.
232 Also emit code to load the memory locations and constants
233 into those registers.
234
235 If X contains no such constants or memory references,
236 X itself (not a copy) is returned.
237
238 If a constant is found in the address that is not a legitimate constant
239 in an insn, it is left alone in the hope that it might be valid in the
240 address.
241
242 X may contain no arithmetic except addition, subtraction and multiplication.
243 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
244
245 static rtx
break_out_memory_refs(rtx x)246 break_out_memory_refs (rtx x)
247 {
248 if (MEM_P (x)
249 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
250 && GET_MODE (x) != VOIDmode))
251 x = force_reg (GET_MODE (x), x);
252 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
253 || GET_CODE (x) == MULT)
254 {
255 rtx op0 = break_out_memory_refs (XEXP (x, 0));
256 rtx op1 = break_out_memory_refs (XEXP (x, 1));
257
258 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
259 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
260 }
261
262 return x;
263 }
264
265 /* Given X, a memory address in address space AS' pointer mode, convert it to
266 an address in the address space's address mode, or vice versa (TO_MODE says
267 which way). We take advantage of the fact that pointers are not allowed to
268 overflow by commuting arithmetic operations over conversions so that address
269 arithmetic insns can be used. IN_CONST is true if this conversion is inside
270 a CONST. NO_EMIT is true if no insns should be emitted, and instead
271 it should return NULL if it can't be simplified without emitting insns. */
272
273 rtx
convert_memory_address_addr_space_1(machine_mode to_mode ATTRIBUTE_UNUSED,rtx x,addr_space_t as ATTRIBUTE_UNUSED,bool in_const ATTRIBUTE_UNUSED,bool no_emit ATTRIBUTE_UNUSED)274 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
275 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
276 bool in_const ATTRIBUTE_UNUSED,
277 bool no_emit ATTRIBUTE_UNUSED)
278 {
279 #ifndef POINTERS_EXTEND_UNSIGNED
280 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
281 return x;
282 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
283 machine_mode pointer_mode, address_mode, from_mode;
284 rtx temp;
285 enum rtx_code code;
286
287 /* If X already has the right mode, just return it. */
288 if (GET_MODE (x) == to_mode)
289 return x;
290
291 pointer_mode = targetm.addr_space.pointer_mode (as);
292 address_mode = targetm.addr_space.address_mode (as);
293 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
294
295 /* Here we handle some special cases. If none of them apply, fall through
296 to the default case. */
297 switch (GET_CODE (x))
298 {
299 CASE_CONST_SCALAR_INT:
300 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
301 code = TRUNCATE;
302 else if (POINTERS_EXTEND_UNSIGNED < 0)
303 break;
304 else if (POINTERS_EXTEND_UNSIGNED > 0)
305 code = ZERO_EXTEND;
306 else
307 code = SIGN_EXTEND;
308 temp = simplify_unary_operation (code, to_mode, x, from_mode);
309 if (temp)
310 return temp;
311 break;
312
313 case SUBREG:
314 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
315 && GET_MODE (SUBREG_REG (x)) == to_mode)
316 return SUBREG_REG (x);
317 break;
318
319 case LABEL_REF:
320 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
321 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
322 return temp;
323
324 case SYMBOL_REF:
325 temp = shallow_copy_rtx (x);
326 PUT_MODE (temp, to_mode);
327 return temp;
328
329 case CONST:
330 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
331 true, no_emit);
332 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
333
334 case PLUS:
335 case MULT:
336 /* For addition we can safely permute the conversion and addition
337 operation if one operand is a constant and converting the constant
338 does not change it or if one operand is a constant and we are
339 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
340 We can always safely permute them if we are making the address
341 narrower. Inside a CONST RTL, this is safe for both pointers
342 zero or sign extended as pointers cannot wrap. */
343 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
344 || (GET_CODE (x) == PLUS
345 && CONST_INT_P (XEXP (x, 1))
346 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
347 || XEXP (x, 1) == convert_memory_address_addr_space_1
348 (to_mode, XEXP (x, 1), as, in_const,
349 no_emit)
350 || POINTERS_EXTEND_UNSIGNED < 0)))
351 {
352 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
353 as, in_const, no_emit);
354 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
355 temp, XEXP (x, 1))
356 : temp);
357 }
358 break;
359
360 default:
361 break;
362 }
363
364 if (no_emit)
365 return NULL_RTX;
366
367 return convert_modes (to_mode, from_mode,
368 x, POINTERS_EXTEND_UNSIGNED);
369 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
370 }
371
372 /* Given X, a memory address in address space AS' pointer mode, convert it to
373 an address in the address space's address mode, or vice versa (TO_MODE says
374 which way). We take advantage of the fact that pointers are not allowed to
375 overflow by commuting arithmetic operations over conversions so that address
376 arithmetic insns can be used. */
377
378 rtx
convert_memory_address_addr_space(machine_mode to_mode,rtx x,addr_space_t as)379 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
380 {
381 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
382 }
383
384
385 /* Return something equivalent to X but valid as a memory address for something
386 of mode MODE in the named address space AS. When X is not itself valid,
387 this works by copying X or subexpressions of it into registers. */
388
389 rtx
memory_address_addr_space(machine_mode mode,rtx x,addr_space_t as)390 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
391 {
392 rtx oldx = x;
393 machine_mode address_mode = targetm.addr_space.address_mode (as);
394
395 x = convert_memory_address_addr_space (address_mode, x, as);
396
397 /* By passing constant addresses through registers
398 we get a chance to cse them. */
399 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
400 x = force_reg (address_mode, x);
401
402 /* We get better cse by rejecting indirect addressing at this stage.
403 Let the combiner create indirect addresses where appropriate.
404 For now, generate the code so that the subexpressions useful to share
405 are visible. But not if cse won't be done! */
406 else
407 {
408 if (! cse_not_expected && !REG_P (x))
409 x = break_out_memory_refs (x);
410
411 /* At this point, any valid address is accepted. */
412 if (memory_address_addr_space_p (mode, x, as))
413 goto done;
414
415 /* If it was valid before but breaking out memory refs invalidated it,
416 use it the old way. */
417 if (memory_address_addr_space_p (mode, oldx, as))
418 {
419 x = oldx;
420 goto done;
421 }
422
423 /* Perform machine-dependent transformations on X
424 in certain cases. This is not necessary since the code
425 below can handle all possible cases, but machine-dependent
426 transformations can make better code. */
427 {
428 rtx orig_x = x;
429 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
430 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
431 goto done;
432 }
433
434 /* PLUS and MULT can appear in special ways
435 as the result of attempts to make an address usable for indexing.
436 Usually they are dealt with by calling force_operand, below.
437 But a sum containing constant terms is special
438 if removing them makes the sum a valid address:
439 then we generate that address in a register
440 and index off of it. We do this because it often makes
441 shorter code, and because the addresses thus generated
442 in registers often become common subexpressions. */
443 if (GET_CODE (x) == PLUS)
444 {
445 rtx constant_term = const0_rtx;
446 rtx y = eliminate_constant_term (x, &constant_term);
447 if (constant_term == const0_rtx
448 || ! memory_address_addr_space_p (mode, y, as))
449 x = force_operand (x, NULL_RTX);
450 else
451 {
452 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
453 if (! memory_address_addr_space_p (mode, y, as))
454 x = force_operand (x, NULL_RTX);
455 else
456 x = y;
457 }
458 }
459
460 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
461 x = force_operand (x, NULL_RTX);
462
463 /* If we have a register that's an invalid address,
464 it must be a hard reg of the wrong class. Copy it to a pseudo. */
465 else if (REG_P (x))
466 x = copy_to_reg (x);
467
468 /* Last resort: copy the value to a register, since
469 the register is a valid address. */
470 else
471 x = force_reg (address_mode, x);
472 }
473
474 done:
475
476 gcc_assert (memory_address_addr_space_p (mode, x, as));
477 /* If we didn't change the address, we are done. Otherwise, mark
478 a reg as a pointer if we have REG or REG + CONST_INT. */
479 if (oldx == x)
480 return x;
481 else if (REG_P (x))
482 mark_reg_pointer (x, BITS_PER_UNIT);
483 else if (GET_CODE (x) == PLUS
484 && REG_P (XEXP (x, 0))
485 && CONST_INT_P (XEXP (x, 1)))
486 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
487
488 /* OLDX may have been the address on a temporary. Update the address
489 to indicate that X is now used. */
490 update_temp_slot_address (oldx, x);
491
492 return x;
493 }
494
495 /* Convert a mem ref into one with a valid memory address.
496 Pass through anything else unchanged. */
497
498 rtx
validize_mem(rtx ref)499 validize_mem (rtx ref)
500 {
501 if (!MEM_P (ref))
502 return ref;
503 ref = use_anchored_address (ref);
504 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
505 MEM_ADDR_SPACE (ref)))
506 return ref;
507
508 /* Don't alter REF itself, since that is probably a stack slot. */
509 return replace_equiv_address (ref, XEXP (ref, 0));
510 }
511
512 /* If X is a memory reference to a member of an object block, try rewriting
513 it to use an anchor instead. Return the new memory reference on success
514 and the old one on failure. */
515
516 rtx
use_anchored_address(rtx x)517 use_anchored_address (rtx x)
518 {
519 rtx base;
520 HOST_WIDE_INT offset;
521 machine_mode mode;
522
523 if (!flag_section_anchors)
524 return x;
525
526 if (!MEM_P (x))
527 return x;
528
529 /* Split the address into a base and offset. */
530 base = XEXP (x, 0);
531 offset = 0;
532 if (GET_CODE (base) == CONST
533 && GET_CODE (XEXP (base, 0)) == PLUS
534 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
535 {
536 offset += INTVAL (XEXP (XEXP (base, 0), 1));
537 base = XEXP (XEXP (base, 0), 0);
538 }
539
540 /* Check whether BASE is suitable for anchors. */
541 if (GET_CODE (base) != SYMBOL_REF
542 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
543 || SYMBOL_REF_ANCHOR_P (base)
544 || SYMBOL_REF_BLOCK (base) == NULL
545 || !targetm.use_anchors_for_symbol_p (base))
546 return x;
547
548 /* Decide where BASE is going to be. */
549 place_block_symbol (base);
550
551 /* Get the anchor we need to use. */
552 offset += SYMBOL_REF_BLOCK_OFFSET (base);
553 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
554 SYMBOL_REF_TLS_MODEL (base));
555
556 /* Work out the offset from the anchor. */
557 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
558
559 /* If we're going to run a CSE pass, force the anchor into a register.
560 We will then be able to reuse registers for several accesses, if the
561 target costs say that that's worthwhile. */
562 mode = GET_MODE (base);
563 if (!cse_not_expected)
564 base = force_reg (mode, base);
565
566 return replace_equiv_address (x, plus_constant (mode, base, offset));
567 }
568
569 /* Copy the value or contents of X to a new temp reg and return that reg. */
570
571 rtx
copy_to_reg(rtx x)572 copy_to_reg (rtx x)
573 {
574 rtx temp = gen_reg_rtx (GET_MODE (x));
575
576 /* If not an operand, must be an address with PLUS and MULT so
577 do the computation. */
578 if (! general_operand (x, VOIDmode))
579 x = force_operand (x, temp);
580
581 if (x != temp)
582 emit_move_insn (temp, x);
583
584 return temp;
585 }
586
587 /* Like copy_to_reg but always give the new register mode Pmode
588 in case X is a constant. */
589
590 rtx
copy_addr_to_reg(rtx x)591 copy_addr_to_reg (rtx x)
592 {
593 return copy_to_mode_reg (Pmode, x);
594 }
595
596 /* Like copy_to_reg but always give the new register mode MODE
597 in case X is a constant. */
598
599 rtx
copy_to_mode_reg(machine_mode mode,rtx x)600 copy_to_mode_reg (machine_mode mode, rtx x)
601 {
602 rtx temp = gen_reg_rtx (mode);
603
604 /* If not an operand, must be an address with PLUS and MULT so
605 do the computation. */
606 if (! general_operand (x, VOIDmode))
607 x = force_operand (x, temp);
608
609 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
610 if (x != temp)
611 emit_move_insn (temp, x);
612 return temp;
613 }
614
615 /* Load X into a register if it is not already one.
616 Use mode MODE for the register.
617 X should be valid for mode MODE, but it may be a constant which
618 is valid for all integer modes; that's why caller must specify MODE.
619
620 The caller must not alter the value in the register we return,
621 since we mark it as a "constant" register. */
622
623 rtx
force_reg(machine_mode mode,rtx x)624 force_reg (machine_mode mode, rtx x)
625 {
626 rtx temp, set;
627 rtx_insn *insn;
628
629 if (REG_P (x))
630 return x;
631
632 if (general_operand (x, mode))
633 {
634 temp = gen_reg_rtx (mode);
635 insn = emit_move_insn (temp, x);
636 }
637 else
638 {
639 temp = force_operand (x, NULL_RTX);
640 if (REG_P (temp))
641 insn = get_last_insn ();
642 else
643 {
644 rtx temp2 = gen_reg_rtx (mode);
645 insn = emit_move_insn (temp2, temp);
646 temp = temp2;
647 }
648 }
649
650 /* Let optimizers know that TEMP's value never changes
651 and that X can be substituted for it. Don't get confused
652 if INSN set something else (such as a SUBREG of TEMP). */
653 if (CONSTANT_P (x)
654 && (set = single_set (insn)) != 0
655 && SET_DEST (set) == temp
656 && ! rtx_equal_p (x, SET_SRC (set)))
657 set_unique_reg_note (insn, REG_EQUAL, x);
658
659 /* Let optimizers know that TEMP is a pointer, and if so, the
660 known alignment of that pointer. */
661 {
662 unsigned align = 0;
663 if (GET_CODE (x) == SYMBOL_REF)
664 {
665 align = BITS_PER_UNIT;
666 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
667 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
668 }
669 else if (GET_CODE (x) == LABEL_REF)
670 align = BITS_PER_UNIT;
671 else if (GET_CODE (x) == CONST
672 && GET_CODE (XEXP (x, 0)) == PLUS
673 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
674 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
675 {
676 rtx s = XEXP (XEXP (x, 0), 0);
677 rtx c = XEXP (XEXP (x, 0), 1);
678 unsigned sa, ca;
679
680 sa = BITS_PER_UNIT;
681 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
682 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
683
684 if (INTVAL (c) == 0)
685 align = sa;
686 else
687 {
688 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
689 align = MIN (sa, ca);
690 }
691 }
692
693 if (align || (MEM_P (x) && MEM_POINTER (x)))
694 mark_reg_pointer (temp, align);
695 }
696
697 return temp;
698 }
699
700 /* If X is a memory ref, copy its contents to a new temp reg and return
701 that reg. Otherwise, return X. */
702
703 rtx
force_not_mem(rtx x)704 force_not_mem (rtx x)
705 {
706 rtx temp;
707
708 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
709 return x;
710
711 temp = gen_reg_rtx (GET_MODE (x));
712
713 if (MEM_POINTER (x))
714 REG_POINTER (temp) = 1;
715
716 emit_move_insn (temp, x);
717 return temp;
718 }
719
720 /* Copy X to TARGET (if it's nonzero and a reg)
721 or to a new temp reg and return that reg.
722 MODE is the mode to use for X in case it is a constant. */
723
724 rtx
copy_to_suggested_reg(rtx x,rtx target,machine_mode mode)725 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
726 {
727 rtx temp;
728
729 if (target && REG_P (target))
730 temp = target;
731 else
732 temp = gen_reg_rtx (mode);
733
734 emit_move_insn (temp, x);
735 return temp;
736 }
737
738 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
739 PUNSIGNEDP points to the signedness of the type and may be adjusted
740 to show what signedness to use on extension operations.
741
742 FOR_RETURN is nonzero if the caller is promoting the return value
743 of FNDECL, else it is for promoting args. */
744
745 machine_mode
promote_function_mode(const_tree type,machine_mode mode,int * punsignedp,const_tree funtype,int for_return)746 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
747 const_tree funtype, int for_return)
748 {
749 /* Called without a type node for a libcall. */
750 if (type == NULL_TREE)
751 {
752 if (INTEGRAL_MODE_P (mode))
753 return targetm.calls.promote_function_mode (NULL_TREE, mode,
754 punsignedp, funtype,
755 for_return);
756 else
757 return mode;
758 }
759
760 switch (TREE_CODE (type))
761 {
762 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
763 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
764 case POINTER_TYPE: case REFERENCE_TYPE:
765 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
766 for_return);
767
768 default:
769 return mode;
770 }
771 }
772 /* Return the mode to use to store a scalar of TYPE and MODE.
773 PUNSIGNEDP points to the signedness of the type and may be adjusted
774 to show what signedness to use on extension operations. */
775
776 machine_mode
promote_mode(const_tree type ATTRIBUTE_UNUSED,machine_mode mode,int * punsignedp ATTRIBUTE_UNUSED)777 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
778 int *punsignedp ATTRIBUTE_UNUSED)
779 {
780 #ifdef PROMOTE_MODE
781 enum tree_code code;
782 int unsignedp;
783 #endif
784
785 /* For libcalls this is invoked without TYPE from the backends
786 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
787 case. */
788 if (type == NULL_TREE)
789 return mode;
790
791 /* FIXME: this is the same logic that was there until GCC 4.4, but we
792 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
793 is not defined. The affected targets are M32C, S390, SPARC. */
794 #ifdef PROMOTE_MODE
795 code = TREE_CODE (type);
796 unsignedp = *punsignedp;
797
798 switch (code)
799 {
800 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
801 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
802 PROMOTE_MODE (mode, unsignedp, type);
803 *punsignedp = unsignedp;
804 return mode;
805 break;
806
807 #ifdef POINTERS_EXTEND_UNSIGNED
808 case REFERENCE_TYPE:
809 case POINTER_TYPE:
810 *punsignedp = POINTERS_EXTEND_UNSIGNED;
811 return targetm.addr_space.address_mode
812 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
813 break;
814 #endif
815
816 default:
817 return mode;
818 }
819 #else
820 return mode;
821 #endif
822 }
823
824
825 /* Use one of promote_mode or promote_function_mode to find the promoted
826 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
827 of DECL after promotion. */
828
829 machine_mode
promote_decl_mode(const_tree decl,int * punsignedp)830 promote_decl_mode (const_tree decl, int *punsignedp)
831 {
832 tree type = TREE_TYPE (decl);
833 int unsignedp = TYPE_UNSIGNED (type);
834 machine_mode mode = DECL_MODE (decl);
835 machine_mode pmode;
836
837 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
838 pmode = promote_function_mode (type, mode, &unsignedp,
839 TREE_TYPE (current_function_decl), 1);
840 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
841 pmode = promote_function_mode (type, mode, &unsignedp,
842 TREE_TYPE (current_function_decl), 2);
843 else
844 pmode = promote_mode (type, mode, &unsignedp);
845
846 if (punsignedp)
847 *punsignedp = unsignedp;
848 return pmode;
849 }
850
851 /* Return the promoted mode for name. If it is a named SSA_NAME, it
852 is the same as promote_decl_mode. Otherwise, it is the promoted
853 mode of a temp decl of same type as the SSA_NAME, if we had created
854 one. */
855
856 machine_mode
promote_ssa_mode(const_tree name,int * punsignedp)857 promote_ssa_mode (const_tree name, int *punsignedp)
858 {
859 gcc_assert (TREE_CODE (name) == SSA_NAME);
860
861 /* Partitions holding parms and results must be promoted as expected
862 by function.c. */
863 if (SSA_NAME_VAR (name)
864 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
865 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
866 {
867 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
868 if (mode != BLKmode)
869 return mode;
870 }
871
872 tree type = TREE_TYPE (name);
873 int unsignedp = TYPE_UNSIGNED (type);
874 machine_mode mode = TYPE_MODE (type);
875
876 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
877 if (mode == BLKmode)
878 {
879 gcc_assert (VECTOR_TYPE_P (type));
880 mode = type->type_common.mode;
881 }
882
883 machine_mode pmode = promote_mode (type, mode, &unsignedp);
884 if (punsignedp)
885 *punsignedp = unsignedp;
886
887 return pmode;
888 }
889
890
891
892 /* Controls the behavior of {anti_,}adjust_stack. */
893 static bool suppress_reg_args_size;
894
895 /* A helper for adjust_stack and anti_adjust_stack. */
896
897 static void
adjust_stack_1(rtx adjust,bool anti_p)898 adjust_stack_1 (rtx adjust, bool anti_p)
899 {
900 rtx temp;
901 rtx_insn *insn;
902
903 /* Hereafter anti_p means subtract_p. */
904 if (!STACK_GROWS_DOWNWARD)
905 anti_p = !anti_p;
906
907 temp = expand_binop (Pmode,
908 anti_p ? sub_optab : add_optab,
909 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
910 OPTAB_LIB_WIDEN);
911
912 if (temp != stack_pointer_rtx)
913 insn = emit_move_insn (stack_pointer_rtx, temp);
914 else
915 {
916 insn = get_last_insn ();
917 temp = single_set (insn);
918 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
919 }
920
921 if (!suppress_reg_args_size)
922 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
923 }
924
925 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
926 This pops when ADJUST is positive. ADJUST need not be constant. */
927
928 void
adjust_stack(rtx adjust)929 adjust_stack (rtx adjust)
930 {
931 if (adjust == const0_rtx)
932 return;
933
934 /* We expect all variable sized adjustments to be multiple of
935 PREFERRED_STACK_BOUNDARY. */
936 if (CONST_INT_P (adjust))
937 stack_pointer_delta -= INTVAL (adjust);
938
939 adjust_stack_1 (adjust, false);
940 }
941
942 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
943 This pushes when ADJUST is positive. ADJUST need not be constant. */
944
945 void
anti_adjust_stack(rtx adjust)946 anti_adjust_stack (rtx adjust)
947 {
948 if (adjust == const0_rtx)
949 return;
950
951 /* We expect all variable sized adjustments to be multiple of
952 PREFERRED_STACK_BOUNDARY. */
953 if (CONST_INT_P (adjust))
954 stack_pointer_delta += INTVAL (adjust);
955
956 adjust_stack_1 (adjust, true);
957 }
958
959 /* Round the size of a block to be pushed up to the boundary required
960 by this machine. SIZE is the desired size, which need not be constant. */
961
962 static rtx
round_push(rtx size)963 round_push (rtx size)
964 {
965 rtx align_rtx, alignm1_rtx;
966
967 if (!SUPPORTS_STACK_ALIGNMENT
968 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
969 {
970 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
971
972 if (align == 1)
973 return size;
974
975 if (CONST_INT_P (size))
976 {
977 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
978
979 if (INTVAL (size) != new_size)
980 size = GEN_INT (new_size);
981 return size;
982 }
983
984 align_rtx = GEN_INT (align);
985 alignm1_rtx = GEN_INT (align - 1);
986 }
987 else
988 {
989 /* If crtl->preferred_stack_boundary might still grow, use
990 virtual_preferred_stack_boundary_rtx instead. This will be
991 substituted by the right value in vregs pass and optimized
992 during combine. */
993 align_rtx = virtual_preferred_stack_boundary_rtx;
994 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
995 NULL_RTX);
996 }
997
998 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
999 but we know it can't. So add ourselves and then do
1000 TRUNC_DIV_EXPR. */
1001 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1002 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1003 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1004 NULL_RTX, 1);
1005 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1006
1007 return size;
1008 }
1009
1010 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1011 to a previously-created save area. If no save area has been allocated,
1012 this function will allocate one. If a save area is specified, it
1013 must be of the proper mode. */
1014
1015 void
emit_stack_save(enum save_level save_level,rtx * psave)1016 emit_stack_save (enum save_level save_level, rtx *psave)
1017 {
1018 rtx sa = *psave;
1019 /* The default is that we use a move insn and save in a Pmode object. */
1020 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1021 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1022
1023 /* See if this machine has anything special to do for this kind of save. */
1024 switch (save_level)
1025 {
1026 case SAVE_BLOCK:
1027 if (targetm.have_save_stack_block ())
1028 fcn = targetm.gen_save_stack_block;
1029 break;
1030 case SAVE_FUNCTION:
1031 if (targetm.have_save_stack_function ())
1032 fcn = targetm.gen_save_stack_function;
1033 break;
1034 case SAVE_NONLOCAL:
1035 if (targetm.have_save_stack_nonlocal ())
1036 fcn = targetm.gen_save_stack_nonlocal;
1037 break;
1038 default:
1039 break;
1040 }
1041
1042 /* If there is no save area and we have to allocate one, do so. Otherwise
1043 verify the save area is the proper mode. */
1044
1045 if (sa == 0)
1046 {
1047 if (mode != VOIDmode)
1048 {
1049 if (save_level == SAVE_NONLOCAL)
1050 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1051 else
1052 *psave = sa = gen_reg_rtx (mode);
1053 }
1054 }
1055
1056 do_pending_stack_adjust ();
1057 if (sa != 0)
1058 sa = validize_mem (sa);
1059 emit_insn (fcn (sa, stack_pointer_rtx));
1060 }
1061
1062 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1063 area made by emit_stack_save. If it is zero, we have nothing to do. */
1064
1065 void
emit_stack_restore(enum save_level save_level,rtx sa)1066 emit_stack_restore (enum save_level save_level, rtx sa)
1067 {
1068 /* The default is that we use a move insn. */
1069 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1070
1071 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1072 STACK_POINTER and HARD_FRAME_POINTER.
1073 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1074 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1075 aligned variables, which is reflected in ix86_can_eliminate.
1076 We normally still have the realigned STACK_POINTER that we can use.
1077 But if there is a stack restore still present at reload, it can trigger
1078 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1079 FRAME_POINTER into a hard reg.
1080 To prevent this situation, we force need_drap if we emit a stack
1081 restore. */
1082 if (SUPPORTS_STACK_ALIGNMENT)
1083 crtl->need_drap = true;
1084
1085 /* See if this machine has anything special to do for this kind of save. */
1086 switch (save_level)
1087 {
1088 case SAVE_BLOCK:
1089 if (targetm.have_restore_stack_block ())
1090 fcn = targetm.gen_restore_stack_block;
1091 break;
1092 case SAVE_FUNCTION:
1093 if (targetm.have_restore_stack_function ())
1094 fcn = targetm.gen_restore_stack_function;
1095 break;
1096 case SAVE_NONLOCAL:
1097 if (targetm.have_restore_stack_nonlocal ())
1098 fcn = targetm.gen_restore_stack_nonlocal;
1099 break;
1100 default:
1101 break;
1102 }
1103
1104 if (sa != 0)
1105 {
1106 sa = validize_mem (sa);
1107 /* These clobbers prevent the scheduler from moving
1108 references to variable arrays below the code
1109 that deletes (pops) the arrays. */
1110 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1111 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1112 }
1113
1114 discard_pending_stack_adjust ();
1115
1116 emit_insn (fcn (stack_pointer_rtx, sa));
1117 }
1118
1119 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1120 function. This should be called whenever we allocate or deallocate
1121 dynamic stack space. */
1122
1123 void
update_nonlocal_goto_save_area(void)1124 update_nonlocal_goto_save_area (void)
1125 {
1126 tree t_save;
1127 rtx r_save;
1128
1129 /* The nonlocal_goto_save_area object is an array of N pointers. The
1130 first one is used for the frame pointer save; the rest are sized by
1131 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1132 of the stack save area slots. */
1133 t_save = build4 (ARRAY_REF,
1134 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1135 cfun->nonlocal_goto_save_area,
1136 integer_one_node, NULL_TREE, NULL_TREE);
1137 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1138
1139 emit_stack_save (SAVE_NONLOCAL, &r_save);
1140 }
1141
1142 /* Record a new stack level for the current function. This should be called
1143 whenever we allocate or deallocate dynamic stack space. */
1144
1145 void
record_new_stack_level(void)1146 record_new_stack_level (void)
1147 {
1148 /* Record the new stack level for nonlocal gotos. */
1149 if (cfun->nonlocal_goto_save_area)
1150 update_nonlocal_goto_save_area ();
1151
1152 /* Record the new stack level for SJLJ exceptions. */
1153 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1154 update_sjlj_context ();
1155 }
1156
1157 /* Return an rtx representing the address of an area of memory dynamically
1158 pushed on the stack.
1159
1160 Any required stack pointer alignment is preserved.
1161
1162 SIZE is an rtx representing the size of the area.
1163
1164 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1165 parameter may be zero. If so, a proper value will be extracted
1166 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1167
1168 REQUIRED_ALIGN is the alignment (in bits) required for the region
1169 of memory.
1170
1171 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1172 stack space allocated by the generated code cannot be added with itself
1173 in the course of the execution of the function. It is always safe to
1174 pass FALSE here and the following criterion is sufficient in order to
1175 pass TRUE: every path in the CFG that starts at the allocation point and
1176 loops to it executes the associated deallocation code. */
1177
1178 rtx
allocate_dynamic_stack_space(rtx size,unsigned size_align,unsigned required_align,bool cannot_accumulate)1179 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1180 unsigned required_align, bool cannot_accumulate)
1181 {
1182 HOST_WIDE_INT stack_usage_size = -1;
1183 rtx_code_label *final_label;
1184 rtx final_target, target;
1185 unsigned extra_align = 0;
1186 bool must_align;
1187
1188 /* If we're asking for zero bytes, it doesn't matter what we point
1189 to since we can't dereference it. But return a reasonable
1190 address anyway. */
1191 if (size == const0_rtx)
1192 return virtual_stack_dynamic_rtx;
1193
1194 /* Otherwise, show we're calling alloca or equivalent. */
1195 cfun->calls_alloca = 1;
1196
1197 /* If stack usage info is requested, look into the size we are passed.
1198 We need to do so this early to avoid the obfuscation that may be
1199 introduced later by the various alignment operations. */
1200 if (flag_stack_usage_info)
1201 {
1202 if (CONST_INT_P (size))
1203 stack_usage_size = INTVAL (size);
1204 else if (REG_P (size))
1205 {
1206 /* Look into the last emitted insn and see if we can deduce
1207 something for the register. */
1208 rtx_insn *insn;
1209 rtx set, note;
1210 insn = get_last_insn ();
1211 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1212 {
1213 if (CONST_INT_P (SET_SRC (set)))
1214 stack_usage_size = INTVAL (SET_SRC (set));
1215 else if ((note = find_reg_equal_equiv_note (insn))
1216 && CONST_INT_P (XEXP (note, 0)))
1217 stack_usage_size = INTVAL (XEXP (note, 0));
1218 }
1219 }
1220
1221 /* If the size is not constant, we can't say anything. */
1222 if (stack_usage_size == -1)
1223 {
1224 current_function_has_unbounded_dynamic_stack_size = 1;
1225 stack_usage_size = 0;
1226 }
1227 }
1228
1229 /* Ensure the size is in the proper mode. */
1230 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1231 size = convert_to_mode (Pmode, size, 1);
1232
1233 /* Adjust SIZE_ALIGN, if needed. */
1234 if (CONST_INT_P (size))
1235 {
1236 unsigned HOST_WIDE_INT lsb;
1237
1238 lsb = INTVAL (size);
1239 lsb &= -lsb;
1240
1241 /* Watch out for overflow truncating to "unsigned". */
1242 if (lsb > UINT_MAX / BITS_PER_UNIT)
1243 size_align = 1u << (HOST_BITS_PER_INT - 1);
1244 else
1245 size_align = (unsigned)lsb * BITS_PER_UNIT;
1246 }
1247 else if (size_align < BITS_PER_UNIT)
1248 size_align = BITS_PER_UNIT;
1249
1250 /* We can't attempt to minimize alignment necessary, because we don't
1251 know the final value of preferred_stack_boundary yet while executing
1252 this code. */
1253 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1254 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1255
1256 /* We will need to ensure that the address we return is aligned to
1257 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1258 always know its final value at this point in the compilation (it
1259 might depend on the size of the outgoing parameter lists, for
1260 example), so we must align the value to be returned in that case.
1261 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1262 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1263 We must also do an alignment operation on the returned value if
1264 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1265
1266 If we have to align, we must leave space in SIZE for the hole
1267 that might result from the alignment operation. */
1268
1269 must_align = (crtl->preferred_stack_boundary < required_align);
1270 if (must_align)
1271 {
1272 if (required_align > PREFERRED_STACK_BOUNDARY)
1273 extra_align = PREFERRED_STACK_BOUNDARY;
1274 else if (required_align > STACK_BOUNDARY)
1275 extra_align = STACK_BOUNDARY;
1276 else
1277 extra_align = BITS_PER_UNIT;
1278 }
1279
1280 /* ??? STACK_POINTER_OFFSET is always defined now. */
1281 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1282 must_align = true;
1283 extra_align = BITS_PER_UNIT;
1284 #endif
1285
1286 if (must_align)
1287 {
1288 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1289
1290 size = plus_constant (Pmode, size, extra);
1291 size = force_operand (size, NULL_RTX);
1292
1293 if (flag_stack_usage_info)
1294 stack_usage_size += extra;
1295
1296 if (extra && size_align > extra_align)
1297 size_align = extra_align;
1298 }
1299
1300 /* Round the size to a multiple of the required stack alignment.
1301 Since the stack if presumed to be rounded before this allocation,
1302 this will maintain the required alignment.
1303
1304 If the stack grows downward, we could save an insn by subtracting
1305 SIZE from the stack pointer and then aligning the stack pointer.
1306 The problem with this is that the stack pointer may be unaligned
1307 between the execution of the subtraction and alignment insns and
1308 some machines do not allow this. Even on those that do, some
1309 signal handlers malfunction if a signal should occur between those
1310 insns. Since this is an extremely rare event, we have no reliable
1311 way of knowing which systems have this problem. So we avoid even
1312 momentarily mis-aligning the stack. */
1313 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1314 {
1315 size = round_push (size);
1316
1317 if (flag_stack_usage_info)
1318 {
1319 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1320 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1321 }
1322 }
1323
1324 target = gen_reg_rtx (Pmode);
1325
1326 /* The size is supposed to be fully adjusted at this point so record it
1327 if stack usage info is requested. */
1328 if (flag_stack_usage_info)
1329 {
1330 current_function_dynamic_stack_size += stack_usage_size;
1331
1332 /* ??? This is gross but the only safe stance in the absence
1333 of stack usage oriented flow analysis. */
1334 if (!cannot_accumulate)
1335 current_function_has_unbounded_dynamic_stack_size = 1;
1336 }
1337
1338 final_label = NULL;
1339 final_target = NULL_RTX;
1340
1341 /* If we are splitting the stack, we need to ask the backend whether
1342 there is enough room on the current stack. If there isn't, or if
1343 the backend doesn't know how to tell is, then we need to call a
1344 function to allocate memory in some other way. This memory will
1345 be released when we release the current stack segment. The
1346 effect is that stack allocation becomes less efficient, but at
1347 least it doesn't cause a stack overflow. */
1348 if (flag_split_stack)
1349 {
1350 rtx_code_label *available_label;
1351 rtx ask, space, func;
1352
1353 available_label = NULL;
1354
1355 if (targetm.have_split_stack_space_check ())
1356 {
1357 available_label = gen_label_rtx ();
1358
1359 /* This instruction will branch to AVAILABLE_LABEL if there
1360 are SIZE bytes available on the stack. */
1361 emit_insn (targetm.gen_split_stack_space_check
1362 (size, available_label));
1363 }
1364
1365 /* The __morestack_allocate_stack_space function will allocate
1366 memory using malloc. If the alignment of the memory returned
1367 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1368 make sure we allocate enough space. */
1369 if (MALLOC_ABI_ALIGNMENT >= required_align)
1370 ask = size;
1371 else
1372 {
1373 ask = expand_binop (Pmode, add_optab, size,
1374 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1375 Pmode),
1376 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1377 must_align = true;
1378 }
1379
1380 func = init_one_libfunc ("__morestack_allocate_stack_space");
1381
1382 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1383 1, ask, Pmode);
1384
1385 if (available_label == NULL_RTX)
1386 return space;
1387
1388 final_target = gen_reg_rtx (Pmode);
1389
1390 emit_move_insn (final_target, space);
1391
1392 final_label = gen_label_rtx ();
1393 emit_jump (final_label);
1394
1395 emit_label (available_label);
1396 }
1397
1398 do_pending_stack_adjust ();
1399
1400 /* We ought to be called always on the toplevel and stack ought to be aligned
1401 properly. */
1402 gcc_assert (!(stack_pointer_delta
1403 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1404
1405 /* If needed, check that we have the required amount of stack. Take into
1406 account what has already been checked. */
1407 if (STACK_CHECK_MOVING_SP)
1408 ;
1409 else if (flag_stack_check == GENERIC_STACK_CHECK)
1410 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1411 size);
1412 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1413 probe_stack_range (STACK_CHECK_PROTECT, size);
1414
1415 /* Don't let anti_adjust_stack emit notes. */
1416 suppress_reg_args_size = true;
1417
1418 /* Perform the required allocation from the stack. Some systems do
1419 this differently than simply incrementing/decrementing from the
1420 stack pointer, such as acquiring the space by calling malloc(). */
1421 if (targetm.have_allocate_stack ())
1422 {
1423 struct expand_operand ops[2];
1424 /* We don't have to check against the predicate for operand 0 since
1425 TARGET is known to be a pseudo of the proper mode, which must
1426 be valid for the operand. */
1427 create_fixed_operand (&ops[0], target);
1428 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1429 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1430 }
1431 else
1432 {
1433 int saved_stack_pointer_delta;
1434
1435 if (!STACK_GROWS_DOWNWARD)
1436 emit_move_insn (target, virtual_stack_dynamic_rtx);
1437
1438 /* Check stack bounds if necessary. */
1439 if (crtl->limit_stack)
1440 {
1441 rtx available;
1442 rtx_code_label *space_available = gen_label_rtx ();
1443 if (STACK_GROWS_DOWNWARD)
1444 available = expand_binop (Pmode, sub_optab,
1445 stack_pointer_rtx, stack_limit_rtx,
1446 NULL_RTX, 1, OPTAB_WIDEN);
1447 else
1448 available = expand_binop (Pmode, sub_optab,
1449 stack_limit_rtx, stack_pointer_rtx,
1450 NULL_RTX, 1, OPTAB_WIDEN);
1451
1452 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1453 space_available);
1454 if (targetm.have_trap ())
1455 emit_insn (targetm.gen_trap ());
1456 else
1457 error ("stack limits not supported on this target");
1458 emit_barrier ();
1459 emit_label (space_available);
1460 }
1461
1462 saved_stack_pointer_delta = stack_pointer_delta;
1463
1464 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1465 anti_adjust_stack_and_probe (size, false);
1466 else
1467 anti_adjust_stack (size);
1468
1469 /* Even if size is constant, don't modify stack_pointer_delta.
1470 The constant size alloca should preserve
1471 crtl->preferred_stack_boundary alignment. */
1472 stack_pointer_delta = saved_stack_pointer_delta;
1473
1474 if (STACK_GROWS_DOWNWARD)
1475 emit_move_insn (target, virtual_stack_dynamic_rtx);
1476 }
1477
1478 suppress_reg_args_size = false;
1479
1480 /* Finish up the split stack handling. */
1481 if (final_label != NULL_RTX)
1482 {
1483 gcc_assert (flag_split_stack);
1484 emit_move_insn (final_target, target);
1485 emit_label (final_label);
1486 target = final_target;
1487 }
1488
1489 if (must_align)
1490 {
1491 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1492 but we know it can't. So add ourselves and then do
1493 TRUNC_DIV_EXPR. */
1494 target = expand_binop (Pmode, add_optab, target,
1495 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1496 Pmode),
1497 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1498 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1499 gen_int_mode (required_align / BITS_PER_UNIT,
1500 Pmode),
1501 NULL_RTX, 1);
1502 target = expand_mult (Pmode, target,
1503 gen_int_mode (required_align / BITS_PER_UNIT,
1504 Pmode),
1505 NULL_RTX, 1);
1506 }
1507
1508 /* Now that we've committed to a return value, mark its alignment. */
1509 mark_reg_pointer (target, required_align);
1510
1511 /* Record the new stack level. */
1512 record_new_stack_level ();
1513
1514 return target;
1515 }
1516
1517 /* A front end may want to override GCC's stack checking by providing a
1518 run-time routine to call to check the stack, so provide a mechanism for
1519 calling that routine. */
1520
1521 static GTY(()) rtx stack_check_libfunc;
1522
1523 void
set_stack_check_libfunc(const char * libfunc_name)1524 set_stack_check_libfunc (const char *libfunc_name)
1525 {
1526 gcc_assert (stack_check_libfunc == NULL_RTX);
1527 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1528 }
1529
1530 /* Emit one stack probe at ADDRESS, an address within the stack. */
1531
1532 void
emit_stack_probe(rtx address)1533 emit_stack_probe (rtx address)
1534 {
1535 if (targetm.have_probe_stack_address ())
1536 emit_insn (targetm.gen_probe_stack_address (address));
1537 else
1538 {
1539 rtx memref = gen_rtx_MEM (word_mode, address);
1540
1541 MEM_VOLATILE_P (memref) = 1;
1542
1543 /* See if we have an insn to probe the stack. */
1544 if (targetm.have_probe_stack ())
1545 emit_insn (targetm.gen_probe_stack (memref));
1546 else
1547 emit_move_insn (memref, const0_rtx);
1548 }
1549 }
1550
1551 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1552 FIRST is a constant and size is a Pmode RTX. These are offsets from
1553 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1554 or subtract them from the stack pointer. */
1555
1556 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1557
1558 #if STACK_GROWS_DOWNWARD
1559 #define STACK_GROW_OP MINUS
1560 #define STACK_GROW_OPTAB sub_optab
1561 #define STACK_GROW_OFF(off) -(off)
1562 #else
1563 #define STACK_GROW_OP PLUS
1564 #define STACK_GROW_OPTAB add_optab
1565 #define STACK_GROW_OFF(off) (off)
1566 #endif
1567
1568 void
probe_stack_range(HOST_WIDE_INT first,rtx size)1569 probe_stack_range (HOST_WIDE_INT first, rtx size)
1570 {
1571 /* First ensure SIZE is Pmode. */
1572 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1573 size = convert_to_mode (Pmode, size, 1);
1574
1575 /* Next see if we have a function to check the stack. */
1576 if (stack_check_libfunc)
1577 {
1578 rtx addr = memory_address (Pmode,
1579 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1580 stack_pointer_rtx,
1581 plus_constant (Pmode,
1582 size, first)));
1583 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr,
1584 Pmode);
1585 }
1586
1587 /* Next see if we have an insn to check the stack. */
1588 else if (targetm.have_check_stack ())
1589 {
1590 struct expand_operand ops[1];
1591 rtx addr = memory_address (Pmode,
1592 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1593 stack_pointer_rtx,
1594 plus_constant (Pmode,
1595 size, first)));
1596 bool success;
1597 create_input_operand (&ops[0], addr, Pmode);
1598 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1599 gcc_assert (success);
1600 }
1601
1602 /* Otherwise we have to generate explicit probes. If we have a constant
1603 small number of them to generate, that's the easy case. */
1604 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1605 {
1606 HOST_WIDE_INT isize = INTVAL (size), i;
1607 rtx addr;
1608
1609 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1610 it exceeds SIZE. If only one probe is needed, this will not
1611 generate any code. Then probe at FIRST + SIZE. */
1612 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1613 {
1614 addr = memory_address (Pmode,
1615 plus_constant (Pmode, stack_pointer_rtx,
1616 STACK_GROW_OFF (first + i)));
1617 emit_stack_probe (addr);
1618 }
1619
1620 addr = memory_address (Pmode,
1621 plus_constant (Pmode, stack_pointer_rtx,
1622 STACK_GROW_OFF (first + isize)));
1623 emit_stack_probe (addr);
1624 }
1625
1626 /* In the variable case, do the same as above, but in a loop. Note that we
1627 must be extra careful with variables wrapping around because we might be
1628 at the very top (or the very bottom) of the address space and we have to
1629 be able to handle this case properly; in particular, we use an equality
1630 test for the loop condition. */
1631 else
1632 {
1633 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1634 rtx_code_label *loop_lab = gen_label_rtx ();
1635 rtx_code_label *end_lab = gen_label_rtx ();
1636
1637 /* Step 1: round SIZE to the previous multiple of the interval. */
1638
1639 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1640 rounded_size
1641 = simplify_gen_binary (AND, Pmode, size,
1642 gen_int_mode (-PROBE_INTERVAL, Pmode));
1643 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1644
1645
1646 /* Step 2: compute initial and final value of the loop counter. */
1647
1648 /* TEST_ADDR = SP + FIRST. */
1649 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1650 stack_pointer_rtx,
1651 gen_int_mode (first, Pmode)),
1652 NULL_RTX);
1653
1654 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1655 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1656 test_addr,
1657 rounded_size_op), NULL_RTX);
1658
1659
1660 /* Step 3: the loop
1661
1662 while (TEST_ADDR != LAST_ADDR)
1663 {
1664 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1665 probe at TEST_ADDR
1666 }
1667
1668 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1669 until it is equal to ROUNDED_SIZE. */
1670
1671 emit_label (loop_lab);
1672
1673 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1674 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1675 end_lab);
1676
1677 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1678 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1679 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1680 1, OPTAB_WIDEN);
1681
1682 gcc_assert (temp == test_addr);
1683
1684 /* Probe at TEST_ADDR. */
1685 emit_stack_probe (test_addr);
1686
1687 emit_jump (loop_lab);
1688
1689 emit_label (end_lab);
1690
1691
1692 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1693 that SIZE is equal to ROUNDED_SIZE. */
1694
1695 /* TEMP = SIZE - ROUNDED_SIZE. */
1696 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1697 if (temp != const0_rtx)
1698 {
1699 rtx addr;
1700
1701 if (CONST_INT_P (temp))
1702 {
1703 /* Use [base + disp} addressing mode if supported. */
1704 HOST_WIDE_INT offset = INTVAL (temp);
1705 addr = memory_address (Pmode,
1706 plus_constant (Pmode, last_addr,
1707 STACK_GROW_OFF (offset)));
1708 }
1709 else
1710 {
1711 /* Manual CSE if the difference is not known at compile-time. */
1712 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1713 addr = memory_address (Pmode,
1714 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1715 last_addr, temp));
1716 }
1717
1718 emit_stack_probe (addr);
1719 }
1720 }
1721
1722 /* Make sure nothing is scheduled before we are done. */
1723 emit_insn (gen_blockage ());
1724 }
1725
1726 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1727 while probing it. This pushes when SIZE is positive. SIZE need not
1728 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1729 by plus SIZE at the end. */
1730
1731 void
anti_adjust_stack_and_probe(rtx size,bool adjust_back)1732 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1733 {
1734 /* We skip the probe for the first interval + a small dope of 4 words and
1735 probe that many bytes past the specified size to maintain a protection
1736 area at the botton of the stack. */
1737 const int dope = 4 * UNITS_PER_WORD;
1738
1739 /* First ensure SIZE is Pmode. */
1740 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1741 size = convert_to_mode (Pmode, size, 1);
1742
1743 /* If we have a constant small number of probes to generate, that's the
1744 easy case. */
1745 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1746 {
1747 HOST_WIDE_INT isize = INTVAL (size), i;
1748 bool first_probe = true;
1749
1750 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1751 values of N from 1 until it exceeds SIZE. If only one probe is
1752 needed, this will not generate any code. Then adjust and probe
1753 to PROBE_INTERVAL + SIZE. */
1754 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1755 {
1756 if (first_probe)
1757 {
1758 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1759 first_probe = false;
1760 }
1761 else
1762 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1763 emit_stack_probe (stack_pointer_rtx);
1764 }
1765
1766 if (first_probe)
1767 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1768 else
1769 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1770 emit_stack_probe (stack_pointer_rtx);
1771 }
1772
1773 /* In the variable case, do the same as above, but in a loop. Note that we
1774 must be extra careful with variables wrapping around because we might be
1775 at the very top (or the very bottom) of the address space and we have to
1776 be able to handle this case properly; in particular, we use an equality
1777 test for the loop condition. */
1778 else
1779 {
1780 rtx rounded_size, rounded_size_op, last_addr, temp;
1781 rtx_code_label *loop_lab = gen_label_rtx ();
1782 rtx_code_label *end_lab = gen_label_rtx ();
1783
1784
1785 /* Step 1: round SIZE to the previous multiple of the interval. */
1786
1787 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1788 rounded_size
1789 = simplify_gen_binary (AND, Pmode, size,
1790 gen_int_mode (-PROBE_INTERVAL, Pmode));
1791 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1792
1793
1794 /* Step 2: compute initial and final value of the loop counter. */
1795
1796 /* SP = SP_0 + PROBE_INTERVAL. */
1797 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1798
1799 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1800 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1801 stack_pointer_rtx,
1802 rounded_size_op), NULL_RTX);
1803
1804
1805 /* Step 3: the loop
1806
1807 while (SP != LAST_ADDR)
1808 {
1809 SP = SP + PROBE_INTERVAL
1810 probe at SP
1811 }
1812
1813 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1814 values of N from 1 until it is equal to ROUNDED_SIZE. */
1815
1816 emit_label (loop_lab);
1817
1818 /* Jump to END_LAB if SP == LAST_ADDR. */
1819 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1820 Pmode, 1, end_lab);
1821
1822 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1823 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1824 emit_stack_probe (stack_pointer_rtx);
1825
1826 emit_jump (loop_lab);
1827
1828 emit_label (end_lab);
1829
1830
1831 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1832 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1833
1834 /* TEMP = SIZE - ROUNDED_SIZE. */
1835 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1836 if (temp != const0_rtx)
1837 {
1838 /* Manual CSE if the difference is not known at compile-time. */
1839 if (GET_CODE (temp) != CONST_INT)
1840 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1841 anti_adjust_stack (temp);
1842 emit_stack_probe (stack_pointer_rtx);
1843 }
1844 }
1845
1846 /* Adjust back and account for the additional first interval. */
1847 if (adjust_back)
1848 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1849 else
1850 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1851 }
1852
1853 /* Return an rtx representing the register or memory location
1854 in which a scalar value of data type VALTYPE
1855 was returned by a function call to function FUNC.
1856 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1857 function is known, otherwise 0.
1858 OUTGOING is 1 if on a machine with register windows this function
1859 should return the register in which the function will put its result
1860 and 0 otherwise. */
1861
1862 rtx
hard_function_value(const_tree valtype,const_tree func,const_tree fntype,int outgoing ATTRIBUTE_UNUSED)1863 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1864 int outgoing ATTRIBUTE_UNUSED)
1865 {
1866 rtx val;
1867
1868 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1869
1870 if (REG_P (val)
1871 && GET_MODE (val) == BLKmode)
1872 {
1873 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1874 machine_mode tmpmode;
1875
1876 /* int_size_in_bytes can return -1. We don't need a check here
1877 since the value of bytes will then be large enough that no
1878 mode will match anyway. */
1879
1880 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1881 tmpmode != VOIDmode;
1882 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1883 {
1884 /* Have we found a large enough mode? */
1885 if (GET_MODE_SIZE (tmpmode) >= bytes)
1886 break;
1887 }
1888
1889 /* No suitable mode found. */
1890 gcc_assert (tmpmode != VOIDmode);
1891
1892 PUT_MODE (val, tmpmode);
1893 }
1894 return val;
1895 }
1896
1897 /* Return an rtx representing the register or memory location
1898 in which a scalar value of mode MODE was returned by a library call. */
1899
1900 rtx
hard_libcall_value(machine_mode mode,rtx fun)1901 hard_libcall_value (machine_mode mode, rtx fun)
1902 {
1903 return targetm.calls.libcall_value (mode, fun);
1904 }
1905
1906 /* Look up the tree code for a given rtx code
1907 to provide the arithmetic operation for real_arithmetic.
1908 The function returns an int because the caller may not know
1909 what `enum tree_code' means. */
1910
1911 int
rtx_to_tree_code(enum rtx_code code)1912 rtx_to_tree_code (enum rtx_code code)
1913 {
1914 enum tree_code tcode;
1915
1916 switch (code)
1917 {
1918 case PLUS:
1919 tcode = PLUS_EXPR;
1920 break;
1921 case MINUS:
1922 tcode = MINUS_EXPR;
1923 break;
1924 case MULT:
1925 tcode = MULT_EXPR;
1926 break;
1927 case DIV:
1928 tcode = RDIV_EXPR;
1929 break;
1930 case SMIN:
1931 tcode = MIN_EXPR;
1932 break;
1933 case SMAX:
1934 tcode = MAX_EXPR;
1935 break;
1936 default:
1937 tcode = LAST_AND_UNUSED_TREE_CODE;
1938 break;
1939 }
1940 return ((int) tcode);
1941 }
1942
1943 #include "gt-explow.h"
1944