1 /* Generate code from machine description to recognize rtl as insns.
2    Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 
21 /* This program is used to produce insn-recog.c, which contains a
22    function called `recog' plus its subroutines.  These functions
23    contain a decision tree that recognizes whether an rtx, the
24    argument given to recog, is a valid instruction.
25 
26    recog returns -1 if the rtx is not valid.  If the rtx is valid,
27    recog returns a nonnegative number which is the insn code number
28    for the pattern that matched.  This is the same as the order in the
29    machine description of the entry that matched.  This number can be
30    used as an index into various insn_* tables, such as insn_template,
31    insn_outfun, and insn_n_operands (found in insn-output.c).
32 
33    The third argument to recog is an optional pointer to an int.  If
34    present, recog will accept a pattern if it matches except for
35    missing CLOBBER expressions at the end.  In that case, the value
36    pointed to by the optional pointer will be set to the number of
37    CLOBBERs that need to be added (it should be initialized to zero by
38    the caller).  If it is set nonzero, the caller should allocate a
39    PARALLEL of the appropriate size, copy the initial entries, and
40    call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
41 
42    This program also generates the function `split_insns', which
43    returns 0 if the rtl could not be split, or it returns the split
44    rtl as an INSN list.
45 
46    This program also generates the function `peephole2_insns', which
47    returns 0 if the rtl could not be matched.  If there was a match,
48    the new rtl is returned in an INSN list, and LAST_INSN will point
49    to the last recognized insn in the old sequence.
50 
51 
52    At a high level, the algorithm used in this file is as follows:
53 
54    1. Build up a decision tree for each routine, using the following
55       approach to matching an rtx:
56 
57       - First determine the "shape" of the rtx, based on GET_CODE,
58 	XVECLEN and XINT.  This phase examines SET_SRCs before SET_DESTs
59 	since SET_SRCs tend to be more distinctive.  It examines other
60 	operands in numerical order, since the canonicalization rules
61 	prefer putting complex operands of commutative operators first.
62 
63       - Next check modes and predicates.  This phase examines all
64 	operands in numerical order, even for SETs, since the mode of a
65 	SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 	for constant integers.
67 
68       - Next check match_dups.
69 
70       - Finally check the C condition and (where appropriate) pnum_clobbers.
71 
72    2. Try to optimize the tree by removing redundant tests, CSEing tests,
73       folding tests together, etc.
74 
75    3. Look for common subtrees and split them out into "pattern" routines.
76       These common subtrees can be identical or they can differ in mode,
77       code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78       In the latter case the users of the pattern routine pass the
79       appropriate mode, etc., as argument.  For example, if two patterns
80       contain:
81 
82          (plus:SI (match_operand:SI 1 "register_operand")
83 	          (match_operand:SI 2 "register_operand"))
84 
85       we can split the associated matching code out into a subroutine.
86       If a pattern contains:
87 
88          (minus:DI (match_operand:DI 1 "register_operand")
89 	           (match_operand:DI 2 "register_operand"))
90 
91       then we can consider using the same matching routine for both
92       the plus and minus expressions, passing PLUS and SImode in the
93       former case and MINUS and DImode in the latter case.
94 
95       The main aim of this phase is to reduce the compile time of the
96       insn-recog.c code and to reduce the amount of object code in
97       insn-recog.o.
98 
99    4. Split the matching trees into functions, trying to limit the
100       size of each function to a sensible amount.
101 
102       Again, the main aim of this phase is to reduce the compile time
103       of insn-recog.c.  (It doesn't help with the size of insn-recog.o.)
104 
105    5. Write out C++ code for each function.  */
106 
107 #include "bconfig.h"
108 #define INCLUDE_ALGORITHM
109 #include "system.h"
110 #include "coretypes.h"
111 #include "tm.h"
112 #include "rtl.h"
113 #include "errors.h"
114 #include "read-md.h"
115 #include "gensupport.h"
116 
117 #undef GENERATOR_FILE
118 enum true_rtx_doe {
119 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
120 #include "rtl.def"
121 #undef DEF_RTL_EXPR
122   FIRST_GENERATOR_RTX_CODE
123 };
124 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125 #define GENERATOR_FILE 1
126 
127 /* Debugging variables to control which optimizations are performed.
128    Note that disabling merge_states_p leads to very large output.  */
129 static const bool merge_states_p = true;
130 static const bool collapse_optional_decisions_p = true;
131 static const bool cse_tests_p = true;
132 static const bool simplify_tests_p = true;
133 static const bool use_operand_variables_p = true;
134 static const bool use_subroutines_p = true;
135 static const bool use_pattern_routines_p = true;
136 
137 /* Whether to add comments for optional tests that we decided to keep.
138    Can be useful when debugging the generator itself but is noise when
139    debugging the generated code.  */
140 static const bool mark_optional_transitions_p = false;
141 
142 /* Whether pattern routines should calculate positions relative to their
143    rtx parameter rather than use absolute positions.  This e.g. allows
144    a pattern routine to be shared between a plain SET and a PARALLEL
145    that includes a SET.
146 
147    In principle it sounds like this should be useful, especially for
148    recog_for_combine, where the plain SET form is generated automatically
149    from a PARALLEL of a single SET and some CLOBBERs.  In practice it doesn't
150    seem to help much and leads to slightly bigger object files.  */
151 static const bool relative_patterns_p = false;
152 
153 /* Whether pattern routines should be allowed to test whether pnum_clobbers
154    is null.  This requires passing pnum_clobbers around as a parameter.  */
155 static const bool pattern_have_num_clobbers_p = true;
156 
157 /* Whether pattern routines should be allowed to test .md file C conditions.
158    This requires passing insn around as a parameter, in case the C
159    condition refers to it.  In practice this tends to lead to bigger
160    object files.  */
161 static const bool pattern_c_test_p = false;
162 
163 /* Whether to require each parameter passed to a pattern routine to be
164    unique.  Disabling this check for example allows unary operators with
165    matching modes (like NEG) and unary operators with mismatched modes
166    (like ZERO_EXTEND) to be matched by a single pattern.  However, we then
167    often have cases where the same value is passed too many times.  */
168 static const bool force_unique_params_p = true;
169 
170 /* The maximum (approximate) depth of block nesting that an individual
171    routine or subroutine should have.  This limit is about keeping the
172    output readable rather than reducing compile time.  */
173 static const unsigned int MAX_DEPTH = 6;
174 
175 /* The minimum number of pseudo-statements that a state must have before
176    we split it out into a subroutine.  */
177 static const unsigned int MIN_NUM_STATEMENTS = 5;
178 
179 /* The number of pseudo-statements a state can have before we consider
180    splitting out substates into subroutines.  This limit is about avoiding
181    compile-time problems with very big functions (and also about keeping
182    functions within --param optimization limits, etc.).  */
183 static const unsigned int MAX_NUM_STATEMENTS = 200;
184 
185 /* The minimum number of pseudo-statements that can be used in a pattern
186    routine.  */
187 static const unsigned int MIN_COMBINE_COST = 4;
188 
189 /* The maximum number of arguments that a pattern routine can have.
190    The idea is to prevent one pattern getting a ridiculous number of
191    arguments when it would be more beneficial to have a separate pattern
192    routine instead.  */
193 static const unsigned int MAX_PATTERN_PARAMS = 5;
194 
195 /* The maximum operand number plus one.  */
196 int num_operands;
197 
198 /* Ways of obtaining an rtx to be tested.  */
199 enum position_type {
200   /* PATTERN (peep2_next_insn (ARG)).  */
201   POS_PEEP2_INSN,
202 
203   /* XEXP (BASE, ARG).  */
204   POS_XEXP,
205 
206   /* XVECEXP (BASE, 0, ARG).  */
207   POS_XVECEXP0
208 };
209 
210 /* The position of an rtx relative to X0.  Each useful position is
211    represented by exactly one instance of this structure.  */
212 struct position
213 {
214   /* The parent rtx.  This is the root position for POS_PEEP2_INSNs.  */
215   struct position *base;
216 
217   /* A position with the same BASE and TYPE, but with the next value
218      of ARG.  */
219   struct position *next;
220 
221   /* A list of all POS_XEXP positions that use this one as their base,
222      chained by NEXT fields.  The first entry represents XEXP (this, 0),
223      the second represents XEXP (this, 1), and so on.  */
224   struct position *xexps;
225 
226   /* A list of POS_XVECEXP0 positions that use this one as their base,
227      chained by NEXT fields.  The first entry represents XVECEXP (this, 0, 0),
228      the second represents XVECEXP (this, 0, 1), and so on.  */
229   struct position *xvecexp0s;
230 
231   /* The type of position.  */
232   enum position_type type;
233 
234   /* The argument to TYPE (shown as ARG in the position_type comments).  */
235   int arg;
236 
237   /* The instruction to which the position belongs.  */
238   unsigned int insn_id;
239 
240   /* The depth of this position relative to the instruction pattern.
241      E.g. if the instruction pattern is a SET, the SET itself has a
242      depth of 0 while the SET_DEST and SET_SRC have depths of 1.  */
243   unsigned int depth;
244 
245   /* A unique identifier for this position.  */
246   unsigned int id;
247 };
248 
249 enum routine_type {
250   SUBPATTERN, RECOG, SPLIT, PEEPHOLE2
251 };
252 
253 /* The root position (x0).  */
254 static struct position root_pos;
255 
256 /* The number of positions created.  Also one higher than the maximum
257    position id.  */
258 static unsigned int num_positions = 1;
259 
260 /* A list of all POS_PEEP2_INSNs.  The entry for insn 0 is the root position,
261    since we are given that instruction's pattern as x0.  */
262 static struct position *peep2_insn_pos_list = &root_pos;
263 
264 /* Return a position with the given BASE, TYPE and ARG.  NEXT_PTR
265    points to where the unique object that represents the position
266    should be stored.  Create the object if it doesn't already exist,
267    otherwise reuse the object that is already there.  */
268 
269 static struct position *
next_position(struct position ** next_ptr,struct position * base,enum position_type type,int arg)270 next_position (struct position **next_ptr, struct position *base,
271 	       enum position_type type, int arg)
272 {
273   struct position *pos;
274 
275   pos = *next_ptr;
276   if (!pos)
277     {
278       pos = XCNEW (struct position);
279       pos->type = type;
280       pos->arg = arg;
281       if (type == POS_PEEP2_INSN)
282 	{
283 	  pos->base = 0;
284 	  pos->insn_id = arg;
285 	  pos->depth = base->depth;
286 	}
287       else
288 	{
289 	  pos->base = base;
290 	  pos->insn_id = base->insn_id;
291 	  pos->depth = base->depth + 1;
292 	}
293       pos->id = num_positions++;
294       *next_ptr = pos;
295     }
296   return pos;
297 }
298 
299 /* Compare positions POS1 and POS2 lexicographically.  */
300 
301 static int
compare_positions(struct position * pos1,struct position * pos2)302 compare_positions (struct position *pos1, struct position *pos2)
303 {
304   int diff;
305 
306   diff = pos1->depth - pos2->depth;
307   if (diff < 0)
308     do
309       pos2 = pos2->base;
310     while (pos1->depth != pos2->depth);
311   else if (diff > 0)
312     do
313       pos1 = pos1->base;
314     while (pos1->depth != pos2->depth);
315   while (pos1 != pos2)
316     {
317       diff = (int) pos1->type - (int) pos2->type;
318       if (diff == 0)
319 	diff = pos1->arg - pos2->arg;
320       pos1 = pos1->base;
321       pos2 = pos2->base;
322     }
323   return diff;
324 }
325 
326 /* Return the most deeply-nested position that is common to both
327    POS1 and POS2.  If the positions are from different instructions,
328    return the one with the lowest insn_id.  */
329 
330 static struct position *
common_position(struct position * pos1,struct position * pos2)331 common_position (struct position *pos1, struct position *pos2)
332 {
333   if (pos1->insn_id != pos2->insn_id)
334     return pos1->insn_id < pos2->insn_id ? pos1 : pos2;
335   if (pos1->depth > pos2->depth)
336     std::swap (pos1, pos2);
337   while (pos1->depth != pos2->depth)
338     pos2 = pos2->base;
339   while (pos1 != pos2)
340     {
341       pos1 = pos1->base;
342       pos2 = pos2->base;
343     }
344   return pos1;
345 }
346 
347 /* Search for and return operand N, stop when reaching node STOP.  */
348 
349 static rtx
find_operand(rtx pattern,int n,rtx stop)350 find_operand (rtx pattern, int n, rtx stop)
351 {
352   const char *fmt;
353   RTX_CODE code;
354   int i, j, len;
355   rtx r;
356 
357   if (pattern == stop)
358     return stop;
359 
360   code = GET_CODE (pattern);
361   if ((code == MATCH_SCRATCH
362        || code == MATCH_OPERAND
363        || code == MATCH_OPERATOR
364        || code == MATCH_PARALLEL)
365       && XINT (pattern, 0) == n)
366     return pattern;
367 
368   fmt = GET_RTX_FORMAT (code);
369   len = GET_RTX_LENGTH (code);
370   for (i = 0; i < len; i++)
371     {
372       switch (fmt[i])
373 	{
374 	case 'e': case 'u':
375 	  if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
376 	    return r;
377 	  break;
378 
379 	case 'V':
380 	  if (! XVEC (pattern, i))
381 	    break;
382 	  /* Fall through.  */
383 
384 	case 'E':
385 	  for (j = 0; j < XVECLEN (pattern, i); j++)
386 	    if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
387 		!= NULL_RTX)
388 	      return r;
389 	  break;
390 
391 	case 'i': case 'r': case 'w': case '0': case 's':
392 	  break;
393 
394 	default:
395 	  gcc_unreachable ();
396 	}
397     }
398 
399   return NULL;
400 }
401 
402 /* Search for and return operand M, such that it has a matching
403    constraint for operand N.  */
404 
405 static rtx
find_matching_operand(rtx pattern,int n)406 find_matching_operand (rtx pattern, int n)
407 {
408   const char *fmt;
409   RTX_CODE code;
410   int i, j, len;
411   rtx r;
412 
413   code = GET_CODE (pattern);
414   if (code == MATCH_OPERAND
415       && (XSTR (pattern, 2)[0] == '0' + n
416 	  || (XSTR (pattern, 2)[0] == '%'
417 	      && XSTR (pattern, 2)[1] == '0' + n)))
418     return pattern;
419 
420   fmt = GET_RTX_FORMAT (code);
421   len = GET_RTX_LENGTH (code);
422   for (i = 0; i < len; i++)
423     {
424       switch (fmt[i])
425 	{
426 	case 'e': case 'u':
427 	  if ((r = find_matching_operand (XEXP (pattern, i), n)))
428 	    return r;
429 	  break;
430 
431 	case 'V':
432 	  if (! XVEC (pattern, i))
433 	    break;
434 	  /* Fall through.  */
435 
436 	case 'E':
437 	  for (j = 0; j < XVECLEN (pattern, i); j++)
438 	    if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
439 	      return r;
440 	  break;
441 
442 	case 'i': case 'r': case 'w': case '0': case 's':
443 	  break;
444 
445 	default:
446 	  gcc_unreachable ();
447 	}
448     }
449 
450   return NULL;
451 }
452 
453 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454    don't use the MATCH_OPERAND constraint, only the predicate.
455    This is confusing to folks doing new ports, so help them
456    not make the mistake.  */
457 
458 static bool
constraints_supported_in_insn_p(rtx insn)459 constraints_supported_in_insn_p (rtx insn)
460 {
461   return !(GET_CODE (insn) == DEFINE_EXPAND
462 	   || GET_CODE (insn) == DEFINE_SPLIT
463 	   || GET_CODE (insn) == DEFINE_PEEPHOLE2);
464 }
465 
466 /* Check for various errors in PATTERN, which is part of INFO.
467    SET is nonnull for a destination, and is the complete set pattern.
468    SET_CODE is '=' for normal sets, and '+' within a context that
469    requires in-out constraints.  */
470 
471 static void
validate_pattern(rtx pattern,md_rtx_info * info,rtx set,int set_code)472 validate_pattern (rtx pattern, md_rtx_info *info, rtx set, int set_code)
473 {
474   const char *fmt;
475   RTX_CODE code;
476   size_t i, len;
477   int j;
478 
479   code = GET_CODE (pattern);
480   switch (code)
481     {
482     case MATCH_SCRATCH:
483       {
484 	const char constraints0 = XSTR (pattern, 1)[0];
485 
486 	if (!constraints_supported_in_insn_p (info->def))
487 	  {
488 	    if (constraints0)
489 	      {
490 		error_at (info->loc, "constraints not supported in %s",
491 			  GET_RTX_NAME (GET_CODE (info->def)));
492 	      }
493 	    return;
494 	  }
495 
496 	/* If a MATCH_SCRATCH is used in a context requiring an write-only
497 	   or read/write register, validate that.  */
498 	if (set_code == '='
499 	    && constraints0
500 	    && constraints0 != '='
501 	    && constraints0 != '+')
502 	  {
503 	    error_at (info->loc, "operand %d missing output reload",
504 		      XINT (pattern, 0));
505 	  }
506 	return;
507       }
508     case MATCH_DUP:
509     case MATCH_OP_DUP:
510     case MATCH_PAR_DUP:
511       if (find_operand (info->def, XINT (pattern, 0), pattern) == pattern)
512 	error_at (info->loc, "operand %i duplicated before defined",
513 		  XINT (pattern, 0));
514       break;
515     case MATCH_OPERAND:
516     case MATCH_OPERATOR:
517       {
518 	const char *pred_name = XSTR (pattern, 1);
519 	const struct pred_data *pred;
520 	const char *c_test;
521 
522 	c_test = get_c_test (info->def);
523 
524 	if (pred_name[0] != 0)
525 	  {
526 	    pred = lookup_predicate (pred_name);
527 	    if (!pred)
528 	      error_at (info->loc, "unknown predicate '%s'", pred_name);
529 	  }
530 	else
531 	  pred = 0;
532 
533 	if (code == MATCH_OPERAND)
534 	  {
535 	    const char *constraints = XSTR (pattern, 2);
536 	    const char constraints0 = constraints[0];
537 
538 	    if (!constraints_supported_in_insn_p (info->def))
539 	      {
540 		if (constraints0)
541 		  {
542 		    error_at (info->loc, "constraints not supported in %s",
543 			      GET_RTX_NAME (GET_CODE (info->def)));
544 		  }
545 	      }
546 
547 	    /* A MATCH_OPERAND that is a SET should have an output reload.  */
548 	    else if (set && constraints0)
549 	      {
550 		if (set_code == '+')
551 		  {
552 		    if (constraints0 == '+')
553 		      ;
554 		    /* If we've only got an output reload for this operand,
555 		       we'd better have a matching input operand.  */
556 		    else if (constraints0 == '='
557 			     && find_matching_operand (info->def,
558 						       XINT (pattern, 0)))
559 		      ;
560 		    else
561 		      error_at (info->loc, "operand %d missing in-out reload",
562 				XINT (pattern, 0));
563 		  }
564 		else if (constraints0 != '=' && constraints0 != '+')
565 		  error_at (info->loc, "operand %d missing output reload",
566 			    XINT (pattern, 0));
567 	      }
568 
569 	    /* For matching constraint in MATCH_OPERAND, the digit must be a
570 	       smaller number than the number of the operand that uses it in the
571 	       constraint.  */
572 	    while (1)
573 	      {
574 		while (constraints[0]
575 		       && (constraints[0] == ' ' || constraints[0] == ','))
576 		  constraints++;
577 		if (!constraints[0])
578 		  break;
579 
580 		if (constraints[0] >= '0' && constraints[0] <= '9')
581 		  {
582 		    int val;
583 
584 		    sscanf (constraints, "%d", &val);
585 		    if (val >= XINT (pattern, 0))
586 		      error_at (info->loc, "constraint digit %d is not"
587 				" smaller than operand %d",
588 				val, XINT (pattern, 0));
589 		  }
590 
591 		while (constraints[0] && constraints[0] != ',')
592 		  constraints++;
593 	      }
594 	  }
595 
596 	/* Allowing non-lvalues in destinations -- particularly CONST_INT --
597 	   while not likely to occur at runtime, results in less efficient
598 	   code from insn-recog.c.  */
599 	if (set && pred && pred->allows_non_lvalue)
600 	  error_at (info->loc, "destination operand %d allows non-lvalue",
601 		    XINT (pattern, 0));
602 
603 	/* A modeless MATCH_OPERAND can be handy when we can check for
604 	   multiple modes in the c_test.  In most other cases, it is a
605 	   mistake.  Only DEFINE_INSN is eligible, since SPLIT and
606 	   PEEP2 can FAIL within the output pattern.  Exclude special
607 	   predicates, which check the mode themselves.  Also exclude
608 	   predicates that allow only constants.  Exclude the SET_DEST
609 	   of a call instruction, as that is a common idiom.  */
610 
611 	if (GET_MODE (pattern) == VOIDmode
612 	    && code == MATCH_OPERAND
613 	    && GET_CODE (info->def) == DEFINE_INSN
614 	    && pred
615 	    && !pred->special
616 	    && pred->allows_non_const
617 	    && strstr (c_test, "operands") == NULL
618 	    && ! (set
619 		  && GET_CODE (set) == SET
620 		  && GET_CODE (SET_SRC (set)) == CALL))
621 	  message_at (info->loc, "warning: operand %d missing mode?",
622 		      XINT (pattern, 0));
623 	return;
624       }
625 
626     case SET:
627       {
628 	machine_mode dmode, smode;
629 	rtx dest, src;
630 
631 	dest = SET_DEST (pattern);
632 	src = SET_SRC (pattern);
633 
634 	/* STRICT_LOW_PART is a wrapper.  Its argument is the real
635 	   destination, and it's mode should match the source.  */
636 	if (GET_CODE (dest) == STRICT_LOW_PART)
637 	  dest = XEXP (dest, 0);
638 
639 	/* Find the referent for a DUP.  */
640 
641 	if (GET_CODE (dest) == MATCH_DUP
642 	    || GET_CODE (dest) == MATCH_OP_DUP
643 	    || GET_CODE (dest) == MATCH_PAR_DUP)
644 	  dest = find_operand (info->def, XINT (dest, 0), NULL);
645 
646 	if (GET_CODE (src) == MATCH_DUP
647 	    || GET_CODE (src) == MATCH_OP_DUP
648 	    || GET_CODE (src) == MATCH_PAR_DUP)
649 	  src = find_operand (info->def, XINT (src, 0), NULL);
650 
651 	dmode = GET_MODE (dest);
652 	smode = GET_MODE (src);
653 
654 	/* The mode of an ADDRESS_OPERAND is the mode of the memory
655 	   reference, not the mode of the address.  */
656 	if (GET_CODE (src) == MATCH_OPERAND
657 	    && ! strcmp (XSTR (src, 1), "address_operand"))
658 	  ;
659 
660         /* The operands of a SET must have the same mode unless one
661 	   is VOIDmode.  */
662         else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
663 	  error_at (info->loc, "mode mismatch in set: %smode vs %smode",
664 		    GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
665 
666 	/* If only one of the operands is VOIDmode, and PC or CC0 is
667 	   not involved, it's probably a mistake.  */
668 	else if (dmode != smode
669 		 && GET_CODE (dest) != PC
670 		 && GET_CODE (dest) != CC0
671 		 && GET_CODE (src) != PC
672 		 && GET_CODE (src) != CC0
673 		 && !CONST_INT_P (src)
674 		 && !CONST_WIDE_INT_P (src)
675 		 && GET_CODE (src) != CALL)
676 	  {
677 	    const char *which;
678 	    which = (dmode == VOIDmode ? "destination" : "source");
679 	    message_at (info->loc, "warning: %s missing a mode?", which);
680 	  }
681 
682 	if (dest != SET_DEST (pattern))
683 	  validate_pattern (dest, info, pattern, '=');
684 	validate_pattern (SET_DEST (pattern), info, pattern, '=');
685         validate_pattern (SET_SRC (pattern), info, NULL_RTX, 0);
686         return;
687       }
688 
689     case CLOBBER:
690       validate_pattern (SET_DEST (pattern), info, pattern, '=');
691       return;
692 
693     case ZERO_EXTRACT:
694       validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0);
695       validate_pattern (XEXP (pattern, 1), info, NULL_RTX, 0);
696       validate_pattern (XEXP (pattern, 2), info, NULL_RTX, 0);
697       return;
698 
699     case STRICT_LOW_PART:
700       validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0);
701       return;
702 
703     case LABEL_REF:
704       if (GET_MODE (LABEL_REF_LABEL (pattern)) != VOIDmode)
705 	error_at (info->loc, "operand to label_ref %smode not VOIDmode",
706 		  GET_MODE_NAME (GET_MODE (LABEL_REF_LABEL (pattern))));
707       break;
708 
709     default:
710       break;
711     }
712 
713   fmt = GET_RTX_FORMAT (code);
714   len = GET_RTX_LENGTH (code);
715   for (i = 0; i < len; i++)
716     {
717       switch (fmt[i])
718 	{
719 	case 'e': case 'u':
720 	  validate_pattern (XEXP (pattern, i), info, NULL_RTX, 0);
721 	  break;
722 
723 	case 'E':
724 	  for (j = 0; j < XVECLEN (pattern, i); j++)
725 	    validate_pattern (XVECEXP (pattern, i, j), info, NULL_RTX, 0);
726 	  break;
727 
728 	case 'i': case 'r': case 'w': case '0': case 's':
729 	  break;
730 
731 	default:
732 	  gcc_unreachable ();
733 	}
734     }
735 }
736 
737 /* Simple list structure for items of type T, for use when being part
738    of a list is an inherent property of T.  T must have members equivalent
739    to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
740    to set the parent list.  */
741 template <typename T>
742 struct list_head
743 {
744   /* A range of linked items.  */
745   struct range
746   {
747     range (T *);
748     range (T *, T *);
749 
750     T *start, *end;
751     void set_parent (list_head *);
752   };
753 
754   list_head ();
755   range release ();
756   void push_back (range);
757   range remove (range);
758   void replace (range, range);
759   T *singleton () const;
760 
761   T *first, *last;
762 };
763 
764 /* Create a range [START_IN, START_IN].  */
765 
766 template <typename T>
range(T * start_in)767 list_head <T>::range::range (T *start_in) : start (start_in), end (start_in) {}
768 
769 /* Create a range [START_IN, END_IN], linked by next and prev fields.  */
770 
771 template <typename T>
range(T * start_in,T * end_in)772 list_head <T>::range::range (T *start_in, T *end_in)
773   : start (start_in), end (end_in) {}
774 
775 template <typename T>
776 void
set_parent(list_head<T> * owner)777 list_head <T>::range::set_parent (list_head <T> *owner)
778 {
779   for (T *item = start; item != end; item = item->next)
780     item->set_parent (owner);
781   end->set_parent (owner);
782 }
783 
784 template <typename T>
list_head()785 list_head <T>::list_head () : first (0), last (0) {}
786 
787 /* Add R to the end of the list.  */
788 
789 template <typename T>
790 void
push_back(range r)791 list_head <T>::push_back (range r)
792 {
793   if (last)
794     last->next = r.start;
795   else
796     first = r.start;
797   r.start->prev = last;
798   last = r.end;
799   r.set_parent (this);
800 }
801 
802 /* Remove R from the list.  R remains valid and can be inserted into
803    other lists.  */
804 
805 template <typename T>
806 typename list_head <T>::range
remove(range r)807 list_head <T>::remove (range r)
808 {
809   if (r.start->prev)
810     r.start->prev->next = r.end->next;
811   else
812     first = r.end->next;
813   if (r.end->next)
814     r.end->next->prev = r.start->prev;
815   else
816     last = r.start->prev;
817   r.start->prev = 0;
818   r.end->next = 0;
819   r.set_parent (0);
820   return r;
821 }
822 
823 /* Replace OLDR with NEWR.  OLDR remains valid and can be inserted into
824    other lists.  */
825 
826 template <typename T>
827 void
replace(range oldr,range newr)828 list_head <T>::replace (range oldr, range newr)
829 {
830   newr.start->prev = oldr.start->prev;
831   newr.end->next = oldr.end->next;
832 
833   oldr.start->prev = 0;
834   oldr.end->next = 0;
835   oldr.set_parent (0);
836 
837   if (newr.start->prev)
838     newr.start->prev->next = newr.start;
839   else
840     first = newr.start;
841   if (newr.end->next)
842     newr.end->next->prev = newr.end;
843   else
844     last = newr.end;
845   newr.set_parent (this);
846 }
847 
848 /* Empty the list and return the previous contents as a range that can
849    be inserted into other lists.  */
850 
851 template <typename T>
852 typename list_head <T>::range
release()853 list_head <T>::release ()
854 {
855   range r (first, last);
856   first = 0;
857   last = 0;
858   r.set_parent (0);
859   return r;
860 }
861 
862 /* If the list contains a single item, return that item, otherwise return
863    null.  */
864 
865 template <typename T>
866 T *
singleton()867 list_head <T>::singleton () const
868 {
869   return first == last ? first : 0;
870 }
871 
872 struct state;
873 
874 /* Describes a possible successful return from a routine.  */
875 struct acceptance_type
876 {
877   /* The type of routine we're returning from.  */
878   routine_type type : 16;
879 
880   /* True if this structure only really represents a partial match,
881      and if we must call a subroutine of type TYPE to complete the match.
882      In this case we'll call the subroutine and, if it succeeds, return
883      whatever the subroutine returned.
884 
885      False if this structure presents a full match.  */
886   unsigned int partial_p : 1;
887 
888   union
889   {
890     /* If PARTIAL_P, this is the number of the subroutine to call.  */
891     int subroutine_id;
892 
893     /* Valid if !PARTIAL_P.  */
894     struct
895     {
896       /* The identifier of the matching pattern.  For SUBPATTERNs this
897 	 value belongs to an ad-hoc routine-specific enum.  For the
898 	 others it's the number of an .md file pattern.  */
899       int code;
900       union
901       {
902 	/* For RECOG, the number of clobbers that must be added to the
903 	   pattern in order for it to match CODE.  */
904 	int num_clobbers;
905 
906 	/* For PEEPHOLE2, the number of additional instructions that were
907 	   included in the optimization.  */
908 	int match_len;
909       } u;
910     } full;
911   } u;
912 };
913 
914 bool
915 operator == (const acceptance_type &a, const acceptance_type &b)
916 {
917   if (a.partial_p != b.partial_p)
918     return false;
919   if (a.partial_p)
920     return a.u.subroutine_id == b.u.subroutine_id;
921   else
922     return a.u.full.code == b.u.full.code;
923 }
924 
925 bool
926 operator != (const acceptance_type &a, const acceptance_type &b)
927 {
928   return !operator == (a, b);
929 }
930 
931 /* Represents a parameter to a pattern routine.  */
932 struct parameter
933 {
934   /* The C type of parameter.  */
935   enum type_enum {
936     /* Represents an invalid parameter.  */
937     UNSET,
938 
939     /* A machine_mode parameter.  */
940     MODE,
941 
942     /* An rtx_code parameter.  */
943     CODE,
944 
945     /* An int parameter.  */
946     INT,
947 
948     /* An unsigned int parameter.  */
949     UINT,
950 
951     /* A HOST_WIDE_INT parameter.  */
952     WIDE_INT
953   };
954 
955   parameter ();
956   parameter (type_enum, bool, uint64_t);
957 
958   /* The type of the parameter.  */
959   type_enum type;
960 
961   /* True if the value passed is variable, false if it is constant.  */
962   bool is_param;
963 
964   /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
965      format string.  If !IS_PARAM, this is the constant value passed.  */
966   uint64_t value;
967 };
968 
parameter()969 parameter::parameter ()
970   : type (UNSET), is_param (false), value (0) {}
971 
parameter(type_enum type_in,bool is_param_in,uint64_t value_in)972 parameter::parameter (type_enum type_in, bool is_param_in, uint64_t value_in)
973   : type (type_in), is_param (is_param_in), value (value_in) {}
974 
975 bool
976 operator == (const parameter &param1, const parameter &param2)
977 {
978   return (param1.type == param2.type
979 	  && param1.is_param == param2.is_param
980 	  && param1.value == param2.value);
981 }
982 
983 bool
984 operator != (const parameter &param1, const parameter &param2)
985 {
986   return !operator == (param1, param2);
987 }
988 
989 /* Represents a routine that matches a partial rtx pattern, returning
990    an ad-hoc enum value on success and -1 on failure.  The routine can
991    be used by any subroutine type.  The match can be parameterized by
992    things like mode, code and UNSPEC number.  */
993 struct pattern_routine
994 {
995   /* The state that implements the pattern.  */
996   state *s;
997 
998   /* The deepest root position from which S can access all the rtxes it needs.
999      This is NULL if the pattern doesn't need an rtx input, usually because
1000      all matching is done on operands[] instead.  */
1001   position *pos;
1002 
1003   /* A unique identifier for the routine.  */
1004   unsigned int pattern_id;
1005 
1006   /* True if the routine takes pnum_clobbers as argument.  */
1007   bool pnum_clobbers_p;
1008 
1009   /* True if the routine takes the enclosing instruction as argument.  */
1010   bool insn_p;
1011 
1012   /* The types of the other parameters to the routine, if any.  */
1013   auto_vec <parameter::type_enum, MAX_PATTERN_PARAMS> param_types;
1014 };
1015 
1016 /* All defined patterns.  */
1017 static vec <pattern_routine *> patterns;
1018 
1019 /* Represents one use of a pattern routine.  */
1020 struct pattern_use
1021 {
1022   /* The pattern routine to use.  */
1023   pattern_routine *routine;
1024 
1025   /* The values to pass as parameters.  This vector has the same length
1026      as ROUTINE->PARAM_TYPES.  */
1027   auto_vec <parameter, MAX_PATTERN_PARAMS> params;
1028 };
1029 
1030 /* Represents a test performed by a decision.  */
1031 struct rtx_test
1032 {
1033   rtx_test ();
1034 
1035   /* The types of test that can be performed.  Most of them take as input
1036      an rtx X.  Some also take as input a transition label LABEL; the others
1037      are booleans for which the transition label is always "true".
1038 
1039      The order of the enum isn't important.  */
1040   enum kind_enum {
1041     /* Check GET_CODE (X) == LABEL.  */
1042     CODE,
1043 
1044     /* Check GET_MODE (X) == LABEL.  */
1045     MODE,
1046 
1047     /* Check REGNO (X) == LABEL.  */
1048     REGNO_FIELD,
1049 
1050     /* Check XINT (X, u.opno) == LABEL.  */
1051     INT_FIELD,
1052 
1053     /* Check XWINT (X, u.opno) == LABEL.  */
1054     WIDE_INT_FIELD,
1055 
1056     /* Check XVECLEN (X, 0) == LABEL.  */
1057     VECLEN,
1058 
1059     /* Check peep2_current_count >= u.min_len.  */
1060     PEEP2_COUNT,
1061 
1062     /* Check XVECLEN (X, 0) >= u.min_len.  */
1063     VECLEN_GE,
1064 
1065     /* Check whether X is a cached const_int with value u.integer.  */
1066     SAVED_CONST_INT,
1067 
1068     /* Check u.predicate.data (X, u.predicate.mode).  */
1069     PREDICATE,
1070 
1071     /* Check rtx_equal_p (X, operands[u.opno]).  */
1072     DUPLICATE,
1073 
1074     /* Check whether X matches pattern u.pattern.  */
1075     PATTERN,
1076 
1077     /* Check whether pnum_clobbers is nonnull (RECOG only).  */
1078     HAVE_NUM_CLOBBERS,
1079 
1080     /* Check whether general C test u.string holds.  In general the condition
1081        needs access to "insn" and the full operand list.  */
1082     C_TEST,
1083 
1084     /* Execute operands[u.opno] = X.  (Always succeeds.)  */
1085     SET_OP,
1086 
1087     /* Accept u.acceptance.  Always succeeds for SUBPATTERN, RECOG and SPLIT.
1088        May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL.  */
1089     ACCEPT
1090   };
1091 
1092   /* The position of rtx X in the above description, relative to the
1093      incoming instruction "insn".  The position is null if the test
1094      doesn't take an X as input.  */
1095   position *pos;
1096 
1097   /* Which element of operands[] already contains POS, or -1 if no element
1098      is known to hold POS.  */
1099   int pos_operand;
1100 
1101   /* The type of test and its parameters, as described above.  */
1102   kind_enum kind;
1103   union
1104   {
1105     int opno;
1106     int min_len;
1107     struct
1108     {
1109       bool is_param;
1110       int value;
1111     } integer;
1112     struct
1113     {
1114       const struct pred_data *data;
1115       /* True if the mode is taken from a machine_mode parameter
1116 	 to the routine rather than a constant machine_mode.  If true,
1117 	 MODE is the number of the parameter (for an "i%d" format string),
1118 	 otherwise it is the mode itself.  */
1119       bool mode_is_param;
1120       unsigned int mode;
1121     } predicate;
1122     pattern_use *pattern;
1123     const char *string;
1124     acceptance_type acceptance;
1125   } u;
1126 
1127   static rtx_test code (position *);
1128   static rtx_test mode (position *);
1129   static rtx_test regno_field (position *);
1130   static rtx_test int_field (position *, int);
1131   static rtx_test wide_int_field (position *, int);
1132   static rtx_test veclen (position *);
1133   static rtx_test peep2_count (int);
1134   static rtx_test veclen_ge (position *, int);
1135   static rtx_test predicate (position *, const pred_data *, machine_mode);
1136   static rtx_test duplicate (position *, int);
1137   static rtx_test pattern (position *, pattern_use *);
1138   static rtx_test have_num_clobbers ();
1139   static rtx_test c_test (const char *);
1140   static rtx_test set_op (position *, int);
1141   static rtx_test accept (const acceptance_type &);
1142 
1143   bool terminal_p () const;
1144   bool single_outcome_p () const;
1145 
1146 private:
1147   rtx_test (position *, kind_enum);
1148 };
1149 
rtx_test()1150 rtx_test::rtx_test () {}
1151 
rtx_test(position * pos_in,kind_enum kind_in)1152 rtx_test::rtx_test (position *pos_in, kind_enum kind_in)
1153   : pos (pos_in), pos_operand (-1), kind (kind_in) {}
1154 
1155 rtx_test
code(position * pos)1156 rtx_test::code (position *pos)
1157 {
1158   return rtx_test (pos, rtx_test::CODE);
1159 }
1160 
1161 rtx_test
mode(position * pos)1162 rtx_test::mode (position *pos)
1163 {
1164   return rtx_test (pos, rtx_test::MODE);
1165 }
1166 
1167 rtx_test
regno_field(position * pos)1168 rtx_test::regno_field (position *pos)
1169 {
1170   rtx_test res (pos, rtx_test::REGNO_FIELD);
1171   return res;
1172 }
1173 
1174 rtx_test
int_field(position * pos,int opno)1175 rtx_test::int_field (position *pos, int opno)
1176 {
1177   rtx_test res (pos, rtx_test::INT_FIELD);
1178   res.u.opno = opno;
1179   return res;
1180 }
1181 
1182 rtx_test
wide_int_field(position * pos,int opno)1183 rtx_test::wide_int_field (position *pos, int opno)
1184 {
1185   rtx_test res (pos, rtx_test::WIDE_INT_FIELD);
1186   res.u.opno = opno;
1187   return res;
1188 }
1189 
1190 rtx_test
veclen(position * pos)1191 rtx_test::veclen (position *pos)
1192 {
1193   return rtx_test (pos, rtx_test::VECLEN);
1194 }
1195 
1196 rtx_test
peep2_count(int min_len)1197 rtx_test::peep2_count (int min_len)
1198 {
1199   rtx_test res (0, rtx_test::PEEP2_COUNT);
1200   res.u.min_len = min_len;
1201   return res;
1202 }
1203 
1204 rtx_test
veclen_ge(position * pos,int min_len)1205 rtx_test::veclen_ge (position *pos, int min_len)
1206 {
1207   rtx_test res (pos, rtx_test::VECLEN_GE);
1208   res.u.min_len = min_len;
1209   return res;
1210 }
1211 
1212 rtx_test
predicate(position * pos,const struct pred_data * data,machine_mode mode)1213 rtx_test::predicate (position *pos, const struct pred_data *data,
1214 		     machine_mode mode)
1215 {
1216   rtx_test res (pos, rtx_test::PREDICATE);
1217   res.u.predicate.data = data;
1218   res.u.predicate.mode_is_param = false;
1219   res.u.predicate.mode = mode;
1220   return res;
1221 }
1222 
1223 rtx_test
duplicate(position * pos,int opno)1224 rtx_test::duplicate (position *pos, int opno)
1225 {
1226   rtx_test res (pos, rtx_test::DUPLICATE);
1227   res.u.opno = opno;
1228   return res;
1229 }
1230 
1231 rtx_test
pattern(position * pos,pattern_use * pattern)1232 rtx_test::pattern (position *pos, pattern_use *pattern)
1233 {
1234   rtx_test res (pos, rtx_test::PATTERN);
1235   res.u.pattern = pattern;
1236   return res;
1237 }
1238 
1239 rtx_test
have_num_clobbers()1240 rtx_test::have_num_clobbers ()
1241 {
1242   return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS);
1243 }
1244 
1245 rtx_test
c_test(const char * string)1246 rtx_test::c_test (const char *string)
1247 {
1248   rtx_test res (0, rtx_test::C_TEST);
1249   res.u.string = string;
1250   return res;
1251 }
1252 
1253 rtx_test
set_op(position * pos,int opno)1254 rtx_test::set_op (position *pos, int opno)
1255 {
1256   rtx_test res (pos, rtx_test::SET_OP);
1257   res.u.opno = opno;
1258   return res;
1259 }
1260 
1261 rtx_test
accept(const acceptance_type & acceptance)1262 rtx_test::accept (const acceptance_type &acceptance)
1263 {
1264   rtx_test res (0, rtx_test::ACCEPT);
1265   res.u.acceptance = acceptance;
1266   return res;
1267 }
1268 
1269 /* Return true if the test represents an unconditionally successful match.  */
1270 
1271 bool
terminal_p()1272 rtx_test::terminal_p () const
1273 {
1274   return kind == rtx_test::ACCEPT && u.acceptance.type != PEEPHOLE2;
1275 }
1276 
1277 /* Return true if the test is a boolean that is always true.  */
1278 
1279 bool
single_outcome_p()1280 rtx_test::single_outcome_p () const
1281 {
1282   return terminal_p () || kind == rtx_test::SET_OP;
1283 }
1284 
1285 bool
1286 operator == (const rtx_test &a, const rtx_test &b)
1287 {
1288   if (a.pos != b.pos || a.kind != b.kind)
1289     return false;
1290   switch (a.kind)
1291     {
1292     case rtx_test::CODE:
1293     case rtx_test::MODE:
1294     case rtx_test::REGNO_FIELD:
1295     case rtx_test::VECLEN:
1296     case rtx_test::HAVE_NUM_CLOBBERS:
1297       return true;
1298 
1299     case rtx_test::PEEP2_COUNT:
1300     case rtx_test::VECLEN_GE:
1301       return a.u.min_len == b.u.min_len;
1302 
1303     case rtx_test::INT_FIELD:
1304     case rtx_test::WIDE_INT_FIELD:
1305     case rtx_test::DUPLICATE:
1306     case rtx_test::SET_OP:
1307       return a.u.opno == b.u.opno;
1308 
1309     case rtx_test::SAVED_CONST_INT:
1310       return (a.u.integer.is_param == b.u.integer.is_param
1311 	      && a.u.integer.value == b.u.integer.value);
1312 
1313     case rtx_test::PREDICATE:
1314       return (a.u.predicate.data == b.u.predicate.data
1315 	      && a.u.predicate.mode_is_param == b.u.predicate.mode_is_param
1316 	      && a.u.predicate.mode == b.u.predicate.mode);
1317 
1318     case rtx_test::PATTERN:
1319       return (a.u.pattern->routine == b.u.pattern->routine
1320 	      && a.u.pattern->params == b.u.pattern->params);
1321 
1322     case rtx_test::C_TEST:
1323       return strcmp (a.u.string, b.u.string) == 0;
1324 
1325     case rtx_test::ACCEPT:
1326       return a.u.acceptance == b.u.acceptance;
1327     }
1328   gcc_unreachable ();
1329 }
1330 
1331 bool
1332 operator != (const rtx_test &a, const rtx_test &b)
1333 {
1334   return !operator == (a, b);
1335 }
1336 
1337 /* A simple set of transition labels.  Most transitions have a singleton
1338    label, so try to make that case as efficient as possible.  */
1339 struct int_set : public auto_vec <uint64_t, 1>
1340 {
1341   typedef uint64_t *iterator;
1342 
1343   int_set ();
1344   int_set (uint64_t);
1345   int_set (const int_set &);
1346 
1347   int_set &operator = (const int_set &);
1348 
1349   iterator begin ();
1350   iterator end ();
1351 };
1352 
int_set()1353 int_set::int_set () {}
1354 
int_set(uint64_t label)1355 int_set::int_set (uint64_t label)
1356 {
1357   safe_push (label);
1358 }
1359 
int_set(const int_set & other)1360 int_set::int_set (const int_set &other)
1361 {
1362   safe_splice (other);
1363 }
1364 
1365 int_set &
1366 int_set::operator = (const int_set &other)
1367 {
1368   truncate (0);
1369   safe_splice (other);
1370   return *this;
1371 }
1372 
1373 int_set::iterator
begin()1374 int_set::begin ()
1375 {
1376   return address ();
1377 }
1378 
1379 int_set::iterator
end()1380 int_set::end ()
1381 {
1382   return address () + length ();
1383 }
1384 
1385 bool
1386 operator == (const int_set &a, const int_set &b)
1387 {
1388   if (a.length () != b.length ())
1389     return false;
1390   for (unsigned int i = 0; i < a.length (); ++i)
1391     if (a[i] != b[i])
1392       return false;
1393   return true;
1394 }
1395 
1396 bool
1397 operator != (const int_set &a, const int_set &b)
1398 {
1399   return !operator == (a, b);
1400 }
1401 
1402 struct decision;
1403 
1404 /* Represents a transition between states, dependent on the result of
1405    a test T.  */
1406 struct transition
1407 {
1408   transition (const int_set &, state *, bool);
1409 
1410   void set_parent (list_head <transition> *);
1411 
1412   /* Links to other transitions for T.  Always null for boolean tests.  */
1413   transition *prev, *next;
1414 
1415   /* The transition should be taken when T has one of these values.
1416      E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1417      rtx_test::PREDICATE it is always a singleton "true".  The labels are
1418      sorted in ascending order.  */
1419   int_set labels;
1420 
1421   /* The source decision.  */
1422   decision *from;
1423 
1424   /* The target state.  */
1425   state *to;
1426 
1427   /* True if TO would function correctly even if TEST wasn't performed.
1428      E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1429      before calling register_operand (x1, SImode), since register_operand
1430      performs its own mode check.  However, checking GET_MODE can be a cheap
1431      way of disambiguating SImode and DImode register operands.  */
1432   bool optional;
1433 
1434   /* True if LABELS contains parameter numbers rather than constants.
1435      E.g. if this is true for a rtx_test::CODE, the label is the number
1436      of an rtx_code parameter rather than an rtx_code itself.
1437      LABELS is always a singleton when this variable is true.  */
1438   bool is_param;
1439 };
1440 
1441 /* Represents a test and the action that should be taken on the result.
1442    If a transition exists for the test outcome, the machine switches
1443    to the transition's target state.  If no suitable transition exists,
1444    the machine either falls through to the next decision or, if there are no
1445    more decisions to try, fails the match.  */
1446 struct decision : list_head <transition>
1447 {
1448   decision (const rtx_test &);
1449 
1450   void set_parent (list_head <decision> *s);
1451   bool if_statement_p (uint64_t * = 0) const;
1452 
1453   /* The state to which this decision belongs.  */
1454   state *s;
1455 
1456   /* Links to other decisions in the same state.  */
1457   decision *prev, *next;
1458 
1459   /* The test to perform.  */
1460   rtx_test test;
1461 };
1462 
1463 /* Represents one machine state.  For each state the machine tries a list
1464    of decisions, in order, and acts on the first match.  It fails without
1465    further backtracking if no decisions match.  */
1466 struct state : list_head <decision>
1467 {
set_parentstate1468   void set_parent (list_head <state> *) {}
1469 };
1470 
transition(const int_set & labels_in,state * to_in,bool optional_in)1471 transition::transition (const int_set &labels_in, state *to_in,
1472 			bool optional_in)
1473   : prev (0), next (0), labels (labels_in), from (0), to (to_in),
1474     optional (optional_in), is_param (false) {}
1475 
1476 /* Set the source decision of the transition.  */
1477 
1478 void
set_parent(list_head<transition> * from_in)1479 transition::set_parent (list_head <transition> *from_in)
1480 {
1481   from = static_cast <decision *> (from_in);
1482 }
1483 
decision(const rtx_test & test_in)1484 decision::decision (const rtx_test &test_in)
1485   : prev (0), next (0), test (test_in) {}
1486 
1487 /* Set the state to which this decision belongs.  */
1488 
1489 void
set_parent(list_head<decision> * s_in)1490 decision::set_parent (list_head <decision> *s_in)
1491 {
1492   s = static_cast <state *> (s_in);
1493 }
1494 
1495 /* Return true if the decision has a single transition with a single label.
1496    If so, return the label in *LABEL if nonnull.  */
1497 
1498 inline bool
if_statement_p(uint64_t * label)1499 decision::if_statement_p (uint64_t *label) const
1500 {
1501   if (singleton () && first->labels.length () == 1)
1502     {
1503       if (label)
1504 	*label = first->labels[0];
1505       return true;
1506     }
1507   return false;
1508 }
1509 
1510 /* Add to FROM a decision that performs TEST and has a single transition
1511    TRANS.  */
1512 
1513 static void
add_decision(state * from,const rtx_test & test,transition * trans)1514 add_decision (state *from, const rtx_test &test, transition *trans)
1515 {
1516   decision *d = new decision (test);
1517   from->push_back (d);
1518   d->push_back (trans);
1519 }
1520 
1521 /* Add a transition from FROM to a new, empty state that is taken
1522    when TEST == LABELS.  OPTIONAL says whether the new transition
1523    should be optional.  Return the new state.  */
1524 
1525 static state *
add_decision(state * from,const rtx_test & test,int_set labels,bool optional)1526 add_decision (state *from, const rtx_test &test, int_set labels, bool optional)
1527 {
1528   state *to = new state;
1529   add_decision (from, test, new transition (labels, to, optional));
1530   return to;
1531 }
1532 
1533 /* Insert a decision before decisions R to make them dependent on
1534    TEST == LABELS.  OPTIONAL says whether the new transition should be
1535    optional.  */
1536 
1537 static decision *
insert_decision_before(state::range r,const rtx_test & test,const int_set & labels,bool optional)1538 insert_decision_before (state::range r, const rtx_test &test,
1539 			const int_set &labels, bool optional)
1540 {
1541   decision *newd = new decision (test);
1542   state *news = new state;
1543   newd->push_back (new transition (labels, news, optional));
1544   r.start->s->replace (r, newd);
1545   news->push_back (r);
1546   return newd;
1547 }
1548 
1549 /* Remove any optional transitions from S that turned out not to be useful.  */
1550 
1551 static void
collapse_optional_decisions(state * s)1552 collapse_optional_decisions (state *s)
1553 {
1554   decision *d = s->first;
1555   while (d)
1556     {
1557       decision *next = d->next;
1558       for (transition *trans = d->first; trans; trans = trans->next)
1559 	collapse_optional_decisions (trans->to);
1560       /* A decision with a single optional transition doesn't help
1561 	 partition the potential matches and so is unlikely to be
1562 	 worthwhile.  In particular, if the decision that performs the
1563 	 test is the last in the state, the best it could do is reject
1564 	 an invalid pattern slightly earlier.  If instead the decision
1565 	 is not the last in the state, the condition it tests could hold
1566 	 even for the later decisions in the state.  The best it can do
1567 	 is save work in some cases where only the later decisions can
1568 	 succeed.
1569 
1570 	 In both cases the optional transition would add extra work to
1571 	 successful matches when the tested condition holds.  */
1572       if (transition *trans = d->singleton ())
1573 	if (trans->optional)
1574 	  s->replace (d, trans->to->release ());
1575       d = next;
1576     }
1577 }
1578 
1579 /* Try to squash several separate tests into simpler ones.  */
1580 
1581 static void
simplify_tests(state * s)1582 simplify_tests (state *s)
1583 {
1584   for (decision *d = s->first; d; d = d->next)
1585     {
1586       uint64_t label;
1587       /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1588 	 into checks for const_int_rtx[N'], if N is suitably small.  */
1589       if (d->test.kind == rtx_test::CODE
1590 	  && d->if_statement_p (&label)
1591 	  && label == CONST_INT)
1592 	if (decision *second = d->first->to->singleton ())
1593 	  if (d->test.pos == second->test.pos
1594 	      && second->test.kind == rtx_test::WIDE_INT_FIELD
1595 	      && second->test.u.opno == 0
1596 	      && second->if_statement_p (&label)
1597 	      && IN_RANGE (int64_t (label),
1598 			   -MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT))
1599 	    {
1600 	      d->test.kind = rtx_test::SAVED_CONST_INT;
1601 	      d->test.u.integer.is_param = false;
1602 	      d->test.u.integer.value = label;
1603 	      d->replace (d->first, second->release ());
1604 	      d->first->labels[0] = true;
1605 	    }
1606       /* If we have a CODE test followed by a PREDICATE test, rely on
1607 	 the predicate to test the code.
1608 
1609 	 This case exists for match_operators.  We initially treat the
1610 	 CODE test for a match_operator as non-optional so that we can
1611 	 safely move down to its operands.  It may turn out that all
1612 	 paths that reach that code test require the same predicate
1613 	 to be true.  cse_tests will then put the predicate test in
1614 	 series with the code test.  */
1615       if (d->test.kind == rtx_test::CODE)
1616 	if (transition *trans = d->singleton ())
1617 	  {
1618 	    state *s = trans->to;
1619 	    while (decision *d2 = s->singleton ())
1620 	      {
1621 		if (d->test.pos != d2->test.pos)
1622 		  break;
1623 		transition *trans2 = d2->singleton ();
1624 		if (!trans2)
1625 		  break;
1626 		if (d2->test.kind == rtx_test::PREDICATE)
1627 		  {
1628 		    d->test = d2->test;
1629 		    trans->labels = int_set (true);
1630 		    s->replace (d2, trans2->to->release ());
1631 		    break;
1632 		  }
1633 		s = trans2->to;
1634 	      }
1635 	  }
1636       for (transition *trans = d->first; trans; trans = trans->next)
1637 	simplify_tests (trans->to);
1638     }
1639 }
1640 
1641 /* Return true if all successful returns passing through D require the
1642    condition tested by COMMON to be true.
1643 
1644    When returning true, add all transitions like COMMON in D to WHERE.
1645    WHERE may contain a partial result on failure.  */
1646 
1647 static bool
common_test_p(decision * d,transition * common,vec<transition * > * where)1648 common_test_p (decision *d, transition *common, vec <transition *> *where)
1649 {
1650   if (d->test.kind == rtx_test::ACCEPT)
1651     /* We found a successful return that didn't require COMMON.  */
1652     return false;
1653   if (d->test == common->from->test)
1654     {
1655       transition *trans = d->singleton ();
1656       if (!trans
1657 	  || trans->optional != common->optional
1658 	  || trans->labels != common->labels)
1659 	return false;
1660       where->safe_push (trans);
1661       return true;
1662     }
1663   for (transition *trans = d->first; trans; trans = trans->next)
1664     for (decision *subd = trans->to->first; subd; subd = subd->next)
1665       if (!common_test_p (subd, common, where))
1666 	return false;
1667   return true;
1668 }
1669 
1670 /* Indicates that we have tested GET_CODE (X) for a particular rtx X.  */
1671 const unsigned char TESTED_CODE = 1;
1672 
1673 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X.  */
1674 const unsigned char TESTED_VECLEN = 2;
1675 
1676 /* Represents a set of conditions that are known to hold.  */
1677 struct known_conditions
1678 {
1679   /* A mask of TESTED_ values for each position, indexed by the position's
1680      id field.  */
1681   auto_vec <unsigned char> position_tests;
1682 
1683   /* Index N says whether operands[N] has been set.  */
1684   auto_vec <bool> set_operands;
1685 
1686   /* A guranteed lower bound on the value of peep2_current_count.  */
1687   int peep2_count;
1688 };
1689 
1690 /* Return true if TEST can safely be performed at D, where
1691    the conditions in KC hold.  TEST is known to occur along the
1692    first path from D (i.e. always following the first transition
1693    of the first decision).  Any intervening tests can be used as
1694    negative proof that hoisting isn't safe, but only KC can be used
1695    as positive proof.  */
1696 
1697 static bool
safe_to_hoist_p(decision * d,const rtx_test & test,known_conditions * kc)1698 safe_to_hoist_p (decision *d, const rtx_test &test, known_conditions *kc)
1699 {
1700   switch (test.kind)
1701     {
1702     case rtx_test::C_TEST:
1703       /* In general, C tests require everything else to have been
1704 	 verified and all operands to have been set up.  */
1705       return false;
1706 
1707     case rtx_test::ACCEPT:
1708       /* Don't accept something before all conditions have been tested.  */
1709       return false;
1710 
1711     case rtx_test::PREDICATE:
1712       /* Don't move a predicate over a test for VECLEN_GE, since the
1713 	 predicate used in a match_parallel can legitimately expect the
1714 	 length to be checked first.  */
1715       for (decision *subd = d;
1716 	   subd->test != test;
1717 	   subd = subd->first->to->first)
1718 	if (subd->test.pos == test.pos
1719 	    && subd->test.kind == rtx_test::VECLEN_GE)
1720 	  return false;
1721       goto any_rtx;
1722 
1723     case rtx_test::DUPLICATE:
1724       /* Don't test for a match_dup until the associated operand has
1725 	 been set.  */
1726       if (!kc->set_operands[test.u.opno])
1727 	return false;
1728       goto any_rtx;
1729 
1730     case rtx_test::CODE:
1731     case rtx_test::MODE:
1732     case rtx_test::SAVED_CONST_INT:
1733     case rtx_test::SET_OP:
1734     any_rtx:
1735       /* Check whether it is safe to access the rtx under test.  */
1736       switch (test.pos->type)
1737 	{
1738 	case POS_PEEP2_INSN:
1739 	  return test.pos->arg < kc->peep2_count;
1740 
1741 	case POS_XEXP:
1742 	  return kc->position_tests[test.pos->base->id] & TESTED_CODE;
1743 
1744 	case POS_XVECEXP0:
1745 	  return kc->position_tests[test.pos->base->id] & TESTED_VECLEN;
1746 	}
1747       gcc_unreachable ();
1748 
1749     case rtx_test::REGNO_FIELD:
1750     case rtx_test::INT_FIELD:
1751     case rtx_test::WIDE_INT_FIELD:
1752     case rtx_test::VECLEN:
1753     case rtx_test::VECLEN_GE:
1754       /* These tests access a specific part of an rtx, so are only safe
1755 	 once we know what the rtx is.  */
1756       return kc->position_tests[test.pos->id] & TESTED_CODE;
1757 
1758     case rtx_test::PEEP2_COUNT:
1759     case rtx_test::HAVE_NUM_CLOBBERS:
1760       /* These tests can be performed anywhere.  */
1761       return true;
1762 
1763     case rtx_test::PATTERN:
1764       gcc_unreachable ();
1765     }
1766   gcc_unreachable ();
1767 }
1768 
1769 /* Look for a transition that is taken by all successful returns from a range
1770    of decisions starting at OUTER and that would be better performed by
1771    OUTER's state instead.  On success, store all instances of that transition
1772    in WHERE and return the last decision in the range.  The range could
1773    just be OUTER, or it could include later decisions as well.
1774 
1775    WITH_POSITION_P is true if only tests with position POS should be tried,
1776    false if any test should be tried.  WORTHWHILE_SINGLE_P is true if the
1777    result is useful even when the range contains just a single decision
1778    with a single transition.  KC are the conditions that are known to
1779    hold at OUTER.  */
1780 
1781 static decision *
find_common_test(decision * outer,bool with_position_p,position * pos,bool worthwhile_single_p,known_conditions * kc,vec<transition * > * where)1782 find_common_test (decision *outer, bool with_position_p,
1783 		  position *pos, bool worthwhile_single_p,
1784 		  known_conditions *kc, vec <transition *> *where)
1785 {
1786   /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1787      just a single decision is useful, regardless of the number of
1788      transitions it has.  */
1789   if (!outer->singleton ())
1790     worthwhile_single_p = true;
1791   /* Quick exit if we don't have enough decisions to form a worthwhile
1792      range.  */
1793   if (!worthwhile_single_p && !outer->next)
1794     return 0;
1795   /* Follow the first chain down, as one example of a path that needs
1796      to contain the common test.  */
1797   for (decision *d = outer; d; d = d->first->to->first)
1798     {
1799       transition *trans = d->singleton ();
1800       if (trans
1801 	  && (!with_position_p || d->test.pos == pos)
1802 	  && safe_to_hoist_p (outer, d->test, kc))
1803 	{
1804 	  if (common_test_p (outer, trans, where))
1805 	    {
1806 	      if (!outer->next)
1807 		/* We checked above whether the move is worthwhile.  */
1808 		return outer;
1809 	      /* See how many decisions in OUTER's chain could reuse
1810 		 the same test.  */
1811 	      decision *outer_end = outer;
1812 	      do
1813 		{
1814 		  unsigned int length = where->length ();
1815 		  if (!common_test_p (outer_end->next, trans, where))
1816 		    {
1817 		      where->truncate (length);
1818 		      break;
1819 		    }
1820 		  outer_end = outer_end->next;
1821 		}
1822 	      while (outer_end->next);
1823 	      /* It is worth moving TRANS if it can be shared by more than
1824 		 one decision.  */
1825 	      if (outer_end != outer || worthwhile_single_p)
1826 		return outer_end;
1827 	    }
1828 	  where->truncate (0);
1829 	}
1830     }
1831   return 0;
1832 }
1833 
1834 /* Try to promote common subtests in S to a single, shared decision.
1835    Also try to bunch tests for the same position together.  POS is the
1836    position of the rtx tested before reaching S.  KC are the conditions
1837    that are known to hold on entry to S.  */
1838 
1839 static void
cse_tests(position * pos,state * s,known_conditions * kc)1840 cse_tests (position *pos, state *s, known_conditions *kc)
1841 {
1842   for (decision *d = s->first; d; d = d->next)
1843     {
1844       auto_vec <transition *, 16> where;
1845       if (d->test.pos)
1846 	{
1847 	  /* Try to find conditions that don't depend on a particular rtx,
1848 	     such as pnum_clobbers != NULL or peep2_current_count >= X.
1849 	     It's usually better to check these conditions as soon as
1850 	     possible, so the change is worthwhile even if there is
1851 	     only one copy of the test.  */
1852 	  decision *endd = find_common_test (d, true, 0, true, kc, &where);
1853 	  if (!endd && d->test.pos != pos)
1854 	    /* Try to find other conditions related to position POS
1855 	       before moving to the new position.  Again, this is
1856 	       worthwhile even if there is only one copy of the test,
1857 	       since it means that fewer position variables are live
1858 	       at a given time.  */
1859 	    endd = find_common_test (d, true, pos, true, kc, &where);
1860 	  if (!endd)
1861 	    /* Try to find any condition that is used more than once.  */
1862 	    endd = find_common_test (d, false, 0, false, kc, &where);
1863 	  if (endd)
1864 	    {
1865 	      transition *common = where[0];
1866 	      /* Replace [D, ENDD] with a test like COMMON.  We'll recurse
1867 		 on the common test and see the original D again next time.  */
1868 	      d = insert_decision_before (state::range (d, endd),
1869 					  common->from->test,
1870 					  common->labels,
1871 					  common->optional);
1872 	      /* Remove the old tests.  */
1873 	      while (!where.is_empty ())
1874 		{
1875 		  transition *trans = where.pop ();
1876 		  trans->from->s->replace (trans->from, trans->to->release ());
1877 		}
1878 	    }
1879 	}
1880 
1881       /* Make sure that safe_to_hoist_p isn't being overly conservative.
1882 	 It should realize that D's test is safe in the current
1883 	 environment.  */
1884       gcc_assert (d->test.kind == rtx_test::C_TEST
1885 		  || d->test.kind == rtx_test::ACCEPT
1886 		  || safe_to_hoist_p (d, d->test, kc));
1887 
1888       /* D won't be changed any further by the current optimization.
1889 	 Recurse with the state temporarily updated to include D.  */
1890       int prev = 0;
1891       switch (d->test.kind)
1892 	{
1893 	case rtx_test::CODE:
1894 	  prev = kc->position_tests[d->test.pos->id];
1895 	  kc->position_tests[d->test.pos->id] |= TESTED_CODE;
1896 	  break;
1897 
1898 	case rtx_test::VECLEN:
1899 	case rtx_test::VECLEN_GE:
1900 	  prev = kc->position_tests[d->test.pos->id];
1901 	  kc->position_tests[d->test.pos->id] |= TESTED_VECLEN;
1902 	  break;
1903 
1904 	case rtx_test::SET_OP:
1905 	  prev = kc->set_operands[d->test.u.opno];
1906 	  gcc_assert (!prev);
1907 	  kc->set_operands[d->test.u.opno] = true;
1908 	  break;
1909 
1910 	case rtx_test::PEEP2_COUNT:
1911 	  prev = kc->peep2_count;
1912 	  kc->peep2_count = MAX (prev, d->test.u.min_len);
1913 	  break;
1914 
1915 	default:
1916 	  break;
1917 	}
1918       for (transition *trans = d->first; trans; trans = trans->next)
1919 	cse_tests (d->test.pos ? d->test.pos : pos, trans->to, kc);
1920       switch (d->test.kind)
1921 	{
1922 	case rtx_test::CODE:
1923 	case rtx_test::VECLEN:
1924 	case rtx_test::VECLEN_GE:
1925 	  kc->position_tests[d->test.pos->id] = prev;
1926 	  break;
1927 
1928 	case rtx_test::SET_OP:
1929 	  kc->set_operands[d->test.u.opno] = prev;
1930 	  break;
1931 
1932 	case rtx_test::PEEP2_COUNT:
1933 	  kc->peep2_count = prev;
1934 	  break;
1935 
1936 	default:
1937 	  break;
1938 	}
1939     }
1940 }
1941 
1942 /* Return the type of value that can be used to parameterize test KIND,
1943    or parameter::UNSET if none.  */
1944 
1945 parameter::type_enum
transition_parameter_type(rtx_test::kind_enum kind)1946 transition_parameter_type (rtx_test::kind_enum kind)
1947 {
1948   switch (kind)
1949     {
1950     case rtx_test::CODE:
1951       return parameter::CODE;
1952 
1953     case rtx_test::MODE:
1954       return parameter::MODE;
1955 
1956     case rtx_test::REGNO_FIELD:
1957       return parameter::UINT;
1958 
1959     case rtx_test::INT_FIELD:
1960     case rtx_test::VECLEN:
1961     case rtx_test::PATTERN:
1962       return parameter::INT;
1963 
1964     case rtx_test::WIDE_INT_FIELD:
1965       return parameter::WIDE_INT;
1966 
1967     case rtx_test::PEEP2_COUNT:
1968     case rtx_test::VECLEN_GE:
1969     case rtx_test::SAVED_CONST_INT:
1970     case rtx_test::PREDICATE:
1971     case rtx_test::DUPLICATE:
1972     case rtx_test::HAVE_NUM_CLOBBERS:
1973     case rtx_test::C_TEST:
1974     case rtx_test::SET_OP:
1975     case rtx_test::ACCEPT:
1976       return parameter::UNSET;
1977     }
1978   gcc_unreachable ();
1979 }
1980 
1981 /* Initialize the pos_operand fields of each state reachable from S.
1982    If OPERAND_POS[ID] >= 0, the position with id ID is stored in
1983    operands[OPERAND_POS[ID]] on entry to S.  */
1984 
1985 static void
find_operand_positions(state * s,vec<int> & operand_pos)1986 find_operand_positions (state *s, vec <int> &operand_pos)
1987 {
1988   for (decision *d = s->first; d; d = d->next)
1989     {
1990       int this_operand = (d->test.pos ? operand_pos[d->test.pos->id] : -1);
1991       if (this_operand >= 0)
1992 	d->test.pos_operand = this_operand;
1993       if (d->test.kind == rtx_test::SET_OP)
1994 	operand_pos[d->test.pos->id] = d->test.u.opno;
1995       for (transition *trans = d->first; trans; trans = trans->next)
1996 	find_operand_positions (trans->to, operand_pos);
1997       if (d->test.kind == rtx_test::SET_OP)
1998 	operand_pos[d->test.pos->id] = this_operand;
1999     }
2000 }
2001 
2002 /* Statistics about a matching routine.  */
2003 struct stats
2004 {
2005   stats ();
2006 
2007   /* The total number of decisions in the routine, excluding trivial
2008      ones that never fail.  */
2009   unsigned int num_decisions;
2010 
2011   /* The number of non-trivial decisions on the longest path through
2012      the routine, and the return value that contributes most to that
2013      long path.  */
2014   unsigned int longest_path;
2015   int longest_path_code;
2016 
2017   /* The maximum number of times that a single call to the routine
2018      can backtrack, and the value returned at the end of that path.
2019      "Backtracking" here means failing one decision in state and
2020      going onto to the next.  */
2021   unsigned int longest_backtrack;
2022   int longest_backtrack_code;
2023 };
2024 
stats()2025 stats::stats ()
2026   : num_decisions (0), longest_path (0), longest_path_code (-1),
2027     longest_backtrack (0), longest_backtrack_code (-1) {}
2028 
2029 /* Return statistics about S.  */
2030 
2031 static stats
get_stats(state * s)2032 get_stats (state *s)
2033 {
2034   stats for_s;
2035   unsigned int longest_path = 0;
2036   for (decision *d = s->first; d; d = d->next)
2037     {
2038       /* Work out the statistics for D.  */
2039       stats for_d;
2040       for (transition *trans = d->first; trans; trans = trans->next)
2041 	{
2042 	  stats for_trans = get_stats (trans->to);
2043 	  for_d.num_decisions += for_trans.num_decisions;
2044 	  /* Each transition is mutually-exclusive, so just pick the
2045 	     longest of the individual paths.  */
2046 	  if (for_d.longest_path <= for_trans.longest_path)
2047 	    {
2048 	      for_d.longest_path = for_trans.longest_path;
2049 	      for_d.longest_path_code = for_trans.longest_path_code;
2050 	    }
2051 	  /* Likewise for backtracking.  */
2052 	  if (for_d.longest_backtrack <= for_trans.longest_backtrack)
2053 	    {
2054 	      for_d.longest_backtrack = for_trans.longest_backtrack;
2055 	      for_d.longest_backtrack_code = for_trans.longest_backtrack_code;
2056 	    }
2057 	}
2058 
2059       /* Account for D's test in its statistics.  */
2060       if (!d->test.single_outcome_p ())
2061 	{
2062 	  for_d.num_decisions += 1;
2063 	  for_d.longest_path += 1;
2064 	}
2065       if (d->test.kind == rtx_test::ACCEPT)
2066 	{
2067 	  for_d.longest_path_code = d->test.u.acceptance.u.full.code;
2068 	  for_d.longest_backtrack_code = d->test.u.acceptance.u.full.code;
2069 	}
2070 
2071       /* Keep a running count of the number of backtracks.  */
2072       if (d->prev)
2073 	for_s.longest_backtrack += 1;
2074 
2075       /* Accumulate D's statistics into S's.  */
2076       for_s.num_decisions += for_d.num_decisions;
2077       for_s.longest_path += for_d.longest_path;
2078       for_s.longest_backtrack += for_d.longest_backtrack;
2079 
2080       /* Use the code from the decision with the longest individual path,
2081 	 since that's more likely to be useful if trying to make the
2082 	 path shorter.  In the event of a tie, pick the later decision,
2083 	 since that's closer to the end of the path.  */
2084       if (longest_path <= for_d.longest_path)
2085 	{
2086 	  longest_path = for_d.longest_path;
2087 	  for_s.longest_path_code = for_d.longest_path_code;
2088 	}
2089 
2090       /* Later decisions in a state are necessarily in a longer backtrack
2091 	 than earlier decisions.  */
2092       for_s.longest_backtrack_code = for_d.longest_backtrack_code;
2093     }
2094   return for_s;
2095 }
2096 
2097 /* Optimize ROOT.  Use TYPE to describe ROOT in status messages.  */
2098 
2099 static void
optimize_subroutine_group(const char * type,state * root)2100 optimize_subroutine_group (const char *type, state *root)
2101 {
2102   /* Remove optional transitions that turned out not to be worthwhile.  */
2103   if (collapse_optional_decisions_p)
2104     collapse_optional_decisions (root);
2105 
2106   /* Try to remove duplicated tests and to rearrange tests into a more
2107      logical order.  */
2108   if (cse_tests_p)
2109     {
2110       known_conditions kc;
2111       kc.position_tests.safe_grow_cleared (num_positions);
2112       kc.set_operands.safe_grow_cleared (num_operands);
2113       kc.peep2_count = 1;
2114       cse_tests (&root_pos, root, &kc);
2115     }
2116 
2117   /* Try to simplify two or more tests into one.  */
2118   if (simplify_tests_p)
2119     simplify_tests (root);
2120 
2121   /* Try to use operands[] instead of xN variables.  */
2122   if (use_operand_variables_p)
2123     {
2124       auto_vec <int> operand_pos (num_positions);
2125       for (unsigned int i = 0; i < num_positions; ++i)
2126 	operand_pos.quick_push (-1);
2127       find_operand_positions (root, operand_pos);
2128     }
2129 
2130   /* Print a summary of the new state.  */
2131   stats st = get_stats (root);
2132   fprintf (stderr, "Statistics for %s:\n", type);
2133   fprintf (stderr, "  Number of decisions: %6d\n", st.num_decisions);
2134   fprintf (stderr, "  longest path:        %6d (code: %6d)\n",
2135 	   st.longest_path, st.longest_path_code);
2136   fprintf (stderr, "  longest backtrack:   %6d (code: %6d)\n",
2137 	   st.longest_backtrack, st.longest_backtrack_code);
2138 }
2139 
2140 struct merge_pattern_info;
2141 
2142 /* Represents a transition from one pattern to another.  */
2143 struct merge_pattern_transition
2144 {
2145   merge_pattern_transition (merge_pattern_info *);
2146 
2147   /* The target pattern.  */
2148   merge_pattern_info *to;
2149 
2150   /* The parameters that the source pattern passes to the target pattern.
2151      "parameter (TYPE, true, I)" represents parameter I of the source
2152      pattern.  */
2153   auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2154 };
2155 
merge_pattern_transition(merge_pattern_info * to_in)2156 merge_pattern_transition::merge_pattern_transition (merge_pattern_info *to_in)
2157   : to (to_in)
2158 {
2159 }
2160 
2161 /* Represents a pattern that can might match several states.  The pattern
2162    may replace parts of the test with a parameter value.  It may also
2163    replace transition labels with parameters.  */
2164 struct merge_pattern_info
2165 {
2166   merge_pattern_info (unsigned int);
2167 
2168   /* If PARAM_TEST_P, the state's singleton test should be generalized
2169      to use the runtime value of PARAMS[PARAM_TEST].  */
2170   unsigned int param_test : 8;
2171 
2172   /* If PARAM_TRANSITION_P, the state's single transition label should
2173      be replaced by the runtime value of PARAMS[PARAM_TRANSITION].  */
2174   unsigned int param_transition : 8;
2175 
2176   /* True if we have decided to generalize the root decision's test,
2177      as per PARAM_TEST.  */
2178   unsigned int param_test_p : 1;
2179 
2180   /* Likewise for the root decision's transition, as per PARAM_TRANSITION.  */
2181   unsigned int param_transition_p : 1;
2182 
2183   /* True if the contents of the structure are completely filled in.  */
2184   unsigned int complete_p : 1;
2185 
2186   /* The number of pseudo-statements in the pattern.  Used to decide
2187      whether it's big enough to break out into a subroutine.  */
2188   unsigned int num_statements;
2189 
2190   /* The number of states that use this pattern.  */
2191   unsigned int num_users;
2192 
2193   /* The number of distinct success values that the pattern returns.  */
2194   unsigned int num_results;
2195 
2196   /* This array has one element for each runtime parameter to the pattern.
2197      PARAMS[I] gives the default value of parameter I, which is always
2198      constant.
2199 
2200      These default parameters are used in cases where we match the
2201      pattern against some state S1, then add more parameters while
2202      matching against some state S2.  S1 is then left passing fewer
2203      parameters than S2.  The array gives us enough informatino to
2204      construct a full parameter list for S1 (see update_parameters).
2205 
2206      If we decide to create a subroutine for this pattern,
2207      PARAMS[I].type determines the C type of parameter I.  */
2208   auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2209 
2210   /* All states that match this pattern must have the same number of
2211      transitions.  TRANSITIONS[I] describes the subpattern for transition
2212      number I; it is null if transition I represents a successful return
2213      from the pattern.  */
2214   auto_vec <merge_pattern_transition *, 1> transitions;
2215 
2216   /* The routine associated with the pattern, or null if we haven't generated
2217      one yet.  */
2218   pattern_routine *routine;
2219 };
2220 
merge_pattern_info(unsigned int num_transitions)2221 merge_pattern_info::merge_pattern_info (unsigned int num_transitions)
2222   : param_test (0),
2223     param_transition (0),
2224     param_test_p (false),
2225     param_transition_p (false),
2226     complete_p (false),
2227     num_statements (0),
2228     num_users (0),
2229     num_results (0),
2230     routine (0)
2231 {
2232   transitions.safe_grow_cleared (num_transitions);
2233 }
2234 
2235 /* Describes one way of matching a particular state to a particular
2236    pattern.  */
2237 struct merge_state_result
2238 {
2239   merge_state_result (merge_pattern_info *, position *, merge_state_result *);
2240 
2241   /* A pattern that matches the state.  */
2242   merge_pattern_info *pattern;
2243 
2244   /* If we decide to use this match and create a subroutine for PATTERN,
2245      the state should pass the rtx at position ROOT to the pattern's
2246      rtx parameter.  A null root means that the pattern doesn't need
2247      an rtx parameter; all the rtxes it matches come from elsewhere.  */
2248   position *root;
2249 
2250   /* The parameters that should be passed to PATTERN for this state.
2251      If the array is shorter than PATTERN->params, the missing entries
2252      should be taken from the corresponding element of PATTERN->params.  */
2253   auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2254 
2255   /* An earlier match for the same state, or null if none.  Patterns
2256      matched by earlier entries are smaller than PATTERN.  */
2257   merge_state_result *prev;
2258 };
2259 
merge_state_result(merge_pattern_info * pattern_in,position * root_in,merge_state_result * prev_in)2260 merge_state_result::merge_state_result (merge_pattern_info *pattern_in,
2261 					position *root_in,
2262 					merge_state_result *prev_in)
2263   : pattern (pattern_in), root (root_in), prev (prev_in)
2264 {}
2265 
2266 /* Information about a state, used while trying to match it against
2267    a pattern.  */
2268 struct merge_state_info
2269 {
2270   merge_state_info (state *);
2271 
2272   /* The state itself.  */
2273   state *s;
2274 
2275   /* Index I gives information about the target of transition I.  */
2276   merge_state_info *to_states;
2277 
2278   /* The number of transitions in S.  */
2279   unsigned int num_transitions;
2280 
2281   /* True if the state has been deleted in favor of a call to a
2282      pattern routine.  */
2283   bool merged_p;
2284 
2285   /* The previous state that might be a merge candidate for S, or null
2286      if no previous states could be merged with S.  */
2287   merge_state_info *prev_same_test;
2288 
2289   /* A list of pattern matches for this state.  */
2290   merge_state_result *res;
2291 };
2292 
merge_state_info(state * s_in)2293 merge_state_info::merge_state_info (state *s_in)
2294   : s (s_in),
2295     to_states (0),
2296     num_transitions (0),
2297     merged_p (false),
2298     prev_same_test (0),
2299     res (0) {}
2300 
2301 /* True if PAT would be useful as a subroutine.  */
2302 
2303 static bool
useful_pattern_p(merge_pattern_info * pat)2304 useful_pattern_p (merge_pattern_info *pat)
2305 {
2306   return pat->num_statements >= MIN_COMBINE_COST;
2307 }
2308 
2309 /* PAT2 is a subpattern of PAT1.  Return true if PAT2 should be inlined
2310    into PAT1's C routine.  */
2311 
2312 static bool
same_pattern_p(merge_pattern_info * pat1,merge_pattern_info * pat2)2313 same_pattern_p (merge_pattern_info *pat1, merge_pattern_info *pat2)
2314 {
2315   return pat1->num_users == pat2->num_users || !useful_pattern_p (pat2);
2316 }
2317 
2318 /* PAT was previously matched against SINFO based on tentative matches
2319    for the target states of SINFO's state.  Return true if the match
2320    still holds; that is, if the target states of SINFO's state still
2321    match the corresponding transitions of PAT.  */
2322 
2323 static bool
valid_result_p(merge_pattern_info * pat,merge_state_info * sinfo)2324 valid_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2325 {
2326   for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2327     if (merge_pattern_transition *ptrans = pat->transitions[j])
2328       {
2329 	merge_state_result *to_res = sinfo->to_states[j].res;
2330 	if (!to_res || to_res->pattern != ptrans->to)
2331 	  return false;
2332       }
2333   return true;
2334 }
2335 
2336 /* Remove any matches that are no longer valid from the head of SINFO's
2337    list of matches.  */
2338 
2339 static void
prune_invalid_results(merge_state_info * sinfo)2340 prune_invalid_results (merge_state_info *sinfo)
2341 {
2342   while (sinfo->res && !valid_result_p (sinfo->res->pattern, sinfo))
2343     {
2344       sinfo->res = sinfo->res->prev;
2345       gcc_assert (sinfo->res);
2346     }
2347 }
2348 
2349 /* Return true if PAT represents the biggest posssible match for SINFO;
2350    that is, if the next action of SINFO's state on return from PAT will
2351    be something that cannot be merged with any other state.  */
2352 
2353 static bool
complete_result_p(merge_pattern_info * pat,merge_state_info * sinfo)2354 complete_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2355 {
2356   for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2357     if (sinfo->to_states[j].res && !pat->transitions[j])
2358       return false;
2359   return true;
2360 }
2361 
2362 /* Update TO for any parameters that have been added to FROM since TO
2363    was last set.  The extra parameters in FROM will be constants or
2364    instructions to duplicate earlier parameters.  */
2365 
2366 static void
update_parameters(vec<parameter> & to,const vec<parameter> & from)2367 update_parameters (vec <parameter> &to, const vec <parameter> &from)
2368 {
2369   for (unsigned int i = to.length (); i < from.length (); ++i)
2370     to.quick_push (from[i]);
2371 }
2372 
2373 /* Return true if A and B can be tested by a single test.  If the test
2374    can be parameterised, store the parameter value for A in *PARAMA and
2375    the parameter value for B in *PARAMB, otherwise leave PARAMA and
2376    PARAMB alone.  */
2377 
2378 static bool
compatible_tests_p(const rtx_test & a,const rtx_test & b,parameter * parama,parameter * paramb)2379 compatible_tests_p (const rtx_test &a, const rtx_test &b,
2380 		    parameter *parama, parameter *paramb)
2381 {
2382   if (a.kind != b.kind)
2383     return false;
2384   switch (a.kind)
2385     {
2386     case rtx_test::PREDICATE:
2387       if (a.u.predicate.data != b.u.predicate.data)
2388 	return false;
2389       *parama = parameter (parameter::MODE, false, a.u.predicate.mode);
2390       *paramb = parameter (parameter::MODE, false, b.u.predicate.mode);
2391       return true;
2392 
2393     case rtx_test::SAVED_CONST_INT:
2394       *parama = parameter (parameter::INT, false, a.u.integer.value);
2395       *paramb = parameter (parameter::INT, false, b.u.integer.value);
2396       return true;
2397 
2398     default:
2399       return a == b;
2400     }
2401 }
2402 
2403 /* PARAMS is an array of the parameters that a state is going to pass
2404    to a pattern routine.  It is still incomplete; index I has a kind of
2405    parameter::UNSET if we don't yet know what the state will pass
2406    as parameter I.  Try to make parameter ID equal VALUE, returning
2407    true on success.  */
2408 
2409 static bool
set_parameter(vec<parameter> & params,unsigned int id,const parameter & value)2410 set_parameter (vec <parameter> &params, unsigned int id,
2411 	       const parameter &value)
2412 {
2413   if (params[id].type == parameter::UNSET)
2414     {
2415       if (force_unique_params_p)
2416 	for (unsigned int i = 0; i < params.length (); ++i)
2417 	  if (params[i] == value)
2418 	    return false;
2419       params[id] = value;
2420       return true;
2421     }
2422   return params[id] == value;
2423 }
2424 
2425 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2426    set of parameters that a particular state is going to pass to
2427    that pattern.
2428 
2429    Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2430    that is equal to PARAM1 for the state and has a default value of
2431    PARAM2.  Parameters beginning at START were added as part of the
2432    same match and so may be reused.  */
2433 
2434 static bool
add_parameter(vec<parameter> & params1,vec<parameter> & params2,const parameter & param1,const parameter & param2,unsigned int start,unsigned int * res)2435 add_parameter (vec <parameter> &params1, vec <parameter> &params2,
2436 	       const parameter &param1, const parameter &param2,
2437 	       unsigned int start, unsigned int *res)
2438 {
2439   gcc_assert (params1.length () == params2.length ());
2440   gcc_assert (!param1.is_param && !param2.is_param);
2441 
2442   for (unsigned int i = start; i < params2.length (); ++i)
2443     if (params1[i] == param1 && params2[i] == param2)
2444       {
2445 	*res = i;
2446 	return true;
2447       }
2448 
2449   if (force_unique_params_p)
2450     for (unsigned int i = 0; i < params2.length (); ++i)
2451       if (params1[i] == param1 || params2[i] == param2)
2452 	return false;
2453 
2454   if (params2.length () >= MAX_PATTERN_PARAMS)
2455     return false;
2456 
2457   *res = params2.length ();
2458   params1.quick_push (param1);
2459   params2.quick_push (param2);
2460   return true;
2461 }
2462 
2463 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2464    required to reach A from *ROOTA as to reach B from ROOTB.  If *ROOTA
2465    is null, update it if necessary in order to make the condition hold.  */
2466 
2467 static bool
merge_relative_positions(position ** roota,position * a,position * rootb,position * b)2468 merge_relative_positions (position **roota, position *a,
2469 			  position *rootb, position *b)
2470 {
2471   if (!relative_patterns_p)
2472     {
2473       if (a != b)
2474 	return false;
2475       if (!*roota)
2476 	{
2477 	  *roota = rootb;
2478 	  return true;
2479 	}
2480       return *roota == rootb;
2481     }
2482   /* If B does not belong to the same instruction as ROOTB, we don't
2483      start with ROOTB but instead start with a call to peep2_next_insn.
2484      In that case the sequences for B and A are identical iff B and A
2485      are themselves identical.  */
2486   if (rootb->insn_id != b->insn_id)
2487     return a == b;
2488   while (rootb != b)
2489     {
2490       if (!a || b->type != a->type || b->arg != a->arg)
2491 	return false;
2492       b = b->base;
2493       a = a->base;
2494     }
2495   if (!*roota)
2496     *roota = a;
2497   return *roota == a;
2498 }
2499 
2500 /* A hasher of states that treats two states as "equal" if they might be
2501    merged (but trying to be more discriminating than "return true").  */
2502 struct test_pattern_hasher : nofree_ptr_hash <merge_state_info>
2503 {
2504   static inline hashval_t hash (const value_type &);
2505   static inline bool equal (const value_type &, const compare_type &);
2506 };
2507 
2508 hashval_t
hash(merge_state_info * const & sinfo)2509 test_pattern_hasher::hash (merge_state_info *const &sinfo)
2510 {
2511   inchash::hash h;
2512   decision *d = sinfo->s->singleton ();
2513   h.add_int (d->test.pos_operand + 1);
2514   if (!relative_patterns_p)
2515     h.add_int (d->test.pos ? d->test.pos->id + 1 : 0);
2516   h.add_int (d->test.kind);
2517   h.add_int (sinfo->num_transitions);
2518   return h.end ();
2519 }
2520 
2521 bool
equal(merge_state_info * const & sinfo1,merge_state_info * const & sinfo2)2522 test_pattern_hasher::equal (merge_state_info *const &sinfo1,
2523 			    merge_state_info *const &sinfo2)
2524 {
2525   decision *d1 = sinfo1->s->singleton ();
2526   decision *d2 = sinfo2->s->singleton ();
2527   gcc_assert (d1 && d2);
2528 
2529   parameter new_param1, new_param2;
2530   return (d1->test.pos_operand == d2->test.pos_operand
2531 	  && (relative_patterns_p || d1->test.pos == d2->test.pos)
2532 	  && compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2)
2533 	  && sinfo1->num_transitions == sinfo2->num_transitions);
2534 }
2535 
2536 /* Try to make the state described by SINFO1 use the same pattern as the
2537    state described by SINFO2.  Return true on success.
2538 
2539    SINFO1 and SINFO2 are known to have the same hash value.  */
2540 
2541 static bool
merge_patterns(merge_state_info * sinfo1,merge_state_info * sinfo2)2542 merge_patterns (merge_state_info *sinfo1, merge_state_info *sinfo2)
2543 {
2544   merge_state_result *res2 = sinfo2->res;
2545   merge_pattern_info *pat = res2->pattern;
2546 
2547   /* Write to temporary arrays while matching, in case we have to abort
2548      half way through.  */
2549   auto_vec <parameter, MAX_PATTERN_PARAMS> params1;
2550   auto_vec <parameter, MAX_PATTERN_PARAMS> params2;
2551   params1.quick_grow_cleared (pat->params.length ());
2552   params2.splice (pat->params);
2553   unsigned int start_param = params2.length ();
2554 
2555   /* An array for recording changes to PAT->transitions[?].params.
2556      All changes involve replacing a constant parameter with some
2557      PAT->params[N], where N is the second element of the pending_param.  */
2558   typedef std::pair <parameter *, unsigned int> pending_param;
2559   auto_vec <pending_param, 32> pending_params;
2560 
2561   decision *d1 = sinfo1->s->singleton ();
2562   decision *d2 = sinfo2->s->singleton ();
2563   gcc_assert (d1 && d2);
2564 
2565   /* If D2 tests a position, SINFO1's root relative to D1 is the same
2566      as SINFO2's root relative to D2.  */
2567   position *root1 = 0;
2568   position *root2 = res2->root;
2569   if (d2->test.pos_operand < 0
2570       && d1->test.pos
2571       && !merge_relative_positions (&root1, d1->test.pos,
2572 				    root2, d2->test.pos))
2573     return false;
2574 
2575   /* Check whether the patterns have the same shape.  */
2576   unsigned int num_transitions = sinfo1->num_transitions;
2577   gcc_assert (num_transitions == sinfo2->num_transitions);
2578   for (unsigned int i = 0; i < num_transitions; ++i)
2579     if (merge_pattern_transition *ptrans = pat->transitions[i])
2580       {
2581 	merge_state_result *to1_res = sinfo1->to_states[i].res;
2582 	merge_state_result *to2_res = sinfo2->to_states[i].res;
2583 	merge_pattern_info *to_pat = ptrans->to;
2584 	gcc_assert (to2_res && to2_res->pattern == to_pat);
2585 	if (!to1_res || to1_res->pattern != to_pat)
2586 	  return false;
2587 	if (to2_res->root
2588 	    && !merge_relative_positions (&root1, to1_res->root,
2589 					  root2, to2_res->root))
2590 	  return false;
2591 	/* Match the parameters that TO1_RES passes to TO_PAT with the
2592 	   parameters that PAT passes to TO_PAT.  */
2593 	update_parameters (to1_res->params, to_pat->params);
2594 	for (unsigned int j = 0; j < to1_res->params.length (); ++j)
2595 	  {
2596 	    const parameter &param1 = to1_res->params[j];
2597 	    const parameter &param2 = ptrans->params[j];
2598 	    gcc_assert (!param1.is_param);
2599 	    if (param2.is_param)
2600 	      {
2601 		if (!set_parameter (params1, param2.value, param1))
2602 		  return false;
2603 	      }
2604 	    else if (param1 != param2)
2605 	      {
2606 		unsigned int id;
2607 		if (!add_parameter (params1, params2,
2608 				    param1, param2, start_param, &id))
2609 		  return false;
2610 		/* Record that PAT should now pass parameter ID to TO_PAT,
2611 		   instead of the current contents of *PARAM2.  We only
2612 		   make the change if the rest of the match succeeds.  */
2613 		pending_params.safe_push
2614 		  (pending_param (&ptrans->params[j], id));
2615 	      }
2616 	  }
2617       }
2618 
2619   unsigned int param_test = pat->param_test;
2620   unsigned int param_transition = pat->param_transition;
2621   bool param_test_p = pat->param_test_p;
2622   bool param_transition_p = pat->param_transition_p;
2623 
2624   /* If the tests don't match exactly, try to parameterize them.  */
2625   parameter new_param1, new_param2;
2626   if (!compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2))
2627     gcc_unreachable ();
2628   if (new_param1.type != parameter::UNSET)
2629     {
2630       /* If the test has not already been parameterized, all existing
2631 	 matches use constant NEW_PARAM2.  */
2632       if (param_test_p)
2633 	{
2634 	  if (!set_parameter (params1, param_test, new_param1))
2635 	    return false;
2636 	}
2637       else if (new_param1 != new_param2)
2638 	{
2639 	  if (!add_parameter (params1, params2, new_param1, new_param2,
2640 			      start_param, &param_test))
2641 	    return false;
2642 	  param_test_p = true;
2643 	}
2644     }
2645 
2646   /* Match the transitions.  */
2647   transition *trans1 = d1->first;
2648   transition *trans2 = d2->first;
2649   for (unsigned int i = 0; i < num_transitions; ++i)
2650     {
2651       if (param_transition_p || trans1->labels != trans2->labels)
2652 	{
2653 	  /* We can only generalize a single transition with a single
2654 	     label.  */
2655 	  if (num_transitions != 1
2656 	      || trans1->labels.length () != 1
2657 	      || trans2->labels.length () != 1)
2658 	    return false;
2659 
2660 	  /* Although we can match wide-int fields, in practice it leads
2661 	     to some odd results for const_vectors.  We end up
2662 	     parameterizing the first N const_ints of the vector
2663 	     and then (once we reach the maximum number of parameters)
2664 	     we go on to match the other elements exactly.  */
2665 	  if (d1->test.kind == rtx_test::WIDE_INT_FIELD)
2666 	    return false;
2667 
2668 	  /* See whether the label has a generalizable type.  */
2669 	  parameter::type_enum param_type
2670 	    = transition_parameter_type (d1->test.kind);
2671 	  if (param_type == parameter::UNSET)
2672 	    return false;
2673 
2674 	  /* Match the labels using parameters.  */
2675 	  new_param1 = parameter (param_type, false, trans1->labels[0]);
2676 	  if (param_transition_p)
2677 	    {
2678 	      if (!set_parameter (params1, param_transition, new_param1))
2679 		return false;
2680 	    }
2681 	  else
2682 	    {
2683 	      new_param2 = parameter (param_type, false, trans2->labels[0]);
2684 	      if (!add_parameter (params1, params2, new_param1, new_param2,
2685 				  start_param, &param_transition))
2686 		return false;
2687 	      param_transition_p = true;
2688 	    }
2689 	}
2690       trans1 = trans1->next;
2691       trans2 = trans2->next;
2692     }
2693 
2694   /* Set any unset parameters to their default values.  This occurs if some
2695      other state needed something to be parameterized in order to match SINFO2,
2696      but SINFO1 on its own does not.  */
2697   for (unsigned int i = 0; i < params1.length (); ++i)
2698     if (params1[i].type == parameter::UNSET)
2699       params1[i] = params2[i];
2700 
2701   /* The match was successful.  Commit all pending changes to PAT.  */
2702   update_parameters (pat->params, params2);
2703   {
2704     pending_param *pp;
2705     unsigned int i;
2706     FOR_EACH_VEC_ELT (pending_params, i, pp)
2707       *pp->first = parameter (pp->first->type, true, pp->second);
2708   }
2709   pat->param_test = param_test;
2710   pat->param_transition = param_transition;
2711   pat->param_test_p = param_test_p;
2712   pat->param_transition_p = param_transition_p;
2713 
2714   /* Record the match of SINFO1.  */
2715   merge_state_result *new_res1 = new merge_state_result (pat, root1,
2716 							 sinfo1->res);
2717   new_res1->params.splice (params1);
2718   sinfo1->res = new_res1;
2719   return true;
2720 }
2721 
2722 /* The number of states that were removed by calling pattern routines.  */
2723 static unsigned int pattern_use_states;
2724 
2725 /* The number of states used while defining pattern routines.  */
2726 static unsigned int pattern_def_states;
2727 
2728 /* Information used while constructing a use or definition of a pattern
2729    routine.  */
2730 struct create_pattern_info
2731 {
2732   /* The routine itself.  */
2733   pattern_routine *routine;
2734 
2735   /* The first unclaimed return value for this particular use or definition.
2736      We walk the substates of uses and definitions in the same order
2737      so each return value always refers to the same position within
2738      the pattern.  */
2739   unsigned int next_result;
2740 };
2741 
2742 static void populate_pattern_routine (create_pattern_info *,
2743 				      merge_state_info *, state *,
2744 				      const vec <parameter> &);
2745 
2746 /* SINFO matches a pattern for which we've decided to create a C routine.
2747    Return a decision that performs a call to the pattern routine,
2748    but leave the caller to add the transitions to it.  Initialize CPI
2749    for this purpose.  Also create a definition for the pattern routine,
2750    if it doesn't already have one.
2751 
2752    PARAMS are the parameters that SINFO passes to its pattern.  */
2753 
2754 static decision *
init_pattern_use(create_pattern_info * cpi,merge_state_info * sinfo,const vec<parameter> & params)2755 init_pattern_use (create_pattern_info *cpi, merge_state_info *sinfo,
2756 		  const vec <parameter> &params)
2757 {
2758   state *s = sinfo->s;
2759   merge_state_result *res = sinfo->res;
2760   merge_pattern_info *pat = res->pattern;
2761   cpi->routine = pat->routine;
2762   if (!cpi->routine)
2763     {
2764       /* We haven't defined the pattern routine yet, so create
2765 	 a definition now.  */
2766       pattern_routine *routine = new pattern_routine;
2767       pat->routine = routine;
2768       cpi->routine = routine;
2769       routine->s = new state;
2770       routine->insn_p = false;
2771       routine->pnum_clobbers_p = false;
2772 
2773       /* Create an "idempotent" mapping of parameter I to parameter I.
2774 	 Also record the C type of each parameter to the routine.  */
2775       auto_vec <parameter, MAX_PATTERN_PARAMS> def_params;
2776       for (unsigned int i = 0; i < pat->params.length (); ++i)
2777 	{
2778 	  def_params.quick_push (parameter (pat->params[i].type, true, i));
2779 	  routine->param_types.quick_push (pat->params[i].type);
2780 	}
2781 
2782       /* Any of the states that match the pattern could be used to
2783 	 create the routine definition.  We might as well use SINFO
2784 	 since it's already to hand.  This means that all positions
2785 	 in the definition will be relative to RES->root.  */
2786       routine->pos = res->root;
2787       cpi->next_result = 0;
2788       populate_pattern_routine (cpi, sinfo, routine->s, def_params);
2789       gcc_assert (cpi->next_result == pat->num_results);
2790 
2791       /* Add the routine to the global list, after the subroutines
2792 	 that it calls.  */
2793       routine->pattern_id = patterns.length ();
2794       patterns.safe_push (routine);
2795     }
2796 
2797   /* Create a decision to call the routine, passing PARAMS to it.  */
2798   pattern_use *use = new pattern_use;
2799   use->routine = pat->routine;
2800   use->params.splice (params);
2801   decision *d = new decision (rtx_test::pattern (res->root, use));
2802 
2803   /* If the original decision could use an element of operands[] instead
2804      of an rtx variable, try to transfer it to the new decision.  */
2805   if (s->first->test.pos && res->root == s->first->test.pos)
2806     d->test.pos_operand = s->first->test.pos_operand;
2807 
2808   cpi->next_result = 0;
2809   return d;
2810 }
2811 
2812 /* Make S return the next unclaimed pattern routine result for CPI.  */
2813 
2814 static void
add_pattern_acceptance(create_pattern_info * cpi,state * s)2815 add_pattern_acceptance (create_pattern_info *cpi, state *s)
2816 {
2817   acceptance_type acceptance;
2818   acceptance.type = SUBPATTERN;
2819   acceptance.partial_p = false;
2820   acceptance.u.full.code = cpi->next_result;
2821   add_decision (s, rtx_test::accept (acceptance), true, false);
2822   cpi->next_result += 1;
2823 }
2824 
2825 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2826    (here referred to as "P").  P may be the top level of a pattern routine
2827    or a subpattern that should be inlined into its parent pattern's routine
2828    (as per same_pattern_p).  The choice of SINFO for a top-level pattern is
2829    arbitrary; it could be any of the states that use P.  The choice for
2830    subpatterns follows the choice for the parent pattern.
2831 
2832    PARAMS gives the value of each parameter to P in terms of the parameters
2833    to the top-level pattern.  If P itself is the top level pattern, PARAMS[I]
2834    is always "parameter (TYPE, true, I)".  */
2835 
2836 static void
populate_pattern_routine(create_pattern_info * cpi,merge_state_info * sinfo,state * news,const vec<parameter> & params)2837 populate_pattern_routine (create_pattern_info *cpi, merge_state_info *sinfo,
2838 			  state *news, const vec <parameter> &params)
2839 {
2840   pattern_def_states += 1;
2841 
2842   decision *d = sinfo->s->singleton ();
2843   merge_pattern_info *pat = sinfo->res->pattern;
2844   pattern_routine *routine = cpi->routine;
2845 
2846   /* Create a copy of D's test for the pattern routine and generalize it
2847      as appropriate.  */
2848   decision *newd = new decision (d->test);
2849   gcc_assert (newd->test.pos_operand >= 0
2850 	      || !newd->test.pos
2851 	      || common_position (newd->test.pos,
2852 				  routine->pos) == routine->pos);
2853   if (pat->param_test_p)
2854     {
2855       const parameter &param = params[pat->param_test];
2856       switch (newd->test.kind)
2857 	{
2858 	case rtx_test::PREDICATE:
2859 	  newd->test.u.predicate.mode_is_param = param.is_param;
2860 	  newd->test.u.predicate.mode = param.value;
2861 	  break;
2862 
2863 	case rtx_test::SAVED_CONST_INT:
2864 	  newd->test.u.integer.is_param = param.is_param;
2865 	  newd->test.u.integer.value = param.value;
2866 	  break;
2867 
2868 	default:
2869 	  gcc_unreachable ();
2870 	  break;
2871 	}
2872     }
2873   if (d->test.kind == rtx_test::C_TEST)
2874     routine->insn_p = true;
2875   else if (d->test.kind == rtx_test::HAVE_NUM_CLOBBERS)
2876     routine->pnum_clobbers_p = true;
2877   news->push_back (newd);
2878 
2879   /* Fill in the transitions of NEWD.  */
2880   unsigned int i = 0;
2881   for (transition *trans = d->first; trans; trans = trans->next)
2882     {
2883       /* Create a new state to act as the target of the new transition.  */
2884       state *to_news = new state;
2885       if (merge_pattern_transition *ptrans = pat->transitions[i])
2886 	{
2887 	  /* The pattern hasn't finished matching yet.  Get the target
2888 	     pattern and the corresponding target state of SINFO.  */
2889 	  merge_pattern_info *to_pat = ptrans->to;
2890 	  merge_state_info *to = sinfo->to_states + i;
2891 	  gcc_assert (to->res->pattern == to_pat);
2892 	  gcc_assert (ptrans->params.length () == to_pat->params.length ());
2893 
2894 	  /* Express the parameters to TO_PAT in terms of the parameters
2895 	     to the top-level pattern.  */
2896 	  auto_vec <parameter, MAX_PATTERN_PARAMS> to_params;
2897 	  for (unsigned int j = 0; j < ptrans->params.length (); ++j)
2898 	    {
2899 	      const parameter &param = ptrans->params[j];
2900 	      to_params.quick_push (param.is_param
2901 				    ? params[param.value]
2902 				    : param);
2903 	    }
2904 
2905 	  if (same_pattern_p (pat, to_pat))
2906 	    /* TO_PAT is part of the current routine, so just recurse.  */
2907 	    populate_pattern_routine (cpi, to, to_news, to_params);
2908 	  else
2909 	    {
2910 	      /* TO_PAT should be matched by calling a separate routine.  */
2911 	      create_pattern_info sub_cpi;
2912 	      decision *subd = init_pattern_use (&sub_cpi, to, to_params);
2913 	      routine->insn_p |= sub_cpi.routine->insn_p;
2914 	      routine->pnum_clobbers_p |= sub_cpi.routine->pnum_clobbers_p;
2915 
2916 	      /* Add the pattern routine call to the new target state.  */
2917 	      to_news->push_back (subd);
2918 
2919 	      /* Add a transition for each successful call result.  */
2920 	      for (unsigned int j = 0; j < to_pat->num_results; ++j)
2921 		{
2922 		  state *res = new state;
2923 		  add_pattern_acceptance (cpi, res);
2924 		  subd->push_back (new transition (j, res, false));
2925 		}
2926 	    }
2927 	}
2928       else
2929 	/* This transition corresponds to a successful match.  */
2930 	add_pattern_acceptance (cpi, to_news);
2931 
2932       /* Create the transition itself, generalizing as necessary.  */
2933       transition *new_trans = new transition (trans->labels, to_news,
2934 					      trans->optional);
2935       if (pat->param_transition_p)
2936 	{
2937 	  const parameter &param = params[pat->param_transition];
2938 	  new_trans->is_param = param.is_param;
2939 	  new_trans->labels[0] = param.value;
2940 	}
2941       newd->push_back (new_trans);
2942       i += 1;
2943     }
2944 }
2945 
2946 /* USE is a decision that calls a pattern routine and SINFO is part of the
2947    original state tree that the call is supposed to replace.  Add the
2948    transitions for SINFO and its substates to USE.  */
2949 
2950 static void
populate_pattern_use(create_pattern_info * cpi,decision * use,merge_state_info * sinfo)2951 populate_pattern_use (create_pattern_info *cpi, decision *use,
2952 		      merge_state_info *sinfo)
2953 {
2954   pattern_use_states += 1;
2955   gcc_assert (!sinfo->merged_p);
2956   sinfo->merged_p = true;
2957   merge_state_result *res = sinfo->res;
2958   merge_pattern_info *pat = res->pattern;
2959   decision *d = sinfo->s->singleton ();
2960   unsigned int i = 0;
2961   for (transition *trans = d->first; trans; trans = trans->next)
2962     {
2963       if (pat->transitions[i])
2964 	/* The target state is also part of the pattern.  */
2965 	populate_pattern_use (cpi, use, sinfo->to_states + i);
2966       else
2967 	{
2968 	  /* The transition corresponds to a successful return from the
2969 	     pattern routine.  */
2970 	  use->push_back (new transition (cpi->next_result, trans->to, false));
2971 	  cpi->next_result += 1;
2972 	}
2973       i += 1;
2974     }
2975 }
2976 
2977 /* We have decided to replace SINFO's state with a call to a pattern
2978    routine.  Make the change, creating a definition of the pattern routine
2979    if it doesn't have one already.  */
2980 
2981 static void
use_pattern(merge_state_info * sinfo)2982 use_pattern (merge_state_info *sinfo)
2983 {
2984   merge_state_result *res = sinfo->res;
2985   merge_pattern_info *pat = res->pattern;
2986   state *s = sinfo->s;
2987 
2988   /* The pattern may have acquired new parameters after it was matched
2989      against SINFO.  Update the parameters that SINFO passes accordingly.  */
2990   update_parameters (res->params, pat->params);
2991 
2992   create_pattern_info cpi;
2993   decision *d = init_pattern_use (&cpi, sinfo, res->params);
2994   populate_pattern_use (&cpi, d, sinfo);
2995   s->release ();
2996   s->push_back (d);
2997 }
2998 
2999 /* Look through the state trees in STATES for common patterns and
3000    split them into subroutines.  */
3001 
3002 static void
split_out_patterns(vec<merge_state_info> & states)3003 split_out_patterns (vec <merge_state_info> &states)
3004 {
3005   unsigned int first_transition = states.length ();
3006   hash_table <test_pattern_hasher> hashtab (128);
3007   /* Stage 1: Create an order in which parent states come before their child
3008      states and in which sibling states are at consecutive locations.
3009      Having consecutive sibling states allows merge_state_info to have
3010      a single to_states pointer.  */
3011   for (unsigned int i = 0; i < states.length (); ++i)
3012     for (decision *d = states[i].s->first; d; d = d->next)
3013       for (transition *trans = d->first; trans; trans = trans->next)
3014 	{
3015 	  states.safe_push (trans->to);
3016 	  states[i].num_transitions += 1;
3017 	}
3018   /* Stage 2: Now that the addresses are stable, set up the to_states
3019      pointers.  Look for states that might be merged and enter them
3020      into the hash table.  */
3021   for (unsigned int i = 0; i < states.length (); ++i)
3022     {
3023       merge_state_info *sinfo = &states[i];
3024       if (sinfo->num_transitions)
3025 	{
3026 	  sinfo->to_states = &states[first_transition];
3027 	  first_transition += sinfo->num_transitions;
3028 	}
3029       /* For simplicity, we only try to merge states that have a single
3030 	 decision.  This is in any case the best we can do for peephole2,
3031 	 since whether a peephole2 ACCEPT succeeds or not depends on the
3032 	 specific peephole2 pattern (which is unique to each ACCEPT
3033 	 and so couldn't be shared between states).  */
3034       if (decision *d = sinfo->s->singleton ())
3035 	/* ACCEPT states are unique, so don't even try to merge them.  */
3036 	if (d->test.kind != rtx_test::ACCEPT
3037 	    && (pattern_have_num_clobbers_p
3038 		|| d->test.kind != rtx_test::HAVE_NUM_CLOBBERS)
3039 	    && (pattern_c_test_p
3040 		|| d->test.kind != rtx_test::C_TEST))
3041 	  {
3042 	    merge_state_info **slot = hashtab.find_slot (sinfo, INSERT);
3043 	    sinfo->prev_same_test = *slot;
3044 	    *slot = sinfo;
3045 	  }
3046     }
3047   /* Stage 3: Walk backwards through the list of states and try to merge
3048      them.  This is a greedy, bottom-up match; parent nodes can only start
3049      a new leaf pattern if they fail to match when combined with all child
3050      nodes that have matching patterns.
3051 
3052      For each state we keep a list of potential matches, with each
3053      potential match being larger (and deeper) than the next match in
3054      the list.  The final element in the list is a leaf pattern that
3055      matches just a single state.
3056 
3057      Each candidate pattern created in this loop is unique -- it won't
3058      have been seen by an earlier iteration.  We try to match each pattern
3059      with every state that appears earlier in STATES.
3060 
3061      Because the patterns created in the loop are unique, any state
3062      that already has a match must have a final potential match that
3063      is different from any new leaf pattern.  Therefore, when matching
3064      leaf patterns, we need only consider states whose list of matches
3065      is empty.
3066 
3067      The non-leaf patterns that we try are as deep as possible
3068      and are an extension of the state's previous best candidate match (PB).
3069      We need only consider states whose current potential match is also PB;
3070      any states that don't match as much as PB cannnot match the new pattern,
3071      while any states that already match more than PB must be different from
3072      the new pattern.  */
3073   for (unsigned int i2 = states.length (); i2-- > 0; )
3074     {
3075       merge_state_info *sinfo2 = &states[i2];
3076 
3077       /* Enforce the bottom-upness of the match: remove matches with later
3078 	 states if SINFO2's child states ended up finding a better match.  */
3079       prune_invalid_results (sinfo2);
3080 
3081       /* Do nothing if the state doesn't match a later one and if there are
3082 	 no earlier states it could match.  */
3083       if (!sinfo2->res && !sinfo2->prev_same_test)
3084 	continue;
3085 
3086       merge_state_result *res2 = sinfo2->res;
3087       decision *d2 = sinfo2->s->singleton ();
3088       position *root2 = (d2->test.pos_operand < 0 ? d2->test.pos : 0);
3089       unsigned int num_transitions = sinfo2->num_transitions;
3090 
3091       /* If RES2 is null then SINFO2's test in isolation has not been seen
3092 	 before.  First try matching that on its own.  */
3093       if (!res2)
3094 	{
3095 	  merge_pattern_info *new_pat
3096 	    = new merge_pattern_info (num_transitions);
3097 	  merge_state_result *new_res2
3098 	    = new merge_state_result (new_pat, root2, res2);
3099 	  sinfo2->res = new_res2;
3100 
3101 	  new_pat->num_statements = !d2->test.single_outcome_p ();
3102 	  new_pat->num_results = num_transitions;
3103 	  bool matched_p = false;
3104 	  /* Look for states that don't currently match anything but
3105 	     can be made to match SINFO2 on its own.  */
3106 	  for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3107 	       sinfo1 = sinfo1->prev_same_test)
3108 	    if (!sinfo1->res && merge_patterns (sinfo1, sinfo2))
3109 	      matched_p = true;
3110 	  if (!matched_p)
3111 	    {
3112 	      /* No other states match.  */
3113 	      sinfo2->res = res2;
3114 	      delete new_pat;
3115 	      delete new_res2;
3116 	      continue;
3117 	    }
3118 	  else
3119 	    res2 = new_res2;
3120 	}
3121 
3122       /* Keep the existing pattern if it's as good as anything we'd
3123 	 create for SINFO2.  */
3124       if (complete_result_p (res2->pattern, sinfo2))
3125 	{
3126 	  res2->pattern->num_users += 1;
3127 	  continue;
3128 	}
3129 
3130       /* Create a new pattern for SINFO2.  */
3131       merge_pattern_info *new_pat = new merge_pattern_info (num_transitions);
3132       merge_state_result *new_res2
3133 	= new merge_state_result (new_pat, root2, res2);
3134       sinfo2->res = new_res2;
3135 
3136       /* Fill in details about the pattern.  */
3137       new_pat->num_statements = !d2->test.single_outcome_p ();
3138       new_pat->num_results = 0;
3139       for (unsigned int j = 0; j < num_transitions; ++j)
3140 	if (merge_state_result *to_res = sinfo2->to_states[j].res)
3141 	  {
3142 	    /* Count the target state as part of this pattern.
3143 	       First update the root position so that it can reach
3144 	       the target state's root.  */
3145 	    if (to_res->root)
3146 	      {
3147 		if (new_res2->root)
3148 		  new_res2->root = common_position (new_res2->root,
3149 						    to_res->root);
3150 		else
3151 		  new_res2->root = to_res->root;
3152 	      }
3153 	    merge_pattern_info *to_pat = to_res->pattern;
3154 	    merge_pattern_transition *ptrans
3155 	      = new merge_pattern_transition (to_pat);
3156 
3157 	    /* TO_PAT may have acquired more parameters when matching
3158 	       states earlier in STATES than TO_RES's, but the list is
3159 	       now final.  Make sure that TO_RES is up to date.  */
3160 	    update_parameters (to_res->params, to_pat->params);
3161 
3162 	    /* Start out by assuming that every user of NEW_PAT will
3163 	       want to pass the same (constant) parameters as TO_RES.  */
3164 	    update_parameters (ptrans->params, to_res->params);
3165 
3166 	    new_pat->transitions[j] = ptrans;
3167 	    new_pat->num_statements += to_pat->num_statements;
3168 	    new_pat->num_results += to_pat->num_results;
3169 	  }
3170 	else
3171 	  /* The target state doesn't match anything and so is not part
3172 	     of the pattern.  */
3173 	  new_pat->num_results += 1;
3174 
3175       /* See if any earlier states that match RES2's pattern also match
3176 	 NEW_PAT.  */
3177       bool matched_p = false;
3178       for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3179 	   sinfo1 = sinfo1->prev_same_test)
3180 	{
3181 	  prune_invalid_results (sinfo1);
3182 	  if (sinfo1->res
3183 	      && sinfo1->res->pattern == res2->pattern
3184 	      && merge_patterns (sinfo1, sinfo2))
3185 	    matched_p = true;
3186 	}
3187       if (!matched_p)
3188 	{
3189 	  /* Nothing else matches NEW_PAT, so go back to the previous
3190 	     pattern (possibly just a single-state one).  */
3191 	  sinfo2->res = res2;
3192 	  delete new_pat;
3193 	  delete new_res2;
3194 	}
3195       /* Assume that SINFO2 will use RES.  At this point we don't know
3196 	 whether earlier states that match the same pattern will use
3197 	 that match or a different one.  */
3198       sinfo2->res->pattern->num_users += 1;
3199     }
3200   /* Step 4: Finalize the choice of pattern for each state, ignoring
3201      patterns that were only used once.  Update each pattern's size
3202      so that it doesn't include subpatterns that are going to be split
3203      out into subroutines.  */
3204   for (unsigned int i = 0; i < states.length (); ++i)
3205     {
3206       merge_state_info *sinfo = &states[i];
3207       merge_state_result *res = sinfo->res;
3208       /* Wind past patterns that are only used by SINFO.  */
3209       while (res && res->pattern->num_users == 1)
3210 	{
3211 	  res = res->prev;
3212 	  sinfo->res = res;
3213 	  if (res)
3214 	    res->pattern->num_users += 1;
3215 	}
3216       if (!res)
3217 	continue;
3218 
3219       /* We have a shared pattern and are now committed to the match.  */
3220       merge_pattern_info *pat = res->pattern;
3221       gcc_assert (valid_result_p (pat, sinfo));
3222 
3223       if (!pat->complete_p)
3224 	{
3225 	  /* Look for subpatterns that are going to be split out and remove
3226 	     them from the number of statements.  */
3227 	  for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
3228 	    if (merge_pattern_transition *ptrans = pat->transitions[j])
3229 	      {
3230 		merge_pattern_info *to_pat = ptrans->to;
3231 		if (!same_pattern_p (pat, to_pat))
3232 		  pat->num_statements -= to_pat->num_statements;
3233 	      }
3234 	  pat->complete_p = true;
3235 	}
3236     }
3237   /* Step 5: Split out the patterns.  */
3238   for (unsigned int i = 0; i < states.length (); ++i)
3239     {
3240       merge_state_info *sinfo = &states[i];
3241       merge_state_result *res = sinfo->res;
3242       if (!sinfo->merged_p && res && useful_pattern_p (res->pattern))
3243 	use_pattern (sinfo);
3244     }
3245   fprintf (stderr, "Shared %d out of %d states by creating %d new states,"
3246 	   " saving %d\n",
3247 	   pattern_use_states, states.length (), pattern_def_states,
3248 	   pattern_use_states - pattern_def_states);
3249 }
3250 
3251 /* Information about a state tree that we're considering splitting into a
3252    subroutine.  */
3253 struct state_size
3254 {
3255   /* The number of pseudo-statements in the state tree.  */
3256   unsigned int num_statements;
3257 
3258   /* The approximate number of nested "if" and "switch" statements that
3259      would be required if control could fall through to a later state.  */
3260   unsigned int depth;
3261 };
3262 
3263 /* Pairs a transition with information about its target state.  */
3264 typedef std::pair <transition *, state_size> subroutine_candidate;
3265 
3266 /* Sort two subroutine_candidates so that the one with the largest
3267    number of statements comes last.  */
3268 
3269 static int
subroutine_candidate_cmp(const void * a,const void * b)3270 subroutine_candidate_cmp (const void *a, const void *b)
3271 {
3272   return int (((const subroutine_candidate *) a)->second.num_statements
3273 	      - ((const subroutine_candidate *) b)->second.num_statements);
3274 }
3275 
3276 /* Turn S into a subroutine of type TYPE and add it to PROCS.  Return a new
3277    state that performs a subroutine call to S.  */
3278 
3279 static state *
create_subroutine(routine_type type,state * s,vec<state * > & procs)3280 create_subroutine (routine_type type, state *s, vec <state *> &procs)
3281 {
3282   procs.safe_push (s);
3283   acceptance_type acceptance;
3284   acceptance.type = type;
3285   acceptance.partial_p = true;
3286   acceptance.u.subroutine_id = procs.length ();
3287   state *news = new state;
3288   add_decision (news, rtx_test::accept (acceptance), true, false);
3289   return news;
3290 }
3291 
3292 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3293    better split into subroutines.  Accumulate all such subroutines in PROCS.
3294    Return the size of the new state tree (excluding subroutines).  */
3295 
3296 static state_size
find_subroutines(routine_type type,state * s,vec<state * > & procs)3297 find_subroutines (routine_type type, state *s, vec <state *> &procs)
3298 {
3299   auto_vec <subroutine_candidate, 16> candidates;
3300   state_size size;
3301   size.num_statements = 0;
3302   size.depth = 0;
3303   for (decision *d = s->first; d; d = d->next)
3304     {
3305       if (!d->test.single_outcome_p ())
3306 	size.num_statements += 1;
3307       for (transition *trans = d->first; trans; trans = trans->next)
3308 	{
3309 	  /* Keep chains of simple decisions together if we know that no
3310 	     change of position is required.  We'll output this chain as a
3311 	     single "if" statement, so it counts as a single nesting level.  */
3312 	  if (d->test.pos && d->if_statement_p ())
3313 	    for (;;)
3314 	      {
3315 		decision *newd = trans->to->singleton ();
3316 		if (!newd
3317 		    || (newd->test.pos
3318 			&& newd->test.pos_operand < 0
3319 			&& newd->test.pos != d->test.pos)
3320 		    || !newd->if_statement_p ())
3321 		  break;
3322 		if (!newd->test.single_outcome_p ())
3323 		  size.num_statements += 1;
3324 		trans = newd->singleton ();
3325 		if (newd->test.kind == rtx_test::SET_OP
3326 		    || newd->test.kind == rtx_test::ACCEPT)
3327 		  break;
3328 	      }
3329 	  /* The target of TRANS is a subroutine candidate.  First recurse
3330 	     on it to see how big it is after subroutines have been
3331 	     split out.  */
3332 	  state_size to_size = find_subroutines (type, trans->to, procs);
3333 	  if (d->next && to_size.depth > MAX_DEPTH)
3334 	    /* Keeping the target state in the same routine would lead
3335 	       to an excessive nesting of "if" and "switch" statements.
3336 	       Split it out into a subroutine so that it can use
3337 	       inverted tests that return early on failure.  */
3338 	    trans->to = create_subroutine (type, trans->to, procs);
3339 	  else
3340 	    {
3341 	      size.num_statements += to_size.num_statements;
3342 	      if (to_size.num_statements < MIN_NUM_STATEMENTS)
3343 		/* The target state is too small to be worth splitting.
3344 		   Keep it in the same routine as S.  */
3345 		size.depth = MAX (size.depth, to_size.depth);
3346 	      else
3347 		/* Assume for now that we'll keep the target state in the
3348 		   same routine as S, but record it as a subroutine candidate
3349 		   if S grows too big.  */
3350 		candidates.safe_push (subroutine_candidate (trans, to_size));
3351 	    }
3352 	}
3353     }
3354   if (size.num_statements > MAX_NUM_STATEMENTS)
3355     {
3356       /* S is too big.  Sort the subroutine candidates so that bigger ones
3357 	 are nearer the end.  */
3358       candidates.qsort (subroutine_candidate_cmp);
3359       while (!candidates.is_empty ()
3360 	     && size.num_statements > MAX_NUM_STATEMENTS)
3361 	{
3362 	  /* Peel off a candidate and force it into a subroutine.  */
3363 	  subroutine_candidate cand = candidates.pop ();
3364 	  size.num_statements -= cand.second.num_statements;
3365 	  cand.first->to = create_subroutine (type, cand.first->to, procs);
3366 	}
3367     }
3368   /* Update the depth for subroutine candidates that we decided not to
3369      split out.  */
3370   for (unsigned int i = 0; i < candidates.length (); ++i)
3371     size.depth = MAX (size.depth, candidates[i].second.depth);
3372   size.depth += 1;
3373   return size;
3374 }
3375 
3376 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE.  */
3377 
3378 static bool
safe_predicate_mode(const struct pred_data * pred,machine_mode mode)3379 safe_predicate_mode (const struct pred_data *pred, machine_mode mode)
3380 {
3381   /* Scalar integer constants have VOIDmode.  */
3382   if (GET_MODE_CLASS (mode) == MODE_INT
3383       && (pred->codes[CONST_INT]
3384 	  || pred->codes[CONST_DOUBLE]
3385 	  || pred->codes[CONST_WIDE_INT]
3386 	  || pred->codes[LABEL_REF]))
3387     return false;
3388 
3389   return !pred->special && mode != VOIDmode;
3390 }
3391 
3392 /* Fill CODES with the set of codes that could be matched by PRED.  */
3393 
3394 static void
get_predicate_codes(const struct pred_data * pred,int_set * codes)3395 get_predicate_codes (const struct pred_data *pred, int_set *codes)
3396 {
3397   for (int i = 0; i < NUM_TRUE_RTX_CODE; ++i)
3398     if (!pred || pred->codes[i])
3399       codes->safe_push (i);
3400 }
3401 
3402 /* Return true if the first path through D1 tests the same thing as D2.  */
3403 
3404 static bool
has_same_test_p(decision * d1,decision * d2)3405 has_same_test_p (decision *d1, decision *d2)
3406 {
3407   do
3408     {
3409       if (d1->test == d2->test)
3410         return true;
3411       d1 = d1->first->to->first;
3412     }
3413   while (d1);
3414   return false;
3415 }
3416 
3417 /* Return true if D1 and D2 cannot match the same rtx.  All states reachable
3418    from D2 have single decisions and all those decisions have single
3419    transitions.  */
3420 
3421 static bool
mutually_exclusive_p(decision * d1,decision * d2)3422 mutually_exclusive_p (decision *d1, decision *d2)
3423 {
3424   /* If one path through D1 fails to test the same thing as D2, assume
3425      that D2's test could be true for D1 and look for a later, more useful,
3426      test.  This isn't as expensive as it looks in practice.  */
3427   while (!has_same_test_p (d1, d2))
3428     {
3429       d2 = d2->singleton ()->to->singleton ();
3430       if (!d2)
3431 	return false;
3432     }
3433   if (d1->test == d2->test)
3434     {
3435       /* Look for any transitions from D1 that have the same labels as
3436 	 the transition from D2.  */
3437       transition *trans2 = d2->singleton ();
3438       for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3439 	{
3440 	  int_set::iterator i1 = trans1->labels.begin ();
3441 	  int_set::iterator end1 = trans1->labels.end ();
3442 	  int_set::iterator i2 = trans2->labels.begin ();
3443 	  int_set::iterator end2 = trans2->labels.end ();
3444 	  while (i1 != end1 && i2 != end2)
3445 	    if (*i1 < *i2)
3446 	      ++i1;
3447 	    else if (*i2 < *i1)
3448 	      ++i2;
3449 	    else
3450 	      {
3451 		/* TRANS1 has some labels in common with TRANS2.  Assume
3452 		   that D1 and D2 could match the same rtx if the target
3453 		   of TRANS1 could match the same rtx as D2.  */
3454 		for (decision *subd1 = trans1->to->first;
3455 		     subd1; subd1 = subd1->next)
3456 		  if (!mutually_exclusive_p (subd1, d2))
3457 		    return false;
3458 		break;
3459 	      }
3460 	}
3461       return true;
3462     }
3463   for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3464     for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next)
3465       if (!mutually_exclusive_p (subd1, d2))
3466 	return false;
3467   return true;
3468 }
3469 
3470 /* Try to merge S2's decision into D1, given that they have the same test.
3471    Fail only if EXCLUDE is nonnull and the new transition would have the
3472    same labels as *EXCLUDE.  When returning true, set *NEXT_S1, *NEXT_S2
3473    and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3474    if the merge is complete.  */
3475 
3476 static bool
merge_into_decision(decision * d1,state * s2,const int_set * exclude,state ** next_s1,state ** next_s2,const int_set ** next_exclude)3477 merge_into_decision (decision *d1, state *s2, const int_set *exclude,
3478 		     state **next_s1, state **next_s2,
3479 		     const int_set **next_exclude)
3480 {
3481   decision *d2 = s2->singleton ();
3482   transition *trans2 = d2->singleton ();
3483 
3484   /* Get a list of the transitions that intersect TRANS2.  */
3485   auto_vec <transition *, 32> intersecting;
3486   for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3487     {
3488       int_set::iterator i1 = trans1->labels.begin ();
3489       int_set::iterator end1 = trans1->labels.end ();
3490       int_set::iterator i2 = trans2->labels.begin ();
3491       int_set::iterator end2 = trans2->labels.end ();
3492       bool trans1_is_subset = true;
3493       bool trans2_is_subset = true;
3494       bool intersect_p = false;
3495       while (i1 != end1 && i2 != end2)
3496 	if (*i1 < *i2)
3497 	  {
3498 	    trans1_is_subset = false;
3499 	    ++i1;
3500 	  }
3501 	else if (*i2 < *i1)
3502 	  {
3503 	    trans2_is_subset = false;
3504 	    ++i2;
3505 	  }
3506 	else
3507 	  {
3508 	    intersect_p = true;
3509 	    ++i1;
3510 	    ++i2;
3511 	  }
3512       if (i1 != end1)
3513 	trans1_is_subset = false;
3514       if (i2 != end2)
3515 	trans2_is_subset = false;
3516       if (trans1_is_subset && trans2_is_subset)
3517 	{
3518 	  /* There's already a transition that matches exactly.
3519 	     Merge the target states.  */
3520 	  trans1->optional &= trans2->optional;
3521 	  *next_s1 = trans1->to;
3522 	  *next_s2 = trans2->to;
3523 	  *next_exclude = 0;
3524 	  return true;
3525 	}
3526       if (trans2_is_subset)
3527 	{
3528 	  /* TRANS1 has all the labels that TRANS2 needs.  Merge S2 into
3529 	     the target of TRANS1, but (to avoid infinite recursion)
3530 	     make sure that we don't end up creating another transition
3531 	     like TRANS1.  */
3532 	  *next_s1 = trans1->to;
3533 	  *next_s2 = s2;
3534 	  *next_exclude = &trans1->labels;
3535 	  return true;
3536 	}
3537       if (intersect_p)
3538 	intersecting.safe_push (trans1);
3539     }
3540 
3541   if (intersecting.is_empty ())
3542     {
3543       /* No existing labels intersect the new ones.  We can just add
3544 	 TRANS2 itself.  */
3545       d1->push_back (d2->release ());
3546       *next_s1 = 0;
3547       *next_s2 = 0;
3548       *next_exclude = 0;
3549       return true;
3550     }
3551 
3552   /* Take the union of the labels in INTERSECTING and TRANS2.  Store the
3553      result in COMBINED and use NEXT as a temporary.  */
3554   int_set tmp1 = trans2->labels, tmp2;
3555   int_set *combined = &tmp1, *next = &tmp2;
3556   for (unsigned int i = 0; i < intersecting.length (); ++i)
3557     {
3558       transition *trans1 = intersecting[i];
3559       next->truncate (0);
3560       next->safe_grow (trans1->labels.length () + combined->length ());
3561       int_set::iterator end
3562 	= std::set_union (trans1->labels.begin (), trans1->labels.end (),
3563 			  combined->begin (), combined->end (),
3564 			  next->begin ());
3565       next->truncate (end - next->begin ());
3566       std::swap (next, combined);
3567     }
3568 
3569   /* Stop now if we've been told not to create a transition with these
3570      labels.  */
3571   if (exclude && *combined == *exclude)
3572     return false;
3573 
3574   /* Get the transition that should carry the new labels.  */
3575   transition *new_trans = intersecting[0];
3576   if (intersecting.length () == 1)
3577     {
3578       /* We're merging with one existing transition whose labels are a
3579 	 subset of those required.  If both transitions are optional,
3580 	 we can just expand the set of labels so that it's suitable
3581 	 for both transitions.  It isn't worth preserving the original
3582 	 transitions since we know that they can't be merged; we would
3583 	 need to backtrack to S2 if TRANS1->to fails.  In contrast,
3584 	 we might be able to merge the targets of the transitions
3585 	 without any backtracking.
3586 
3587 	 If instead the existing transition is not optional, ensure that
3588 	 all target decisions are suitably protected.  Some decisions
3589 	 might already have a more specific requirement than NEW_TRANS,
3590 	 in which case there's no point testing NEW_TRANS as well.  E.g. this
3591 	 would have happened if a test for an (eq ...) rtx had been
3592 	 added to a decision that tested whether the code is suitable
3593 	 for comparison_operator.  The original comparison_operator
3594 	 transition would have been non-optional and the (eq ...) test
3595 	 would be performed by a second decision in the target of that
3596 	 transition.
3597 
3598 	 The remaining case -- keeping the original optional transition
3599 	 when adding a non-optional TRANS2 -- is a wash.  Preserving
3600 	 the optional transition only helps if we later merge another
3601 	 state S3 that is mutually exclusive with S2 and whose labels
3602 	 belong to *COMBINED - TRANS1->labels.  We can then test the
3603 	 original NEW_TRANS and S3 in the same decision.  We keep the
3604 	 optional transition around for that case, but it occurs very
3605 	 rarely.  */
3606       gcc_assert (new_trans->labels != *combined);
3607       if (!new_trans->optional || !trans2->optional)
3608 	{
3609 	  decision *start = 0;
3610 	  for (decision *end = new_trans->to->first; end; end = end->next)
3611 	    {
3612 	      if (!start && end->test != d1->test)
3613 		/* END belongs to a range of decisions that need to be
3614 		   protected by NEW_TRANS.  */
3615 		start = end;
3616 	      if (start && (!end->next || end->next->test == d1->test))
3617 		{
3618 		  /* Protect [START, END] with NEW_TRANS.  The decisions
3619 		     move to NEW_S and NEW_D becomes part of NEW_TRANS->to.  */
3620 		  state *new_s = new state;
3621 		  decision *new_d = new decision (d1->test);
3622 		  new_d->push_back (new transition (new_trans->labels, new_s,
3623 						    new_trans->optional));
3624 		  state::range r (start, end);
3625 		  new_trans->to->replace (r, new_d);
3626 		  new_s->push_back (r);
3627 
3628 		  /* Continue with an empty range.  */
3629 		  start = 0;
3630 
3631 		  /* Continue from the decision after NEW_D.  */
3632 		  end = new_d;
3633 		}
3634 	    }
3635 	}
3636       new_trans->optional = true;
3637       new_trans->labels = *combined;
3638     }
3639   else
3640     {
3641       /* We're merging more than one existing transition together.
3642 	 Those transitions are successfully dividing the matching space
3643 	 and so we want to preserve them, even if they're optional.
3644 
3645 	 Create a new transition with the union set of labels and make
3646 	 it go to a state that has the original transitions.  */
3647       decision *new_d = new decision (d1->test);
3648       for (unsigned int i = 0; i < intersecting.length (); ++i)
3649 	new_d->push_back (d1->remove (intersecting[i]));
3650 
3651       state *new_s = new state;
3652       new_s->push_back (new_d);
3653 
3654       new_trans = new transition (*combined, new_s, true);
3655       d1->push_back (new_trans);
3656     }
3657 
3658   /* We now have an optional transition with labels *COMBINED.  Decide
3659      whether we can use it as TRANS2 or whether we need to merge S2
3660      into the target of NEW_TRANS.  */
3661   gcc_assert (new_trans->optional);
3662   if (new_trans->labels == trans2->labels)
3663     {
3664       /* NEW_TRANS matches TRANS2.  Just merge the target states.  */
3665       new_trans->optional = trans2->optional;
3666       *next_s1 = new_trans->to;
3667       *next_s2 = trans2->to;
3668       *next_exclude = 0;
3669     }
3670   else
3671     {
3672       /* Try to merge TRANS2 into the target of the overlapping transition,
3673 	 but (to prevent infinite recursion or excessive redundancy) without
3674 	 creating another transition of the same type.  */
3675       *next_s1 = new_trans->to;
3676       *next_s2 = s2;
3677       *next_exclude = &new_trans->labels;
3678     }
3679   return true;
3680 }
3681 
3682 /* Make progress in merging S2 into S1, given that each state in S2
3683    has a single decision.  If EXCLUDE is nonnull, avoid creating a new
3684    transition with the same test as S2's decision and with the labels
3685    in *EXCLUDE.
3686 
3687    Return true if there is still work to do.  When returning true,
3688    set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3689    S1, S2 and EXCLUDE should have next time round.
3690 
3691    If S1 and S2 both match a particular rtx, give priority to S1.  */
3692 
3693 static bool
merge_into_state_1(state * s1,state * s2,const int_set * exclude,state ** next_s1,state ** next_s2,const int_set ** next_exclude)3694 merge_into_state_1 (state *s1, state *s2, const int_set *exclude,
3695 		    state **next_s1, state **next_s2,
3696 		    const int_set **next_exclude)
3697 {
3698   decision *d2 = s2->singleton ();
3699   if (decision *d1 = s1->last)
3700     {
3701       if (d1->test.terminal_p ())
3702 	/* D1 is an unconditional return, so S2 can never match.  This can
3703 	   sometimes be a bug in the .md description, but might also happen
3704 	   if genconditions forces some conditions to true for certain
3705 	   configurations.  */
3706 	return false;
3707 
3708       /* Go backwards through the decisions in S1, stopping once we find one
3709 	 that could match the same thing as S2.  */
3710       while (d1->prev && mutually_exclusive_p (d1, d2))
3711 	d1 = d1->prev;
3712 
3713       /* Search forwards from that point, merging D2 into the first
3714 	 decision we can.  */
3715       for (; d1; d1 = d1->next)
3716 	{
3717 	  /* If S2 performs some optional tests before testing the same thing
3718 	     as D1, those tests do not help to distinguish D1 and S2, so it's
3719 	     better to drop them.  Search through such optional decisions
3720 	     until we find something that tests the same thing as D1.  */
3721 	  state *sub_s2 = s2;
3722 	  for (;;)
3723 	    {
3724 	      decision *sub_d2 = sub_s2->singleton ();
3725 	      if (d1->test == sub_d2->test)
3726 		{
3727 		  /* Only apply EXCLUDE if we're testing the same thing
3728 		     as D2.  */
3729 		  const int_set *sub_exclude = (d2 == sub_d2 ? exclude : 0);
3730 
3731 		  /* Try to merge SUB_S2 into D1.  This can only fail if
3732 		     it would involve creating a new transition with
3733 		     labels SUB_EXCLUDE.  */
3734 		  if (merge_into_decision (d1, sub_s2, sub_exclude,
3735 					   next_s1, next_s2, next_exclude))
3736 		    return *next_s2 != 0;
3737 
3738 		  /* Can't merge with D1; try a later decision.  */
3739 		  break;
3740 		}
3741 	      transition *sub_trans2 = sub_d2->singleton ();
3742 	      if (!sub_trans2->optional)
3743 		/* Can't merge with D1; try a later decision.  */
3744 		break;
3745 	      sub_s2 = sub_trans2->to;
3746 	    }
3747 	}
3748     }
3749 
3750   /* We can't merge D2 with any existing decision.  Just add it to the end.  */
3751   s1->push_back (s2->release ());
3752   return false;
3753 }
3754 
3755 /* Merge S2 into S1.  If they both match a particular rtx, give
3756    priority to S1.  Each state in S2 has a single decision.  */
3757 
3758 static void
merge_into_state(state * s1,state * s2)3759 merge_into_state (state *s1, state *s2)
3760 {
3761   const int_set *exclude = 0;
3762   while (s2 && merge_into_state_1 (s1, s2, exclude, &s1, &s2, &exclude))
3763     continue;
3764 }
3765 
3766 /* Pairs a pattern that needs to be matched with the rtx position at
3767    which the pattern should occur.  */
3768 struct pattern_pos {
pattern_pospattern_pos3769   pattern_pos () {}
3770   pattern_pos (rtx, position *);
3771 
3772   rtx pattern;
3773   position *pos;
3774 };
3775 
pattern_pos(rtx pattern_in,position * pos_in)3776 pattern_pos::pattern_pos (rtx pattern_in, position *pos_in)
3777   : pattern (pattern_in), pos (pos_in)
3778 {}
3779 
3780 /* Compare entries according to their depth-first order.  There shouldn't
3781    be two entries at the same position.  */
3782 
3783 bool
3784 operator < (const pattern_pos &e1, const pattern_pos &e2)
3785 {
3786   int diff = compare_positions (e1.pos, e2.pos);
3787   gcc_assert (diff != 0 || e1.pattern == e2.pattern);
3788   return diff < 0;
3789 }
3790 
3791 /* Return the name of the predicate matched by MATCH_RTX.  */
3792 
3793 static const char *
predicate_name(rtx match_rtx)3794 predicate_name (rtx match_rtx)
3795 {
3796   if (GET_CODE (match_rtx) == MATCH_SCRATCH)
3797     return "scratch_operand";
3798   else
3799     return XSTR (match_rtx, 1);
3800 }
3801 
3802 /* Add new decisions to S that check whether the rtx at position POS
3803    matches PATTERN.  Return the state that is reached in that case.
3804    TOP_PATTERN is the overall pattern, as passed to match_pattern_1.  */
3805 
3806 static state *
match_pattern_2(state * s,md_rtx_info * info,position * pos,rtx pattern)3807 match_pattern_2 (state *s, md_rtx_info *info, position *pos, rtx pattern)
3808 {
3809   auto_vec <pattern_pos, 32> worklist;
3810   auto_vec <pattern_pos, 32> pred_and_mode_tests;
3811   auto_vec <pattern_pos, 32> dup_tests;
3812 
3813   worklist.safe_push (pattern_pos (pattern, pos));
3814   while (!worklist.is_empty ())
3815     {
3816       pattern_pos next = worklist.pop ();
3817       pattern = next.pattern;
3818       pos = next.pos;
3819       unsigned int reverse_s = worklist.length ();
3820 
3821       enum rtx_code code = GET_CODE (pattern);
3822       switch (code)
3823 	{
3824 	case MATCH_OP_DUP:
3825 	case MATCH_DUP:
3826 	case MATCH_PAR_DUP:
3827 	  /* Add a test that the rtx matches the earlier one, but only
3828 	     after the structure and predicates have been checked.  */
3829 	  dup_tests.safe_push (pattern_pos (pattern, pos));
3830 
3831 	  /* Use the same code check as the original operand.  */
3832 	  pattern = find_operand (info->def, XINT (pattern, 0), NULL_RTX);
3833 	  /* Fall through.  */
3834 
3835 	case MATCH_PARALLEL:
3836 	case MATCH_OPERAND:
3837 	case MATCH_SCRATCH:
3838 	case MATCH_OPERATOR:
3839 	  {
3840 	    const char *pred_name = predicate_name (pattern);
3841 	    const struct pred_data *pred = 0;
3842 	    if (pred_name[0] != 0)
3843 	      {
3844 		pred = lookup_predicate (pred_name);
3845 		/* Only report errors once per rtx.  */
3846 		if (code == GET_CODE (pattern))
3847 		  {
3848 		    if (!pred)
3849 		      error_at (info->loc, "unknown predicate '%s' used in %s",
3850 				pred_name, GET_RTX_NAME (code));
3851 		    else if (code == MATCH_PARALLEL
3852 			     && pred->singleton != PARALLEL)
3853 		      error_at (info->loc, "predicate '%s' used in"
3854 				" match_parallel does not allow only PARALLEL",
3855 				pred->name);
3856 		  }
3857 	      }
3858 
3859 	    if (code == MATCH_PARALLEL || code == MATCH_PAR_DUP)
3860 	      {
3861 		/* Check that we have a parallel with enough elements.  */
3862 		s = add_decision (s, rtx_test::code (pos), PARALLEL, false);
3863 		int min_len = XVECLEN (pattern, 2);
3864 		s = add_decision (s, rtx_test::veclen_ge (pos, min_len),
3865 				  true, false);
3866 	      }
3867 	    else
3868 	      {
3869 		/* Check that the rtx has one of codes accepted by the
3870 		   predicate.  This is necessary when matching suboperands
3871 		   of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3872 		   call XEXP (X, N) without checking that X has at least
3873 		   N+1 operands.  */
3874 		int_set codes;
3875 		get_predicate_codes (pred, &codes);
3876 		bool need_codes = (pred
3877 				   && (code == MATCH_OPERATOR
3878 				       || code == MATCH_OP_DUP));
3879 		s = add_decision (s, rtx_test::code (pos), codes, !need_codes);
3880 	      }
3881 
3882 	    /* Postpone the predicate check until we've checked the rest
3883 	       of the rtx structure.  */
3884 	    if (code == GET_CODE (pattern))
3885 	      pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
3886 
3887 	    /* If we need to match suboperands, add them to the worklist.  */
3888 	    if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
3889 	      {
3890 		position **subpos_ptr;
3891 		enum position_type pos_type;
3892 		int i;
3893 		if (code == MATCH_OPERATOR || code == MATCH_OP_DUP)
3894 		  {
3895 		    pos_type = POS_XEXP;
3896 		    subpos_ptr = &pos->xexps;
3897 		    i = (code == MATCH_OPERATOR ? 2 : 1);
3898 		  }
3899 		else
3900 		  {
3901 		    pos_type = POS_XVECEXP0;
3902 		    subpos_ptr = &pos->xvecexp0s;
3903 		    i = 2;
3904 		  }
3905 		for (int j = 0; j < XVECLEN (pattern, i); ++j)
3906 		  {
3907 		    position *subpos = next_position (subpos_ptr, pos,
3908 						      pos_type, j);
3909 		    worklist.safe_push (pattern_pos (XVECEXP (pattern, i, j),
3910 					       subpos));
3911 		    subpos_ptr = &subpos->next;
3912 		  }
3913 	      }
3914 	    break;
3915 	  }
3916 
3917 	default:
3918 	  {
3919 	    /* Check that the rtx has the right code.  */
3920 	    s = add_decision (s, rtx_test::code (pos), code, false);
3921 
3922 	    /* Queue a test for the mode if one is specified.  */
3923 	    if (GET_MODE (pattern) != VOIDmode)
3924 	      pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
3925 
3926 	    /* Push subrtxes onto the worklist.  Match nonrtx operands now.  */
3927 	    const char *fmt = GET_RTX_FORMAT (code);
3928 	    position **subpos_ptr = &pos->xexps;
3929 	    for (size_t i = 0; fmt[i]; ++i)
3930 	      {
3931 		position *subpos = next_position (subpos_ptr, pos,
3932 						  POS_XEXP, i);
3933 		switch (fmt[i])
3934 		  {
3935 		  case 'e': case 'u':
3936 		    worklist.safe_push (pattern_pos (XEXP (pattern, i),
3937 						     subpos));
3938 		    break;
3939 
3940 		  case 'E':
3941 		    {
3942 		      /* Make sure the vector has the right number of
3943 			 elements.  */
3944 		      int length = XVECLEN (pattern, i);
3945 		      s = add_decision (s, rtx_test::veclen (pos),
3946 					length, false);
3947 
3948 		      position **subpos2_ptr = &pos->xvecexp0s;
3949 		      for (int j = 0; j < length; j++)
3950 			{
3951 			  position *subpos2 = next_position (subpos2_ptr, pos,
3952 							     POS_XVECEXP0, j);
3953 			  rtx x = XVECEXP (pattern, i, j);
3954 			  worklist.safe_push (pattern_pos (x, subpos2));
3955 			  subpos2_ptr = &subpos2->next;
3956 			}
3957 		      break;
3958 		    }
3959 
3960 		  case 'i':
3961 		    /* Make sure that XINT (X, I) has the right value.  */
3962 		    s = add_decision (s, rtx_test::int_field (pos, i),
3963 				      XINT (pattern, i), false);
3964 		    break;
3965 
3966 		  case 'r':
3967 		    /* Make sure that REGNO (X) has the right value.  */
3968 		    gcc_assert (i == 0);
3969 		    s = add_decision (s, rtx_test::regno_field (pos),
3970 				      REGNO (pattern), false);
3971 		    break;
3972 
3973 		  case 'w':
3974 		    /* Make sure that XWINT (X, I) has the right value.  */
3975 		    s = add_decision (s, rtx_test::wide_int_field (pos, i),
3976 				      XWINT (pattern, 0), false);
3977 		    break;
3978 
3979 		  case '0':
3980 		    break;
3981 
3982 		  default:
3983 		    gcc_unreachable ();
3984 		  }
3985 		subpos_ptr = &subpos->next;
3986 	      }
3987 	  }
3988 	  break;
3989 	}
3990       /* Operands are pushed onto the worklist so that later indices are
3991 	 nearer the top.  That's what we want for SETs, since a SET_SRC
3992 	 is a better discriminator than a SET_DEST.  In other cases it's
3993 	 usually better to match earlier indices first.  This is especially
3994 	 true of PARALLELs, where the first element tends to be the most
3995 	 individual.  It's also true for commutative operators, where the
3996 	 canonicalization rules say that the more complex operand should
3997 	 come first.  */
3998       if (code != SET && worklist.length () > reverse_s)
3999 	std::reverse (&worklist[0] + reverse_s,
4000 		      &worklist[0] + worklist.length ());
4001     }
4002 
4003   /* Sort the predicate and mode tests so that they're in depth-first order.
4004      The main goal of this is to put SET_SRC match_operands after SET_DEST
4005      match_operands and after mode checks for the enclosing SET_SRC operators
4006      (such as the mode of a PLUS in an addition instruction).  The latter
4007      two types of test can determine the mode exactly, whereas a SET_SRC
4008      match_operand often has to cope with the possibility of the operand
4009      being a modeless constant integer.  E.g. something that matches
4010      register_operand (x, SImode) never matches register_operand (x, DImode),
4011      but a const_int that matches immediate_operand (x, SImode) also matches
4012      immediate_operand (x, DImode).  The register_operand cases can therefore
4013      be distinguished by a switch on the mode, but the immediate_operand
4014      cases can't.  */
4015   if (pred_and_mode_tests.length () > 1)
4016     std::sort (&pred_and_mode_tests[0],
4017 	       &pred_and_mode_tests[0] + pred_and_mode_tests.length ());
4018 
4019   /* Add the mode and predicate tests.  */
4020   pattern_pos *e;
4021   unsigned int i;
4022   FOR_EACH_VEC_ELT (pred_and_mode_tests, i, e)
4023     {
4024       switch (GET_CODE (e->pattern))
4025 	{
4026 	case MATCH_PARALLEL:
4027 	case MATCH_OPERAND:
4028 	case MATCH_SCRATCH:
4029 	case MATCH_OPERATOR:
4030 	  {
4031 	    int opno = XINT (e->pattern, 0);
4032 	    num_operands = MAX (num_operands, opno + 1);
4033 	    const char *pred_name = predicate_name (e->pattern);
4034 	    if (pred_name[0])
4035 	      {
4036 		const struct pred_data *pred = lookup_predicate (pred_name);
4037 		/* Check the mode first, to distinguish things like SImode
4038 		   and DImode register_operands, as described above.  */
4039 		machine_mode mode = GET_MODE (e->pattern);
4040 		if (pred && safe_predicate_mode (pred, mode))
4041 		  s = add_decision (s, rtx_test::mode (e->pos), mode, true);
4042 
4043 		/* Assign to operands[] first, so that the rtx usually doesn't
4044 		   need to be live across the call to the predicate.
4045 
4046 		   This shouldn't cause a problem with dirtying the page,
4047 		   since we fully expect to assign to operands[] at some point,
4048 		   and since the caller usually writes to other parts of
4049 		   recog_data anyway.  */
4050 		s = add_decision (s, rtx_test::set_op (e->pos, opno),
4051 				  true, false);
4052 		s = add_decision (s, rtx_test::predicate (e->pos, pred, mode),
4053 				  true, false);
4054 	      }
4055 	    else
4056 	      /* Historically we've ignored the mode when there's no
4057 		 predicate.  Just set up operands[] unconditionally.  */
4058 	      s = add_decision (s, rtx_test::set_op (e->pos, opno),
4059 				true, false);
4060 	    break;
4061 	  }
4062 
4063 	default:
4064 	  s = add_decision (s, rtx_test::mode (e->pos),
4065 			    GET_MODE (e->pattern), false);
4066 	  break;
4067 	}
4068     }
4069 
4070   /* Finally add rtx_equal_p checks for duplicated operands.  */
4071   FOR_EACH_VEC_ELT (dup_tests, i, e)
4072     s = add_decision (s, rtx_test::duplicate (e->pos, XINT (e->pattern, 0)),
4073 		      true, false);
4074   return s;
4075 }
4076 
4077 /* Add new decisions to S that make it return ACCEPTANCE if:
4078 
4079    (1) the rtx doesn't match anything already matched by S
4080    (2) the rtx matches TOP_PATTERN and
4081    (3) the C test required by INFO->def is true
4082 
4083    For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4084    to match, otherwise it is a single instruction pattern.  */
4085 
4086 static void
match_pattern_1(state * s,md_rtx_info * info,rtx pattern,acceptance_type acceptance)4087 match_pattern_1 (state *s, md_rtx_info *info, rtx pattern,
4088 		 acceptance_type acceptance)
4089 {
4090   if (acceptance.type == PEEPHOLE2)
4091     {
4092       /* Match each individual instruction.  */
4093       position **subpos_ptr = &peep2_insn_pos_list;
4094       int count = 0;
4095       for (int i = 0; i < XVECLEN (pattern, 0); ++i)
4096 	{
4097 	  rtx x = XVECEXP (pattern, 0, i);
4098 	  position *subpos = next_position (subpos_ptr, &root_pos,
4099 					    POS_PEEP2_INSN, count);
4100 	  if (count > 0)
4101 	    s = add_decision (s, rtx_test::peep2_count (count + 1),
4102 			      true, false);
4103 	  s = match_pattern_2 (s, info, subpos, x);
4104 	  subpos_ptr = &subpos->next;
4105 	  count += 1;
4106 	}
4107       acceptance.u.full.u.match_len = count - 1;
4108     }
4109   else
4110     {
4111       /* Make the rtx itself.  */
4112       s = match_pattern_2 (s, info, &root_pos, pattern);
4113 
4114       /* If the match is only valid when extra clobbers are added,
4115 	 make sure we're able to pass that information to the caller.  */
4116       if (acceptance.type == RECOG && acceptance.u.full.u.num_clobbers)
4117 	s = add_decision (s, rtx_test::have_num_clobbers (), true, false);
4118     }
4119 
4120   /* Make sure that the C test is true.  */
4121   const char *c_test = get_c_test (info->def);
4122   if (maybe_eval_c_test (c_test) != 1)
4123     s = add_decision (s, rtx_test::c_test (c_test), true, false);
4124 
4125   /* Accept the pattern.  */
4126   add_decision (s, rtx_test::accept (acceptance), true, false);
4127 }
4128 
4129 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4130    decisions with what's already in S, to reduce the amount of
4131    backtracking.  */
4132 
4133 static void
match_pattern(state * s,md_rtx_info * info,rtx pattern,acceptance_type acceptance)4134 match_pattern (state *s, md_rtx_info *info, rtx pattern,
4135 	       acceptance_type acceptance)
4136 {
4137   if (merge_states_p)
4138     {
4139       state root;
4140       /* Add the decisions to a fresh state and then merge the full tree
4141 	 into the existing one.  */
4142       match_pattern_1 (&root, info, pattern, acceptance);
4143       merge_into_state (s, &root);
4144     }
4145   else
4146     match_pattern_1 (s, info, pattern, acceptance);
4147 }
4148 
4149 /* Begin the output file.  */
4150 
4151 static void
write_header(void)4152 write_header (void)
4153 {
4154   puts ("\
4155 /* Generated automatically by the program `genrecog' from the target\n\
4156    machine description file.  */\n\
4157 \n\
4158 #include \"config.h\"\n\
4159 #include \"system.h\"\n\
4160 #include \"coretypes.h\"\n\
4161 #include \"backend.h\"\n\
4162 #include \"predict.h\"\n\
4163 #include \"rtl.h\"\n\
4164 #include \"tm_p.h\"\n\
4165 #include \"emit-rtl.h\"\n\
4166 #include \"insn-config.h\"\n\
4167 #include \"recog.h\"\n\
4168 #include \"output.h\"\n\
4169 #include \"flags.h\"\n\
4170 #include \"df.h\"\n\
4171 #include \"resource.h\"\n\
4172 #include \"diagnostic-core.h\"\n\
4173 #include \"reload.h\"\n\
4174 #include \"regs.h\"\n\
4175 #include \"tm-constrs.h\"\n\
4176 \n");
4177 
4178   puts ("\n\
4179 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4180    X0 is a valid instruction.\n\
4181 \n\
4182    recog returns -1 if the rtx is not valid.  If the rtx is valid, recog\n\
4183    returns a nonnegative number which is the insn code number for the\n\
4184    pattern that matched.  This is the same as the order in the machine\n\
4185    description of the entry that matched.  This number can be used as an\n\
4186    index into `insn_data' and other tables.\n");
4187   puts ("\
4188    The third parameter to recog is an optional pointer to an int.  If\n\
4189    present, recog will accept a pattern if it matches except for missing\n\
4190    CLOBBER expressions at the end.  In that case, the value pointed to by\n\
4191    the optional pointer will be set to the number of CLOBBERs that need\n\
4192    to be added (it should be initialized to zero by the caller).  If it");
4193   puts ("\
4194    is set nonzero, the caller should allocate a PARALLEL of the\n\
4195    appropriate size, copy the initial entries, and call add_clobbers\n\
4196    (found in insn-emit.c) to fill in the CLOBBERs.\n\
4197 ");
4198 
4199   puts ("\n\
4200    The function split_insns returns 0 if the rtl could not\n\
4201    be split or the split rtl as an INSN list if it can be.\n\
4202 \n\
4203    The function peephole2_insns returns 0 if the rtl could not\n\
4204    be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4205    and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4206 */\n\n");
4207 }
4208 
4209 /* Return the C type of a parameter with type TYPE.  */
4210 
4211 static const char *
parameter_type_string(parameter::type_enum type)4212 parameter_type_string (parameter::type_enum type)
4213 {
4214   switch (type)
4215     {
4216     case parameter::UNSET:
4217       break;
4218 
4219     case parameter::CODE:
4220       return "rtx_code";
4221 
4222     case parameter::MODE:
4223       return "machine_mode";
4224 
4225     case parameter::INT:
4226       return "int";
4227 
4228     case parameter::UINT:
4229       return "unsigned int";
4230 
4231     case parameter::WIDE_INT:
4232       return "HOST_WIDE_INT";
4233     }
4234   gcc_unreachable ();
4235 }
4236 
4237 /* Return true if ACCEPTANCE requires only a single C statement even in
4238    a backtracking context.  */
4239 
4240 static bool
single_statement_p(const acceptance_type & acceptance)4241 single_statement_p (const acceptance_type &acceptance)
4242 {
4243   if (acceptance.partial_p)
4244     /* We need to handle failures of the subroutine.  */
4245     return false;
4246   switch (acceptance.type)
4247     {
4248     case SUBPATTERN:
4249     case SPLIT:
4250       return true;
4251 
4252     case RECOG:
4253       /* False if we need to assign to pnum_clobbers.  */
4254       return acceptance.u.full.u.num_clobbers == 0;
4255 
4256     case PEEPHOLE2:
4257       /* We need to assign to pmatch_len_ and handle null returns from the
4258 	 peephole2 routine.  */
4259       return false;
4260     }
4261   gcc_unreachable ();
4262 }
4263 
4264 /* Return the C failure value for a routine of type TYPE.  */
4265 
4266 static const char *
get_failure_return(routine_type type)4267 get_failure_return (routine_type type)
4268 {
4269   switch (type)
4270     {
4271     case SUBPATTERN:
4272     case RECOG:
4273       return "-1";
4274 
4275     case SPLIT:
4276     case PEEPHOLE2:
4277       return "NULL";
4278     }
4279   gcc_unreachable ();
4280 }
4281 
4282 /* Indicates whether a block of code always returns or whether it can fall
4283    through.  */
4284 
4285 enum exit_state {
4286   ES_RETURNED,
4287   ES_FALLTHROUGH
4288 };
4289 
4290 /* Information used while writing out code.  */
4291 
4292 struct output_state
4293 {
4294   /* The type of routine that we're generating.  */
4295   routine_type type;
4296 
4297   /* Maps position ids to xN variable numbers.  The entry is only valid if
4298      it is less than the length of VAR_TO_ID, but this holds for every position
4299      tested by a state when writing out that state.  */
4300   auto_vec <unsigned int> id_to_var;
4301 
4302   /* Maps xN variable numbers to position ids.  */
4303   auto_vec <unsigned int> var_to_id;
4304 
4305   /* Index N is true if variable xN has already been set.  */
4306   auto_vec <bool> seen_vars;
4307 };
4308 
4309 /* Return true if D is a call to a pattern routine and if there is some X
4310    such that the transition for pattern result N goes to a successful return
4311    with code X+N.  When returning true, set *BASE_OUT to this X and *COUNT_OUT
4312    to the number of return values.  (We know that every PATTERN decision has
4313    a transition for every successful return.)  */
4314 
4315 static bool
terminal_pattern_p(decision * d,unsigned int * base_out,unsigned int * count_out)4316 terminal_pattern_p (decision *d, unsigned int *base_out,
4317 		    unsigned int *count_out)
4318 {
4319   if (d->test.kind != rtx_test::PATTERN)
4320     return false;
4321   unsigned int base = 0;
4322   unsigned int count = 0;
4323   for (transition *trans = d->first; trans; trans = trans->next)
4324     {
4325       if (trans->is_param || trans->labels.length () != 1)
4326 	return false;
4327       decision *subd = trans->to->singleton ();
4328       if (!subd || subd->test.kind != rtx_test::ACCEPT)
4329 	return false;
4330       unsigned int this_base = (subd->test.u.acceptance.u.full.code
4331 				- trans->labels[0]);
4332       if (trans == d->first)
4333 	base = this_base;
4334       else if (base != this_base)
4335 	return false;
4336       count += 1;
4337     }
4338   *base_out = base;
4339   *count_out = count;
4340   return true;
4341 }
4342 
4343 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4344    already available in state OS.  */
4345 
4346 static bool
test_position_available_p(output_state * os,const rtx_test & test)4347 test_position_available_p (output_state *os, const rtx_test &test)
4348 {
4349   return (!test.pos
4350 	  || test.pos_operand >= 0
4351 	  || os->seen_vars[os->id_to_var[test.pos->id]]);
4352 }
4353 
4354 /* Like printf, but print INDENT spaces at the beginning.  */
4355 
4356 static void ATTRIBUTE_PRINTF_2
printf_indent(unsigned int indent,const char * format,...)4357 printf_indent (unsigned int indent, const char *format, ...)
4358 {
4359   va_list ap;
4360   va_start (ap, format);
4361   printf ("%*s", indent, "");
4362   vprintf (format, ap);
4363   va_end (ap);
4364 }
4365 
4366 /* Emit code to initialize the variable associated with POS, if it isn't
4367    already valid in state OS.  Indent each line by INDENT spaces.  Update
4368    OS with the new state.  */
4369 
4370 static void
change_state(output_state * os,position * pos,unsigned int indent)4371 change_state (output_state *os, position *pos, unsigned int indent)
4372 {
4373   unsigned int var = os->id_to_var[pos->id];
4374   gcc_assert (var < os->var_to_id.length () && os->var_to_id[var] == pos->id);
4375   if (os->seen_vars[var])
4376     return;
4377   switch (pos->type)
4378     {
4379     case POS_PEEP2_INSN:
4380       printf_indent (indent, "x%d = PATTERN (peep2_next_insn (%d));\n",
4381 		     var, pos->arg);
4382       break;
4383 
4384     case POS_XEXP:
4385       change_state (os, pos->base, indent);
4386       printf_indent (indent, "x%d = XEXP (x%d, %d);\n",
4387 		     var, os->id_to_var[pos->base->id], pos->arg);
4388       break;
4389 
4390     case POS_XVECEXP0:
4391       change_state (os, pos->base, indent);
4392       printf_indent (indent, "x%d = XVECEXP (x%d, 0, %d);\n",
4393 		     var, os->id_to_var[pos->base->id], pos->arg);
4394       break;
4395     }
4396   os->seen_vars[var] = true;
4397 }
4398 
4399 /* Print the enumerator constant for CODE -- the upcase version of
4400    the name.  */
4401 
4402 static void
print_code(enum rtx_code code)4403 print_code (enum rtx_code code)
4404 {
4405   const char *p;
4406   for (p = GET_RTX_NAME (code); *p; p++)
4407     putchar (TOUPPER (*p));
4408 }
4409 
4410 /* Emit a uint64_t as an integer constant expression.  We need to take
4411    special care to avoid "decimal constant is so large that it is unsigned"
4412    warnings in the resulting code.  */
4413 
4414 static void
print_host_wide_int(uint64_t val)4415 print_host_wide_int (uint64_t val)
4416 {
4417   uint64_t min = uint64_t (1) << (HOST_BITS_PER_WIDE_INT - 1);
4418   if (val == min)
4419     printf ("(" HOST_WIDE_INT_PRINT_DEC_C " - 1)", val + 1);
4420   else
4421     printf (HOST_WIDE_INT_PRINT_DEC_C, val);
4422 }
4423 
4424 /* Print the C expression for actual parameter PARAM.  */
4425 
4426 static void
print_parameter_value(const parameter & param)4427 print_parameter_value (const parameter &param)
4428 {
4429   if (param.is_param)
4430     printf ("i%d", (int) param.value + 1);
4431   else
4432     switch (param.type)
4433       {
4434       case parameter::UNSET:
4435 	gcc_unreachable ();
4436 	break;
4437 
4438       case parameter::CODE:
4439 	print_code ((enum rtx_code) param.value);
4440 	break;
4441 
4442       case parameter::MODE:
4443 	printf ("%smode", GET_MODE_NAME ((machine_mode) param.value));
4444 	break;
4445 
4446       case parameter::INT:
4447 	printf ("%d", (int) param.value);
4448 	break;
4449 
4450       case parameter::UINT:
4451 	printf ("%u", (unsigned int) param.value);
4452 	break;
4453 
4454       case parameter::WIDE_INT:
4455 	print_host_wide_int (param.value);
4456 	break;
4457       }
4458 }
4459 
4460 /* Print the C expression for the rtx tested by TEST.  */
4461 
4462 static void
print_test_rtx(output_state * os,const rtx_test & test)4463 print_test_rtx (output_state *os, const rtx_test &test)
4464 {
4465   if (test.pos_operand >= 0)
4466     printf ("operands[%d]", test.pos_operand);
4467   else
4468     printf ("x%d", os->id_to_var[test.pos->id]);
4469 }
4470 
4471 /* Print the C expression for non-boolean test TEST.  */
4472 
4473 static void
print_nonbool_test(output_state * os,const rtx_test & test)4474 print_nonbool_test (output_state *os, const rtx_test &test)
4475 {
4476   switch (test.kind)
4477     {
4478     case rtx_test::CODE:
4479       printf ("GET_CODE (");
4480       print_test_rtx (os, test);
4481       printf (")");
4482       break;
4483 
4484     case rtx_test::MODE:
4485       printf ("GET_MODE (");
4486       print_test_rtx (os, test);
4487       printf (")");
4488       break;
4489 
4490     case rtx_test::VECLEN:
4491       printf ("XVECLEN (");
4492       print_test_rtx (os, test);
4493       printf (", 0)");
4494       break;
4495 
4496     case rtx_test::INT_FIELD:
4497       printf ("XINT (");
4498       print_test_rtx (os, test);
4499       printf (", %d)", test.u.opno);
4500       break;
4501 
4502     case rtx_test::REGNO_FIELD:
4503       printf ("REGNO (");
4504       print_test_rtx (os, test);
4505       printf (")");
4506       break;
4507 
4508     case rtx_test::WIDE_INT_FIELD:
4509       printf ("XWINT (");
4510       print_test_rtx (os, test);
4511       printf (", %d)", test.u.opno);
4512       break;
4513 
4514     case rtx_test::PATTERN:
4515       {
4516 	pattern_routine *routine = test.u.pattern->routine;
4517 	printf ("pattern%d (", routine->pattern_id);
4518 	const char *sep = "";
4519 	if (test.pos)
4520 	  {
4521 	    print_test_rtx (os, test);
4522 	    sep = ", ";
4523 	  }
4524 	if (routine->insn_p)
4525 	  {
4526 	    printf ("%sinsn", sep);
4527 	    sep = ", ";
4528 	  }
4529 	if (routine->pnum_clobbers_p)
4530 	  {
4531 	    printf ("%spnum_clobbers", sep);
4532 	    sep = ", ";
4533 	  }
4534 	for (unsigned int i = 0; i < test.u.pattern->params.length (); ++i)
4535 	  {
4536 	    fputs (sep, stdout);
4537 	    print_parameter_value (test.u.pattern->params[i]);
4538 	    sep = ", ";
4539 	  }
4540 	printf (")");
4541 	break;
4542       }
4543 
4544     case rtx_test::PEEP2_COUNT:
4545     case rtx_test::VECLEN_GE:
4546     case rtx_test::SAVED_CONST_INT:
4547     case rtx_test::DUPLICATE:
4548     case rtx_test::PREDICATE:
4549     case rtx_test::SET_OP:
4550     case rtx_test::HAVE_NUM_CLOBBERS:
4551     case rtx_test::C_TEST:
4552     case rtx_test::ACCEPT:
4553       gcc_unreachable ();
4554     }
4555 }
4556 
4557 /* IS_PARAM and LABEL are taken from a transition whose source
4558    decision performs TEST.  Print the C code for the label.  */
4559 
4560 static void
print_label_value(const rtx_test & test,bool is_param,uint64_t value)4561 print_label_value (const rtx_test &test, bool is_param, uint64_t value)
4562 {
4563   print_parameter_value (parameter (transition_parameter_type (test.kind),
4564 				    is_param, value));
4565 }
4566 
4567 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4568    If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4569    Test for inequality if INVERT_P, otherwise test for equality.  */
4570 
4571 static void
print_test(output_state * os,const rtx_test & test,bool is_param,uint64_t value,bool invert_p)4572 print_test (output_state *os, const rtx_test &test, bool is_param,
4573 	    uint64_t value, bool invert_p)
4574 {
4575   switch (test.kind)
4576     {
4577       /* Handle the non-boolean TESTs.  */
4578     case rtx_test::CODE:
4579     case rtx_test::MODE:
4580     case rtx_test::VECLEN:
4581     case rtx_test::REGNO_FIELD:
4582     case rtx_test::INT_FIELD:
4583     case rtx_test::WIDE_INT_FIELD:
4584     case rtx_test::PATTERN:
4585       print_nonbool_test (os, test);
4586       printf (" %s ", invert_p ? "!=" : "==");
4587       print_label_value (test, is_param, value);
4588       break;
4589 
4590     case rtx_test::SAVED_CONST_INT:
4591       gcc_assert (!is_param && value == 1);
4592       print_test_rtx (os, test);
4593       printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4594 	      invert_p ? "!=" : "==");
4595       print_parameter_value (parameter (parameter::INT,
4596 					test.u.integer.is_param,
4597 					test.u.integer.value));
4598       printf ("]");
4599       break;
4600 
4601     case rtx_test::PEEP2_COUNT:
4602       gcc_assert (!is_param && value == 1);
4603       printf ("peep2_current_count %s %d", invert_p ? "<" : ">=",
4604 	      test.u.min_len);
4605       break;
4606 
4607     case rtx_test::VECLEN_GE:
4608       gcc_assert (!is_param && value == 1);
4609       printf ("XVECLEN (");
4610       print_test_rtx (os, test);
4611       printf (", 0) %s %d", invert_p ? "<" : ">=", test.u.min_len);
4612       break;
4613 
4614     case rtx_test::PREDICATE:
4615       gcc_assert (!is_param && value == 1);
4616       printf ("%s%s (", invert_p ? "!" : "", test.u.predicate.data->name);
4617       print_test_rtx (os, test);
4618       printf (", ");
4619       print_parameter_value (parameter (parameter::MODE,
4620 					test.u.predicate.mode_is_param,
4621 					test.u.predicate.mode));
4622       printf (")");
4623       break;
4624 
4625     case rtx_test::DUPLICATE:
4626       gcc_assert (!is_param && value == 1);
4627       printf ("%srtx_equal_p (", invert_p ? "!" : "");
4628       print_test_rtx (os, test);
4629       printf (", operands[%d])", test.u.opno);
4630       break;
4631 
4632     case rtx_test::HAVE_NUM_CLOBBERS:
4633       gcc_assert (!is_param && value == 1);
4634       printf ("pnum_clobbers %s NULL", invert_p ? "==" : "!=");
4635       break;
4636 
4637     case rtx_test::C_TEST:
4638       gcc_assert (!is_param && value == 1);
4639       if (invert_p)
4640 	printf ("!");
4641       print_c_condition (test.u.string);
4642       break;
4643 
4644     case rtx_test::ACCEPT:
4645     case rtx_test::SET_OP:
4646       gcc_unreachable ();
4647     }
4648 }
4649 
4650 static exit_state print_decision (output_state *, decision *,
4651 				  unsigned int, bool);
4652 
4653 /* Print code to perform S, indent each line by INDENT spaces.
4654    IS_FINAL is true if there are no fallback decisions to test on failure;
4655    if the state fails then the entire routine fails.  */
4656 
4657 static exit_state
print_state(output_state * os,state * s,unsigned int indent,bool is_final)4658 print_state (output_state *os, state *s, unsigned int indent, bool is_final)
4659 {
4660   exit_state es = ES_FALLTHROUGH;
4661   for (decision *d = s->first; d; d = d->next)
4662     es = print_decision (os, d, indent, is_final && !d->next);
4663   if (es != ES_RETURNED && is_final)
4664     {
4665       printf_indent (indent, "return %s;\n", get_failure_return (os->type));
4666       es = ES_RETURNED;
4667     }
4668   return es;
4669 }
4670 
4671 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4672    is known to be true).  Return the C condition that indicates a successful
4673    match.  */
4674 
4675 static const char *
print_subroutine_call(const acceptance_type & acceptance)4676 print_subroutine_call (const acceptance_type &acceptance)
4677 {
4678   switch (acceptance.type)
4679     {
4680     case SUBPATTERN:
4681       gcc_unreachable ();
4682 
4683     case RECOG:
4684       printf ("recog_%d (x1, insn, pnum_clobbers)",
4685 	      acceptance.u.subroutine_id);
4686       return ">= 0";
4687 
4688     case SPLIT:
4689       printf ("split_%d (x1, insn)", acceptance.u.subroutine_id);
4690       return "!= NULL_RTX";
4691 
4692     case PEEPHOLE2:
4693       printf ("peephole2_%d (x1, insn, pmatch_len_)",
4694 	      acceptance.u.subroutine_id);
4695       return "!= NULL_RTX";
4696     }
4697   gcc_unreachable ();
4698 }
4699 
4700 /* Print code for the successful match described by ACCEPTANCE.
4701    INDENT and IS_FINAL are as for print_state.  */
4702 
4703 static exit_state
print_acceptance(const acceptance_type & acceptance,unsigned int indent,bool is_final)4704 print_acceptance (const acceptance_type &acceptance, unsigned int indent,
4705 		  bool is_final)
4706 {
4707   if (acceptance.partial_p)
4708     {
4709       /* Defer the rest of the match to a subroutine.  */
4710       if (is_final)
4711 	{
4712 	  printf_indent (indent, "return ");
4713 	  print_subroutine_call (acceptance);
4714 	  printf (";\n");
4715 	  return ES_RETURNED;
4716 	}
4717       else
4718 	{
4719 	  printf_indent (indent, "res = ");
4720 	  const char *res_test = print_subroutine_call (acceptance);
4721 	  printf (";\n");
4722 	  printf_indent (indent, "if (res %s)\n", res_test);
4723 	  printf_indent (indent + 2, "return res;\n");
4724 	  return ES_FALLTHROUGH;
4725 	}
4726     }
4727   switch (acceptance.type)
4728     {
4729     case SUBPATTERN:
4730       printf_indent (indent, "return %d;\n", acceptance.u.full.code);
4731       return ES_RETURNED;
4732 
4733     case RECOG:
4734       if (acceptance.u.full.u.num_clobbers != 0)
4735 	printf_indent (indent, "*pnum_clobbers = %d;\n",
4736 		       acceptance.u.full.u.num_clobbers);
4737       printf_indent (indent, "return %d; /* %s */\n", acceptance.u.full.code,
4738 		     get_insn_name (acceptance.u.full.code));
4739       return ES_RETURNED;
4740 
4741     case SPLIT:
4742       printf_indent (indent, "return gen_split_%d (insn, operands);\n",
4743 		     acceptance.u.full.code);
4744       return ES_RETURNED;
4745 
4746     case PEEPHOLE2:
4747       printf_indent (indent, "*pmatch_len_ = %d;\n",
4748 		     acceptance.u.full.u.match_len);
4749       if (is_final)
4750 	{
4751 	  printf_indent (indent, "return gen_peephole2_%d (insn, operands);\n",
4752 			 acceptance.u.full.code);
4753 	  return ES_RETURNED;
4754 	}
4755       else
4756 	{
4757 	  printf_indent (indent, "res = gen_peephole2_%d (insn, operands);\n",
4758 			 acceptance.u.full.code);
4759 	  printf_indent (indent, "if (res != NULL_RTX)\n");
4760 	  printf_indent (indent + 2, "return res;\n");
4761 	  return ES_FALLTHROUGH;
4762 	}
4763     }
4764   gcc_unreachable ();
4765 }
4766 
4767 /* Print code to perform D.  INDENT and IS_FINAL are as for print_state.  */
4768 
4769 static exit_state
print_decision(output_state * os,decision * d,unsigned int indent,bool is_final)4770 print_decision (output_state *os, decision *d, unsigned int indent,
4771 		bool is_final)
4772 {
4773   uint64_t label;
4774   unsigned int base, count;
4775 
4776   /* Make sure the rtx under test is available either in operands[] or
4777      in an xN variable.  */
4778   if (d->test.pos && d->test.pos_operand < 0)
4779     change_state (os, d->test.pos, indent);
4780 
4781   /* Look for cases where a pattern routine P1 calls another pattern routine
4782      P2 and where P1 returns X + BASE whenever P2 returns X.  If IS_FINAL
4783      is true and BASE is zero we can simply use:
4784 
4785         return patternN (...);
4786 
4787      Otherwise we can use:
4788 
4789         res = patternN (...);
4790 	if (res >= 0)
4791 	  return res + BASE;
4792 
4793      However, if BASE is nonzero and patternN only returns 0 or -1,
4794      the usual "return BASE;" is better than "return res + BASE;".
4795      If BASE is zero, "return res;" should be better than "return 0;",
4796      since no assignment to the return register is required.  */
4797   if (os->type == SUBPATTERN
4798       && terminal_pattern_p (d, &base, &count)
4799       && (base == 0 || count > 1))
4800     {
4801       if (is_final && base == 0)
4802 	{
4803 	  printf_indent (indent, "return ");
4804 	  print_nonbool_test (os, d->test);
4805 	  printf ("; /* [-1, %d] */\n", count - 1);
4806 	  return ES_RETURNED;
4807 	}
4808       else
4809 	{
4810 	  printf_indent (indent, "res = ");
4811 	  print_nonbool_test (os, d->test);
4812 	  printf (";\n");
4813 	  printf_indent (indent, "if (res >= 0)\n");
4814 	  printf_indent (indent + 2, "return res");
4815 	  if (base != 0)
4816 	    printf (" + %d", base);
4817 	  printf ("; /* [%d, %d] */\n", base, base + count - 1);
4818 	  return ES_FALLTHROUGH;
4819 	}
4820     }
4821   else if (d->test.kind == rtx_test::ACCEPT)
4822     return print_acceptance (d->test.u.acceptance, indent, is_final);
4823   else if (d->test.kind == rtx_test::SET_OP)
4824     {
4825       printf_indent (indent, "operands[%d] = ", d->test.u.opno);
4826       print_test_rtx (os, d->test);
4827       printf (";\n");
4828       return print_state (os, d->singleton ()->to, indent, is_final);
4829     }
4830   /* Handle decisions with a single transition and a single transition
4831      label.  */
4832   else if (d->if_statement_p (&label))
4833     {
4834       transition *trans = d->singleton ();
4835       if (mark_optional_transitions_p && trans->optional)
4836 	printf_indent (indent, "/* OPTIONAL IF */\n");
4837 
4838       /* Print the condition associated with TRANS.  Invert it if IS_FINAL,
4839 	 so that we return immediately on failure and fall through on
4840 	 success.  */
4841       printf_indent (indent, "if (");
4842       print_test (os, d->test, trans->is_param, label, is_final);
4843 
4844       /* Look for following states that would be handled by this code
4845 	 on recursion.  If they don't need any preparatory statements,
4846 	 include them in the current "if" statement rather than creating
4847 	 a new one.  */
4848       for (;;)
4849 	{
4850 	  d = trans->to->singleton ();
4851 	  if (!d
4852 	      || d->test.kind == rtx_test::ACCEPT
4853 	      || d->test.kind == rtx_test::SET_OP
4854 	      || !d->if_statement_p (&label)
4855 	      || !test_position_available_p (os, d->test))
4856 	    break;
4857 	  trans = d->first;
4858 	  printf ("\n");
4859 	  if (mark_optional_transitions_p && trans->optional)
4860 	    printf_indent (indent + 4, "/* OPTIONAL IF */\n");
4861 	  printf_indent (indent + 4, "%s ", is_final ? "||" : "&&");
4862 	  print_test (os, d->test, trans->is_param, label, is_final);
4863 	}
4864       printf (")\n");
4865 
4866       /* Print the conditional code with INDENT + 2 and the fallthrough
4867 	 code with indent INDENT.  */
4868       state *to = trans->to;
4869       if (is_final)
4870 	{
4871 	  /* We inverted the condition above, so return failure in the
4872 	     "if" body and fall through to the target of the transition.  */
4873 	  printf_indent (indent + 2, "return %s;\n",
4874 			 get_failure_return (os->type));
4875 	  return print_state (os, to, indent, is_final);
4876 	}
4877       else if (to->singleton ()
4878 	       && to->first->test.kind == rtx_test::ACCEPT
4879 	       && single_statement_p (to->first->test.u.acceptance))
4880 	{
4881 	  /* The target of the transition is a simple "return" statement.
4882 	     It doesn't need any braces and doesn't fall through.  */
4883 	  if (print_acceptance (to->first->test.u.acceptance,
4884 				indent + 2, true) != ES_RETURNED)
4885 	    gcc_unreachable ();
4886 	  return ES_FALLTHROUGH;
4887 	}
4888       else
4889 	{
4890 	  /* The general case.  Output code for the target of the transition
4891 	     in braces.  This will not invalidate any of the xN variables
4892 	     that are already valid, but we mustn't rely on any that are
4893 	     set by the "if" body.  */
4894 	  auto_vec <bool, 32> old_seen;
4895 	  old_seen.safe_splice (os->seen_vars);
4896 
4897 	  printf_indent (indent + 2, "{\n");
4898 	  print_state (os, trans->to, indent + 4, is_final);
4899 	  printf_indent (indent + 2, "}\n");
4900 
4901 	  os->seen_vars.truncate (0);
4902 	  os->seen_vars.splice (old_seen);
4903 	  return ES_FALLTHROUGH;
4904 	}
4905     }
4906   else
4907     {
4908       /* Output the decision as a switch statement.  */
4909       printf_indent (indent, "switch (");
4910       print_nonbool_test (os, d->test);
4911       printf (")\n");
4912 
4913       /* Each case statement starts with the same set of valid variables.
4914 	 These are also the only variables will be valid on fallthrough.  */
4915       auto_vec <bool, 32> old_seen;
4916       old_seen.safe_splice (os->seen_vars);
4917 
4918       printf_indent (indent + 2, "{\n");
4919       for (transition *trans = d->first; trans; trans = trans->next)
4920 	{
4921 	  gcc_assert (!trans->is_param);
4922 	  if (mark_optional_transitions_p && trans->optional)
4923 	    printf_indent (indent + 2, "/* OPTIONAL CASE */\n");
4924 	  for (int_set::iterator j = trans->labels.begin ();
4925 	       j != trans->labels.end (); ++j)
4926 	    {
4927 	      printf_indent (indent + 2, "case ");
4928 	      print_label_value (d->test, trans->is_param, *j);
4929 	      printf (":\n");
4930 	    }
4931 	  if (print_state (os, trans->to, indent + 4, is_final))
4932 	    {
4933 	      /* The state can fall through.  Add an explicit break.  */
4934 	      gcc_assert (!is_final);
4935 	      printf_indent (indent + 4, "break;\n");
4936 	    }
4937 	  printf ("\n");
4938 
4939 	  /* Restore the original set of valid variables.  */
4940 	  os->seen_vars.truncate (0);
4941 	  os->seen_vars.splice (old_seen);
4942 	}
4943       /* Add a default case.  */
4944       printf_indent (indent + 2, "default:\n");
4945       if (is_final)
4946 	printf_indent (indent + 4, "return %s;\n",
4947 		       get_failure_return (os->type));
4948       else
4949 	printf_indent (indent + 4, "break;\n");
4950       printf_indent (indent + 2, "}\n");
4951       return is_final ? ES_RETURNED : ES_FALLTHROUGH;
4952     }
4953 }
4954 
4955 /* Make sure that OS has a position variable for POS.  ROOT_P is true if
4956    POS is the root position for the routine.  */
4957 
4958 static void
assign_position_var(output_state * os,position * pos,bool root_p)4959 assign_position_var (output_state *os, position *pos, bool root_p)
4960 {
4961   unsigned int idx = os->id_to_var[pos->id];
4962   if (idx < os->var_to_id.length () && os->var_to_id[idx] == pos->id)
4963     return;
4964   if (!root_p && pos->type != POS_PEEP2_INSN)
4965     assign_position_var (os, pos->base, false);
4966   os->id_to_var[pos->id] = os->var_to_id.length ();
4967   os->var_to_id.safe_push (pos->id);
4968 }
4969 
4970 /* Make sure that OS has the position variables required by S.  */
4971 
4972 static void
assign_position_vars(output_state * os,state * s)4973 assign_position_vars (output_state *os, state *s)
4974 {
4975   for (decision *d = s->first; d; d = d->next)
4976     {
4977       /* Positions associated with operands can be read from the
4978 	 operands[] array.  */
4979       if (d->test.pos && d->test.pos_operand < 0)
4980 	assign_position_var (os, d->test.pos, false);
4981       for (transition *trans = d->first; trans; trans = trans->next)
4982 	assign_position_vars (os, trans->to);
4983     }
4984 }
4985 
4986 /* Print the open brace and variable definitions for a routine that
4987    implements S.  ROOT is the deepest rtx from which S can access all
4988    relevant parts of the first instruction it matches.  Initialize OS
4989    so that every relevant position has an rtx variable xN and so that
4990    only ROOT's variable has a valid value.  */
4991 
4992 static void
print_subroutine_start(output_state * os,state * s,position * root)4993 print_subroutine_start (output_state *os, state *s, position *root)
4994 {
4995   printf ("{\n  rtx * const operands ATTRIBUTE_UNUSED"
4996 	  " = &recog_data.operand[0];\n");
4997   os->var_to_id.truncate (0);
4998   os->seen_vars.truncate (0);
4999   if (root)
5000     {
5001       /* Create a fake entry for position 0 so that an id_to_var of 0
5002 	 is always invalid.  This also makes the xN variables naturally
5003 	 1-based rather than 0-based.  */
5004       os->var_to_id.safe_push (num_positions);
5005 
5006       /* Associate ROOT with x1.  */
5007       assign_position_var (os, root, true);
5008 
5009       /* Assign xN variables to all other relevant positions.  */
5010       assign_position_vars (os, s);
5011 
5012       /* Output the variable declarations (except for ROOT's, which is
5013 	 passed in as a parameter).  */
5014       unsigned int num_vars = os->var_to_id.length ();
5015       if (num_vars > 2)
5016 	{
5017 	  for (unsigned int i = 2; i < num_vars; ++i)
5018 	    /* Print 8 rtx variables to a line.  */
5019 	    printf ("%s x%d",
5020 		    i == 2 ? "  rtx" : (i - 2) % 8 == 0 ? ";\n  rtx" : ",", i);
5021 	  printf (";\n");
5022 	}
5023 
5024       /* Say that x1 is valid and the rest aren't.  */
5025       os->seen_vars.safe_grow_cleared (num_vars);
5026       os->seen_vars[1] = true;
5027     }
5028   if (os->type == SUBPATTERN || os->type == RECOG)
5029     printf ("  int res ATTRIBUTE_UNUSED;\n");
5030   else
5031     printf ("  rtx_insn *res ATTRIBUTE_UNUSED;\n");
5032 }
5033 
5034 /* Output the definition of pattern routine ROUTINE.  */
5035 
5036 static void
print_pattern(output_state * os,pattern_routine * routine)5037 print_pattern (output_state *os, pattern_routine *routine)
5038 {
5039   printf ("\nstatic int\npattern%d (", routine->pattern_id);
5040   const char *sep = "";
5041   /* Add the top-level rtx parameter, if any.  */
5042   if (routine->pos)
5043     {
5044       printf ("%srtx x1", sep);
5045       sep = ", ";
5046     }
5047   /* Add the optional parameters.  */
5048   if (routine->insn_p)
5049     {
5050       /* We can't easily tell whether a C condition actually reads INSN,
5051 	 so add an ATTRIBUTE_UNUSED just in case.  */
5052       printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep);
5053       sep = ", ";
5054     }
5055   if (routine->pnum_clobbers_p)
5056     {
5057       printf ("%sint *pnum_clobbers", sep);
5058       sep = ", ";
5059     }
5060   /* Add the "i" parameters.  */
5061   for (unsigned int i = 0; i < routine->param_types.length (); ++i)
5062     {
5063       printf ("%s%s i%d", sep,
5064 	      parameter_type_string (routine->param_types[i]), i + 1);
5065       sep = ", ";
5066     }
5067   printf (")\n");
5068   os->type = SUBPATTERN;
5069   print_subroutine_start (os, routine->s, routine->pos);
5070   print_state (os, routine->s, 2, true);
5071   printf ("}\n");
5072 }
5073 
5074 /* Output a routine of type TYPE that implements S.  PROC_ID is the
5075    number of the subroutine associated with S, or 0 if S is the main
5076    routine.  */
5077 
5078 static void
print_subroutine(output_state * os,state * s,int proc_id)5079 print_subroutine (output_state *os, state *s, int proc_id)
5080 {
5081   /* For now, the top-level "recog" takes a plain "rtx", and performs a
5082      checked cast to "rtx_insn *" for use throughout the rest of the
5083      function and the code it calls.  */
5084   const char *insn_param
5085     = proc_id > 0 ? "rtx_insn *insn" : "rtx uncast_insn";
5086   printf ("\n");
5087   switch (os->type)
5088     {
5089     case SUBPATTERN:
5090       gcc_unreachable ();
5091 
5092     case RECOG:
5093       if (proc_id)
5094 	printf ("static int\nrecog_%d", proc_id);
5095       else
5096 	printf ("int\nrecog");
5097       printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5098 	      "\t%s ATTRIBUTE_UNUSED,\n"
5099 	      "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", insn_param);
5100       break;
5101 
5102     case SPLIT:
5103       if (proc_id)
5104 	printf ("static rtx_insn *\nsplit_%d", proc_id);
5105       else
5106 	printf ("rtx_insn *\nsplit_insns");
5107       printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5108       break;
5109 
5110     case PEEPHOLE2:
5111       if (proc_id)
5112 	printf ("static rtx_insn *\npeephole2_%d", proc_id);
5113       else
5114 	printf ("rtx_insn *\npeephole2_insns");
5115       printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5116 	      "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5117 	      "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5118       break;
5119     }
5120   print_subroutine_start (os, s, &root_pos);
5121   if (proc_id == 0)
5122     {
5123       printf ("  recog_data.insn = NULL;\n");
5124       if (os->type == RECOG)
5125 	{
5126 	  printf ("  rtx_insn *insn ATTRIBUTE_UNUSED;\n");
5127 	  printf ("  insn = safe_as_a <rtx_insn *> (uncast_insn);\n");
5128 	}
5129     }
5130   print_state (os, s, 2, true);
5131   printf ("}\n");
5132 }
5133 
5134 /* Print out a routine of type TYPE that performs ROOT.  */
5135 
5136 static void
print_subroutine_group(output_state * os,routine_type type,state * root)5137 print_subroutine_group (output_state *os, routine_type type, state *root)
5138 {
5139   os->type = type;
5140   if (use_subroutines_p)
5141     {
5142       /* Split ROOT up into smaller pieces, both for readability and to
5143 	 help the compiler.  */
5144       auto_vec <state *> subroutines;
5145       find_subroutines (type, root, subroutines);
5146 
5147       /* Output the subroutines (but not ROOT itself).  */
5148       unsigned int i;
5149       state *s;
5150       FOR_EACH_VEC_ELT (subroutines, i, s)
5151 	print_subroutine (os, s, i + 1);
5152     }
5153   /* Output the main routine.  */
5154   print_subroutine (os, root, 0);
5155 }
5156 
5157 /* Return the rtx pattern for the list of rtxes in a define_peephole2.  */
5158 
5159 static rtx
get_peephole2_pattern(md_rtx_info * info)5160 get_peephole2_pattern (md_rtx_info *info)
5161 {
5162   int i, j;
5163   rtvec vec = XVEC (info->def, 0);
5164   rtx pattern = rtx_alloc (SEQUENCE);
5165   XVEC (pattern, 0) = rtvec_alloc (GET_NUM_ELEM (vec));
5166   for (i = j = 0; i < GET_NUM_ELEM (vec); i++)
5167     {
5168       rtx x = RTVEC_ELT (vec, i);
5169       /* Ignore scratch register requirements.  */
5170       if (GET_CODE (x) != MATCH_SCRATCH && GET_CODE (x) != MATCH_DUP)
5171 	{
5172 	  XVECEXP (pattern, 0, j) = x;
5173 	  j++;
5174 	}
5175     }
5176   XVECLEN (pattern, 0) = j;
5177   if (j == 0)
5178     error_at (info->loc, "empty define_peephole2");
5179   return pattern;
5180 }
5181 
5182 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5183    rtx can be added automatically by add_clobbers.  If so, update
5184    *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5185    of such trailing rtxes and update *PATTERN_PTR so that it contains
5186    the pattern without those rtxes.  */
5187 
5188 static bool
remove_clobbers(acceptance_type * acceptance_ptr,rtx * pattern_ptr)5189 remove_clobbers (acceptance_type *acceptance_ptr, rtx *pattern_ptr)
5190 {
5191   int i;
5192   rtx new_pattern;
5193 
5194   /* Find the last non-clobber in the parallel.  */
5195   rtx pattern = *pattern_ptr;
5196   for (i = XVECLEN (pattern, 0); i > 0; i--)
5197     {
5198       rtx x = XVECEXP (pattern, 0, i - 1);
5199       if (GET_CODE (x) != CLOBBER
5200 	  || (!REG_P (XEXP (x, 0))
5201 	      && GET_CODE (XEXP (x, 0)) != MATCH_SCRATCH))
5202 	break;
5203     }
5204 
5205   if (i == XVECLEN (pattern, 0))
5206     return false;
5207 
5208   /* Build a similar insn without the clobbers.  */
5209   if (i == 1)
5210     new_pattern = XVECEXP (pattern, 0, 0);
5211   else
5212     {
5213       new_pattern = rtx_alloc (PARALLEL);
5214       XVEC (new_pattern, 0) = rtvec_alloc (i);
5215       for (int j = 0; j < i; ++j)
5216 	XVECEXP (new_pattern, 0, j) = XVECEXP (pattern, 0, j);
5217     }
5218 
5219   /* Recognize it.  */
5220   acceptance_ptr->u.full.u.num_clobbers = XVECLEN (pattern, 0) - i;
5221   *pattern_ptr = new_pattern;
5222   return true;
5223 }
5224 
5225 int
main(int argc,char ** argv)5226 main (int argc, char **argv)
5227 {
5228   state insn_root, split_root, peephole2_root;
5229 
5230   progname = "genrecog";
5231 
5232   if (!init_rtx_reader_args (argc, argv))
5233     return (FATAL_EXIT_CODE);
5234 
5235   write_header ();
5236 
5237   /* Read the machine description.  */
5238 
5239   md_rtx_info info;
5240   while (read_md_rtx (&info))
5241     {
5242       rtx def = info.def;
5243 
5244       acceptance_type acceptance;
5245       acceptance.partial_p = false;
5246       acceptance.u.full.code = info.index;
5247 
5248       rtx pattern;
5249       switch (GET_CODE (def))
5250 	{
5251 	case DEFINE_INSN:
5252 	  {
5253 	    /* Match the instruction in the original .md form.  */
5254 	    acceptance.type = RECOG;
5255 	    acceptance.u.full.u.num_clobbers = 0;
5256 	    pattern = add_implicit_parallel (XVEC (def, 1));
5257 	    validate_pattern (pattern, &info, NULL_RTX, 0);
5258 	    match_pattern (&insn_root, &info, pattern, acceptance);
5259 
5260 	    /* If the pattern is a PARALLEL with trailing CLOBBERs,
5261 	       allow recog_for_combine to match without the clobbers.  */
5262 	    if (GET_CODE (pattern) == PARALLEL
5263 		&& remove_clobbers (&acceptance, &pattern))
5264 	      match_pattern (&insn_root, &info, pattern, acceptance);
5265 	    break;
5266 	  }
5267 
5268 	case DEFINE_SPLIT:
5269 	  acceptance.type = SPLIT;
5270 	  pattern = add_implicit_parallel (XVEC (def, 0));
5271 	  validate_pattern (pattern, &info, NULL_RTX, 0);
5272 	  match_pattern (&split_root, &info, pattern, acceptance);
5273 
5274 	  /* Declare the gen_split routine that we'll call if the
5275 	     pattern matches.  The definition comes from insn-emit.c.  */
5276 	  printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5277 		  info.index);
5278 	  break;
5279 
5280 	case DEFINE_PEEPHOLE2:
5281 	  acceptance.type = PEEPHOLE2;
5282 	  pattern = get_peephole2_pattern (&info);
5283 	  validate_pattern (pattern, &info, NULL_RTX, 0);
5284 	  match_pattern (&peephole2_root, &info, pattern, acceptance);
5285 
5286 	  /* Declare the gen_peephole2 routine that we'll call if the
5287 	     pattern matches.  The definition comes from insn-emit.c.  */
5288 	  printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5289 		  info.index);
5290 	  break;
5291 
5292 	default:
5293 	  /* do nothing */;
5294 	}
5295     }
5296 
5297   if (have_error)
5298     return FATAL_EXIT_CODE;
5299 
5300   puts ("\n\n");
5301 
5302   /* Optimize each routine in turn.  */
5303   optimize_subroutine_group ("recog", &insn_root);
5304   optimize_subroutine_group ("split_insns", &split_root);
5305   optimize_subroutine_group ("peephole2_insns", &peephole2_root);
5306 
5307   output_state os;
5308   os.id_to_var.safe_grow_cleared (num_positions);
5309 
5310   if (use_pattern_routines_p)
5311     {
5312       /* Look for common patterns and split them out into subroutines.  */
5313       auto_vec <merge_state_info> states;
5314       states.safe_push (&insn_root);
5315       states.safe_push (&split_root);
5316       states.safe_push (&peephole2_root);
5317       split_out_patterns (states);
5318 
5319       /* Print out the routines that we just created.  */
5320       unsigned int i;
5321       pattern_routine *routine;
5322       FOR_EACH_VEC_ELT (patterns, i, routine)
5323 	print_pattern (&os, routine);
5324     }
5325 
5326   /* Print out the matching routines.  */
5327   print_subroutine_group (&os, RECOG, &insn_root);
5328   print_subroutine_group (&os, SPLIT, &split_root);
5329   print_subroutine_group (&os, PEEPHOLE2, &peephole2_root);
5330 
5331   fflush (stdout);
5332   return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
5333 }
5334