1 /* Swing Modulo Scheduling implementation.
2    Copyright (C) 2004-2016 Free Software Foundation, Inc.
3    Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "gcov-io.h"
35 #include "profile.h"
36 #include "insn-attr.h"
37 #include "cfgrtl.h"
38 #include "sched-int.h"
39 #include "cfgloop.h"
40 #include "expr.h"
41 #include "params.h"
42 #include "ddg.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "loop-unroll.h"
46 
47 #ifdef INSN_SCHEDULING
48 
49 /* This file contains the implementation of the Swing Modulo Scheduler,
50    described in the following references:
51    [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
52        Lifetime--sensitive modulo scheduling in a production environment.
53        IEEE Trans. on Comps., 50(3), March 2001
54    [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
55        Swing Modulo Scheduling: A Lifetime Sensitive Approach.
56        PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
57 
58    The basic structure is:
59    1. Build a data-dependence graph (DDG) for each loop.
60    2. Use the DDG to order the insns of a loop (not in topological order
61       necessarily, but rather) trying to place each insn after all its
62       predecessors _or_ after all its successors.
63    3. Compute MII: a lower bound on the number of cycles to schedule the loop.
64    4. Use the ordering to perform list-scheduling of the loop:
65       1. Set II = MII.  We will try to schedule the loop within II cycles.
66       2. Try to schedule the insns one by one according to the ordering.
67 	 For each insn compute an interval of cycles by considering already-
68 	 scheduled preds and succs (and associated latencies); try to place
69 	 the insn in the cycles of this window checking for potential
70 	 resource conflicts (using the DFA interface).
71 	 Note: this is different from the cycle-scheduling of schedule_insns;
72 	 here the insns are not scheduled monotonically top-down (nor bottom-
73 	 up).
74       3. If failed in scheduling all insns - bump II++ and try again, unless
75 	 II reaches an upper bound MaxII, in which case report failure.
76    5. If we succeeded in scheduling the loop within II cycles, we now
77       generate prolog and epilog, decrease the counter of the loop, and
78       perform modulo variable expansion for live ranges that span more than
79       II cycles (i.e. use register copies to prevent a def from overwriting
80       itself before reaching the use).
81 
82     SMS works with countable loops (1) whose control part can be easily
83     decoupled from the rest of the loop and (2) whose loop count can
84     be easily adjusted.  This is because we peel a constant number of
85     iterations into a prologue and epilogue for which we want to avoid
86     emitting the control part, and a kernel which is to iterate that
87     constant number of iterations less than the original loop.  So the
88     control part should be a set of insns clearly identified and having
89     its own iv, not otherwise used in the loop (at-least for now), which
90     initializes a register before the loop to the number of iterations.
91     Currently SMS relies on the do-loop pattern to recognize such loops,
92     where (1) the control part comprises of all insns defining and/or
93     using a certain 'count' register and (2) the loop count can be
94     adjusted by modifying this register prior to the loop.
95     TODO: Rely on cfgloop analysis instead.  */
96 
97 /* This page defines partial-schedule structures and functions for
98    modulo scheduling.  */
99 
100 typedef struct partial_schedule *partial_schedule_ptr;
101 typedef struct ps_insn *ps_insn_ptr;
102 
103 /* The minimum (absolute) cycle that a node of ps was scheduled in.  */
104 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
105 
106 /* The maximum (absolute) cycle that a node of ps was scheduled in.  */
107 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
108 
109 /* Perform signed modulo, always returning a non-negative value.  */
110 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
111 
112 /* The number of different iterations the nodes in ps span, assuming
113    the stage boundaries are placed efficiently.  */
114 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
115                          + 1 + ii - 1) / ii)
116 /* The stage count of ps.  */
117 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
118 
119 /* A single instruction in the partial schedule.  */
120 struct ps_insn
121 {
122   /* Identifies the instruction to be scheduled.  Values smaller than
123      the ddg's num_nodes refer directly to ddg nodes.  A value of
124      X - num_nodes refers to register move X.  */
125   int id;
126 
127   /* The (absolute) cycle in which the PS instruction is scheduled.
128      Same as SCHED_TIME (node).  */
129   int cycle;
130 
131   /* The next/prev PS_INSN in the same row.  */
132   ps_insn_ptr next_in_row,
133 	      prev_in_row;
134 
135 };
136 
137 /* Information about a register move that has been added to a partial
138    schedule.  */
139 struct ps_reg_move_info
140 {
141   /* The source of the move is defined by the ps_insn with id DEF.
142      The destination is used by the ps_insns with the ids in USES.  */
143   int def;
144   sbitmap uses;
145 
146   /* The original form of USES' instructions used OLD_REG, but they
147      should now use NEW_REG.  */
148   rtx old_reg;
149   rtx new_reg;
150 
151   /* The number of consecutive stages that the move occupies.  */
152   int num_consecutive_stages;
153 
154   /* An instruction that sets NEW_REG to the correct value.  The first
155      move associated with DEF will have an rhs of OLD_REG; later moves
156      use the result of the previous move.  */
157   rtx_insn *insn;
158 };
159 
160 /* Holds the partial schedule as an array of II rows.  Each entry of the
161    array points to a linked list of PS_INSNs, which represents the
162    instructions that are scheduled for that row.  */
163 struct partial_schedule
164 {
165   int ii;	/* Number of rows in the partial schedule.  */
166   int history;  /* Threshold for conflict checking using DFA.  */
167 
168   /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii).  */
169   ps_insn_ptr *rows;
170 
171   /* All the moves added for this partial schedule.  Index X has
172      a ps_insn id of X + g->num_nodes.  */
173   vec<ps_reg_move_info> reg_moves;
174 
175   /*  rows_length[i] holds the number of instructions in the row.
176       It is used only (as an optimization) to back off quickly from
177       trying to schedule a node in a full row; that is, to avoid running
178       through futile DFA state transitions.  */
179   int *rows_length;
180 
181   /* The earliest absolute cycle of an insn in the partial schedule.  */
182   int min_cycle;
183 
184   /* The latest absolute cycle of an insn in the partial schedule.  */
185   int max_cycle;
186 
187   ddg_ptr g;	/* The DDG of the insns in the partial schedule.  */
188 
189   int stage_count;  /* The stage count of the partial schedule.  */
190 };
191 
192 
193 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
194 static void free_partial_schedule (partial_schedule_ptr);
195 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
196 void print_partial_schedule (partial_schedule_ptr, FILE *);
197 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
198 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
199 						int, int, sbitmap, sbitmap);
200 static void rotate_partial_schedule (partial_schedule_ptr, int);
201 void set_row_column_for_ps (partial_schedule_ptr);
202 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
203 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
204 
205 
206 /* This page defines constants and structures for the modulo scheduling
207    driver.  */
208 
209 static int sms_order_nodes (ddg_ptr, int, int *, int *);
210 static void set_node_sched_params (ddg_ptr);
211 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
212 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
213 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
214                                     rtx, rtx);
215 static int calculate_stage_count (partial_schedule_ptr, int);
216 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
217 					   int, int, sbitmap, sbitmap, sbitmap);
218 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
219 			     sbitmap, int, int *, int *, int *);
220 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
221 					  sbitmap, int *, sbitmap, sbitmap);
222 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
223 
224 #define NODE_ASAP(node) ((node)->aux.count)
225 
226 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
227 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
228 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
229 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
230 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
231 
232 /* The scheduling parameters held for each node.  */
233 typedef struct node_sched_params
234 {
235   int time;	/* The absolute scheduling cycle.  */
236 
237   int row;    /* Holds time % ii.  */
238   int stage;  /* Holds time / ii.  */
239 
240   /* The column of a node inside the ps.  If nodes u, v are on the same row,
241      u will precede v if column (u) < column (v).  */
242   int column;
243 } *node_sched_params_ptr;
244 
245 /* The following three functions are copied from the current scheduler
246    code in order to use sched_analyze() for computing the dependencies.
247    They are used when initializing the sched_info structure.  */
248 static const char *
sms_print_insn(const rtx_insn * insn,int aligned ATTRIBUTE_UNUSED)249 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
250 {
251   static char tmp[80];
252 
253   sprintf (tmp, "i%4d", INSN_UID (insn));
254   return tmp;
255 }
256 
257 static void
compute_jump_reg_dependencies(rtx insn ATTRIBUTE_UNUSED,regset used ATTRIBUTE_UNUSED)258 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
259 			       regset used ATTRIBUTE_UNUSED)
260 {
261 }
262 
263 static struct common_sched_info_def sms_common_sched_info;
264 
265 static struct sched_deps_info_def sms_sched_deps_info =
266   {
267     compute_jump_reg_dependencies,
268     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
269     NULL,
270     0, 0, 0
271   };
272 
273 static struct haifa_sched_info sms_sched_info =
274 {
275   NULL,
276   NULL,
277   NULL,
278   NULL,
279   NULL,
280   sms_print_insn,
281   NULL,
282   NULL, /* insn_finishes_block_p */
283   NULL, NULL,
284   NULL, NULL,
285   0, 0,
286 
287   NULL, NULL, NULL, NULL,
288   NULL, NULL,
289   0
290 };
291 
292 /* Partial schedule instruction ID in PS is a register move.  Return
293    information about it.  */
294 static struct ps_reg_move_info *
ps_reg_move(partial_schedule_ptr ps,int id)295 ps_reg_move (partial_schedule_ptr ps, int id)
296 {
297   gcc_checking_assert (id >= ps->g->num_nodes);
298   return &ps->reg_moves[id - ps->g->num_nodes];
299 }
300 
301 /* Return the rtl instruction that is being scheduled by partial schedule
302    instruction ID, which belongs to schedule PS.  */
303 static rtx_insn *
ps_rtl_insn(partial_schedule_ptr ps,int id)304 ps_rtl_insn (partial_schedule_ptr ps, int id)
305 {
306   if (id < ps->g->num_nodes)
307     return ps->g->nodes[id].insn;
308   else
309     return ps_reg_move (ps, id)->insn;
310 }
311 
312 /* Partial schedule instruction ID, which belongs to PS, occurred in
313    the original (unscheduled) loop.  Return the first instruction
314    in the loop that was associated with ps_rtl_insn (PS, ID).
315    If the instruction had some notes before it, this is the first
316    of those notes.  */
317 static rtx_insn *
ps_first_note(partial_schedule_ptr ps,int id)318 ps_first_note (partial_schedule_ptr ps, int id)
319 {
320   gcc_assert (id < ps->g->num_nodes);
321   return ps->g->nodes[id].first_note;
322 }
323 
324 /* Return the number of consecutive stages that are occupied by
325    partial schedule instruction ID in PS.  */
326 static int
ps_num_consecutive_stages(partial_schedule_ptr ps,int id)327 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
328 {
329   if (id < ps->g->num_nodes)
330     return 1;
331   else
332     return ps_reg_move (ps, id)->num_consecutive_stages;
333 }
334 
335 /* Given HEAD and TAIL which are the first and last insns in a loop;
336    return the register which controls the loop.  Return zero if it has
337    more than one occurrence in the loop besides the control part or the
338    do-loop pattern is not of the form we expect.  */
339 static rtx
doloop_register_get(rtx_insn * head,rtx_insn * tail)340 doloop_register_get (rtx_insn *head, rtx_insn *tail)
341 {
342   rtx reg, condition;
343   rtx_insn *insn, *first_insn_not_to_check;
344 
345   if (!JUMP_P (tail))
346     return NULL_RTX;
347 
348   if (!targetm.code_for_doloop_end)
349     return NULL_RTX;
350 
351   /* TODO: Free SMS's dependence on doloop_condition_get.  */
352   condition = doloop_condition_get (tail);
353   if (! condition)
354     return NULL_RTX;
355 
356   if (REG_P (XEXP (condition, 0)))
357     reg = XEXP (condition, 0);
358   else if (GET_CODE (XEXP (condition, 0)) == PLUS
359 	   && REG_P (XEXP (XEXP (condition, 0), 0)))
360     reg = XEXP (XEXP (condition, 0), 0);
361   else
362     gcc_unreachable ();
363 
364   /* Check that the COUNT_REG has no other occurrences in the loop
365      until the decrement.  We assume the control part consists of
366      either a single (parallel) branch-on-count or a (non-parallel)
367      branch immediately preceded by a single (decrement) insn.  */
368   first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
369                              : prev_nondebug_insn (tail));
370 
371   for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
372     if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
373       {
374         if (dump_file)
375         {
376           fprintf (dump_file, "SMS count_reg found ");
377           print_rtl_single (dump_file, reg);
378           fprintf (dump_file, " outside control in insn:\n");
379           print_rtl_single (dump_file, insn);
380         }
381 
382         return NULL_RTX;
383       }
384 
385   return reg;
386 }
387 
388 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
389    that the number of iterations is a compile-time constant.  If so,
390    return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
391    this constant.  Otherwise return 0.  */
392 static rtx_insn *
const_iteration_count(rtx count_reg,basic_block pre_header,int64_t * count)393 const_iteration_count (rtx count_reg, basic_block pre_header,
394 		       int64_t * count)
395 {
396   rtx_insn *insn;
397   rtx_insn *head, *tail;
398 
399   if (! pre_header)
400     return NULL;
401 
402   get_ebb_head_tail (pre_header, pre_header, &head, &tail);
403 
404   for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
405     if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
406 	rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
407       {
408 	rtx pat = single_set (insn);
409 
410 	if (CONST_INT_P (SET_SRC (pat)))
411 	  {
412 	    *count = INTVAL (SET_SRC (pat));
413 	    return insn;
414 	  }
415 
416 	return NULL;
417       }
418 
419   return NULL;
420 }
421 
422 /* A very simple resource-based lower bound on the initiation interval.
423    ??? Improve the accuracy of this bound by considering the
424    utilization of various units.  */
425 static int
res_MII(ddg_ptr g)426 res_MII (ddg_ptr g)
427 {
428   if (targetm.sched.sms_res_mii)
429     return targetm.sched.sms_res_mii (g);
430 
431   return ((g->num_nodes - g->num_debug) / issue_rate);
432 }
433 
434 
435 /* A vector that contains the sched data for each ps_insn.  */
436 static vec<node_sched_params> node_sched_param_vec;
437 
438 /* Allocate sched_params for each node and initialize it.  */
439 static void
set_node_sched_params(ddg_ptr g)440 set_node_sched_params (ddg_ptr g)
441 {
442   node_sched_param_vec.truncate (0);
443   node_sched_param_vec.safe_grow_cleared (g->num_nodes);
444 }
445 
446 /* Make sure that node_sched_param_vec has an entry for every move in PS.  */
447 static void
extend_node_sched_params(partial_schedule_ptr ps)448 extend_node_sched_params (partial_schedule_ptr ps)
449 {
450   node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
451 					  + ps->reg_moves.length ());
452 }
453 
454 /* Update the sched_params (time, row and stage) for node U using the II,
455    the CYCLE of U and MIN_CYCLE.
456    We're not simply taking the following
457    SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
458    because the stages may not be aligned on cycle 0.  */
459 static void
update_node_sched_params(int u,int ii,int cycle,int min_cycle)460 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
461 {
462   int sc_until_cycle_zero;
463   int stage;
464 
465   SCHED_TIME (u) = cycle;
466   SCHED_ROW (u) = SMODULO (cycle, ii);
467 
468   /* The calculation of stage count is done adding the number
469      of stages before cycle zero and after cycle zero.  */
470   sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
471 
472   if (SCHED_TIME (u) < 0)
473     {
474       stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
475       SCHED_STAGE (u) = sc_until_cycle_zero - stage;
476     }
477   else
478     {
479       stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
480       SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
481     }
482 }
483 
484 static void
print_node_sched_params(FILE * file,int num_nodes,partial_schedule_ptr ps)485 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
486 {
487   int i;
488 
489   if (! file)
490     return;
491   for (i = 0; i < num_nodes; i++)
492     {
493       node_sched_params_ptr nsp = SCHED_PARAMS (i);
494 
495       fprintf (file, "Node = %d; INSN = %d\n", i,
496 	       INSN_UID (ps_rtl_insn (ps, i)));
497       fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
498       fprintf (file, " time = %d:\n", nsp->time);
499       fprintf (file, " stage = %d:\n", nsp->stage);
500     }
501 }
502 
503 /* Set SCHED_COLUMN for each instruction in row ROW of PS.  */
504 static void
set_columns_for_row(partial_schedule_ptr ps,int row)505 set_columns_for_row (partial_schedule_ptr ps, int row)
506 {
507   ps_insn_ptr cur_insn;
508   int column;
509 
510   column = 0;
511   for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
512     SCHED_COLUMN (cur_insn->id) = column++;
513 }
514 
515 /* Set SCHED_COLUMN for each instruction in PS.  */
516 static void
set_columns_for_ps(partial_schedule_ptr ps)517 set_columns_for_ps (partial_schedule_ptr ps)
518 {
519   int row;
520 
521   for (row = 0; row < ps->ii; row++)
522     set_columns_for_row (ps, row);
523 }
524 
525 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
526    Its single predecessor has already been scheduled, as has its
527    ddg node successors.  (The move may have also another move as its
528    successor, in which case that successor will be scheduled later.)
529 
530    The move is part of a chain that satisfies register dependencies
531    between a producing ddg node and various consuming ddg nodes.
532    If some of these dependencies have a distance of 1 (meaning that
533    the use is upward-exposed) then DISTANCE1_USES is nonnull and
534    contains the set of uses with distance-1 dependencies.
535    DISTANCE1_USES is null otherwise.
536 
537    MUST_FOLLOW is a scratch bitmap that is big enough to hold
538    all current ps_insn ids.
539 
540    Return true on success.  */
541 static bool
schedule_reg_move(partial_schedule_ptr ps,int i_reg_move,sbitmap distance1_uses,sbitmap must_follow)542 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
543 		   sbitmap distance1_uses, sbitmap must_follow)
544 {
545   unsigned int u;
546   int this_time, this_distance, this_start, this_end, this_latency;
547   int start, end, c, ii;
548   sbitmap_iterator sbi;
549   ps_reg_move_info *move;
550   rtx_insn *this_insn;
551   ps_insn_ptr psi;
552 
553   move = ps_reg_move (ps, i_reg_move);
554   ii = ps->ii;
555   if (dump_file)
556     {
557       fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
558 	       ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
559 	       PS_MIN_CYCLE (ps));
560       print_rtl_single (dump_file, move->insn);
561       fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
562       fprintf (dump_file, "=========== =========== =====\n");
563     }
564 
565   start = INT_MIN;
566   end = INT_MAX;
567 
568   /* For dependencies of distance 1 between a producer ddg node A
569      and consumer ddg node B, we have a chain of dependencies:
570 
571         A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
572 
573      where Mi is the ith move.  For dependencies of distance 0 between
574      a producer ddg node A and consumer ddg node C, we have a chain of
575      dependencies:
576 
577         A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
578 
579      where Mi' occupies the same position as Mi but occurs a stage later.
580      We can only schedule each move once, so if we have both types of
581      chain, we model the second as:
582 
583         A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
584 
585      First handle the dependencies between the previously-scheduled
586      predecessor and the move.  */
587   this_insn = ps_rtl_insn (ps, move->def);
588   this_latency = insn_latency (this_insn, move->insn);
589   this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
590   this_time = SCHED_TIME (move->def) - this_distance * ii;
591   this_start = this_time + this_latency;
592   this_end = this_time + ii;
593   if (dump_file)
594     fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
595 	     this_start, this_end, SCHED_TIME (move->def),
596 	     INSN_UID (this_insn), this_latency, this_distance,
597 	     INSN_UID (move->insn));
598 
599   if (start < this_start)
600     start = this_start;
601   if (end > this_end)
602     end = this_end;
603 
604   /* Handle the dependencies between the move and previously-scheduled
605      successors.  */
606   EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
607     {
608       this_insn = ps_rtl_insn (ps, u);
609       this_latency = insn_latency (move->insn, this_insn);
610       if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
611 	this_distance = -1;
612       else
613 	this_distance = 0;
614       this_time = SCHED_TIME (u) + this_distance * ii;
615       this_start = this_time - ii;
616       this_end = this_time - this_latency;
617       if (dump_file)
618 	fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
619 		 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
620 		 this_latency, this_distance, INSN_UID (this_insn));
621 
622       if (start < this_start)
623 	start = this_start;
624       if (end > this_end)
625 	end = this_end;
626     }
627 
628   if (dump_file)
629     {
630       fprintf (dump_file, "----------- ----------- -----\n");
631       fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
632     }
633 
634   bitmap_clear (must_follow);
635   bitmap_set_bit (must_follow, move->def);
636 
637   start = MAX (start, end - (ii - 1));
638   for (c = end; c >= start; c--)
639     {
640       psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
641 					 move->uses, must_follow);
642       if (psi)
643 	{
644 	  update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
645 	  if (dump_file)
646 	    fprintf (dump_file, "\nScheduled register move INSN %d at"
647 		     " time %d, row %d\n\n", INSN_UID (move->insn), c,
648 		     SCHED_ROW (i_reg_move));
649 	  return true;
650 	}
651     }
652 
653   if (dump_file)
654     fprintf (dump_file, "\nNo available slot\n\n");
655 
656   return false;
657 }
658 
659 /*
660    Breaking intra-loop register anti-dependences:
661    Each intra-loop register anti-dependence implies a cross-iteration true
662    dependence of distance 1. Therefore, we can remove such false dependencies
663    and figure out if the partial schedule broke them by checking if (for a
664    true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
665    if so generate a register move.   The number of such moves is equal to:
666               SCHED_TIME (use) - SCHED_TIME (def)       { 0 broken
667    nreg_moves = ----------------------------------- + 1 - {   dependence.
668                             ii                          { 1 if not.
669 */
670 static bool
schedule_reg_moves(partial_schedule_ptr ps)671 schedule_reg_moves (partial_schedule_ptr ps)
672 {
673   ddg_ptr g = ps->g;
674   int ii = ps->ii;
675   int i;
676 
677   for (i = 0; i < g->num_nodes; i++)
678     {
679       ddg_node_ptr u = &g->nodes[i];
680       ddg_edge_ptr e;
681       int nreg_moves = 0, i_reg_move;
682       rtx prev_reg, old_reg;
683       int first_move;
684       int distances[2];
685       sbitmap must_follow;
686       sbitmap distance1_uses;
687       rtx set = single_set (u->insn);
688 
689       /* Skip instructions that do not set a register.  */
690       if ((set && !REG_P (SET_DEST (set))))
691         continue;
692 
693       /* Compute the number of reg_moves needed for u, by looking at life
694 	 ranges started at u (excluding self-loops).  */
695       distances[0] = distances[1] = false;
696       for (e = u->out; e; e = e->next_out)
697 	if (e->type == TRUE_DEP && e->dest != e->src)
698 	  {
699 	    int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
700 				- SCHED_TIME (e->src->cuid)) / ii;
701 
702             if (e->distance == 1)
703               nreg_moves4e = (SCHED_TIME (e->dest->cuid)
704 			      - SCHED_TIME (e->src->cuid) + ii) / ii;
705 
706 	    /* If dest precedes src in the schedule of the kernel, then dest
707 	       will read before src writes and we can save one reg_copy.  */
708 	    if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
709 		&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
710 	      nreg_moves4e--;
711 
712             if (nreg_moves4e >= 1)
713 	      {
714 		/* !single_set instructions are not supported yet and
715 		   thus we do not except to encounter them in the loop
716 		   except from the doloop part.  For the latter case
717 		   we assume no regmoves are generated as the doloop
718 		   instructions are tied to the branch with an edge.  */
719 		gcc_assert (set);
720 		/* If the instruction contains auto-inc register then
721 		   validate that the regmov is being generated for the
722 		   target regsiter rather then the inc'ed register.	*/
723 		gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
724 	      }
725 
726 	    if (nreg_moves4e)
727 	      {
728 		gcc_assert (e->distance < 2);
729 		distances[e->distance] = true;
730 	      }
731 	    nreg_moves = MAX (nreg_moves, nreg_moves4e);
732 	  }
733 
734       if (nreg_moves == 0)
735 	continue;
736 
737       /* Create NREG_MOVES register moves.  */
738       first_move = ps->reg_moves.length ();
739       ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
740       extend_node_sched_params (ps);
741 
742       /* Record the moves associated with this node.  */
743       first_move += ps->g->num_nodes;
744 
745       /* Generate each move.  */
746       old_reg = prev_reg = SET_DEST (single_set (u->insn));
747       for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
748 	{
749 	  ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
750 
751 	  move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
752 	  move->uses = sbitmap_alloc (first_move + nreg_moves);
753 	  move->old_reg = old_reg;
754 	  move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
755 	  move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
756 	  move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
757 	  bitmap_clear (move->uses);
758 
759 	  prev_reg = move->new_reg;
760 	}
761 
762       distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
763 
764       if (distance1_uses)
765 	bitmap_clear (distance1_uses);
766 
767       /* Every use of the register defined by node may require a different
768 	 copy of this register, depending on the time the use is scheduled.
769 	 Record which uses require which move results.  */
770       for (e = u->out; e; e = e->next_out)
771 	if (e->type == TRUE_DEP && e->dest != e->src)
772 	  {
773 	    int dest_copy = (SCHED_TIME (e->dest->cuid)
774 			     - SCHED_TIME (e->src->cuid)) / ii;
775 
776 	    if (e->distance == 1)
777 	      dest_copy = (SCHED_TIME (e->dest->cuid)
778 			   - SCHED_TIME (e->src->cuid) + ii) / ii;
779 
780 	    if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
781 		&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
782 	      dest_copy--;
783 
784 	    if (dest_copy)
785 	      {
786 		ps_reg_move_info *move;
787 
788 		move = ps_reg_move (ps, first_move + dest_copy - 1);
789 		bitmap_set_bit (move->uses, e->dest->cuid);
790 		if (e->distance == 1)
791 		  bitmap_set_bit (distance1_uses, e->dest->cuid);
792 	      }
793 	  }
794 
795       must_follow = sbitmap_alloc (first_move + nreg_moves);
796       for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
797 	if (!schedule_reg_move (ps, first_move + i_reg_move,
798 				distance1_uses, must_follow))
799 	  break;
800       sbitmap_free (must_follow);
801       if (distance1_uses)
802 	sbitmap_free (distance1_uses);
803       if (i_reg_move < nreg_moves)
804 	return false;
805     }
806   return true;
807 }
808 
809 /* Emit the moves associatied with PS.  Apply the substitutions
810    associated with them.  */
811 static void
apply_reg_moves(partial_schedule_ptr ps)812 apply_reg_moves (partial_schedule_ptr ps)
813 {
814   ps_reg_move_info *move;
815   int i;
816 
817   FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
818     {
819       unsigned int i_use;
820       sbitmap_iterator sbi;
821 
822       EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
823 	{
824 	  replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
825 	  df_insn_rescan (ps->g->nodes[i_use].insn);
826 	}
827     }
828 }
829 
830 /* Bump the SCHED_TIMEs of all nodes by AMOUNT.  Set the values of
831    SCHED_ROW and SCHED_STAGE.  Instruction scheduled on cycle AMOUNT
832    will move to cycle zero.  */
833 static void
reset_sched_times(partial_schedule_ptr ps,int amount)834 reset_sched_times (partial_schedule_ptr ps, int amount)
835 {
836   int row;
837   int ii = ps->ii;
838   ps_insn_ptr crr_insn;
839 
840   for (row = 0; row < ii; row++)
841     for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
842       {
843 	int u = crr_insn->id;
844 	int normalized_time = SCHED_TIME (u) - amount;
845 	int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
846 
847         if (dump_file)
848           {
849             /* Print the scheduling times after the rotation.  */
850 	    rtx_insn *insn = ps_rtl_insn (ps, u);
851 
852             fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
853                      "crr_insn->cycle=%d, min_cycle=%d", u,
854                      INSN_UID (insn), normalized_time, new_min_cycle);
855             if (JUMP_P (insn))
856               fprintf (dump_file, " (branch)");
857             fprintf (dump_file, "\n");
858           }
859 
860 	gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
861 	gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
862 
863 	crr_insn->cycle = normalized_time;
864 	update_node_sched_params (u, ii, normalized_time, new_min_cycle);
865       }
866 }
867 
868 /* Permute the insns according to their order in PS, from row 0 to
869    row ii-1, and position them right before LAST.  This schedules
870    the insns of the loop kernel.  */
871 static void
permute_partial_schedule(partial_schedule_ptr ps,rtx_insn * last)872 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
873 {
874   int ii = ps->ii;
875   int row;
876   ps_insn_ptr ps_ij;
877 
878   for (row = 0; row < ii ; row++)
879     for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
880       {
881 	rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
882 
883 	if (PREV_INSN (last) != insn)
884 	  {
885 	    if (ps_ij->id < ps->g->num_nodes)
886 	      reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
887 				  PREV_INSN (last));
888 	    else
889 	      add_insn_before (insn, last, NULL);
890 	  }
891       }
892 }
893 
894 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
895    respectively only if cycle C falls on the border of the scheduling
896    window boundaries marked by START and END cycles.  STEP is the
897    direction of the window.  */
898 static inline void
set_must_precede_follow(sbitmap * tmp_follow,sbitmap must_follow,sbitmap * tmp_precede,sbitmap must_precede,int c,int start,int end,int step)899 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
900 			 sbitmap *tmp_precede, sbitmap must_precede, int c,
901 			 int start, int end, int step)
902 {
903   *tmp_precede = NULL;
904   *tmp_follow = NULL;
905 
906   if (c == start)
907     {
908       if (step == 1)
909 	*tmp_precede = must_precede;
910       else			/* step == -1.  */
911 	*tmp_follow = must_follow;
912     }
913   if (c == end - step)
914     {
915       if (step == 1)
916 	*tmp_follow = must_follow;
917       else			/* step == -1.  */
918 	*tmp_precede = must_precede;
919     }
920 
921 }
922 
923 /* Return True if the branch can be moved to row ii-1 while
924    normalizing the partial schedule PS to start from cycle zero and thus
925    optimize the SC.  Otherwise return False.  */
926 static bool
optimize_sc(partial_schedule_ptr ps,ddg_ptr g)927 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
928 {
929   int amount = PS_MIN_CYCLE (ps);
930   sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
931   int start, end, step;
932   int ii = ps->ii;
933   bool ok = false;
934   int stage_count, stage_count_curr;
935 
936   /* Compare the SC after normalization and SC after bringing the branch
937      to row ii-1.  If they are equal just bail out.  */
938   stage_count = calculate_stage_count (ps, amount);
939   stage_count_curr =
940     calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
941 
942   if (stage_count == stage_count_curr)
943     {
944       if (dump_file)
945 	fprintf (dump_file, "SMS SC already optimized.\n");
946 
947       ok = false;
948       goto clear;
949     }
950 
951   if (dump_file)
952     {
953       fprintf (dump_file, "SMS Trying to optimize branch location\n");
954       fprintf (dump_file, "SMS partial schedule before trial:\n");
955       print_partial_schedule (ps, dump_file);
956     }
957 
958   /* First, normalize the partial scheduling.  */
959   reset_sched_times (ps, amount);
960   rotate_partial_schedule (ps, amount);
961   if (dump_file)
962     {
963       fprintf (dump_file,
964 	       "SMS partial schedule after normalization (ii, %d, SC %d):\n",
965 	       ii, stage_count);
966       print_partial_schedule (ps, dump_file);
967     }
968 
969   if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
970     {
971       ok = true;
972       goto clear;
973     }
974 
975   bitmap_ones (sched_nodes);
976 
977   /* Calculate the new placement of the branch.  It should be in row
978      ii-1 and fall into it's scheduling window.  */
979   if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
980 			&step, &end) == 0)
981     {
982       bool success;
983       ps_insn_ptr next_ps_i;
984       int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
985       int row = SMODULO (branch_cycle, ps->ii);
986       int num_splits = 0;
987       sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
988       int min_cycle, c;
989 
990       if (dump_file)
991 	fprintf (dump_file, "\nTrying to schedule node %d "
992 		 "INSN = %d  in (%d .. %d) step %d\n",
993 		 g->closing_branch->cuid,
994 		 (INSN_UID (g->closing_branch->insn)), start, end, step);
995 
996       gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
997       if (step == 1)
998 	{
999 	  c = start + ii - SMODULO (start, ii) - 1;
1000 	  gcc_assert (c >= start);
1001 	  if (c >= end)
1002 	    {
1003 	      ok = false;
1004 	      if (dump_file)
1005 		fprintf (dump_file,
1006 			 "SMS failed to schedule branch at cycle: %d\n", c);
1007 	      goto clear;
1008 	    }
1009 	}
1010       else
1011 	{
1012 	  c = start - SMODULO (start, ii) - 1;
1013 	  gcc_assert (c <= start);
1014 
1015 	  if (c <= end)
1016 	    {
1017 	      if (dump_file)
1018 		fprintf (dump_file,
1019 			 "SMS failed to schedule branch at cycle: %d\n", c);
1020 	      ok = false;
1021 	      goto clear;
1022 	    }
1023 	}
1024 
1025       must_precede = sbitmap_alloc (g->num_nodes);
1026       must_follow = sbitmap_alloc (g->num_nodes);
1027 
1028       /* Try to schedule the branch is it's new cycle.  */
1029       calculate_must_precede_follow (g->closing_branch, start, end,
1030 				     step, ii, sched_nodes,
1031 				     must_precede, must_follow);
1032 
1033       set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1034 			       must_precede, c, start, end, step);
1035 
1036       /* Find the element in the partial schedule related to the closing
1037          branch so we can remove it from it's current cycle.  */
1038       for (next_ps_i = ps->rows[row];
1039 	   next_ps_i; next_ps_i = next_ps_i->next_in_row)
1040 	if (next_ps_i->id == g->closing_branch->cuid)
1041 	  break;
1042 
1043       min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1044       remove_node_from_ps (ps, next_ps_i);
1045       success =
1046 	try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1047 				      sched_nodes, &num_splits,
1048 				      tmp_precede, tmp_follow);
1049       gcc_assert (num_splits == 0);
1050       if (!success)
1051 	{
1052 	  if (dump_file)
1053 	    fprintf (dump_file,
1054 		     "SMS failed to schedule branch at cycle: %d, "
1055 		     "bringing it back to cycle %d\n", c, branch_cycle);
1056 
1057 	  /* The branch was failed to be placed in row ii - 1.
1058 	     Put it back in it's original place in the partial
1059 	     schedualing.  */
1060 	  set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1061 				   must_precede, branch_cycle, start, end,
1062 				   step);
1063 	  success =
1064 	    try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1065 					  branch_cycle, sched_nodes,
1066 					  &num_splits, tmp_precede,
1067 					  tmp_follow);
1068 	  gcc_assert (success && (num_splits == 0));
1069 	  ok = false;
1070 	}
1071       else
1072 	{
1073 	  /* The branch is placed in row ii - 1.  */
1074 	  if (dump_file)
1075 	    fprintf (dump_file,
1076 		     "SMS success in moving branch to cycle %d\n", c);
1077 
1078 	  update_node_sched_params (g->closing_branch->cuid, ii, c,
1079 				    PS_MIN_CYCLE (ps));
1080 	  ok = true;
1081 	}
1082 
1083       /* This might have been added to a new first stage.  */
1084       if (PS_MIN_CYCLE (ps) < min_cycle)
1085 	reset_sched_times (ps, 0);
1086 
1087       free (must_precede);
1088       free (must_follow);
1089     }
1090 
1091 clear:
1092   free (sched_nodes);
1093   return ok;
1094 }
1095 
1096 static void
duplicate_insns_of_cycles(partial_schedule_ptr ps,int from_stage,int to_stage,rtx count_reg)1097 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1098 			   int to_stage, rtx count_reg)
1099 {
1100   int row;
1101   ps_insn_ptr ps_ij;
1102 
1103   for (row = 0; row < ps->ii; row++)
1104     for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1105       {
1106 	int u = ps_ij->id;
1107 	int first_u, last_u;
1108 	rtx_insn *u_insn;
1109 
1110         /* Do not duplicate any insn which refers to count_reg as it
1111            belongs to the control part.
1112            The closing branch is scheduled as well and thus should
1113            be ignored.
1114            TODO: This should be done by analyzing the control part of
1115            the loop.  */
1116 	u_insn = ps_rtl_insn (ps, u);
1117         if (reg_mentioned_p (count_reg, u_insn)
1118             || JUMP_P (u_insn))
1119           continue;
1120 
1121 	first_u = SCHED_STAGE (u);
1122 	last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1123 	if (from_stage <= last_u && to_stage >= first_u)
1124 	  {
1125 	    if (u < ps->g->num_nodes)
1126 	      duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1127 	    else
1128 	      emit_insn (copy_rtx (PATTERN (u_insn)));
1129 	  }
1130       }
1131 }
1132 
1133 
1134 /* Generate the instructions (including reg_moves) for prolog & epilog.  */
1135 static void
generate_prolog_epilog(partial_schedule_ptr ps,struct loop * loop,rtx count_reg,rtx count_init)1136 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1137                         rtx count_reg, rtx count_init)
1138 {
1139   int i;
1140   int last_stage = PS_STAGE_COUNT (ps) - 1;
1141   edge e;
1142 
1143   /* Generate the prolog, inserting its insns on the loop-entry edge.  */
1144   start_sequence ();
1145 
1146   if (!count_init)
1147     {
1148       /* Generate instructions at the beginning of the prolog to
1149          adjust the loop count by STAGE_COUNT.  If loop count is constant
1150          (count_init), this constant is adjusted by STAGE_COUNT in
1151          generate_prolog_epilog function.  */
1152       rtx sub_reg = NULL_RTX;
1153 
1154       sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1155 				     gen_int_mode (last_stage,
1156 						   GET_MODE (count_reg)),
1157                                      count_reg, 1, OPTAB_DIRECT);
1158       gcc_assert (REG_P (sub_reg));
1159       if (REGNO (sub_reg) != REGNO (count_reg))
1160         emit_move_insn (count_reg, sub_reg);
1161     }
1162 
1163   for (i = 0; i < last_stage; i++)
1164     duplicate_insns_of_cycles (ps, 0, i, count_reg);
1165 
1166   /* Put the prolog on the entry edge.  */
1167   e = loop_preheader_edge (loop);
1168   split_edge_and_insert (e, get_insns ());
1169   if (!flag_resched_modulo_sched)
1170     e->dest->flags |= BB_DISABLE_SCHEDULE;
1171 
1172   end_sequence ();
1173 
1174   /* Generate the epilog, inserting its insns on the loop-exit edge.  */
1175   start_sequence ();
1176 
1177   for (i = 0; i < last_stage; i++)
1178     duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1179 
1180   /* Put the epilogue on the exit edge.  */
1181   gcc_assert (single_exit (loop));
1182   e = single_exit (loop);
1183   split_edge_and_insert (e, get_insns ());
1184   if (!flag_resched_modulo_sched)
1185     e->dest->flags |= BB_DISABLE_SCHEDULE;
1186 
1187   end_sequence ();
1188 }
1189 
1190 /* Mark LOOP as software pipelined so the later
1191    scheduling passes don't touch it.  */
1192 static void
mark_loop_unsched(struct loop * loop)1193 mark_loop_unsched (struct loop *loop)
1194 {
1195   unsigned i;
1196   basic_block *bbs = get_loop_body (loop);
1197 
1198   for (i = 0; i < loop->num_nodes; i++)
1199     bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1200 
1201   free (bbs);
1202 }
1203 
1204 /* Return true if all the BBs of the loop are empty except the
1205    loop header.  */
1206 static bool
loop_single_full_bb_p(struct loop * loop)1207 loop_single_full_bb_p (struct loop *loop)
1208 {
1209   unsigned i;
1210   basic_block *bbs = get_loop_body (loop);
1211 
1212   for (i = 0; i < loop->num_nodes ; i++)
1213     {
1214       rtx_insn *head, *tail;
1215       bool empty_bb = true;
1216 
1217       if (bbs[i] == loop->header)
1218         continue;
1219 
1220       /* Make sure that basic blocks other than the header
1221          have only notes labels or jumps.  */
1222       get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1223       for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1224         {
1225           if (NOTE_P (head) || LABEL_P (head)
1226  	      || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1227  	    continue;
1228  	  empty_bb = false;
1229  	  break;
1230         }
1231 
1232       if (! empty_bb)
1233         {
1234           free (bbs);
1235           return false;
1236         }
1237     }
1238   free (bbs);
1239   return true;
1240 }
1241 
1242 /* Dump file:line from INSN's location info to dump_file.  */
1243 
1244 static void
dump_insn_location(rtx_insn * insn)1245 dump_insn_location (rtx_insn *insn)
1246 {
1247   if (dump_file && INSN_HAS_LOCATION (insn))
1248     {
1249       expanded_location xloc = insn_location (insn);
1250       fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1251     }
1252 }
1253 
1254 /* A simple loop from SMS point of view; it is a loop that is composed of
1255    either a single basic block or two BBs - a header and a latch.  */
1256 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) 		    \
1257 				  && (EDGE_COUNT (loop->latch->preds) == 1) \
1258                                   && (EDGE_COUNT (loop->latch->succs) == 1))
1259 
1260 /* Return true if the loop is in its canonical form and false if not.
1261    i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit.  */
1262 static bool
loop_canon_p(struct loop * loop)1263 loop_canon_p (struct loop *loop)
1264 {
1265 
1266   if (loop->inner || !loop_outer (loop))
1267   {
1268     if (dump_file)
1269       fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1270     return false;
1271   }
1272 
1273   if (!single_exit (loop))
1274     {
1275       if (dump_file)
1276 	{
1277 	  rtx_insn *insn = BB_END (loop->header);
1278 
1279 	  fprintf (dump_file, "SMS loop many exits");
1280 	  dump_insn_location (insn);
1281 	  fprintf (dump_file, "\n");
1282 	}
1283       return false;
1284     }
1285 
1286   if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1287     {
1288       if (dump_file)
1289 	{
1290 	  rtx_insn *insn = BB_END (loop->header);
1291 
1292 	  fprintf (dump_file, "SMS loop many BBs.");
1293 	  dump_insn_location (insn);
1294 	  fprintf (dump_file, "\n");
1295 	}
1296       return false;
1297     }
1298 
1299     return true;
1300 }
1301 
1302 /* If there are more than one entry for the loop,
1303    make it one by splitting the first entry edge and
1304    redirecting the others to the new BB.  */
1305 static void
canon_loop(struct loop * loop)1306 canon_loop (struct loop *loop)
1307 {
1308   edge e;
1309   edge_iterator i;
1310 
1311   /* Avoid annoying special cases of edges going to exit
1312      block.  */
1313   FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1314     if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1315       split_edge (e);
1316 
1317   if (loop->latch == loop->header
1318       || EDGE_COUNT (loop->latch->succs) > 1)
1319     {
1320       FOR_EACH_EDGE (e, i, loop->header->preds)
1321         if (e->src == loop->latch)
1322           break;
1323       split_edge (e);
1324     }
1325 }
1326 
1327 /* Setup infos.  */
1328 static void
setup_sched_infos(void)1329 setup_sched_infos (void)
1330 {
1331   memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1332 	  sizeof (sms_common_sched_info));
1333   sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1334   common_sched_info = &sms_common_sched_info;
1335 
1336   sched_deps_info = &sms_sched_deps_info;
1337   current_sched_info = &sms_sched_info;
1338 }
1339 
1340 /* Probability in % that the sms-ed loop rolls enough so that optimized
1341    version may be entered.  Just a guess.  */
1342 #define PROB_SMS_ENOUGH_ITERATIONS 80
1343 
1344 /* Used to calculate the upper bound of ii.  */
1345 #define MAXII_FACTOR 2
1346 
1347 /* Main entry point, perform SMS scheduling on the loops of the function
1348    that consist of single basic blocks.  */
1349 static void
sms_schedule(void)1350 sms_schedule (void)
1351 {
1352   rtx_insn *insn;
1353   ddg_ptr *g_arr, g;
1354   int * node_order;
1355   int maxii, max_asap;
1356   partial_schedule_ptr ps;
1357   basic_block bb = NULL;
1358   struct loop *loop;
1359   basic_block condition_bb = NULL;
1360   edge latch_edge;
1361   gcov_type trip_count = 0;
1362 
1363   loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1364 		       | LOOPS_HAVE_RECORDED_EXITS);
1365   if (number_of_loops (cfun) <= 1)
1366     {
1367       loop_optimizer_finalize ();
1368       return;  /* There are no loops to schedule.  */
1369     }
1370 
1371   /* Initialize issue_rate.  */
1372   if (targetm.sched.issue_rate)
1373     {
1374       int temp = reload_completed;
1375 
1376       reload_completed = 1;
1377       issue_rate = targetm.sched.issue_rate ();
1378       reload_completed = temp;
1379     }
1380   else
1381     issue_rate = 1;
1382 
1383   /* Initialize the scheduler.  */
1384   setup_sched_infos ();
1385   haifa_sched_init ();
1386 
1387   /* Allocate memory to hold the DDG array one entry for each loop.
1388      We use loop->num as index into this array.  */
1389   g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1390 
1391   if (dump_file)
1392   {
1393     fprintf (dump_file, "\n\nSMS analysis phase\n");
1394     fprintf (dump_file, "===================\n\n");
1395   }
1396 
1397   /* Build DDGs for all the relevant loops and hold them in G_ARR
1398      indexed by the loop index.  */
1399   FOR_EACH_LOOP (loop, 0)
1400     {
1401       rtx_insn *head, *tail;
1402       rtx count_reg;
1403 
1404       /* For debugging.  */
1405       if (dbg_cnt (sms_sched_loop) == false)
1406         {
1407           if (dump_file)
1408             fprintf (dump_file, "SMS reached max limit... \n");
1409 
1410 	  break;
1411         }
1412 
1413       if (dump_file)
1414 	{
1415 	  rtx_insn *insn = BB_END (loop->header);
1416 
1417 	  fprintf (dump_file, "SMS loop num: %d", loop->num);
1418 	  dump_insn_location (insn);
1419 	  fprintf (dump_file, "\n");
1420 	}
1421 
1422       if (! loop_canon_p (loop))
1423         continue;
1424 
1425       if (! loop_single_full_bb_p (loop))
1426       {
1427         if (dump_file)
1428           fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1429 	continue;
1430       }
1431 
1432       bb = loop->header;
1433 
1434       get_ebb_head_tail (bb, bb, &head, &tail);
1435       latch_edge = loop_latch_edge (loop);
1436       gcc_assert (single_exit (loop));
1437       if (single_exit (loop)->count)
1438 	trip_count = latch_edge->count / single_exit (loop)->count;
1439 
1440       /* Perform SMS only on loops that their average count is above threshold.  */
1441 
1442       if ( latch_edge->count
1443           && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1444 	{
1445 	  if (dump_file)
1446 	    {
1447 	      dump_insn_location (tail);
1448 	      fprintf (dump_file, "\nSMS single-bb-loop\n");
1449 	      if (profile_info && flag_branch_probabilities)
1450 	    	{
1451 	      	  fprintf (dump_file, "SMS loop-count ");
1452 	      	  fprintf (dump_file, "%" PRId64,
1453 	             	   (int64_t) bb->count);
1454 	      	  fprintf (dump_file, "\n");
1455                   fprintf (dump_file, "SMS trip-count ");
1456                   fprintf (dump_file, "%" PRId64,
1457                            (int64_t) trip_count);
1458                   fprintf (dump_file, "\n");
1459 	      	  fprintf (dump_file, "SMS profile-sum-max ");
1460 	      	  fprintf (dump_file, "%" PRId64,
1461 	          	   (int64_t) profile_info->sum_max);
1462 	      	  fprintf (dump_file, "\n");
1463 	    	}
1464 	    }
1465           continue;
1466         }
1467 
1468       /* Make sure this is a doloop.  */
1469       if ( !(count_reg = doloop_register_get (head, tail)))
1470       {
1471         if (dump_file)
1472           fprintf (dump_file, "SMS doloop_register_get failed\n");
1473 	continue;
1474       }
1475 
1476       /* Don't handle BBs with calls or barriers
1477 	 or !single_set with the exception of instructions that include
1478 	 count_reg---these instructions are part of the control part
1479 	 that do-loop recognizes.
1480          ??? Should handle insns defining subregs.  */
1481      for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1482       {
1483          rtx set;
1484 
1485         if (CALL_P (insn)
1486             || BARRIER_P (insn)
1487             || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1488                 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1489                 && !reg_mentioned_p (count_reg, insn))
1490             || (INSN_P (insn) && (set = single_set (insn))
1491                 && GET_CODE (SET_DEST (set)) == SUBREG))
1492         break;
1493       }
1494 
1495       if (insn != NEXT_INSN (tail))
1496 	{
1497 	  if (dump_file)
1498 	    {
1499 	      if (CALL_P (insn))
1500 		fprintf (dump_file, "SMS loop-with-call\n");
1501 	      else if (BARRIER_P (insn))
1502 		fprintf (dump_file, "SMS loop-with-barrier\n");
1503               else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1504                 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1505                 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1506               else
1507                fprintf (dump_file, "SMS loop with subreg in lhs\n");
1508 	      print_rtl_single (dump_file, insn);
1509 	    }
1510 
1511 	  continue;
1512 	}
1513 
1514       /* Always schedule the closing branch with the rest of the
1515          instructions. The branch is rotated to be in row ii-1 at the
1516          end of the scheduling procedure to make sure it's the last
1517          instruction in the iteration.  */
1518       if (! (g = create_ddg (bb, 1)))
1519         {
1520           if (dump_file)
1521 	    fprintf (dump_file, "SMS create_ddg failed\n");
1522 	  continue;
1523         }
1524 
1525       g_arr[loop->num] = g;
1526       if (dump_file)
1527         fprintf (dump_file, "...OK\n");
1528 
1529     }
1530   if (dump_file)
1531   {
1532     fprintf (dump_file, "\nSMS transformation phase\n");
1533     fprintf (dump_file, "=========================\n\n");
1534   }
1535 
1536   /* We don't want to perform SMS on new loops - created by versioning.  */
1537   FOR_EACH_LOOP (loop, 0)
1538     {
1539       rtx_insn *head, *tail;
1540       rtx count_reg;
1541       rtx_insn *count_init;
1542       int mii, rec_mii, stage_count, min_cycle;
1543       int64_t loop_count = 0;
1544       bool opt_sc_p;
1545 
1546       if (! (g = g_arr[loop->num]))
1547         continue;
1548 
1549       if (dump_file)
1550 	{
1551 	  rtx_insn *insn = BB_END (loop->header);
1552 
1553 	  fprintf (dump_file, "SMS loop num: %d", loop->num);
1554 	  dump_insn_location (insn);
1555 	  fprintf (dump_file, "\n");
1556 
1557 	  print_ddg (dump_file, g);
1558 	}
1559 
1560       get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1561 
1562       latch_edge = loop_latch_edge (loop);
1563       gcc_assert (single_exit (loop));
1564       if (single_exit (loop)->count)
1565 	trip_count = latch_edge->count / single_exit (loop)->count;
1566 
1567       if (dump_file)
1568 	{
1569 	  dump_insn_location (tail);
1570 	  fprintf (dump_file, "\nSMS single-bb-loop\n");
1571 	  if (profile_info && flag_branch_probabilities)
1572 	    {
1573 	      fprintf (dump_file, "SMS loop-count ");
1574 	      fprintf (dump_file, "%" PRId64,
1575 	               (int64_t) bb->count);
1576 	      fprintf (dump_file, "\n");
1577 	      fprintf (dump_file, "SMS profile-sum-max ");
1578 	      fprintf (dump_file, "%" PRId64,
1579 	               (int64_t) profile_info->sum_max);
1580 	      fprintf (dump_file, "\n");
1581 	    }
1582 	  fprintf (dump_file, "SMS doloop\n");
1583 	  fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1584           fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1585           fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1586 	}
1587 
1588 
1589       /* In case of th loop have doloop register it gets special
1590 	 handling.  */
1591       count_init = NULL;
1592       if ((count_reg = doloop_register_get (head, tail)))
1593 	{
1594 	  basic_block pre_header;
1595 
1596 	  pre_header = loop_preheader_edge (loop)->src;
1597 	  count_init = const_iteration_count (count_reg, pre_header,
1598 					      &loop_count);
1599 	}
1600       gcc_assert (count_reg);
1601 
1602       if (dump_file && count_init)
1603         {
1604           fprintf (dump_file, "SMS const-doloop ");
1605           fprintf (dump_file, "%" PRId64,
1606 		     loop_count);
1607           fprintf (dump_file, "\n");
1608         }
1609 
1610       node_order = XNEWVEC (int, g->num_nodes);
1611 
1612       mii = 1; /* Need to pass some estimate of mii.  */
1613       rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1614       mii = MAX (res_MII (g), rec_mii);
1615       maxii = MAX (max_asap, MAXII_FACTOR * mii);
1616 
1617       if (dump_file)
1618 	fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1619 		 rec_mii, mii, maxii);
1620 
1621       for (;;)
1622 	{
1623 	  set_node_sched_params (g);
1624 
1625 	  stage_count = 0;
1626 	  opt_sc_p = false;
1627 	  ps = sms_schedule_by_order (g, mii, maxii, node_order);
1628 
1629 	  if (ps)
1630 	    {
1631 	      /* Try to achieve optimized SC by normalizing the partial
1632 		 schedule (having the cycles start from cycle zero).
1633 		 The branch location must be placed in row ii-1 in the
1634 		 final scheduling.	If failed, shift all instructions to
1635 		 position the branch in row ii-1.  */
1636 	      opt_sc_p = optimize_sc (ps, g);
1637 	      if (opt_sc_p)
1638 		stage_count = calculate_stage_count (ps, 0);
1639 	      else
1640 		{
1641 		  /* Bring the branch to cycle ii-1.  */
1642 		  int amount = (SCHED_TIME (g->closing_branch->cuid)
1643 				- (ps->ii - 1));
1644 
1645 		  if (dump_file)
1646 		    fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1647 
1648 		  stage_count = calculate_stage_count (ps, amount);
1649 		}
1650 
1651 	      gcc_assert (stage_count >= 1);
1652 	    }
1653 
1654 	  /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1655 	     1 means that there is no interleaving between iterations thus
1656 	     we let the scheduling passes do the job in this case.  */
1657 	  if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1658 	      || (count_init && (loop_count <= stage_count))
1659 	      || (flag_branch_probabilities && (trip_count <= stage_count)))
1660 	    {
1661 	      if (dump_file)
1662 		{
1663 		  fprintf (dump_file, "SMS failed... \n");
1664 		  fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1665 			   " loop-count=", stage_count);
1666 		  fprintf (dump_file, "%" PRId64, loop_count);
1667 		  fprintf (dump_file, ", trip-count=");
1668 		  fprintf (dump_file, "%" PRId64, trip_count);
1669 		  fprintf (dump_file, ")\n");
1670 		}
1671 	      break;
1672 	    }
1673 
1674           if (!opt_sc_p)
1675             {
1676 	      /* Rotate the partial schedule to have the branch in row ii-1.  */
1677               int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1678 
1679               reset_sched_times (ps, amount);
1680               rotate_partial_schedule (ps, amount);
1681             }
1682 
1683 	  set_columns_for_ps (ps);
1684 
1685 	  min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1686 	  if (!schedule_reg_moves (ps))
1687 	    {
1688 	      mii = ps->ii + 1;
1689 	      free_partial_schedule (ps);
1690 	      continue;
1691 	    }
1692 
1693 	  /* Moves that handle incoming values might have been added
1694 	     to a new first stage.  Bump the stage count if so.
1695 
1696 	     ??? Perhaps we could consider rotating the schedule here
1697 	     instead?  */
1698 	  if (PS_MIN_CYCLE (ps) < min_cycle)
1699 	    {
1700 	      reset_sched_times (ps, 0);
1701 	      stage_count++;
1702 	    }
1703 
1704 	  /* The stage count should now be correct without rotation.  */
1705 	  gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1706 	  PS_STAGE_COUNT (ps) = stage_count;
1707 
1708 	  canon_loop (loop);
1709 
1710           if (dump_file)
1711             {
1712 	      dump_insn_location (tail);
1713 	      fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1714 		       ps->ii, stage_count);
1715 	      print_partial_schedule (ps, dump_file);
1716 	    }
1717 
1718           /* case the BCT count is not known , Do loop-versioning */
1719 	  if (count_reg && ! count_init)
1720             {
1721 	      rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1722 					 gen_int_mode (stage_count,
1723 						       GET_MODE (count_reg)));
1724 	      unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1725 			       * REG_BR_PROB_BASE) / 100;
1726 
1727 	      loop_version (loop, comp_rtx, &condition_bb,
1728 	  		    prob, prob, REG_BR_PROB_BASE - prob,
1729 			    true);
1730 	     }
1731 
1732 	  /* Set new iteration count of loop kernel.  */
1733           if (count_reg && count_init)
1734 	    SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1735 						     - stage_count + 1);
1736 
1737 	  /* Now apply the scheduled kernel to the RTL of the loop.  */
1738 	  permute_partial_schedule (ps, g->closing_branch->first_note);
1739 
1740           /* Mark this loop as software pipelined so the later
1741 	     scheduling passes don't touch it.  */
1742 	  if (! flag_resched_modulo_sched)
1743 	    mark_loop_unsched (loop);
1744 
1745 	  /* The life-info is not valid any more.  */
1746 	  df_set_bb_dirty (g->bb);
1747 
1748 	  apply_reg_moves (ps);
1749 	  if (dump_file)
1750 	    print_node_sched_params (dump_file, g->num_nodes, ps);
1751 	  /* Generate prolog and epilog.  */
1752           generate_prolog_epilog (ps, loop, count_reg, count_init);
1753 	  break;
1754 	}
1755 
1756       free_partial_schedule (ps);
1757       node_sched_param_vec.release ();
1758       free (node_order);
1759       free_ddg (g);
1760     }
1761 
1762   free (g_arr);
1763 
1764   /* Release scheduler data, needed until now because of DFA.  */
1765   haifa_sched_finish ();
1766   loop_optimizer_finalize ();
1767 }
1768 
1769 /* The SMS scheduling algorithm itself
1770    -----------------------------------
1771    Input: 'O' an ordered list of insns of a loop.
1772    Output: A scheduling of the loop - kernel, prolog, and epilogue.
1773 
1774    'Q' is the empty Set
1775    'PS' is the partial schedule; it holds the currently scheduled nodes with
1776 	their cycle/slot.
1777    'PSP' previously scheduled predecessors.
1778    'PSS' previously scheduled successors.
1779    't(u)' the cycle where u is scheduled.
1780    'l(u)' is the latency of u.
1781    'd(v,u)' is the dependence distance from v to u.
1782    'ASAP(u)' the earliest time at which u could be scheduled as computed in
1783 	     the node ordering phase.
1784    'check_hardware_resources_conflicts(u, PS, c)'
1785 			     run a trace around cycle/slot through DFA model
1786 			     to check resource conflicts involving instruction u
1787 			     at cycle c given the partial schedule PS.
1788    'add_to_partial_schedule_at_time(u, PS, c)'
1789 			     Add the node/instruction u to the partial schedule
1790 			     PS at time c.
1791    'calculate_register_pressure(PS)'
1792 			     Given a schedule of instructions, calculate the register
1793 			     pressure it implies.  One implementation could be the
1794 			     maximum number of overlapping live ranges.
1795    'maxRP' The maximum allowed register pressure, it is usually derived from the number
1796 	   registers available in the hardware.
1797 
1798    1. II = MII.
1799    2. PS = empty list
1800    3. for each node u in O in pre-computed order
1801    4.   if (PSP(u) != Q && PSS(u) == Q) then
1802    5.     Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1803    6.     start = Early_start; end = Early_start + II - 1; step = 1
1804    11.  else if (PSP(u) == Q && PSS(u) != Q) then
1805    12.      Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1806    13.     start = Late_start; end = Late_start - II + 1; step = -1
1807    14.  else if (PSP(u) != Q && PSS(u) != Q) then
1808    15.     Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1809    16.     Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1810    17.     start = Early_start;
1811    18.     end = min(Early_start + II - 1 , Late_start);
1812    19.     step = 1
1813    20.     else "if (PSP(u) == Q && PSS(u) == Q)"
1814    21.	  start = ASAP(u); end = start + II - 1; step = 1
1815    22.  endif
1816 
1817    23.  success = false
1818    24.  for (c = start ; c != end ; c += step)
1819    25.     if check_hardware_resources_conflicts(u, PS, c) then
1820    26.       add_to_partial_schedule_at_time(u, PS, c)
1821    27.       success = true
1822    28.       break
1823    29.     endif
1824    30.  endfor
1825    31.  if (success == false) then
1826    32.    II = II + 1
1827    33.    if (II > maxII) then
1828    34.       finish - failed to schedule
1829    35.	 endif
1830    36.    goto 2.
1831    37.  endif
1832    38. endfor
1833    39. if (calculate_register_pressure(PS) > maxRP) then
1834    40.    goto 32.
1835    41. endif
1836    42. compute epilogue & prologue
1837    43. finish - succeeded to schedule
1838 
1839    ??? The algorithm restricts the scheduling window to II cycles.
1840    In rare cases, it may be better to allow windows of II+1 cycles.
1841    The window would then start and end on the same row, but with
1842    different "must precede" and "must follow" requirements.  */
1843 
1844 /* A limit on the number of cycles that resource conflicts can span.  ??? Should
1845    be provided by DFA, and be dependent on the type of insn scheduled.  Currently
1846    set to 0 to save compile time.  */
1847 #define DFA_HISTORY SMS_DFA_HISTORY
1848 
1849 /* A threshold for the number of repeated unsuccessful attempts to insert
1850    an empty row, before we flush the partial schedule and start over.  */
1851 #define MAX_SPLIT_NUM 10
1852 /* Given the partial schedule PS, this function calculates and returns the
1853    cycles in which we can schedule the node with the given index I.
1854    NOTE: Here we do the backtracking in SMS, in some special cases. We have
1855    noticed that there are several cases in which we fail    to SMS the loop
1856    because the sched window of a node is empty    due to tight data-deps. In
1857    such cases we want to unschedule    some of the predecessors/successors
1858    until we get non-empty    scheduling window.  It returns -1 if the
1859    scheduling window is empty and zero otherwise.  */
1860 
1861 static int
get_sched_window(partial_schedule_ptr ps,ddg_node_ptr u_node,sbitmap sched_nodes,int ii,int * start_p,int * step_p,int * end_p)1862 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1863 		  sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1864 		  int *end_p)
1865 {
1866   int start, step, end;
1867   int early_start, late_start;
1868   ddg_edge_ptr e;
1869   sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1870   sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1871   sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1872   sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1873   int psp_not_empty;
1874   int pss_not_empty;
1875   int count_preds;
1876   int count_succs;
1877 
1878   /* 1. compute sched window for u (start, end, step).  */
1879   bitmap_clear (psp);
1880   bitmap_clear (pss);
1881   psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1882   pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1883 
1884   /* We first compute a forward range (start <= end), then decide whether
1885      to reverse it.  */
1886   early_start = INT_MIN;
1887   late_start = INT_MAX;
1888   start = INT_MIN;
1889   end = INT_MAX;
1890   step = 1;
1891 
1892   count_preds = 0;
1893   count_succs = 0;
1894 
1895   if (dump_file && (psp_not_empty || pss_not_empty))
1896     {
1897       fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1898 	       "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1899       fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1900 	       "start", "early start", "late start", "end", "time");
1901       fprintf (dump_file, "=========== =========== =========== ==========="
1902 	       " =====\n");
1903     }
1904   /* Calculate early_start and limit end.  Both bounds are inclusive.  */
1905   if (psp_not_empty)
1906     for (e = u_node->in; e != 0; e = e->next_in)
1907       {
1908 	int v = e->src->cuid;
1909 
1910 	if (bitmap_bit_p (sched_nodes, v))
1911 	  {
1912 	    int p_st = SCHED_TIME (v);
1913 	    int earliest = p_st + e->latency - (e->distance * ii);
1914 	    int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1915 
1916 	    if (dump_file)
1917 	      {
1918 		fprintf (dump_file, "%11s %11d %11s %11d %5d",
1919 			 "", earliest, "", latest, p_st);
1920 		print_ddg_edge (dump_file, e);
1921 		fprintf (dump_file, "\n");
1922 	      }
1923 
1924 	    early_start = MAX (early_start, earliest);
1925 	    end = MIN (end, latest);
1926 
1927 	    if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1928 	      count_preds++;
1929 	  }
1930       }
1931 
1932   /* Calculate late_start and limit start.  Both bounds are inclusive.  */
1933   if (pss_not_empty)
1934     for (e = u_node->out; e != 0; e = e->next_out)
1935       {
1936 	int v = e->dest->cuid;
1937 
1938 	if (bitmap_bit_p (sched_nodes, v))
1939 	  {
1940 	    int s_st = SCHED_TIME (v);
1941 	    int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1942 	    int latest = s_st - e->latency + (e->distance * ii);
1943 
1944 	    if (dump_file)
1945 	      {
1946 		fprintf (dump_file, "%11d %11s %11d %11s %5d",
1947 			 earliest, "", latest, "", s_st);
1948 		print_ddg_edge (dump_file, e);
1949 		fprintf (dump_file, "\n");
1950 	      }
1951 
1952 	    start = MAX (start, earliest);
1953 	    late_start = MIN (late_start, latest);
1954 
1955 	    if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1956 	      count_succs++;
1957 	  }
1958       }
1959 
1960   if (dump_file && (psp_not_empty || pss_not_empty))
1961     {
1962       fprintf (dump_file, "----------- ----------- ----------- -----------"
1963 	       " -----\n");
1964       fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1965 	       start, early_start, late_start, end, "",
1966 	       "(max, max, min, min)");
1967     }
1968 
1969   /* Get a target scheduling window no bigger than ii.  */
1970   if (early_start == INT_MIN && late_start == INT_MAX)
1971     early_start = NODE_ASAP (u_node);
1972   else if (early_start == INT_MIN)
1973     early_start = late_start - (ii - 1);
1974   late_start = MIN (late_start, early_start + (ii - 1));
1975 
1976   /* Apply memory dependence limits.  */
1977   start = MAX (start, early_start);
1978   end = MIN (end, late_start);
1979 
1980   if (dump_file && (psp_not_empty || pss_not_empty))
1981     fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1982 	     "", start, end, "", "");
1983 
1984   /* If there are at least as many successors as predecessors, schedule the
1985      node close to its successors.  */
1986   if (pss_not_empty && count_succs >= count_preds)
1987     {
1988       std::swap (start, end);
1989       step = -1;
1990     }
1991 
1992   /* Now that we've finalized the window, make END an exclusive rather
1993      than an inclusive bound.  */
1994   end += step;
1995 
1996   *start_p = start;
1997   *step_p = step;
1998   *end_p = end;
1999   sbitmap_free (psp);
2000   sbitmap_free (pss);
2001 
2002   if ((start >= end && step == 1) || (start <= end && step == -1))
2003     {
2004       if (dump_file)
2005 	fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2006 		 start, end, step);
2007       return -1;
2008     }
2009 
2010   return 0;
2011 }
2012 
2013 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2014    node currently been scheduled.  At the end of the calculation
2015    MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2016    U_NODE which are (1) already scheduled in the first/last row of
2017    U_NODE's scheduling window, (2) whose dependence inequality with U
2018    becomes an equality when U is scheduled in this same row, and (3)
2019    whose dependence latency is zero.
2020 
2021    The first and last rows are calculated using the following parameters:
2022    START/END rows - The cycles that begins/ends the traversal on the window;
2023    searching for an empty cycle to schedule U_NODE.
2024    STEP - The direction in which we traverse the window.
2025    II - The initiation interval.  */
2026 
2027 static void
calculate_must_precede_follow(ddg_node_ptr u_node,int start,int end,int step,int ii,sbitmap sched_nodes,sbitmap must_precede,sbitmap must_follow)2028 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2029 			       int step, int ii, sbitmap sched_nodes,
2030 			       sbitmap must_precede, sbitmap must_follow)
2031 {
2032   ddg_edge_ptr e;
2033   int first_cycle_in_window, last_cycle_in_window;
2034 
2035   gcc_assert (must_precede && must_follow);
2036 
2037   /* Consider the following scheduling window:
2038      {first_cycle_in_window, first_cycle_in_window+1, ...,
2039      last_cycle_in_window}.  If step is 1 then the following will be
2040      the order we traverse the window: {start=first_cycle_in_window,
2041      first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2042      or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2043      end=first_cycle_in_window-1} if step is -1.  */
2044   first_cycle_in_window = (step == 1) ? start : end - step;
2045   last_cycle_in_window = (step == 1) ? end - step : start;
2046 
2047   bitmap_clear (must_precede);
2048   bitmap_clear (must_follow);
2049 
2050   if (dump_file)
2051     fprintf (dump_file, "\nmust_precede: ");
2052 
2053   /* Instead of checking if:
2054       (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2055       && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2056              first_cycle_in_window)
2057       && e->latency == 0
2058      we use the fact that latency is non-negative:
2059       SCHED_TIME (e->src) - (e->distance * ii) <=
2060       SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2061       first_cycle_in_window
2062      and check only if
2063       SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window  */
2064   for (e = u_node->in; e != 0; e = e->next_in)
2065     if (bitmap_bit_p (sched_nodes, e->src->cuid)
2066 	&& ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2067              first_cycle_in_window))
2068       {
2069 	if (dump_file)
2070 	  fprintf (dump_file, "%d ", e->src->cuid);
2071 
2072 	bitmap_set_bit (must_precede, e->src->cuid);
2073       }
2074 
2075   if (dump_file)
2076     fprintf (dump_file, "\nmust_follow: ");
2077 
2078   /* Instead of checking if:
2079       (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2080       && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2081              last_cycle_in_window)
2082       && e->latency == 0
2083      we use the fact that latency is non-negative:
2084       SCHED_TIME (e->dest) + (e->distance * ii) >=
2085       SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2086       last_cycle_in_window
2087      and check only if
2088       SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window  */
2089   for (e = u_node->out; e != 0; e = e->next_out)
2090     if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2091 	&& ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2092              last_cycle_in_window))
2093       {
2094 	if (dump_file)
2095 	  fprintf (dump_file, "%d ", e->dest->cuid);
2096 
2097 	bitmap_set_bit (must_follow, e->dest->cuid);
2098       }
2099 
2100   if (dump_file)
2101     fprintf (dump_file, "\n");
2102 }
2103 
2104 /* Return 1 if U_NODE can be scheduled in CYCLE.  Use the following
2105    parameters to decide if that's possible:
2106    PS - The partial schedule.
2107    U - The serial number of U_NODE.
2108    NUM_SPLITS - The number of row splits made so far.
2109    MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2110    the first row of the scheduling window)
2111    MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2112    last row of the scheduling window)  */
2113 
2114 static bool
try_scheduling_node_in_cycle(partial_schedule_ptr ps,int u,int cycle,sbitmap sched_nodes,int * num_splits,sbitmap must_precede,sbitmap must_follow)2115 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2116 			      int u, int cycle, sbitmap sched_nodes,
2117 			      int *num_splits, sbitmap must_precede,
2118 			      sbitmap must_follow)
2119 {
2120   ps_insn_ptr psi;
2121   bool success = 0;
2122 
2123   verify_partial_schedule (ps, sched_nodes);
2124   psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2125   if (psi)
2126     {
2127       SCHED_TIME (u) = cycle;
2128       bitmap_set_bit (sched_nodes, u);
2129       success = 1;
2130       *num_splits = 0;
2131       if (dump_file)
2132 	fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2133 
2134     }
2135 
2136   return success;
2137 }
2138 
2139 /* This function implements the scheduling algorithm for SMS according to the
2140    above algorithm.  */
2141 static partial_schedule_ptr
sms_schedule_by_order(ddg_ptr g,int mii,int maxii,int * nodes_order)2142 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2143 {
2144   int ii = mii;
2145   int i, c, success, num_splits = 0;
2146   int flush_and_start_over = true;
2147   int num_nodes = g->num_nodes;
2148   int start, end, step; /* Place together into one struct?  */
2149   sbitmap sched_nodes = sbitmap_alloc (num_nodes);
2150   sbitmap must_precede = sbitmap_alloc (num_nodes);
2151   sbitmap must_follow = sbitmap_alloc (num_nodes);
2152   sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
2153 
2154   partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2155 
2156   bitmap_ones (tobe_scheduled);
2157   bitmap_clear (sched_nodes);
2158 
2159   while (flush_and_start_over && (ii < maxii))
2160     {
2161 
2162       if (dump_file)
2163 	fprintf (dump_file, "Starting with ii=%d\n", ii);
2164       flush_and_start_over = false;
2165       bitmap_clear (sched_nodes);
2166 
2167       for (i = 0; i < num_nodes; i++)
2168 	{
2169 	  int u = nodes_order[i];
2170   	  ddg_node_ptr u_node = &ps->g->nodes[u];
2171 	  rtx_insn *insn = u_node->insn;
2172 
2173 	  if (!NONDEBUG_INSN_P (insn))
2174 	    {
2175 	      bitmap_clear_bit (tobe_scheduled, u);
2176 	      continue;
2177 	    }
2178 
2179 	  if (bitmap_bit_p (sched_nodes, u))
2180 	    continue;
2181 
2182 	  /* Try to get non-empty scheduling window.  */
2183 	 success = 0;
2184          if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2185                                 &step, &end) == 0)
2186             {
2187               if (dump_file)
2188                 fprintf (dump_file, "\nTrying to schedule node %d "
2189 			 "INSN = %d  in (%d .. %d) step %d\n", u, (INSN_UID
2190                         (g->nodes[u].insn)), start, end, step);
2191 
2192               gcc_assert ((step > 0 && start < end)
2193                           || (step < 0 && start > end));
2194 
2195               calculate_must_precede_follow (u_node, start, end, step, ii,
2196                                              sched_nodes, must_precede,
2197                                              must_follow);
2198 
2199               for (c = start; c != end; c += step)
2200                 {
2201 		  sbitmap tmp_precede, tmp_follow;
2202 
2203                   set_must_precede_follow (&tmp_follow, must_follow,
2204 		                           &tmp_precede, must_precede,
2205                                            c, start, end, step);
2206                   success =
2207                     try_scheduling_node_in_cycle (ps, u, c,
2208                                                   sched_nodes,
2209                                                   &num_splits, tmp_precede,
2210                                                   tmp_follow);
2211                   if (success)
2212                     break;
2213                 }
2214 
2215               verify_partial_schedule (ps, sched_nodes);
2216             }
2217             if (!success)
2218             {
2219               int split_row;
2220 
2221               if (ii++ == maxii)
2222                 break;
2223 
2224               if (num_splits >= MAX_SPLIT_NUM)
2225                 {
2226                   num_splits = 0;
2227                   flush_and_start_over = true;
2228                   verify_partial_schedule (ps, sched_nodes);
2229                   reset_partial_schedule (ps, ii);
2230                   verify_partial_schedule (ps, sched_nodes);
2231                   break;
2232                 }
2233 
2234               num_splits++;
2235               /* The scheduling window is exclusive of 'end'
2236                  whereas compute_split_window() expects an inclusive,
2237                  ordered range.  */
2238               if (step == 1)
2239                 split_row = compute_split_row (sched_nodes, start, end - 1,
2240                                                ps->ii, u_node);
2241               else
2242                 split_row = compute_split_row (sched_nodes, end + 1, start,
2243                                                ps->ii, u_node);
2244 
2245               ps_insert_empty_row (ps, split_row, sched_nodes);
2246               i--;              /* Go back and retry node i.  */
2247 
2248               if (dump_file)
2249                 fprintf (dump_file, "num_splits=%d\n", num_splits);
2250             }
2251 
2252           /* ??? If (success), check register pressure estimates.  */
2253         }                       /* Continue with next node.  */
2254     }                           /* While flush_and_start_over.  */
2255   if (ii >= maxii)
2256     {
2257       free_partial_schedule (ps);
2258       ps = NULL;
2259     }
2260   else
2261     gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2262 
2263   sbitmap_free (sched_nodes);
2264   sbitmap_free (must_precede);
2265   sbitmap_free (must_follow);
2266   sbitmap_free (tobe_scheduled);
2267 
2268   return ps;
2269 }
2270 
2271 /* This function inserts a new empty row into PS at the position
2272    according to SPLITROW, keeping all already scheduled instructions
2273    intact and updating their SCHED_TIME and cycle accordingly.  */
2274 static void
ps_insert_empty_row(partial_schedule_ptr ps,int split_row,sbitmap sched_nodes)2275 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2276 		     sbitmap sched_nodes)
2277 {
2278   ps_insn_ptr crr_insn;
2279   ps_insn_ptr *rows_new;
2280   int ii = ps->ii;
2281   int new_ii = ii + 1;
2282   int row;
2283   int *rows_length_new;
2284 
2285   verify_partial_schedule (ps, sched_nodes);
2286 
2287   /* We normalize sched_time and rotate ps to have only non-negative sched
2288      times, for simplicity of updating cycles after inserting new row.  */
2289   split_row -= ps->min_cycle;
2290   split_row = SMODULO (split_row, ii);
2291   if (dump_file)
2292     fprintf (dump_file, "split_row=%d\n", split_row);
2293 
2294   reset_sched_times (ps, PS_MIN_CYCLE (ps));
2295   rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2296 
2297   rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2298   rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2299   for (row = 0; row < split_row; row++)
2300     {
2301       rows_new[row] = ps->rows[row];
2302       rows_length_new[row] = ps->rows_length[row];
2303       ps->rows[row] = NULL;
2304       for (crr_insn = rows_new[row];
2305 	   crr_insn; crr_insn = crr_insn->next_in_row)
2306 	{
2307 	  int u = crr_insn->id;
2308 	  int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2309 
2310 	  SCHED_TIME (u) = new_time;
2311 	  crr_insn->cycle = new_time;
2312 	  SCHED_ROW (u) = new_time % new_ii;
2313 	  SCHED_STAGE (u) = new_time / new_ii;
2314 	}
2315 
2316     }
2317 
2318   rows_new[split_row] = NULL;
2319 
2320   for (row = split_row; row < ii; row++)
2321     {
2322       rows_new[row + 1] = ps->rows[row];
2323       rows_length_new[row + 1] = ps->rows_length[row];
2324       ps->rows[row] = NULL;
2325       for (crr_insn = rows_new[row + 1];
2326 	   crr_insn; crr_insn = crr_insn->next_in_row)
2327 	{
2328 	  int u = crr_insn->id;
2329 	  int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2330 
2331 	  SCHED_TIME (u) = new_time;
2332 	  crr_insn->cycle = new_time;
2333 	  SCHED_ROW (u) = new_time % new_ii;
2334 	  SCHED_STAGE (u) = new_time / new_ii;
2335 	}
2336     }
2337 
2338   /* Updating ps.  */
2339   ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2340     + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2341   ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2342     + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2343   free (ps->rows);
2344   ps->rows = rows_new;
2345   free (ps->rows_length);
2346   ps->rows_length = rows_length_new;
2347   ps->ii = new_ii;
2348   gcc_assert (ps->min_cycle >= 0);
2349 
2350   verify_partial_schedule (ps, sched_nodes);
2351 
2352   if (dump_file)
2353     fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2354 	     ps->max_cycle);
2355 }
2356 
2357 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2358    UP which are the boundaries of it's scheduling window; compute using
2359    SCHED_NODES and II a row in the partial schedule that can be split
2360    which will separate a critical predecessor from a critical successor
2361    thereby expanding the window, and return it.  */
2362 static int
compute_split_row(sbitmap sched_nodes,int low,int up,int ii,ddg_node_ptr u_node)2363 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2364 		   ddg_node_ptr u_node)
2365 {
2366   ddg_edge_ptr e;
2367   int lower = INT_MIN, upper = INT_MAX;
2368   int crit_pred = -1;
2369   int crit_succ = -1;
2370   int crit_cycle;
2371 
2372   for (e = u_node->in; e != 0; e = e->next_in)
2373     {
2374       int v = e->src->cuid;
2375 
2376       if (bitmap_bit_p (sched_nodes, v)
2377 	  && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2378 	if (SCHED_TIME (v) > lower)
2379 	  {
2380 	    crit_pred = v;
2381 	    lower = SCHED_TIME (v);
2382 	  }
2383     }
2384 
2385   if (crit_pred >= 0)
2386     {
2387       crit_cycle = SCHED_TIME (crit_pred) + 1;
2388       return SMODULO (crit_cycle, ii);
2389     }
2390 
2391   for (e = u_node->out; e != 0; e = e->next_out)
2392     {
2393       int v = e->dest->cuid;
2394 
2395       if (bitmap_bit_p (sched_nodes, v)
2396 	  && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2397 	if (SCHED_TIME (v) < upper)
2398 	  {
2399 	    crit_succ = v;
2400 	    upper = SCHED_TIME (v);
2401 	  }
2402     }
2403 
2404   if (crit_succ >= 0)
2405     {
2406       crit_cycle = SCHED_TIME (crit_succ);
2407       return SMODULO (crit_cycle, ii);
2408     }
2409 
2410   if (dump_file)
2411     fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2412 
2413   return SMODULO ((low + up + 1) / 2, ii);
2414 }
2415 
2416 static void
verify_partial_schedule(partial_schedule_ptr ps,sbitmap sched_nodes)2417 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2418 {
2419   int row;
2420   ps_insn_ptr crr_insn;
2421 
2422   for (row = 0; row < ps->ii; row++)
2423     {
2424       int length = 0;
2425 
2426       for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2427 	{
2428 	  int u = crr_insn->id;
2429 
2430 	  length++;
2431 	  gcc_assert (bitmap_bit_p (sched_nodes, u));
2432 	  /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2433 	     popcount (sched_nodes) == number of insns in ps.  */
2434 	  gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2435 	  gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2436 	}
2437 
2438       gcc_assert (ps->rows_length[row] == length);
2439     }
2440 }
2441 
2442 
2443 /* This page implements the algorithm for ordering the nodes of a DDG
2444    for modulo scheduling, activated through the
2445    "int sms_order_nodes (ddg_ptr, int mii, int * result)" API.  */
2446 
2447 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2448 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2449 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2450 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2451 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2452 #define DEPTH(x) (ASAP ((x)))
2453 
2454 typedef struct node_order_params * nopa;
2455 
2456 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2457 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2458 static nopa  calculate_order_params (ddg_ptr, int, int *);
2459 static int find_max_asap (ddg_ptr, sbitmap);
2460 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2461 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2462 
2463 enum sms_direction {BOTTOMUP, TOPDOWN};
2464 
2465 struct node_order_params
2466 {
2467   int asap;
2468   int alap;
2469   int height;
2470 };
2471 
2472 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1.  */
2473 static void
check_nodes_order(int * node_order,int num_nodes)2474 check_nodes_order (int *node_order, int num_nodes)
2475 {
2476   int i;
2477   sbitmap tmp = sbitmap_alloc (num_nodes);
2478 
2479   bitmap_clear (tmp);
2480 
2481   if (dump_file)
2482     fprintf (dump_file, "SMS final nodes order: \n");
2483 
2484   for (i = 0; i < num_nodes; i++)
2485     {
2486       int u = node_order[i];
2487 
2488       if (dump_file)
2489         fprintf (dump_file, "%d ", u);
2490       gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2491 
2492       bitmap_set_bit (tmp, u);
2493     }
2494 
2495   if (dump_file)
2496     fprintf (dump_file, "\n");
2497 
2498   sbitmap_free (tmp);
2499 }
2500 
2501 /* Order the nodes of G for scheduling and pass the result in
2502    NODE_ORDER.  Also set aux.count of each node to ASAP.
2503    Put maximal ASAP to PMAX_ASAP.  Return the recMII for the given DDG.  */
2504 static int
sms_order_nodes(ddg_ptr g,int mii,int * node_order,int * pmax_asap)2505 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2506 {
2507   int i;
2508   int rec_mii = 0;
2509   ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2510 
2511   nopa nops = calculate_order_params (g, mii, pmax_asap);
2512 
2513   if (dump_file)
2514     print_sccs (dump_file, sccs, g);
2515 
2516   order_nodes_of_sccs (sccs, node_order);
2517 
2518   if (sccs->num_sccs > 0)
2519     /* First SCC has the largest recurrence_length.  */
2520     rec_mii = sccs->sccs[0]->recurrence_length;
2521 
2522   /* Save ASAP before destroying node_order_params.  */
2523   for (i = 0; i < g->num_nodes; i++)
2524     {
2525       ddg_node_ptr v = &g->nodes[i];
2526       v->aux.count = ASAP (v);
2527     }
2528 
2529   free (nops);
2530   free_ddg_all_sccs (sccs);
2531   check_nodes_order (node_order, g->num_nodes);
2532 
2533   return rec_mii;
2534 }
2535 
2536 static void
order_nodes_of_sccs(ddg_all_sccs_ptr all_sccs,int * node_order)2537 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2538 {
2539   int i, pos = 0;
2540   ddg_ptr g = all_sccs->ddg;
2541   int num_nodes = g->num_nodes;
2542   sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2543   sbitmap on_path = sbitmap_alloc (num_nodes);
2544   sbitmap tmp = sbitmap_alloc (num_nodes);
2545   sbitmap ones = sbitmap_alloc (num_nodes);
2546 
2547   bitmap_clear (prev_sccs);
2548   bitmap_ones (ones);
2549 
2550   /* Perform the node ordering starting from the SCC with the highest recMII.
2551      For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc.  */
2552   for (i = 0; i < all_sccs->num_sccs; i++)
2553     {
2554       ddg_scc_ptr scc = all_sccs->sccs[i];
2555 
2556       /* Add nodes on paths from previous SCCs to the current SCC.  */
2557       find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2558       bitmap_ior (tmp, scc->nodes, on_path);
2559 
2560       /* Add nodes on paths from the current SCC to previous SCCs.  */
2561       find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2562       bitmap_ior (tmp, tmp, on_path);
2563 
2564       /* Remove nodes of previous SCCs from current extended SCC.  */
2565       bitmap_and_compl (tmp, tmp, prev_sccs);
2566 
2567       pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2568       /* Above call to order_nodes_in_scc updated prev_sccs |= tmp.  */
2569     }
2570 
2571   /* Handle the remaining nodes that do not belong to any scc.  Each call
2572      to order_nodes_in_scc handles a single connected component.  */
2573   while (pos < g->num_nodes)
2574     {
2575       bitmap_and_compl (tmp, ones, prev_sccs);
2576       pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2577     }
2578   sbitmap_free (prev_sccs);
2579   sbitmap_free (on_path);
2580   sbitmap_free (tmp);
2581   sbitmap_free (ones);
2582 }
2583 
2584 /* MII is needed if we consider backarcs (that do not close recursive cycles).  */
2585 static struct node_order_params *
calculate_order_params(ddg_ptr g,int mii ATTRIBUTE_UNUSED,int * pmax_asap)2586 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2587 {
2588   int u;
2589   int max_asap;
2590   int num_nodes = g->num_nodes;
2591   ddg_edge_ptr e;
2592   /* Allocate a place to hold ordering params for each node in the DDG.  */
2593   nopa node_order_params_arr;
2594 
2595   /* Initialize of ASAP/ALAP/HEIGHT to zero.  */
2596   node_order_params_arr = (nopa) xcalloc (num_nodes,
2597 					  sizeof (struct node_order_params));
2598 
2599   /* Set the aux pointer of each node to point to its order_params structure.  */
2600   for (u = 0; u < num_nodes; u++)
2601     g->nodes[u].aux.info = &node_order_params_arr[u];
2602 
2603   /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2604      calculate ASAP, ALAP, mobility, distance, and height for each node
2605      in the dependence (direct acyclic) graph.  */
2606 
2607   /* We assume that the nodes in the array are in topological order.  */
2608 
2609   max_asap = 0;
2610   for (u = 0; u < num_nodes; u++)
2611     {
2612       ddg_node_ptr u_node = &g->nodes[u];
2613 
2614       ASAP (u_node) = 0;
2615       for (e = u_node->in; e; e = e->next_in)
2616 	if (e->distance == 0)
2617 	  ASAP (u_node) = MAX (ASAP (u_node),
2618 			       ASAP (e->src) + e->latency);
2619       max_asap = MAX (max_asap, ASAP (u_node));
2620     }
2621 
2622   for (u = num_nodes - 1; u > -1; u--)
2623     {
2624       ddg_node_ptr u_node = &g->nodes[u];
2625 
2626       ALAP (u_node) = max_asap;
2627       HEIGHT (u_node) = 0;
2628       for (e = u_node->out; e; e = e->next_out)
2629 	if (e->distance == 0)
2630 	  {
2631 	    ALAP (u_node) = MIN (ALAP (u_node),
2632 				 ALAP (e->dest) - e->latency);
2633 	    HEIGHT (u_node) = MAX (HEIGHT (u_node),
2634 				   HEIGHT (e->dest) + e->latency);
2635 	  }
2636     }
2637   if (dump_file)
2638   {
2639     fprintf (dump_file, "\nOrder params\n");
2640     for (u = 0; u < num_nodes; u++)
2641       {
2642         ddg_node_ptr u_node = &g->nodes[u];
2643 
2644         fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2645                  ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2646       }
2647   }
2648 
2649   *pmax_asap = max_asap;
2650   return node_order_params_arr;
2651 }
2652 
2653 static int
find_max_asap(ddg_ptr g,sbitmap nodes)2654 find_max_asap (ddg_ptr g, sbitmap nodes)
2655 {
2656   unsigned int u = 0;
2657   int max_asap = -1;
2658   int result = -1;
2659   sbitmap_iterator sbi;
2660 
2661   EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2662     {
2663       ddg_node_ptr u_node = &g->nodes[u];
2664 
2665       if (max_asap < ASAP (u_node))
2666 	{
2667 	  max_asap = ASAP (u_node);
2668 	  result = u;
2669 	}
2670     }
2671   return result;
2672 }
2673 
2674 static int
find_max_hv_min_mob(ddg_ptr g,sbitmap nodes)2675 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2676 {
2677   unsigned int u = 0;
2678   int max_hv = -1;
2679   int min_mob = INT_MAX;
2680   int result = -1;
2681   sbitmap_iterator sbi;
2682 
2683   EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2684     {
2685       ddg_node_ptr u_node = &g->nodes[u];
2686 
2687       if (max_hv < HEIGHT (u_node))
2688 	{
2689 	  max_hv = HEIGHT (u_node);
2690 	  min_mob = MOB (u_node);
2691 	  result = u;
2692 	}
2693       else if ((max_hv == HEIGHT (u_node))
2694 	       && (min_mob > MOB (u_node)))
2695 	{
2696 	  min_mob = MOB (u_node);
2697 	  result = u;
2698 	}
2699     }
2700   return result;
2701 }
2702 
2703 static int
find_max_dv_min_mob(ddg_ptr g,sbitmap nodes)2704 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2705 {
2706   unsigned int u = 0;
2707   int max_dv = -1;
2708   int min_mob = INT_MAX;
2709   int result = -1;
2710   sbitmap_iterator sbi;
2711 
2712   EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2713     {
2714       ddg_node_ptr u_node = &g->nodes[u];
2715 
2716       if (max_dv < DEPTH (u_node))
2717 	{
2718 	  max_dv = DEPTH (u_node);
2719 	  min_mob = MOB (u_node);
2720 	  result = u;
2721 	}
2722       else if ((max_dv == DEPTH (u_node))
2723 	       && (min_mob > MOB (u_node)))
2724 	{
2725 	  min_mob = MOB (u_node);
2726 	  result = u;
2727 	}
2728     }
2729   return result;
2730 }
2731 
2732 /* Places the nodes of SCC into the NODE_ORDER array starting
2733    at position POS, according to the SMS ordering algorithm.
2734    NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2735    the NODE_ORDER array, starting from position zero.  */
2736 static int
order_nodes_in_scc(ddg_ptr g,sbitmap nodes_ordered,sbitmap scc,int * node_order,int pos)2737 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2738 		    int * node_order, int pos)
2739 {
2740   enum sms_direction dir;
2741   int num_nodes = g->num_nodes;
2742   sbitmap workset = sbitmap_alloc (num_nodes);
2743   sbitmap tmp = sbitmap_alloc (num_nodes);
2744   sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2745   sbitmap predecessors = sbitmap_alloc (num_nodes);
2746   sbitmap successors = sbitmap_alloc (num_nodes);
2747 
2748   bitmap_clear (predecessors);
2749   find_predecessors (predecessors, g, nodes_ordered);
2750 
2751   bitmap_clear (successors);
2752   find_successors (successors, g, nodes_ordered);
2753 
2754   bitmap_clear (tmp);
2755   if (bitmap_and (tmp, predecessors, scc))
2756     {
2757       bitmap_copy (workset, tmp);
2758       dir = BOTTOMUP;
2759     }
2760   else if (bitmap_and (tmp, successors, scc))
2761     {
2762       bitmap_copy (workset, tmp);
2763       dir = TOPDOWN;
2764     }
2765   else
2766     {
2767       int u;
2768 
2769       bitmap_clear (workset);
2770       if ((u = find_max_asap (g, scc)) >= 0)
2771 	bitmap_set_bit (workset, u);
2772       dir = BOTTOMUP;
2773     }
2774 
2775   bitmap_clear (zero_bitmap);
2776   while (!bitmap_equal_p (workset, zero_bitmap))
2777     {
2778       int v;
2779       ddg_node_ptr v_node;
2780       sbitmap v_node_preds;
2781       sbitmap v_node_succs;
2782 
2783       if (dir == TOPDOWN)
2784 	{
2785 	  while (!bitmap_equal_p (workset, zero_bitmap))
2786 	    {
2787 	      v = find_max_hv_min_mob (g, workset);
2788 	      v_node = &g->nodes[v];
2789 	      node_order[pos++] = v;
2790 	      v_node_succs = NODE_SUCCESSORS (v_node);
2791 	      bitmap_and (tmp, v_node_succs, scc);
2792 
2793 	      /* Don't consider the already ordered successors again.  */
2794 	      bitmap_and_compl (tmp, tmp, nodes_ordered);
2795 	      bitmap_ior (workset, workset, tmp);
2796 	      bitmap_clear_bit (workset, v);
2797 	      bitmap_set_bit (nodes_ordered, v);
2798 	    }
2799 	  dir = BOTTOMUP;
2800 	  bitmap_clear (predecessors);
2801 	  find_predecessors (predecessors, g, nodes_ordered);
2802 	  bitmap_and (workset, predecessors, scc);
2803 	}
2804       else
2805 	{
2806 	  while (!bitmap_equal_p (workset, zero_bitmap))
2807 	    {
2808 	      v = find_max_dv_min_mob (g, workset);
2809 	      v_node = &g->nodes[v];
2810 	      node_order[pos++] = v;
2811 	      v_node_preds = NODE_PREDECESSORS (v_node);
2812 	      bitmap_and (tmp, v_node_preds, scc);
2813 
2814 	      /* Don't consider the already ordered predecessors again.  */
2815 	      bitmap_and_compl (tmp, tmp, nodes_ordered);
2816 	      bitmap_ior (workset, workset, tmp);
2817 	      bitmap_clear_bit (workset, v);
2818 	      bitmap_set_bit (nodes_ordered, v);
2819 	    }
2820 	  dir = TOPDOWN;
2821 	  bitmap_clear (successors);
2822 	  find_successors (successors, g, nodes_ordered);
2823 	  bitmap_and (workset, successors, scc);
2824 	}
2825     }
2826   sbitmap_free (tmp);
2827   sbitmap_free (workset);
2828   sbitmap_free (zero_bitmap);
2829   sbitmap_free (predecessors);
2830   sbitmap_free (successors);
2831   return pos;
2832 }
2833 
2834 
2835 /* This page contains functions for manipulating partial-schedules during
2836    modulo scheduling.  */
2837 
2838 /* Create a partial schedule and allocate a memory to hold II rows.  */
2839 
2840 static partial_schedule_ptr
create_partial_schedule(int ii,ddg_ptr g,int history)2841 create_partial_schedule (int ii, ddg_ptr g, int history)
2842 {
2843   partial_schedule_ptr ps = XNEW (struct partial_schedule);
2844   ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2845   ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2846   ps->reg_moves.create (0);
2847   ps->ii = ii;
2848   ps->history = history;
2849   ps->min_cycle = INT_MAX;
2850   ps->max_cycle = INT_MIN;
2851   ps->g = g;
2852 
2853   return ps;
2854 }
2855 
2856 /* Free the PS_INSNs in rows array of the given partial schedule.
2857    ??? Consider caching the PS_INSN's.  */
2858 static void
free_ps_insns(partial_schedule_ptr ps)2859 free_ps_insns (partial_schedule_ptr ps)
2860 {
2861   int i;
2862 
2863   for (i = 0; i < ps->ii; i++)
2864     {
2865       while (ps->rows[i])
2866 	{
2867 	  ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2868 
2869 	  free (ps->rows[i]);
2870 	  ps->rows[i] = ps_insn;
2871 	}
2872       ps->rows[i] = NULL;
2873     }
2874 }
2875 
2876 /* Free all the memory allocated to the partial schedule.  */
2877 
2878 static void
free_partial_schedule(partial_schedule_ptr ps)2879 free_partial_schedule (partial_schedule_ptr ps)
2880 {
2881   ps_reg_move_info *move;
2882   unsigned int i;
2883 
2884   if (!ps)
2885     return;
2886 
2887   FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2888     sbitmap_free (move->uses);
2889   ps->reg_moves.release ();
2890 
2891   free_ps_insns (ps);
2892   free (ps->rows);
2893   free (ps->rows_length);
2894   free (ps);
2895 }
2896 
2897 /* Clear the rows array with its PS_INSNs, and create a new one with
2898    NEW_II rows.  */
2899 
2900 static void
reset_partial_schedule(partial_schedule_ptr ps,int new_ii)2901 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2902 {
2903   if (!ps)
2904     return;
2905   free_ps_insns (ps);
2906   if (new_ii == ps->ii)
2907     return;
2908   ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2909 						 * sizeof (ps_insn_ptr));
2910   memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2911   ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2912   memset (ps->rows_length, 0, new_ii * sizeof (int));
2913   ps->ii = new_ii;
2914   ps->min_cycle = INT_MAX;
2915   ps->max_cycle = INT_MIN;
2916 }
2917 
2918 /* Prints the partial schedule as an ii rows array, for each rows
2919    print the ids of the insns in it.  */
2920 void
print_partial_schedule(partial_schedule_ptr ps,FILE * dump)2921 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2922 {
2923   int i;
2924 
2925   for (i = 0; i < ps->ii; i++)
2926     {
2927       ps_insn_ptr ps_i = ps->rows[i];
2928 
2929       fprintf (dump, "\n[ROW %d ]: ", i);
2930       while (ps_i)
2931 	{
2932 	  rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2933 
2934 	  if (JUMP_P (insn))
2935 	    fprintf (dump, "%d (branch), ", INSN_UID (insn));
2936 	  else
2937 	    fprintf (dump, "%d, ", INSN_UID (insn));
2938 
2939 	  ps_i = ps_i->next_in_row;
2940 	}
2941     }
2942 }
2943 
2944 /* Creates an object of PS_INSN and initializes it to the given parameters.  */
2945 static ps_insn_ptr
create_ps_insn(int id,int cycle)2946 create_ps_insn (int id, int cycle)
2947 {
2948   ps_insn_ptr ps_i = XNEW (struct ps_insn);
2949 
2950   ps_i->id = id;
2951   ps_i->next_in_row = NULL;
2952   ps_i->prev_in_row = NULL;
2953   ps_i->cycle = cycle;
2954 
2955   return ps_i;
2956 }
2957 
2958 
2959 /* Removes the given PS_INSN from the partial schedule.  */
2960 static void
remove_node_from_ps(partial_schedule_ptr ps,ps_insn_ptr ps_i)2961 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2962 {
2963   int row;
2964 
2965   gcc_assert (ps && ps_i);
2966 
2967   row = SMODULO (ps_i->cycle, ps->ii);
2968   if (! ps_i->prev_in_row)
2969     {
2970       gcc_assert (ps_i == ps->rows[row]);
2971       ps->rows[row] = ps_i->next_in_row;
2972       if (ps->rows[row])
2973 	ps->rows[row]->prev_in_row = NULL;
2974     }
2975   else
2976     {
2977       ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2978       if (ps_i->next_in_row)
2979 	ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2980     }
2981 
2982   ps->rows_length[row] -= 1;
2983   free (ps_i);
2984   return;
2985 }
2986 
2987 /* Unlike what literature describes for modulo scheduling (which focuses
2988    on VLIW machines) the order of the instructions inside a cycle is
2989    important.  Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2990    where the current instruction should go relative to the already
2991    scheduled instructions in the given cycle.  Go over these
2992    instructions and find the first possible column to put it in.  */
2993 static bool
ps_insn_find_column(partial_schedule_ptr ps,ps_insn_ptr ps_i,sbitmap must_precede,sbitmap must_follow)2994 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2995 		     sbitmap must_precede, sbitmap must_follow)
2996 {
2997   ps_insn_ptr next_ps_i;
2998   ps_insn_ptr first_must_follow = NULL;
2999   ps_insn_ptr last_must_precede = NULL;
3000   ps_insn_ptr last_in_row = NULL;
3001   int row;
3002 
3003   if (! ps_i)
3004     return false;
3005 
3006   row = SMODULO (ps_i->cycle, ps->ii);
3007 
3008   /* Find the first must follow and the last must precede
3009      and insert the node immediately after the must precede
3010      but make sure that it there is no must follow after it.  */
3011   for (next_ps_i = ps->rows[row];
3012        next_ps_i;
3013        next_ps_i = next_ps_i->next_in_row)
3014     {
3015       if (must_follow
3016 	  && bitmap_bit_p (must_follow, next_ps_i->id)
3017 	  && ! first_must_follow)
3018         first_must_follow = next_ps_i;
3019       if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
3020         {
3021           /* If we have already met a node that must follow, then
3022 	     there is no possible column.  */
3023   	  if (first_must_follow)
3024             return false;
3025 	  else
3026             last_must_precede = next_ps_i;
3027         }
3028       /* The closing branch must be the last in the row.  */
3029       if (must_precede
3030 	  && bitmap_bit_p (must_precede, next_ps_i->id)
3031 	  && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3032 	return false;
3033 
3034        last_in_row = next_ps_i;
3035     }
3036 
3037   /* The closing branch is scheduled as well.  Make sure there is no
3038      dependent instruction after it as the branch should be the last
3039      instruction in the row.  */
3040   if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3041     {
3042       if (first_must_follow)
3043 	return false;
3044       if (last_in_row)
3045 	{
3046 	  /* Make the branch the last in the row.  New instructions
3047 	     will be inserted at the beginning of the row or after the
3048 	     last must_precede instruction thus the branch is guaranteed
3049 	     to remain the last instruction in the row.  */
3050 	  last_in_row->next_in_row = ps_i;
3051 	  ps_i->prev_in_row = last_in_row;
3052 	  ps_i->next_in_row = NULL;
3053 	}
3054       else
3055 	ps->rows[row] = ps_i;
3056       return true;
3057     }
3058 
3059   /* Now insert the node after INSERT_AFTER_PSI.  */
3060 
3061   if (! last_must_precede)
3062     {
3063       ps_i->next_in_row = ps->rows[row];
3064       ps_i->prev_in_row = NULL;
3065       if (ps_i->next_in_row)
3066     	ps_i->next_in_row->prev_in_row = ps_i;
3067       ps->rows[row] = ps_i;
3068     }
3069   else
3070     {
3071       ps_i->next_in_row = last_must_precede->next_in_row;
3072       last_must_precede->next_in_row = ps_i;
3073       ps_i->prev_in_row = last_must_precede;
3074       if (ps_i->next_in_row)
3075         ps_i->next_in_row->prev_in_row = ps_i;
3076     }
3077 
3078   return true;
3079 }
3080 
3081 /* Advances the PS_INSN one column in its current row; returns false
3082    in failure and true in success.  Bit N is set in MUST_FOLLOW if
3083    the node with cuid N must be come after the node pointed to by
3084    PS_I when scheduled in the same cycle.  */
3085 static int
ps_insn_advance_column(partial_schedule_ptr ps,ps_insn_ptr ps_i,sbitmap must_follow)3086 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3087 			sbitmap must_follow)
3088 {
3089   ps_insn_ptr prev, next;
3090   int row;
3091 
3092   if (!ps || !ps_i)
3093     return false;
3094 
3095   row = SMODULO (ps_i->cycle, ps->ii);
3096 
3097   if (! ps_i->next_in_row)
3098     return false;
3099 
3100   /* Check if next_in_row is dependent on ps_i, both having same sched
3101      times (typically ANTI_DEP).  If so, ps_i cannot skip over it.  */
3102   if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3103     return false;
3104 
3105   /* Advance PS_I over its next_in_row in the doubly linked list.  */
3106   prev = ps_i->prev_in_row;
3107   next = ps_i->next_in_row;
3108 
3109   if (ps_i == ps->rows[row])
3110     ps->rows[row] = next;
3111 
3112   ps_i->next_in_row = next->next_in_row;
3113 
3114   if (next->next_in_row)
3115     next->next_in_row->prev_in_row = ps_i;
3116 
3117   next->next_in_row = ps_i;
3118   ps_i->prev_in_row = next;
3119 
3120   next->prev_in_row = prev;
3121   if (prev)
3122     prev->next_in_row = next;
3123 
3124   return true;
3125 }
3126 
3127 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3128    Returns 0 if this is not possible and a PS_INSN otherwise.  Bit N is
3129    set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3130    before/after (respectively) the node pointed to by PS_I when scheduled
3131    in the same cycle.  */
3132 static ps_insn_ptr
add_node_to_ps(partial_schedule_ptr ps,int id,int cycle,sbitmap must_precede,sbitmap must_follow)3133 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3134 		sbitmap must_precede, sbitmap must_follow)
3135 {
3136   ps_insn_ptr ps_i;
3137   int row = SMODULO (cycle, ps->ii);
3138 
3139   if (ps->rows_length[row] >= issue_rate)
3140     return NULL;
3141 
3142   ps_i = create_ps_insn (id, cycle);
3143 
3144   /* Finds and inserts PS_I according to MUST_FOLLOW and
3145      MUST_PRECEDE.  */
3146   if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3147     {
3148       free (ps_i);
3149       return NULL;
3150     }
3151 
3152   ps->rows_length[row] += 1;
3153   return ps_i;
3154 }
3155 
3156 /* Advance time one cycle.  Assumes DFA is being used.  */
3157 static void
advance_one_cycle(void)3158 advance_one_cycle (void)
3159 {
3160   if (targetm.sched.dfa_pre_cycle_insn)
3161     state_transition (curr_state,
3162 		      targetm.sched.dfa_pre_cycle_insn ());
3163 
3164   state_transition (curr_state, NULL);
3165 
3166   if (targetm.sched.dfa_post_cycle_insn)
3167     state_transition (curr_state,
3168 		      targetm.sched.dfa_post_cycle_insn ());
3169 }
3170 
3171 
3172 
3173 /* Checks if PS has resource conflicts according to DFA, starting from
3174    FROM cycle to TO cycle; returns true if there are conflicts and false
3175    if there are no conflicts.  Assumes DFA is being used.  */
3176 static int
ps_has_conflicts(partial_schedule_ptr ps,int from,int to)3177 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3178 {
3179   int cycle;
3180 
3181   state_reset (curr_state);
3182 
3183   for (cycle = from; cycle <= to; cycle++)
3184     {
3185       ps_insn_ptr crr_insn;
3186       /* Holds the remaining issue slots in the current row.  */
3187       int can_issue_more = issue_rate;
3188 
3189       /* Walk through the DFA for the current row.  */
3190       for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3191 	   crr_insn;
3192 	   crr_insn = crr_insn->next_in_row)
3193 	{
3194 	  rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3195 
3196 	  if (!NONDEBUG_INSN_P (insn))
3197 	    continue;
3198 
3199 	  /* Check if there is room for the current insn.  */
3200 	  if (!can_issue_more || state_dead_lock_p (curr_state))
3201 	    return true;
3202 
3203 	  /* Update the DFA state and return with failure if the DFA found
3204 	     resource conflicts.  */
3205 	  if (state_transition (curr_state, insn) >= 0)
3206 	    return true;
3207 
3208 	  if (targetm.sched.variable_issue)
3209 	    can_issue_more =
3210 	      targetm.sched.variable_issue (sched_dump, sched_verbose,
3211 					    insn, can_issue_more);
3212 	  /* A naked CLOBBER or USE generates no instruction, so don't
3213 	     let them consume issue slots.  */
3214 	  else if (GET_CODE (PATTERN (insn)) != USE
3215 		   && GET_CODE (PATTERN (insn)) != CLOBBER)
3216 	    can_issue_more--;
3217 	}
3218 
3219       /* Advance the DFA to the next cycle.  */
3220       advance_one_cycle ();
3221     }
3222   return false;
3223 }
3224 
3225 /* Checks if the given node causes resource conflicts when added to PS at
3226    cycle C.  If not the node is added to PS and returned; otherwise zero
3227    is returned.  Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3228    cuid N must be come before/after (respectively) the node pointed to by
3229    PS_I when scheduled in the same cycle.  */
3230 ps_insn_ptr
ps_add_node_check_conflicts(partial_schedule_ptr ps,int n,int c,sbitmap must_precede,sbitmap must_follow)3231 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3232    			     int c, sbitmap must_precede,
3233 			     sbitmap must_follow)
3234 {
3235   int has_conflicts = 0;
3236   ps_insn_ptr ps_i;
3237 
3238   /* First add the node to the PS, if this succeeds check for
3239      conflicts, trying different issue slots in the same row.  */
3240   if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3241     return NULL; /* Failed to insert the node at the given cycle.  */
3242 
3243   has_conflicts = ps_has_conflicts (ps, c, c)
3244 		  || (ps->history > 0
3245 		      && ps_has_conflicts (ps,
3246 					   c - ps->history,
3247 					   c + ps->history));
3248 
3249   /* Try different issue slots to find one that the given node can be
3250      scheduled in without conflicts.  */
3251   while (has_conflicts)
3252     {
3253       if (! ps_insn_advance_column (ps, ps_i, must_follow))
3254 	break;
3255       has_conflicts = ps_has_conflicts (ps, c, c)
3256 		      || (ps->history > 0
3257 			  && ps_has_conflicts (ps,
3258 					       c - ps->history,
3259 					       c + ps->history));
3260     }
3261 
3262   if (has_conflicts)
3263     {
3264       remove_node_from_ps (ps, ps_i);
3265       return NULL;
3266     }
3267 
3268   ps->min_cycle = MIN (ps->min_cycle, c);
3269   ps->max_cycle = MAX (ps->max_cycle, c);
3270   return ps_i;
3271 }
3272 
3273 /* Calculate the stage count of the partial schedule PS.  The calculation
3274    takes into account the rotation amount passed in ROTATION_AMOUNT.  */
3275 int
calculate_stage_count(partial_schedule_ptr ps,int rotation_amount)3276 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3277 {
3278   int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3279   int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3280   int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3281 
3282   /* The calculation of stage count is done adding the number of stages
3283      before cycle zero and after cycle zero.  */
3284   stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3285 
3286   return stage_count;
3287 }
3288 
3289 /* Rotate the rows of PS such that insns scheduled at time
3290    START_CYCLE will appear in row 0.  Updates max/min_cycles.  */
3291 void
rotate_partial_schedule(partial_schedule_ptr ps,int start_cycle)3292 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3293 {
3294   int i, row, backward_rotates;
3295   int last_row = ps->ii - 1;
3296 
3297   if (start_cycle == 0)
3298     return;
3299 
3300   backward_rotates = SMODULO (start_cycle, ps->ii);
3301 
3302   /* Revisit later and optimize this into a single loop.  */
3303   for (i = 0; i < backward_rotates; i++)
3304     {
3305       ps_insn_ptr first_row = ps->rows[0];
3306       int first_row_length = ps->rows_length[0];
3307 
3308       for (row = 0; row < last_row; row++)
3309 	{
3310 	  ps->rows[row] = ps->rows[row + 1];
3311 	  ps->rows_length[row] = ps->rows_length[row + 1];
3312 	}
3313 
3314       ps->rows[last_row] = first_row;
3315       ps->rows_length[last_row] = first_row_length;
3316     }
3317 
3318   ps->max_cycle -= start_cycle;
3319   ps->min_cycle -= start_cycle;
3320 }
3321 
3322 #endif /* INSN_SCHEDULING */
3323 
3324 /* Run instruction scheduler.  */
3325 /* Perform SMS module scheduling.  */
3326 
3327 namespace {
3328 
3329 const pass_data pass_data_sms =
3330 {
3331   RTL_PASS, /* type */
3332   "sms", /* name */
3333   OPTGROUP_NONE, /* optinfo_flags */
3334   TV_SMS, /* tv_id */
3335   0, /* properties_required */
3336   0, /* properties_provided */
3337   0, /* properties_destroyed */
3338   0, /* todo_flags_start */
3339   TODO_df_finish, /* todo_flags_finish */
3340 };
3341 
3342 class pass_sms : public rtl_opt_pass
3343 {
3344 public:
pass_sms(gcc::context * ctxt)3345   pass_sms (gcc::context *ctxt)
3346     : rtl_opt_pass (pass_data_sms, ctxt)
3347   {}
3348 
3349   /* opt_pass methods: */
gate(function *)3350   virtual bool gate (function *)
3351 {
3352   return (optimize > 0 && flag_modulo_sched);
3353 }
3354 
3355   virtual unsigned int execute (function *);
3356 
3357 }; // class pass_sms
3358 
3359 unsigned int
execute(function * fun ATTRIBUTE_UNUSED)3360 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3361 {
3362 #ifdef INSN_SCHEDULING
3363   basic_block bb;
3364 
3365   /* Collect loop information to be used in SMS.  */
3366   cfg_layout_initialize (0);
3367   sms_schedule ();
3368 
3369   /* Update the life information, because we add pseudos.  */
3370   max_regno = max_reg_num ();
3371 
3372   /* Finalize layout changes.  */
3373   FOR_EACH_BB_FN (bb, fun)
3374     if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3375       bb->aux = bb->next_bb;
3376   free_dominance_info (CDI_DOMINATORS);
3377   cfg_layout_finalize ();
3378 #endif /* INSN_SCHEDULING */
3379   return 0;
3380 }
3381 
3382 } // anon namespace
3383 
3384 rtl_opt_pass *
make_pass_sms(gcc::context * ctxt)3385 make_pass_sms (gcc::context *ctxt)
3386 {
3387   return new pass_sms (ctxt);
3388 }
3389