1 /* Implementation of the MINLOC intrinsic
2    Copyright (C) 2002-2016 Free Software Foundation, Inc.
3    Contributed by Paul Brook <paul@nowt.org>
4 
5 This file is part of the GNU Fortran runtime library (libgfortran).
6 
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11 
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20 
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24 <http://www.gnu.org/licenses/>.  */
25 
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
29 #include <limits.h>
30 
31 
32 #if defined (HAVE_GFC_INTEGER_2) && defined (HAVE_GFC_INTEGER_4)
33 
34 
35 extern void minloc1_4_i2 (gfc_array_i4 * const restrict,
36 	gfc_array_i2 * const restrict, const index_type * const restrict);
37 export_proto(minloc1_4_i2);
38 
39 void
minloc1_4_i2(gfc_array_i4 * const restrict retarray,gfc_array_i2 * const restrict array,const index_type * const restrict pdim)40 minloc1_4_i2 (gfc_array_i4 * const restrict retarray,
41 	gfc_array_i2 * const restrict array,
42 	const index_type * const restrict pdim)
43 {
44   index_type count[GFC_MAX_DIMENSIONS];
45   index_type extent[GFC_MAX_DIMENSIONS];
46   index_type sstride[GFC_MAX_DIMENSIONS];
47   index_type dstride[GFC_MAX_DIMENSIONS];
48   const GFC_INTEGER_2 * restrict base;
49   GFC_INTEGER_4 * restrict dest;
50   index_type rank;
51   index_type n;
52   index_type len;
53   index_type delta;
54   index_type dim;
55   int continue_loop;
56 
57   /* Make dim zero based to avoid confusion.  */
58   dim = (*pdim) - 1;
59   rank = GFC_DESCRIPTOR_RANK (array) - 1;
60 
61   len = GFC_DESCRIPTOR_EXTENT(array,dim);
62   if (len < 0)
63     len = 0;
64   delta = GFC_DESCRIPTOR_STRIDE(array,dim);
65 
66   for (n = 0; n < dim; n++)
67     {
68       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
69       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
70 
71       if (extent[n] < 0)
72 	extent[n] = 0;
73     }
74   for (n = dim; n < rank; n++)
75     {
76       sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
77       extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
78 
79       if (extent[n] < 0)
80 	extent[n] = 0;
81     }
82 
83   if (retarray->base_addr == NULL)
84     {
85       size_t alloc_size, str;
86 
87       for (n = 0; n < rank; n++)
88 	{
89 	  if (n == 0)
90 	    str = 1;
91 	  else
92 	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
93 
94 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
95 
96 	}
97 
98       retarray->offset = 0;
99       retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
100 
101       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
102 
103       retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4));
104       if (alloc_size == 0)
105 	{
106 	  /* Make sure we have a zero-sized array.  */
107 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
108 	  return;
109 
110 	}
111     }
112   else
113     {
114       if (rank != GFC_DESCRIPTOR_RANK (retarray))
115 	runtime_error ("rank of return array incorrect in"
116 		       " MINLOC intrinsic: is %ld, should be %ld",
117 		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
118 		       (long int) rank);
119 
120       if (unlikely (compile_options.bounds_check))
121 	bounds_ifunction_return ((array_t *) retarray, extent,
122 				 "return value", "MINLOC");
123     }
124 
125   for (n = 0; n < rank; n++)
126     {
127       count[n] = 0;
128       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
129       if (extent[n] <= 0)
130 	return;
131     }
132 
133   base = array->base_addr;
134   dest = retarray->base_addr;
135 
136   continue_loop = 1;
137   while (continue_loop)
138     {
139       const GFC_INTEGER_2 * restrict src;
140       GFC_INTEGER_4 result;
141       src = base;
142       {
143 
144 	GFC_INTEGER_2 minval;
145 #if defined (GFC_INTEGER_2_INFINITY)
146 	minval = GFC_INTEGER_2_INFINITY;
147 #else
148 	minval = GFC_INTEGER_2_HUGE;
149 #endif
150 	result = 1;
151 	if (len <= 0)
152 	  *dest = 0;
153 	else
154 	  {
155 	    for (n = 0; n < len; n++, src += delta)
156 	      {
157 
158 #if defined (GFC_INTEGER_2_QUIET_NAN)
159 		if (*src <= minval)
160 		  {
161 		    minval = *src;
162 		    result = (GFC_INTEGER_4)n + 1;
163 		    break;
164 		  }
165 	      }
166 	    for (; n < len; n++, src += delta)
167 	      {
168 #endif
169 		if (*src < minval)
170 		  {
171 		    minval = *src;
172 		    result = (GFC_INTEGER_4)n + 1;
173 		  }
174 	      }
175 
176 	    *dest = result;
177 	  }
178       }
179       /* Advance to the next element.  */
180       count[0]++;
181       base += sstride[0];
182       dest += dstride[0];
183       n = 0;
184       while (count[n] == extent[n])
185 	{
186 	  /* When we get to the end of a dimension, reset it and increment
187 	     the next dimension.  */
188 	  count[n] = 0;
189 	  /* We could precalculate these products, but this is a less
190 	     frequently used path so probably not worth it.  */
191 	  base -= sstride[n] * extent[n];
192 	  dest -= dstride[n] * extent[n];
193 	  n++;
194 	  if (n == rank)
195 	    {
196 	      /* Break out of the look.  */
197 	      continue_loop = 0;
198 	      break;
199 	    }
200 	  else
201 	    {
202 	      count[n]++;
203 	      base += sstride[n];
204 	      dest += dstride[n];
205 	    }
206 	}
207     }
208 }
209 
210 
211 extern void mminloc1_4_i2 (gfc_array_i4 * const restrict,
212 	gfc_array_i2 * const restrict, const index_type * const restrict,
213 	gfc_array_l1 * const restrict);
214 export_proto(mminloc1_4_i2);
215 
216 void
mminloc1_4_i2(gfc_array_i4 * const restrict retarray,gfc_array_i2 * const restrict array,const index_type * const restrict pdim,gfc_array_l1 * const restrict mask)217 mminloc1_4_i2 (gfc_array_i4 * const restrict retarray,
218 	gfc_array_i2 * const restrict array,
219 	const index_type * const restrict pdim,
220 	gfc_array_l1 * const restrict mask)
221 {
222   index_type count[GFC_MAX_DIMENSIONS];
223   index_type extent[GFC_MAX_DIMENSIONS];
224   index_type sstride[GFC_MAX_DIMENSIONS];
225   index_type dstride[GFC_MAX_DIMENSIONS];
226   index_type mstride[GFC_MAX_DIMENSIONS];
227   GFC_INTEGER_4 * restrict dest;
228   const GFC_INTEGER_2 * restrict base;
229   const GFC_LOGICAL_1 * restrict mbase;
230   int rank;
231   int dim;
232   index_type n;
233   index_type len;
234   index_type delta;
235   index_type mdelta;
236   int mask_kind;
237 
238   dim = (*pdim) - 1;
239   rank = GFC_DESCRIPTOR_RANK (array) - 1;
240 
241   len = GFC_DESCRIPTOR_EXTENT(array,dim);
242   if (len <= 0)
243     return;
244 
245   mbase = mask->base_addr;
246 
247   mask_kind = GFC_DESCRIPTOR_SIZE (mask);
248 
249   if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
250 #ifdef HAVE_GFC_LOGICAL_16
251       || mask_kind == 16
252 #endif
253       )
254     mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
255   else
256     runtime_error ("Funny sized logical array");
257 
258   delta = GFC_DESCRIPTOR_STRIDE(array,dim);
259   mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
260 
261   for (n = 0; n < dim; n++)
262     {
263       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
264       mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
265       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
266 
267       if (extent[n] < 0)
268 	extent[n] = 0;
269 
270     }
271   for (n = dim; n < rank; n++)
272     {
273       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
274       mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
275       extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
276 
277       if (extent[n] < 0)
278 	extent[n] = 0;
279     }
280 
281   if (retarray->base_addr == NULL)
282     {
283       size_t alloc_size, str;
284 
285       for (n = 0; n < rank; n++)
286 	{
287 	  if (n == 0)
288 	    str = 1;
289 	  else
290 	    str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
291 
292 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
293 
294 	}
295 
296       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
297 
298       retarray->offset = 0;
299       retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
300 
301       if (alloc_size == 0)
302 	{
303 	  /* Make sure we have a zero-sized array.  */
304 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
305 	  return;
306 	}
307       else
308 	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4));
309 
310     }
311   else
312     {
313       if (rank != GFC_DESCRIPTOR_RANK (retarray))
314 	runtime_error ("rank of return array incorrect in MINLOC intrinsic");
315 
316       if (unlikely (compile_options.bounds_check))
317 	{
318 	  bounds_ifunction_return ((array_t *) retarray, extent,
319 				   "return value", "MINLOC");
320 	  bounds_equal_extents ((array_t *) mask, (array_t *) array,
321 	  			"MASK argument", "MINLOC");
322 	}
323     }
324 
325   for (n = 0; n < rank; n++)
326     {
327       count[n] = 0;
328       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
329       if (extent[n] <= 0)
330 	return;
331     }
332 
333   dest = retarray->base_addr;
334   base = array->base_addr;
335 
336   while (base)
337     {
338       const GFC_INTEGER_2 * restrict src;
339       const GFC_LOGICAL_1 * restrict msrc;
340       GFC_INTEGER_4 result;
341       src = base;
342       msrc = mbase;
343       {
344 
345 	GFC_INTEGER_2 minval;
346 #if defined (GFC_INTEGER_2_INFINITY)
347 	minval = GFC_INTEGER_2_INFINITY;
348 #else
349 	minval = GFC_INTEGER_2_HUGE;
350 #endif
351 #if defined (GFC_INTEGER_2_QUIET_NAN)
352 	GFC_INTEGER_4 result2 = 0;
353 #endif
354 	result = 0;
355 	for (n = 0; n < len; n++, src += delta, msrc += mdelta)
356 	  {
357 
358 		if (*msrc)
359 		  {
360 #if defined (GFC_INTEGER_2_QUIET_NAN)
361 		    if (!result2)
362 		      result2 = (GFC_INTEGER_4)n + 1;
363 		    if (*src <= minval)
364 #endif
365 		      {
366 			minval = *src;
367 			result = (GFC_INTEGER_4)n + 1;
368 			break;
369 		      }
370 		  }
371 	      }
372 #if defined (GFC_INTEGER_2_QUIET_NAN)
373 	    if (unlikely (n >= len))
374 	      result = result2;
375 	    else
376 #endif
377 	    for (; n < len; n++, src += delta, msrc += mdelta)
378 	      {
379 		if (*msrc && *src < minval)
380 		  {
381 		    minval = *src;
382 		    result = (GFC_INTEGER_4)n + 1;
383 		  }
384 	  }
385 	*dest = result;
386       }
387       /* Advance to the next element.  */
388       count[0]++;
389       base += sstride[0];
390       mbase += mstride[0];
391       dest += dstride[0];
392       n = 0;
393       while (count[n] == extent[n])
394 	{
395 	  /* When we get to the end of a dimension, reset it and increment
396 	     the next dimension.  */
397 	  count[n] = 0;
398 	  /* We could precalculate these products, but this is a less
399 	     frequently used path so probably not worth it.  */
400 	  base -= sstride[n] * extent[n];
401 	  mbase -= mstride[n] * extent[n];
402 	  dest -= dstride[n] * extent[n];
403 	  n++;
404 	  if (n == rank)
405 	    {
406 	      /* Break out of the look.  */
407 	      base = NULL;
408 	      break;
409 	    }
410 	  else
411 	    {
412 	      count[n]++;
413 	      base += sstride[n];
414 	      mbase += mstride[n];
415 	      dest += dstride[n];
416 	    }
417 	}
418     }
419 }
420 
421 
422 extern void sminloc1_4_i2 (gfc_array_i4 * const restrict,
423 	gfc_array_i2 * const restrict, const index_type * const restrict,
424 	GFC_LOGICAL_4 *);
425 export_proto(sminloc1_4_i2);
426 
427 void
sminloc1_4_i2(gfc_array_i4 * const restrict retarray,gfc_array_i2 * const restrict array,const index_type * const restrict pdim,GFC_LOGICAL_4 * mask)428 sminloc1_4_i2 (gfc_array_i4 * const restrict retarray,
429 	gfc_array_i2 * const restrict array,
430 	const index_type * const restrict pdim,
431 	GFC_LOGICAL_4 * mask)
432 {
433   index_type count[GFC_MAX_DIMENSIONS];
434   index_type extent[GFC_MAX_DIMENSIONS];
435   index_type dstride[GFC_MAX_DIMENSIONS];
436   GFC_INTEGER_4 * restrict dest;
437   index_type rank;
438   index_type n;
439   index_type dim;
440 
441 
442   if (*mask)
443     {
444       minloc1_4_i2 (retarray, array, pdim);
445       return;
446     }
447   /* Make dim zero based to avoid confusion.  */
448   dim = (*pdim) - 1;
449   rank = GFC_DESCRIPTOR_RANK (array) - 1;
450 
451   for (n = 0; n < dim; n++)
452     {
453       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
454 
455       if (extent[n] <= 0)
456 	extent[n] = 0;
457     }
458 
459   for (n = dim; n < rank; n++)
460     {
461       extent[n] =
462 	GFC_DESCRIPTOR_EXTENT(array,n + 1);
463 
464       if (extent[n] <= 0)
465 	extent[n] = 0;
466     }
467 
468   if (retarray->base_addr == NULL)
469     {
470       size_t alloc_size, str;
471 
472       for (n = 0; n < rank; n++)
473 	{
474 	  if (n == 0)
475 	    str = 1;
476 	  else
477 	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
478 
479 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
480 
481 	}
482 
483       retarray->offset = 0;
484       retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
485 
486       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
487 
488       if (alloc_size == 0)
489 	{
490 	  /* Make sure we have a zero-sized array.  */
491 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
492 	  return;
493 	}
494       else
495 	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4));
496     }
497   else
498     {
499       if (rank != GFC_DESCRIPTOR_RANK (retarray))
500 	runtime_error ("rank of return array incorrect in"
501 		       " MINLOC intrinsic: is %ld, should be %ld",
502 		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
503 		       (long int) rank);
504 
505       if (unlikely (compile_options.bounds_check))
506 	{
507 	  for (n=0; n < rank; n++)
508 	    {
509 	      index_type ret_extent;
510 
511 	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
512 	      if (extent[n] != ret_extent)
513 		runtime_error ("Incorrect extent in return value of"
514 			       " MINLOC intrinsic in dimension %ld:"
515 			       " is %ld, should be %ld", (long int) n + 1,
516 			       (long int) ret_extent, (long int) extent[n]);
517 	    }
518 	}
519     }
520 
521   for (n = 0; n < rank; n++)
522     {
523       count[n] = 0;
524       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
525     }
526 
527   dest = retarray->base_addr;
528 
529   while(1)
530     {
531       *dest = 0;
532       count[0]++;
533       dest += dstride[0];
534       n = 0;
535       while (count[n] == extent[n])
536 	{
537 	  /* When we get to the end of a dimension, reset it and increment
538 	     the next dimension.  */
539 	  count[n] = 0;
540 	  /* We could precalculate these products, but this is a less
541 	     frequently used path so probably not worth it.  */
542 	  dest -= dstride[n] * extent[n];
543 	  n++;
544 	  if (n == rank)
545 	    return;
546 	  else
547 	    {
548 	      count[n]++;
549 	      dest += dstride[n];
550 	    }
551       	}
552     }
553 }
554 
555 #endif
556