1 /* BFD back-end for ALPHA Extended-Coff files.
2    Copyright (C) 1993-2016 Free Software Foundation, Inc.
3    Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
4    Ian Lance Taylor <ian@cygnus.com>.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "coff/internal.h"
28 #include "coff/sym.h"
29 #include "coff/symconst.h"
30 #include "coff/ecoff.h"
31 #include "coff/alpha.h"
32 #include "aout/ar.h"
33 #include "libcoff.h"
34 #include "libecoff.h"
35 
36 /* Prototypes for static functions.  */
37 
38 
39 
40 /* ECOFF has COFF sections, but the debugging information is stored in
41    a completely different format.  ECOFF targets use some of the
42    swapping routines from coffswap.h, and some of the generic COFF
43    routines in coffgen.c, but, unlike the real COFF targets, do not
44    use coffcode.h itself.
45 
46    Get the generic COFF swapping routines, except for the reloc,
47    symbol, and lineno ones.  Give them ecoff names.  Define some
48    accessor macros for the large sizes used for Alpha ECOFF.  */
49 
50 #define GET_FILEHDR_SYMPTR H_GET_64
51 #define PUT_FILEHDR_SYMPTR H_PUT_64
52 #define GET_AOUTHDR_TSIZE H_GET_64
53 #define PUT_AOUTHDR_TSIZE H_PUT_64
54 #define GET_AOUTHDR_DSIZE H_GET_64
55 #define PUT_AOUTHDR_DSIZE H_PUT_64
56 #define GET_AOUTHDR_BSIZE H_GET_64
57 #define PUT_AOUTHDR_BSIZE H_PUT_64
58 #define GET_AOUTHDR_ENTRY H_GET_64
59 #define PUT_AOUTHDR_ENTRY H_PUT_64
60 #define GET_AOUTHDR_TEXT_START H_GET_64
61 #define PUT_AOUTHDR_TEXT_START H_PUT_64
62 #define GET_AOUTHDR_DATA_START H_GET_64
63 #define PUT_AOUTHDR_DATA_START H_PUT_64
64 #define GET_SCNHDR_PADDR H_GET_64
65 #define PUT_SCNHDR_PADDR H_PUT_64
66 #define GET_SCNHDR_VADDR H_GET_64
67 #define PUT_SCNHDR_VADDR H_PUT_64
68 #define GET_SCNHDR_SIZE H_GET_64
69 #define PUT_SCNHDR_SIZE H_PUT_64
70 #define GET_SCNHDR_SCNPTR H_GET_64
71 #define PUT_SCNHDR_SCNPTR H_PUT_64
72 #define GET_SCNHDR_RELPTR H_GET_64
73 #define PUT_SCNHDR_RELPTR H_PUT_64
74 #define GET_SCNHDR_LNNOPTR H_GET_64
75 #define PUT_SCNHDR_LNNOPTR H_PUT_64
76 
77 #define ALPHAECOFF
78 
79 #define NO_COFF_RELOCS
80 #define NO_COFF_SYMBOLS
81 #define NO_COFF_LINENOS
82 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
83 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
84 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
85 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
86 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
87 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
88 #include "coffswap.h"
89 
90 /* Get the ECOFF swapping routines.  */
91 #define ECOFF_64
92 #include "ecoffswap.h"
93 
94 /* How to process the various reloc types.  */
95 
96 static bfd_reloc_status_type
reloc_nil(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc ATTRIBUTE_UNUSED,asymbol * sym ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED,asection * sec ATTRIBUTE_UNUSED,bfd * output_bfd ATTRIBUTE_UNUSED,char ** error_message ATTRIBUTE_UNUSED)97 reloc_nil (bfd *abfd ATTRIBUTE_UNUSED,
98 	   arelent *reloc ATTRIBUTE_UNUSED,
99 	   asymbol *sym ATTRIBUTE_UNUSED,
100 	   void * data ATTRIBUTE_UNUSED,
101 	   asection *sec ATTRIBUTE_UNUSED,
102 	   bfd *output_bfd ATTRIBUTE_UNUSED,
103 	   char **error_message ATTRIBUTE_UNUSED)
104 {
105   return bfd_reloc_ok;
106 }
107 
108 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
109    from smaller values.  Start with zero, widen, *then* decrement.  */
110 #define MINUS_ONE	(((bfd_vma)0) - 1)
111 
112 static reloc_howto_type alpha_howto_table[] =
113 {
114   /* Reloc type 0 is ignored by itself.  However, it appears after a
115      GPDISP reloc to identify the location where the low order 16 bits
116      of the gp register are loaded.  */
117   HOWTO (ALPHA_R_IGNORE,	/* type */
118 	 0,			/* rightshift */
119 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
120 	 8,			/* bitsize */
121 	 TRUE,			/* pc_relative */
122 	 0,			/* bitpos */
123 	 complain_overflow_dont, /* complain_on_overflow */
124 	 reloc_nil,		/* special_function */
125 	 "IGNORE",		/* name */
126 	 TRUE,			/* partial_inplace */
127 	 0,			/* src_mask */
128 	 0,			/* dst_mask */
129 	 TRUE),			/* pcrel_offset */
130 
131   /* A 32 bit reference to a symbol.  */
132   HOWTO (ALPHA_R_REFLONG,	/* type */
133 	 0,			/* rightshift */
134 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
135 	 32,			/* bitsize */
136 	 FALSE,			/* pc_relative */
137 	 0,			/* bitpos */
138 	 complain_overflow_bitfield, /* complain_on_overflow */
139 	 0,			/* special_function */
140 	 "REFLONG",		/* name */
141 	 TRUE,			/* partial_inplace */
142 	 0xffffffff,		/* src_mask */
143 	 0xffffffff,		/* dst_mask */
144 	 FALSE),		/* pcrel_offset */
145 
146   /* A 64 bit reference to a symbol.  */
147   HOWTO (ALPHA_R_REFQUAD,	/* type */
148 	 0,			/* rightshift */
149 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
150 	 64,			/* bitsize */
151 	 FALSE,			/* pc_relative */
152 	 0,			/* bitpos */
153 	 complain_overflow_bitfield, /* complain_on_overflow */
154 	 0,			/* special_function */
155 	 "REFQUAD",		/* name */
156 	 TRUE,			/* partial_inplace */
157 	 MINUS_ONE,		/* src_mask */
158 	 MINUS_ONE,		/* dst_mask */
159 	 FALSE),		/* pcrel_offset */
160 
161   /* A 32 bit GP relative offset.  This is just like REFLONG except
162      that when the value is used the value of the gp register will be
163      added in.  */
164   HOWTO (ALPHA_R_GPREL32,	/* type */
165 	 0,			/* rightshift */
166 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
167 	 32,			/* bitsize */
168 	 FALSE,			/* pc_relative */
169 	 0,			/* bitpos */
170 	 complain_overflow_bitfield, /* complain_on_overflow */
171 	 0,			/* special_function */
172 	 "GPREL32",		/* name */
173 	 TRUE,			/* partial_inplace */
174 	 0xffffffff,		/* src_mask */
175 	 0xffffffff,		/* dst_mask */
176 	 FALSE),		/* pcrel_offset */
177 
178   /* Used for an instruction that refers to memory off the GP
179      register.  The offset is 16 bits of the 32 bit instruction.  This
180      reloc always seems to be against the .lita section.  */
181   HOWTO (ALPHA_R_LITERAL,	/* type */
182 	 0,			/* rightshift */
183 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
184 	 16,			/* bitsize */
185 	 FALSE,			/* pc_relative */
186 	 0,			/* bitpos */
187 	 complain_overflow_signed, /* complain_on_overflow */
188 	 0,			/* special_function */
189 	 "LITERAL",		/* name */
190 	 TRUE,			/* partial_inplace */
191 	 0xffff,		/* src_mask */
192 	 0xffff,		/* dst_mask */
193 	 FALSE),		/* pcrel_offset */
194 
195   /* This reloc only appears immediately following a LITERAL reloc.
196      It identifies a use of the literal.  It seems that the linker can
197      use this to eliminate a portion of the .lita section.  The symbol
198      index is special: 1 means the literal address is in the base
199      register of a memory format instruction; 2 means the literal
200      address is in the byte offset register of a byte-manipulation
201      instruction; 3 means the literal address is in the target
202      register of a jsr instruction.  This does not actually do any
203      relocation.  */
204   HOWTO (ALPHA_R_LITUSE,	/* type */
205 	 0,			/* rightshift */
206 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
207 	 32,			/* bitsize */
208 	 FALSE,			/* pc_relative */
209 	 0,			/* bitpos */
210 	 complain_overflow_dont, /* complain_on_overflow */
211 	 reloc_nil,		/* special_function */
212 	 "LITUSE",		/* name */
213 	 FALSE,			/* partial_inplace */
214 	 0,			/* src_mask */
215 	 0,			/* dst_mask */
216 	 FALSE),		/* pcrel_offset */
217 
218   /* Load the gp register.  This is always used for a ldah instruction
219      which loads the upper 16 bits of the gp register.  The next reloc
220      will be an IGNORE reloc which identifies the location of the lda
221      instruction which loads the lower 16 bits.  The symbol index of
222      the GPDISP instruction appears to actually be the number of bytes
223      between the ldah and lda instructions.  This gives two different
224      ways to determine where the lda instruction is; I don't know why
225      both are used.  The value to use for the relocation is the
226      difference between the GP value and the current location; the
227      load will always be done against a register holding the current
228      address.  */
229   HOWTO (ALPHA_R_GPDISP,	/* type */
230 	 16,			/* rightshift */
231 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
232 	 16,			/* bitsize */
233 	 TRUE,			/* pc_relative */
234 	 0,			/* bitpos */
235 	 complain_overflow_dont, /* complain_on_overflow */
236 	 reloc_nil,		/* special_function */
237 	 "GPDISP",		/* name */
238 	 TRUE,			/* partial_inplace */
239 	 0xffff,		/* src_mask */
240 	 0xffff,		/* dst_mask */
241 	 TRUE),			/* pcrel_offset */
242 
243   /* A 21 bit branch.  The native assembler generates these for
244      branches within the text segment, and also fills in the PC
245      relative offset in the instruction.  */
246   HOWTO (ALPHA_R_BRADDR,	/* type */
247 	 2,			/* rightshift */
248 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
249 	 21,			/* bitsize */
250 	 TRUE,			/* pc_relative */
251 	 0,			/* bitpos */
252 	 complain_overflow_signed, /* complain_on_overflow */
253 	 0,			/* special_function */
254 	 "BRADDR",		/* name */
255 	 TRUE,			/* partial_inplace */
256 	 0x1fffff,		/* src_mask */
257 	 0x1fffff,		/* dst_mask */
258 	 FALSE),		/* pcrel_offset */
259 
260   /* A hint for a jump to a register.  */
261   HOWTO (ALPHA_R_HINT,		/* type */
262 	 2,			/* rightshift */
263 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
264 	 14,			/* bitsize */
265 	 TRUE,			/* pc_relative */
266 	 0,			/* bitpos */
267 	 complain_overflow_dont, /* complain_on_overflow */
268 	 0,			/* special_function */
269 	 "HINT",		/* name */
270 	 TRUE,			/* partial_inplace */
271 	 0x3fff,		/* src_mask */
272 	 0x3fff,		/* dst_mask */
273 	 FALSE),		/* pcrel_offset */
274 
275   /* 16 bit PC relative offset.  */
276   HOWTO (ALPHA_R_SREL16,	/* type */
277 	 0,			/* rightshift */
278 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
279 	 16,			/* bitsize */
280 	 TRUE,			/* pc_relative */
281 	 0,			/* bitpos */
282 	 complain_overflow_signed, /* complain_on_overflow */
283 	 0,			/* special_function */
284 	 "SREL16",		/* name */
285 	 TRUE,			/* partial_inplace */
286 	 0xffff,		/* src_mask */
287 	 0xffff,		/* dst_mask */
288 	 FALSE),		/* pcrel_offset */
289 
290   /* 32 bit PC relative offset.  */
291   HOWTO (ALPHA_R_SREL32,	/* type */
292 	 0,			/* rightshift */
293 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
294 	 32,			/* bitsize */
295 	 TRUE,			/* pc_relative */
296 	 0,			/* bitpos */
297 	 complain_overflow_signed, /* complain_on_overflow */
298 	 0,			/* special_function */
299 	 "SREL32",		/* name */
300 	 TRUE,			/* partial_inplace */
301 	 0xffffffff,		/* src_mask */
302 	 0xffffffff,		/* dst_mask */
303 	 FALSE),		/* pcrel_offset */
304 
305   /* A 64 bit PC relative offset.  */
306   HOWTO (ALPHA_R_SREL64,	/* type */
307 	 0,			/* rightshift */
308 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
309 	 64,			/* bitsize */
310 	 TRUE,			/* pc_relative */
311 	 0,			/* bitpos */
312 	 complain_overflow_signed, /* complain_on_overflow */
313 	 0,			/* special_function */
314 	 "SREL64",		/* name */
315 	 TRUE,			/* partial_inplace */
316 	 MINUS_ONE,		/* src_mask */
317 	 MINUS_ONE,		/* dst_mask */
318 	 FALSE),		/* pcrel_offset */
319 
320   /* Push a value on the reloc evaluation stack.  */
321   HOWTO (ALPHA_R_OP_PUSH,	/* type */
322 	 0,			/* rightshift */
323 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
324 	 0,			/* bitsize */
325 	 FALSE,			/* pc_relative */
326 	 0,			/* bitpos */
327 	 complain_overflow_dont, /* complain_on_overflow */
328 	 0,			/* special_function */
329 	 "OP_PUSH",		/* name */
330 	 FALSE,			/* partial_inplace */
331 	 0,			/* src_mask */
332 	 0,			/* dst_mask */
333 	 FALSE),		/* pcrel_offset */
334 
335   /* Store the value from the stack at the given address.  Store it in
336      a bitfield of size r_size starting at bit position r_offset.  */
337   HOWTO (ALPHA_R_OP_STORE,	/* type */
338 	 0,			/* rightshift */
339 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
340 	 64,			/* bitsize */
341 	 FALSE,			/* pc_relative */
342 	 0,			/* bitpos */
343 	 complain_overflow_dont, /* complain_on_overflow */
344 	 0,			/* special_function */
345 	 "OP_STORE",		/* name */
346 	 FALSE,			/* partial_inplace */
347 	 0,			/* src_mask */
348 	 MINUS_ONE,		/* dst_mask */
349 	 FALSE),		/* pcrel_offset */
350 
351   /* Subtract the reloc address from the value on the top of the
352      relocation stack.  */
353   HOWTO (ALPHA_R_OP_PSUB,	/* type */
354 	 0,			/* rightshift */
355 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
356 	 0,			/* bitsize */
357 	 FALSE,			/* pc_relative */
358 	 0,			/* bitpos */
359 	 complain_overflow_dont, /* complain_on_overflow */
360 	 0,			/* special_function */
361 	 "OP_PSUB",		/* name */
362 	 FALSE,			/* partial_inplace */
363 	 0,			/* src_mask */
364 	 0,			/* dst_mask */
365 	 FALSE),		/* pcrel_offset */
366 
367   /* Shift the value on the top of the relocation stack right by the
368      given value.  */
369   HOWTO (ALPHA_R_OP_PRSHIFT,	/* type */
370 	 0,			/* rightshift */
371 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
372 	 0,			/* bitsize */
373 	 FALSE,			/* pc_relative */
374 	 0,			/* bitpos */
375 	 complain_overflow_dont, /* complain_on_overflow */
376 	 0,			/* special_function */
377 	 "OP_PRSHIFT",		/* name */
378 	 FALSE,			/* partial_inplace */
379 	 0,			/* src_mask */
380 	 0,			/* dst_mask */
381 	 FALSE),		/* pcrel_offset */
382 
383   /* Adjust the GP value for a new range in the object file.  */
384   HOWTO (ALPHA_R_GPVALUE,	/* type */
385 	 0,			/* rightshift */
386 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
387 	 0,			/* bitsize */
388 	 FALSE,			/* pc_relative */
389 	 0,			/* bitpos */
390 	 complain_overflow_dont, /* complain_on_overflow */
391 	 0,			/* special_function */
392 	 "GPVALUE",		/* name */
393 	 FALSE,			/* partial_inplace */
394 	 0,			/* src_mask */
395 	 0,			/* dst_mask */
396 	 FALSE)			/* pcrel_offset */
397 };
398 
399 /* Recognize an Alpha ECOFF file.  */
400 
401 static const bfd_target *
alpha_ecoff_object_p(bfd * abfd)402 alpha_ecoff_object_p (bfd *abfd)
403 {
404   static const bfd_target *ret;
405 
406   ret = coff_object_p (abfd);
407 
408   if (ret != NULL)
409     {
410       asection *sec;
411 
412       /* Alpha ECOFF has a .pdata section.  The lnnoptr field of the
413 	 .pdata section is the number of entries it contains.  Each
414 	 entry takes up 8 bytes.  The number of entries is required
415 	 since the section is aligned to a 16 byte boundary.  When we
416 	 link .pdata sections together, we do not want to include the
417 	 alignment bytes.  We handle this on input by faking the size
418 	 of the .pdata section to remove the unwanted alignment bytes.
419 	 On output we will set the lnnoptr field and force the
420 	 alignment.  */
421       sec = bfd_get_section_by_name (abfd, _PDATA);
422       if (sec != (asection *) NULL)
423 	{
424 	  bfd_size_type size;
425 
426 	  size = sec->line_filepos * 8;
427 	  BFD_ASSERT (size == sec->size
428 		      || size + 8 == sec->size);
429 	  if (! bfd_set_section_size (abfd, sec, size))
430 	    return NULL;
431 	}
432     }
433 
434   return ret;
435 }
436 
437 /* See whether the magic number matches.  */
438 
439 static bfd_boolean
alpha_ecoff_bad_format_hook(bfd * abfd ATTRIBUTE_UNUSED,void * filehdr)440 alpha_ecoff_bad_format_hook (bfd *abfd ATTRIBUTE_UNUSED,
441 			     void * filehdr)
442 {
443   struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
444 
445   if (! ALPHA_ECOFF_BADMAG (*internal_f))
446     return TRUE;
447 
448   if (ALPHA_ECOFF_COMPRESSEDMAG (*internal_f))
449     (*_bfd_error_handler)
450       (_("%B: Cannot handle compressed Alpha binaries.\n"
451 	 "   Use compiler flags, or objZ, to generate uncompressed binaries."),
452        abfd);
453 
454   return FALSE;
455 }
456 
457 /* This is a hook called by coff_real_object_p to create any backend
458    specific information.  */
459 
460 static void *
alpha_ecoff_mkobject_hook(bfd * abfd,void * filehdr,void * aouthdr)461 alpha_ecoff_mkobject_hook (bfd *abfd, void * filehdr, void * aouthdr)
462 {
463   void * ecoff;
464 
465   ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
466 
467   if (ecoff != NULL)
468     {
469       struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
470 
471       /* Set additional BFD flags according to the object type from the
472 	 machine specific file header flags.  */
473       switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
474 	{
475 	case F_ALPHA_SHARABLE:
476 	  abfd->flags |= DYNAMIC;
477 	  break;
478 	case F_ALPHA_CALL_SHARED:
479 	  /* Always executable if using shared libraries as the run time
480 	     loader might resolve undefined references.  */
481 	  abfd->flags |= (DYNAMIC | EXEC_P);
482 	  break;
483 	}
484     }
485   return ecoff;
486 }
487 
488 /* Reloc handling.  */
489 
490 /* Swap a reloc in.  */
491 
492 static void
alpha_ecoff_swap_reloc_in(bfd * abfd,void * ext_ptr,struct internal_reloc * intern)493 alpha_ecoff_swap_reloc_in (bfd *abfd,
494 			   void * ext_ptr,
495 			   struct internal_reloc *intern)
496 {
497   const RELOC *ext = (RELOC *) ext_ptr;
498 
499   intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr);
500   intern->r_symndx = H_GET_32 (abfd, ext->r_symndx);
501 
502   BFD_ASSERT (bfd_header_little_endian (abfd));
503 
504   intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
505 		    >> RELOC_BITS0_TYPE_SH_LITTLE);
506   intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
507   intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
508 		      >> RELOC_BITS1_OFFSET_SH_LITTLE);
509   /* Ignored the reserved bits.  */
510   intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
511 		    >> RELOC_BITS3_SIZE_SH_LITTLE);
512 
513   if (intern->r_type == ALPHA_R_LITUSE
514       || intern->r_type == ALPHA_R_GPDISP)
515     {
516       /* Handle the LITUSE and GPDISP relocs specially.  Its symndx
517 	 value is not actually a symbol index, but is instead a
518 	 special code.  We put the code in the r_size field, and
519 	 clobber the symndx.  */
520       if (intern->r_size != 0)
521 	abort ();
522       intern->r_size = intern->r_symndx;
523       intern->r_symndx = RELOC_SECTION_NONE;
524     }
525   else if (intern->r_type == ALPHA_R_IGNORE)
526     {
527       /* The IGNORE reloc generally follows a GPDISP reloc, and is
528 	 against the .lita section.  The section is irrelevant.  */
529       if (! intern->r_extern &&
530 	  intern->r_symndx == RELOC_SECTION_ABS)
531 	abort ();
532       if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
533 	intern->r_symndx = RELOC_SECTION_ABS;
534     }
535 }
536 
537 /* Swap a reloc out.  */
538 
539 static void
alpha_ecoff_swap_reloc_out(bfd * abfd,const struct internal_reloc * intern,void * dst)540 alpha_ecoff_swap_reloc_out (bfd *abfd,
541 			    const struct internal_reloc *intern,
542 			    void * dst)
543 {
544   RELOC *ext = (RELOC *) dst;
545   long symndx;
546   unsigned char size;
547 
548   /* Undo the hackery done in swap_reloc_in.  */
549   if (intern->r_type == ALPHA_R_LITUSE
550       || intern->r_type == ALPHA_R_GPDISP)
551     {
552       symndx = intern->r_size;
553       size = 0;
554     }
555   else if (intern->r_type == ALPHA_R_IGNORE
556 	   && ! intern->r_extern
557 	   && intern->r_symndx == RELOC_SECTION_ABS)
558     {
559       symndx = RELOC_SECTION_LITA;
560       size = intern->r_size;
561     }
562   else
563     {
564       symndx = intern->r_symndx;
565       size = intern->r_size;
566     }
567 
568   /* XXX FIXME:  The maximum symndx value used to be 14 but this
569      fails with object files produced by DEC's C++ compiler.
570      Where does the value 14 (or 15) come from anyway ?  */
571   BFD_ASSERT (intern->r_extern
572 	      || (intern->r_symndx >= 0 && intern->r_symndx <= 15));
573 
574   H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr);
575   H_PUT_32 (abfd, symndx, ext->r_symndx);
576 
577   BFD_ASSERT (bfd_header_little_endian (abfd));
578 
579   ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
580 		    & RELOC_BITS0_TYPE_LITTLE);
581   ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
582 		    | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
583 		       & RELOC_BITS1_OFFSET_LITTLE));
584   ext->r_bits[2] = 0;
585   ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
586 		    & RELOC_BITS3_SIZE_LITTLE);
587 }
588 
589 /* Finish canonicalizing a reloc.  Part of this is generic to all
590    ECOFF targets, and that part is in ecoff.c.  The rest is done in
591    this backend routine.  It must fill in the howto field.  */
592 
593 static void
alpha_adjust_reloc_in(bfd * abfd,const struct internal_reloc * intern,arelent * rptr)594 alpha_adjust_reloc_in (bfd *abfd,
595 		       const struct internal_reloc *intern,
596 		       arelent *rptr)
597 {
598   if (intern->r_type > ALPHA_R_GPVALUE)
599     {
600       (*_bfd_error_handler)
601 	(_("%B: unknown/unsupported relocation type %d"),
602 	 abfd, intern->r_type);
603       bfd_set_error (bfd_error_bad_value);
604       rptr->addend = 0;
605       rptr->howto  = NULL;
606       return;
607     }
608 
609   switch (intern->r_type)
610     {
611     case ALPHA_R_BRADDR:
612     case ALPHA_R_SREL16:
613     case ALPHA_R_SREL32:
614     case ALPHA_R_SREL64:
615       /* This relocs appear to be fully resolved when they are against
616          internal symbols.  Against external symbols, BRADDR at least
617          appears to be resolved against the next instruction.  */
618       if (! intern->r_extern)
619 	rptr->addend = 0;
620       else
621 	rptr->addend = - (intern->r_vaddr + 4);
622       break;
623 
624     case ALPHA_R_GPREL32:
625     case ALPHA_R_LITERAL:
626       /* Copy the gp value for this object file into the addend, to
627 	 ensure that we are not confused by the linker.  */
628       if (! intern->r_extern)
629 	rptr->addend += ecoff_data (abfd)->gp;
630       break;
631 
632     case ALPHA_R_LITUSE:
633     case ALPHA_R_GPDISP:
634       /* The LITUSE and GPDISP relocs do not use a symbol, or an
635 	 addend, but they do use a special code.  Put this code in the
636 	 addend field.  */
637       rptr->addend = intern->r_size;
638       break;
639 
640     case ALPHA_R_OP_STORE:
641       /* The STORE reloc needs the size and offset fields.  We store
642 	 them in the addend.  */
643       BFD_ASSERT (intern->r_offset <= 256);
644       rptr->addend = (intern->r_offset << 8) + intern->r_size;
645       break;
646 
647     case ALPHA_R_OP_PUSH:
648     case ALPHA_R_OP_PSUB:
649     case ALPHA_R_OP_PRSHIFT:
650       /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
651 	 address.  I believe that the address supplied is really an
652 	 addend.  */
653       rptr->addend = intern->r_vaddr;
654       break;
655 
656     case ALPHA_R_GPVALUE:
657       /* Set the addend field to the new GP value.  */
658       rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
659       break;
660 
661     case ALPHA_R_IGNORE:
662       /* If the type is ALPHA_R_IGNORE, make sure this is a reference
663 	 to the absolute section so that the reloc is ignored.  For
664 	 some reason the address of this reloc type is not adjusted by
665 	 the section vma.  We record the gp value for this object file
666 	 here, for convenience when doing the GPDISP relocation.  */
667       rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
668       rptr->address = intern->r_vaddr;
669       rptr->addend = ecoff_data (abfd)->gp;
670       break;
671 
672     default:
673       break;
674     }
675 
676   rptr->howto = &alpha_howto_table[intern->r_type];
677 }
678 
679 /* When writing out a reloc we need to pull some values back out of
680    the addend field into the reloc.  This is roughly the reverse of
681    alpha_adjust_reloc_in, except that there are several changes we do
682    not need to undo.  */
683 
684 static void
alpha_adjust_reloc_out(bfd * abfd ATTRIBUTE_UNUSED,const arelent * rel,struct internal_reloc * intern)685 alpha_adjust_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
686 			const arelent *rel,
687 			struct internal_reloc *intern)
688 {
689   switch (intern->r_type)
690     {
691     case ALPHA_R_LITUSE:
692     case ALPHA_R_GPDISP:
693       intern->r_size = rel->addend;
694       break;
695 
696     case ALPHA_R_OP_STORE:
697       intern->r_size = rel->addend & 0xff;
698       intern->r_offset = (rel->addend >> 8) & 0xff;
699       break;
700 
701     case ALPHA_R_OP_PUSH:
702     case ALPHA_R_OP_PSUB:
703     case ALPHA_R_OP_PRSHIFT:
704       intern->r_vaddr = rel->addend;
705       break;
706 
707     case ALPHA_R_IGNORE:
708       intern->r_vaddr = rel->address;
709       break;
710 
711     default:
712       break;
713     }
714 }
715 
716 /* The size of the stack for the relocation evaluator.  */
717 #define RELOC_STACKSIZE (10)
718 
719 /* Alpha ECOFF relocs have a built in expression evaluator as well as
720    other interdependencies.  Rather than use a bunch of special
721    functions and global variables, we use a single routine to do all
722    the relocation for a section.  I haven't yet worked out how the
723    assembler is going to handle this.  */
724 
725 static bfd_byte *
alpha_ecoff_get_relocated_section_contents(bfd * abfd,struct bfd_link_info * link_info,struct bfd_link_order * link_order,bfd_byte * data,bfd_boolean relocatable,asymbol ** symbols)726 alpha_ecoff_get_relocated_section_contents (bfd *abfd,
727 					    struct bfd_link_info *link_info,
728 					    struct bfd_link_order *link_order,
729 					    bfd_byte *data,
730 					    bfd_boolean relocatable,
731 					    asymbol **symbols)
732 {
733   bfd *input_bfd = link_order->u.indirect.section->owner;
734   asection *input_section = link_order->u.indirect.section;
735   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
736   arelent **reloc_vector = NULL;
737   long reloc_count;
738   bfd *output_bfd = relocatable ? abfd : (bfd *) NULL;
739   bfd_vma gp;
740   bfd_size_type sz;
741   bfd_boolean gp_undefined;
742   bfd_vma stack[RELOC_STACKSIZE];
743   int tos = 0;
744 
745   if (reloc_size < 0)
746     goto error_return;
747   reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
748   if (reloc_vector == NULL && reloc_size != 0)
749     goto error_return;
750 
751   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
752   if (! bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
753     goto error_return;
754 
755   reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
756 					reloc_vector, symbols);
757   if (reloc_count < 0)
758     goto error_return;
759   if (reloc_count == 0)
760     goto successful_return;
761 
762   /* Get the GP value for the output BFD.  */
763   gp_undefined = FALSE;
764   gp = _bfd_get_gp_value (abfd);
765   if (gp == 0)
766     {
767       if (relocatable)
768 	{
769 	  asection *sec;
770 	  bfd_vma lo;
771 
772 	  /* Make up a value.  */
773 	  lo = (bfd_vma) -1;
774 	  for (sec = abfd->sections; sec != NULL; sec = sec->next)
775 	    {
776 	      if (sec->vma < lo
777 		  && (strcmp (sec->name, ".sbss") == 0
778 		      || strcmp (sec->name, ".sdata") == 0
779 		      || strcmp (sec->name, ".lit4") == 0
780 		      || strcmp (sec->name, ".lit8") == 0
781 		      || strcmp (sec->name, ".lita") == 0))
782 		lo = sec->vma;
783 	    }
784 	  gp = lo + 0x8000;
785 	  _bfd_set_gp_value (abfd, gp);
786 	}
787       else
788 	{
789 	  struct bfd_link_hash_entry *h;
790 
791 	  h = bfd_link_hash_lookup (link_info->hash, "_gp", FALSE, FALSE,
792 				    TRUE);
793 	  if (h == (struct bfd_link_hash_entry *) NULL
794 	      || h->type != bfd_link_hash_defined)
795 	    gp_undefined = TRUE;
796 	  else
797 	    {
798 	      gp = (h->u.def.value
799 		    + h->u.def.section->output_section->vma
800 		    + h->u.def.section->output_offset);
801 	      _bfd_set_gp_value (abfd, gp);
802 	    }
803 	}
804     }
805 
806   for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
807     {
808       arelent *rel;
809       bfd_reloc_status_type r;
810       char *err;
811 
812       rel = *reloc_vector;
813       r = bfd_reloc_ok;
814       switch (rel->howto->type)
815 	{
816 	case ALPHA_R_IGNORE:
817 	  rel->address += input_section->output_offset;
818 	  break;
819 
820 	case ALPHA_R_REFLONG:
821 	case ALPHA_R_REFQUAD:
822 	case ALPHA_R_BRADDR:
823 	case ALPHA_R_HINT:
824 	case ALPHA_R_SREL16:
825 	case ALPHA_R_SREL32:
826 	case ALPHA_R_SREL64:
827 	  if (relocatable
828 	      && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
829 	    {
830 	      rel->address += input_section->output_offset;
831 	      break;
832 	    }
833 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
834 				      output_bfd, &err);
835 	  break;
836 
837 	case ALPHA_R_GPREL32:
838 	  /* This relocation is used in a switch table.  It is a 32
839 	     bit offset from the current GP value.  We must adjust it
840 	     by the different between the original GP value and the
841 	     current GP value.  The original GP value is stored in the
842 	     addend.  We adjust the addend and let
843 	     bfd_perform_relocation finish the job.  */
844 	  rel->addend -= gp;
845 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
846 				      output_bfd, &err);
847 	  if (r == bfd_reloc_ok && gp_undefined)
848 	    {
849 	      r = bfd_reloc_dangerous;
850 	      err = (char *) _("GP relative relocation used when GP not defined");
851 	    }
852 	  break;
853 
854 	case ALPHA_R_LITERAL:
855 	  /* This is a reference to a literal value, generally
856 	     (always?) in the .lita section.  This is a 16 bit GP
857 	     relative relocation.  Sometimes the subsequent reloc is a
858 	     LITUSE reloc, which indicates how this reloc is used.
859 	     This sometimes permits rewriting the two instructions
860 	     referred to by the LITERAL and the LITUSE into different
861 	     instructions which do not refer to .lita.  This can save
862 	     a memory reference, and permits removing a value from
863 	     .lita thus saving GP relative space.
864 
865 	     We do not these optimizations.  To do them we would need
866 	     to arrange to link the .lita section first, so that by
867 	     the time we got here we would know the final values to
868 	     use.  This would not be particularly difficult, but it is
869 	     not currently implemented.  */
870 
871 	  {
872 	    unsigned long insn;
873 
874 	    /* I believe that the LITERAL reloc will only apply to a
875 	       ldq or ldl instruction, so check my assumption.  */
876 	    insn = bfd_get_32 (input_bfd, data + rel->address);
877 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
878 			|| ((insn >> 26) & 0x3f) == 0x28);
879 
880 	    rel->addend -= gp;
881 	    r = bfd_perform_relocation (input_bfd, rel, data, input_section,
882 					output_bfd, &err);
883 	    if (r == bfd_reloc_ok && gp_undefined)
884 	      {
885 		r = bfd_reloc_dangerous;
886 		err =
887 		  (char *) _("GP relative relocation used when GP not defined");
888 	      }
889 	  }
890 	  break;
891 
892 	case ALPHA_R_LITUSE:
893 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
894 	     does not cause anything to happen, itself.  */
895 	  rel->address += input_section->output_offset;
896 	  break;
897 
898 	case ALPHA_R_GPDISP:
899 	  /* This marks the ldah of an ldah/lda pair which loads the
900 	     gp register with the difference of the gp value and the
901 	     current location.  The second of the pair is r_size bytes
902 	     ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
903 	     but that no longer happens in OSF/1 3.2.  */
904 	  {
905 	    unsigned long insn1, insn2;
906 	    bfd_vma addend;
907 
908 	    /* Get the two instructions.  */
909 	    insn1 = bfd_get_32 (input_bfd, data + rel->address);
910 	    insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
911 
912 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
913 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
914 
915 	    /* Get the existing addend.  We must account for the sign
916 	       extension done by lda and ldah.  */
917 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
918 	    if (insn1 & 0x8000)
919 	      {
920 		addend -= 0x80000000;
921 		addend -= 0x80000000;
922 	      }
923 	    if (insn2 & 0x8000)
924 	      addend -= 0x10000;
925 
926 	    /* The existing addend includes the different between the
927 	       gp of the input BFD and the address in the input BFD.
928 	       Subtract this out.  */
929 	    addend -= (ecoff_data (input_bfd)->gp
930 		       - (input_section->vma + rel->address));
931 
932 	    /* Now add in the final gp value, and subtract out the
933 	       final address.  */
934 	    addend += (gp
935 		       - (input_section->output_section->vma
936 			  + input_section->output_offset
937 			  + rel->address));
938 
939 	    /* Change the instructions, accounting for the sign
940 	       extension, and write them out.  */
941 	    if (addend & 0x8000)
942 	      addend += 0x10000;
943 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
944 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
945 
946 	    bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
947 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
948 			data + rel->address + rel->addend);
949 
950 	    rel->address += input_section->output_offset;
951 	  }
952 	  break;
953 
954 	case ALPHA_R_OP_PUSH:
955 	  /* Push a value on the reloc evaluation stack.  */
956 	  {
957 	    asymbol *symbol;
958 	    bfd_vma relocation;
959 
960 	    if (relocatable)
961 	      {
962 		rel->address += input_section->output_offset;
963 		break;
964 	      }
965 
966 	    /* Figure out the relocation of this symbol.  */
967 	    symbol = *rel->sym_ptr_ptr;
968 
969 	    if (bfd_is_und_section (symbol->section))
970 	      r = bfd_reloc_undefined;
971 
972 	    if (bfd_is_com_section (symbol->section))
973 	      relocation = 0;
974 	    else
975 	      relocation = symbol->value;
976 	    relocation += symbol->section->output_section->vma;
977 	    relocation += symbol->section->output_offset;
978 	    relocation += rel->addend;
979 
980 	    if (tos >= RELOC_STACKSIZE)
981 	      abort ();
982 
983 	    stack[tos++] = relocation;
984 	  }
985 	  break;
986 
987 	case ALPHA_R_OP_STORE:
988 	  /* Store a value from the reloc stack into a bitfield.  */
989 	  {
990 	    bfd_vma val;
991 	    int offset, size;
992 
993 	    if (relocatable)
994 	      {
995 		rel->address += input_section->output_offset;
996 		break;
997 	      }
998 
999 	    if (tos == 0)
1000 	      abort ();
1001 
1002 	    /* The offset and size for this reloc are encoded into the
1003 	       addend field by alpha_adjust_reloc_in.  */
1004 	    offset = (rel->addend >> 8) & 0xff;
1005 	    size = rel->addend & 0xff;
1006 
1007 	    val = bfd_get_64 (abfd, data + rel->address);
1008 	    val &=~ (((1 << size) - 1) << offset);
1009 	    val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1010 	    bfd_put_64 (abfd, val, data + rel->address);
1011 	  }
1012 	  break;
1013 
1014 	case ALPHA_R_OP_PSUB:
1015 	  /* Subtract a value from the top of the stack.  */
1016 	  {
1017 	    asymbol *symbol;
1018 	    bfd_vma relocation;
1019 
1020 	    if (relocatable)
1021 	      {
1022 		rel->address += input_section->output_offset;
1023 		break;
1024 	      }
1025 
1026 	    /* Figure out the relocation of this symbol.  */
1027 	    symbol = *rel->sym_ptr_ptr;
1028 
1029 	    if (bfd_is_und_section (symbol->section))
1030 	      r = bfd_reloc_undefined;
1031 
1032 	    if (bfd_is_com_section (symbol->section))
1033 	      relocation = 0;
1034 	    else
1035 	      relocation = symbol->value;
1036 	    relocation += symbol->section->output_section->vma;
1037 	    relocation += symbol->section->output_offset;
1038 	    relocation += rel->addend;
1039 
1040 	    if (tos == 0)
1041 	      abort ();
1042 
1043 	    stack[tos - 1] -= relocation;
1044 	  }
1045 	  break;
1046 
1047 	case ALPHA_R_OP_PRSHIFT:
1048 	  /* Shift the value on the top of the stack.  */
1049 	  {
1050 	    asymbol *symbol;
1051 	    bfd_vma relocation;
1052 
1053 	    if (relocatable)
1054 	      {
1055 		rel->address += input_section->output_offset;
1056 		break;
1057 	      }
1058 
1059 	    /* Figure out the relocation of this symbol.  */
1060 	    symbol = *rel->sym_ptr_ptr;
1061 
1062 	    if (bfd_is_und_section (symbol->section))
1063 	      r = bfd_reloc_undefined;
1064 
1065 	    if (bfd_is_com_section (symbol->section))
1066 	      relocation = 0;
1067 	    else
1068 	      relocation = symbol->value;
1069 	    relocation += symbol->section->output_section->vma;
1070 	    relocation += symbol->section->output_offset;
1071 	    relocation += rel->addend;
1072 
1073 	    if (tos == 0)
1074 	      abort ();
1075 
1076 	    stack[tos - 1] >>= relocation;
1077 	  }
1078 	  break;
1079 
1080 	case ALPHA_R_GPVALUE:
1081 	  /* I really don't know if this does the right thing.  */
1082 	  gp = rel->addend;
1083 	  gp_undefined = FALSE;
1084 	  break;
1085 
1086 	default:
1087 	  abort ();
1088 	}
1089 
1090       if (relocatable)
1091 	{
1092 	  asection *os = input_section->output_section;
1093 
1094 	  /* A partial link, so keep the relocs.  */
1095 	  os->orelocation[os->reloc_count] = rel;
1096 	  os->reloc_count++;
1097 	}
1098 
1099       if (r != bfd_reloc_ok)
1100 	{
1101 	  switch (r)
1102 	    {
1103 	    case bfd_reloc_undefined:
1104 	      (*link_info->callbacks->undefined_symbol)
1105 		(link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1106 		 input_bfd, input_section, rel->address, TRUE);
1107 	      break;
1108 	    case bfd_reloc_dangerous:
1109 	      (*link_info->callbacks->reloc_dangerous)
1110 		(link_info, err, input_bfd, input_section, rel->address);
1111 	      break;
1112 	    case bfd_reloc_overflow:
1113 	      (*link_info->callbacks->reloc_overflow)
1114 		(link_info, NULL, bfd_asymbol_name (*rel->sym_ptr_ptr),
1115 		 rel->howto->name, rel->addend, input_bfd,
1116 		 input_section, rel->address);
1117 	      break;
1118 	    case bfd_reloc_outofrange:
1119 	    default:
1120 	      abort ();
1121 	      break;
1122 	    }
1123 	}
1124     }
1125 
1126   if (tos != 0)
1127     abort ();
1128 
1129  successful_return:
1130   if (reloc_vector != NULL)
1131     free (reloc_vector);
1132   return data;
1133 
1134  error_return:
1135   if (reloc_vector != NULL)
1136     free (reloc_vector);
1137   return NULL;
1138 }
1139 
1140 /* Get the howto structure for a generic reloc type.  */
1141 
1142 static reloc_howto_type *
alpha_bfd_reloc_type_lookup(bfd * abfd ATTRIBUTE_UNUSED,bfd_reloc_code_real_type code)1143 alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1144 			     bfd_reloc_code_real_type code)
1145 {
1146   int alpha_type;
1147 
1148   switch (code)
1149     {
1150     case BFD_RELOC_32:
1151       alpha_type = ALPHA_R_REFLONG;
1152       break;
1153     case BFD_RELOC_64:
1154     case BFD_RELOC_CTOR:
1155       alpha_type = ALPHA_R_REFQUAD;
1156       break;
1157     case BFD_RELOC_GPREL32:
1158       alpha_type = ALPHA_R_GPREL32;
1159       break;
1160     case BFD_RELOC_ALPHA_LITERAL:
1161       alpha_type = ALPHA_R_LITERAL;
1162       break;
1163     case BFD_RELOC_ALPHA_LITUSE:
1164       alpha_type = ALPHA_R_LITUSE;
1165       break;
1166     case BFD_RELOC_ALPHA_GPDISP_HI16:
1167       alpha_type = ALPHA_R_GPDISP;
1168       break;
1169     case BFD_RELOC_ALPHA_GPDISP_LO16:
1170       alpha_type = ALPHA_R_IGNORE;
1171       break;
1172     case BFD_RELOC_23_PCREL_S2:
1173       alpha_type = ALPHA_R_BRADDR;
1174       break;
1175     case BFD_RELOC_ALPHA_HINT:
1176       alpha_type = ALPHA_R_HINT;
1177       break;
1178     case BFD_RELOC_16_PCREL:
1179       alpha_type = ALPHA_R_SREL16;
1180       break;
1181     case BFD_RELOC_32_PCREL:
1182       alpha_type = ALPHA_R_SREL32;
1183       break;
1184     case BFD_RELOC_64_PCREL:
1185       alpha_type = ALPHA_R_SREL64;
1186       break;
1187     default:
1188       return (reloc_howto_type *) NULL;
1189     }
1190 
1191   return &alpha_howto_table[alpha_type];
1192 }
1193 
1194 static reloc_howto_type *
alpha_bfd_reloc_name_lookup(bfd * abfd ATTRIBUTE_UNUSED,const char * r_name)1195 alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1196 			     const char *r_name)
1197 {
1198   unsigned int i;
1199 
1200   for (i = 0;
1201        i < sizeof (alpha_howto_table) / sizeof (alpha_howto_table[0]);
1202        i++)
1203     if (alpha_howto_table[i].name != NULL
1204 	&& strcasecmp (alpha_howto_table[i].name, r_name) == 0)
1205       return &alpha_howto_table[i];
1206 
1207   return NULL;
1208 }
1209 
1210 /* A helper routine for alpha_relocate_section which converts an
1211    external reloc when generating relocatable output.  Returns the
1212    relocation amount.  */
1213 
1214 static bfd_vma
alpha_convert_external_reloc(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info,bfd * input_bfd,struct external_reloc * ext_rel,struct ecoff_link_hash_entry * h)1215 alpha_convert_external_reloc (bfd *output_bfd ATTRIBUTE_UNUSED,
1216 			      struct bfd_link_info *info,
1217 			      bfd *input_bfd,
1218 			      struct external_reloc *ext_rel,
1219 			      struct ecoff_link_hash_entry *h)
1220 {
1221   unsigned long r_symndx;
1222   bfd_vma relocation;
1223 
1224   BFD_ASSERT (bfd_link_relocatable (info));
1225 
1226   if (h->root.type == bfd_link_hash_defined
1227       || h->root.type == bfd_link_hash_defweak)
1228     {
1229       asection *hsec;
1230       const char *name;
1231 
1232       /* This symbol is defined in the output.  Convert the reloc from
1233 	 being against the symbol to being against the section.  */
1234 
1235       /* Clear the r_extern bit.  */
1236       ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1237 
1238       /* Compute a new r_symndx value.  */
1239       hsec = h->root.u.def.section;
1240       name = bfd_get_section_name (output_bfd, hsec->output_section);
1241 
1242       r_symndx = (unsigned long) -1;
1243       switch (name[1])
1244 	{
1245 	case 'A':
1246 	  if (strcmp (name, "*ABS*") == 0)
1247 	    r_symndx = RELOC_SECTION_ABS;
1248 	  break;
1249 	case 'b':
1250 	  if (strcmp (name, ".bss") == 0)
1251 	    r_symndx = RELOC_SECTION_BSS;
1252 	  break;
1253 	case 'd':
1254 	  if (strcmp (name, ".data") == 0)
1255 	    r_symndx = RELOC_SECTION_DATA;
1256 	  break;
1257 	case 'f':
1258 	  if (strcmp (name, ".fini") == 0)
1259 	    r_symndx = RELOC_SECTION_FINI;
1260 	  break;
1261 	case 'i':
1262 	  if (strcmp (name, ".init") == 0)
1263 	    r_symndx = RELOC_SECTION_INIT;
1264 	  break;
1265 	case 'l':
1266 	  if (strcmp (name, ".lita") == 0)
1267 	    r_symndx = RELOC_SECTION_LITA;
1268 	  else if (strcmp (name, ".lit8") == 0)
1269 	    r_symndx = RELOC_SECTION_LIT8;
1270 	  else if (strcmp (name, ".lit4") == 0)
1271 	    r_symndx = RELOC_SECTION_LIT4;
1272 	  break;
1273 	case 'p':
1274 	  if (strcmp (name, ".pdata") == 0)
1275 	    r_symndx = RELOC_SECTION_PDATA;
1276 	  break;
1277 	case 'r':
1278 	  if (strcmp (name, ".rdata") == 0)
1279 	    r_symndx = RELOC_SECTION_RDATA;
1280 	  else if (strcmp (name, ".rconst") == 0)
1281 	    r_symndx = RELOC_SECTION_RCONST;
1282 	  break;
1283 	case 's':
1284 	  if (strcmp (name, ".sdata") == 0)
1285 	    r_symndx = RELOC_SECTION_SDATA;
1286 	  else if (strcmp (name, ".sbss") == 0)
1287 	    r_symndx = RELOC_SECTION_SBSS;
1288 	  break;
1289 	case 't':
1290 	  if (strcmp (name, ".text") == 0)
1291 	    r_symndx = RELOC_SECTION_TEXT;
1292 	  break;
1293 	case 'x':
1294 	  if (strcmp (name, ".xdata") == 0)
1295 	    r_symndx = RELOC_SECTION_XDATA;
1296 	  break;
1297 	}
1298 
1299       if (r_symndx == (unsigned long) -1)
1300 	abort ();
1301 
1302       /* Add the section VMA and the symbol value.  */
1303       relocation = (h->root.u.def.value
1304 		    + hsec->output_section->vma
1305 		    + hsec->output_offset);
1306     }
1307   else
1308     {
1309       /* Change the symndx value to the right one for
1310 	 the output BFD.  */
1311       r_symndx = h->indx;
1312       if (r_symndx == (unsigned long) -1)
1313 	{
1314 	  /* Caller must give an error.  */
1315 	  r_symndx = 0;
1316 	}
1317       relocation = 0;
1318     }
1319 
1320   /* Write out the new r_symndx value.  */
1321   H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx);
1322 
1323   return relocation;
1324 }
1325 
1326 /* Relocate a section while linking an Alpha ECOFF file.  This is
1327    quite similar to get_relocated_section_contents.  Perhaps they
1328    could be combined somehow.  */
1329 
1330 static bfd_boolean
alpha_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,void * external_relocs)1331 alpha_relocate_section (bfd *output_bfd,
1332 			struct bfd_link_info *info,
1333 			bfd *input_bfd,
1334 			asection *input_section,
1335 			bfd_byte *contents,
1336 			void * external_relocs)
1337 {
1338   asection **symndx_to_section, *lita_sec;
1339   struct ecoff_link_hash_entry **sym_hashes;
1340   bfd_vma gp;
1341   bfd_boolean gp_undefined;
1342   bfd_vma stack[RELOC_STACKSIZE];
1343   int tos = 0;
1344   struct external_reloc *ext_rel;
1345   struct external_reloc *ext_rel_end;
1346   bfd_size_type amt;
1347 
1348   /* We keep a table mapping the symndx found in an internal reloc to
1349      the appropriate section.  This is faster than looking up the
1350      section by name each time.  */
1351   symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1352   if (symndx_to_section == (asection **) NULL)
1353     {
1354       amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1355       symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1356       if (!symndx_to_section)
1357 	return FALSE;
1358 
1359       symndx_to_section[RELOC_SECTION_NONE] = NULL;
1360       symndx_to_section[RELOC_SECTION_TEXT] =
1361 	bfd_get_section_by_name (input_bfd, ".text");
1362       symndx_to_section[RELOC_SECTION_RDATA] =
1363 	bfd_get_section_by_name (input_bfd, ".rdata");
1364       symndx_to_section[RELOC_SECTION_DATA] =
1365 	bfd_get_section_by_name (input_bfd, ".data");
1366       symndx_to_section[RELOC_SECTION_SDATA] =
1367 	bfd_get_section_by_name (input_bfd, ".sdata");
1368       symndx_to_section[RELOC_SECTION_SBSS] =
1369 	bfd_get_section_by_name (input_bfd, ".sbss");
1370       symndx_to_section[RELOC_SECTION_BSS] =
1371 	bfd_get_section_by_name (input_bfd, ".bss");
1372       symndx_to_section[RELOC_SECTION_INIT] =
1373 	bfd_get_section_by_name (input_bfd, ".init");
1374       symndx_to_section[RELOC_SECTION_LIT8] =
1375 	bfd_get_section_by_name (input_bfd, ".lit8");
1376       symndx_to_section[RELOC_SECTION_LIT4] =
1377 	bfd_get_section_by_name (input_bfd, ".lit4");
1378       symndx_to_section[RELOC_SECTION_XDATA] =
1379 	bfd_get_section_by_name (input_bfd, ".xdata");
1380       symndx_to_section[RELOC_SECTION_PDATA] =
1381 	bfd_get_section_by_name (input_bfd, ".pdata");
1382       symndx_to_section[RELOC_SECTION_FINI] =
1383 	bfd_get_section_by_name (input_bfd, ".fini");
1384       symndx_to_section[RELOC_SECTION_LITA] =
1385 	bfd_get_section_by_name (input_bfd, ".lita");
1386       symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1387       symndx_to_section[RELOC_SECTION_RCONST] =
1388 	bfd_get_section_by_name (input_bfd, ".rconst");
1389 
1390       ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1391     }
1392 
1393   sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1394 
1395   /* On the Alpha, the .lita section must be addressable by the global
1396      pointer.  To support large programs, we need to allow multiple
1397      global pointers.  This works as long as each input .lita section
1398      is <64KB big.  This implies that when producing relocatable
1399      output, the .lita section is limited to 64KB. .  */
1400 
1401   lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1402   gp = _bfd_get_gp_value (output_bfd);
1403   if (! bfd_link_relocatable (info) && lita_sec != NULL)
1404     {
1405       struct ecoff_section_tdata *lita_sec_data;
1406 
1407       /* Make sure we have a section data structure to which we can
1408 	 hang on to the gp value we pick for the section.  */
1409       lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1410       if (lita_sec_data == NULL)
1411 	{
1412 	  amt = sizeof (struct ecoff_section_tdata);
1413 	  lita_sec_data = ((struct ecoff_section_tdata *)
1414 			   bfd_zalloc (input_bfd, amt));
1415 	  lita_sec->used_by_bfd = lita_sec_data;
1416 	}
1417 
1418       if (lita_sec_data->gp != 0)
1419 	{
1420 	  /* If we already assigned a gp to this section, we better
1421 	     stick with that value.  */
1422 	  gp = lita_sec_data->gp;
1423 	}
1424       else
1425 	{
1426 	  bfd_vma lita_vma;
1427 	  bfd_size_type lita_size;
1428 
1429 	  lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1430 	  lita_size = lita_sec->size;
1431 
1432 	  if (gp == 0
1433 	      || lita_vma <  gp - 0x8000
1434 	      || lita_vma + lita_size >= gp + 0x8000)
1435 	    {
1436 	      /* Either gp hasn't been set at all or the current gp
1437 		 cannot address this .lita section.  In both cases we
1438 		 reset the gp to point into the "middle" of the
1439 		 current input .lita section.  */
1440 	      if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1441 		{
1442 		  (*info->callbacks->warning) (info,
1443 					       _("using multiple gp values"),
1444 					       (char *) NULL, output_bfd,
1445 					       (asection *) NULL, (bfd_vma) 0);
1446 		  ecoff_data (output_bfd)->issued_multiple_gp_warning = TRUE;
1447 		}
1448 	      if (lita_vma < gp - 0x8000)
1449 		gp = lita_vma + lita_size - 0x8000;
1450 	      else
1451 		gp = lita_vma + 0x8000;
1452 
1453 	    }
1454 
1455 	  lita_sec_data->gp = gp;
1456 	}
1457 
1458       _bfd_set_gp_value (output_bfd, gp);
1459     }
1460 
1461   gp_undefined = (gp == 0);
1462 
1463   BFD_ASSERT (bfd_header_little_endian (output_bfd));
1464   BFD_ASSERT (bfd_header_little_endian (input_bfd));
1465 
1466   ext_rel = (struct external_reloc *) external_relocs;
1467   ext_rel_end = ext_rel + input_section->reloc_count;
1468   for (; ext_rel < ext_rel_end; ext_rel++)
1469     {
1470       bfd_vma r_vaddr;
1471       unsigned long r_symndx;
1472       int r_type;
1473       int r_extern;
1474       int r_offset;
1475       int r_size;
1476       bfd_boolean relocatep;
1477       bfd_boolean adjust_addrp;
1478       bfd_boolean gp_usedp;
1479       bfd_vma addend;
1480 
1481       r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr);
1482       r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx);
1483 
1484       r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1485 		>> RELOC_BITS0_TYPE_SH_LITTLE);
1486       r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1487       r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1488 		  >> RELOC_BITS1_OFFSET_SH_LITTLE);
1489       /* Ignored the reserved bits.  */
1490       r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1491 		>> RELOC_BITS3_SIZE_SH_LITTLE);
1492 
1493       relocatep = FALSE;
1494       adjust_addrp = TRUE;
1495       gp_usedp = FALSE;
1496       addend = 0;
1497 
1498       switch (r_type)
1499 	{
1500 	case ALPHA_R_GPRELHIGH:
1501 	  (*_bfd_error_handler)
1502 	    (_("%B: unsupported relocation: ALPHA_R_GPRELHIGH"),
1503 	     input_bfd);
1504 	  bfd_set_error (bfd_error_bad_value);
1505 	  continue;
1506 
1507 	case ALPHA_R_GPRELLOW:
1508 	  (*_bfd_error_handler)
1509 	    (_("%B: unsupported relocation: ALPHA_R_GPRELLOW"),
1510 	     input_bfd);
1511 	  bfd_set_error (bfd_error_bad_value);
1512 	  continue;
1513 
1514 	default:
1515 	  (*_bfd_error_handler)
1516 	    (_("%B: unknown relocation type %d"),
1517 	     input_bfd, (int) r_type);
1518 	  bfd_set_error (bfd_error_bad_value);
1519 	  continue;
1520 
1521 	case ALPHA_R_IGNORE:
1522 	  /* This reloc appears after a GPDISP reloc.  On earlier
1523 	     versions of OSF/1, It marked the position of the second
1524 	     instruction to be altered by the GPDISP reloc, but it is
1525 	     not otherwise used for anything.  For some reason, the
1526 	     address of the relocation does not appear to include the
1527 	     section VMA, unlike the other relocation types.  */
1528 	  if (bfd_link_relocatable (info))
1529 	    H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr,
1530 		      ext_rel->r_vaddr);
1531 	  adjust_addrp = FALSE;
1532 	  break;
1533 
1534 	case ALPHA_R_REFLONG:
1535 	case ALPHA_R_REFQUAD:
1536 	case ALPHA_R_HINT:
1537 	  relocatep = TRUE;
1538 	  break;
1539 
1540 	case ALPHA_R_BRADDR:
1541 	case ALPHA_R_SREL16:
1542 	case ALPHA_R_SREL32:
1543 	case ALPHA_R_SREL64:
1544 	  if (r_extern)
1545 	    addend += - (r_vaddr + 4);
1546 	  relocatep = TRUE;
1547 	  break;
1548 
1549 	case ALPHA_R_GPREL32:
1550 	  /* This relocation is used in a switch table.  It is a 32
1551 	     bit offset from the current GP value.  We must adjust it
1552 	     by the different between the original GP value and the
1553 	     current GP value.  */
1554 	  relocatep = TRUE;
1555 	  addend = ecoff_data (input_bfd)->gp - gp;
1556 	  gp_usedp = TRUE;
1557 	  break;
1558 
1559 	case ALPHA_R_LITERAL:
1560 	  /* This is a reference to a literal value, generally
1561 	     (always?) in the .lita section.  This is a 16 bit GP
1562 	     relative relocation.  Sometimes the subsequent reloc is a
1563 	     LITUSE reloc, which indicates how this reloc is used.
1564 	     This sometimes permits rewriting the two instructions
1565 	     referred to by the LITERAL and the LITUSE into different
1566 	     instructions which do not refer to .lita.  This can save
1567 	     a memory reference, and permits removing a value from
1568 	     .lita thus saving GP relative space.
1569 
1570 	     We do not these optimizations.  To do them we would need
1571 	     to arrange to link the .lita section first, so that by
1572 	     the time we got here we would know the final values to
1573 	     use.  This would not be particularly difficult, but it is
1574 	     not currently implemented.  */
1575 
1576 	  /* I believe that the LITERAL reloc will only apply to a ldq
1577 	     or ldl instruction, so check my assumption.  */
1578 	  {
1579 	    unsigned long insn;
1580 
1581 	    insn = bfd_get_32 (input_bfd,
1582 			       contents + r_vaddr - input_section->vma);
1583 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1584 			|| ((insn >> 26) & 0x3f) == 0x28);
1585 	  }
1586 
1587 	  relocatep = TRUE;
1588 	  addend = ecoff_data (input_bfd)->gp - gp;
1589 	  gp_usedp = TRUE;
1590 	  break;
1591 
1592 	case ALPHA_R_LITUSE:
1593 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
1594 	     does not cause anything to happen, itself.  */
1595 	  break;
1596 
1597 	case ALPHA_R_GPDISP:
1598 	  /* This marks the ldah of an ldah/lda pair which loads the
1599 	     gp register with the difference of the gp value and the
1600 	     current location.  The second of the pair is r_symndx
1601 	     bytes ahead.  It used to be marked with an ALPHA_R_IGNORE
1602 	     reloc, but OSF/1 3.2 no longer does that.  */
1603 	  {
1604 	    unsigned long insn1, insn2;
1605 
1606 	    /* Get the two instructions.  */
1607 	    insn1 = bfd_get_32 (input_bfd,
1608 				contents + r_vaddr - input_section->vma);
1609 	    insn2 = bfd_get_32 (input_bfd,
1610 				(contents
1611 				 + r_vaddr
1612 				 - input_section->vma
1613 				 + r_symndx));
1614 
1615 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1616 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1617 
1618 	    /* Get the existing addend.  We must account for the sign
1619 	       extension done by lda and ldah.  */
1620 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1621 	    if (insn1 & 0x8000)
1622 	      {
1623 		/* This is addend -= 0x100000000 without causing an
1624 		   integer overflow on a 32 bit host.  */
1625 		addend -= 0x80000000;
1626 		addend -= 0x80000000;
1627 	      }
1628 	    if (insn2 & 0x8000)
1629 	      addend -= 0x10000;
1630 
1631 	    /* The existing addend includes the difference between the
1632 	       gp of the input BFD and the address in the input BFD.
1633 	       We want to change this to the difference between the
1634 	       final GP and the final address.  */
1635 	    addend += (gp
1636 		       - ecoff_data (input_bfd)->gp
1637 		       + input_section->vma
1638 		       - (input_section->output_section->vma
1639 			  + input_section->output_offset));
1640 
1641 	    /* Change the instructions, accounting for the sign
1642 	       extension, and write them out.  */
1643 	    if (addend & 0x8000)
1644 	      addend += 0x10000;
1645 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1646 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1647 
1648 	    bfd_put_32 (input_bfd, (bfd_vma) insn1,
1649 			contents + r_vaddr - input_section->vma);
1650 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
1651 			contents + r_vaddr - input_section->vma + r_symndx);
1652 
1653 	    gp_usedp = TRUE;
1654 	  }
1655 	  break;
1656 
1657 	case ALPHA_R_OP_PUSH:
1658 	case ALPHA_R_OP_PSUB:
1659 	case ALPHA_R_OP_PRSHIFT:
1660 	  /* Manipulate values on the reloc evaluation stack.  The
1661 	     r_vaddr field is not an address in input_section, it is
1662 	     the current value (including any addend) of the object
1663 	     being used.  */
1664 	  if (! r_extern)
1665 	    {
1666 	      asection *s;
1667 
1668 	      s = symndx_to_section[r_symndx];
1669 	      if (s == (asection *) NULL)
1670 		abort ();
1671 	      addend = s->output_section->vma + s->output_offset - s->vma;
1672 	    }
1673 	  else
1674 	    {
1675 	      struct ecoff_link_hash_entry *h;
1676 
1677 	      h = sym_hashes[r_symndx];
1678 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1679 		abort ();
1680 
1681 	      if (! bfd_link_relocatable (info))
1682 		{
1683 		  if (h->root.type == bfd_link_hash_defined
1684 		      || h->root.type == bfd_link_hash_defweak)
1685 		    addend = (h->root.u.def.value
1686 			      + h->root.u.def.section->output_section->vma
1687 			      + h->root.u.def.section->output_offset);
1688 		  else
1689 		    {
1690 		      /* Note that we pass the address as 0, since we
1691 			 do not have a meaningful number for the
1692 			 location within the section that is being
1693 			 relocated.  */
1694 		      (*info->callbacks->undefined_symbol)
1695 			(info, h->root.root.string, input_bfd,
1696 			 input_section, (bfd_vma) 0, TRUE);
1697 		      addend = 0;
1698 		    }
1699 		}
1700 	      else
1701 		{
1702 		  if (h->root.type != bfd_link_hash_defined
1703 		      && h->root.type != bfd_link_hash_defweak
1704 		      && h->indx == -1)
1705 		    {
1706 		      /* This symbol is not being written out.  Pass
1707 			 the address as 0, as with undefined_symbol,
1708 			 above.  */
1709 		      (*info->callbacks->unattached_reloc)
1710 			(info, h->root.root.string,
1711 			 input_bfd, input_section, (bfd_vma) 0);
1712 		    }
1713 
1714 		  addend = alpha_convert_external_reloc (output_bfd, info,
1715 							 input_bfd,
1716 							 ext_rel, h);
1717 		}
1718 	    }
1719 
1720 	  addend += r_vaddr;
1721 
1722 	  if (bfd_link_relocatable (info))
1723 	    {
1724 	      /* Adjust r_vaddr by the addend.  */
1725 	      H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr);
1726 	    }
1727 	  else
1728 	    {
1729 	      switch (r_type)
1730 		{
1731 		case ALPHA_R_OP_PUSH:
1732 		  if (tos >= RELOC_STACKSIZE)
1733 		    abort ();
1734 		  stack[tos++] = addend;
1735 		  break;
1736 
1737 		case ALPHA_R_OP_PSUB:
1738 		  if (tos == 0)
1739 		    abort ();
1740 		  stack[tos - 1] -= addend;
1741 		  break;
1742 
1743 		case ALPHA_R_OP_PRSHIFT:
1744 		  if (tos == 0)
1745 		    abort ();
1746 		  stack[tos - 1] >>= addend;
1747 		  break;
1748 		}
1749 	    }
1750 
1751 	  adjust_addrp = FALSE;
1752 	  break;
1753 
1754 	case ALPHA_R_OP_STORE:
1755 	  /* Store a value from the reloc stack into a bitfield.  If
1756 	     we are generating relocatable output, all we do is
1757 	     adjust the address of the reloc.  */
1758 	  if (! bfd_link_relocatable (info))
1759 	    {
1760 	      bfd_vma mask;
1761 	      bfd_vma val;
1762 
1763 	      if (tos == 0)
1764 		abort ();
1765 
1766 	      /* Get the relocation mask.  The separate steps and the
1767 		 casts to bfd_vma are attempts to avoid a bug in the
1768 		 Alpha OSF 1.3 C compiler.  See reloc.c for more
1769 		 details.  */
1770 	      mask = 1;
1771 	      mask <<= (bfd_vma) r_size;
1772 	      mask -= 1;
1773 
1774 	      /* FIXME: I don't know what kind of overflow checking,
1775 		 if any, should be done here.  */
1776 	      val = bfd_get_64 (input_bfd,
1777 				contents + r_vaddr - input_section->vma);
1778 	      val &=~ mask << (bfd_vma) r_offset;
1779 	      val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1780 	      bfd_put_64 (input_bfd, val,
1781 			  contents + r_vaddr - input_section->vma);
1782 	    }
1783 	  break;
1784 
1785 	case ALPHA_R_GPVALUE:
1786 	  /* I really don't know if this does the right thing.  */
1787 	  gp = ecoff_data (input_bfd)->gp + r_symndx;
1788 	  gp_undefined = FALSE;
1789 	  break;
1790 	}
1791 
1792       if (relocatep)
1793 	{
1794 	  reloc_howto_type *howto;
1795 	  struct ecoff_link_hash_entry *h = NULL;
1796 	  asection *s = NULL;
1797 	  bfd_vma relocation;
1798 	  bfd_reloc_status_type r;
1799 
1800 	  /* Perform a relocation.  */
1801 
1802 	  howto = &alpha_howto_table[r_type];
1803 
1804 	  if (r_extern)
1805 	    {
1806 	      h = sym_hashes[r_symndx];
1807 	      /* If h is NULL, that means that there is a reloc
1808 		 against an external symbol which we thought was just
1809 		 a debugging symbol.  This should not happen.  */
1810 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1811 		abort ();
1812 	    }
1813 	  else
1814 	    {
1815 	      if (r_symndx >= NUM_RELOC_SECTIONS)
1816 		s = NULL;
1817 	      else
1818 		s = symndx_to_section[r_symndx];
1819 
1820 	      if (s == (asection *) NULL)
1821 		abort ();
1822 	    }
1823 
1824 	  if (bfd_link_relocatable (info))
1825 	    {
1826 	      /* We are generating relocatable output, and must
1827 		 convert the existing reloc.  */
1828 	      if (r_extern)
1829 		{
1830 		  if (h->root.type != bfd_link_hash_defined
1831 		      && h->root.type != bfd_link_hash_defweak
1832 		      && h->indx == -1)
1833 		    {
1834 		      /* This symbol is not being written out.  */
1835 		      (*info->callbacks->unattached_reloc)
1836 			(info, h->root.root.string, input_bfd,
1837 			 input_section, r_vaddr - input_section->vma);
1838 		    }
1839 
1840 		  relocation = alpha_convert_external_reloc (output_bfd,
1841 							     info,
1842 							     input_bfd,
1843 							     ext_rel,
1844 							     h);
1845 		}
1846 	      else
1847 		{
1848 		  /* This is a relocation against a section.  Adjust
1849 		     the value by the amount the section moved.  */
1850 		  relocation = (s->output_section->vma
1851 				+ s->output_offset
1852 				- s->vma);
1853 		}
1854 
1855 	      /* If this is PC relative, the existing object file
1856 		 appears to already have the reloc worked out.  We
1857 		 must subtract out the old value and add in the new
1858 		 one.  */
1859 	      if (howto->pc_relative)
1860 		relocation -= (input_section->output_section->vma
1861 			       + input_section->output_offset
1862 			       - input_section->vma);
1863 
1864 	      /* Put in any addend.  */
1865 	      relocation += addend;
1866 
1867 	      /* Adjust the contents.  */
1868 	      r = _bfd_relocate_contents (howto, input_bfd, relocation,
1869 					  (contents
1870 					   + r_vaddr
1871 					   - input_section->vma));
1872 	    }
1873 	  else
1874 	    {
1875 	      /* We are producing a final executable.  */
1876 	      if (r_extern)
1877 		{
1878 		  /* This is a reloc against a symbol.  */
1879 		  if (h->root.type == bfd_link_hash_defined
1880 		      || h->root.type == bfd_link_hash_defweak)
1881 		    {
1882 		      asection *hsec;
1883 
1884 		      hsec = h->root.u.def.section;
1885 		      relocation = (h->root.u.def.value
1886 				    + hsec->output_section->vma
1887 				    + hsec->output_offset);
1888 		    }
1889 		  else
1890 		    {
1891 		      (*info->callbacks->undefined_symbol)
1892 			(info, h->root.root.string, input_bfd, input_section,
1893 			 r_vaddr - input_section->vma, TRUE);
1894 		      relocation = 0;
1895 		    }
1896 		}
1897 	      else
1898 		{
1899 		  /* This is a reloc against a section.  */
1900 		  relocation = (s->output_section->vma
1901 				+ s->output_offset
1902 				- s->vma);
1903 
1904 		  /* Adjust a PC relative relocation by removing the
1905 		     reference to the original source section.  */
1906 		  if (howto->pc_relative)
1907 		    relocation += input_section->vma;
1908 		}
1909 
1910 	      r = _bfd_final_link_relocate (howto,
1911 					    input_bfd,
1912 					    input_section,
1913 					    contents,
1914 					    r_vaddr - input_section->vma,
1915 					    relocation,
1916 					    addend);
1917 	    }
1918 
1919 	  if (r != bfd_reloc_ok)
1920 	    {
1921 	      switch (r)
1922 		{
1923 		default:
1924 		case bfd_reloc_outofrange:
1925 		  abort ();
1926 		case bfd_reloc_overflow:
1927 		  {
1928 		    const char *name;
1929 
1930 		    if (r_extern)
1931 		      name = sym_hashes[r_symndx]->root.root.string;
1932 		    else
1933 		      name = bfd_section_name (input_bfd,
1934 					       symndx_to_section[r_symndx]);
1935 		    (*info->callbacks->reloc_overflow)
1936 		      (info, NULL, name, alpha_howto_table[r_type].name,
1937 		       (bfd_vma) 0, input_bfd, input_section,
1938 		       r_vaddr - input_section->vma);
1939 		  }
1940 		  break;
1941 		}
1942 	    }
1943 	}
1944 
1945       if (bfd_link_relocatable (info) && adjust_addrp)
1946 	{
1947 	  /* Change the address of the relocation.  */
1948 	  H_PUT_64 (input_bfd,
1949 		    (input_section->output_section->vma
1950 		     + input_section->output_offset
1951 		     - input_section->vma
1952 		     + r_vaddr),
1953 		    ext_rel->r_vaddr);
1954 	}
1955 
1956       if (gp_usedp && gp_undefined)
1957 	{
1958 	  (*info->callbacks->reloc_dangerous)
1959 	    (info, _("GP relative relocation used when GP not defined"),
1960 	     input_bfd, input_section, r_vaddr - input_section->vma);
1961 	  /* Only give the error once per link.  */
1962 	  gp = 4;
1963 	  _bfd_set_gp_value (output_bfd, gp);
1964 	  gp_undefined = FALSE;
1965 	}
1966     }
1967 
1968   if (tos != 0)
1969     abort ();
1970 
1971   return TRUE;
1972 }
1973 
1974 /* Do final adjustments to the filehdr and the aouthdr.  This routine
1975    sets the dynamic bits in the file header.  */
1976 
1977 static bfd_boolean
alpha_adjust_headers(bfd * abfd,struct internal_filehdr * fhdr,struct internal_aouthdr * ahdr ATTRIBUTE_UNUSED)1978 alpha_adjust_headers (bfd *abfd,
1979 		      struct internal_filehdr *fhdr,
1980 		      struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED)
1981 {
1982   if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
1983     fhdr->f_flags |= F_ALPHA_CALL_SHARED;
1984   else if ((abfd->flags & DYNAMIC) != 0)
1985     fhdr->f_flags |= F_ALPHA_SHARABLE;
1986   return TRUE;
1987 }
1988 
1989 /* Archive handling.  In OSF/1 (or Digital Unix) v3.2, Digital
1990    introduced archive packing, in which the elements in an archive are
1991    optionally compressed using a simple dictionary scheme.  We know
1992    how to read such archives, but we don't write them.  */
1993 
1994 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
1995 #define alpha_ecoff_slurp_extended_name_table \
1996   _bfd_ecoff_slurp_extended_name_table
1997 #define alpha_ecoff_construct_extended_name_table \
1998   _bfd_ecoff_construct_extended_name_table
1999 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
2000 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap
2001 #define alpha_ecoff_write_ar_hdr _bfd_generic_write_ar_hdr
2002 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
2003 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
2004 
2005 /* A compressed file uses this instead of ARFMAG.  */
2006 
2007 #define ARFZMAG "Z\012"
2008 
2009 /* Read an archive header.  This is like the standard routine, but it
2010    also accepts ARFZMAG.  */
2011 
2012 static void *
alpha_ecoff_read_ar_hdr(bfd * abfd)2013 alpha_ecoff_read_ar_hdr (bfd *abfd)
2014 {
2015   struct areltdata *ret;
2016   struct ar_hdr *h;
2017 
2018   ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2019   if (ret == NULL)
2020     return NULL;
2021 
2022   h = (struct ar_hdr *) ret->arch_header;
2023   if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2024     {
2025       bfd_byte ab[8];
2026 
2027       /* This is a compressed file.  We must set the size correctly.
2028          The size is the eight bytes after the dummy file header.  */
2029       if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0
2030 	  || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8
2031 	  || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0)
2032 	return NULL;
2033 
2034       ret->parsed_size = H_GET_64 (abfd, ab);
2035     }
2036 
2037   return ret;
2038 }
2039 
2040 /* Get an archive element at a specified file position.  This is where
2041    we uncompress the archive element if necessary.  */
2042 
2043 static bfd *
alpha_ecoff_get_elt_at_filepos(bfd * archive,file_ptr filepos)2044 alpha_ecoff_get_elt_at_filepos (bfd *archive, file_ptr filepos)
2045 {
2046   bfd *nbfd = NULL;
2047   struct areltdata *tdata;
2048   struct ar_hdr *hdr;
2049   bfd_byte ab[8];
2050   bfd_size_type size;
2051   bfd_byte *buf, *p;
2052   struct bfd_in_memory *bim;
2053 
2054   buf = NULL;
2055   nbfd = _bfd_get_elt_at_filepos (archive, filepos);
2056   if (nbfd == NULL)
2057     goto error_return;
2058 
2059   if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2060     {
2061       /* We have already expanded this BFD.  */
2062       return nbfd;
2063     }
2064 
2065   tdata = (struct areltdata *) nbfd->arelt_data;
2066   hdr = (struct ar_hdr *) tdata->arch_header;
2067   if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2068     return nbfd;
2069 
2070   /* We must uncompress this element.  We do this by copying it into a
2071      memory buffer, and making bfd_bread and bfd_seek use that buffer.
2072      This can use a lot of memory, but it's simpler than getting a
2073      temporary file, making that work with the file descriptor caching
2074      code, and making sure that it is deleted at all appropriate
2075      times.  It can be changed if it ever becomes important.  */
2076 
2077   /* The compressed file starts with a dummy ECOFF file header.  */
2078   if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0)
2079     goto error_return;
2080 
2081   /* The next eight bytes are the real file size.  */
2082   if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2083     goto error_return;
2084   size = H_GET_64 (nbfd, ab);
2085 
2086   if (size != 0)
2087     {
2088       bfd_size_type left;
2089       bfd_byte dict[4096];
2090       unsigned int h;
2091       bfd_byte b;
2092 
2093       buf = (bfd_byte *) bfd_malloc (size);
2094       if (buf == NULL)
2095 	goto error_return;
2096       p = buf;
2097 
2098       left = size;
2099 
2100       /* I don't know what the next eight bytes are for.  */
2101       if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2102 	goto error_return;
2103 
2104       /* This is the uncompression algorithm.  It's a simple
2105 	 dictionary based scheme in which each character is predicted
2106 	 by a hash of the previous three characters.  A control byte
2107 	 indicates whether the character is predicted or whether it
2108 	 appears in the input stream; each control byte manages the
2109 	 next eight bytes in the output stream.  */
2110       memset (dict, 0, sizeof dict);
2111       h = 0;
2112       while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1)
2113 	{
2114 	  unsigned int i;
2115 
2116 	  for (i = 0; i < 8; i++, b >>= 1)
2117 	    {
2118 	      bfd_byte n;
2119 
2120 	      if ((b & 1) == 0)
2121 		n = dict[h];
2122 	      else
2123 		{
2124 		  if (! bfd_bread (&n, (bfd_size_type) 1, nbfd))
2125 		    goto error_return;
2126 		  dict[h] = n;
2127 		}
2128 
2129 	      *p++ = n;
2130 
2131 	      --left;
2132 	      if (left == 0)
2133 		break;
2134 
2135 	      h <<= 4;
2136 	      h ^= n;
2137 	      h &= sizeof dict - 1;
2138 	    }
2139 
2140 	  if (left == 0)
2141 	    break;
2142 	}
2143     }
2144 
2145   /* Now the uncompressed file contents are in buf.  */
2146   bim = ((struct bfd_in_memory *)
2147 	 bfd_malloc ((bfd_size_type) sizeof (struct bfd_in_memory)));
2148   if (bim == NULL)
2149     goto error_return;
2150   bim->size = size;
2151   bim->buffer = buf;
2152 
2153   nbfd->mtime_set = TRUE;
2154   nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2155 
2156   nbfd->flags |= BFD_IN_MEMORY;
2157   nbfd->iostream = bim;
2158   nbfd->iovec = &_bfd_memory_iovec;
2159   nbfd->origin = 0;
2160   BFD_ASSERT (! nbfd->cacheable);
2161 
2162   return nbfd;
2163 
2164  error_return:
2165   if (buf != NULL)
2166     free (buf);
2167   if (nbfd != NULL)
2168     bfd_close (nbfd);
2169   return NULL;
2170 }
2171 
2172 /* Open the next archived file.  */
2173 
2174 static bfd *
alpha_ecoff_openr_next_archived_file(bfd * archive,bfd * last_file)2175 alpha_ecoff_openr_next_archived_file (bfd *archive, bfd *last_file)
2176 {
2177   ufile_ptr filestart;
2178 
2179   if (last_file == NULL)
2180     filestart = bfd_ardata (archive)->first_file_filepos;
2181   else
2182     {
2183       struct areltdata *t;
2184       struct ar_hdr *h;
2185       bfd_size_type size;
2186 
2187       /* We can't use arelt_size here, because that uses parsed_size,
2188          which is the uncompressed size.  We need the compressed size.  */
2189       t = (struct areltdata *) last_file->arelt_data;
2190       h = (struct ar_hdr *) t->arch_header;
2191       size = strtol (h->ar_size, (char **) NULL, 10);
2192 
2193       /* Pad to an even boundary...
2194 	 Note that last_file->origin can be odd in the case of
2195 	 BSD-4.4-style element with a long odd size.  */
2196       filestart = last_file->proxy_origin + size;
2197       filestart += filestart % 2;
2198       if (filestart < last_file->proxy_origin)
2199 	{
2200 	  /* Prevent looping.  See PR19256.  */
2201 	  bfd_set_error (bfd_error_malformed_archive);
2202 	  return NULL;
2203 	}
2204     }
2205 
2206   return alpha_ecoff_get_elt_at_filepos (archive, filestart);
2207 }
2208 
2209 /* Open the archive file given an index into the armap.  */
2210 
2211 static bfd *
alpha_ecoff_get_elt_at_index(bfd * abfd,symindex sym_index)2212 alpha_ecoff_get_elt_at_index (bfd *abfd, symindex sym_index)
2213 {
2214   carsym *entry;
2215 
2216   entry = bfd_ardata (abfd)->symdefs + sym_index;
2217   return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset);
2218 }
2219 
2220 /* This is the ECOFF backend structure.  The backend field of the
2221    target vector points to this.  */
2222 
2223 static const struct ecoff_backend_data alpha_ecoff_backend_data =
2224 {
2225   /* COFF backend structure.  */
2226   {
2227     (void (*) (bfd *,void *,int,int,int,int,void *)) bfd_void, /* aux_in */
2228     (void (*) (bfd *,void *,void *)) bfd_void, /* sym_in */
2229     (void (*) (bfd *,void *,void *)) bfd_void, /* lineno_in */
2230     (unsigned (*) (bfd *,void *,int,int,int,int,void *)) bfd_void,/*aux_out*/
2231     (unsigned (*) (bfd *,void *,void *)) bfd_void, /* sym_out */
2232     (unsigned (*) (bfd *,void *,void *)) bfd_void, /* lineno_out */
2233     (unsigned (*) (bfd *,void *,void *)) bfd_void, /* reloc_out */
2234     alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2235     alpha_ecoff_swap_scnhdr_out,
2236     FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, TRUE,
2237     ECOFF_NO_LONG_SECTION_NAMES, 4, FALSE, 2, 32768,
2238     alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2239     alpha_ecoff_swap_scnhdr_in, NULL,
2240     alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2241     alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2242     _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2243     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2244     NULL, NULL, NULL, NULL
2245   },
2246   /* Supported architecture.  */
2247   bfd_arch_alpha,
2248   /* Initial portion of armap string.  */
2249   "________64",
2250   /* The page boundary used to align sections in a demand-paged
2251      executable file.  E.g., 0x1000.  */
2252   0x2000,
2253   /* TRUE if the .rdata section is part of the text segment, as on the
2254      Alpha.  FALSE if .rdata is part of the data segment, as on the
2255      MIPS.  */
2256   TRUE,
2257   /* Bitsize of constructor entries.  */
2258   64,
2259   /* Reloc to use for constructor entries.  */
2260   &alpha_howto_table[ALPHA_R_REFQUAD],
2261   {
2262     /* Symbol table magic number.  */
2263     magicSym2,
2264     /* Alignment of debugging information.  E.g., 4.  */
2265     8,
2266     /* Sizes of external symbolic information.  */
2267     sizeof (struct hdr_ext),
2268     sizeof (struct dnr_ext),
2269     sizeof (struct pdr_ext),
2270     sizeof (struct sym_ext),
2271     sizeof (struct opt_ext),
2272     sizeof (struct fdr_ext),
2273     sizeof (struct rfd_ext),
2274     sizeof (struct ext_ext),
2275     /* Functions to swap in external symbolic data.  */
2276     ecoff_swap_hdr_in,
2277     ecoff_swap_dnr_in,
2278     ecoff_swap_pdr_in,
2279     ecoff_swap_sym_in,
2280     ecoff_swap_opt_in,
2281     ecoff_swap_fdr_in,
2282     ecoff_swap_rfd_in,
2283     ecoff_swap_ext_in,
2284     _bfd_ecoff_swap_tir_in,
2285     _bfd_ecoff_swap_rndx_in,
2286     /* Functions to swap out external symbolic data.  */
2287     ecoff_swap_hdr_out,
2288     ecoff_swap_dnr_out,
2289     ecoff_swap_pdr_out,
2290     ecoff_swap_sym_out,
2291     ecoff_swap_opt_out,
2292     ecoff_swap_fdr_out,
2293     ecoff_swap_rfd_out,
2294     ecoff_swap_ext_out,
2295     _bfd_ecoff_swap_tir_out,
2296     _bfd_ecoff_swap_rndx_out,
2297     /* Function to read in symbolic data.  */
2298     _bfd_ecoff_slurp_symbolic_info
2299   },
2300   /* External reloc size.  */
2301   RELSZ,
2302   /* Reloc swapping functions.  */
2303   alpha_ecoff_swap_reloc_in,
2304   alpha_ecoff_swap_reloc_out,
2305   /* Backend reloc tweaking.  */
2306   alpha_adjust_reloc_in,
2307   alpha_adjust_reloc_out,
2308   /* Relocate section contents while linking.  */
2309   alpha_relocate_section,
2310   /* Do final adjustments to filehdr and aouthdr.  */
2311   alpha_adjust_headers,
2312   /* Read an element from an archive at a given file position.  */
2313   alpha_ecoff_get_elt_at_filepos
2314 };
2315 
2316 /* Looking up a reloc type is Alpha specific.  */
2317 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2318 #define _bfd_ecoff_bfd_reloc_name_lookup \
2319   alpha_bfd_reloc_name_lookup
2320 
2321 /* So is getting relocated section contents.  */
2322 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2323   alpha_ecoff_get_relocated_section_contents
2324 
2325 /* Handling file windows is generic.  */
2326 #define _bfd_ecoff_get_section_contents_in_window \
2327   _bfd_generic_get_section_contents_in_window
2328 
2329 /* Input section flag lookup is generic.  */
2330 #define _bfd_ecoff_bfd_lookup_section_flags bfd_generic_lookup_section_flags
2331 
2332 /* Relaxing sections is generic.  */
2333 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2334 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2335 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2336 #define _bfd_ecoff_bfd_is_group_section bfd_generic_is_group_section
2337 #define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group
2338 #define _bfd_ecoff_section_already_linked \
2339   _bfd_coff_section_already_linked
2340 #define _bfd_ecoff_bfd_define_common_symbol bfd_generic_define_common_symbol
2341 #define _bfd_ecoff_bfd_link_check_relocs    _bfd_generic_link_check_relocs
2342 
2343 const bfd_target alpha_ecoff_le_vec =
2344 {
2345   "ecoff-littlealpha",		/* name */
2346   bfd_target_ecoff_flavour,
2347   BFD_ENDIAN_LITTLE,		/* data byte order is little */
2348   BFD_ENDIAN_LITTLE,		/* header byte order is little */
2349 
2350   (HAS_RELOC | EXEC_P |		/* object flags */
2351    HAS_LINENO | HAS_DEBUG |
2352    HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2353 
2354   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2355   0,				/* leading underscore */
2356   ' ',				/* ar_pad_char */
2357   15,				/* ar_max_namelen */
2358   0,				/* match priority.  */
2359   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2360      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2361      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2362   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2363      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2364      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2365 
2366   {_bfd_dummy_target, alpha_ecoff_object_p, /* bfd_check_format */
2367      bfd_generic_archive_p, _bfd_dummy_target},
2368   {bfd_false, _bfd_ecoff_mkobject,  /* bfd_set_format */
2369      _bfd_generic_mkarchive, bfd_false},
2370   {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2371      _bfd_write_archive_contents, bfd_false},
2372 
2373      BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2374      BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2375      BFD_JUMP_TABLE_CORE (_bfd_nocore),
2376      BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2377      BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2378      BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2379      BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2380      BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2381      BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2382 
2383   NULL,
2384 
2385   & alpha_ecoff_backend_data
2386 };
2387