1 // merge.cc -- handle section merging for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <algorithm>
27
28 #include "merge.h"
29 #include "compressed_output.h"
30
31 namespace gold
32 {
33
34 // Class Object_merge_map.
35
36 // Destructor.
37
~Object_merge_map()38 Object_merge_map::~Object_merge_map()
39 {
40 for (Section_merge_maps::iterator p = this->section_merge_maps_.begin();
41 p != this->section_merge_maps_.end();
42 ++p)
43 delete p->second;
44 }
45
46 // Get the Input_merge_map to use for an input section, or NULL.
47
48 const Object_merge_map::Input_merge_map*
get_input_merge_map(unsigned int shndx) const49 Object_merge_map::get_input_merge_map(unsigned int shndx) const
50 {
51 gold_assert(shndx != -1U);
52 const Section_merge_maps &maps = this->section_merge_maps_;
53 for (Section_merge_maps::const_iterator i = maps.begin(), e = maps.end();
54 i != e; ++i)
55 {
56 if (i->first == shndx)
57 return i->second;
58 }
59 return NULL;
60 }
61
62 // Get or create the Input_merge_map to use for an input section.
63
64 Object_merge_map::Input_merge_map*
get_or_make_input_merge_map(const Output_section_data * output_data,unsigned int shndx)65 Object_merge_map::get_or_make_input_merge_map(
66 const Output_section_data* output_data, unsigned int shndx) {
67 Input_merge_map* map = this->get_input_merge_map(shndx);
68 if (map != NULL)
69 {
70 // For a given input section in a given object, every mapping
71 // must be done with the same Merge_map.
72 gold_assert(map->output_data == output_data);
73 return map;
74 }
75
76 Input_merge_map* new_map = new Input_merge_map;
77 new_map->output_data = output_data;
78 Section_merge_maps &maps = this->section_merge_maps_;
79 maps.push_back(std::make_pair(shndx, new_map));
80 return new_map;
81 }
82
83 // Add a mapping.
84
85 void
add_mapping(const Output_section_data * output_data,unsigned int shndx,section_offset_type input_offset,section_size_type length,section_offset_type output_offset)86 Object_merge_map::add_mapping(const Output_section_data* output_data,
87 unsigned int shndx,
88 section_offset_type input_offset,
89 section_size_type length,
90 section_offset_type output_offset)
91 {
92 Input_merge_map* map = this->get_or_make_input_merge_map(output_data, shndx);
93 map->add_mapping(input_offset, length, output_offset);
94 }
95
96 void
add_mapping(section_offset_type input_offset,section_size_type length,section_offset_type output_offset)97 Object_merge_map::Input_merge_map::add_mapping(
98 section_offset_type input_offset, section_size_type length,
99 section_offset_type output_offset) {
100 // Try to merge the new entry in the last one we saw.
101 if (!this->entries.empty())
102 {
103 Input_merge_entry& entry(this->entries.back());
104
105 // Use section_size_type to avoid signed/unsigned warnings.
106 section_size_type input_offset_u = input_offset;
107 section_size_type output_offset_u = output_offset;
108
109 // If this entry is not in order, we need to sort the vector
110 // before looking anything up.
111 if (input_offset_u < entry.input_offset + entry.length)
112 {
113 gold_assert(input_offset < entry.input_offset);
114 gold_assert(input_offset_u + length
115 <= static_cast<section_size_type>(entry.input_offset));
116 this->sorted = false;
117 }
118 else if (entry.input_offset + entry.length == input_offset_u
119 && (output_offset == -1
120 ? entry.output_offset == -1
121 : entry.output_offset + entry.length == output_offset_u))
122 {
123 entry.length += length;
124 return;
125 }
126 }
127
128 Input_merge_entry entry;
129 entry.input_offset = input_offset;
130 entry.length = length;
131 entry.output_offset = output_offset;
132 this->entries.push_back(entry);
133 }
134
135 // Get the output offset for an input address.
136
137 bool
get_output_offset(unsigned int shndx,section_offset_type input_offset,section_offset_type * output_offset)138 Object_merge_map::get_output_offset(unsigned int shndx,
139 section_offset_type input_offset,
140 section_offset_type* output_offset)
141 {
142 Input_merge_map* map = this->get_input_merge_map(shndx);
143 if (map == NULL)
144 return false;
145
146 if (!map->sorted)
147 {
148 std::sort(map->entries.begin(), map->entries.end(),
149 Input_merge_compare());
150 map->sorted = true;
151 }
152
153 Input_merge_entry entry;
154 entry.input_offset = input_offset;
155 std::vector<Input_merge_entry>::const_iterator p =
156 std::upper_bound(map->entries.begin(), map->entries.end(),
157 entry, Input_merge_compare());
158 if (p == map->entries.begin())
159 return false;
160 --p;
161 gold_assert(p->input_offset <= input_offset);
162
163 if (input_offset - p->input_offset
164 >= static_cast<section_offset_type>(p->length))
165 return false;
166
167 *output_offset = p->output_offset;
168 if (*output_offset != -1)
169 *output_offset += (input_offset - p->input_offset);
170 return true;
171 }
172
173 // Return whether this is the merge map for section SHNDX.
174
175 const Output_section_data*
find_merge_section(unsigned int shndx) const176 Object_merge_map::find_merge_section(unsigned int shndx) const {
177 const Object_merge_map::Input_merge_map* map =
178 this->get_input_merge_map(shndx);
179 if (map == NULL)
180 return NULL;
181 return map->output_data;
182 }
183
184 // Initialize a mapping from input offsets to output addresses.
185
186 template<int size>
187 void
initialize_input_to_output_map(unsigned int shndx,typename elfcpp::Elf_types<size>::Elf_Addr starting_address,Unordered_map<section_offset_type,typename elfcpp::Elf_types<size>::Elf_Addr> * initialize_map)188 Object_merge_map::initialize_input_to_output_map(
189 unsigned int shndx,
190 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
191 Unordered_map<section_offset_type,
192 typename elfcpp::Elf_types<size>::Elf_Addr>* initialize_map)
193 {
194 Input_merge_map* map = this->get_input_merge_map(shndx);
195 gold_assert(map != NULL);
196
197 gold_assert(initialize_map->empty());
198 // We know how many entries we are going to add.
199 // reserve_unordered_map takes an expected count of buckets, not a
200 // count of elements, so double it to try to reduce collisions.
201 reserve_unordered_map(initialize_map, map->entries.size() * 2);
202
203 for (Input_merge_map::Entries::const_iterator p = map->entries.begin();
204 p != map->entries.end();
205 ++p)
206 {
207 section_offset_type output_offset = p->output_offset;
208 if (output_offset != -1)
209 output_offset += starting_address;
210 else
211 {
212 // If we see a relocation against an address we have chosen
213 // to discard, we relocate to zero. FIXME: We could also
214 // issue a warning in this case; that would require
215 // reporting this somehow and checking it in the routines in
216 // reloc.h.
217 output_offset = 0;
218 }
219 initialize_map->insert(std::make_pair(p->input_offset, output_offset));
220 }
221 }
222
223 // Class Output_merge_base.
224
225 // Return the output offset for an input offset. The input address is
226 // at offset OFFSET in section SHNDX in OBJECT. If we know the
227 // offset, set *POUTPUT and return true. Otherwise return false.
228
229 bool
do_output_offset(const Relobj * object,unsigned int shndx,section_offset_type offset,section_offset_type * poutput) const230 Output_merge_base::do_output_offset(const Relobj* object,
231 unsigned int shndx,
232 section_offset_type offset,
233 section_offset_type* poutput) const
234 {
235 return object->merge_output_offset(shndx, offset, poutput);
236 }
237
238 // Record a merged input section for script processing.
239
240 void
record_input_section(Relobj * relobj,unsigned int shndx)241 Output_merge_base::record_input_section(Relobj* relobj, unsigned int shndx)
242 {
243 gold_assert(this->keeps_input_sections_ && relobj != NULL);
244 // If this is the first input section, record it. We need do this because
245 // this->input_sections_ is unordered.
246 if (this->first_relobj_ == NULL)
247 {
248 this->first_relobj_ = relobj;
249 this->first_shndx_ = shndx;
250 }
251
252 std::pair<Input_sections::iterator, bool> result =
253 this->input_sections_.insert(Section_id(relobj, shndx));
254 // We should insert a merge section once only.
255 gold_assert(result.second);
256 }
257
258 // Class Output_merge_data.
259
260 // Compute the hash code for a fixed-size constant.
261
262 size_t
operator ()(Merge_data_key k) const263 Output_merge_data::Merge_data_hash::operator()(Merge_data_key k) const
264 {
265 const unsigned char* p = this->pomd_->constant(k);
266 section_size_type entsize =
267 convert_to_section_size_type(this->pomd_->entsize());
268
269 // Fowler/Noll/Vo (FNV) hash (type FNV-1a).
270 if (sizeof(size_t) == 8)
271 {
272 size_t result = static_cast<size_t>(14695981039346656037ULL);
273 for (section_size_type i = 0; i < entsize; ++i)
274 {
275 result &= (size_t) *p++;
276 result *= 1099511628211ULL;
277 }
278 return result;
279 }
280 else
281 {
282 size_t result = 2166136261UL;
283 for (section_size_type i = 0; i < entsize; ++i)
284 {
285 result ^= (size_t) *p++;
286 result *= 16777619UL;
287 }
288 return result;
289 }
290 }
291
292 // Return whether one hash table key equals another.
293
294 bool
operator ()(Merge_data_key k1,Merge_data_key k2) const295 Output_merge_data::Merge_data_eq::operator()(Merge_data_key k1,
296 Merge_data_key k2) const
297 {
298 const unsigned char* p1 = this->pomd_->constant(k1);
299 const unsigned char* p2 = this->pomd_->constant(k2);
300 return memcmp(p1, p2, this->pomd_->entsize()) == 0;
301 }
302
303 // Add a constant to the end of the section contents.
304
305 void
add_constant(const unsigned char * p)306 Output_merge_data::add_constant(const unsigned char* p)
307 {
308 section_size_type entsize = convert_to_section_size_type(this->entsize());
309 section_size_type addralign =
310 convert_to_section_size_type(this->addralign());
311 section_size_type addsize = std::max(entsize, addralign);
312 if (this->len_ + addsize > this->alc_)
313 {
314 if (this->alc_ == 0)
315 this->alc_ = 128 * addsize;
316 else
317 this->alc_ *= 2;
318 this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->alc_));
319 if (this->p_ == NULL)
320 gold_nomem();
321 }
322
323 memcpy(this->p_ + this->len_, p, entsize);
324 if (addsize > entsize)
325 memset(this->p_ + this->len_ + entsize, 0, addsize - entsize);
326 this->len_ += addsize;
327 }
328
329 // Add the input section SHNDX in OBJECT to a merged output section
330 // which holds fixed length constants. Return whether we were able to
331 // handle the section; if not, it will be linked as usual without
332 // constant merging.
333
334 bool
do_add_input_section(Relobj * object,unsigned int shndx)335 Output_merge_data::do_add_input_section(Relobj* object, unsigned int shndx)
336 {
337 section_size_type len;
338 bool is_new;
339 const unsigned char* p = object->decompressed_section_contents(shndx, &len,
340 &is_new);
341
342 section_size_type entsize = convert_to_section_size_type(this->entsize());
343
344 if (len % entsize != 0)
345 {
346 if (is_new)
347 delete[] p;
348 return false;
349 }
350
351 this->input_count_ += len / entsize;
352
353 Object_merge_map* merge_map = object->get_or_create_merge_map();
354 Object_merge_map::Input_merge_map* input_merge_map =
355 merge_map->get_or_make_input_merge_map(this, shndx);
356
357 for (section_size_type i = 0; i < len; i += entsize, p += entsize)
358 {
359 // Add the constant to the section contents. If we find that it
360 // is already in the hash table, we will remove it again.
361 Merge_data_key k = this->len_;
362 this->add_constant(p);
363
364 std::pair<Merge_data_hashtable::iterator, bool> ins =
365 this->hashtable_.insert(k);
366
367 if (!ins.second)
368 {
369 // Key was already present. Remove the copy we just added.
370 this->len_ -= entsize;
371 k = *ins.first;
372 }
373
374 // Record the offset of this constant in the output section.
375 input_merge_map->add_mapping(i, entsize, k);
376 }
377
378 // For script processing, we keep the input sections.
379 if (this->keeps_input_sections())
380 record_input_section(object, shndx);
381
382 if (is_new)
383 delete[] p;
384
385 return true;
386 }
387
388 // Set the final data size in a merged output section with fixed size
389 // constants.
390
391 void
set_final_data_size()392 Output_merge_data::set_final_data_size()
393 {
394 // Release the memory we don't need.
395 this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->len_));
396 // An Output_merge_data object may be empty and realloc is allowed
397 // to return a NULL pointer in this case. An Output_merge_data is empty
398 // if all its input sections have sizes that are not multiples of entsize.
399 gold_assert(this->p_ != NULL || this->len_ == 0);
400 this->set_data_size(this->len_);
401 }
402
403 // Write the data of a merged output section with fixed size constants
404 // to the file.
405
406 void
do_write(Output_file * of)407 Output_merge_data::do_write(Output_file* of)
408 {
409 of->write(this->offset(), this->p_, this->len_);
410 }
411
412 // Write the data to a buffer.
413
414 void
do_write_to_buffer(unsigned char * buffer)415 Output_merge_data::do_write_to_buffer(unsigned char* buffer)
416 {
417 memcpy(buffer, this->p_, this->len_);
418 }
419
420 // Print merge stats to stderr.
421
422 void
do_print_merge_stats(const char * section_name)423 Output_merge_data::do_print_merge_stats(const char* section_name)
424 {
425 fprintf(stderr,
426 _("%s: %s merged constants size: %lu; input: %zu; output: %zu\n"),
427 program_name, section_name,
428 static_cast<unsigned long>(this->entsize()),
429 this->input_count_, this->hashtable_.size());
430 }
431
432 // Class Output_merge_string.
433
434 // Add an input section to a merged string section.
435
436 template<typename Char_type>
437 bool
do_add_input_section(Relobj * object,unsigned int shndx)438 Output_merge_string<Char_type>::do_add_input_section(Relobj* object,
439 unsigned int shndx)
440 {
441 section_size_type sec_len;
442 bool is_new;
443 const unsigned char* pdata = object->decompressed_section_contents(shndx,
444 &sec_len,
445 &is_new);
446
447 const Char_type* p = reinterpret_cast<const Char_type*>(pdata);
448 const Char_type* pend = p + sec_len / sizeof(Char_type);
449 const Char_type* pend0 = pend;
450
451 if (sec_len % sizeof(Char_type) != 0)
452 {
453 object->error(_("mergeable string section length not multiple of "
454 "character size"));
455 if (is_new)
456 delete[] pdata;
457 return false;
458 }
459
460 if (pend[-1] != 0)
461 {
462 gold_warning(_("%s: last entry in mergeable string section '%s' "
463 "not null terminated"),
464 object->name().c_str(),
465 object->section_name(shndx).c_str());
466 // Find the end of the last NULL-terminated string in the buffer.
467 while (pend0 > p && pend0[-1] != 0)
468 --pend0;
469 }
470
471 Merged_strings_list* merged_strings_list =
472 new Merged_strings_list(object, shndx);
473 this->merged_strings_lists_.push_back(merged_strings_list);
474 Merged_strings& merged_strings = merged_strings_list->merged_strings;
475
476 // Count the number of non-null strings in the section and size the list.
477 size_t count = 0;
478 const Char_type* pt = p;
479 while (pt < pend0)
480 {
481 size_t len = string_length(pt);
482 if (len != 0)
483 ++count;
484 pt += len + 1;
485 }
486 if (pend0 < pend)
487 ++count;
488 merged_strings.reserve(count + 1);
489
490 // The index I is in bytes, not characters.
491 section_size_type i = 0;
492
493 // We assume here that the beginning of the section is correctly
494 // aligned, so each string within the section must retain the same
495 // modulo.
496 uintptr_t init_align_modulo = (reinterpret_cast<uintptr_t>(pdata)
497 & (this->addralign() - 1));
498 bool has_misaligned_strings = false;
499
500 while (p < pend)
501 {
502 size_t len = p < pend0 ? string_length(p) : pend - p;
503
504 // Within merge input section each string must be aligned.
505 if (len != 0
506 && ((reinterpret_cast<uintptr_t>(p) & (this->addralign() - 1))
507 != init_align_modulo))
508 has_misaligned_strings = true;
509
510 Stringpool::Key key;
511 this->stringpool_.add_with_length(p, len, true, &key);
512
513 merged_strings.push_back(Merged_string(i, key));
514 p += len + 1;
515 i += (len + 1) * sizeof(Char_type);
516 }
517
518 // Record the last offset in the input section so that we can
519 // compute the length of the last string.
520 merged_strings.push_back(Merged_string(i, 0));
521
522 this->input_count_ += count;
523 this->input_size_ += i;
524
525 if (has_misaligned_strings)
526 gold_warning(_("%s: section %s contains incorrectly aligned strings;"
527 " the alignment of those strings won't be preserved"),
528 object->name().c_str(),
529 object->section_name(shndx).c_str());
530
531 // For script processing, we keep the input sections.
532 if (this->keeps_input_sections())
533 record_input_section(object, shndx);
534
535 if (is_new)
536 delete[] pdata;
537
538 return true;
539 }
540
541 // Finalize the mappings from the input sections to the output
542 // section, and return the final data size.
543
544 template<typename Char_type>
545 section_size_type
finalize_merged_data()546 Output_merge_string<Char_type>::finalize_merged_data()
547 {
548 this->stringpool_.set_string_offsets();
549
550 for (typename Merged_strings_lists::const_iterator l =
551 this->merged_strings_lists_.begin();
552 l != this->merged_strings_lists_.end();
553 ++l)
554 {
555 section_offset_type last_input_offset = 0;
556 section_offset_type last_output_offset = 0;
557 Relobj *object = (*l)->object;
558 Object_merge_map* merge_map = object->get_or_create_merge_map();
559 Object_merge_map::Input_merge_map* input_merge_map =
560 merge_map->get_or_make_input_merge_map(this, (*l)->shndx);
561
562 for (typename Merged_strings::const_iterator p =
563 (*l)->merged_strings.begin();
564 p != (*l)->merged_strings.end();
565 ++p)
566 {
567 section_size_type length = p->offset - last_input_offset;
568 if (length > 0)
569 input_merge_map->add_mapping(last_input_offset, length,
570 last_output_offset);
571 last_input_offset = p->offset;
572 if (p->stringpool_key != 0)
573 last_output_offset =
574 this->stringpool_.get_offset_from_key(p->stringpool_key);
575 }
576 delete *l;
577 }
578
579 // Save some memory. This also ensures that this function will work
580 // if called twice, as may happen if Layout::set_segment_offsets
581 // finds a better alignment.
582 this->merged_strings_lists_.clear();
583
584 return this->stringpool_.get_strtab_size();
585 }
586
587 template<typename Char_type>
588 void
set_final_data_size()589 Output_merge_string<Char_type>::set_final_data_size()
590 {
591 const off_t final_data_size = this->finalize_merged_data();
592 this->set_data_size(final_data_size);
593 }
594
595 // Write out a merged string section.
596
597 template<typename Char_type>
598 void
do_write(Output_file * of)599 Output_merge_string<Char_type>::do_write(Output_file* of)
600 {
601 this->stringpool_.write(of, this->offset());
602 }
603
604 // Write a merged string section to a buffer.
605
606 template<typename Char_type>
607 void
do_write_to_buffer(unsigned char * buffer)608 Output_merge_string<Char_type>::do_write_to_buffer(unsigned char* buffer)
609 {
610 this->stringpool_.write_to_buffer(buffer, this->data_size());
611 }
612
613 // Return the name of the types of string to use with
614 // do_print_merge_stats.
615
616 template<typename Char_type>
617 const char*
string_name()618 Output_merge_string<Char_type>::string_name()
619 {
620 gold_unreachable();
621 return NULL;
622 }
623
624 template<>
625 const char*
string_name()626 Output_merge_string<char>::string_name()
627 {
628 return "strings";
629 }
630
631 template<>
632 const char*
string_name()633 Output_merge_string<uint16_t>::string_name()
634 {
635 return "16-bit strings";
636 }
637
638 template<>
639 const char*
string_name()640 Output_merge_string<uint32_t>::string_name()
641 {
642 return "32-bit strings";
643 }
644
645 // Print merge stats to stderr.
646
647 template<typename Char_type>
648 void
do_print_merge_stats(const char * section_name)649 Output_merge_string<Char_type>::do_print_merge_stats(const char* section_name)
650 {
651 char buf[200];
652 snprintf(buf, sizeof buf, "%s merged %s", section_name, this->string_name());
653 fprintf(stderr, _("%s: %s input bytes: %zu\n"),
654 program_name, buf, this->input_size_);
655 fprintf(stderr, _("%s: %s input strings: %zu\n"),
656 program_name, buf, this->input_count_);
657 this->stringpool_.print_stats(buf);
658 }
659
660 // Instantiate the templates we need.
661
662 template
663 class Output_merge_string<char>;
664
665 template
666 class Output_merge_string<uint16_t>;
667
668 template
669 class Output_merge_string<uint32_t>;
670
671 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
672 template
673 void
674 Object_merge_map::initialize_input_to_output_map<32>(
675 unsigned int shndx,
676 elfcpp::Elf_types<32>::Elf_Addr starting_address,
677 Unordered_map<section_offset_type, elfcpp::Elf_types<32>::Elf_Addr>*);
678 #endif
679
680 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
681 template
682 void
683 Object_merge_map::initialize_input_to_output_map<64>(
684 unsigned int shndx,
685 elfcpp::Elf_types<64>::Elf_Addr starting_address,
686 Unordered_map<section_offset_type, elfcpp::Elf_types<64>::Elf_Addr>*);
687 #endif
688
689 } // End namespace gold.
690