1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15	"encoding/binary"
16	"syscall"
17	"unsafe"
18)
19
20/*
21 * Wrapped
22 */
23
24func Access(path string, mode uint32) (err error) {
25	return Faccessat(AT_FDCWD, path, mode, 0)
26}
27
28func Chmod(path string, mode uint32) (err error) {
29	return Fchmodat(AT_FDCWD, path, mode, 0)
30}
31
32func Chown(path string, uid int, gid int) (err error) {
33	return Fchownat(AT_FDCWD, path, uid, gid, 0)
34}
35
36func Creat(path string, mode uint32) (fd int, err error) {
37	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
38}
39
40func EpollCreate(size int) (fd int, err error) {
41	if size <= 0 {
42		return -1, EINVAL
43	}
44	return EpollCreate1(0)
45}
46
47//sys	FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
48//sys	fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
49
50func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
51	if pathname == "" {
52		return fanotifyMark(fd, flags, mask, dirFd, nil)
53	}
54	p, err := BytePtrFromString(pathname)
55	if err != nil {
56		return err
57	}
58	return fanotifyMark(fd, flags, mask, dirFd, p)
59}
60
61//sys	fchmodat(dirfd int, path string, mode uint32) (err error)
62
63func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
64	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
65	// and check the flags. Otherwise the mode would be applied to the symlink
66	// destination which is not what the user expects.
67	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
68		return EINVAL
69	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
70		return EOPNOTSUPP
71	}
72	return fchmodat(dirfd, path, mode)
73}
74
75func InotifyInit() (fd int, err error) {
76	return InotifyInit1(0)
77}
78
79//sys	ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL
80//sys	ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL
81
82// ioctl itself should not be exposed directly, but additional get/set functions
83// for specific types are permissible. These are defined in ioctl.go and
84// ioctl_linux.go.
85//
86// The third argument to ioctl is often a pointer but sometimes an integer.
87// Callers should use ioctlPtr when the third argument is a pointer and ioctl
88// when the third argument is an integer.
89//
90// TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr.
91
92//sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
93
94func Link(oldpath string, newpath string) (err error) {
95	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
96}
97
98func Mkdir(path string, mode uint32) (err error) {
99	return Mkdirat(AT_FDCWD, path, mode)
100}
101
102func Mknod(path string, mode uint32, dev int) (err error) {
103	return Mknodat(AT_FDCWD, path, mode, dev)
104}
105
106func Open(path string, mode int, perm uint32) (fd int, err error) {
107	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
108}
109
110//sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
111
112func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
113	return openat(dirfd, path, flags|O_LARGEFILE, mode)
114}
115
116//sys	openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
117
118func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
119	return openat2(dirfd, path, how, SizeofOpenHow)
120}
121
122func Pipe(p []int) error {
123	return Pipe2(p, 0)
124}
125
126//sysnb	pipe2(p *[2]_C_int, flags int) (err error)
127
128func Pipe2(p []int, flags int) error {
129	if len(p) != 2 {
130		return EINVAL
131	}
132	var pp [2]_C_int
133	err := pipe2(&pp, flags)
134	p[0] = int(pp[0])
135	p[1] = int(pp[1])
136	return err
137}
138
139//sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
140
141func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
142	if len(fds) == 0 {
143		return ppoll(nil, 0, timeout, sigmask)
144	}
145	return ppoll(&fds[0], len(fds), timeout, sigmask)
146}
147
148func Poll(fds []PollFd, timeout int) (n int, err error) {
149	var ts *Timespec
150	if timeout >= 0 {
151		ts = new(Timespec)
152		*ts = NsecToTimespec(int64(timeout) * 1e6)
153	}
154	return Ppoll(fds, ts, nil)
155}
156
157//sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
158
159func Readlink(path string, buf []byte) (n int, err error) {
160	return Readlinkat(AT_FDCWD, path, buf)
161}
162
163func Rename(oldpath string, newpath string) (err error) {
164	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
165}
166
167func Rmdir(path string) error {
168	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
169}
170
171//sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
172
173func Symlink(oldpath string, newpath string) (err error) {
174	return Symlinkat(oldpath, AT_FDCWD, newpath)
175}
176
177func Unlink(path string) error {
178	return Unlinkat(AT_FDCWD, path, 0)
179}
180
181//sys	Unlinkat(dirfd int, path string, flags int) (err error)
182
183func Utimes(path string, tv []Timeval) error {
184	if tv == nil {
185		err := utimensat(AT_FDCWD, path, nil, 0)
186		if err != ENOSYS {
187			return err
188		}
189		return utimes(path, nil)
190	}
191	if len(tv) != 2 {
192		return EINVAL
193	}
194	var ts [2]Timespec
195	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
196	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
197	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
198	if err != ENOSYS {
199		return err
200	}
201	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
202}
203
204//sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
205
206func UtimesNano(path string, ts []Timespec) error {
207	return UtimesNanoAt(AT_FDCWD, path, ts, 0)
208}
209
210func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
211	if ts == nil {
212		return utimensat(dirfd, path, nil, flags)
213	}
214	if len(ts) != 2 {
215		return EINVAL
216	}
217	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
218}
219
220func Futimesat(dirfd int, path string, tv []Timeval) error {
221	if tv == nil {
222		return futimesat(dirfd, path, nil)
223	}
224	if len(tv) != 2 {
225		return EINVAL
226	}
227	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
228}
229
230func Futimes(fd int, tv []Timeval) (err error) {
231	// Believe it or not, this is the best we can do on Linux
232	// (and is what glibc does).
233	return Utimes("/proc/self/fd/"+itoa(fd), tv)
234}
235
236const ImplementsGetwd = true
237
238//sys	Getcwd(buf []byte) (n int, err error)
239
240func Getwd() (wd string, err error) {
241	var buf [PathMax]byte
242	n, err := Getcwd(buf[0:])
243	if err != nil {
244		return "", err
245	}
246	// Getcwd returns the number of bytes written to buf, including the NUL.
247	if n < 1 || n > len(buf) || buf[n-1] != 0 {
248		return "", EINVAL
249	}
250	return string(buf[0 : n-1]), nil
251}
252
253func Getgroups() (gids []int, err error) {
254	n, err := getgroups(0, nil)
255	if err != nil {
256		return nil, err
257	}
258	if n == 0 {
259		return nil, nil
260	}
261
262	// Sanity check group count. Max is 1<<16 on Linux.
263	if n < 0 || n > 1<<20 {
264		return nil, EINVAL
265	}
266
267	a := make([]_Gid_t, n)
268	n, err = getgroups(n, &a[0])
269	if err != nil {
270		return nil, err
271	}
272	gids = make([]int, n)
273	for i, v := range a[0:n] {
274		gids[i] = int(v)
275	}
276	return
277}
278
279func Setgroups(gids []int) (err error) {
280	if len(gids) == 0 {
281		return setgroups(0, nil)
282	}
283
284	a := make([]_Gid_t, len(gids))
285	for i, v := range gids {
286		a[i] = _Gid_t(v)
287	}
288	return setgroups(len(a), &a[0])
289}
290
291type WaitStatus uint32
292
293// Wait status is 7 bits at bottom, either 0 (exited),
294// 0x7F (stopped), or a signal number that caused an exit.
295// The 0x80 bit is whether there was a core dump.
296// An extra number (exit code, signal causing a stop)
297// is in the high bits. At least that's the idea.
298// There are various irregularities. For example, the
299// "continued" status is 0xFFFF, distinguishing itself
300// from stopped via the core dump bit.
301
302const (
303	mask    = 0x7F
304	core    = 0x80
305	exited  = 0x00
306	stopped = 0x7F
307	shift   = 8
308)
309
310func (w WaitStatus) Exited() bool { return w&mask == exited }
311
312func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
313
314func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
315
316func (w WaitStatus) Continued() bool { return w == 0xFFFF }
317
318func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
319
320func (w WaitStatus) ExitStatus() int {
321	if !w.Exited() {
322		return -1
323	}
324	return int(w>>shift) & 0xFF
325}
326
327func (w WaitStatus) Signal() syscall.Signal {
328	if !w.Signaled() {
329		return -1
330	}
331	return syscall.Signal(w & mask)
332}
333
334func (w WaitStatus) StopSignal() syscall.Signal {
335	if !w.Stopped() {
336		return -1
337	}
338	return syscall.Signal(w>>shift) & 0xFF
339}
340
341func (w WaitStatus) TrapCause() int {
342	if w.StopSignal() != SIGTRAP {
343		return -1
344	}
345	return int(w>>shift) >> 8
346}
347
348//sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
349
350func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
351	var status _C_int
352	wpid, err = wait4(pid, &status, options, rusage)
353	if wstatus != nil {
354		*wstatus = WaitStatus(status)
355	}
356	return
357}
358
359func Mkfifo(path string, mode uint32) error {
360	return Mknod(path, mode|S_IFIFO, 0)
361}
362
363func Mkfifoat(dirfd int, path string, mode uint32) error {
364	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
365}
366
367func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
368	if sa.Port < 0 || sa.Port > 0xFFFF {
369		return nil, 0, EINVAL
370	}
371	sa.raw.Family = AF_INET
372	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
373	p[0] = byte(sa.Port >> 8)
374	p[1] = byte(sa.Port)
375	sa.raw.Addr = sa.Addr
376	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
377}
378
379func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
380	if sa.Port < 0 || sa.Port > 0xFFFF {
381		return nil, 0, EINVAL
382	}
383	sa.raw.Family = AF_INET6
384	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
385	p[0] = byte(sa.Port >> 8)
386	p[1] = byte(sa.Port)
387	sa.raw.Scope_id = sa.ZoneId
388	sa.raw.Addr = sa.Addr
389	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
390}
391
392func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
393	name := sa.Name
394	n := len(name)
395	if n >= len(sa.raw.Path) {
396		return nil, 0, EINVAL
397	}
398	sa.raw.Family = AF_UNIX
399	for i := 0; i < n; i++ {
400		sa.raw.Path[i] = int8(name[i])
401	}
402	// length is family (uint16), name, NUL.
403	sl := _Socklen(2)
404	if n > 0 {
405		sl += _Socklen(n) + 1
406	}
407	if sa.raw.Path[0] == '@' {
408		sa.raw.Path[0] = 0
409		// Don't count trailing NUL for abstract address.
410		sl--
411	}
412
413	return unsafe.Pointer(&sa.raw), sl, nil
414}
415
416// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
417type SockaddrLinklayer struct {
418	Protocol uint16
419	Ifindex  int
420	Hatype   uint16
421	Pkttype  uint8
422	Halen    uint8
423	Addr     [8]byte
424	raw      RawSockaddrLinklayer
425}
426
427func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
428	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
429		return nil, 0, EINVAL
430	}
431	sa.raw.Family = AF_PACKET
432	sa.raw.Protocol = sa.Protocol
433	sa.raw.Ifindex = int32(sa.Ifindex)
434	sa.raw.Hatype = sa.Hatype
435	sa.raw.Pkttype = sa.Pkttype
436	sa.raw.Halen = sa.Halen
437	sa.raw.Addr = sa.Addr
438	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
439}
440
441// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
442type SockaddrNetlink struct {
443	Family uint16
444	Pad    uint16
445	Pid    uint32
446	Groups uint32
447	raw    RawSockaddrNetlink
448}
449
450func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
451	sa.raw.Family = AF_NETLINK
452	sa.raw.Pad = sa.Pad
453	sa.raw.Pid = sa.Pid
454	sa.raw.Groups = sa.Groups
455	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
456}
457
458// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
459// using the HCI protocol.
460type SockaddrHCI struct {
461	Dev     uint16
462	Channel uint16
463	raw     RawSockaddrHCI
464}
465
466func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
467	sa.raw.Family = AF_BLUETOOTH
468	sa.raw.Dev = sa.Dev
469	sa.raw.Channel = sa.Channel
470	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
471}
472
473// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
474// using the L2CAP protocol.
475type SockaddrL2 struct {
476	PSM      uint16
477	CID      uint16
478	Addr     [6]uint8
479	AddrType uint8
480	raw      RawSockaddrL2
481}
482
483func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
484	sa.raw.Family = AF_BLUETOOTH
485	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
486	psm[0] = byte(sa.PSM)
487	psm[1] = byte(sa.PSM >> 8)
488	for i := 0; i < len(sa.Addr); i++ {
489		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
490	}
491	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
492	cid[0] = byte(sa.CID)
493	cid[1] = byte(sa.CID >> 8)
494	sa.raw.Bdaddr_type = sa.AddrType
495	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
496}
497
498// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
499// using the RFCOMM protocol.
500//
501// Server example:
502//
503//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
504//      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
505//      	Channel: 1,
506//      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
507//      })
508//      _ = Listen(fd, 1)
509//      nfd, sa, _ := Accept(fd)
510//      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
511//      Read(nfd, buf)
512//
513// Client example:
514//
515//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
516//      _ = Connect(fd, &SockaddrRFCOMM{
517//      	Channel: 1,
518//      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
519//      })
520//      Write(fd, []byte(`hello`))
521type SockaddrRFCOMM struct {
522	// Addr represents a bluetooth address, byte ordering is little-endian.
523	Addr [6]uint8
524
525	// Channel is a designated bluetooth channel, only 1-30 are available for use.
526	// Since Linux 2.6.7 and further zero value is the first available channel.
527	Channel uint8
528
529	raw RawSockaddrRFCOMM
530}
531
532func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
533	sa.raw.Family = AF_BLUETOOTH
534	sa.raw.Channel = sa.Channel
535	sa.raw.Bdaddr = sa.Addr
536	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
537}
538
539// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
540// The RxID and TxID fields are used for transport protocol addressing in
541// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
542// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
543//
544// The SockaddrCAN struct must be bound to the socket file descriptor
545// using Bind before the CAN socket can be used.
546//
547//      // Read one raw CAN frame
548//      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
549//      addr := &SockaddrCAN{Ifindex: index}
550//      Bind(fd, addr)
551//      frame := make([]byte, 16)
552//      Read(fd, frame)
553//
554// The full SocketCAN documentation can be found in the linux kernel
555// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
556type SockaddrCAN struct {
557	Ifindex int
558	RxID    uint32
559	TxID    uint32
560	raw     RawSockaddrCAN
561}
562
563func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
564	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
565		return nil, 0, EINVAL
566	}
567	sa.raw.Family = AF_CAN
568	sa.raw.Ifindex = int32(sa.Ifindex)
569	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
570	for i := 0; i < 4; i++ {
571		sa.raw.Addr[i] = rx[i]
572	}
573	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
574	for i := 0; i < 4; i++ {
575		sa.raw.Addr[i+4] = tx[i]
576	}
577	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
578}
579
580// SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
581// protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
582// on the purposes of the fields, check the official linux kernel documentation
583// available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
584type SockaddrCANJ1939 struct {
585	Ifindex int
586	Name    uint64
587	PGN     uint32
588	Addr    uint8
589	raw     RawSockaddrCAN
590}
591
592func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
593	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
594		return nil, 0, EINVAL
595	}
596	sa.raw.Family = AF_CAN
597	sa.raw.Ifindex = int32(sa.Ifindex)
598	n := (*[8]byte)(unsafe.Pointer(&sa.Name))
599	for i := 0; i < 8; i++ {
600		sa.raw.Addr[i] = n[i]
601	}
602	p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
603	for i := 0; i < 4; i++ {
604		sa.raw.Addr[i+8] = p[i]
605	}
606	sa.raw.Addr[12] = sa.Addr
607	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
608}
609
610// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
611// SockaddrALG enables userspace access to the Linux kernel's cryptography
612// subsystem. The Type and Name fields specify which type of hash or cipher
613// should be used with a given socket.
614//
615// To create a file descriptor that provides access to a hash or cipher, both
616// Bind and Accept must be used. Once the setup process is complete, input
617// data can be written to the socket, processed by the kernel, and then read
618// back as hash output or ciphertext.
619//
620// Here is an example of using an AF_ALG socket with SHA1 hashing.
621// The initial socket setup process is as follows:
622//
623//      // Open a socket to perform SHA1 hashing.
624//      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
625//      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
626//      unix.Bind(fd, addr)
627//      // Note: unix.Accept does not work at this time; must invoke accept()
628//      // manually using unix.Syscall.
629//      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
630//
631// Once a file descriptor has been returned from Accept, it may be used to
632// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
633// may be re-used repeatedly with subsequent Write and Read operations.
634//
635// When hashing a small byte slice or string, a single Write and Read may
636// be used:
637//
638//      // Assume hashfd is already configured using the setup process.
639//      hash := os.NewFile(hashfd, "sha1")
640//      // Hash an input string and read the results. Each Write discards
641//      // previous hash state. Read always reads the current state.
642//      b := make([]byte, 20)
643//      for i := 0; i < 2; i++ {
644//          io.WriteString(hash, "Hello, world.")
645//          hash.Read(b)
646//          fmt.Println(hex.EncodeToString(b))
647//      }
648//      // Output:
649//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
650//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
651//
652// For hashing larger byte slices, or byte streams such as those read from
653// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
654// the hash digest instead of creating a new one for a given chunk and finalizing it.
655//
656//      // Assume hashfd and addr are already configured using the setup process.
657//      hash := os.NewFile(hashfd, "sha1")
658//      // Hash the contents of a file.
659//      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
660//      b := make([]byte, 4096)
661//      for {
662//          n, err := f.Read(b)
663//          if err == io.EOF {
664//              break
665//          }
666//          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
667//      }
668//      hash.Read(b)
669//      fmt.Println(hex.EncodeToString(b))
670//      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
671//
672// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
673type SockaddrALG struct {
674	Type    string
675	Name    string
676	Feature uint32
677	Mask    uint32
678	raw     RawSockaddrALG
679}
680
681func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
682	// Leave room for NUL byte terminator.
683	if len(sa.Type) > 13 {
684		return nil, 0, EINVAL
685	}
686	if len(sa.Name) > 63 {
687		return nil, 0, EINVAL
688	}
689
690	sa.raw.Family = AF_ALG
691	sa.raw.Feat = sa.Feature
692	sa.raw.Mask = sa.Mask
693
694	typ, err := ByteSliceFromString(sa.Type)
695	if err != nil {
696		return nil, 0, err
697	}
698	name, err := ByteSliceFromString(sa.Name)
699	if err != nil {
700		return nil, 0, err
701	}
702
703	copy(sa.raw.Type[:], typ)
704	copy(sa.raw.Name[:], name)
705
706	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
707}
708
709// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
710// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
711// bidirectional communication between a hypervisor and its guest virtual
712// machines.
713type SockaddrVM struct {
714	// CID and Port specify a context ID and port address for a VM socket.
715	// Guests have a unique CID, and hosts may have a well-known CID of:
716	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
717	//  - VMADDR_CID_LOCAL: refers to local communication (loopback).
718	//  - VMADDR_CID_HOST: refers to other processes on the host.
719	CID   uint32
720	Port  uint32
721	Flags uint8
722	raw   RawSockaddrVM
723}
724
725func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
726	sa.raw.Family = AF_VSOCK
727	sa.raw.Port = sa.Port
728	sa.raw.Cid = sa.CID
729	sa.raw.Flags = sa.Flags
730
731	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
732}
733
734type SockaddrXDP struct {
735	Flags        uint16
736	Ifindex      uint32
737	QueueID      uint32
738	SharedUmemFD uint32
739	raw          RawSockaddrXDP
740}
741
742func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
743	sa.raw.Family = AF_XDP
744	sa.raw.Flags = sa.Flags
745	sa.raw.Ifindex = sa.Ifindex
746	sa.raw.Queue_id = sa.QueueID
747	sa.raw.Shared_umem_fd = sa.SharedUmemFD
748
749	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
750}
751
752// This constant mirrors the #define of PX_PROTO_OE in
753// linux/if_pppox.h. We're defining this by hand here instead of
754// autogenerating through mkerrors.sh because including
755// linux/if_pppox.h causes some declaration conflicts with other
756// includes (linux/if_pppox.h includes linux/in.h, which conflicts
757// with netinet/in.h). Given that we only need a single zero constant
758// out of that file, it's cleaner to just define it by hand here.
759const px_proto_oe = 0
760
761type SockaddrPPPoE struct {
762	SID    uint16
763	Remote []byte
764	Dev    string
765	raw    RawSockaddrPPPoX
766}
767
768func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
769	if len(sa.Remote) != 6 {
770		return nil, 0, EINVAL
771	}
772	if len(sa.Dev) > IFNAMSIZ-1 {
773		return nil, 0, EINVAL
774	}
775
776	*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
777	// This next field is in host-endian byte order. We can't use the
778	// same unsafe pointer cast as above, because this value is not
779	// 32-bit aligned and some architectures don't allow unaligned
780	// access.
781	//
782	// However, the value of px_proto_oe is 0, so we can use
783	// encoding/binary helpers to write the bytes without worrying
784	// about the ordering.
785	binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
786	// This field is deliberately big-endian, unlike the previous
787	// one. The kernel expects SID to be in network byte order.
788	binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
789	copy(sa.raw[8:14], sa.Remote)
790	for i := 14; i < 14+IFNAMSIZ; i++ {
791		sa.raw[i] = 0
792	}
793	copy(sa.raw[14:], sa.Dev)
794	return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
795}
796
797// SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
798// For more information on TIPC, see: http://tipc.sourceforge.net/.
799type SockaddrTIPC struct {
800	// Scope is the publication scopes when binding service/service range.
801	// Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
802	Scope int
803
804	// Addr is the type of address used to manipulate a socket. Addr must be
805	// one of:
806	//  - *TIPCSocketAddr: "id" variant in the C addr union
807	//  - *TIPCServiceRange: "nameseq" variant in the C addr union
808	//  - *TIPCServiceName: "name" variant in the C addr union
809	//
810	// If nil, EINVAL will be returned when the structure is used.
811	Addr TIPCAddr
812
813	raw RawSockaddrTIPC
814}
815
816// TIPCAddr is implemented by types that can be used as an address for
817// SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
818// and *TIPCServiceName.
819type TIPCAddr interface {
820	tipcAddrtype() uint8
821	tipcAddr() [12]byte
822}
823
824func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
825	var out [12]byte
826	copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
827	return out
828}
829
830func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
831
832func (sa *TIPCServiceRange) tipcAddr() [12]byte {
833	var out [12]byte
834	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
835	return out
836}
837
838func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
839
840func (sa *TIPCServiceName) tipcAddr() [12]byte {
841	var out [12]byte
842	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
843	return out
844}
845
846func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
847
848func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
849	if sa.Addr == nil {
850		return nil, 0, EINVAL
851	}
852	sa.raw.Family = AF_TIPC
853	sa.raw.Scope = int8(sa.Scope)
854	sa.raw.Addrtype = sa.Addr.tipcAddrtype()
855	sa.raw.Addr = sa.Addr.tipcAddr()
856	return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
857}
858
859// SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
860type SockaddrL2TPIP struct {
861	Addr   [4]byte
862	ConnId uint32
863	raw    RawSockaddrL2TPIP
864}
865
866func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
867	sa.raw.Family = AF_INET
868	sa.raw.Conn_id = sa.ConnId
869	sa.raw.Addr = sa.Addr
870	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
871}
872
873// SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
874type SockaddrL2TPIP6 struct {
875	Addr   [16]byte
876	ZoneId uint32
877	ConnId uint32
878	raw    RawSockaddrL2TPIP6
879}
880
881func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
882	sa.raw.Family = AF_INET6
883	sa.raw.Conn_id = sa.ConnId
884	sa.raw.Scope_id = sa.ZoneId
885	sa.raw.Addr = sa.Addr
886	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
887}
888
889// SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
890type SockaddrIUCV struct {
891	UserID string
892	Name   string
893	raw    RawSockaddrIUCV
894}
895
896func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
897	sa.raw.Family = AF_IUCV
898	// These are EBCDIC encoded by the kernel, but we still need to pad them
899	// with blanks. Initializing with blanks allows the caller to feed in either
900	// a padded or an unpadded string.
901	for i := 0; i < 8; i++ {
902		sa.raw.Nodeid[i] = ' '
903		sa.raw.User_id[i] = ' '
904		sa.raw.Name[i] = ' '
905	}
906	if len(sa.UserID) > 8 || len(sa.Name) > 8 {
907		return nil, 0, EINVAL
908	}
909	for i, b := range []byte(sa.UserID[:]) {
910		sa.raw.User_id[i] = int8(b)
911	}
912	for i, b := range []byte(sa.Name[:]) {
913		sa.raw.Name[i] = int8(b)
914	}
915	return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
916}
917
918type SockaddrNFC struct {
919	DeviceIdx   uint32
920	TargetIdx   uint32
921	NFCProtocol uint32
922	raw         RawSockaddrNFC
923}
924
925func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) {
926	sa.raw.Sa_family = AF_NFC
927	sa.raw.Dev_idx = sa.DeviceIdx
928	sa.raw.Target_idx = sa.TargetIdx
929	sa.raw.Nfc_protocol = sa.NFCProtocol
930	return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil
931}
932
933type SockaddrNFCLLCP struct {
934	DeviceIdx      uint32
935	TargetIdx      uint32
936	NFCProtocol    uint32
937	DestinationSAP uint8
938	SourceSAP      uint8
939	ServiceName    string
940	raw            RawSockaddrNFCLLCP
941}
942
943func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) {
944	sa.raw.Sa_family = AF_NFC
945	sa.raw.Dev_idx = sa.DeviceIdx
946	sa.raw.Target_idx = sa.TargetIdx
947	sa.raw.Nfc_protocol = sa.NFCProtocol
948	sa.raw.Dsap = sa.DestinationSAP
949	sa.raw.Ssap = sa.SourceSAP
950	if len(sa.ServiceName) > len(sa.raw.Service_name) {
951		return nil, 0, EINVAL
952	}
953	copy(sa.raw.Service_name[:], sa.ServiceName)
954	sa.raw.SetServiceNameLen(len(sa.ServiceName))
955	return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil
956}
957
958var socketProtocol = func(fd int) (int, error) {
959	return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
960}
961
962func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
963	switch rsa.Addr.Family {
964	case AF_NETLINK:
965		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
966		sa := new(SockaddrNetlink)
967		sa.Family = pp.Family
968		sa.Pad = pp.Pad
969		sa.Pid = pp.Pid
970		sa.Groups = pp.Groups
971		return sa, nil
972
973	case AF_PACKET:
974		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
975		sa := new(SockaddrLinklayer)
976		sa.Protocol = pp.Protocol
977		sa.Ifindex = int(pp.Ifindex)
978		sa.Hatype = pp.Hatype
979		sa.Pkttype = pp.Pkttype
980		sa.Halen = pp.Halen
981		sa.Addr = pp.Addr
982		return sa, nil
983
984	case AF_UNIX:
985		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
986		sa := new(SockaddrUnix)
987		if pp.Path[0] == 0 {
988			// "Abstract" Unix domain socket.
989			// Rewrite leading NUL as @ for textual display.
990			// (This is the standard convention.)
991			// Not friendly to overwrite in place,
992			// but the callers below don't care.
993			pp.Path[0] = '@'
994		}
995
996		// Assume path ends at NUL.
997		// This is not technically the Linux semantics for
998		// abstract Unix domain sockets--they are supposed
999		// to be uninterpreted fixed-size binary blobs--but
1000		// everyone uses this convention.
1001		n := 0
1002		for n < len(pp.Path) && pp.Path[n] != 0 {
1003			n++
1004		}
1005		bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
1006		sa.Name = string(bytes)
1007		return sa, nil
1008
1009	case AF_INET:
1010		proto, err := socketProtocol(fd)
1011		if err != nil {
1012			return nil, err
1013		}
1014
1015		switch proto {
1016		case IPPROTO_L2TP:
1017			pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
1018			sa := new(SockaddrL2TPIP)
1019			sa.ConnId = pp.Conn_id
1020			sa.Addr = pp.Addr
1021			return sa, nil
1022		default:
1023			pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
1024			sa := new(SockaddrInet4)
1025			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1026			sa.Port = int(p[0])<<8 + int(p[1])
1027			sa.Addr = pp.Addr
1028			return sa, nil
1029		}
1030
1031	case AF_INET6:
1032		proto, err := socketProtocol(fd)
1033		if err != nil {
1034			return nil, err
1035		}
1036
1037		switch proto {
1038		case IPPROTO_L2TP:
1039			pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
1040			sa := new(SockaddrL2TPIP6)
1041			sa.ConnId = pp.Conn_id
1042			sa.ZoneId = pp.Scope_id
1043			sa.Addr = pp.Addr
1044			return sa, nil
1045		default:
1046			pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
1047			sa := new(SockaddrInet6)
1048			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1049			sa.Port = int(p[0])<<8 + int(p[1])
1050			sa.ZoneId = pp.Scope_id
1051			sa.Addr = pp.Addr
1052			return sa, nil
1053		}
1054
1055	case AF_VSOCK:
1056		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
1057		sa := &SockaddrVM{
1058			CID:   pp.Cid,
1059			Port:  pp.Port,
1060			Flags: pp.Flags,
1061		}
1062		return sa, nil
1063	case AF_BLUETOOTH:
1064		proto, err := socketProtocol(fd)
1065		if err != nil {
1066			return nil, err
1067		}
1068		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
1069		switch proto {
1070		case BTPROTO_L2CAP:
1071			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
1072			sa := &SockaddrL2{
1073				PSM:      pp.Psm,
1074				CID:      pp.Cid,
1075				Addr:     pp.Bdaddr,
1076				AddrType: pp.Bdaddr_type,
1077			}
1078			return sa, nil
1079		case BTPROTO_RFCOMM:
1080			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
1081			sa := &SockaddrRFCOMM{
1082				Channel: pp.Channel,
1083				Addr:    pp.Bdaddr,
1084			}
1085			return sa, nil
1086		}
1087	case AF_XDP:
1088		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
1089		sa := &SockaddrXDP{
1090			Flags:        pp.Flags,
1091			Ifindex:      pp.Ifindex,
1092			QueueID:      pp.Queue_id,
1093			SharedUmemFD: pp.Shared_umem_fd,
1094		}
1095		return sa, nil
1096	case AF_PPPOX:
1097		pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
1098		if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
1099			return nil, EINVAL
1100		}
1101		sa := &SockaddrPPPoE{
1102			SID:    binary.BigEndian.Uint16(pp[6:8]),
1103			Remote: pp[8:14],
1104		}
1105		for i := 14; i < 14+IFNAMSIZ; i++ {
1106			if pp[i] == 0 {
1107				sa.Dev = string(pp[14:i])
1108				break
1109			}
1110		}
1111		return sa, nil
1112	case AF_TIPC:
1113		pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
1114
1115		sa := &SockaddrTIPC{
1116			Scope: int(pp.Scope),
1117		}
1118
1119		// Determine which union variant is present in pp.Addr by checking
1120		// pp.Addrtype.
1121		switch pp.Addrtype {
1122		case TIPC_SERVICE_RANGE:
1123			sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
1124		case TIPC_SERVICE_ADDR:
1125			sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
1126		case TIPC_SOCKET_ADDR:
1127			sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
1128		default:
1129			return nil, EINVAL
1130		}
1131
1132		return sa, nil
1133	case AF_IUCV:
1134		pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
1135
1136		var user [8]byte
1137		var name [8]byte
1138
1139		for i := 0; i < 8; i++ {
1140			user[i] = byte(pp.User_id[i])
1141			name[i] = byte(pp.Name[i])
1142		}
1143
1144		sa := &SockaddrIUCV{
1145			UserID: string(user[:]),
1146			Name:   string(name[:]),
1147		}
1148		return sa, nil
1149
1150	case AF_CAN:
1151		proto, err := socketProtocol(fd)
1152		if err != nil {
1153			return nil, err
1154		}
1155
1156		pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
1157
1158		switch proto {
1159		case CAN_J1939:
1160			sa := &SockaddrCANJ1939{
1161				Ifindex: int(pp.Ifindex),
1162			}
1163			name := (*[8]byte)(unsafe.Pointer(&sa.Name))
1164			for i := 0; i < 8; i++ {
1165				name[i] = pp.Addr[i]
1166			}
1167			pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
1168			for i := 0; i < 4; i++ {
1169				pgn[i] = pp.Addr[i+8]
1170			}
1171			addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
1172			addr[0] = pp.Addr[12]
1173			return sa, nil
1174		default:
1175			sa := &SockaddrCAN{
1176				Ifindex: int(pp.Ifindex),
1177			}
1178			rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
1179			for i := 0; i < 4; i++ {
1180				rx[i] = pp.Addr[i]
1181			}
1182			tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
1183			for i := 0; i < 4; i++ {
1184				tx[i] = pp.Addr[i+4]
1185			}
1186			return sa, nil
1187		}
1188	case AF_NFC:
1189		proto, err := socketProtocol(fd)
1190		if err != nil {
1191			return nil, err
1192		}
1193		switch proto {
1194		case NFC_SOCKPROTO_RAW:
1195			pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa))
1196			sa := &SockaddrNFC{
1197				DeviceIdx:   pp.Dev_idx,
1198				TargetIdx:   pp.Target_idx,
1199				NFCProtocol: pp.Nfc_protocol,
1200			}
1201			return sa, nil
1202		case NFC_SOCKPROTO_LLCP:
1203			pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa))
1204			if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) {
1205				return nil, EINVAL
1206			}
1207			sa := &SockaddrNFCLLCP{
1208				DeviceIdx:      pp.Dev_idx,
1209				TargetIdx:      pp.Target_idx,
1210				NFCProtocol:    pp.Nfc_protocol,
1211				DestinationSAP: pp.Dsap,
1212				SourceSAP:      pp.Ssap,
1213				ServiceName:    string(pp.Service_name[:pp.Service_name_len]),
1214			}
1215			return sa, nil
1216		default:
1217			return nil, EINVAL
1218		}
1219	}
1220	return nil, EAFNOSUPPORT
1221}
1222
1223func Accept(fd int) (nfd int, sa Sockaddr, err error) {
1224	var rsa RawSockaddrAny
1225	var len _Socklen = SizeofSockaddrAny
1226	nfd, err = accept4(fd, &rsa, &len, 0)
1227	if err != nil {
1228		return
1229	}
1230	sa, err = anyToSockaddr(fd, &rsa)
1231	if err != nil {
1232		Close(nfd)
1233		nfd = 0
1234	}
1235	return
1236}
1237
1238func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
1239	var rsa RawSockaddrAny
1240	var len _Socklen = SizeofSockaddrAny
1241	nfd, err = accept4(fd, &rsa, &len, flags)
1242	if err != nil {
1243		return
1244	}
1245	if len > SizeofSockaddrAny {
1246		panic("RawSockaddrAny too small")
1247	}
1248	sa, err = anyToSockaddr(fd, &rsa)
1249	if err != nil {
1250		Close(nfd)
1251		nfd = 0
1252	}
1253	return
1254}
1255
1256func Getsockname(fd int) (sa Sockaddr, err error) {
1257	var rsa RawSockaddrAny
1258	var len _Socklen = SizeofSockaddrAny
1259	if err = getsockname(fd, &rsa, &len); err != nil {
1260		return
1261	}
1262	return anyToSockaddr(fd, &rsa)
1263}
1264
1265func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
1266	var value IPMreqn
1267	vallen := _Socklen(SizeofIPMreqn)
1268	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1269	return &value, err
1270}
1271
1272func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
1273	var value Ucred
1274	vallen := _Socklen(SizeofUcred)
1275	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1276	return &value, err
1277}
1278
1279func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
1280	var value TCPInfo
1281	vallen := _Socklen(SizeofTCPInfo)
1282	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1283	return &value, err
1284}
1285
1286// GetsockoptString returns the string value of the socket option opt for the
1287// socket associated with fd at the given socket level.
1288func GetsockoptString(fd, level, opt int) (string, error) {
1289	buf := make([]byte, 256)
1290	vallen := _Socklen(len(buf))
1291	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1292	if err != nil {
1293		if err == ERANGE {
1294			buf = make([]byte, vallen)
1295			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1296		}
1297		if err != nil {
1298			return "", err
1299		}
1300	}
1301	return string(buf[:vallen-1]), nil
1302}
1303
1304func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1305	var value TpacketStats
1306	vallen := _Socklen(SizeofTpacketStats)
1307	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1308	return &value, err
1309}
1310
1311func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1312	var value TpacketStatsV3
1313	vallen := _Socklen(SizeofTpacketStatsV3)
1314	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1315	return &value, err
1316}
1317
1318func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1319	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1320}
1321
1322func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1323	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1324}
1325
1326// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1327// socket to filter incoming packets.  See 'man 7 socket' for usage information.
1328func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1329	return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1330}
1331
1332func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1333	var p unsafe.Pointer
1334	if len(filter) > 0 {
1335		p = unsafe.Pointer(&filter[0])
1336	}
1337	return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1338}
1339
1340func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1341	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1342}
1343
1344func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1345	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1346}
1347
1348func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) {
1349	if len(o) == 0 {
1350		return EINVAL
1351	}
1352	return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o)))
1353}
1354
1355// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1356
1357// KeyctlInt calls keyctl commands in which each argument is an int.
1358// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1359// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1360// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1361// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1362//sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1363
1364// KeyctlBuffer calls keyctl commands in which the third and fourth
1365// arguments are a buffer and its length, respectively.
1366// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1367//sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1368
1369// KeyctlString calls keyctl commands which return a string.
1370// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1371func KeyctlString(cmd int, id int) (string, error) {
1372	// We must loop as the string data may change in between the syscalls.
1373	// We could allocate a large buffer here to reduce the chance that the
1374	// syscall needs to be called twice; however, this is unnecessary as
1375	// the performance loss is negligible.
1376	var buffer []byte
1377	for {
1378		// Try to fill the buffer with data
1379		length, err := KeyctlBuffer(cmd, id, buffer, 0)
1380		if err != nil {
1381			return "", err
1382		}
1383
1384		// Check if the data was written
1385		if length <= len(buffer) {
1386			// Exclude the null terminator
1387			return string(buffer[:length-1]), nil
1388		}
1389
1390		// Make a bigger buffer if needed
1391		buffer = make([]byte, length)
1392	}
1393}
1394
1395// Keyctl commands with special signatures.
1396
1397// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1398// See the full documentation at:
1399// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1400func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1401	createInt := 0
1402	if create {
1403		createInt = 1
1404	}
1405	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1406}
1407
1408// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1409// key handle permission mask as described in the "keyctl setperm" section of
1410// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1411// See the full documentation at:
1412// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1413func KeyctlSetperm(id int, perm uint32) error {
1414	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1415	return err
1416}
1417
1418//sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1419
1420// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1421// See the full documentation at:
1422// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1423func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1424	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1425}
1426
1427//sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1428
1429// KeyctlSearch implements the KEYCTL_SEARCH command.
1430// See the full documentation at:
1431// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1432func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1433	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1434}
1435
1436//sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1437
1438// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1439// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1440// of Iovec (each of which represents a buffer) instead of a single buffer.
1441// See the full documentation at:
1442// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1443func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1444	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1445}
1446
1447//sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1448
1449// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1450// computes a Diffie-Hellman shared secret based on the provide params. The
1451// secret is written to the provided buffer and the returned size is the number
1452// of bytes written (returning an error if there is insufficient space in the
1453// buffer). If a nil buffer is passed in, this function returns the minimum
1454// buffer length needed to store the appropriate data. Note that this differs
1455// from KEYCTL_READ's behavior which always returns the requested payload size.
1456// See the full documentation at:
1457// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1458func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1459	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1460}
1461
1462// KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
1463// command limits the set of keys that can be linked to the keyring, regardless
1464// of keyring permissions. The command requires the "setattr" permission.
1465//
1466// When called with an empty keyType the command locks the keyring, preventing
1467// any further keys from being linked to the keyring.
1468//
1469// The "asymmetric" keyType defines restrictions requiring key payloads to be
1470// DER encoded X.509 certificates signed by keys in another keyring. Restrictions
1471// for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
1472// "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
1473//
1474// As of Linux 4.12, only the "asymmetric" keyType defines type-specific
1475// restrictions.
1476//
1477// See the full documentation at:
1478// http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
1479// http://man7.org/linux/man-pages/man2/keyctl.2.html
1480func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
1481	if keyType == "" {
1482		return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
1483	}
1484	return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
1485}
1486
1487//sys	keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
1488//sys	keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
1489
1490func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1491	var msg Msghdr
1492	var rsa RawSockaddrAny
1493	msg.Name = (*byte)(unsafe.Pointer(&rsa))
1494	msg.Namelen = uint32(SizeofSockaddrAny)
1495	var iov Iovec
1496	if len(p) > 0 {
1497		iov.Base = &p[0]
1498		iov.SetLen(len(p))
1499	}
1500	var dummy byte
1501	if len(oob) > 0 {
1502		if len(p) == 0 {
1503			var sockType int
1504			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1505			if err != nil {
1506				return
1507			}
1508			// receive at least one normal byte
1509			if sockType != SOCK_DGRAM {
1510				iov.Base = &dummy
1511				iov.SetLen(1)
1512			}
1513		}
1514		msg.Control = &oob[0]
1515		msg.SetControllen(len(oob))
1516	}
1517	msg.Iov = &iov
1518	msg.Iovlen = 1
1519	if n, err = recvmsg(fd, &msg, flags); err != nil {
1520		return
1521	}
1522	oobn = int(msg.Controllen)
1523	recvflags = int(msg.Flags)
1524	// source address is only specified if the socket is unconnected
1525	if rsa.Addr.Family != AF_UNSPEC {
1526		from, err = anyToSockaddr(fd, &rsa)
1527	}
1528	return
1529}
1530
1531func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1532	_, err = SendmsgN(fd, p, oob, to, flags)
1533	return
1534}
1535
1536func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1537	var ptr unsafe.Pointer
1538	var salen _Socklen
1539	if to != nil {
1540		var err error
1541		ptr, salen, err = to.sockaddr()
1542		if err != nil {
1543			return 0, err
1544		}
1545	}
1546	var msg Msghdr
1547	msg.Name = (*byte)(ptr)
1548	msg.Namelen = uint32(salen)
1549	var iov Iovec
1550	if len(p) > 0 {
1551		iov.Base = &p[0]
1552		iov.SetLen(len(p))
1553	}
1554	var dummy byte
1555	if len(oob) > 0 {
1556		if len(p) == 0 {
1557			var sockType int
1558			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1559			if err != nil {
1560				return 0, err
1561			}
1562			// send at least one normal byte
1563			if sockType != SOCK_DGRAM {
1564				iov.Base = &dummy
1565				iov.SetLen(1)
1566			}
1567		}
1568		msg.Control = &oob[0]
1569		msg.SetControllen(len(oob))
1570	}
1571	msg.Iov = &iov
1572	msg.Iovlen = 1
1573	if n, err = sendmsg(fd, &msg, flags); err != nil {
1574		return 0, err
1575	}
1576	if len(oob) > 0 && len(p) == 0 {
1577		n = 0
1578	}
1579	return n, nil
1580}
1581
1582// BindToDevice binds the socket associated with fd to device.
1583func BindToDevice(fd int, device string) (err error) {
1584	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1585}
1586
1587//sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1588
1589func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1590	// The peek requests are machine-size oriented, so we wrap it
1591	// to retrieve arbitrary-length data.
1592
1593	// The ptrace syscall differs from glibc's ptrace.
1594	// Peeks returns the word in *data, not as the return value.
1595
1596	var buf [SizeofPtr]byte
1597
1598	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1599	// access (PEEKUSER warns that it might), but if we don't
1600	// align our reads, we might straddle an unmapped page
1601	// boundary and not get the bytes leading up to the page
1602	// boundary.
1603	n := 0
1604	if addr%SizeofPtr != 0 {
1605		err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1606		if err != nil {
1607			return 0, err
1608		}
1609		n += copy(out, buf[addr%SizeofPtr:])
1610		out = out[n:]
1611	}
1612
1613	// Remainder.
1614	for len(out) > 0 {
1615		// We use an internal buffer to guarantee alignment.
1616		// It's not documented if this is necessary, but we're paranoid.
1617		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1618		if err != nil {
1619			return n, err
1620		}
1621		copied := copy(out, buf[0:])
1622		n += copied
1623		out = out[copied:]
1624	}
1625
1626	return n, nil
1627}
1628
1629func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1630	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1631}
1632
1633func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1634	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1635}
1636
1637func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1638	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1639}
1640
1641func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1642	// As for ptracePeek, we need to align our accesses to deal
1643	// with the possibility of straddling an invalid page.
1644
1645	// Leading edge.
1646	n := 0
1647	if addr%SizeofPtr != 0 {
1648		var buf [SizeofPtr]byte
1649		err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1650		if err != nil {
1651			return 0, err
1652		}
1653		n += copy(buf[addr%SizeofPtr:], data)
1654		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1655		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1656		if err != nil {
1657			return 0, err
1658		}
1659		data = data[n:]
1660	}
1661
1662	// Interior.
1663	for len(data) > SizeofPtr {
1664		word := *((*uintptr)(unsafe.Pointer(&data[0])))
1665		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1666		if err != nil {
1667			return n, err
1668		}
1669		n += SizeofPtr
1670		data = data[SizeofPtr:]
1671	}
1672
1673	// Trailing edge.
1674	if len(data) > 0 {
1675		var buf [SizeofPtr]byte
1676		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1677		if err != nil {
1678			return n, err
1679		}
1680		copy(buf[0:], data)
1681		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1682		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1683		if err != nil {
1684			return n, err
1685		}
1686		n += len(data)
1687	}
1688
1689	return n, nil
1690}
1691
1692func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1693	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1694}
1695
1696func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1697	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1698}
1699
1700func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1701	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1702}
1703
1704func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1705	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1706}
1707
1708func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1709	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1710}
1711
1712func PtraceSetOptions(pid int, options int) (err error) {
1713	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1714}
1715
1716func PtraceGetEventMsg(pid int) (msg uint, err error) {
1717	var data _C_long
1718	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1719	msg = uint(data)
1720	return
1721}
1722
1723func PtraceCont(pid int, signal int) (err error) {
1724	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1725}
1726
1727func PtraceSyscall(pid int, signal int) (err error) {
1728	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1729}
1730
1731func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1732
1733func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
1734
1735func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1736
1737func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
1738
1739func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1740
1741//sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1742
1743func Reboot(cmd int) (err error) {
1744	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1745}
1746
1747func direntIno(buf []byte) (uint64, bool) {
1748	return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1749}
1750
1751func direntReclen(buf []byte) (uint64, bool) {
1752	return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1753}
1754
1755func direntNamlen(buf []byte) (uint64, bool) {
1756	reclen, ok := direntReclen(buf)
1757	if !ok {
1758		return 0, false
1759	}
1760	return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
1761}
1762
1763//sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1764
1765func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1766	// Certain file systems get rather angry and EINVAL if you give
1767	// them an empty string of data, rather than NULL.
1768	if data == "" {
1769		return mount(source, target, fstype, flags, nil)
1770	}
1771	datap, err := BytePtrFromString(data)
1772	if err != nil {
1773		return err
1774	}
1775	return mount(source, target, fstype, flags, datap)
1776}
1777
1778//sys	mountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr, size uintptr) (err error) = SYS_MOUNT_SETATTR
1779
1780// MountSetattr is a wrapper for mount_setattr(2).
1781// https://man7.org/linux/man-pages/man2/mount_setattr.2.html
1782//
1783// Requires kernel >= 5.12.
1784func MountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr) error {
1785	return mountSetattr(dirfd, pathname, flags, attr, unsafe.Sizeof(*attr))
1786}
1787
1788func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1789	if raceenabled {
1790		raceReleaseMerge(unsafe.Pointer(&ioSync))
1791	}
1792	return sendfile(outfd, infd, offset, count)
1793}
1794
1795// Sendto
1796// Recvfrom
1797// Socketpair
1798
1799/*
1800 * Direct access
1801 */
1802//sys	Acct(path string) (err error)
1803//sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1804//sys	Adjtimex(buf *Timex) (state int, err error)
1805//sysnb	Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1806//sysnb	Capset(hdr *CapUserHeader, data *CapUserData) (err error)
1807//sys	Chdir(path string) (err error)
1808//sys	Chroot(path string) (err error)
1809//sys	ClockGetres(clockid int32, res *Timespec) (err error)
1810//sys	ClockGettime(clockid int32, time *Timespec) (err error)
1811//sys	ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1812//sys	Close(fd int) (err error)
1813//sys	CloseRange(first uint, last uint, flags uint) (err error)
1814//sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1815//sys	DeleteModule(name string, flags int) (err error)
1816//sys	Dup(oldfd int) (fd int, err error)
1817
1818func Dup2(oldfd, newfd int) error {
1819	return Dup3(oldfd, newfd, 0)
1820}
1821
1822//sys	Dup3(oldfd int, newfd int, flags int) (err error)
1823//sysnb	EpollCreate1(flag int) (fd int, err error)
1824//sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1825//sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1826//sys	Exit(code int) = SYS_EXIT_GROUP
1827//sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1828//sys	Fchdir(fd int) (err error)
1829//sys	Fchmod(fd int, mode uint32) (err error)
1830//sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1831//sys	Fdatasync(fd int) (err error)
1832//sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1833//sys	FinitModule(fd int, params string, flags int) (err error)
1834//sys	Flistxattr(fd int, dest []byte) (sz int, err error)
1835//sys	Flock(fd int, how int) (err error)
1836//sys	Fremovexattr(fd int, attr string) (err error)
1837//sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1838//sys	Fsync(fd int) (err error)
1839//sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1840//sysnb	Getpgid(pid int) (pgid int, err error)
1841
1842func Getpgrp() (pid int) {
1843	pid, _ = Getpgid(0)
1844	return
1845}
1846
1847//sysnb	Getpid() (pid int)
1848//sysnb	Getppid() (ppid int)
1849//sys	Getpriority(which int, who int) (prio int, err error)
1850//sys	Getrandom(buf []byte, flags int) (n int, err error)
1851//sysnb	Getrusage(who int, rusage *Rusage) (err error)
1852//sysnb	Getsid(pid int) (sid int, err error)
1853//sysnb	Gettid() (tid int)
1854//sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
1855//sys	InitModule(moduleImage []byte, params string) (err error)
1856//sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1857//sysnb	InotifyInit1(flags int) (fd int, err error)
1858//sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1859//sysnb	Kill(pid int, sig syscall.Signal) (err error)
1860//sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1861//sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1862//sys	Listxattr(path string, dest []byte) (sz int, err error)
1863//sys	Llistxattr(path string, dest []byte) (sz int, err error)
1864//sys	Lremovexattr(path string, attr string) (err error)
1865//sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1866//sys	MemfdCreate(name string, flags int) (fd int, err error)
1867//sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
1868//sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1869//sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
1870//sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1871//sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1872//sysnb	Prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1873//sys	Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1874//sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1875//sys	read(fd int, p []byte) (n int, err error)
1876//sys	Removexattr(path string, attr string) (err error)
1877//sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1878//sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1879//sys	Setdomainname(p []byte) (err error)
1880//sys	Sethostname(p []byte) (err error)
1881//sysnb	Setpgid(pid int, pgid int) (err error)
1882//sysnb	Setsid() (pid int, err error)
1883//sysnb	Settimeofday(tv *Timeval) (err error)
1884//sys	Setns(fd int, nstype int) (err error)
1885
1886// PrctlRetInt performs a prctl operation specified by option and further
1887// optional arguments arg2 through arg5 depending on option. It returns a
1888// non-negative integer that is returned by the prctl syscall.
1889func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
1890	ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
1891	if err != 0 {
1892		return 0, err
1893	}
1894	return int(ret), nil
1895}
1896
1897// issue 1435.
1898// On linux Setuid and Setgid only affects the current thread, not the process.
1899// This does not match what most callers expect so we must return an error
1900// here rather than letting the caller think that the call succeeded.
1901
1902func Setuid(uid int) (err error) {
1903	return EOPNOTSUPP
1904}
1905
1906func Setgid(uid int) (err error) {
1907	return EOPNOTSUPP
1908}
1909
1910// SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
1911// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
1912// If the call fails due to other reasons, current fsgid will be returned.
1913func SetfsgidRetGid(gid int) (int, error) {
1914	return setfsgid(gid)
1915}
1916
1917// SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
1918// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
1919// If the call fails due to other reasons, current fsuid will be returned.
1920func SetfsuidRetUid(uid int) (int, error) {
1921	return setfsuid(uid)
1922}
1923
1924func Setfsgid(gid int) error {
1925	_, err := setfsgid(gid)
1926	return err
1927}
1928
1929func Setfsuid(uid int) error {
1930	_, err := setfsuid(uid)
1931	return err
1932}
1933
1934func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
1935	return signalfd(fd, sigmask, _C__NSIG/8, flags)
1936}
1937
1938//sys	Setpriority(which int, who int, prio int) (err error)
1939//sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
1940//sys	signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
1941//sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1942//sys	Sync()
1943//sys	Syncfs(fd int) (err error)
1944//sysnb	Sysinfo(info *Sysinfo_t) (err error)
1945//sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1946//sysnb	TimerfdCreate(clockid int, flags int) (fd int, err error)
1947//sysnb	TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
1948//sysnb	TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
1949//sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1950//sysnb	Times(tms *Tms) (ticks uintptr, err error)
1951//sysnb	Umask(mask int) (oldmask int)
1952//sysnb	Uname(buf *Utsname) (err error)
1953//sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1954//sys	Unshare(flags int) (err error)
1955//sys	write(fd int, p []byte) (n int, err error)
1956//sys	exitThread(code int) (err error) = SYS_EXIT
1957//sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1958//sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1959//sys	readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
1960//sys	writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
1961//sys	preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
1962//sys	pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
1963//sys	preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
1964//sys	pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
1965
1966func bytes2iovec(bs [][]byte) []Iovec {
1967	iovecs := make([]Iovec, len(bs))
1968	for i, b := range bs {
1969		iovecs[i].SetLen(len(b))
1970		if len(b) > 0 {
1971			iovecs[i].Base = &b[0]
1972		} else {
1973			iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
1974		}
1975	}
1976	return iovecs
1977}
1978
1979// offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
1980// systems, hi will always be 0. On 32-bit systems, offs will be split in half.
1981// preadv/pwritev chose this calling convention so they don't need to add a
1982// padding-register for alignment on ARM.
1983func offs2lohi(offs int64) (lo, hi uintptr) {
1984	return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
1985}
1986
1987func Readv(fd int, iovs [][]byte) (n int, err error) {
1988	iovecs := bytes2iovec(iovs)
1989	n, err = readv(fd, iovecs)
1990	readvRacedetect(iovecs, n, err)
1991	return n, err
1992}
1993
1994func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
1995	iovecs := bytes2iovec(iovs)
1996	lo, hi := offs2lohi(offset)
1997	n, err = preadv(fd, iovecs, lo, hi)
1998	readvRacedetect(iovecs, n, err)
1999	return n, err
2000}
2001
2002func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2003	iovecs := bytes2iovec(iovs)
2004	lo, hi := offs2lohi(offset)
2005	n, err = preadv2(fd, iovecs, lo, hi, flags)
2006	readvRacedetect(iovecs, n, err)
2007	return n, err
2008}
2009
2010func readvRacedetect(iovecs []Iovec, n int, err error) {
2011	if !raceenabled {
2012		return
2013	}
2014	for i := 0; n > 0 && i < len(iovecs); i++ {
2015		m := int(iovecs[i].Len)
2016		if m > n {
2017			m = n
2018		}
2019		n -= m
2020		if m > 0 {
2021			raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
2022		}
2023	}
2024	if err == nil {
2025		raceAcquire(unsafe.Pointer(&ioSync))
2026	}
2027}
2028
2029func Writev(fd int, iovs [][]byte) (n int, err error) {
2030	iovecs := bytes2iovec(iovs)
2031	if raceenabled {
2032		raceReleaseMerge(unsafe.Pointer(&ioSync))
2033	}
2034	n, err = writev(fd, iovecs)
2035	writevRacedetect(iovecs, n)
2036	return n, err
2037}
2038
2039func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
2040	iovecs := bytes2iovec(iovs)
2041	if raceenabled {
2042		raceReleaseMerge(unsafe.Pointer(&ioSync))
2043	}
2044	lo, hi := offs2lohi(offset)
2045	n, err = pwritev(fd, iovecs, lo, hi)
2046	writevRacedetect(iovecs, n)
2047	return n, err
2048}
2049
2050func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2051	iovecs := bytes2iovec(iovs)
2052	if raceenabled {
2053		raceReleaseMerge(unsafe.Pointer(&ioSync))
2054	}
2055	lo, hi := offs2lohi(offset)
2056	n, err = pwritev2(fd, iovecs, lo, hi, flags)
2057	writevRacedetect(iovecs, n)
2058	return n, err
2059}
2060
2061func writevRacedetect(iovecs []Iovec, n int) {
2062	if !raceenabled {
2063		return
2064	}
2065	for i := 0; n > 0 && i < len(iovecs); i++ {
2066		m := int(iovecs[i].Len)
2067		if m > n {
2068			m = n
2069		}
2070		n -= m
2071		if m > 0 {
2072			raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
2073		}
2074	}
2075}
2076
2077// mmap varies by architecture; see syscall_linux_*.go.
2078//sys	munmap(addr uintptr, length uintptr) (err error)
2079
2080var mapper = &mmapper{
2081	active: make(map[*byte][]byte),
2082	mmap:   mmap,
2083	munmap: munmap,
2084}
2085
2086func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
2087	return mapper.Mmap(fd, offset, length, prot, flags)
2088}
2089
2090func Munmap(b []byte) (err error) {
2091	return mapper.Munmap(b)
2092}
2093
2094//sys	Madvise(b []byte, advice int) (err error)
2095//sys	Mprotect(b []byte, prot int) (err error)
2096//sys	Mlock(b []byte) (err error)
2097//sys	Mlockall(flags int) (err error)
2098//sys	Msync(b []byte, flags int) (err error)
2099//sys	Munlock(b []byte) (err error)
2100//sys	Munlockall() (err error)
2101
2102// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
2103// using the specified flags.
2104func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
2105	var p unsafe.Pointer
2106	if len(iovs) > 0 {
2107		p = unsafe.Pointer(&iovs[0])
2108	}
2109
2110	n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
2111	if errno != 0 {
2112		return 0, syscall.Errno(errno)
2113	}
2114
2115	return int(n), nil
2116}
2117
2118func isGroupMember(gid int) bool {
2119	groups, err := Getgroups()
2120	if err != nil {
2121		return false
2122	}
2123
2124	for _, g := range groups {
2125		if g == gid {
2126			return true
2127		}
2128	}
2129	return false
2130}
2131
2132//sys	faccessat(dirfd int, path string, mode uint32) (err error)
2133//sys	Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
2134
2135func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
2136	if flags == 0 {
2137		return faccessat(dirfd, path, mode)
2138	}
2139
2140	if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
2141		return err
2142	}
2143
2144	// The Linux kernel faccessat system call does not take any flags.
2145	// The glibc faccessat implements the flags itself; see
2146	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
2147	// Because people naturally expect syscall.Faccessat to act
2148	// like C faccessat, we do the same.
2149
2150	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
2151		return EINVAL
2152	}
2153
2154	var st Stat_t
2155	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
2156		return err
2157	}
2158
2159	mode &= 7
2160	if mode == 0 {
2161		return nil
2162	}
2163
2164	var uid int
2165	if flags&AT_EACCESS != 0 {
2166		uid = Geteuid()
2167	} else {
2168		uid = Getuid()
2169	}
2170
2171	if uid == 0 {
2172		if mode&1 == 0 {
2173			// Root can read and write any file.
2174			return nil
2175		}
2176		if st.Mode&0111 != 0 {
2177			// Root can execute any file that anybody can execute.
2178			return nil
2179		}
2180		return EACCES
2181	}
2182
2183	var fmode uint32
2184	if uint32(uid) == st.Uid {
2185		fmode = (st.Mode >> 6) & 7
2186	} else {
2187		var gid int
2188		if flags&AT_EACCESS != 0 {
2189			gid = Getegid()
2190		} else {
2191			gid = Getgid()
2192		}
2193
2194		if uint32(gid) == st.Gid || isGroupMember(gid) {
2195			fmode = (st.Mode >> 3) & 7
2196		} else {
2197			fmode = st.Mode & 7
2198		}
2199	}
2200
2201	if fmode&mode == mode {
2202		return nil
2203	}
2204
2205	return EACCES
2206}
2207
2208//sys	nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
2209//sys	openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
2210
2211// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
2212// originally tried to generate it via unix/linux/types.go with "type
2213// fileHandle C.struct_file_handle" but that generated empty structs
2214// for mips64 and mips64le. Instead, hard code it for now (it's the
2215// same everywhere else) until the mips64 generator issue is fixed.
2216type fileHandle struct {
2217	Bytes uint32
2218	Type  int32
2219}
2220
2221// FileHandle represents the C struct file_handle used by
2222// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
2223// OpenByHandleAt).
2224type FileHandle struct {
2225	*fileHandle
2226}
2227
2228// NewFileHandle constructs a FileHandle.
2229func NewFileHandle(handleType int32, handle []byte) FileHandle {
2230	const hdrSize = unsafe.Sizeof(fileHandle{})
2231	buf := make([]byte, hdrSize+uintptr(len(handle)))
2232	copy(buf[hdrSize:], handle)
2233	fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2234	fh.Type = handleType
2235	fh.Bytes = uint32(len(handle))
2236	return FileHandle{fh}
2237}
2238
2239func (fh *FileHandle) Size() int   { return int(fh.fileHandle.Bytes) }
2240func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
2241func (fh *FileHandle) Bytes() []byte {
2242	n := fh.Size()
2243	if n == 0 {
2244		return nil
2245	}
2246	return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
2247}
2248
2249// NameToHandleAt wraps the name_to_handle_at system call; it obtains
2250// a handle for a path name.
2251func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
2252	var mid _C_int
2253	// Try first with a small buffer, assuming the handle will
2254	// only be 32 bytes.
2255	size := uint32(32 + unsafe.Sizeof(fileHandle{}))
2256	didResize := false
2257	for {
2258		buf := make([]byte, size)
2259		fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2260		fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
2261		err = nameToHandleAt(dirfd, path, fh, &mid, flags)
2262		if err == EOVERFLOW {
2263			if didResize {
2264				// We shouldn't need to resize more than once
2265				return
2266			}
2267			didResize = true
2268			size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
2269			continue
2270		}
2271		if err != nil {
2272			return
2273		}
2274		return FileHandle{fh}, int(mid), nil
2275	}
2276}
2277
2278// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
2279// file via a handle as previously returned by NameToHandleAt.
2280func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
2281	return openByHandleAt(mountFD, handle.fileHandle, flags)
2282}
2283
2284// Klogset wraps the sys_syslog system call; it sets console_loglevel to
2285// the value specified by arg and passes a dummy pointer to bufp.
2286func Klogset(typ int, arg int) (err error) {
2287	var p unsafe.Pointer
2288	_, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
2289	if errno != 0 {
2290		return errnoErr(errno)
2291	}
2292	return nil
2293}
2294
2295// RemoteIovec is Iovec with the pointer replaced with an integer.
2296// It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
2297// refers to a location in a different process' address space, which
2298// would confuse the Go garbage collector.
2299type RemoteIovec struct {
2300	Base uintptr
2301	Len  int
2302}
2303
2304//sys	ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
2305//sys	ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
2306
2307//sys	PidfdOpen(pid int, flags int) (fd int, err error) = SYS_PIDFD_OPEN
2308//sys	PidfdGetfd(pidfd int, targetfd int, flags int) (fd int, err error) = SYS_PIDFD_GETFD
2309
2310//sys	shmat(id int, addr uintptr, flag int) (ret uintptr, err error)
2311//sys	shmctl(id int, cmd int, buf *SysvShmDesc) (result int, err error)
2312//sys	shmdt(addr uintptr) (err error)
2313//sys	shmget(key int, size int, flag int) (id int, err error)
2314
2315/*
2316 * Unimplemented
2317 */
2318// AfsSyscall
2319// Alarm
2320// ArchPrctl
2321// Brk
2322// ClockNanosleep
2323// ClockSettime
2324// Clone
2325// EpollCtlOld
2326// EpollPwait
2327// EpollWaitOld
2328// Execve
2329// Fork
2330// Futex
2331// GetKernelSyms
2332// GetMempolicy
2333// GetRobustList
2334// GetThreadArea
2335// Getitimer
2336// Getpmsg
2337// IoCancel
2338// IoDestroy
2339// IoGetevents
2340// IoSetup
2341// IoSubmit
2342// IoprioGet
2343// IoprioSet
2344// KexecLoad
2345// LookupDcookie
2346// Mbind
2347// MigratePages
2348// Mincore
2349// ModifyLdt
2350// Mount
2351// MovePages
2352// MqGetsetattr
2353// MqNotify
2354// MqOpen
2355// MqTimedreceive
2356// MqTimedsend
2357// MqUnlink
2358// Mremap
2359// Msgctl
2360// Msgget
2361// Msgrcv
2362// Msgsnd
2363// Nfsservctl
2364// Personality
2365// Pselect6
2366// Ptrace
2367// Putpmsg
2368// Quotactl
2369// Readahead
2370// Readv
2371// RemapFilePages
2372// RestartSyscall
2373// RtSigaction
2374// RtSigpending
2375// RtSigprocmask
2376// RtSigqueueinfo
2377// RtSigreturn
2378// RtSigsuspend
2379// RtSigtimedwait
2380// SchedGetPriorityMax
2381// SchedGetPriorityMin
2382// SchedGetparam
2383// SchedGetscheduler
2384// SchedRrGetInterval
2385// SchedSetparam
2386// SchedYield
2387// Security
2388// Semctl
2389// Semget
2390// Semop
2391// Semtimedop
2392// SetMempolicy
2393// SetRobustList
2394// SetThreadArea
2395// SetTidAddress
2396// Sigaltstack
2397// Swapoff
2398// Swapon
2399// Sysfs
2400// TimerCreate
2401// TimerDelete
2402// TimerGetoverrun
2403// TimerGettime
2404// TimerSettime
2405// Tkill (obsolete)
2406// Tuxcall
2407// Umount2
2408// Uselib
2409// Utimensat
2410// Vfork
2411// Vhangup
2412// Vserver
2413// Waitid
2414// _Sysctl
2415