1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017.
6//
7// RSA is a single, fundamental operation that is used in this package to
8// implement either public-key encryption or public-key signatures.
9//
10// The original specification for encryption and signatures with RSA is PKCS #1
11// and the terms "RSA encryption" and "RSA signatures" by default refer to
12// PKCS #1 version 1.5. However, that specification has flaws and new designs
13// should use version 2, usually called by just OAEP and PSS, where
14// possible.
15//
16// Two sets of interfaces are included in this package. When a more abstract
17// interface isn't necessary, there are functions for encrypting/decrypting
18// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
19// over the public key primitive, the PrivateKey type implements the
20// Decrypter and Signer interfaces from the crypto package.
21//
22// The RSA operations in this package are not implemented using constant-time algorithms.
23package rsa
24
25import (
26	"crypto"
27	"crypto/rand"
28	"crypto/subtle"
29	"errors"
30	"hash"
31	"io"
32	"math"
33	"math/big"
34
35	"crypto/internal/randutil"
36)
37
38var bigZero = big.NewInt(0)
39var bigOne = big.NewInt(1)
40
41// A PublicKey represents the public part of an RSA key.
42type PublicKey struct {
43	N *big.Int // modulus
44	E int      // public exponent
45}
46
47// Any methods implemented on PublicKey might need to also be implemented on
48// PrivateKey, as the latter embeds the former and will expose its methods.
49
50// Size returns the modulus size in bytes. Raw signatures and ciphertexts
51// for or by this public key will have the same size.
52func (pub *PublicKey) Size() int {
53	return (pub.N.BitLen() + 7) / 8
54}
55
56// Equal reports whether pub and x have the same value.
57func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
58	xx, ok := x.(*PublicKey)
59	if !ok {
60		return false
61	}
62	return pub.N.Cmp(xx.N) == 0 && pub.E == xx.E
63}
64
65// OAEPOptions is an interface for passing options to OAEP decryption using the
66// crypto.Decrypter interface.
67type OAEPOptions struct {
68	// Hash is the hash function that will be used when generating the mask.
69	Hash crypto.Hash
70	// Label is an arbitrary byte string that must be equal to the value
71	// used when encrypting.
72	Label []byte
73}
74
75var (
76	errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
77	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
78	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
79)
80
81// checkPub sanity checks the public key before we use it.
82// We require pub.E to fit into a 32-bit integer so that we
83// do not have different behavior depending on whether
84// int is 32 or 64 bits. See also
85// https://www.imperialviolet.org/2012/03/16/rsae.html.
86func checkPub(pub *PublicKey) error {
87	if pub.N == nil {
88		return errPublicModulus
89	}
90	if pub.E < 2 {
91		return errPublicExponentSmall
92	}
93	if pub.E > 1<<31-1 {
94		return errPublicExponentLarge
95	}
96	return nil
97}
98
99// A PrivateKey represents an RSA key
100type PrivateKey struct {
101	PublicKey            // public part.
102	D         *big.Int   // private exponent
103	Primes    []*big.Int // prime factors of N, has >= 2 elements.
104
105	// Precomputed contains precomputed values that speed up private
106	// operations, if available.
107	Precomputed PrecomputedValues
108}
109
110// Public returns the public key corresponding to priv.
111func (priv *PrivateKey) Public() crypto.PublicKey {
112	return &priv.PublicKey
113}
114
115// Equal reports whether priv and x have equivalent values. It ignores
116// Precomputed values.
117func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
118	xx, ok := x.(*PrivateKey)
119	if !ok {
120		return false
121	}
122	if !priv.PublicKey.Equal(&xx.PublicKey) || priv.D.Cmp(xx.D) != 0 {
123		return false
124	}
125	if len(priv.Primes) != len(xx.Primes) {
126		return false
127	}
128	for i := range priv.Primes {
129		if priv.Primes[i].Cmp(xx.Primes[i]) != 0 {
130			return false
131		}
132	}
133	return true
134}
135
136// Sign signs digest with priv, reading randomness from rand. If opts is a
137// *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will
138// be used. digest must be the result of hashing the input message using
139// opts.HashFunc().
140//
141// This method implements crypto.Signer, which is an interface to support keys
142// where the private part is kept in, for example, a hardware module. Common
143// uses should use the Sign* functions in this package directly.
144func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
145	if pssOpts, ok := opts.(*PSSOptions); ok {
146		return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts)
147	}
148
149	return SignPKCS1v15(rand, priv, opts.HashFunc(), digest)
150}
151
152// Decrypt decrypts ciphertext with priv. If opts is nil or of type
153// *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise
154// opts must have type *OAEPOptions and OAEP decryption is done.
155func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
156	if opts == nil {
157		return DecryptPKCS1v15(rand, priv, ciphertext)
158	}
159
160	switch opts := opts.(type) {
161	case *OAEPOptions:
162		return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
163
164	case *PKCS1v15DecryptOptions:
165		if l := opts.SessionKeyLen; l > 0 {
166			plaintext = make([]byte, l)
167			if _, err := io.ReadFull(rand, plaintext); err != nil {
168				return nil, err
169			}
170			if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
171				return nil, err
172			}
173			return plaintext, nil
174		} else {
175			return DecryptPKCS1v15(rand, priv, ciphertext)
176		}
177
178	default:
179		return nil, errors.New("crypto/rsa: invalid options for Decrypt")
180	}
181}
182
183type PrecomputedValues struct {
184	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
185	Qinv   *big.Int // Q^-1 mod P
186
187	// CRTValues is used for the 3rd and subsequent primes. Due to a
188	// historical accident, the CRT for the first two primes is handled
189	// differently in PKCS #1 and interoperability is sufficiently
190	// important that we mirror this.
191	CRTValues []CRTValue
192}
193
194// CRTValue contains the precomputed Chinese remainder theorem values.
195type CRTValue struct {
196	Exp   *big.Int // D mod (prime-1).
197	Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
198	R     *big.Int // product of primes prior to this (inc p and q).
199}
200
201// Validate performs basic sanity checks on the key.
202// It returns nil if the key is valid, or else an error describing a problem.
203func (priv *PrivateKey) Validate() error {
204	if err := checkPub(&priv.PublicKey); err != nil {
205		return err
206	}
207
208	// Check that Πprimes == n.
209	modulus := new(big.Int).Set(bigOne)
210	for _, prime := range priv.Primes {
211		// Any primes ≤ 1 will cause divide-by-zero panics later.
212		if prime.Cmp(bigOne) <= 0 {
213			return errors.New("crypto/rsa: invalid prime value")
214		}
215		modulus.Mul(modulus, prime)
216	}
217	if modulus.Cmp(priv.N) != 0 {
218		return errors.New("crypto/rsa: invalid modulus")
219	}
220
221	// Check that de ≡ 1 mod p-1, for each prime.
222	// This implies that e is coprime to each p-1 as e has a multiplicative
223	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
224	// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
225	// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
226	congruence := new(big.Int)
227	de := new(big.Int).SetInt64(int64(priv.E))
228	de.Mul(de, priv.D)
229	for _, prime := range priv.Primes {
230		pminus1 := new(big.Int).Sub(prime, bigOne)
231		congruence.Mod(de, pminus1)
232		if congruence.Cmp(bigOne) != 0 {
233			return errors.New("crypto/rsa: invalid exponents")
234		}
235	}
236	return nil
237}
238
239// GenerateKey generates an RSA keypair of the given bit size using the
240// random source random (for example, crypto/rand.Reader).
241func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) {
242	return GenerateMultiPrimeKey(random, 2, bits)
243}
244
245// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
246// size and the given random source, as suggested in [1]. Although the public
247// keys are compatible (actually, indistinguishable) from the 2-prime case,
248// the private keys are not. Thus it may not be possible to export multi-prime
249// private keys in certain formats or to subsequently import them into other
250// code.
251//
252// Table 1 in [2] suggests maximum numbers of primes for a given size.
253//
254// [1] US patent 4405829 (1972, expired)
255// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
256func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) {
257	randutil.MaybeReadByte(random)
258
259	priv := new(PrivateKey)
260	priv.E = 65537
261
262	if nprimes < 2 {
263		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
264	}
265
266	if bits < 64 {
267		primeLimit := float64(uint64(1) << uint(bits/nprimes))
268		// pi approximates the number of primes less than primeLimit
269		pi := primeLimit / (math.Log(primeLimit) - 1)
270		// Generated primes start with 11 (in binary) so we can only
271		// use a quarter of them.
272		pi /= 4
273		// Use a factor of two to ensure that key generation terminates
274		// in a reasonable amount of time.
275		pi /= 2
276		if pi <= float64(nprimes) {
277			return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key")
278		}
279	}
280
281	primes := make([]*big.Int, nprimes)
282
283NextSetOfPrimes:
284	for {
285		todo := bits
286		// crypto/rand should set the top two bits in each prime.
287		// Thus each prime has the form
288		//   p_i = 2^bitlen(p_i) × 0.11... (in base 2).
289		// And the product is:
290		//   P = 2^todo × α
291		// where α is the product of nprimes numbers of the form 0.11...
292		//
293		// If α < 1/2 (which can happen for nprimes > 2), we need to
294		// shift todo to compensate for lost bits: the mean value of 0.11...
295		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
296		// will give good results.
297		if nprimes >= 7 {
298			todo += (nprimes - 2) / 5
299		}
300		for i := 0; i < nprimes; i++ {
301			var err error
302			primes[i], err = rand.Prime(random, todo/(nprimes-i))
303			if err != nil {
304				return nil, err
305			}
306			todo -= primes[i].BitLen()
307		}
308
309		// Make sure that primes is pairwise unequal.
310		for i, prime := range primes {
311			for j := 0; j < i; j++ {
312				if prime.Cmp(primes[j]) == 0 {
313					continue NextSetOfPrimes
314				}
315			}
316		}
317
318		n := new(big.Int).Set(bigOne)
319		totient := new(big.Int).Set(bigOne)
320		pminus1 := new(big.Int)
321		for _, prime := range primes {
322			n.Mul(n, prime)
323			pminus1.Sub(prime, bigOne)
324			totient.Mul(totient, pminus1)
325		}
326		if n.BitLen() != bits {
327			// This should never happen for nprimes == 2 because
328			// crypto/rand should set the top two bits in each prime.
329			// For nprimes > 2 we hope it does not happen often.
330			continue NextSetOfPrimes
331		}
332
333		priv.D = new(big.Int)
334		e := big.NewInt(int64(priv.E))
335		ok := priv.D.ModInverse(e, totient)
336
337		if ok != nil {
338			priv.Primes = primes
339			priv.N = n
340			break
341		}
342	}
343
344	priv.Precompute()
345	return priv, nil
346}
347
348// incCounter increments a four byte, big-endian counter.
349func incCounter(c *[4]byte) {
350	if c[3]++; c[3] != 0 {
351		return
352	}
353	if c[2]++; c[2] != 0 {
354		return
355	}
356	if c[1]++; c[1] != 0 {
357		return
358	}
359	c[0]++
360}
361
362// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
363// specified in PKCS #1 v2.1.
364func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
365	var counter [4]byte
366	var digest []byte
367
368	done := 0
369	for done < len(out) {
370		hash.Write(seed)
371		hash.Write(counter[0:4])
372		digest = hash.Sum(digest[:0])
373		hash.Reset()
374
375		for i := 0; i < len(digest) && done < len(out); i++ {
376			out[done] ^= digest[i]
377			done++
378		}
379		incCounter(&counter)
380	}
381}
382
383// ErrMessageTooLong is returned when attempting to encrypt a message which is
384// too large for the size of the public key.
385var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
386
387func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
388	e := big.NewInt(int64(pub.E))
389	c.Exp(m, e, pub.N)
390	return c
391}
392
393// EncryptOAEP encrypts the given message with RSA-OAEP.
394//
395// OAEP is parameterised by a hash function that is used as a random oracle.
396// Encryption and decryption of a given message must use the same hash function
397// and sha256.New() is a reasonable choice.
398//
399// The random parameter is used as a source of entropy to ensure that
400// encrypting the same message twice doesn't result in the same ciphertext.
401//
402// The label parameter may contain arbitrary data that will not be encrypted,
403// but which gives important context to the message. For example, if a given
404// public key is used to encrypt two types of messages then distinct label
405// values could be used to ensure that a ciphertext for one purpose cannot be
406// used for another by an attacker. If not required it can be empty.
407//
408// The message must be no longer than the length of the public modulus minus
409// twice the hash length, minus a further 2.
410func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) {
411	if err := checkPub(pub); err != nil {
412		return nil, err
413	}
414	hash.Reset()
415	k := pub.Size()
416	if len(msg) > k-2*hash.Size()-2 {
417		return nil, ErrMessageTooLong
418	}
419
420	hash.Write(label)
421	lHash := hash.Sum(nil)
422	hash.Reset()
423
424	em := make([]byte, k)
425	seed := em[1 : 1+hash.Size()]
426	db := em[1+hash.Size():]
427
428	copy(db[0:hash.Size()], lHash)
429	db[len(db)-len(msg)-1] = 1
430	copy(db[len(db)-len(msg):], msg)
431
432	_, err := io.ReadFull(random, seed)
433	if err != nil {
434		return nil, err
435	}
436
437	mgf1XOR(db, hash, seed)
438	mgf1XOR(seed, hash, db)
439
440	m := new(big.Int)
441	m.SetBytes(em)
442	c := encrypt(new(big.Int), pub, m)
443
444	out := make([]byte, k)
445	return c.FillBytes(out), nil
446}
447
448// ErrDecryption represents a failure to decrypt a message.
449// It is deliberately vague to avoid adaptive attacks.
450var ErrDecryption = errors.New("crypto/rsa: decryption error")
451
452// ErrVerification represents a failure to verify a signature.
453// It is deliberately vague to avoid adaptive attacks.
454var ErrVerification = errors.New("crypto/rsa: verification error")
455
456// Precompute performs some calculations that speed up private key operations
457// in the future.
458func (priv *PrivateKey) Precompute() {
459	if priv.Precomputed.Dp != nil {
460		return
461	}
462
463	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
464	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
465
466	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
467	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
468
469	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
470
471	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
472	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
473	for i := 2; i < len(priv.Primes); i++ {
474		prime := priv.Primes[i]
475		values := &priv.Precomputed.CRTValues[i-2]
476
477		values.Exp = new(big.Int).Sub(prime, bigOne)
478		values.Exp.Mod(priv.D, values.Exp)
479
480		values.R = new(big.Int).Set(r)
481		values.Coeff = new(big.Int).ModInverse(r, prime)
482
483		r.Mul(r, prime)
484	}
485}
486
487// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
488// random source is given, RSA blinding is used.
489func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
490	// TODO(agl): can we get away with reusing blinds?
491	if c.Cmp(priv.N) > 0 {
492		err = ErrDecryption
493		return
494	}
495	if priv.N.Sign() == 0 {
496		return nil, ErrDecryption
497	}
498
499	var ir *big.Int
500	if random != nil {
501		randutil.MaybeReadByte(random)
502
503		// Blinding enabled. Blinding involves multiplying c by r^e.
504		// Then the decryption operation performs (m^e * r^e)^d mod n
505		// which equals mr mod n. The factor of r can then be removed
506		// by multiplying by the multiplicative inverse of r.
507
508		var r *big.Int
509		ir = new(big.Int)
510		for {
511			r, err = rand.Int(random, priv.N)
512			if err != nil {
513				return
514			}
515			if r.Cmp(bigZero) == 0 {
516				r = bigOne
517			}
518			ok := ir.ModInverse(r, priv.N)
519			if ok != nil {
520				break
521			}
522		}
523		bigE := big.NewInt(int64(priv.E))
524		rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
525		cCopy := new(big.Int).Set(c)
526		cCopy.Mul(cCopy, rpowe)
527		cCopy.Mod(cCopy, priv.N)
528		c = cCopy
529	}
530
531	if priv.Precomputed.Dp == nil {
532		m = new(big.Int).Exp(c, priv.D, priv.N)
533	} else {
534		// We have the precalculated values needed for the CRT.
535		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
536		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
537		m.Sub(m, m2)
538		if m.Sign() < 0 {
539			m.Add(m, priv.Primes[0])
540		}
541		m.Mul(m, priv.Precomputed.Qinv)
542		m.Mod(m, priv.Primes[0])
543		m.Mul(m, priv.Primes[1])
544		m.Add(m, m2)
545
546		for i, values := range priv.Precomputed.CRTValues {
547			prime := priv.Primes[2+i]
548			m2.Exp(c, values.Exp, prime)
549			m2.Sub(m2, m)
550			m2.Mul(m2, values.Coeff)
551			m2.Mod(m2, prime)
552			if m2.Sign() < 0 {
553				m2.Add(m2, prime)
554			}
555			m2.Mul(m2, values.R)
556			m.Add(m, m2)
557		}
558	}
559
560	if ir != nil {
561		// Unblind.
562		m.Mul(m, ir)
563		m.Mod(m, priv.N)
564	}
565
566	return
567}
568
569func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
570	m, err = decrypt(random, priv, c)
571	if err != nil {
572		return nil, err
573	}
574
575	// In order to defend against errors in the CRT computation, m^e is
576	// calculated, which should match the original ciphertext.
577	check := encrypt(new(big.Int), &priv.PublicKey, m)
578	if c.Cmp(check) != 0 {
579		return nil, errors.New("rsa: internal error")
580	}
581	return m, nil
582}
583
584// DecryptOAEP decrypts ciphertext using RSA-OAEP.
585//
586// OAEP is parameterised by a hash function that is used as a random oracle.
587// Encryption and decryption of a given message must use the same hash function
588// and sha256.New() is a reasonable choice.
589//
590// The random parameter, if not nil, is used to blind the private-key operation
591// and avoid timing side-channel attacks. Blinding is purely internal to this
592// function – the random data need not match that used when encrypting.
593//
594// The label parameter must match the value given when encrypting. See
595// EncryptOAEP for details.
596func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
597	if err := checkPub(&priv.PublicKey); err != nil {
598		return nil, err
599	}
600	k := priv.Size()
601	if len(ciphertext) > k ||
602		k < hash.Size()*2+2 {
603		return nil, ErrDecryption
604	}
605
606	c := new(big.Int).SetBytes(ciphertext)
607
608	m, err := decrypt(random, priv, c)
609	if err != nil {
610		return nil, err
611	}
612
613	hash.Write(label)
614	lHash := hash.Sum(nil)
615	hash.Reset()
616
617	// We probably leak the number of leading zeros.
618	// It's not clear that we can do anything about this.
619	em := m.FillBytes(make([]byte, k))
620
621	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
622
623	seed := em[1 : hash.Size()+1]
624	db := em[hash.Size()+1:]
625
626	mgf1XOR(seed, hash, db)
627	mgf1XOR(db, hash, seed)
628
629	lHash2 := db[0:hash.Size()]
630
631	// We have to validate the plaintext in constant time in order to avoid
632	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
633	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
634	// v2.0. In J. Kilian, editor, Advances in Cryptology.
635	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
636
637	// The remainder of the plaintext must be zero or more 0x00, followed
638	// by 0x01, followed by the message.
639	//   lookingForIndex: 1 iff we are still looking for the 0x01
640	//   index: the offset of the first 0x01 byte
641	//   invalid: 1 iff we saw a non-zero byte before the 0x01.
642	var lookingForIndex, index, invalid int
643	lookingForIndex = 1
644	rest := db[hash.Size():]
645
646	for i := 0; i < len(rest); i++ {
647		equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
648		equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
649		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
650		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
651		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
652	}
653
654	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
655		return nil, ErrDecryption
656	}
657
658	return rest[index+1:], nil
659}
660