1// run
2
3// Copyright 2009 The Go Authors. All rights reserved.
4// Use of this source code is governed by a BSD-style
5// license that can be found in the LICENSE file.
6
7// Test heap sampling logic.
8
9package main
10
11import (
12	"fmt"
13	"math"
14	"runtime"
15)
16
17var a16 *[16]byte
18var a512 *[512]byte
19var a256 *[256]byte
20var a1k *[1024]byte
21var a16k *[16 * 1024]byte
22var a17k *[17 * 1024]byte
23var a18k *[18 * 1024]byte
24
25// This test checks that heap sampling produces reasonable results.
26// Note that heap sampling uses randomization, so the results vary for
27// run to run. To avoid flakes, this test performs multiple
28// experiments and only complains if all of them consistently fail.
29func main() {
30	// Sample at 16K instead of default 512K to exercise sampling more heavily.
31	runtime.MemProfileRate = 16 * 1024
32
33	if err := testInterleavedAllocations(); err != nil {
34		panic(err.Error())
35	}
36	if err := testSmallAllocations(); err != nil {
37		panic(err.Error())
38	}
39}
40
41// Repeatedly exercise a set of allocations and check that the heap
42// profile collected by the runtime unsamples to a reasonable
43// value. Because sampling is based on randomization, there can be
44// significant variability on the unsampled data. To account for that,
45// the testcase allows for a 10% margin of error, but only fails if it
46// consistently fails across three experiments, avoiding flakes.
47func testInterleavedAllocations() error {
48	const iters = 100000
49	// Sizes of the allocations performed by each experiment.
50	frames := []string{"main.allocInterleaved1", "main.allocInterleaved2", "main.allocInterleaved3"}
51
52	// Pass if at least one of three experiments has no errors. Use a separate
53	// function for each experiment to identify each experiment in the profile.
54	allocInterleaved1(iters)
55	if checkAllocations(getMemProfileRecords(), frames[0:1], iters, allocInterleavedSizes) == nil {
56		// Passed on first try, report no error.
57		return nil
58	}
59	allocInterleaved2(iters)
60	if checkAllocations(getMemProfileRecords(), frames[0:2], iters, allocInterleavedSizes) == nil {
61		// Passed on second try, report no error.
62		return nil
63	}
64	allocInterleaved3(iters)
65	// If it fails a third time, we may be onto something.
66	return checkAllocations(getMemProfileRecords(), frames[0:3], iters, allocInterleavedSizes)
67}
68
69var allocInterleavedSizes = []int64{17 * 1024, 1024, 18 * 1024, 512, 16 * 1024, 256}
70
71// allocInterleaved stress-tests the heap sampling logic by interleaving large and small allocations.
72func allocInterleaved(n int) {
73	for i := 0; i < n; i++ {
74		// Test verification depends on these lines being contiguous.
75		a17k = new([17 * 1024]byte)
76		a1k = new([1024]byte)
77		a18k = new([18 * 1024]byte)
78		a512 = new([512]byte)
79		a16k = new([16 * 1024]byte)
80		a256 = new([256]byte)
81		// Test verification depends on these lines being contiguous.
82	}
83}
84
85func allocInterleaved1(n int) {
86	allocInterleaved(n)
87}
88
89func allocInterleaved2(n int) {
90	allocInterleaved(n)
91}
92
93func allocInterleaved3(n int) {
94	allocInterleaved(n)
95}
96
97// Repeatedly exercise a set of allocations and check that the heap
98// profile collected by the runtime unsamples to a reasonable
99// value. Because sampling is based on randomization, there can be
100// significant variability on the unsampled data. To account for that,
101// the testcase allows for a 10% margin of error, but only fails if it
102// consistently fails across three experiments, avoiding flakes.
103func testSmallAllocations() error {
104	const iters = 100000
105	// Sizes of the allocations performed by each experiment.
106	sizes := []int64{1024, 512, 256}
107	frames := []string{"main.allocSmall1", "main.allocSmall2", "main.allocSmall3"}
108
109	// Pass if at least one of three experiments has no errors. Use a separate
110	// function for each experiment to identify each experiment in the profile.
111	allocSmall1(iters)
112	if checkAllocations(getMemProfileRecords(), frames[0:1], iters, sizes) == nil {
113		// Passed on first try, report no error.
114		return nil
115	}
116	allocSmall2(iters)
117	if checkAllocations(getMemProfileRecords(), frames[0:2], iters, sizes) == nil {
118		// Passed on second try, report no error.
119		return nil
120	}
121	allocSmall3(iters)
122	// If it fails a third time, we may be onto something.
123	return checkAllocations(getMemProfileRecords(), frames[0:3], iters, sizes)
124}
125
126// allocSmall performs only small allocations for sanity testing.
127func allocSmall(n int) {
128	for i := 0; i < n; i++ {
129		// Test verification depends on these lines being contiguous.
130		a1k = new([1024]byte)
131		a512 = new([512]byte)
132		a256 = new([256]byte)
133	}
134}
135
136// Three separate instances of testing to avoid flakes. Will report an error
137// only if they all consistently report failures.
138func allocSmall1(n int) {
139	allocSmall(n)
140}
141
142func allocSmall2(n int) {
143	allocSmall(n)
144}
145
146func allocSmall3(n int) {
147	allocSmall(n)
148}
149
150// checkAllocations validates that the profile records collected for
151// the named function are consistent with count contiguous allocations
152// of the specified sizes.
153// Check multiple functions and only report consistent failures across
154// multiple tests.
155// Look only at samples that include the named frames, and group the
156// allocations by their line number. All these allocations are done from
157// the same leaf function, so their line numbers are the same.
158func checkAllocations(records []runtime.MemProfileRecord, frames []string, count int64, size []int64) error {
159	objectsPerLine := map[int][]int64{}
160	bytesPerLine := map[int][]int64{}
161	totalCount := []int64{}
162	// Compute the line number of the first allocation. All the
163	// allocations are from the same leaf, so pick the first one.
164	var firstLine int
165	for ln := range allocObjects(records, frames[0]) {
166		if firstLine == 0 || firstLine > ln {
167			firstLine = ln
168		}
169	}
170	for _, frame := range frames {
171		var objectCount int64
172		a := allocObjects(records, frame)
173		for s := range size {
174			// Allocations of size size[s] should be on line firstLine + s.
175			ln := firstLine + s
176			objectsPerLine[ln] = append(objectsPerLine[ln], a[ln].objects)
177			bytesPerLine[ln] = append(bytesPerLine[ln], a[ln].bytes)
178			objectCount += a[ln].objects
179		}
180		totalCount = append(totalCount, objectCount)
181	}
182	for i, w := range size {
183		ln := firstLine + i
184		if err := checkValue(frames[0], ln, "objects", count, objectsPerLine[ln]); err != nil {
185			return err
186		}
187		if err := checkValue(frames[0], ln, "bytes", count*w, bytesPerLine[ln]); err != nil {
188			return err
189		}
190	}
191	return checkValue(frames[0], 0, "total", count*int64(len(size)), totalCount)
192}
193
194// checkValue checks an unsampled value against its expected value.
195// Given that this is a sampled value, it will be unexact and will change
196// from run to run. Only report it as a failure if all the values land
197// consistently far from the expected value.
198func checkValue(fname string, ln int, testName string, want int64, got []int64) error {
199	if got == nil {
200		return fmt.Errorf("Unexpected empty result")
201	}
202	min, max := got[0], got[0]
203	for _, g := range got[1:] {
204		if g < min {
205			min = g
206		}
207		if g > max {
208			max = g
209		}
210	}
211	margin := want / 10 // 10% margin.
212	if min > want+margin || max < want-margin {
213		return fmt.Errorf("%s:%d want %s in [%d: %d], got %v", fname, ln, testName, want-margin, want+margin, got)
214	}
215	return nil
216}
217
218func getMemProfileRecords() []runtime.MemProfileRecord {
219	// Force the runtime to update the object and byte counts.
220	// This can take up to two GC cycles to get a complete
221	// snapshot of the current point in time.
222	runtime.GC()
223	runtime.GC()
224
225	// Find out how many records there are (MemProfile(nil, true)),
226	// allocate that many records, and get the data.
227	// There's a race—more records might be added between
228	// the two calls—so allocate a few extra records for safety
229	// and also try again if we're very unlucky.
230	// The loop should only execute one iteration in the common case.
231	var p []runtime.MemProfileRecord
232	n, ok := runtime.MemProfile(nil, true)
233	for {
234		// Allocate room for a slightly bigger profile,
235		// in case a few more entries have been added
236		// since the call to MemProfile.
237		p = make([]runtime.MemProfileRecord, n+50)
238		n, ok = runtime.MemProfile(p, true)
239		if ok {
240			p = p[0:n]
241			break
242		}
243		// Profile grew; try again.
244	}
245	return p
246}
247
248type allocStat struct {
249	bytes, objects int64
250}
251
252// allocObjects examines the profile records for samples including the
253// named function and returns the allocation stats aggregated by
254// source line number of the allocation (at the leaf frame).
255func allocObjects(records []runtime.MemProfileRecord, function string) map[int]allocStat {
256	a := make(map[int]allocStat)
257	for _, r := range records {
258		var pcs []uintptr
259		for _, s := range r.Stack0 {
260			if s == 0 {
261				break
262			}
263			pcs = append(pcs, s)
264		}
265		frames := runtime.CallersFrames(pcs)
266		line := 0
267		for {
268			frame, more := frames.Next()
269			name := frame.Function
270			if line == 0 {
271				line = frame.Line
272			}
273			if name == function {
274				allocStat := a[line]
275				allocStat.bytes += r.AllocBytes
276				allocStat.objects += r.AllocObjects
277				a[line] = allocStat
278			}
279			if !more {
280				break
281			}
282		}
283	}
284	for line, stats := range a {
285		objects, bytes := scaleHeapSample(stats.objects, stats.bytes, int64(runtime.MemProfileRate))
286		a[line] = allocStat{bytes, objects}
287	}
288	return a
289}
290
291// scaleHeapSample unsamples heap allocations.
292// Taken from src/cmd/pprof/internal/profile/legacy_profile.go
293func scaleHeapSample(count, size, rate int64) (int64, int64) {
294	if count == 0 || size == 0 {
295		return 0, 0
296	}
297
298	if rate <= 1 {
299		// if rate==1 all samples were collected so no adjustment is needed.
300		// if rate<1 treat as unknown and skip scaling.
301		return count, size
302	}
303
304	avgSize := float64(size) / float64(count)
305	scale := 1 / (1 - math.Exp(-avgSize/float64(rate)))
306
307	return int64(float64(count) * scale), int64(float64(size) * scale)
308}
309