1 /*
2 ** $Id: lmathlib.c $
3 ** Standard mathematical library
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define lmathlib_c
8 #define LUA_LIB
9 
10 #include "lprefix.h"
11 
12 
13 #include <float.h>
14 #include <limits.h>
15 #include <math.h>
16 #include <stdlib.h>
17 #include <time.h>
18 
19 #include "lua.h"
20 
21 #include "lauxlib.h"
22 #include "lualib.h"
23 
24 
25 #undef PI
26 #define PI	(l_mathop(3.141592653589793238462643383279502884))
27 
28 
math_abs(lua_State * L)29 static int math_abs (lua_State *L) {
30   if (lua_isinteger(L, 1)) {
31     lua_Integer n = lua_tointeger(L, 1);
32     if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n);
33     lua_pushinteger(L, n);
34   }
35   else
36     lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1)));
37   return 1;
38 }
39 
math_sin(lua_State * L)40 static int math_sin (lua_State *L) {
41   lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1)));
42   return 1;
43 }
44 
math_cos(lua_State * L)45 static int math_cos (lua_State *L) {
46   lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1)));
47   return 1;
48 }
49 
math_tan(lua_State * L)50 static int math_tan (lua_State *L) {
51   lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1)));
52   return 1;
53 }
54 
math_asin(lua_State * L)55 static int math_asin (lua_State *L) {
56   lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1)));
57   return 1;
58 }
59 
math_acos(lua_State * L)60 static int math_acos (lua_State *L) {
61   lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1)));
62   return 1;
63 }
64 
math_atan(lua_State * L)65 static int math_atan (lua_State *L) {
66   lua_Number y = luaL_checknumber(L, 1);
67   lua_Number x = luaL_optnumber(L, 2, 1);
68   lua_pushnumber(L, l_mathop(atan2)(y, x));
69   return 1;
70 }
71 
72 
math_toint(lua_State * L)73 static int math_toint (lua_State *L) {
74   int valid;
75   lua_Integer n = lua_tointegerx(L, 1, &valid);
76   if (valid)
77     lua_pushinteger(L, n);
78   else {
79     luaL_checkany(L, 1);
80     luaL_pushfail(L);  /* value is not convertible to integer */
81   }
82   return 1;
83 }
84 
85 
pushnumint(lua_State * L,lua_Number d)86 static void pushnumint (lua_State *L, lua_Number d) {
87   lua_Integer n;
88   if (lua_numbertointeger(d, &n))  /* does 'd' fit in an integer? */
89     lua_pushinteger(L, n);  /* result is integer */
90   else
91     lua_pushnumber(L, d);  /* result is float */
92 }
93 
94 
math_floor(lua_State * L)95 static int math_floor (lua_State *L) {
96   if (lua_isinteger(L, 1))
97     lua_settop(L, 1);  /* integer is its own floor */
98   else {
99     lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1));
100     pushnumint(L, d);
101   }
102   return 1;
103 }
104 
105 
math_ceil(lua_State * L)106 static int math_ceil (lua_State *L) {
107   if (lua_isinteger(L, 1))
108     lua_settop(L, 1);  /* integer is its own ceil */
109   else {
110     lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1));
111     pushnumint(L, d);
112   }
113   return 1;
114 }
115 
116 
math_fmod(lua_State * L)117 static int math_fmod (lua_State *L) {
118   if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) {
119     lua_Integer d = lua_tointeger(L, 2);
120     if ((lua_Unsigned)d + 1u <= 1u) {  /* special cases: -1 or 0 */
121       luaL_argcheck(L, d != 0, 2, "zero");
122       lua_pushinteger(L, 0);  /* avoid overflow with 0x80000... / -1 */
123     }
124     else
125       lua_pushinteger(L, lua_tointeger(L, 1) % d);
126   }
127   else
128     lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1),
129                                      luaL_checknumber(L, 2)));
130   return 1;
131 }
132 
133 
134 /*
135 ** next function does not use 'modf', avoiding problems with 'double*'
136 ** (which is not compatible with 'float*') when lua_Number is not
137 ** 'double'.
138 */
math_modf(lua_State * L)139 static int math_modf (lua_State *L) {
140   if (lua_isinteger(L ,1)) {
141     lua_settop(L, 1);  /* number is its own integer part */
142     lua_pushnumber(L, 0);  /* no fractional part */
143   }
144   else {
145     lua_Number n = luaL_checknumber(L, 1);
146     /* integer part (rounds toward zero) */
147     lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n);
148     pushnumint(L, ip);
149     /* fractional part (test needed for inf/-inf) */
150     lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip));
151   }
152   return 2;
153 }
154 
155 
math_sqrt(lua_State * L)156 static int math_sqrt (lua_State *L) {
157   lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1)));
158   return 1;
159 }
160 
161 
math_ult(lua_State * L)162 static int math_ult (lua_State *L) {
163   lua_Integer a = luaL_checkinteger(L, 1);
164   lua_Integer b = luaL_checkinteger(L, 2);
165   lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b);
166   return 1;
167 }
168 
math_log(lua_State * L)169 static int math_log (lua_State *L) {
170   lua_Number x = luaL_checknumber(L, 1);
171   lua_Number res;
172   if (lua_isnoneornil(L, 2))
173     res = l_mathop(log)(x);
174   else {
175     lua_Number base = luaL_checknumber(L, 2);
176 #if !defined(LUA_USE_C89)
177     if (base == l_mathop(2.0))
178       res = l_mathop(log2)(x); else
179 #endif
180     if (base == l_mathop(10.0))
181       res = l_mathop(log10)(x);
182     else
183       res = l_mathop(log)(x)/l_mathop(log)(base);
184   }
185   lua_pushnumber(L, res);
186   return 1;
187 }
188 
math_exp(lua_State * L)189 static int math_exp (lua_State *L) {
190   lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1)));
191   return 1;
192 }
193 
math_deg(lua_State * L)194 static int math_deg (lua_State *L) {
195   lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI));
196   return 1;
197 }
198 
math_rad(lua_State * L)199 static int math_rad (lua_State *L) {
200   lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0)));
201   return 1;
202 }
203 
204 
math_min(lua_State * L)205 static int math_min (lua_State *L) {
206   int n = lua_gettop(L);  /* number of arguments */
207   int imin = 1;  /* index of current minimum value */
208   int i;
209   luaL_argcheck(L, n >= 1, 1, "value expected");
210   for (i = 2; i <= n; i++) {
211     if (lua_compare(L, i, imin, LUA_OPLT))
212       imin = i;
213   }
214   lua_pushvalue(L, imin);
215   return 1;
216 }
217 
218 
math_max(lua_State * L)219 static int math_max (lua_State *L) {
220   int n = lua_gettop(L);  /* number of arguments */
221   int imax = 1;  /* index of current maximum value */
222   int i;
223   luaL_argcheck(L, n >= 1, 1, "value expected");
224   for (i = 2; i <= n; i++) {
225     if (lua_compare(L, imax, i, LUA_OPLT))
226       imax = i;
227   }
228   lua_pushvalue(L, imax);
229   return 1;
230 }
231 
232 
math_type(lua_State * L)233 static int math_type (lua_State *L) {
234   if (lua_type(L, 1) == LUA_TNUMBER)
235     lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float");
236   else {
237     luaL_checkany(L, 1);
238     luaL_pushfail(L);
239   }
240   return 1;
241 }
242 
243 
244 
245 /*
246 ** {==================================================================
247 ** Pseudo-Random Number Generator based on 'xoshiro256**'.
248 ** ===================================================================
249 */
250 
251 /* number of binary digits in the mantissa of a float */
252 #define FIGS	l_floatatt(MANT_DIG)
253 
254 #if FIGS > 64
255 /* there are only 64 random bits; use them all */
256 #undef FIGS
257 #define FIGS	64
258 #endif
259 
260 
261 /*
262 ** LUA_RAND32 forces the use of 32-bit integers in the implementation
263 ** of the PRN generator (mainly for testing).
264 */
265 #if !defined(LUA_RAND32) && !defined(Rand64)
266 
267 /* try to find an integer type with at least 64 bits */
268 
269 #if (ULONG_MAX >> 31 >> 31) >= 3
270 
271 /* 'long' has at least 64 bits */
272 #define Rand64		unsigned long
273 
274 #elif !defined(LUA_USE_C89) && defined(LLONG_MAX)
275 
276 /* there is a 'long long' type (which must have at least 64 bits) */
277 #define Rand64		unsigned long long
278 
279 #elif (LUA_MAXUNSIGNED >> 31 >> 31) >= 3
280 
281 /* 'lua_Integer' has at least 64 bits */
282 #define Rand64		lua_Unsigned
283 
284 #endif
285 
286 #endif
287 
288 
289 #if defined(Rand64)  /* { */
290 
291 /*
292 ** Standard implementation, using 64-bit integers.
293 ** If 'Rand64' has more than 64 bits, the extra bits do not interfere
294 ** with the 64 initial bits, except in a right shift. Moreover, the
295 ** final result has to discard the extra bits.
296 */
297 
298 /* avoid using extra bits when needed */
299 #define trim64(x)	((x) & 0xffffffffffffffffu)
300 
301 
302 /* rotate left 'x' by 'n' bits */
rotl(Rand64 x,int n)303 static Rand64 rotl (Rand64 x, int n) {
304   return (x << n) | (trim64(x) >> (64 - n));
305 }
306 
nextrand(Rand64 * state)307 static Rand64 nextrand (Rand64 *state) {
308   Rand64 state0 = state[0];
309   Rand64 state1 = state[1];
310   Rand64 state2 = state[2] ^ state0;
311   Rand64 state3 = state[3] ^ state1;
312   Rand64 res = rotl(state1 * 5, 7) * 9;
313   state[0] = state0 ^ state3;
314   state[1] = state1 ^ state2;
315   state[2] = state2 ^ (state1 << 17);
316   state[3] = rotl(state3, 45);
317   return res;
318 }
319 
320 
321 /* must take care to not shift stuff by more than 63 slots */
322 
323 
324 /*
325 ** Convert bits from a random integer into a float in the
326 ** interval [0,1), getting the higher FIG bits from the
327 ** random unsigned integer and converting that to a float.
328 */
329 
330 /* must throw out the extra (64 - FIGS) bits */
331 #define shift64_FIG	(64 - FIGS)
332 
333 /* to scale to [0, 1), multiply by scaleFIG = 2^(-FIGS) */
334 #define scaleFIG	(l_mathop(0.5) / ((Rand64)1 << (FIGS - 1)))
335 
I2d(Rand64 x)336 static lua_Number I2d (Rand64 x) {
337   return (lua_Number)(trim64(x) >> shift64_FIG) * scaleFIG;
338 }
339 
340 /* convert a 'Rand64' to a 'lua_Unsigned' */
341 #define I2UInt(x)	((lua_Unsigned)trim64(x))
342 
343 /* convert a 'lua_Unsigned' to a 'Rand64' */
344 #define Int2I(x)	((Rand64)(x))
345 
346 
347 #else	/* no 'Rand64'   }{ */
348 
349 /* get an integer with at least 32 bits */
350 #if LUAI_IS32INT
351 typedef unsigned int lu_int32;
352 #else
353 typedef unsigned long lu_int32;
354 #endif
355 
356 
357 /*
358 ** Use two 32-bit integers to represent a 64-bit quantity.
359 */
360 typedef struct Rand64 {
361   lu_int32 h;  /* higher half */
362   lu_int32 l;  /* lower half */
363 } Rand64;
364 
365 
366 /*
367 ** If 'lu_int32' has more than 32 bits, the extra bits do not interfere
368 ** with the 32 initial bits, except in a right shift and comparisons.
369 ** Moreover, the final result has to discard the extra bits.
370 */
371 
372 /* avoid using extra bits when needed */
373 #define trim32(x)	((x) & 0xffffffffu)
374 
375 
376 /*
377 ** basic operations on 'Rand64' values
378 */
379 
380 /* build a new Rand64 value */
packI(lu_int32 h,lu_int32 l)381 static Rand64 packI (lu_int32 h, lu_int32 l) {
382   Rand64 result;
383   result.h = h;
384   result.l = l;
385   return result;
386 }
387 
388 /* return i << n */
Ishl(Rand64 i,int n)389 static Rand64 Ishl (Rand64 i, int n) {
390   lua_assert(n > 0 && n < 32);
391   return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n);
392 }
393 
394 /* i1 ^= i2 */
Ixor(Rand64 * i1,Rand64 i2)395 static void Ixor (Rand64 *i1, Rand64 i2) {
396   i1->h ^= i2.h;
397   i1->l ^= i2.l;
398 }
399 
400 /* return i1 + i2 */
Iadd(Rand64 i1,Rand64 i2)401 static Rand64 Iadd (Rand64 i1, Rand64 i2) {
402   Rand64 result = packI(i1.h + i2.h, i1.l + i2.l);
403   if (trim32(result.l) < trim32(i1.l))  /* carry? */
404     result.h++;
405   return result;
406 }
407 
408 /* return i * 5 */
times5(Rand64 i)409 static Rand64 times5 (Rand64 i) {
410   return Iadd(Ishl(i, 2), i);  /* i * 5 == (i << 2) + i */
411 }
412 
413 /* return i * 9 */
times9(Rand64 i)414 static Rand64 times9 (Rand64 i) {
415   return Iadd(Ishl(i, 3), i);  /* i * 9 == (i << 3) + i */
416 }
417 
418 /* return 'i' rotated left 'n' bits */
rotl(Rand64 i,int n)419 static Rand64 rotl (Rand64 i, int n) {
420   lua_assert(n > 0 && n < 32);
421   return packI((i.h << n) | (trim32(i.l) >> (32 - n)),
422                (trim32(i.h) >> (32 - n)) | (i.l << n));
423 }
424 
425 /* for offsets larger than 32, rotate right by 64 - offset */
rotl1(Rand64 i,int n)426 static Rand64 rotl1 (Rand64 i, int n) {
427   lua_assert(n > 32 && n < 64);
428   n = 64 - n;
429   return packI((trim32(i.h) >> n) | (i.l << (32 - n)),
430                (i.h << (32 - n)) | (trim32(i.l) >> n));
431 }
432 
433 /*
434 ** implementation of 'xoshiro256**' algorithm on 'Rand64' values
435 */
nextrand(Rand64 * state)436 static Rand64 nextrand (Rand64 *state) {
437   Rand64 res = times9(rotl(times5(state[1]), 7));
438   Rand64 t = Ishl(state[1], 17);
439   Ixor(&state[2], state[0]);
440   Ixor(&state[3], state[1]);
441   Ixor(&state[1], state[2]);
442   Ixor(&state[0], state[3]);
443   Ixor(&state[2], t);
444   state[3] = rotl1(state[3], 45);
445   return res;
446 }
447 
448 
449 /*
450 ** Converts a 'Rand64' into a float.
451 */
452 
453 /* an unsigned 1 with proper type */
454 #define UONE		((lu_int32)1)
455 
456 
457 #if FIGS <= 32
458 
459 /* 2^(-FIGS) */
460 #define scaleFIG       (l_mathop(0.5) / (UONE << (FIGS - 1)))
461 
462 /*
463 ** get up to 32 bits from higher half, shifting right to
464 ** throw out the extra bits.
465 */
I2d(Rand64 x)466 static lua_Number I2d (Rand64 x) {
467   lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS));
468   return h * scaleFIG;
469 }
470 
471 #else	/* 32 < FIGS <= 64 */
472 
473 /* must take care to not shift stuff by more than 31 slots */
474 
475 /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */
476 #define scaleFIG  \
477 	((lua_Number)1.0 / (UONE << 30) / 8.0 / (UONE << (FIGS - 33)))
478 
479 /*
480 ** use FIGS - 32 bits from lower half, throwing out the other
481 ** (32 - (FIGS - 32)) = (64 - FIGS) bits
482 */
483 #define shiftLOW	(64 - FIGS)
484 
485 /*
486 ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32)
487 */
488 #define shiftHI		((lua_Number)(UONE << (FIGS - 33)) * 2.0)
489 
490 
I2d(Rand64 x)491 static lua_Number I2d (Rand64 x) {
492   lua_Number h = (lua_Number)trim32(x.h) * shiftHI;
493   lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW);
494   return (h + l) * scaleFIG;
495 }
496 
497 #endif
498 
499 
500 /* convert a 'Rand64' to a 'lua_Unsigned' */
I2UInt(Rand64 x)501 static lua_Unsigned I2UInt (Rand64 x) {
502   return ((lua_Unsigned)trim32(x.h) << 31 << 1) | (lua_Unsigned)trim32(x.l);
503 }
504 
505 /* convert a 'lua_Unsigned' to a 'Rand64' */
Int2I(lua_Unsigned n)506 static Rand64 Int2I (lua_Unsigned n) {
507   return packI((lu_int32)(n >> 31 >> 1), (lu_int32)n);
508 }
509 
510 #endif  /* } */
511 
512 
513 /*
514 ** A state uses four 'Rand64' values.
515 */
516 typedef struct {
517   Rand64 s[4];
518 } RanState;
519 
520 
521 /*
522 ** Project the random integer 'ran' into the interval [0, n].
523 ** Because 'ran' has 2^B possible values, the projection can only be
524 ** uniform when the size of the interval is a power of 2 (exact
525 ** division). Otherwise, to get a uniform projection into [0, n], we
526 ** first compute 'lim', the smallest Mersenne number not smaller than
527 ** 'n'. We then project 'ran' into the interval [0, lim].  If the result
528 ** is inside [0, n], we are done. Otherwise, we try with another 'ran',
529 ** until we have a result inside the interval.
530 */
project(lua_Unsigned ran,lua_Unsigned n,RanState * state)531 static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n,
532                              RanState *state) {
533   if ((n & (n + 1)) == 0)  /* is 'n + 1' a power of 2? */
534     return ran & n;  /* no bias */
535   else {
536     lua_Unsigned lim = n;
537     /* compute the smallest (2^b - 1) not smaller than 'n' */
538     lim |= (lim >> 1);
539     lim |= (lim >> 2);
540     lim |= (lim >> 4);
541     lim |= (lim >> 8);
542     lim |= (lim >> 16);
543 #if (LUA_MAXUNSIGNED >> 31) >= 3
544     lim |= (lim >> 32);  /* integer type has more than 32 bits */
545 #endif
546     lua_assert((lim & (lim + 1)) == 0  /* 'lim + 1' is a power of 2, */
547       && lim >= n  /* not smaller than 'n', */
548       && (lim >> 1) < n);  /* and it is the smallest one */
549     while ((ran &= lim) > n)  /* project 'ran' into [0..lim] */
550       ran = I2UInt(nextrand(state->s));  /* not inside [0..n]? try again */
551     return ran;
552   }
553 }
554 
555 
math_random(lua_State * L)556 static int math_random (lua_State *L) {
557   lua_Integer low, up;
558   lua_Unsigned p;
559   RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
560   Rand64 rv = nextrand(state->s);  /* next pseudo-random value */
561   switch (lua_gettop(L)) {  /* check number of arguments */
562     case 0: {  /* no arguments */
563       lua_pushnumber(L, I2d(rv));  /* float between 0 and 1 */
564       return 1;
565     }
566     case 1: {  /* only upper limit */
567       low = 1;
568       up = luaL_checkinteger(L, 1);
569       if (up == 0) {  /* single 0 as argument? */
570         lua_pushinteger(L, I2UInt(rv));  /* full random integer */
571         return 1;
572       }
573       break;
574     }
575     case 2: {  /* lower and upper limits */
576       low = luaL_checkinteger(L, 1);
577       up = luaL_checkinteger(L, 2);
578       break;
579     }
580     default: return luaL_error(L, "wrong number of arguments");
581   }
582   /* random integer in the interval [low, up] */
583   luaL_argcheck(L, low <= up, 1, "interval is empty");
584   /* project random integer into the interval [0, up - low] */
585   p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state);
586   lua_pushinteger(L, p + (lua_Unsigned)low);
587   return 1;
588 }
589 
590 
setseed(lua_State * L,Rand64 * state,lua_Unsigned n1,lua_Unsigned n2)591 static void setseed (lua_State *L, Rand64 *state,
592                      lua_Unsigned n1, lua_Unsigned n2) {
593   int i;
594   state[0] = Int2I(n1);
595   state[1] = Int2I(0xff);  /* avoid a zero state */
596   state[2] = Int2I(n2);
597   state[3] = Int2I(0);
598   for (i = 0; i < 16; i++)
599     nextrand(state);  /* discard initial values to "spread" seed */
600   lua_pushinteger(L, n1);
601   lua_pushinteger(L, n2);
602 }
603 
604 
605 /*
606 ** Set a "random" seed. To get some randomness, use the current time
607 ** and the address of 'L' (in case the machine does address space layout
608 ** randomization).
609 */
randseed(lua_State * L,RanState * state)610 static void randseed (lua_State *L, RanState *state) {
611   lua_Unsigned seed1 = (lua_Unsigned)time(NULL);
612   lua_Unsigned seed2 = (lua_Unsigned)(size_t)L;
613   setseed(L, state->s, seed1, seed2);
614 }
615 
616 
math_randomseed(lua_State * L)617 static int math_randomseed (lua_State *L) {
618   RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
619   if (lua_isnone(L, 1)) {
620     randseed(L, state);
621   }
622   else {
623     lua_Integer n1 = luaL_checkinteger(L, 1);
624     lua_Integer n2 = luaL_optinteger(L, 2, 0);
625     setseed(L, state->s, n1, n2);
626   }
627   return 2;  /* return seeds */
628 }
629 
630 
631 static const luaL_Reg randfuncs[] = {
632   {"random", math_random},
633   {"randomseed", math_randomseed},
634   {NULL, NULL}
635 };
636 
637 
638 /*
639 ** Register the random functions and initialize their state.
640 */
setrandfunc(lua_State * L)641 static void setrandfunc (lua_State *L) {
642   RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0);
643   randseed(L, state);  /* initialize with a "random" seed */
644   lua_pop(L, 2);  /* remove pushed seeds */
645   luaL_setfuncs(L, randfuncs, 1);
646 }
647 
648 /* }================================================================== */
649 
650 
651 /*
652 ** {==================================================================
653 ** Deprecated functions (for compatibility only)
654 ** ===================================================================
655 */
656 #if defined(LUA_COMPAT_MATHLIB)
657 
math_cosh(lua_State * L)658 static int math_cosh (lua_State *L) {
659   lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1)));
660   return 1;
661 }
662 
math_sinh(lua_State * L)663 static int math_sinh (lua_State *L) {
664   lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1)));
665   return 1;
666 }
667 
math_tanh(lua_State * L)668 static int math_tanh (lua_State *L) {
669   lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1)));
670   return 1;
671 }
672 
math_pow(lua_State * L)673 static int math_pow (lua_State *L) {
674   lua_Number x = luaL_checknumber(L, 1);
675   lua_Number y = luaL_checknumber(L, 2);
676   lua_pushnumber(L, l_mathop(pow)(x, y));
677   return 1;
678 }
679 
math_frexp(lua_State * L)680 static int math_frexp (lua_State *L) {
681   int e;
682   lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e));
683   lua_pushinteger(L, e);
684   return 2;
685 }
686 
math_ldexp(lua_State * L)687 static int math_ldexp (lua_State *L) {
688   lua_Number x = luaL_checknumber(L, 1);
689   int ep = (int)luaL_checkinteger(L, 2);
690   lua_pushnumber(L, l_mathop(ldexp)(x, ep));
691   return 1;
692 }
693 
math_log10(lua_State * L)694 static int math_log10 (lua_State *L) {
695   lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1)));
696   return 1;
697 }
698 
699 #endif
700 /* }================================================================== */
701 
702 
703 
704 static const luaL_Reg mathlib[] = {
705   {"abs",   math_abs},
706   {"acos",  math_acos},
707   {"asin",  math_asin},
708   {"atan",  math_atan},
709   {"ceil",  math_ceil},
710   {"cos",   math_cos},
711   {"deg",   math_deg},
712   {"exp",   math_exp},
713   {"tointeger", math_toint},
714   {"floor", math_floor},
715   {"fmod",   math_fmod},
716   {"ult",   math_ult},
717   {"log",   math_log},
718   {"max",   math_max},
719   {"min",   math_min},
720   {"modf",   math_modf},
721   {"rad",   math_rad},
722   {"sin",   math_sin},
723   {"sqrt",  math_sqrt},
724   {"tan",   math_tan},
725   {"type", math_type},
726 #if defined(LUA_COMPAT_MATHLIB)
727   {"atan2", math_atan},
728   {"cosh",   math_cosh},
729   {"sinh",   math_sinh},
730   {"tanh",   math_tanh},
731   {"pow",   math_pow},
732   {"frexp", math_frexp},
733   {"ldexp", math_ldexp},
734   {"log10", math_log10},
735 #endif
736   /* placeholders */
737   {"random", NULL},
738   {"randomseed", NULL},
739   {"pi", NULL},
740   {"huge", NULL},
741   {"maxinteger", NULL},
742   {"mininteger", NULL},
743   {NULL, NULL}
744 };
745 
746 
747 /*
748 ** Open math library
749 */
luaopen_math(lua_State * L)750 LUAMOD_API int luaopen_math (lua_State *L) {
751   luaL_newlib(L, mathlib);
752   lua_pushnumber(L, PI);
753   lua_setfield(L, -2, "pi");
754   lua_pushnumber(L, (lua_Number)HUGE_VAL);
755   lua_setfield(L, -2, "huge");
756   lua_pushinteger(L, LUA_MAXINTEGER);
757   lua_setfield(L, -2, "maxinteger");
758   lua_pushinteger(L, LUA_MININTEGER);
759   lua_setfield(L, -2, "mininteger");
760   setrandfunc(L);
761   return 1;
762 }
763 
764