1|// Low-level VM code for PowerPC CPUs.
2|// Bytecode interpreter, fast functions and helper functions.
3|// Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
4|
5|.arch ppc
6|.section code_op, code_sub
7|
8|.actionlist build_actionlist
9|.globals GLOB_
10|.globalnames globnames
11|.externnames extnames
12|
13|// Note: The ragged indentation of the instructions is intentional.
14|//       The starting columns indicate data dependencies.
15|
16|//-----------------------------------------------------------------------
17|
18|// DynASM defines used by the PPC port:
19|//
20|// P64     64 bit pointers (only for GPR64 testing).
21|//         Note: a full PPC64 _LP64 port is not planned.
22|// GPR64   64 bit registers (but possibly 32 bit pointers, e.g. PS3).
23|//         Affects reg saves, stack layout, carry/overflow/dot flags etc.
24|// FRAME32 Use 32 bit frame layout, even with GPR64 (Xbox 360).
25|// TOC     Need table of contents (64 bit or 32 bit variant, e.g. PS3).
26|//         Function pointers are really a struct: code, TOC, env (optional).
27|// TOCENV  Function pointers have an environment pointer, too (not on PS3).
28|// PPE     Power Processor Element of Cell (PS3) or Xenon (Xbox 360).
29|//         Must avoid (slow) micro-coded instructions.
30|
31|.if P64
32|.define TOC, 1
33|.define TOCENV, 1
34|.macro lpx, a, b, c; ldx a, b, c; .endmacro
35|.macro lp, a, b; ld a, b; .endmacro
36|.macro stp, a, b; std a, b; .endmacro
37|.define decode_OPP, decode_OP8
38|.if FFI
39|// Missing: Calling conventions, 64 bit regs, TOC.
40|.error lib_ffi not yet implemented for PPC64
41|.endif
42|.else
43|.macro lpx, a, b, c; lwzx a, b, c; .endmacro
44|.macro lp, a, b; lwz a, b; .endmacro
45|.macro stp, a, b; stw a, b; .endmacro
46|.define decode_OPP, decode_OP4
47|.endif
48|
49|// Convenience macros for TOC handling.
50|.if TOC
51|// Linker needs a TOC patch area for every external call relocation.
52|.macro blex, target; bl extern target@plt; nop; .endmacro
53|.macro .toc, a, b; a, b; .endmacro
54|.if P64
55|.define TOC_OFS,	 8
56|.define ENV_OFS,	16
57|.else
58|.define TOC_OFS,	4
59|.define ENV_OFS,	8
60|.endif
61|.else  // No TOC.
62|.macro blex, target; bl extern target@plt; .endmacro
63|.macro .toc, a, b; .endmacro
64|.endif
65|.macro .tocenv, a, b; .if TOCENV; a, b; .endif; .endmacro
66|
67|.macro .gpr64, a, b; .if GPR64; a, b; .endif; .endmacro
68|
69|.macro andix., y, a, i
70|.if PPE
71|  rlwinm y, a, 0, 31-lj_fls(i), 31-lj_ffs(i)
72|  cmpwi y, 0
73|.else
74|  andi. y, a, i
75|.endif
76|.endmacro
77|
78|.macro clrso, reg
79|.if PPE
80|  li reg, 0
81|  mtxer reg
82|.else
83|  mcrxr cr0
84|.endif
85|.endmacro
86|
87|.macro checkov, reg, noov
88|.if PPE
89|  mfxer reg
90|  add reg, reg, reg
91|  cmpwi reg, 0
92|   li reg, 0
93|   mtxer reg
94|  bgey noov
95|.else
96|  mcrxr cr0
97|  bley noov
98|.endif
99|.endmacro
100|
101|//-----------------------------------------------------------------------
102|
103|// Fixed register assignments for the interpreter.
104|// Don't use: r1 = sp, r2 and r13 = reserved (TOC, TLS or SDATA)
105|
106|// The following must be C callee-save (but BASE is often refetched).
107|.define BASE,		r14	// Base of current Lua stack frame.
108|.define KBASE,		r15	// Constants of current Lua function.
109|.define PC,		r16	// Next PC.
110|.define DISPATCH,	r17	// Opcode dispatch table.
111|.define LREG,		r18	// Register holding lua_State (also in SAVE_L).
112|.define MULTRES,	r19	// Size of multi-result: (nresults+1)*8.
113|.define JGL,		r31	// On-trace: global_State + 32768.
114|
115|// Constants for type-comparisons, stores and conversions. C callee-save.
116|.define TISNUM,	r22
117|.define TISNIL,	r23
118|.define ZERO,		r24
119|.define TOBIT,		f30	// 2^52 + 2^51.
120|.define TONUM,		f31	// 2^52 + 2^51 + 2^31.
121|
122|// The following temporaries are not saved across C calls, except for RA.
123|.define RA,		r20	// Callee-save.
124|.define RB,		r10
125|.define RC,		r11
126|.define RD,		r12
127|.define INS,		r7	// Overlaps CARG5.
128|
129|.define TMP0,		r0
130|.define TMP1,		r8
131|.define TMP2,		r9
132|.define TMP3,		r6	// Overlaps CARG4.
133|
134|// Saved temporaries.
135|.define SAVE0,		r21
136|
137|// Calling conventions.
138|.define CARG1,		r3
139|.define CARG2,		r4
140|.define CARG3,		r5
141|.define CARG4,		r6	// Overlaps TMP3.
142|.define CARG5,		r7	// Overlaps INS.
143|
144|.define FARG1,		f1
145|.define FARG2,		f2
146|
147|.define CRET1,		r3
148|.define CRET2,		r4
149|
150|.define TOCREG,	r2	// TOC register (only used by C code).
151|.define ENVREG,	r11	// Environment pointer (nested C functions).
152|
153|// Stack layout while in interpreter. Must match with lj_frame.h.
154|.if GPR64
155|.if FRAME32
156|
157|//			456(sp) // \ 32/64 bit C frame info
158|.define TONUM_LO,	452(sp) // |
159|.define TONUM_HI,	448(sp) // |
160|.define TMPD_LO,	444(sp) // |
161|.define TMPD_HI,	440(sp) // |
162|.define SAVE_CR,	432(sp) // | 64 bit CR save.
163|.define SAVE_ERRF,	424(sp) //  > Parameter save area.
164|.define SAVE_NRES,	420(sp) // |
165|.define SAVE_L,	416(sp) // |
166|.define SAVE_PC,	412(sp) // |
167|.define SAVE_MULTRES,	408(sp) // |
168|.define SAVE_CFRAME,	400(sp) // / 64 bit C frame chain.
169|//			392(sp) // Reserved.
170|.define CFRAME_SPACE,	384     // Delta for sp.
171|// Back chain for sp:	384(sp) <-- sp entering interpreter
172|.define SAVE_LR,	376(sp) // 32 bit LR stored in hi-part.
173|.define SAVE_GPR_,	232     // .. 232+18*8: 64 bit GPR saves.
174|.define SAVE_FPR_,	88      // .. 88+18*8: 64 bit FPR saves.
175|//			80(sp) // Needed for 16 byte stack frame alignment.
176|//			16(sp)  // Callee parameter save area (ABI mandated).
177|//			8(sp)   // Reserved
178|// Back chain for sp:	0(sp)   <-- sp while in interpreter
179|// 32 bit sp stored in hi-part of 0(sp).
180|
181|.define TMPD_BLO,	447(sp)
182|.define TMPD,		TMPD_HI
183|.define TONUM_D,	TONUM_HI
184|
185|.else
186|
187|//			508(sp) // \ 32 bit C frame info.
188|.define SAVE_ERRF,	472(sp) // |
189|.define SAVE_NRES,	468(sp) // |
190|.define SAVE_L,	464(sp) //  > Parameter save area.
191|.define SAVE_PC,	460(sp) // |
192|.define SAVE_MULTRES,	456(sp) // |
193|.define SAVE_CFRAME,	448(sp) // / 64 bit C frame chain.
194|.define SAVE_LR,	416(sp)
195|.define CFRAME_SPACE,	400     // Delta for sp.
196|// Back chain for sp:	400(sp) <-- sp entering interpreter
197|.define SAVE_FPR_,	256     // .. 256+18*8: 64 bit FPR saves.
198|.define SAVE_GPR_,	112     // .. 112+18*8: 64 bit GPR saves.
199|//			48(sp)  // Callee parameter save area (ABI mandated).
200|.define SAVE_TOC,	40(sp)  // TOC save area.
201|.define TMPD_LO,	36(sp)  // \ Link editor temp (ABI mandated).
202|.define TMPD_HI,	32(sp)  // /
203|.define TONUM_LO,	28(sp)  // \ Compiler temp (ABI mandated).
204|.define TONUM_HI,	24(sp)  // /
205|// Next frame lr:	16(sp)
206|.define SAVE_CR,	8(sp)  // 64 bit CR save.
207|// Back chain for sp:	0(sp)	<-- sp while in interpreter
208|
209|.define TMPD_BLO,	39(sp)
210|.define TMPD,		TMPD_HI
211|.define TONUM_D,	TONUM_HI
212|
213|.endif
214|.else
215|
216|.define SAVE_LR,	276(sp)
217|.define CFRAME_SPACE,	272     // Delta for sp.
218|// Back chain for sp:	272(sp) <-- sp entering interpreter
219|.define SAVE_FPR_,	128     // .. 128+18*8: 64 bit FPR saves.
220|.define SAVE_GPR_,	56      // .. 56+18*4: 32 bit GPR saves.
221|.define SAVE_CR,	52(sp)  // 32 bit CR save.
222|.define SAVE_ERRF,	48(sp)  // 32 bit C frame info.
223|.define SAVE_NRES,	44(sp)
224|.define SAVE_CFRAME,	40(sp)
225|.define SAVE_L,	36(sp)
226|.define SAVE_PC,	32(sp)
227|.define SAVE_MULTRES,	28(sp)
228|.define UNUSED1,	24(sp)
229|.define TMPD_LO,	20(sp)
230|.define TMPD_HI,	16(sp)
231|.define TONUM_LO,	12(sp)
232|.define TONUM_HI,	8(sp)
233|// Next frame lr:	4(sp)
234|// Back chain for sp:	0(sp)	<-- sp while in interpreter
235|
236|.define TMPD_BLO,	23(sp)
237|.define TMPD,		TMPD_HI
238|.define TONUM_D,	TONUM_HI
239|
240|.endif
241|
242|.macro save_, reg
243|.if GPR64
244|  std r..reg, SAVE_GPR_+(reg-14)*8(sp)
245|.else
246|  stw r..reg, SAVE_GPR_+(reg-14)*4(sp)
247|.endif
248|  stfd f..reg, SAVE_FPR_+(reg-14)*8(sp)
249|.endmacro
250|.macro rest_, reg
251|.if GPR64
252|  ld r..reg, SAVE_GPR_+(reg-14)*8(sp)
253|.else
254|  lwz r..reg, SAVE_GPR_+(reg-14)*4(sp)
255|.endif
256|  lfd f..reg, SAVE_FPR_+(reg-14)*8(sp)
257|.endmacro
258|
259|.macro saveregs
260|.if GPR64 and not FRAME32
261|  stdu sp, -CFRAME_SPACE(sp)
262|.else
263|  stwu sp, -CFRAME_SPACE(sp)
264|.endif
265|  save_ 14; save_ 15; save_ 16
266|  mflr r0
267|  save_ 17; save_ 18; save_ 19; save_ 20; save_ 21; save_ 22
268|.if GPR64 and not FRAME32
269|  std r0, SAVE_LR
270|.else
271|  stw r0, SAVE_LR
272|.endif
273|  save_ 23; save_ 24; save_ 25
274|  mfcr r0
275|  save_ 26; save_ 27; save_ 28; save_ 29; save_ 30; save_ 31
276|.if GPR64
277|  std r0, SAVE_CR
278|.else
279|  stw r0, SAVE_CR
280|.endif
281|  .toc std TOCREG, SAVE_TOC
282|.endmacro
283|
284|.macro restoreregs
285|.if GPR64 and not FRAME32
286|  ld r0, SAVE_LR
287|.else
288|  lwz r0, SAVE_LR
289|.endif
290|.if GPR64
291|  ld r12, SAVE_CR
292|.else
293|  lwz r12, SAVE_CR
294|.endif
295|  rest_ 14; rest_ 15; rest_ 16; rest_ 17; rest_ 18; rest_ 19
296|  mtlr r0;
297|.if PPE; mtocrf 0x20, r12; .else; mtcrf 0x38, r12; .endif
298|  rest_ 20; rest_ 21; rest_ 22; rest_ 23; rest_ 24; rest_ 25
299|.if PPE; mtocrf 0x10, r12; .endif
300|  rest_ 26; rest_ 27; rest_ 28; rest_ 29; rest_ 30; rest_ 31
301|.if PPE; mtocrf 0x08, r12; .endif
302|  addi sp, sp, CFRAME_SPACE
303|.endmacro
304|
305|// Type definitions. Some of these are only used for documentation.
306|.type L,		lua_State,	LREG
307|.type GL,		global_State
308|.type TVALUE,		TValue
309|.type GCOBJ,		GCobj
310|.type STR,		GCstr
311|.type TAB,		GCtab
312|.type LFUNC,		GCfuncL
313|.type CFUNC,		GCfuncC
314|.type PROTO,		GCproto
315|.type UPVAL,		GCupval
316|.type NODE,		Node
317|.type NARGS8,		int
318|.type TRACE,		GCtrace
319|
320|//-----------------------------------------------------------------------
321|
322|// These basic macros should really be part of DynASM.
323|.macro srwi, rx, ry, n; rlwinm rx, ry, 32-n, n, 31; .endmacro
324|.macro slwi, rx, ry, n; rlwinm rx, ry, n, 0, 31-n; .endmacro
325|.macro rotlwi, rx, ry, n; rlwinm rx, ry, n, 0, 31; .endmacro
326|.macro rotlw, rx, ry, rn; rlwnm rx, ry, rn, 0, 31; .endmacro
327|.macro subi, rx, ry, i; addi rx, ry, -i; .endmacro
328|
329|// Trap for not-yet-implemented parts.
330|.macro NYI; tw 4, sp, sp; .endmacro
331|
332|// int/FP conversions.
333|.macro tonum_i, freg, reg
334|  xoris reg, reg, 0x8000
335|  stw reg, TONUM_LO
336|  lfd freg, TONUM_D
337|  fsub freg, freg, TONUM
338|.endmacro
339|
340|.macro tonum_u, freg, reg
341|  stw reg, TONUM_LO
342|  lfd freg, TONUM_D
343|  fsub freg, freg, TOBIT
344|.endmacro
345|
346|.macro toint, reg, freg, tmpfreg
347|  fctiwz tmpfreg, freg
348|  stfd tmpfreg, TMPD
349|  lwz reg, TMPD_LO
350|.endmacro
351|
352|.macro toint, reg, freg
353|  toint reg, freg, freg
354|.endmacro
355|
356|//-----------------------------------------------------------------------
357|
358|// Access to frame relative to BASE.
359|.define FRAME_PC,	-8
360|.define FRAME_FUNC,	-4
361|
362|// Instruction decode.
363|.macro decode_OP4, dst, ins; rlwinm dst, ins, 2, 22, 29; .endmacro
364|.macro decode_OP8, dst, ins; rlwinm dst, ins, 3, 21, 28; .endmacro
365|.macro decode_RA8, dst, ins; rlwinm dst, ins, 27, 21, 28; .endmacro
366|.macro decode_RB8, dst, ins; rlwinm dst, ins, 11, 21, 28; .endmacro
367|.macro decode_RC8, dst, ins; rlwinm dst, ins, 19, 21, 28; .endmacro
368|.macro decode_RD8, dst, ins; rlwinm dst, ins, 19, 13, 28; .endmacro
369|
370|.macro decode_OP1, dst, ins; rlwinm dst, ins, 0, 24, 31; .endmacro
371|.macro decode_RD4, dst, ins; rlwinm dst, ins, 18, 14, 29; .endmacro
372|
373|// Instruction fetch.
374|.macro ins_NEXT1
375|  lwz INS, 0(PC)
376|   addi PC, PC, 4
377|.endmacro
378|// Instruction decode+dispatch. Note: optimized for e300!
379|.macro ins_NEXT2
380|  decode_OPP TMP1, INS
381|  lpx TMP0, DISPATCH, TMP1
382|  mtctr TMP0
383|   decode_RB8 RB, INS
384|   decode_RD8 RD, INS
385|   decode_RA8 RA, INS
386|   decode_RC8 RC, INS
387|  bctr
388|.endmacro
389|.macro ins_NEXT
390|  ins_NEXT1
391|  ins_NEXT2
392|.endmacro
393|
394|// Instruction footer.
395|.if 1
396|  // Replicated dispatch. Less unpredictable branches, but higher I-Cache use.
397|  .define ins_next, ins_NEXT
398|  .define ins_next_, ins_NEXT
399|  .define ins_next1, ins_NEXT1
400|  .define ins_next2, ins_NEXT2
401|.else
402|  // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch.
403|  // Affects only certain kinds of benchmarks (and only with -j off).
404|  .macro ins_next
405|    b ->ins_next
406|  .endmacro
407|  .macro ins_next1
408|  .endmacro
409|  .macro ins_next2
410|    b ->ins_next
411|  .endmacro
412|  .macro ins_next_
413|  ->ins_next:
414|    ins_NEXT
415|  .endmacro
416|.endif
417|
418|// Call decode and dispatch.
419|.macro ins_callt
420|  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
421|  lwz PC, LFUNC:RB->pc
422|  lwz INS, 0(PC)
423|   addi PC, PC, 4
424|  decode_OPP TMP1, INS
425|   decode_RA8 RA, INS
426|  lpx TMP0, DISPATCH, TMP1
427|   add RA, RA, BASE
428|  mtctr TMP0
429|  bctr
430|.endmacro
431|
432|.macro ins_call
433|  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC
434|  stw PC, FRAME_PC(BASE)
435|  ins_callt
436|.endmacro
437|
438|//-----------------------------------------------------------------------
439|
440|// Macros to test operand types.
441|.macro checknum, reg; cmplw reg, TISNUM; .endmacro
442|.macro checknum, cr, reg; cmplw cr, reg, TISNUM; .endmacro
443|.macro checkstr, reg; cmpwi reg, LJ_TSTR; .endmacro
444|.macro checktab, reg; cmpwi reg, LJ_TTAB; .endmacro
445|.macro checkfunc, reg; cmpwi reg, LJ_TFUNC; .endmacro
446|.macro checknil, reg; cmpwi reg, LJ_TNIL; .endmacro
447|
448|.macro branch_RD
449|  srwi TMP0, RD, 1
450|  addis PC, PC, -(BCBIAS_J*4 >> 16)
451|  add PC, PC, TMP0
452|.endmacro
453|
454|// Assumes DISPATCH is relative to GL.
455#define DISPATCH_GL(field)	(GG_DISP2G + (int)offsetof(global_State, field))
456#define DISPATCH_J(field)	(GG_DISP2J + (int)offsetof(jit_State, field))
457|
458#define PC2PROTO(field)  ((int)offsetof(GCproto, field)-(int)sizeof(GCproto))
459|
460|.macro hotcheck, delta, target
461|  rlwinm TMP1, PC, 31, 25, 30
462|  addi TMP1, TMP1, GG_DISP2HOT
463|  lhzx TMP2, DISPATCH, TMP1
464|  addic. TMP2, TMP2, -delta
465|  sthx TMP2, DISPATCH, TMP1
466|  blt target
467|.endmacro
468|
469|.macro hotloop
470|  hotcheck HOTCOUNT_LOOP, ->vm_hotloop
471|.endmacro
472|
473|.macro hotcall
474|  hotcheck HOTCOUNT_CALL, ->vm_hotcall
475|.endmacro
476|
477|// Set current VM state. Uses TMP0.
478|.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro
479|.macro st_vmstate; stw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro
480|
481|// Move table write barrier back. Overwrites mark and tmp.
482|.macro barrierback, tab, mark, tmp
483|  lwz tmp, DISPATCH_GL(gc.grayagain)(DISPATCH)
484|  // Assumes LJ_GC_BLACK is 0x04.
485|   rlwinm mark, mark, 0, 30, 28		// black2gray(tab)
486|  stw tab, DISPATCH_GL(gc.grayagain)(DISPATCH)
487|   stb mark, tab->marked
488|  stw tmp, tab->gclist
489|.endmacro
490|
491|//-----------------------------------------------------------------------
492
493/* Generate subroutines used by opcodes and other parts of the VM. */
494/* The .code_sub section should be last to help static branch prediction. */
495static void build_subroutines(BuildCtx *ctx)
496{
497  |.code_sub
498  |
499  |//-----------------------------------------------------------------------
500  |//-- Return handling ----------------------------------------------------
501  |//-----------------------------------------------------------------------
502  |
503  |->vm_returnp:
504  |  // See vm_return. Also: TMP2 = previous base.
505  |  andix. TMP0, PC, FRAME_P
506  |   li TMP1, LJ_TTRUE
507  |  beq ->cont_dispatch
508  |
509  |  // Return from pcall or xpcall fast func.
510  |  lwz PC, FRAME_PC(TMP2)		// Fetch PC of previous frame.
511  |  mr BASE, TMP2			// Restore caller base.
512  |  // Prepending may overwrite the pcall frame, so do it at the end.
513  |   stwu TMP1, FRAME_PC(RA)		// Prepend true to results.
514  |
515  |->vm_returnc:
516  |  addi RD, RD, 8			// RD = (nresults+1)*8.
517  |   andix. TMP0, PC, FRAME_TYPE
518  |  cmpwi cr1, RD, 0
519  |  li CRET1, LUA_YIELD
520  |  beq cr1, ->vm_unwind_c_eh
521  |  mr MULTRES, RD
522  |   beq ->BC_RET_Z			// Handle regular return to Lua.
523  |
524  |->vm_return:
525  |  // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return
526  |  // TMP0 = PC & FRAME_TYPE
527  |  cmpwi TMP0, FRAME_C
528  |   rlwinm TMP2, PC, 0, 0, 28
529  |    li_vmstate C
530  |   sub TMP2, BASE, TMP2		// TMP2 = previous base.
531  |  bney ->vm_returnp
532  |
533  |  addic. TMP1, RD, -8
534  |   stp TMP2, L->base
535  |   lwz TMP2, SAVE_NRES
536  |    subi BASE, BASE, 8
537  |    st_vmstate
538  |   slwi TMP2, TMP2, 3
539  |  beq >2
540  |1:
541  |  addic. TMP1, TMP1, -8
542  |   lfd f0, 0(RA)
543  |    addi RA, RA, 8
544  |   stfd f0, 0(BASE)
545  |    addi BASE, BASE, 8
546  |  bney <1
547  |
548  |2:
549  |  cmpw TMP2, RD			// More/less results wanted?
550  |  bne >6
551  |3:
552  |  stp BASE, L->top			// Store new top.
553  |
554  |->vm_leave_cp:
555  |  lp TMP0, SAVE_CFRAME		// Restore previous C frame.
556  |   li CRET1, 0			// Ok return status for vm_pcall.
557  |  stp TMP0, L->cframe
558  |
559  |->vm_leave_unw:
560  |  restoreregs
561  |  blr
562  |
563  |6:
564  |  ble >7				// Less results wanted?
565  |  // More results wanted. Check stack size and fill up results with nil.
566  |  lwz TMP1, L->maxstack
567  |  cmplw BASE, TMP1
568  |  bge >8
569  |  stw TISNIL, 0(BASE)
570  |  addi RD, RD, 8
571  |  addi BASE, BASE, 8
572  |  b <2
573  |
574  |7:  // Less results wanted.
575  |  subfic TMP3, TMP2, 0		// LUA_MULTRET+1 case?
576  |   sub TMP0, RD, TMP2
577  |  subfe TMP1, TMP1, TMP1		// TMP1 = TMP2 == 0 ? 0 : -1
578  |   and TMP0, TMP0, TMP1
579  |  sub BASE, BASE, TMP0		// Either keep top or shrink it.
580  |  b <3
581  |
582  |8:  // Corner case: need to grow stack for filling up results.
583  |  // This can happen if:
584  |  // - A C function grows the stack (a lot).
585  |  // - The GC shrinks the stack in between.
586  |  // - A return back from a lua_call() with (high) nresults adjustment.
587  |  stp BASE, L->top			// Save current top held in BASE (yes).
588  |   mr SAVE0, RD
589  |  srwi CARG2, TMP2, 3
590  |  mr CARG1, L
591  |  bl extern lj_state_growstack	// (lua_State *L, int n)
592  |    lwz TMP2, SAVE_NRES
593  |   mr RD, SAVE0
594  |    slwi TMP2, TMP2, 3
595  |  lp BASE, L->top			// Need the (realloced) L->top in BASE.
596  |  b <2
597  |
598  |->vm_unwind_c:			// Unwind C stack, return from vm_pcall.
599  |  // (void *cframe, int errcode)
600  |  mr sp, CARG1
601  |  mr CRET1, CARG2
602  |->vm_unwind_c_eh:			// Landing pad for external unwinder.
603  |  lwz L, SAVE_L
604  |  .toc ld TOCREG, SAVE_TOC
605  |   li TMP0, ~LJ_VMST_C
606  |  lwz GL:TMP1, L->glref
607  |   stw TMP0, GL:TMP1->vmstate
608  |  b ->vm_leave_unw
609  |
610  |->vm_unwind_ff:			// Unwind C stack, return from ff pcall.
611  |  // (void *cframe)
612  |.if GPR64
613  |  rldicr sp, CARG1, 0, 61
614  |.else
615  |  rlwinm sp, CARG1, 0, 0, 29
616  |.endif
617  |->vm_unwind_ff_eh:			// Landing pad for external unwinder.
618  |  lwz L, SAVE_L
619  |  .toc ld TOCREG, SAVE_TOC
620  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
621  |  lp BASE, L->base
622  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
623  |   lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
624  |     li ZERO, 0
625  |     stw TMP3, TMPD
626  |  li TMP1, LJ_TFALSE
627  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
628  |     li TISNIL, LJ_TNIL
629  |    li_vmstate INTERP
630  |     lfs TOBIT, TMPD
631  |  lwz PC, FRAME_PC(BASE)		// Fetch PC of previous frame.
632  |  la RA, -8(BASE)			// Results start at BASE-8.
633  |     stw TMP3, TMPD
634  |   addi DISPATCH, DISPATCH, GG_G2DISP
635  |  stw TMP1, 0(RA)			// Prepend false to error message.
636  |  li RD, 16				// 2 results: false + error message.
637  |    st_vmstate
638  |     lfs TONUM, TMPD
639  |  b ->vm_returnc
640  |
641  |//-----------------------------------------------------------------------
642  |//-- Grow stack for calls -----------------------------------------------
643  |//-----------------------------------------------------------------------
644  |
645  |->vm_growstack_c:			// Grow stack for C function.
646  |  li CARG2, LUA_MINSTACK
647  |  b >2
648  |
649  |->vm_growstack_l:			// Grow stack for Lua function.
650  |  // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC
651  |  add RC, BASE, RC
652  |   sub RA, RA, BASE
653  |  stp BASE, L->base
654  |   addi PC, PC, 4			// Must point after first instruction.
655  |  stp RC, L->top
656  |   srwi CARG2, RA, 3
657  |2:
658  |  // L->base = new base, L->top = top
659  |   stw PC, SAVE_PC
660  |  mr CARG1, L
661  |  bl extern lj_state_growstack	// (lua_State *L, int n)
662  |  lp BASE, L->base
663  |  lp RC, L->top
664  |  lwz LFUNC:RB, FRAME_FUNC(BASE)
665  |  sub RC, RC, BASE
666  |  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
667  |  ins_callt				// Just retry the call.
668  |
669  |//-----------------------------------------------------------------------
670  |//-- Entry points into the assembler VM ---------------------------------
671  |//-----------------------------------------------------------------------
672  |
673  |->vm_resume:				// Setup C frame and resume thread.
674  |  // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0)
675  |  saveregs
676  |  mr L, CARG1
677  |    lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
678  |  mr BASE, CARG2
679  |    lbz TMP1, L->status
680  |   stw L, SAVE_L
681  |  li PC, FRAME_CP
682  |  addi TMP0, sp, CFRAME_RESUME
683  |    addi DISPATCH, DISPATCH, GG_G2DISP
684  |   stw CARG3, SAVE_NRES
685  |    cmplwi TMP1, 0
686  |   stw CARG3, SAVE_ERRF
687  |  stp TMP0, L->cframe
688  |   stp CARG3, SAVE_CFRAME
689  |   stw CARG1, SAVE_PC		// Any value outside of bytecode is ok.
690  |    beq >3
691  |
692  |  // Resume after yield (like a return).
693  |  mr RA, BASE
694  |   lp BASE, L->base
695  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
696  |   lp TMP1, L->top
697  |  lwz PC, FRAME_PC(BASE)
698  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
699  |    stb CARG3, L->status
700  |     stw TMP3, TMPD
701  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
702  |     lfs TOBIT, TMPD
703  |   sub RD, TMP1, BASE
704  |     stw TMP3, TMPD
705  |     lus TMP0, 0x4338		// Hiword of 2^52 + 2^51 (double)
706  |   addi RD, RD, 8
707  |     stw TMP0, TONUM_HI
708  |    li_vmstate INTERP
709  |     li ZERO, 0
710  |    st_vmstate
711  |  andix. TMP0, PC, FRAME_TYPE
712  |   mr MULTRES, RD
713  |     lfs TONUM, TMPD
714  |     li TISNIL, LJ_TNIL
715  |  beq ->BC_RET_Z
716  |  b ->vm_return
717  |
718  |->vm_pcall:				// Setup protected C frame and enter VM.
719  |  // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef)
720  |  saveregs
721  |  li PC, FRAME_CP
722  |  stw CARG4, SAVE_ERRF
723  |  b >1
724  |
725  |->vm_call:				// Setup C frame and enter VM.
726  |  // (lua_State *L, TValue *base, int nres1)
727  |  saveregs
728  |  li PC, FRAME_C
729  |
730  |1:  // Entry point for vm_pcall above (PC = ftype).
731  |  lp TMP1, L:CARG1->cframe
732  |   stw CARG3, SAVE_NRES
733  |    mr L, CARG1
734  |   stw CARG1, SAVE_L
735  |    mr BASE, CARG2
736  |  stp sp, L->cframe			// Add our C frame to cframe chain.
737  |    lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
738  |   stw CARG1, SAVE_PC		// Any value outside of bytecode is ok.
739  |  stp TMP1, SAVE_CFRAME
740  |    addi DISPATCH, DISPATCH, GG_G2DISP
741  |
742  |3:  // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype).
743  |  lp TMP2, L->base			// TMP2 = old base (used in vmeta_call).
744  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
745  |   lp TMP1, L->top
746  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
747  |  add PC, PC, BASE
748  |     stw TMP3, TMPD
749  |     li ZERO, 0
750  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
751  |     lfs TOBIT, TMPD
752  |  sub PC, PC, TMP2			// PC = frame delta + frame type
753  |     stw TMP3, TMPD
754  |     lus TMP0, 0x4338		// Hiword of 2^52 + 2^51 (double)
755  |   sub NARGS8:RC, TMP1, BASE
756  |     stw TMP0, TONUM_HI
757  |    li_vmstate INTERP
758  |     lfs TONUM, TMPD
759  |     li TISNIL, LJ_TNIL
760  |    st_vmstate
761  |
762  |->vm_call_dispatch:
763  |  // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC
764  |  lwz TMP0, FRAME_PC(BASE)
765  |   lwz LFUNC:RB, FRAME_FUNC(BASE)
766  |  checkfunc TMP0; bne ->vmeta_call
767  |
768  |->vm_call_dispatch_f:
769  |  ins_call
770  |  // BASE = new base, RB = func, RC = nargs*8, PC = caller PC
771  |
772  |->vm_cpcall:				// Setup protected C frame, call C.
773  |  // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp)
774  |  saveregs
775  |  mr L, CARG1
776  |   lwz TMP0, L:CARG1->stack
777  |  stw CARG1, SAVE_L
778  |   lp TMP1, L->top
779  |  stw CARG1, SAVE_PC			// Any value outside of bytecode is ok.
780  |   sub TMP0, TMP0, TMP1		// Compute -savestack(L, L->top).
781  |    lp TMP1, L->cframe
782  |    stp sp, L->cframe		// Add our C frame to cframe chain.
783  |  .toc lp CARG4, 0(CARG4)
784  |  li TMP2, 0
785  |   stw TMP0, SAVE_NRES		// Neg. delta means cframe w/o frame.
786  |  stw TMP2, SAVE_ERRF		// No error function.
787  |    stp TMP1, SAVE_CFRAME
788  |  mtctr CARG4
789  |  bctrl			// (lua_State *L, lua_CFunction func, void *ud)
790  |.if PPE
791  |  mr BASE, CRET1
792  |  cmpwi CRET1, 0
793  |.else
794  |  mr. BASE, CRET1
795  |.endif
796  |   lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
797  |    li PC, FRAME_CP
798  |   addi DISPATCH, DISPATCH, GG_G2DISP
799  |  bne <3				// Else continue with the call.
800  |  b ->vm_leave_cp			// No base? Just remove C frame.
801  |
802  |//-----------------------------------------------------------------------
803  |//-- Metamethod handling ------------------------------------------------
804  |//-----------------------------------------------------------------------
805  |
806  |// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the
807  |// stack, so BASE doesn't need to be reloaded across these calls.
808  |
809  |//-- Continuation dispatch ----------------------------------------------
810  |
811  |->cont_dispatch:
812  |  // BASE = meta base, RA = resultptr, RD = (nresults+1)*8
813  |  lwz TMP0, -12(BASE)		// Continuation.
814  |   mr RB, BASE
815  |   mr BASE, TMP2			// Restore caller BASE.
816  |    lwz LFUNC:TMP1, FRAME_FUNC(TMP2)
817  |.if FFI
818  |  cmplwi TMP0, 1
819  |.endif
820  |     lwz PC, -16(RB)			// Restore PC from [cont|PC].
821  |   subi TMP2, RD, 8
822  |    lwz TMP1, LFUNC:TMP1->pc
823  |   stwx TISNIL, RA, TMP2		// Ensure one valid arg.
824  |.if FFI
825  |  ble >1
826  |.endif
827  |    lwz KBASE, PC2PROTO(k)(TMP1)
828  |  // BASE = base, RA = resultptr, RB = meta base
829  |  mtctr TMP0
830  |  bctr				// Jump to continuation.
831  |
832  |.if FFI
833  |1:
834  |  beq ->cont_ffi_callback		// cont = 1: return from FFI callback.
835  |  // cont = 0: tailcall from C function.
836  |  subi TMP1, RB, 16
837  |  sub RC, TMP1, BASE
838  |  b ->vm_call_tail
839  |.endif
840  |
841  |->cont_cat:				// RA = resultptr, RB = meta base
842  |  lwz INS, -4(PC)
843  |   subi CARG2, RB, 16
844  |  decode_RB8 SAVE0, INS
845  |   lfd f0, 0(RA)
846  |  add TMP1, BASE, SAVE0
847  |   stp BASE, L->base
848  |  cmplw TMP1, CARG2
849  |   sub CARG3, CARG2, TMP1
850  |  decode_RA8 RA, INS
851  |   stfd f0, 0(CARG2)
852  |  bney ->BC_CAT_Z
853  |   stfdx f0, BASE, RA
854  |  b ->cont_nop
855  |
856  |//-- Table indexing metamethods -----------------------------------------
857  |
858  |->vmeta_tgets1:
859  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
860  |  li TMP0, LJ_TSTR
861  |   decode_RB8 RB, INS
862  |  stw STR:RC, 4(CARG3)
863  |   add CARG2, BASE, RB
864  |  stw TMP0, 0(CARG3)
865  |  b >1
866  |
867  |->vmeta_tgets:
868  |  la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
869  |  li TMP0, LJ_TTAB
870  |  stw TAB:RB, 4(CARG2)
871  |   la CARG3, DISPATCH_GL(tmptv2)(DISPATCH)
872  |  stw TMP0, 0(CARG2)
873  |   li TMP1, LJ_TSTR
874  |   stw STR:RC, 4(CARG3)
875  |   stw TMP1, 0(CARG3)
876  |  b >1
877  |
878  |->vmeta_tgetb:			// TMP0 = index
879  |.if not DUALNUM
880  |  tonum_u f0, TMP0
881  |.endif
882  |   decode_RB8 RB, INS
883  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
884  |   add CARG2, BASE, RB
885  |.if DUALNUM
886  |  stw TISNUM, 0(CARG3)
887  |  stw TMP0, 4(CARG3)
888  |.else
889  |  stfd f0, 0(CARG3)
890  |.endif
891  |  b >1
892  |
893  |->vmeta_tgetv:
894  |  decode_RB8 RB, INS
895  |   decode_RC8 RC, INS
896  |  add CARG2, BASE, RB
897  |   add CARG3, BASE, RC
898  |1:
899  |  stp BASE, L->base
900  |  mr CARG1, L
901  |  stw PC, SAVE_PC
902  |  bl extern lj_meta_tget		// (lua_State *L, TValue *o, TValue *k)
903  |  // Returns TValue * (finished) or NULL (metamethod).
904  |  cmplwi CRET1, 0
905  |  beq >3
906  |   lfd f0, 0(CRET1)
907  |  ins_next1
908  |   stfdx f0, BASE, RA
909  |  ins_next2
910  |
911  |3:  // Call __index metamethod.
912  |  // BASE = base, L->top = new base, stack = cont/func/t/k
913  |  subfic TMP1, BASE, FRAME_CONT
914  |  lp BASE, L->top
915  |  stw PC, -16(BASE)			// [cont|PC]
916  |   add PC, TMP1, BASE
917  |  lwz LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
918  |   li NARGS8:RC, 16			// 2 args for func(t, k).
919  |  b ->vm_call_dispatch_f
920  |
921  |//-----------------------------------------------------------------------
922  |
923  |->vmeta_tsets1:
924  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
925  |  li TMP0, LJ_TSTR
926  |   decode_RB8 RB, INS
927  |  stw STR:RC, 4(CARG3)
928  |   add CARG2, BASE, RB
929  |  stw TMP0, 0(CARG3)
930  |  b >1
931  |
932  |->vmeta_tsets:
933  |  la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
934  |  li TMP0, LJ_TTAB
935  |  stw TAB:RB, 4(CARG2)
936  |   la CARG3, DISPATCH_GL(tmptv2)(DISPATCH)
937  |  stw TMP0, 0(CARG2)
938  |   li TMP1, LJ_TSTR
939  |   stw STR:RC, 4(CARG3)
940  |   stw TMP1, 0(CARG3)
941  |  b >1
942  |
943  |->vmeta_tsetb:			// TMP0 = index
944  |.if not DUALNUM
945  |  tonum_u f0, TMP0
946  |.endif
947  |   decode_RB8 RB, INS
948  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
949  |   add CARG2, BASE, RB
950  |.if DUALNUM
951  |  stw TISNUM, 0(CARG3)
952  |  stw TMP0, 4(CARG3)
953  |.else
954  |  stfd f0, 0(CARG3)
955  |.endif
956  |  b >1
957  |
958  |->vmeta_tsetv:
959  |  decode_RB8 RB, INS
960  |   decode_RC8 RC, INS
961  |  add CARG2, BASE, RB
962  |   add CARG3, BASE, RC
963  |1:
964  |  stp BASE, L->base
965  |  mr CARG1, L
966  |  stw PC, SAVE_PC
967  |  bl extern lj_meta_tset		// (lua_State *L, TValue *o, TValue *k)
968  |  // Returns TValue * (finished) or NULL (metamethod).
969  |  cmplwi CRET1, 0
970  |   lfdx f0, BASE, RA
971  |  beq >3
972  |  // NOBARRIER: lj_meta_tset ensures the table is not black.
973  |  ins_next1
974  |   stfd f0, 0(CRET1)
975  |  ins_next2
976  |
977  |3:  // Call __newindex metamethod.
978  |  // BASE = base, L->top = new base, stack = cont/func/t/k/(v)
979  |  subfic TMP1, BASE, FRAME_CONT
980  |  lp BASE, L->top
981  |  stw PC, -16(BASE)			// [cont|PC]
982  |   add PC, TMP1, BASE
983  |  lwz LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
984  |   li NARGS8:RC, 24			// 3 args for func(t, k, v)
985  |  stfd f0, 16(BASE)			// Copy value to third argument.
986  |  b ->vm_call_dispatch_f
987  |
988  |//-- Comparison metamethods ---------------------------------------------
989  |
990  |->vmeta_comp:
991  |  mr CARG1, L
992  |   subi PC, PC, 4
993  |.if DUALNUM
994  |  mr CARG2, RA
995  |.else
996  |  add CARG2, BASE, RA
997  |.endif
998  |   stw PC, SAVE_PC
999  |.if DUALNUM
1000  |  mr CARG3, RD
1001  |.else
1002  |  add CARG3, BASE, RD
1003  |.endif
1004  |   stp BASE, L->base
1005  |  decode_OP1 CARG4, INS
1006  |  bl extern lj_meta_comp  // (lua_State *L, TValue *o1, *o2, int op)
1007  |  // Returns 0/1 or TValue * (metamethod).
1008  |3:
1009  |  cmplwi CRET1, 1
1010  |  bgt ->vmeta_binop
1011  |  subfic CRET1, CRET1, 0
1012  |4:
1013  |  lwz INS, 0(PC)
1014  |   addi PC, PC, 4
1015  |  decode_RD4 TMP2, INS
1016  |  addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
1017  |  and TMP2, TMP2, CRET1
1018  |  add PC, PC, TMP2
1019  |->cont_nop:
1020  |  ins_next
1021  |
1022  |->cont_ra:				// RA = resultptr
1023  |  lwz INS, -4(PC)
1024  |   lfd f0, 0(RA)
1025  |  decode_RA8 TMP1, INS
1026  |   stfdx f0, BASE, TMP1
1027  |  b ->cont_nop
1028  |
1029  |->cont_condt:			// RA = resultptr
1030  |  lwz TMP0, 0(RA)
1031  |  .gpr64 extsw TMP0, TMP0
1032  |  subfic TMP0, TMP0, LJ_TTRUE	// Branch if result is true.
1033  |  subfe CRET1, CRET1, CRET1
1034  |  not CRET1, CRET1
1035  |  b <4
1036  |
1037  |->cont_condf:			// RA = resultptr
1038  |  lwz TMP0, 0(RA)
1039  |  .gpr64 extsw TMP0, TMP0
1040  |  subfic TMP0, TMP0, LJ_TTRUE	// Branch if result is false.
1041  |  subfe CRET1, CRET1, CRET1
1042  |  b <4
1043  |
1044  |->vmeta_equal:
1045  |  // CARG2, CARG3, CARG4 are already set by BC_ISEQV/BC_ISNEV.
1046  |  subi PC, PC, 4
1047  |   stp BASE, L->base
1048  |  mr CARG1, L
1049  |   stw PC, SAVE_PC
1050  |  bl extern lj_meta_equal  // (lua_State *L, GCobj *o1, *o2, int ne)
1051  |  // Returns 0/1 or TValue * (metamethod).
1052  |  b <3
1053  |
1054  |->vmeta_equal_cd:
1055  |.if FFI
1056  |  mr CARG2, INS
1057  |  subi PC, PC, 4
1058  |   stp BASE, L->base
1059  |  mr CARG1, L
1060  |   stw PC, SAVE_PC
1061  |  bl extern lj_meta_equal_cd		// (lua_State *L, BCIns op)
1062  |  // Returns 0/1 or TValue * (metamethod).
1063  |  b <3
1064  |.endif
1065  |
1066  |//-- Arithmetic metamethods ---------------------------------------------
1067  |
1068  |->vmeta_arith_nv:
1069  |  add CARG3, KBASE, RC
1070  |  add CARG4, BASE, RB
1071  |  b >1
1072  |->vmeta_arith_nv2:
1073  |.if DUALNUM
1074  |  mr CARG3, RC
1075  |  mr CARG4, RB
1076  |  b >1
1077  |.endif
1078  |
1079  |->vmeta_unm:
1080  |  mr CARG3, RD
1081  |  mr CARG4, RD
1082  |  b >1
1083  |
1084  |->vmeta_arith_vn:
1085  |  add CARG3, BASE, RB
1086  |  add CARG4, KBASE, RC
1087  |  b >1
1088  |
1089  |->vmeta_arith_vv:
1090  |  add CARG3, BASE, RB
1091  |  add CARG4, BASE, RC
1092  |.if DUALNUM
1093  |  b >1
1094  |.endif
1095  |->vmeta_arith_vn2:
1096  |->vmeta_arith_vv2:
1097  |.if DUALNUM
1098  |  mr CARG3, RB
1099  |  mr CARG4, RC
1100  |.endif
1101  |1:
1102  |  add CARG2, BASE, RA
1103  |   stp BASE, L->base
1104  |  mr CARG1, L
1105  |   stw PC, SAVE_PC
1106  |  decode_OP1 CARG5, INS		// Caveat: CARG5 overlaps INS.
1107  |  bl extern lj_meta_arith  // (lua_State *L, TValue *ra,*rb,*rc, BCReg op)
1108  |  // Returns NULL (finished) or TValue * (metamethod).
1109  |  cmplwi CRET1, 0
1110  |  beq ->cont_nop
1111  |
1112  |  // Call metamethod for binary op.
1113  |->vmeta_binop:
1114  |  // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2
1115  |  sub TMP1, CRET1, BASE
1116  |   stw PC, -16(CRET1)		// [cont|PC]
1117  |   mr TMP2, BASE
1118  |  addi PC, TMP1, FRAME_CONT
1119  |   mr BASE, CRET1
1120  |  li NARGS8:RC, 16			// 2 args for func(o1, o2).
1121  |  b ->vm_call_dispatch
1122  |
1123  |->vmeta_len:
1124#if LJ_52
1125  |  mr SAVE0, CARG1
1126#endif
1127  |  mr CARG2, RD
1128  |   stp BASE, L->base
1129  |  mr CARG1, L
1130  |   stw PC, SAVE_PC
1131  |  bl extern lj_meta_len		// (lua_State *L, TValue *o)
1132  |  // Returns NULL (retry) or TValue * (metamethod base).
1133#if LJ_52
1134  |  cmplwi CRET1, 0
1135  |  bne ->vmeta_binop			// Binop call for compatibility.
1136  |  mr CARG1, SAVE0
1137  |  b ->BC_LEN_Z
1138#else
1139  |  b ->vmeta_binop			// Binop call for compatibility.
1140#endif
1141  |
1142  |//-- Call metamethod ----------------------------------------------------
1143  |
1144  |->vmeta_call:			// Resolve and call __call metamethod.
1145  |  // TMP2 = old base, BASE = new base, RC = nargs*8
1146  |  mr CARG1, L
1147  |   stp TMP2, L->base			// This is the callers base!
1148  |  subi CARG2, BASE, 8
1149  |   stw PC, SAVE_PC
1150  |  add CARG3, BASE, RC
1151  |   mr SAVE0, NARGS8:RC
1152  |  bl extern lj_meta_call	// (lua_State *L, TValue *func, TValue *top)
1153  |  lwz LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
1154  |   addi NARGS8:RC, SAVE0, 8		// Got one more argument now.
1155  |  ins_call
1156  |
1157  |->vmeta_callt:			// Resolve __call for BC_CALLT.
1158  |  // BASE = old base, RA = new base, RC = nargs*8
1159  |  mr CARG1, L
1160  |   stp BASE, L->base
1161  |  subi CARG2, RA, 8
1162  |   stw PC, SAVE_PC
1163  |  add CARG3, RA, RC
1164  |   mr SAVE0, NARGS8:RC
1165  |  bl extern lj_meta_call	// (lua_State *L, TValue *func, TValue *top)
1166  |  lwz TMP1, FRAME_PC(BASE)
1167  |   addi NARGS8:RC, SAVE0, 8		// Got one more argument now.
1168  |   lwz LFUNC:RB, FRAME_FUNC(RA)	// Guaranteed to be a function here.
1169  |  b ->BC_CALLT_Z
1170  |
1171  |//-- Argument coercion for 'for' statement ------------------------------
1172  |
1173  |->vmeta_for:
1174  |  mr CARG1, L
1175  |   stp BASE, L->base
1176  |  mr CARG2, RA
1177  |   stw PC, SAVE_PC
1178  |  mr SAVE0, INS
1179  |  bl extern lj_meta_for	// (lua_State *L, TValue *base)
1180  |.if JIT
1181  |   decode_OP1 TMP0, SAVE0
1182  |.endif
1183  |  decode_RA8 RA, SAVE0
1184  |.if JIT
1185  |   cmpwi TMP0, BC_JFORI
1186  |.endif
1187  |  decode_RD8 RD, SAVE0
1188  |.if JIT
1189  |   beqy =>BC_JFORI
1190  |.endif
1191  |  b =>BC_FORI
1192  |
1193  |//-----------------------------------------------------------------------
1194  |//-- Fast functions -----------------------------------------------------
1195  |//-----------------------------------------------------------------------
1196  |
1197  |.macro .ffunc, name
1198  |->ff_ .. name:
1199  |.endmacro
1200  |
1201  |.macro .ffunc_1, name
1202  |->ff_ .. name:
1203  |  cmplwi NARGS8:RC, 8
1204  |   lwz CARG3, 0(BASE)
1205  |    lwz CARG1, 4(BASE)
1206  |  blt ->fff_fallback
1207  |.endmacro
1208  |
1209  |.macro .ffunc_2, name
1210  |->ff_ .. name:
1211  |  cmplwi NARGS8:RC, 16
1212  |   lwz CARG3, 0(BASE)
1213  |    lwz CARG4, 8(BASE)
1214  |   lwz CARG1, 4(BASE)
1215  |    lwz CARG2, 12(BASE)
1216  |  blt ->fff_fallback
1217  |.endmacro
1218  |
1219  |.macro .ffunc_n, name
1220  |->ff_ .. name:
1221  |  cmplwi NARGS8:RC, 8
1222  |   lwz CARG3, 0(BASE)
1223  |    lfd FARG1, 0(BASE)
1224  |  blt ->fff_fallback
1225  |  checknum CARG3; bge ->fff_fallback
1226  |.endmacro
1227  |
1228  |.macro .ffunc_nn, name
1229  |->ff_ .. name:
1230  |  cmplwi NARGS8:RC, 16
1231  |   lwz CARG3, 0(BASE)
1232  |    lfd FARG1, 0(BASE)
1233  |   lwz CARG4, 8(BASE)
1234  |    lfd FARG2, 8(BASE)
1235  |  blt ->fff_fallback
1236  |  checknum CARG3; bge ->fff_fallback
1237  |  checknum CARG4; bge ->fff_fallback
1238  |.endmacro
1239  |
1240  |// Inlined GC threshold check. Caveat: uses TMP0 and TMP1.
1241  |.macro ffgccheck
1242  |  lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH)
1243  |  lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
1244  |  cmplw TMP0, TMP1
1245  |  bgel ->fff_gcstep
1246  |.endmacro
1247  |
1248  |//-- Base library: checks -----------------------------------------------
1249  |
1250  |.ffunc_1 assert
1251  |  li TMP1, LJ_TFALSE
1252  |   la RA, -8(BASE)
1253  |  cmplw cr1, CARG3, TMP1
1254  |    lwz PC, FRAME_PC(BASE)
1255  |  bge cr1, ->fff_fallback
1256  |   stw CARG3, 0(RA)
1257  |  addi RD, NARGS8:RC, 8		// Compute (nresults+1)*8.
1258  |   stw CARG1, 4(RA)
1259  |  beq ->fff_res			// Done if exactly 1 argument.
1260  |  li TMP1, 8
1261  |  subi RC, RC, 8
1262  |1:
1263  |  cmplw TMP1, RC
1264  |   lfdx f0, BASE, TMP1
1265  |   stfdx f0, RA, TMP1
1266  |    addi TMP1, TMP1, 8
1267  |  bney <1
1268  |  b ->fff_res
1269  |
1270  |.ffunc type
1271  |  cmplwi NARGS8:RC, 8
1272  |   lwz CARG1, 0(BASE)
1273  |  blt ->fff_fallback
1274  |  .gpr64 extsw CARG1, CARG1
1275  |  subfc TMP0, TISNUM, CARG1
1276  |  subfe TMP2, CARG1, CARG1
1277  |  orc TMP1, TMP2, TMP0
1278  |  addi TMP1, TMP1, ~LJ_TISNUM+1
1279  |  slwi TMP1, TMP1, 3
1280  |   la TMP2, CFUNC:RB->upvalue
1281  |  lfdx FARG1, TMP2, TMP1
1282  |  b ->fff_resn
1283  |
1284  |//-- Base library: getters and setters ---------------------------------
1285  |
1286  |.ffunc_1 getmetatable
1287  |  checktab CARG3; bne >6
1288  |1:  // Field metatable must be at same offset for GCtab and GCudata!
1289  |  lwz TAB:CARG1, TAB:CARG1->metatable
1290  |2:
1291  |  li CARG3, LJ_TNIL
1292  |   cmplwi TAB:CARG1, 0
1293  |  lwz STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH)
1294  |   beq ->fff_restv
1295  |  lwz TMP0, TAB:CARG1->hmask
1296  |   li CARG3, LJ_TTAB			// Use metatable as default result.
1297  |  lwz TMP1, STR:RC->hash
1298  |  lwz NODE:TMP2, TAB:CARG1->node
1299  |  and TMP1, TMP1, TMP0		// idx = str->hash & tab->hmask
1300  |  slwi TMP0, TMP1, 5
1301  |  slwi TMP1, TMP1, 3
1302  |  sub TMP1, TMP0, TMP1
1303  |  add NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
1304  |3:  // Rearranged logic, because we expect _not_ to find the key.
1305  |  lwz CARG4, NODE:TMP2->key
1306  |   lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
1307  |    lwz CARG2, NODE:TMP2->val
1308  |     lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2)
1309  |  checkstr CARG4; bne >4
1310  |   cmpw TMP0, STR:RC; beq >5
1311  |4:
1312  |  lwz NODE:TMP2, NODE:TMP2->next
1313  |  cmplwi NODE:TMP2, 0
1314  |  beq ->fff_restv			// Not found, keep default result.
1315  |  b <3
1316  |5:
1317  |  checknil CARG2
1318  |  beq ->fff_restv			// Ditto for nil value.
1319  |  mr CARG3, CARG2			// Return value of mt.__metatable.
1320  |  mr CARG1, TMP1
1321  |  b ->fff_restv
1322  |
1323  |6:
1324  |  cmpwi CARG3, LJ_TUDATA; beq <1
1325  |  .gpr64 extsw CARG3, CARG3
1326  |  subfc TMP0, TISNUM, CARG3
1327  |  subfe TMP2, CARG3, CARG3
1328  |  orc TMP1, TMP2, TMP0
1329  |  addi TMP1, TMP1, ~LJ_TISNUM+1
1330  |  slwi TMP1, TMP1, 2
1331  |   la TMP2, DISPATCH_GL(gcroot[GCROOT_BASEMT])(DISPATCH)
1332  |  lwzx TAB:CARG1, TMP2, TMP1
1333  |  b <2
1334  |
1335  |.ffunc_2 setmetatable
1336  |  // Fast path: no mt for table yet and not clearing the mt.
1337  |   checktab CARG3; bne ->fff_fallback
1338  |  lwz TAB:TMP1, TAB:CARG1->metatable
1339  |   checktab CARG4; bne ->fff_fallback
1340  |  cmplwi TAB:TMP1, 0
1341  |   lbz TMP3, TAB:CARG1->marked
1342  |  bne ->fff_fallback
1343  |   andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
1344  |    stw TAB:CARG2, TAB:CARG1->metatable
1345  |   beq ->fff_restv
1346  |  barrierback TAB:CARG1, TMP3, TMP0
1347  |  b ->fff_restv
1348  |
1349  |.ffunc rawget
1350  |  cmplwi NARGS8:RC, 16
1351  |   lwz CARG4, 0(BASE)
1352  |    lwz TAB:CARG2, 4(BASE)
1353  |  blt ->fff_fallback
1354  |  checktab CARG4; bne ->fff_fallback
1355  |   la CARG3, 8(BASE)
1356  |   mr CARG1, L
1357  |  bl extern lj_tab_get  // (lua_State *L, GCtab *t, cTValue *key)
1358  |  // Returns cTValue *.
1359  |  lfd FARG1, 0(CRET1)
1360  |  b ->fff_resn
1361  |
1362  |//-- Base library: conversions ------------------------------------------
1363  |
1364  |.ffunc tonumber
1365  |  // Only handles the number case inline (without a base argument).
1366  |  cmplwi NARGS8:RC, 8
1367  |   lwz CARG1, 0(BASE)
1368  |    lfd FARG1, 0(BASE)
1369  |  bne ->fff_fallback			// Exactly one argument.
1370  |   checknum CARG1; bgt ->fff_fallback
1371  |  b ->fff_resn
1372  |
1373  |.ffunc_1 tostring
1374  |  // Only handles the string or number case inline.
1375  |  checkstr CARG3
1376  |  // A __tostring method in the string base metatable is ignored.
1377  |  beq ->fff_restv			// String key?
1378  |  // Handle numbers inline, unless a number base metatable is present.
1379  |  lwz TMP0, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH)
1380  |  checknum CARG3
1381  |  cmplwi cr1, TMP0, 0
1382  |   stp BASE, L->base			// Add frame since C call can throw.
1383  |  crorc 4*cr0+eq, 4*cr0+gt, 4*cr1+eq
1384  |   stw PC, SAVE_PC			// Redundant (but a defined value).
1385  |  beq ->fff_fallback
1386  |  ffgccheck
1387  |  mr CARG1, L
1388  |  mr CARG2, BASE
1389  |.if DUALNUM
1390  |  bl extern lj_str_fromnumber	// (lua_State *L, cTValue *o)
1391  |.else
1392  |  bl extern lj_str_fromnum		// (lua_State *L, lua_Number *np)
1393  |.endif
1394  |  // Returns GCstr *.
1395  |  li CARG3, LJ_TSTR
1396  |  b ->fff_restv
1397  |
1398  |//-- Base library: iterators -------------------------------------------
1399  |
1400  |.ffunc next
1401  |  cmplwi NARGS8:RC, 8
1402  |   lwz CARG1, 0(BASE)
1403  |    lwz TAB:CARG2, 4(BASE)
1404  |  blt ->fff_fallback
1405  |   stwx TISNIL, BASE, NARGS8:RC	// Set missing 2nd arg to nil.
1406  |  checktab CARG1
1407  |   lwz PC, FRAME_PC(BASE)
1408  |  bne ->fff_fallback
1409  |   stp BASE, L->base			// Add frame since C call can throw.
1410  |  mr CARG1, L
1411  |   stp BASE, L->top			// Dummy frame length is ok.
1412  |  la CARG3, 8(BASE)
1413  |   stw PC, SAVE_PC
1414  |  bl extern lj_tab_next	// (lua_State *L, GCtab *t, TValue *key)
1415  |  // Returns 0 at end of traversal.
1416  |  cmplwi CRET1, 0
1417  |   li CARG3, LJ_TNIL
1418  |  beq ->fff_restv			// End of traversal: return nil.
1419  |  lfd f0, 8(BASE)			// Copy key and value to results.
1420  |   la RA, -8(BASE)
1421  |  lfd f1, 16(BASE)
1422  |  stfd f0, 0(RA)
1423  |   li RD, (2+1)*8
1424  |  stfd f1, 8(RA)
1425  |  b ->fff_res
1426  |
1427  |.ffunc_1 pairs
1428  |  checktab CARG3
1429  |   lwz PC, FRAME_PC(BASE)
1430  |  bne ->fff_fallback
1431#if LJ_52
1432  |   lwz TAB:TMP2, TAB:CARG1->metatable
1433  |  lfd f0, CFUNC:RB->upvalue[0]
1434  |   cmplwi TAB:TMP2, 0
1435  |  la RA, -8(BASE)
1436  |   bne ->fff_fallback
1437#else
1438  |  lfd f0, CFUNC:RB->upvalue[0]
1439  |  la RA, -8(BASE)
1440#endif
1441  |   stw TISNIL, 8(BASE)
1442  |  li RD, (3+1)*8
1443  |  stfd f0, 0(RA)
1444  |  b ->fff_res
1445  |
1446  |.ffunc ipairs_aux
1447  |  cmplwi NARGS8:RC, 16
1448  |   lwz CARG3, 0(BASE)
1449  |    lwz TAB:CARG1, 4(BASE)
1450  |   lwz CARG4, 8(BASE)
1451  |.if DUALNUM
1452  |    lwz TMP2, 12(BASE)
1453  |.else
1454  |    lfd FARG2, 8(BASE)
1455  |.endif
1456  |  blt ->fff_fallback
1457  |  checktab CARG3
1458  |  checknum cr1, CARG4
1459  |   lwz PC, FRAME_PC(BASE)
1460  |.if DUALNUM
1461  |  bne ->fff_fallback
1462  |  bne cr1, ->fff_fallback
1463  |.else
1464  |    lus TMP0, 0x3ff0
1465  |    stw ZERO, TMPD_LO
1466  |  bne ->fff_fallback
1467  |    stw TMP0, TMPD_HI
1468  |  bge cr1, ->fff_fallback
1469  |    lfd FARG1, TMPD
1470  |  toint TMP2, FARG2, f0
1471  |.endif
1472  |   lwz TMP0, TAB:CARG1->asize
1473  |   lwz TMP1, TAB:CARG1->array
1474  |.if not DUALNUM
1475  |  fadd FARG2, FARG2, FARG1
1476  |.endif
1477  |  addi TMP2, TMP2, 1
1478  |   la RA, -8(BASE)
1479  |  cmplw TMP0, TMP2
1480  |.if DUALNUM
1481  |  stw TISNUM, 0(RA)
1482  |   slwi TMP3, TMP2, 3
1483  |  stw TMP2, 4(RA)
1484  |.else
1485  |   slwi TMP3, TMP2, 3
1486  |  stfd FARG2, 0(RA)
1487  |.endif
1488  |  ble >2				// Not in array part?
1489  |  lwzx TMP2, TMP1, TMP3
1490  |  lfdx f0, TMP1, TMP3
1491  |1:
1492  |  checknil TMP2
1493  |   li RD, (0+1)*8
1494  |  beq ->fff_res			// End of iteration, return 0 results.
1495  |   li RD, (2+1)*8
1496  |  stfd f0, 8(RA)
1497  |  b ->fff_res
1498  |2:  // Check for empty hash part first. Otherwise call C function.
1499  |  lwz TMP0, TAB:CARG1->hmask
1500  |  cmplwi TMP0, 0
1501  |   li RD, (0+1)*8
1502  |  beq ->fff_res
1503  |   mr CARG2, TMP2
1504  |  bl extern lj_tab_getinth		// (GCtab *t, int32_t key)
1505  |  // Returns cTValue * or NULL.
1506  |  cmplwi CRET1, 0
1507  |   li RD, (0+1)*8
1508  |  beq ->fff_res
1509  |  lwz TMP2, 0(CRET1)
1510  |  lfd f0, 0(CRET1)
1511  |  b <1
1512  |
1513  |.ffunc_1 ipairs
1514  |  checktab CARG3
1515  |   lwz PC, FRAME_PC(BASE)
1516  |  bne ->fff_fallback
1517#if LJ_52
1518  |   lwz TAB:TMP2, TAB:CARG1->metatable
1519  |  lfd f0, CFUNC:RB->upvalue[0]
1520  |   cmplwi TAB:TMP2, 0
1521  |  la RA, -8(BASE)
1522  |   bne ->fff_fallback
1523#else
1524  |  lfd f0, CFUNC:RB->upvalue[0]
1525  |  la RA, -8(BASE)
1526#endif
1527  |.if DUALNUM
1528  |  stw TISNUM, 8(BASE)
1529  |.else
1530  |  stw ZERO, 8(BASE)
1531  |.endif
1532  |   stw ZERO, 12(BASE)
1533  |  li RD, (3+1)*8
1534  |  stfd f0, 0(RA)
1535  |  b ->fff_res
1536  |
1537  |//-- Base library: catch errors ----------------------------------------
1538  |
1539  |.ffunc pcall
1540  |  cmplwi NARGS8:RC, 8
1541  |   lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
1542  |  blt ->fff_fallback
1543  |   mr TMP2, BASE
1544  |   la BASE, 8(BASE)
1545  |  // Remember active hook before pcall.
1546  |  rlwinm TMP3, TMP3, 32-HOOK_ACTIVE_SHIFT, 31, 31
1547  |   subi NARGS8:RC, NARGS8:RC, 8
1548  |  addi PC, TMP3, 8+FRAME_PCALL
1549  |  b ->vm_call_dispatch
1550  |
1551  |.ffunc xpcall
1552  |  cmplwi NARGS8:RC, 16
1553  |   lwz CARG4, 8(BASE)
1554  |    lfd FARG2, 8(BASE)
1555  |    lfd FARG1, 0(BASE)
1556  |  blt ->fff_fallback
1557  |  lbz TMP1, DISPATCH_GL(hookmask)(DISPATCH)
1558  |   mr TMP2, BASE
1559  |  checkfunc CARG4; bne ->fff_fallback  // Traceback must be a function.
1560  |   la BASE, 16(BASE)
1561  |  // Remember active hook before pcall.
1562  |  rlwinm TMP1, TMP1, 32-HOOK_ACTIVE_SHIFT, 31, 31
1563  |    stfd FARG2, 0(TMP2)		// Swap function and traceback.
1564  |  subi NARGS8:RC, NARGS8:RC, 16
1565  |    stfd FARG1, 8(TMP2)
1566  |  addi PC, TMP1, 16+FRAME_PCALL
1567  |  b ->vm_call_dispatch
1568  |
1569  |//-- Coroutine library --------------------------------------------------
1570  |
1571  |.macro coroutine_resume_wrap, resume
1572  |.if resume
1573  |.ffunc_1 coroutine_resume
1574  |  cmpwi CARG3, LJ_TTHREAD; bne ->fff_fallback
1575  |.else
1576  |.ffunc coroutine_wrap_aux
1577  |  lwz L:CARG1, CFUNC:RB->upvalue[0].gcr
1578  |.endif
1579  |  lbz TMP0, L:CARG1->status
1580  |   lp TMP1, L:CARG1->cframe
1581  |    lp CARG2, L:CARG1->top
1582  |  cmplwi cr0, TMP0, LUA_YIELD
1583  |    lp TMP2, L:CARG1->base
1584  |   cmplwi cr1, TMP1, 0
1585  |   lwz TMP0, L:CARG1->maxstack
1586  |    cmplw cr7, CARG2, TMP2
1587  |   lwz PC, FRAME_PC(BASE)
1588  |  crorc 4*cr6+lt, 4*cr0+gt, 4*cr1+eq		// st>LUA_YIELD || cframe!=0
1589  |   add TMP2, CARG2, NARGS8:RC
1590  |  crandc 4*cr6+gt, 4*cr7+eq, 4*cr0+eq	// base==top && st!=LUA_YIELD
1591  |   cmplw cr1, TMP2, TMP0
1592  |  cror 4*cr6+lt, 4*cr6+lt, 4*cr6+gt
1593  |   stw PC, SAVE_PC
1594  |  cror 4*cr6+lt, 4*cr6+lt, 4*cr1+gt		// cond1 || cond2 || stackov
1595  |   stp BASE, L->base
1596  |  blt cr6, ->fff_fallback
1597  |1:
1598  |.if resume
1599  |  addi BASE, BASE, 8			// Keep resumed thread in stack for GC.
1600  |  subi NARGS8:RC, NARGS8:RC, 8
1601  |  subi TMP2, TMP2, 8
1602  |.endif
1603  |  stp TMP2, L:CARG1->top
1604  |  li TMP1, 0
1605  |  stp BASE, L->top
1606  |2:  // Move args to coroutine.
1607  |  cmpw TMP1, NARGS8:RC
1608  |   lfdx f0, BASE, TMP1
1609  |  beq >3
1610  |   stfdx f0, CARG2, TMP1
1611  |  addi TMP1, TMP1, 8
1612  |  b <2
1613  |3:
1614  |  li CARG3, 0
1615  |   mr L:SAVE0, L:CARG1
1616  |  li CARG4, 0
1617  |  bl ->vm_resume			// (lua_State *L, TValue *base, 0, 0)
1618  |  // Returns thread status.
1619  |4:
1620  |  lp TMP2, L:SAVE0->base
1621  |   cmplwi CRET1, LUA_YIELD
1622  |  lp TMP3, L:SAVE0->top
1623  |    li_vmstate INTERP
1624  |  lp BASE, L->base
1625  |    st_vmstate
1626  |   bgt >8
1627  |  sub RD, TMP3, TMP2
1628  |   lwz TMP0, L->maxstack
1629  |  cmplwi RD, 0
1630  |   add TMP1, BASE, RD
1631  |  beq >6				// No results?
1632  |  cmplw TMP1, TMP0
1633  |   li TMP1, 0
1634  |  bgt >9				// Need to grow stack?
1635  |
1636  |  subi TMP3, RD, 8
1637  |   stp TMP2, L:SAVE0->top		// Clear coroutine stack.
1638  |5:  // Move results from coroutine.
1639  |  cmplw TMP1, TMP3
1640  |   lfdx f0, TMP2, TMP1
1641  |   stfdx f0, BASE, TMP1
1642  |    addi TMP1, TMP1, 8
1643  |  bne <5
1644  |6:
1645  |  andix. TMP0, PC, FRAME_TYPE
1646  |.if resume
1647  |  li TMP1, LJ_TTRUE
1648  |   la RA, -8(BASE)
1649  |  stw TMP1, -8(BASE)			// Prepend true to results.
1650  |  addi RD, RD, 16
1651  |.else
1652  |  mr RA, BASE
1653  |  addi RD, RD, 8
1654  |.endif
1655  |7:
1656  |    stw PC, SAVE_PC
1657  |   mr MULTRES, RD
1658  |  beq ->BC_RET_Z
1659  |  b ->vm_return
1660  |
1661  |8:  // Coroutine returned with error (at co->top-1).
1662  |.if resume
1663  |  andix. TMP0, PC, FRAME_TYPE
1664  |  la TMP3, -8(TMP3)
1665  |   li TMP1, LJ_TFALSE
1666  |  lfd f0, 0(TMP3)
1667  |   stp TMP3, L:SAVE0->top		// Remove error from coroutine stack.
1668  |    li RD, (2+1)*8
1669  |   stw TMP1, -8(BASE)		// Prepend false to results.
1670  |    la RA, -8(BASE)
1671  |  stfd f0, 0(BASE)			// Copy error message.
1672  |  b <7
1673  |.else
1674  |  mr CARG1, L
1675  |  mr CARG2, L:SAVE0
1676  |  bl extern lj_ffh_coroutine_wrap_err  // (lua_State *L, lua_State *co)
1677  |.endif
1678  |
1679  |9:  // Handle stack expansion on return from yield.
1680  |  mr CARG1, L
1681  |  srwi CARG2, RD, 3
1682  |  bl extern lj_state_growstack	// (lua_State *L, int n)
1683  |  li CRET1, 0
1684  |  b <4
1685  |.endmacro
1686  |
1687  |  coroutine_resume_wrap 1		// coroutine.resume
1688  |  coroutine_resume_wrap 0		// coroutine.wrap
1689  |
1690  |.ffunc coroutine_yield
1691  |  lp TMP0, L->cframe
1692  |   add TMP1, BASE, NARGS8:RC
1693  |   stp BASE, L->base
1694  |  andix. TMP0, TMP0, CFRAME_RESUME
1695  |   stp TMP1, L->top
1696  |    li CRET1, LUA_YIELD
1697  |  beq ->fff_fallback
1698  |   stp ZERO, L->cframe
1699  |    stb CRET1, L->status
1700  |  b ->vm_leave_unw
1701  |
1702  |//-- Math library -------------------------------------------------------
1703  |
1704  |.ffunc_1 math_abs
1705  |  checknum CARG3
1706  |.if DUALNUM
1707  |  bne >2
1708  |  srawi TMP1, CARG1, 31
1709  |  xor TMP2, TMP1, CARG1
1710  |.if GPR64
1711  |  lus TMP0, 0x8000
1712  |  sub CARG1, TMP2, TMP1
1713  |  cmplw CARG1, TMP0
1714  |  beq >1
1715  |.else
1716  |  sub. CARG1, TMP2, TMP1
1717  |  blt >1
1718  |.endif
1719  |->fff_resi:
1720  |  lwz PC, FRAME_PC(BASE)
1721  |  la RA, -8(BASE)
1722  |  stw TISNUM, -8(BASE)
1723  |  stw CRET1, -4(BASE)
1724  |  b ->fff_res1
1725  |1:
1726  |  lus CARG3, 0x41e0	// 2^31.
1727  |  li CARG1, 0
1728  |  b ->fff_restv
1729  |2:
1730  |.endif
1731  |  bge ->fff_fallback
1732  |  rlwinm CARG3, CARG3, 0, 1, 31
1733  |  // Fallthrough.
1734  |
1735  |->fff_restv:
1736  |  // CARG3/CARG1 = TValue result.
1737  |  lwz PC, FRAME_PC(BASE)
1738  |   stw CARG3, -8(BASE)
1739  |  la RA, -8(BASE)
1740  |   stw CARG1, -4(BASE)
1741  |->fff_res1:
1742  |  // RA = results, PC = return.
1743  |  li RD, (1+1)*8
1744  |->fff_res:
1745  |  // RA = results, RD = (nresults+1)*8, PC = return.
1746  |  andix. TMP0, PC, FRAME_TYPE
1747  |   mr MULTRES, RD
1748  |  bney ->vm_return
1749  |  lwz INS, -4(PC)
1750  |  decode_RB8 RB, INS
1751  |5:
1752  |  cmplw RB, RD			// More results expected?
1753  |   decode_RA8 TMP0, INS
1754  |  bgt >6
1755  |  ins_next1
1756  |  // Adjust BASE. KBASE is assumed to be set for the calling frame.
1757  |   sub BASE, RA, TMP0
1758  |  ins_next2
1759  |
1760  |6:  // Fill up results with nil.
1761  |  subi TMP1, RD, 8
1762  |   addi RD, RD, 8
1763  |  stwx TISNIL, RA, TMP1
1764  |  b <5
1765  |
1766  |.macro math_extern, func
1767  |  .ffunc_n math_ .. func
1768  |  blex func
1769  |  b ->fff_resn
1770  |.endmacro
1771  |
1772  |.macro math_extern2, func
1773  |  .ffunc_nn math_ .. func
1774  |  blex func
1775  |  b ->fff_resn
1776  |.endmacro
1777  |
1778  |.macro math_round, func
1779  |  .ffunc_1 math_ .. func
1780  |   checknum CARG3; beqy ->fff_restv
1781  |  rlwinm TMP2, CARG3, 12, 21, 31
1782  |   bge ->fff_fallback
1783  |  addic. TMP2, TMP2, -1023		// exp = exponent(x) - 1023
1784  |  cmplwi cr1, TMP2, 31		// 0 <= exp < 31?
1785  |   subfic TMP0, TMP2, 31
1786  |  blt >3
1787  |  slwi TMP1, CARG3, 11
1788  |   srwi TMP3, CARG1, 21
1789  |  oris TMP1, TMP1, 0x8000
1790  |   addi TMP2, TMP2, 1
1791  |  or TMP1, TMP1, TMP3
1792  |   slwi CARG2, CARG1, 11
1793  |  bge cr1, >4
1794  |   slw TMP3, TMP1, TMP2
1795  |  srw RD, TMP1, TMP0
1796  |   or TMP3, TMP3, CARG2
1797  |  srawi TMP2, CARG3, 31
1798  |.if "func" == "floor"
1799  |  and TMP1, TMP3, TMP2
1800  |  addic TMP0, TMP1, -1
1801  |  subfe TMP1, TMP0, TMP1
1802  |  add CARG1, RD, TMP1
1803  |  xor CARG1, CARG1, TMP2
1804  |  sub CARG1, CARG1, TMP2
1805  |  b ->fff_resi
1806  |.else
1807  |  andc TMP1, TMP3, TMP2
1808  |  addic TMP0, TMP1, -1
1809  |  subfe TMP1, TMP0, TMP1
1810  |  add CARG1, RD, TMP1
1811  |  cmpw CARG1, RD
1812  |  xor CARG1, CARG1, TMP2
1813  |  sub CARG1, CARG1, TMP2
1814  |  bge ->fff_resi
1815  |  // Overflow to 2^31.
1816  |  lus CARG3, 0x41e0			// 2^31.
1817  |  li CARG1, 0
1818  |  b ->fff_restv
1819  |.endif
1820  |3:  // |x| < 1
1821  |  slwi TMP2, CARG3, 1
1822  |   srawi TMP1, CARG3, 31
1823  |  or TMP2, CARG1, TMP2		// ztest = (hi+hi) | lo
1824  |.if "func" == "floor"
1825  |  and TMP1, TMP2, TMP1		// (ztest & sign) == 0 ? 0 : -1
1826  |  subfic TMP2, TMP1, 0
1827  |  subfe CARG1, CARG1, CARG1
1828  |.else
1829  |  andc TMP1, TMP2, TMP1		// (ztest & ~sign) == 0 ? 0 : 1
1830  |  addic TMP2, TMP1, -1
1831  |  subfe CARG1, TMP2, TMP1
1832  |.endif
1833  |  b ->fff_resi
1834  |4:  // exp >= 31. Check for -(2^31).
1835  |  xoris TMP1, TMP1, 0x8000
1836  |  srawi TMP2, CARG3, 31
1837  |.if "func" == "floor"
1838  |  or TMP1, TMP1, CARG2
1839  |.endif
1840  |.if PPE
1841  |  orc TMP1, TMP1, TMP2
1842  |  cmpwi TMP1, 0
1843  |.else
1844  |  orc. TMP1, TMP1, TMP2
1845  |.endif
1846  |  crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
1847  |  lus CARG1, 0x8000			// -(2^31).
1848  |  beqy ->fff_resi
1849  |5:
1850  |  lfd FARG1, 0(BASE)
1851  |  blex func
1852  |  b ->fff_resn
1853  |.endmacro
1854  |
1855  |.if DUALNUM
1856  |  math_round floor
1857  |  math_round ceil
1858  |.else
1859  |  // NYI: use internal implementation.
1860  |  math_extern floor
1861  |  math_extern ceil
1862  |.endif
1863  |
1864  |.if SQRT
1865  |.ffunc_n math_sqrt
1866  |  fsqrt FARG1, FARG1
1867  |  b ->fff_resn
1868  |.else
1869  |  math_extern sqrt
1870  |.endif
1871  |
1872  |.ffunc math_log
1873  |  cmplwi NARGS8:RC, 8
1874  |   lwz CARG3, 0(BASE)
1875  |    lfd FARG1, 0(BASE)
1876  |  bne ->fff_fallback			// Need exactly 1 argument.
1877  |  checknum CARG3; bge ->fff_fallback
1878  |  blex log
1879  |  b ->fff_resn
1880  |
1881  |  math_extern log10
1882  |  math_extern exp
1883  |  math_extern sin
1884  |  math_extern cos
1885  |  math_extern tan
1886  |  math_extern asin
1887  |  math_extern acos
1888  |  math_extern atan
1889  |  math_extern sinh
1890  |  math_extern cosh
1891  |  math_extern tanh
1892  |  math_extern2 pow
1893  |  math_extern2 atan2
1894  |  math_extern2 fmod
1895  |
1896  |->ff_math_deg:
1897  |.ffunc_n math_rad
1898  |  lfd FARG2, CFUNC:RB->upvalue[0]
1899  |  fmul FARG1, FARG1, FARG2
1900  |  b ->fff_resn
1901  |
1902  |.if DUALNUM
1903  |.ffunc math_ldexp
1904  |  cmplwi NARGS8:RC, 16
1905  |   lwz CARG3, 0(BASE)
1906  |    lfd FARG1, 0(BASE)
1907  |   lwz CARG4, 8(BASE)
1908  |.if GPR64
1909  |    lwz CARG2, 12(BASE)
1910  |.else
1911  |    lwz CARG1, 12(BASE)
1912  |.endif
1913  |  blt ->fff_fallback
1914  |  checknum CARG3; bge ->fff_fallback
1915  |  checknum CARG4; bne ->fff_fallback
1916  |.else
1917  |.ffunc_nn math_ldexp
1918  |.if GPR64
1919  |  toint CARG2, FARG2
1920  |.else
1921  |  toint CARG1, FARG2
1922  |.endif
1923  |.endif
1924  |  blex ldexp
1925  |  b ->fff_resn
1926  |
1927  |.ffunc_n math_frexp
1928  |.if GPR64
1929  |  la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
1930  |.else
1931  |  la CARG1, DISPATCH_GL(tmptv)(DISPATCH)
1932  |.endif
1933  |   lwz PC, FRAME_PC(BASE)
1934  |  blex frexp
1935  |   lwz TMP1, DISPATCH_GL(tmptv)(DISPATCH)
1936  |   la RA, -8(BASE)
1937  |.if not DUALNUM
1938  |   tonum_i FARG2, TMP1
1939  |.endif
1940  |  stfd FARG1, 0(RA)
1941  |  li RD, (2+1)*8
1942  |.if DUALNUM
1943  |   stw TISNUM, 8(RA)
1944  |   stw TMP1, 12(RA)
1945  |.else
1946  |   stfd FARG2, 8(RA)
1947  |.endif
1948  |  b ->fff_res
1949  |
1950  |.ffunc_n math_modf
1951  |.if GPR64
1952  |  la CARG2, -8(BASE)
1953  |.else
1954  |  la CARG1, -8(BASE)
1955  |.endif
1956  |   lwz PC, FRAME_PC(BASE)
1957  |  blex modf
1958  |   la RA, -8(BASE)
1959  |  stfd FARG1, 0(BASE)
1960  |  li RD, (2+1)*8
1961  |  b ->fff_res
1962  |
1963  |.macro math_minmax, name, ismax
1964  |.if DUALNUM
1965  |  .ffunc_1 name
1966  |  checknum CARG3
1967  |   addi TMP1, BASE, 8
1968  |   add TMP2, BASE, NARGS8:RC
1969  |  bne >4
1970  |1:  // Handle integers.
1971  |  lwz CARG4, 0(TMP1)
1972  |   cmplw cr1, TMP1, TMP2
1973  |  lwz CARG2, 4(TMP1)
1974  |   bge cr1, ->fff_resi
1975  |  checknum CARG4
1976  |   xoris TMP0, CARG1, 0x8000
1977  |   xoris TMP3, CARG2, 0x8000
1978  |  bne >3
1979  |  subfc TMP3, TMP3, TMP0
1980  |  subfe TMP0, TMP0, TMP0
1981  |.if ismax
1982  |  andc TMP3, TMP3, TMP0
1983  |.else
1984  |  and TMP3, TMP3, TMP0
1985  |.endif
1986  |  add CARG1, TMP3, CARG2
1987  |.if GPR64
1988  |  rldicl CARG1, CARG1, 0, 32
1989  |.endif
1990  |   addi TMP1, TMP1, 8
1991  |  b <1
1992  |3:
1993  |  bge ->fff_fallback
1994  |  // Convert intermediate result to number and continue below.
1995  |  tonum_i FARG1, CARG1
1996  |  lfd FARG2, 0(TMP1)
1997  |  b >6
1998  |4:
1999  |   lfd FARG1, 0(BASE)
2000  |  bge ->fff_fallback
2001  |5:  // Handle numbers.
2002  |  lwz CARG4, 0(TMP1)
2003  |   cmplw cr1, TMP1, TMP2
2004  |  lfd FARG2, 0(TMP1)
2005  |   bge cr1, ->fff_resn
2006  |  checknum CARG4; bge >7
2007  |6:
2008  |  fsub f0, FARG1, FARG2
2009  |   addi TMP1, TMP1, 8
2010  |.if ismax
2011  |  fsel FARG1, f0, FARG1, FARG2
2012  |.else
2013  |  fsel FARG1, f0, FARG2, FARG1
2014  |.endif
2015  |  b <5
2016  |7:  // Convert integer to number and continue above.
2017  |   lwz CARG2, 4(TMP1)
2018  |  bne ->fff_fallback
2019  |  tonum_i FARG2, CARG2
2020  |  b <6
2021  |.else
2022  |  .ffunc_n name
2023  |  li TMP1, 8
2024  |1:
2025  |   lwzx CARG2, BASE, TMP1
2026  |   lfdx FARG2, BASE, TMP1
2027  |  cmplw cr1, TMP1, NARGS8:RC
2028  |   checknum CARG2
2029  |  bge cr1, ->fff_resn
2030  |   bge ->fff_fallback
2031  |  fsub f0, FARG1, FARG2
2032  |   addi TMP1, TMP1, 8
2033  |.if ismax
2034  |  fsel FARG1, f0, FARG1, FARG2
2035  |.else
2036  |  fsel FARG1, f0, FARG2, FARG1
2037  |.endif
2038  |  b <1
2039  |.endif
2040  |.endmacro
2041  |
2042  |  math_minmax math_min, 0
2043  |  math_minmax math_max, 1
2044  |
2045  |//-- String library -----------------------------------------------------
2046  |
2047  |.ffunc_1 string_len
2048  |  checkstr CARG3; bne ->fff_fallback
2049  |  lwz CRET1, STR:CARG1->len
2050  |  b ->fff_resi
2051  |
2052  |.ffunc string_byte			// Only handle the 1-arg case here.
2053  |  cmplwi NARGS8:RC, 8
2054  |   lwz CARG3, 0(BASE)
2055  |    lwz STR:CARG1, 4(BASE)
2056  |  bne ->fff_fallback			// Need exactly 1 argument.
2057  |   checkstr CARG3
2058  |   bne ->fff_fallback
2059  |  lwz TMP0, STR:CARG1->len
2060  |.if DUALNUM
2061  |   lbz CARG1, STR:CARG1[1]		// Access is always ok (NUL at end).
2062  |   li RD, (0+1)*8
2063  |   lwz PC, FRAME_PC(BASE)
2064  |  cmplwi TMP0, 0
2065  |   la RA, -8(BASE)
2066  |  beqy ->fff_res
2067  |  b ->fff_resi
2068  |.else
2069  |   lbz TMP1, STR:CARG1[1]		// Access is always ok (NUL at end).
2070  |  addic TMP3, TMP0, -1		// RD = ((str->len != 0)+1)*8
2071  |  subfe RD, TMP3, TMP0
2072  |   stw TMP1, TONUM_LO		// Inlined tonum_u f0, TMP1.
2073  |  addi RD, RD, 1
2074  |   lfd f0, TONUM_D
2075  |  la RA, -8(BASE)
2076  |  lwz PC, FRAME_PC(BASE)
2077  |   fsub f0, f0, TOBIT
2078  |  slwi RD, RD, 3
2079  |   stfd f0, 0(RA)
2080  |  b ->fff_res
2081  |.endif
2082  |
2083  |.ffunc string_char			// Only handle the 1-arg case here.
2084  |  ffgccheck
2085  |  cmplwi NARGS8:RC, 8
2086  |   lwz CARG3, 0(BASE)
2087  |.if DUALNUM
2088  |    lwz TMP0, 4(BASE)
2089  |  bne ->fff_fallback			// Exactly 1 argument.
2090  |  checknum CARG3; bne ->fff_fallback
2091  |   la CARG2, 7(BASE)
2092  |.else
2093  |    lfd FARG1, 0(BASE)
2094  |  bne ->fff_fallback			// Exactly 1 argument.
2095  |  checknum CARG3; bge ->fff_fallback
2096  |  toint TMP0, FARG1
2097  |   la CARG2, TMPD_BLO
2098  |.endif
2099  |   li CARG3, 1
2100  |  cmplwi TMP0, 255; bgt ->fff_fallback
2101  |->fff_newstr:
2102  |  mr CARG1, L
2103  |  stp BASE, L->base
2104  |  stw PC, SAVE_PC
2105  |  bl extern lj_str_new		// (lua_State *L, char *str, size_t l)
2106  |  // Returns GCstr *.
2107  |  lp BASE, L->base
2108  |  li CARG3, LJ_TSTR
2109  |  b ->fff_restv
2110  |
2111  |.ffunc string_sub
2112  |  ffgccheck
2113  |  cmplwi NARGS8:RC, 16
2114  |   lwz CARG3, 16(BASE)
2115  |.if not DUALNUM
2116  |    lfd f0, 16(BASE)
2117  |.endif
2118  |   lwz TMP0, 0(BASE)
2119  |    lwz STR:CARG1, 4(BASE)
2120  |  blt ->fff_fallback
2121  |   lwz CARG2, 8(BASE)
2122  |.if DUALNUM
2123  |    lwz TMP1, 12(BASE)
2124  |.else
2125  |    lfd f1, 8(BASE)
2126  |.endif
2127  |   li TMP2, -1
2128  |  beq >1
2129  |.if DUALNUM
2130  |  checknum CARG3
2131  |   lwz TMP2, 20(BASE)
2132  |  bne ->fff_fallback
2133  |1:
2134  |  checknum CARG2; bne ->fff_fallback
2135  |.else
2136  |  checknum CARG3; bge ->fff_fallback
2137  |  toint TMP2, f0
2138  |1:
2139  |  checknum CARG2; bge ->fff_fallback
2140  |.endif
2141  |  checkstr TMP0; bne ->fff_fallback
2142  |.if not DUALNUM
2143  |   toint TMP1, f1
2144  |.endif
2145  |   lwz TMP0, STR:CARG1->len
2146  |  cmplw TMP0, TMP2			// len < end? (unsigned compare)
2147  |   addi TMP3, TMP2, 1
2148  |  blt >5
2149  |2:
2150  |  cmpwi TMP1, 0			// start <= 0?
2151  |   add TMP3, TMP1, TMP0
2152  |  ble >7
2153  |3:
2154  |  sub CARG3, TMP2, TMP1
2155  |    addi CARG2, STR:CARG1, #STR-1
2156  |  srawi TMP0, CARG3, 31
2157  |   addi CARG3, CARG3, 1
2158  |    add CARG2, CARG2, TMP1
2159  |  andc CARG3, CARG3, TMP0
2160  |.if GPR64
2161  |  rldicl CARG2, CARG2, 0, 32
2162  |  rldicl CARG3, CARG3, 0, 32
2163  |.endif
2164  |  b ->fff_newstr
2165  |
2166  |5:  // Negative end or overflow.
2167  |  cmpw TMP0, TMP2			// len >= end? (signed compare)
2168  |   add TMP2, TMP0, TMP3		// Negative end: end = end+len+1.
2169  |  bge <2
2170  |   mr TMP2, TMP0			// Overflow: end = len.
2171  |  b <2
2172  |
2173  |7:  // Negative start or underflow.
2174  |  .gpr64 extsw TMP1, TMP1
2175  |  addic CARG3, TMP1, -1
2176  |  subfe CARG3, CARG3, CARG3
2177  |   srawi CARG2, TMP3, 31		// Note: modifies carry.
2178  |  andc TMP3, TMP3, CARG3
2179  |   andc TMP1, TMP3, CARG2
2180  |  addi TMP1, TMP1, 1			// start = 1 + (start ? start+len : 0)
2181  |  b <3
2182  |
2183  |.ffunc string_rep			// Only handle the 1-char case inline.
2184  |  ffgccheck
2185  |  cmplwi NARGS8:RC, 16
2186  |   lwz TMP0, 0(BASE)
2187  |    lwz STR:CARG1, 4(BASE)
2188  |   lwz CARG4, 8(BASE)
2189  |.if DUALNUM
2190  |    lwz CARG3, 12(BASE)
2191  |.else
2192  |    lfd FARG2, 8(BASE)
2193  |.endif
2194  |  bne ->fff_fallback			// Exactly 2 arguments.
2195  |  checkstr TMP0; bne ->fff_fallback
2196  |.if DUALNUM
2197  |  checknum CARG4; bne ->fff_fallback
2198  |.else
2199  |  checknum CARG4; bge ->fff_fallback
2200  |    toint CARG3, FARG2
2201  |.endif
2202  |   lwz TMP0, STR:CARG1->len
2203  |  cmpwi CARG3, 0
2204  |   lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
2205  |  ble >2				// Count <= 0? (or non-int)
2206  |   cmplwi TMP0, 1
2207  |  subi TMP2, CARG3, 1
2208  |   blt >2				// Zero length string?
2209  |  cmplw cr1, TMP1, CARG3
2210  |   bne ->fff_fallback		// Fallback for > 1-char strings.
2211  |   lbz TMP0, STR:CARG1[1]
2212  |   lp CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
2213  |  blt cr1, ->fff_fallback
2214  |1:  // Fill buffer with char. Yes, this is suboptimal code (do you care?).
2215  |  cmplwi TMP2, 0
2216  |   stbx TMP0, CARG2, TMP2
2217  |   subi TMP2, TMP2, 1
2218  |  bne <1
2219  |  b ->fff_newstr
2220  |2:  // Return empty string.
2221  |  la STR:CARG1, DISPATCH_GL(strempty)(DISPATCH)
2222  |  li CARG3, LJ_TSTR
2223  |  b ->fff_restv
2224  |
2225  |.ffunc string_reverse
2226  |  ffgccheck
2227  |  cmplwi NARGS8:RC, 8
2228  |   lwz CARG3, 0(BASE)
2229  |    lwz STR:CARG1, 4(BASE)
2230  |  blt ->fff_fallback
2231  |  checkstr CARG3
2232  |   lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
2233  |  bne ->fff_fallback
2234  |  lwz CARG3, STR:CARG1->len
2235  |   la CARG1, #STR(STR:CARG1)
2236  |   lp CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
2237  |   li TMP2, 0
2238  |  cmplw TMP1, CARG3
2239  |   subi TMP3, CARG3, 1
2240  |  blt ->fff_fallback
2241  |1:  // Reverse string copy.
2242  |  cmpwi TMP3, 0
2243  |   lbzx TMP1, CARG1, TMP2
2244  |  blty ->fff_newstr
2245  |   stbx TMP1, CARG2, TMP3
2246  |  subi TMP3, TMP3, 1
2247  |  addi TMP2, TMP2, 1
2248  |  b <1
2249  |
2250  |.macro ffstring_case, name, lo
2251  |  .ffunc name
2252  |  ffgccheck
2253  |  cmplwi NARGS8:RC, 8
2254  |   lwz CARG3, 0(BASE)
2255  |    lwz STR:CARG1, 4(BASE)
2256  |  blt ->fff_fallback
2257  |  checkstr CARG3
2258  |   lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
2259  |  bne ->fff_fallback
2260  |  lwz CARG3, STR:CARG1->len
2261  |   la CARG1, #STR(STR:CARG1)
2262  |   lp CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
2263  |  cmplw TMP1, CARG3
2264  |   li TMP2, 0
2265  |  blt ->fff_fallback
2266  |1:  // ASCII case conversion.
2267  |  cmplw TMP2, CARG3
2268  |   lbzx TMP1, CARG1, TMP2
2269  |  bgey ->fff_newstr
2270  |   subi TMP0, TMP1, lo
2271  |    xori TMP3, TMP1, 0x20
2272  |   addic TMP0, TMP0, -26
2273  |   subfe TMP3, TMP3, TMP3
2274  |   rlwinm TMP3, TMP3, 0, 26, 26	// x &= 0x20.
2275  |   xor TMP1, TMP1, TMP3
2276  |   stbx TMP1, CARG2, TMP2
2277  |  addi TMP2, TMP2, 1
2278  |  b <1
2279  |.endmacro
2280  |
2281  |ffstring_case string_lower, 65
2282  |ffstring_case string_upper, 97
2283  |
2284  |//-- Table library ------------------------------------------------------
2285  |
2286  |.ffunc_1 table_getn
2287  |  checktab CARG3; bne ->fff_fallback
2288  |  bl extern lj_tab_len		// (GCtab *t)
2289  |  // Returns uint32_t (but less than 2^31).
2290  |  b ->fff_resi
2291  |
2292  |//-- Bit library --------------------------------------------------------
2293  |
2294  |.macro .ffunc_bit, name
2295  |.if DUALNUM
2296  |  .ffunc_1 bit_..name
2297  |  checknum CARG3; bnel ->fff_tobit_fb
2298  |.else
2299  |  .ffunc_n bit_..name
2300  |  fadd FARG1, FARG1, TOBIT
2301  |  stfd FARG1, TMPD
2302  |  lwz CARG1, TMPD_LO
2303  |.endif
2304  |.endmacro
2305  |
2306  |.macro .ffunc_bit_op, name, ins
2307  |  .ffunc_bit name
2308  |  addi TMP1, BASE, 8
2309  |  add TMP2, BASE, NARGS8:RC
2310  |1:
2311  |  lwz CARG4, 0(TMP1)
2312  |   cmplw cr1, TMP1, TMP2
2313  |.if DUALNUM
2314  |  lwz CARG2, 4(TMP1)
2315  |.else
2316  |  lfd FARG1, 0(TMP1)
2317  |.endif
2318  |   bgey cr1, ->fff_resi
2319  |  checknum CARG4
2320  |.if DUALNUM
2321  |  bnel ->fff_bitop_fb
2322  |.else
2323  |  fadd FARG1, FARG1, TOBIT
2324  |  bge ->fff_fallback
2325  |  stfd FARG1, TMPD
2326  |  lwz CARG2, TMPD_LO
2327  |.endif
2328  |  ins CARG1, CARG1, CARG2
2329  |   addi TMP1, TMP1, 8
2330  |  b <1
2331  |.endmacro
2332  |
2333  |.ffunc_bit_op band, and
2334  |.ffunc_bit_op bor, or
2335  |.ffunc_bit_op bxor, xor
2336  |
2337  |.ffunc_bit bswap
2338  |  rotlwi TMP0, CARG1, 8
2339  |  rlwimi TMP0, CARG1, 24, 0, 7
2340  |  rlwimi TMP0, CARG1, 24, 16, 23
2341  |  mr CRET1, TMP0
2342  |  b ->fff_resi
2343  |
2344  |.ffunc_bit bnot
2345  |  not CRET1, CARG1
2346  |  b ->fff_resi
2347  |
2348  |.macro .ffunc_bit_sh, name, ins, shmod
2349  |.if DUALNUM
2350  |  .ffunc_2 bit_..name
2351  |  checknum CARG3; bnel ->fff_tobit_fb
2352  |  // Note: no inline conversion from number for 2nd argument!
2353  |  checknum CARG4; bne ->fff_fallback
2354  |.else
2355  |  .ffunc_nn bit_..name
2356  |  fadd FARG1, FARG1, TOBIT
2357  |  fadd FARG2, FARG2, TOBIT
2358  |  stfd FARG1, TMPD
2359  |  lwz CARG1, TMPD_LO
2360  |  stfd FARG2, TMPD
2361  |  lwz CARG2, TMPD_LO
2362  |.endif
2363  |.if shmod == 1
2364  |  rlwinm CARG2, CARG2, 0, 27, 31
2365  |.elif shmod == 2
2366  |  neg CARG2, CARG2
2367  |.endif
2368  |  ins CRET1, CARG1, CARG2
2369  |  b ->fff_resi
2370  |.endmacro
2371  |
2372  |.ffunc_bit_sh lshift, slw, 1
2373  |.ffunc_bit_sh rshift, srw, 1
2374  |.ffunc_bit_sh arshift, sraw, 1
2375  |.ffunc_bit_sh rol, rotlw, 0
2376  |.ffunc_bit_sh ror, rotlw, 2
2377  |
2378  |.ffunc_bit tobit
2379  |.if DUALNUM
2380  |  b ->fff_resi
2381  |.else
2382  |->fff_resi:
2383  |  tonum_i FARG1, CRET1
2384  |.endif
2385  |->fff_resn:
2386  |  lwz PC, FRAME_PC(BASE)
2387  |  la RA, -8(BASE)
2388  |  stfd FARG1, -8(BASE)
2389  |  b ->fff_res1
2390  |
2391  |// Fallback FP number to bit conversion.
2392  |->fff_tobit_fb:
2393  |.if DUALNUM
2394  |  lfd FARG1, 0(BASE)
2395  |  bgt ->fff_fallback
2396  |  fadd FARG1, FARG1, TOBIT
2397  |  stfd FARG1, TMPD
2398  |  lwz CARG1, TMPD_LO
2399  |  blr
2400  |.endif
2401  |->fff_bitop_fb:
2402  |.if DUALNUM
2403  |  lfd FARG1, 0(TMP1)
2404  |  bgt ->fff_fallback
2405  |  fadd FARG1, FARG1, TOBIT
2406  |  stfd FARG1, TMPD
2407  |  lwz CARG2, TMPD_LO
2408  |  blr
2409  |.endif
2410  |
2411  |//-----------------------------------------------------------------------
2412  |
2413  |->fff_fallback:			// Call fast function fallback handler.
2414  |  // BASE = new base, RB = CFUNC, RC = nargs*8
2415  |  lp TMP3, CFUNC:RB->f
2416  |    add TMP1, BASE, NARGS8:RC
2417  |   lwz PC, FRAME_PC(BASE)		// Fallback may overwrite PC.
2418  |    addi TMP0, TMP1, 8*LUA_MINSTACK
2419  |     lwz TMP2, L->maxstack
2420  |   stw PC, SAVE_PC			// Redundant (but a defined value).
2421  |  .toc lp TMP3, 0(TMP3)
2422  |  cmplw TMP0, TMP2
2423  |     stp BASE, L->base
2424  |    stp TMP1, L->top
2425  |   mr CARG1, L
2426  |  bgt >5				// Need to grow stack.
2427  |  mtctr TMP3
2428  |  bctrl				// (lua_State *L)
2429  |  // Either throws an error, or recovers and returns -1, 0 or nresults+1.
2430  |  lp BASE, L->base
2431  |  cmpwi CRET1, 0
2432  |   slwi RD, CRET1, 3
2433  |   la RA, -8(BASE)
2434  |  bgt ->fff_res			// Returned nresults+1?
2435  |1:  // Returned 0 or -1: retry fast path.
2436  |  lp TMP0, L->top
2437  |   lwz LFUNC:RB, FRAME_FUNC(BASE)
2438  |  sub NARGS8:RC, TMP0, BASE
2439  |  bne ->vm_call_tail			// Returned -1?
2440  |  ins_callt				// Returned 0: retry fast path.
2441  |
2442  |// Reconstruct previous base for vmeta_call during tailcall.
2443  |->vm_call_tail:
2444  |  andix. TMP0, PC, FRAME_TYPE
2445  |   rlwinm TMP1, PC, 0, 0, 28
2446  |  bne >3
2447  |  lwz INS, -4(PC)
2448  |  decode_RA8 TMP1, INS
2449  |  addi TMP1, TMP1, 8
2450  |3:
2451  |  sub TMP2, BASE, TMP1
2452  |  b ->vm_call_dispatch		// Resolve again for tailcall.
2453  |
2454  |5:  // Grow stack for fallback handler.
2455  |  li CARG2, LUA_MINSTACK
2456  |  bl extern lj_state_growstack	// (lua_State *L, int n)
2457  |  lp BASE, L->base
2458  |  cmpw TMP0, TMP0			// Set 4*cr0+eq to force retry.
2459  |  b <1
2460  |
2461  |->fff_gcstep:			// Call GC step function.
2462  |  // BASE = new base, RC = nargs*8
2463  |  mflr SAVE0
2464  |   stp BASE, L->base
2465  |  add TMP0, BASE, NARGS8:RC
2466  |   stw PC, SAVE_PC			// Redundant (but a defined value).
2467  |  stp TMP0, L->top
2468  |  mr CARG1, L
2469  |  bl extern lj_gc_step		// (lua_State *L)
2470  |   lp BASE, L->base
2471  |  mtlr SAVE0
2472  |    lp TMP0, L->top
2473  |   sub NARGS8:RC, TMP0, BASE
2474  |   lwz CFUNC:RB, FRAME_FUNC(BASE)
2475  |  blr
2476  |
2477  |//-----------------------------------------------------------------------
2478  |//-- Special dispatch targets -------------------------------------------
2479  |//-----------------------------------------------------------------------
2480  |
2481  |->vm_record:				// Dispatch target for recording phase.
2482  |.if JIT
2483  |  lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2484  |  andix. TMP0, TMP3, HOOK_VMEVENT	// No recording while in vmevent.
2485  |  bne >5
2486  |  // Decrement the hookcount for consistency, but always do the call.
2487  |   lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2488  |  andix. TMP0, TMP3, HOOK_ACTIVE
2489  |  bne >1
2490  |   subi TMP2, TMP2, 1
2491  |  andi. TMP0, TMP3, LUA_MASKLINE|LUA_MASKCOUNT
2492  |  beqy >1
2493  |   stw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2494  |  b >1
2495  |.endif
2496  |
2497  |->vm_rethook:			// Dispatch target for return hooks.
2498  |  lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2499  |  andix. TMP0, TMP3, HOOK_ACTIVE	// Hook already active?
2500  |  beq >1
2501  |5:  // Re-dispatch to static ins.
2502  |  addi TMP1, TMP1, GG_DISP2STATIC	// Assumes decode_OPP TMP1, INS.
2503  |  lpx TMP0, DISPATCH, TMP1
2504  |  mtctr TMP0
2505  |  bctr
2506  |
2507  |->vm_inshook:			// Dispatch target for instr/line hooks.
2508  |  lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2509  |  lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2510  |  andix. TMP0, TMP3, HOOK_ACTIVE	// Hook already active?
2511  |   rlwinm TMP0, TMP3, 31-LUA_HOOKLINE, 31, 0
2512  |  bne <5
2513  |
2514  |   cmpwi cr1, TMP0, 0
2515  |  addic. TMP2, TMP2, -1
2516  |   beq cr1, <5
2517  |  stw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2518  |  beq >1
2519  |   bge cr1, <5
2520  |1:
2521  |  mr CARG1, L
2522  |   stw MULTRES, SAVE_MULTRES
2523  |  mr CARG2, PC
2524  |   stp BASE, L->base
2525  |  // SAVE_PC must hold the _previous_ PC. The callee updates it with PC.
2526  |  bl extern lj_dispatch_ins		// (lua_State *L, const BCIns *pc)
2527  |3:
2528  |  lp BASE, L->base
2529  |4:  // Re-dispatch to static ins.
2530  |  lwz INS, -4(PC)
2531  |  decode_OPP TMP1, INS
2532  |   decode_RB8 RB, INS
2533  |  addi TMP1, TMP1, GG_DISP2STATIC
2534  |   decode_RD8 RD, INS
2535  |  lpx TMP0, DISPATCH, TMP1
2536  |   decode_RA8 RA, INS
2537  |   decode_RC8 RC, INS
2538  |  mtctr TMP0
2539  |  bctr
2540  |
2541  |->cont_hook:				// Continue from hook yield.
2542  |  addi PC, PC, 4
2543  |  lwz MULTRES, -20(RB)		// Restore MULTRES for *M ins.
2544  |  b <4
2545  |
2546  |->vm_hotloop:			// Hot loop counter underflow.
2547  |.if JIT
2548  |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
2549  |   addi CARG1, DISPATCH, GG_DISP2J
2550  |   stw PC, SAVE_PC
2551  |  lwz TMP1, LFUNC:TMP1->pc
2552  |   mr CARG2, PC
2553  |   stw L, DISPATCH_J(L)(DISPATCH)
2554  |  lbz TMP1, PC2PROTO(framesize)(TMP1)
2555  |   stp BASE, L->base
2556  |  slwi TMP1, TMP1, 3
2557  |  add TMP1, BASE, TMP1
2558  |  stp TMP1, L->top
2559  |  bl extern lj_trace_hot		// (jit_State *J, const BCIns *pc)
2560  |  b <3
2561  |.endif
2562  |
2563  |->vm_callhook:			// Dispatch target for call hooks.
2564  |  mr CARG2, PC
2565  |.if JIT
2566  |  b >1
2567  |.endif
2568  |
2569  |->vm_hotcall:			// Hot call counter underflow.
2570  |.if JIT
2571  |  ori CARG2, PC, 1
2572  |1:
2573  |.endif
2574  |  add TMP0, BASE, RC
2575  |   stw PC, SAVE_PC
2576  |  mr CARG1, L
2577  |   stp BASE, L->base
2578  |  sub RA, RA, BASE
2579  |   stp TMP0, L->top
2580  |  bl extern lj_dispatch_call		// (lua_State *L, const BCIns *pc)
2581  |  // Returns ASMFunction.
2582  |  lp BASE, L->base
2583  |   lp TMP0, L->top
2584  |   stw ZERO, SAVE_PC			// Invalidate for subsequent line hook.
2585  |  sub NARGS8:RC, TMP0, BASE
2586  |  add RA, BASE, RA
2587  |  lwz LFUNC:RB, FRAME_FUNC(BASE)
2588  |  lwz INS, -4(PC)
2589  |  mtctr CRET1
2590  |  bctr
2591  |
2592  |//-----------------------------------------------------------------------
2593  |//-- Trace exit handler -------------------------------------------------
2594  |//-----------------------------------------------------------------------
2595  |
2596  |.macro savex_, a, b, c, d
2597  |  stfd f..a, 16+a*8(sp)
2598  |  stfd f..b, 16+b*8(sp)
2599  |  stfd f..c, 16+c*8(sp)
2600  |  stfd f..d, 16+d*8(sp)
2601  |.endmacro
2602  |
2603  |->vm_exit_handler:
2604  |.if JIT
2605  |  addi sp, sp, -(16+32*8+32*4)
2606  |  stmw r2, 16+32*8+2*4(sp)
2607  |    addi DISPATCH, JGL, -GG_DISP2G-32768
2608  |    li CARG2, ~LJ_VMST_EXIT
2609  |   lwz CARG1, 16+32*8+32*4(sp)	// Get stack chain.
2610  |    stw CARG2, DISPATCH_GL(vmstate)(DISPATCH)
2611  |  savex_ 0,1,2,3
2612  |   stw CARG1, 0(sp)			// Store extended stack chain.
2613  |   clrso TMP1
2614  |  savex_ 4,5,6,7
2615  |   addi CARG2, sp, 16+32*8+32*4	// Recompute original value of sp.
2616  |  savex_ 8,9,10,11
2617  |   stw CARG2, 16+32*8+1*4(sp)	// Store sp in RID_SP.
2618  |  savex_ 12,13,14,15
2619  |   mflr CARG3
2620  |   li TMP1, 0
2621  |  savex_ 16,17,18,19
2622  |   stw TMP1, 16+32*8+0*4(sp)		// Clear RID_TMP.
2623  |  savex_ 20,21,22,23
2624  |   lhz CARG4, 2(CARG3)		// Load trace number.
2625  |  savex_ 24,25,26,27
2626  |  lwz L, DISPATCH_GL(jit_L)(DISPATCH)
2627  |  savex_ 28,29,30,31
2628  |   sub CARG3, TMP0, CARG3		// Compute exit number.
2629  |  lp BASE, DISPATCH_GL(jit_base)(DISPATCH)
2630  |   srwi CARG3, CARG3, 2
2631  |  stw L, DISPATCH_J(L)(DISPATCH)
2632  |   subi CARG3, CARG3, 2
2633  |  stw TMP1, DISPATCH_GL(jit_L)(DISPATCH)
2634  |   stw CARG4, DISPATCH_J(parent)(DISPATCH)
2635  |  stp BASE, L->base
2636  |  addi CARG1, DISPATCH, GG_DISP2J
2637  |   stw CARG3, DISPATCH_J(exitno)(DISPATCH)
2638  |  addi CARG2, sp, 16
2639  |  bl extern lj_trace_exit		// (jit_State *J, ExitState *ex)
2640  |  // Returns MULTRES (unscaled) or negated error code.
2641  |  lp TMP1, L->cframe
2642  |  lwz TMP2, 0(sp)
2643  |   lp BASE, L->base
2644  |.if GPR64
2645  |  rldicr sp, TMP1, 0, 61
2646  |.else
2647  |  rlwinm sp, TMP1, 0, 0, 29
2648  |.endif
2649  |   lwz PC, SAVE_PC			// Get SAVE_PC.
2650  |  stw TMP2, 0(sp)
2651  |  stw L, SAVE_L			// Set SAVE_L (on-trace resume/yield).
2652  |  b >1
2653  |.endif
2654  |->vm_exit_interp:
2655  |.if JIT
2656  |  // CARG1 = MULTRES or negated error code, BASE, PC and JGL set.
2657  |  lwz L, SAVE_L
2658  |  addi DISPATCH, JGL, -GG_DISP2G-32768
2659  |1:
2660  |  cmpwi CARG1, 0
2661  |  blt >3				// Check for error from exit.
2662  |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
2663  |   slwi MULTRES, CARG1, 3
2664  |    li TMP2, 0
2665  |   stw MULTRES, SAVE_MULTRES
2666  |  lwz TMP1, LFUNC:TMP1->pc
2667  |    stw TMP2, DISPATCH_GL(jit_L)(DISPATCH)
2668  |  lwz KBASE, PC2PROTO(k)(TMP1)
2669  |  // Setup type comparison constants.
2670  |  li TISNUM, LJ_TISNUM
2671  |  lus TMP3, 0x59c0			// TOBIT = 2^52 + 2^51 (float).
2672  |  stw TMP3, TMPD
2673  |  li ZERO, 0
2674  |  ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
2675  |  lfs TOBIT, TMPD
2676  |  stw TMP3, TMPD
2677  |  lus TMP0, 0x4338			// Hiword of 2^52 + 2^51 (double)
2678  |    li TISNIL, LJ_TNIL
2679  |  stw TMP0, TONUM_HI
2680  |  lfs TONUM, TMPD
2681  |  // Modified copy of ins_next which handles function header dispatch, too.
2682  |  lwz INS, 0(PC)
2683  |   addi PC, PC, 4
2684  |    // Assumes TISNIL == ~LJ_VMST_INTERP == -1.
2685  |    stw TISNIL, DISPATCH_GL(vmstate)(DISPATCH)
2686  |  decode_OPP TMP1, INS
2687  |   decode_RA8 RA, INS
2688  |  lpx TMP0, DISPATCH, TMP1
2689  |  mtctr TMP0
2690  |  cmplwi TMP1, BC_FUNCF*4		// Function header?
2691  |  bge >2
2692  |   decode_RB8 RB, INS
2693  |   decode_RD8 RD, INS
2694  |   decode_RC8 RC, INS
2695  |  bctr
2696  |2:
2697  |   subi RC, MULTRES, 8
2698  |   add RA, RA, BASE
2699  |  bctr
2700  |
2701  |3:  // Rethrow error from the right C frame.
2702  |  neg CARG2, CARG1
2703  |  mr CARG1, L
2704  |  bl extern lj_err_throw		// (lua_State *L, int errcode)
2705  |.endif
2706  |
2707  |//-----------------------------------------------------------------------
2708  |//-- Math helper functions ----------------------------------------------
2709  |//-----------------------------------------------------------------------
2710  |
2711  |// NYI: Use internal implementations of floor, ceil, trunc.
2712  |
2713  |->vm_modi:
2714  |  divwo. TMP0, CARG1, CARG2
2715  |  bso >1
2716  |.if GPR64
2717  |   xor CARG3, CARG1, CARG2
2718  |   cmpwi CARG3, 0
2719  |.else
2720  |   xor. CARG3, CARG1, CARG2
2721  |.endif
2722  |  mullw TMP0, TMP0, CARG2
2723  |  sub CARG1, CARG1, TMP0
2724  |   bgelr
2725  |  cmpwi CARG1, 0; beqlr
2726  |  add CARG1, CARG1, CARG2
2727  |  blr
2728  |1:
2729  |  cmpwi CARG2, 0
2730  |   li CARG1, 0
2731  |  beqlr
2732  |  clrso TMP0			// Clear SO for -2147483648 % -1 and return 0.
2733  |  blr
2734  |
2735  |//-----------------------------------------------------------------------
2736  |//-- Miscellaneous functions --------------------------------------------
2737  |//-----------------------------------------------------------------------
2738  |
2739  |// void lj_vm_cachesync(void *start, void *end)
2740  |// Flush D-Cache and invalidate I-Cache. Assumes 32 byte cache line size.
2741  |// This is a good lower bound, except for very ancient PPC models.
2742  |->vm_cachesync:
2743  |.if JIT or FFI
2744  |  // Compute start of first cache line and number of cache lines.
2745  |  rlwinm CARG1, CARG1, 0, 0, 26
2746  |  sub CARG2, CARG2, CARG1
2747  |  addi CARG2, CARG2, 31
2748  |  rlwinm. CARG2, CARG2, 27, 5, 31
2749  |  beqlr
2750  |  mtctr CARG2
2751  |  mr CARG3, CARG1
2752  |1:  // Flush D-Cache.
2753  |  dcbst r0, CARG1
2754  |  addi CARG1, CARG1, 32
2755  |  bdnz <1
2756  |  sync
2757  |  mtctr CARG2
2758  |1:  // Invalidate I-Cache.
2759  |  icbi r0, CARG3
2760  |  addi CARG3, CARG3, 32
2761  |  bdnz <1
2762  |  isync
2763  |  blr
2764  |.endif
2765  |
2766  |//-----------------------------------------------------------------------
2767  |//-- FFI helper functions -----------------------------------------------
2768  |//-----------------------------------------------------------------------
2769  |
2770  |// Handler for callback functions. Callback slot number in r11, g in r12.
2771  |->vm_ffi_callback:
2772  |.if FFI
2773  |.type CTSTATE, CTState, PC
2774  |  saveregs
2775  |  lwz CTSTATE, GL:r12->ctype_state
2776  |   addi DISPATCH, r12, GG_G2DISP
2777  |  stw r11, CTSTATE->cb.slot
2778  |  stw r3, CTSTATE->cb.gpr[0]
2779  |   stfd f1, CTSTATE->cb.fpr[0]
2780  |  stw r4, CTSTATE->cb.gpr[1]
2781  |   stfd f2, CTSTATE->cb.fpr[1]
2782  |  stw r5, CTSTATE->cb.gpr[2]
2783  |   stfd f3, CTSTATE->cb.fpr[2]
2784  |  stw r6, CTSTATE->cb.gpr[3]
2785  |   stfd f4, CTSTATE->cb.fpr[3]
2786  |  stw r7, CTSTATE->cb.gpr[4]
2787  |   stfd f5, CTSTATE->cb.fpr[4]
2788  |  stw r8, CTSTATE->cb.gpr[5]
2789  |   stfd f6, CTSTATE->cb.fpr[5]
2790  |  stw r9, CTSTATE->cb.gpr[6]
2791  |   stfd f7, CTSTATE->cb.fpr[6]
2792  |  stw r10, CTSTATE->cb.gpr[7]
2793  |   stfd f8, CTSTATE->cb.fpr[7]
2794  |  addi TMP0, sp, CFRAME_SPACE+8
2795  |  stw TMP0, CTSTATE->cb.stack
2796  |   mr CARG1, CTSTATE
2797  |  stw CTSTATE, SAVE_PC		// Any value outside of bytecode is ok.
2798  |   mr CARG2, sp
2799  |  bl extern lj_ccallback_enter	// (CTState *cts, void *cf)
2800  |  // Returns lua_State *.
2801  |  lp BASE, L:CRET1->base
2802  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
2803  |  lp RC, L:CRET1->top
2804  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
2805  |     li ZERO, 0
2806  |   mr L, CRET1
2807  |     stw TMP3, TMPD
2808  |     lus TMP0, 0x4338		// Hiword of 2^52 + 2^51 (double)
2809  |  lwz LFUNC:RB, FRAME_FUNC(BASE)
2810  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
2811  |     stw TMP0, TONUM_HI
2812  |     li TISNIL, LJ_TNIL
2813  |    li_vmstate INTERP
2814  |     lfs TOBIT, TMPD
2815  |     stw TMP3, TMPD
2816  |  sub RC, RC, BASE
2817  |    st_vmstate
2818  |     lfs TONUM, TMPD
2819  |  ins_callt
2820  |.endif
2821  |
2822  |->cont_ffi_callback:			// Return from FFI callback.
2823  |.if FFI
2824  |  lwz CTSTATE, DISPATCH_GL(ctype_state)(DISPATCH)
2825  |   stp BASE, L->base
2826  |   stp RB, L->top
2827  |  stp L, CTSTATE->L
2828  |  mr CARG1, CTSTATE
2829  |  mr CARG2, RA
2830  |  bl extern lj_ccallback_leave	// (CTState *cts, TValue *o)
2831  |  lwz CRET1, CTSTATE->cb.gpr[0]
2832  |  lfd FARG1, CTSTATE->cb.fpr[0]
2833  |  lwz CRET2, CTSTATE->cb.gpr[1]
2834  |  b ->vm_leave_unw
2835  |.endif
2836  |
2837  |->vm_ffi_call:			// Call C function via FFI.
2838  |  // Caveat: needs special frame unwinding, see below.
2839  |.if FFI
2840  |  .type CCSTATE, CCallState, CARG1
2841  |  lwz TMP1, CCSTATE->spadj
2842  |    mflr TMP0
2843  |   lbz CARG2, CCSTATE->nsp
2844  |   lbz CARG3, CCSTATE->nfpr
2845  |  neg TMP1, TMP1
2846  |    stw TMP0, 4(sp)
2847  |   cmpwi cr1, CARG3, 0
2848  |  mr TMP2, sp
2849  |   addic. CARG2, CARG2, -1
2850  |  stwux sp, sp, TMP1
2851  |   crnot 4*cr1+eq, 4*cr1+eq		// For vararg calls.
2852  |  stw r14, -4(TMP2)
2853  |  stw CCSTATE, -8(TMP2)
2854  |  mr r14, TMP2
2855  |  la TMP1, CCSTATE->stack
2856  |   slwi CARG2, CARG2, 2
2857  |   blty >2
2858  |  la TMP2, 8(sp)
2859  |1:
2860  |  lwzx TMP0, TMP1, CARG2
2861  |  stwx TMP0, TMP2, CARG2
2862  |   addic. CARG2, CARG2, -4
2863  |  bge <1
2864  |2:
2865  |  bney cr1, >3
2866  |  lfd f1, CCSTATE->fpr[0]
2867  |  lfd f2, CCSTATE->fpr[1]
2868  |  lfd f3, CCSTATE->fpr[2]
2869  |  lfd f4, CCSTATE->fpr[3]
2870  |  lfd f5, CCSTATE->fpr[4]
2871  |  lfd f6, CCSTATE->fpr[5]
2872  |  lfd f7, CCSTATE->fpr[6]
2873  |  lfd f8, CCSTATE->fpr[7]
2874  |3:
2875  |   lp TMP0, CCSTATE->func
2876  |  lwz CARG2, CCSTATE->gpr[1]
2877  |  lwz CARG3, CCSTATE->gpr[2]
2878  |  lwz CARG4, CCSTATE->gpr[3]
2879  |  lwz CARG5, CCSTATE->gpr[4]
2880  |   mtctr TMP0
2881  |  lwz r8, CCSTATE->gpr[5]
2882  |  lwz r9, CCSTATE->gpr[6]
2883  |  lwz r10, CCSTATE->gpr[7]
2884  |  lwz CARG1, CCSTATE->gpr[0]		// Do this last, since CCSTATE is CARG1.
2885  |   bctrl
2886  |  lwz CCSTATE:TMP1, -8(r14)
2887  |  lwz TMP2, -4(r14)
2888  |   lwz TMP0, 4(r14)
2889  |  stw CARG1, CCSTATE:TMP1->gpr[0]
2890  |  stfd FARG1, CCSTATE:TMP1->fpr[0]
2891  |  stw CARG2, CCSTATE:TMP1->gpr[1]
2892  |   mtlr TMP0
2893  |  stw CARG3, CCSTATE:TMP1->gpr[2]
2894  |   mr sp, r14
2895  |  stw CARG4, CCSTATE:TMP1->gpr[3]
2896  |   mr r14, TMP2
2897  |  blr
2898  |.endif
2899  |// Note: vm_ffi_call must be the last function in this object file!
2900  |
2901  |//-----------------------------------------------------------------------
2902}
2903
2904/* Generate the code for a single instruction. */
2905static void build_ins(BuildCtx *ctx, BCOp op, int defop)
2906{
2907  int vk = 0;
2908  |=>defop:
2909
2910  switch (op) {
2911
2912  /* -- Comparison ops ---------------------------------------------------- */
2913
2914  /* Remember: all ops branch for a true comparison, fall through otherwise. */
2915
2916  case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT:
2917    |  // RA = src1*8, RD = src2*8, JMP with RD = target
2918    |.if DUALNUM
2919    |  lwzux TMP0, RA, BASE
2920    |    addi PC, PC, 4
2921    |   lwz CARG2, 4(RA)
2922    |  lwzux TMP1, RD, BASE
2923    |    lwz TMP2, -4(PC)
2924    |  checknum cr0, TMP0
2925    |   lwz CARG3, 4(RD)
2926    |    decode_RD4 TMP2, TMP2
2927    |  checknum cr1, TMP1
2928    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
2929    |  bne cr0, >7
2930    |  bne cr1, >8
2931    |   cmpw CARG2, CARG3
2932    if (op == BC_ISLT) {
2933      |  bge >2
2934    } else if (op == BC_ISGE) {
2935      |  blt >2
2936    } else if (op == BC_ISLE) {
2937      |  bgt >2
2938    } else {
2939      |  ble >2
2940    }
2941    |1:
2942    |  add PC, PC, TMP2
2943    |2:
2944    |  ins_next
2945    |
2946    |7:  // RA is not an integer.
2947    |  bgt cr0, ->vmeta_comp
2948    |  // RA is a number.
2949    |   lfd f0, 0(RA)
2950    |  bgt cr1, ->vmeta_comp
2951    |  blt cr1, >4
2952    |  // RA is a number, RD is an integer.
2953    |  tonum_i f1, CARG3
2954    |  b >5
2955    |
2956    |8: // RA is an integer, RD is not an integer.
2957    |  bgt cr1, ->vmeta_comp
2958    |  // RA is an integer, RD is a number.
2959    |  tonum_i f0, CARG2
2960    |4:
2961    |  lfd f1, 0(RD)
2962    |5:
2963    |  fcmpu cr0, f0, f1
2964    if (op == BC_ISLT) {
2965      |  bge <2
2966    } else if (op == BC_ISGE) {
2967      |  blt <2
2968    } else if (op == BC_ISLE) {
2969      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
2970      |  bge <2
2971    } else {
2972      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
2973      |  blt <2
2974    }
2975    |  b <1
2976    |.else
2977    |  lwzx TMP0, BASE, RA
2978    |    addi PC, PC, 4
2979    |   lfdx f0, BASE, RA
2980    |  lwzx TMP1, BASE, RD
2981    |  checknum cr0, TMP0
2982    |    lwz TMP2, -4(PC)
2983    |   lfdx f1, BASE, RD
2984    |  checknum cr1, TMP1
2985    |    decode_RD4 TMP2, TMP2
2986    |  bge cr0, ->vmeta_comp
2987    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
2988    |  bge cr1, ->vmeta_comp
2989    |  fcmpu cr0, f0, f1
2990    if (op == BC_ISLT) {
2991      |  bge >1
2992    } else if (op == BC_ISGE) {
2993      |  blt >1
2994    } else if (op == BC_ISLE) {
2995      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
2996      |  bge >1
2997    } else {
2998      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
2999      |  blt >1
3000    }
3001    |  add PC, PC, TMP2
3002    |1:
3003    |  ins_next
3004    |.endif
3005    break;
3006
3007  case BC_ISEQV: case BC_ISNEV:
3008    vk = op == BC_ISEQV;
3009    |  // RA = src1*8, RD = src2*8, JMP with RD = target
3010    |.if DUALNUM
3011    |  lwzux TMP0, RA, BASE
3012    |    addi PC, PC, 4
3013    |   lwz CARG2, 4(RA)
3014    |  lwzux TMP1, RD, BASE
3015    |  checknum cr0, TMP0
3016    |    lwz TMP2, -4(PC)
3017    |  checknum cr1, TMP1
3018    |    decode_RD4 TMP2, TMP2
3019    |   lwz CARG3, 4(RD)
3020    |  cror 4*cr7+gt, 4*cr0+gt, 4*cr1+gt
3021    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3022    if (vk) {
3023      |  ble cr7, ->BC_ISEQN_Z
3024    } else {
3025      |  ble cr7, ->BC_ISNEN_Z
3026    }
3027    |.else
3028    |  lwzux TMP0, RA, BASE
3029    |   lwz TMP2, 0(PC)
3030    |    lfd f0, 0(RA)
3031    |   addi PC, PC, 4
3032    |  lwzux TMP1, RD, BASE
3033    |  checknum cr0, TMP0
3034    |   decode_RD4 TMP2, TMP2
3035    |    lfd f1, 0(RD)
3036    |  checknum cr1, TMP1
3037    |   addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3038    |  bge cr0, >5
3039    |  bge cr1, >5
3040    |  fcmpu cr0, f0, f1
3041    if (vk) {
3042      |  bne >1
3043      |  add PC, PC, TMP2
3044    } else {
3045      |  beq >1
3046      |  add PC, PC, TMP2
3047    }
3048    |1:
3049    |  ins_next
3050    |.endif
3051    |5:  // Either or both types are not numbers.
3052    |.if not DUALNUM
3053    |    lwz CARG2, 4(RA)
3054    |    lwz CARG3, 4(RD)
3055    |.endif
3056    |.if FFI
3057    |  cmpwi cr7, TMP0, LJ_TCDATA
3058    |  cmpwi cr5, TMP1, LJ_TCDATA
3059    |.endif
3060    |   not TMP3, TMP0
3061    |  cmplw TMP0, TMP1
3062    |   cmplwi cr1, TMP3, ~LJ_TISPRI		// Primitive?
3063    |.if FFI
3064    |  cror 4*cr7+eq, 4*cr7+eq, 4*cr5+eq
3065    |.endif
3066    |   cmplwi cr6, TMP3, ~LJ_TISTABUD		// Table or userdata?
3067    |.if FFI
3068    |  beq cr7, ->vmeta_equal_cd
3069    |.endif
3070    |    cmplw cr5, CARG2, CARG3
3071    |  crandc 4*cr0+gt, 4*cr0+eq, 4*cr1+gt	// 2: Same type and primitive.
3072    |  crorc 4*cr0+lt, 4*cr5+eq, 4*cr0+eq	// 1: Same tv or different type.
3073    |  crand 4*cr0+eq, 4*cr0+eq, 4*cr5+eq	// 0: Same type and same tv.
3074    |   mr SAVE0, PC
3075    |  cror 4*cr0+eq, 4*cr0+eq, 4*cr0+gt	// 0 or 2.
3076    |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+gt	// 1 or 2.
3077    if (vk) {
3078      |  bne cr0, >6
3079      |  add PC, PC, TMP2
3080      |6:
3081    } else {
3082      |  beq cr0, >6
3083      |  add PC, PC, TMP2
3084      |6:
3085    }
3086    |.if DUALNUM
3087    |  bge cr0, >2			// Done if 1 or 2.
3088    |1:
3089    |  ins_next
3090    |2:
3091    |.else
3092    |  blt cr0, <1			// Done if 1 or 2.
3093    |.endif
3094    |  blt cr6, <1			// Done if not tab/ud.
3095    |
3096    |  // Different tables or userdatas. Need to check __eq metamethod.
3097    |  // Field metatable must be at same offset for GCtab and GCudata!
3098    |  lwz TAB:TMP2, TAB:CARG2->metatable
3099    |   li CARG4, 1-vk			// ne = 0 or 1.
3100    |  cmplwi TAB:TMP2, 0
3101    |  beq <1				// No metatable?
3102    |  lbz TMP2, TAB:TMP2->nomm
3103    |  andix. TMP2, TMP2, 1<<MM_eq
3104    |  bne <1				// Or 'no __eq' flag set?
3105    |  mr PC, SAVE0			// Restore old PC.
3106    |  b ->vmeta_equal			// Handle __eq metamethod.
3107    break;
3108
3109  case BC_ISEQS: case BC_ISNES:
3110    vk = op == BC_ISEQS;
3111    |  // RA = src*8, RD = str_const*8 (~), JMP with RD = target
3112    |  lwzux TMP0, RA, BASE
3113    |   srwi RD, RD, 1
3114    |  lwz STR:TMP3, 4(RA)
3115    |    lwz TMP2, 0(PC)
3116    |   subfic RD, RD, -4
3117    |    addi PC, PC, 4
3118    |.if FFI
3119    |  cmpwi TMP0, LJ_TCDATA
3120    |.endif
3121    |   lwzx STR:TMP1, KBASE, RD	// KBASE-4-str_const*4
3122    |  .gpr64 extsw TMP0, TMP0
3123    |  subfic TMP0, TMP0, LJ_TSTR
3124    |.if FFI
3125    |  beq ->vmeta_equal_cd
3126    |.endif
3127    |  sub TMP1, STR:TMP1, STR:TMP3
3128    |  or TMP0, TMP0, TMP1
3129    |    decode_RD4 TMP2, TMP2
3130    |  subfic TMP0, TMP0, 0
3131    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3132    |  subfe TMP1, TMP1, TMP1
3133    if (vk) {
3134      |  andc TMP2, TMP2, TMP1
3135    } else {
3136      |  and TMP2, TMP2, TMP1
3137    }
3138    |  add PC, PC, TMP2
3139    |  ins_next
3140    break;
3141
3142  case BC_ISEQN: case BC_ISNEN:
3143    vk = op == BC_ISEQN;
3144    |  // RA = src*8, RD = num_const*8, JMP with RD = target
3145    |.if DUALNUM
3146    |  lwzux TMP0, RA, BASE
3147    |    addi PC, PC, 4
3148    |   lwz CARG2, 4(RA)
3149    |  lwzux TMP1, RD, KBASE
3150    |  checknum cr0, TMP0
3151    |    lwz TMP2, -4(PC)
3152    |  checknum cr1, TMP1
3153    |    decode_RD4 TMP2, TMP2
3154    |   lwz CARG3, 4(RD)
3155    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3156    if (vk) {
3157      |->BC_ISEQN_Z:
3158    } else {
3159      |->BC_ISNEN_Z:
3160    }
3161    |  bne cr0, >7
3162    |  bne cr1, >8
3163    |   cmpw CARG2, CARG3
3164    |4:
3165    |.else
3166    if (vk) {
3167      |->BC_ISEQN_Z:  // Dummy label.
3168    } else {
3169      |->BC_ISNEN_Z:  // Dummy label.
3170    }
3171    |  lwzx TMP0, BASE, RA
3172    |    addi PC, PC, 4
3173    |   lfdx f0, BASE, RA
3174    |    lwz TMP2, -4(PC)
3175    |  lfdx f1, KBASE, RD
3176    |    decode_RD4 TMP2, TMP2
3177    |  checknum TMP0
3178    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3179    |  bge >3
3180    |  fcmpu cr0, f0, f1
3181    |.endif
3182    if (vk) {
3183      |  bne >1
3184      |  add PC, PC, TMP2
3185      |1:
3186      |.if not FFI
3187      |3:
3188      |.endif
3189    } else {
3190      |  beq >2
3191      |1:
3192      |.if not FFI
3193      |3:
3194      |.endif
3195      |  add PC, PC, TMP2
3196      |2:
3197    }
3198    |  ins_next
3199    |.if FFI
3200    |3:
3201    |  cmpwi TMP0, LJ_TCDATA
3202    |  beq ->vmeta_equal_cd
3203    |  b <1
3204    |.endif
3205    |.if DUALNUM
3206    |7:  // RA is not an integer.
3207    |  bge cr0, <3
3208    |  // RA is a number.
3209    |   lfd f0, 0(RA)
3210    |  blt cr1, >1
3211    |  // RA is a number, RD is an integer.
3212    |  tonum_i f1, CARG3
3213    |  b >2
3214    |
3215    |8: // RA is an integer, RD is a number.
3216    |  tonum_i f0, CARG2
3217    |1:
3218    |  lfd f1, 0(RD)
3219    |2:
3220    |  fcmpu cr0, f0, f1
3221    |  b <4
3222    |.endif
3223    break;
3224
3225  case BC_ISEQP: case BC_ISNEP:
3226    vk = op == BC_ISEQP;
3227    |  // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target
3228    |  lwzx TMP0, BASE, RA
3229    |   srwi TMP1, RD, 3
3230    |    lwz TMP2, 0(PC)
3231    |   not TMP1, TMP1
3232    |    addi PC, PC, 4
3233    |.if FFI
3234    |  cmpwi TMP0, LJ_TCDATA
3235    |.endif
3236    |  sub TMP0, TMP0, TMP1
3237    |.if FFI
3238    |  beq ->vmeta_equal_cd
3239    |.endif
3240    |    decode_RD4 TMP2, TMP2
3241    |  .gpr64 extsw TMP0, TMP0
3242    |  addic TMP0, TMP0, -1
3243    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3244    |  subfe TMP1, TMP1, TMP1
3245    if (vk) {
3246      |  and TMP2, TMP2, TMP1
3247    } else {
3248      |  andc TMP2, TMP2, TMP1
3249    }
3250    |  add PC, PC, TMP2
3251    |  ins_next
3252    break;
3253
3254  /* -- Unary test and copy ops ------------------------------------------- */
3255
3256  case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF:
3257    |  // RA = dst*8 or unused, RD = src*8, JMP with RD = target
3258    |  lwzx TMP0, BASE, RD
3259    |   lwz INS, 0(PC)
3260    |   addi PC, PC, 4
3261    if (op == BC_IST || op == BC_ISF) {
3262      |  .gpr64 extsw TMP0, TMP0
3263      |  subfic TMP0, TMP0, LJ_TTRUE
3264      |   decode_RD4 TMP2, INS
3265      |  subfe TMP1, TMP1, TMP1
3266      |   addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3267      if (op == BC_IST) {
3268	|  andc TMP2, TMP2, TMP1
3269      } else {
3270	|  and TMP2, TMP2, TMP1
3271      }
3272      |  add PC, PC, TMP2
3273    } else {
3274      |  li TMP1, LJ_TFALSE
3275      |   lfdx f0, BASE, RD
3276      |  cmplw TMP0, TMP1
3277      if (op == BC_ISTC) {
3278	|  bge >1
3279      } else {
3280	|  blt >1
3281      }
3282      |  addis PC, PC, -(BCBIAS_J*4 >> 16)
3283      |  decode_RD4 TMP2, INS
3284      |   stfdx f0, BASE, RA
3285      |  add PC, PC, TMP2
3286      |1:
3287    }
3288    |  ins_next
3289    break;
3290
3291  /* -- Unary ops --------------------------------------------------------- */
3292
3293  case BC_MOV:
3294    |  // RA = dst*8, RD = src*8
3295    |  ins_next1
3296    |  lfdx f0, BASE, RD
3297    |  stfdx f0, BASE, RA
3298    |  ins_next2
3299    break;
3300  case BC_NOT:
3301    |  // RA = dst*8, RD = src*8
3302    |  ins_next1
3303    |  lwzx TMP0, BASE, RD
3304    |  .gpr64 extsw TMP0, TMP0
3305    |  subfic TMP1, TMP0, LJ_TTRUE
3306    |  adde TMP0, TMP0, TMP1
3307    |  stwx TMP0, BASE, RA
3308    |  ins_next2
3309    break;
3310  case BC_UNM:
3311    |  // RA = dst*8, RD = src*8
3312    |  lwzux TMP1, RD, BASE
3313    |   lwz TMP0, 4(RD)
3314    |  checknum TMP1
3315    |.if DUALNUM
3316    |  bne >5
3317    |.if GPR64
3318    |  lus TMP2, 0x8000
3319    |  neg TMP0, TMP0
3320    |  cmplw TMP0, TMP2
3321    |  beq >4
3322    |.else
3323    |  nego. TMP0, TMP0
3324    |  bso >4
3325    |1:
3326    |.endif
3327    |  ins_next1
3328    |  stwux TISNUM, RA, BASE
3329    |   stw TMP0, 4(RA)
3330    |3:
3331    |  ins_next2
3332    |4:
3333    |.if not GPR64
3334    |  // Potential overflow.
3335    |  checkov TMP1, <1			// Ignore unrelated overflow.
3336    |.endif
3337    |  lus TMP1, 0x41e0			// 2^31.
3338    |  li TMP0, 0
3339    |  b >7
3340    |.endif
3341    |5:
3342    |  bge ->vmeta_unm
3343    |  xoris TMP1, TMP1, 0x8000
3344    |7:
3345    |  ins_next1
3346    |  stwux TMP1, RA, BASE
3347    |   stw TMP0, 4(RA)
3348    |.if DUALNUM
3349    |  b <3
3350    |.else
3351    |  ins_next2
3352    |.endif
3353    break;
3354  case BC_LEN:
3355    |  // RA = dst*8, RD = src*8
3356    |  lwzux TMP0, RD, BASE
3357    |   lwz CARG1, 4(RD)
3358    |  checkstr TMP0; bne >2
3359    |  lwz CRET1, STR:CARG1->len
3360    |1:
3361    |.if DUALNUM
3362    |  ins_next1
3363    |  stwux TISNUM, RA, BASE
3364    |   stw CRET1, 4(RA)
3365    |.else
3366    |  tonum_u f0, CRET1		// Result is a non-negative integer.
3367    |  ins_next1
3368    |  stfdx f0, BASE, RA
3369    |.endif
3370    |  ins_next2
3371    |2:
3372    |  checktab TMP0; bne ->vmeta_len
3373#if LJ_52
3374    |  lwz TAB:TMP2, TAB:CARG1->metatable
3375    |  cmplwi TAB:TMP2, 0
3376    |  bne >9
3377    |3:
3378#endif
3379    |->BC_LEN_Z:
3380    |  bl extern lj_tab_len		// (GCtab *t)
3381    |  // Returns uint32_t (but less than 2^31).
3382    |  b <1
3383#if LJ_52
3384    |9:
3385    |  lbz TMP0, TAB:TMP2->nomm
3386    |  andix. TMP0, TMP0, 1<<MM_len
3387    |  bne <3				// 'no __len' flag set: done.
3388    |  b ->vmeta_len
3389#endif
3390    break;
3391
3392  /* -- Binary ops -------------------------------------------------------- */
3393
3394    |.macro ins_arithpre
3395    |  // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8
3396    ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
3397    ||switch (vk) {
3398    ||case 0:
3399    |   lwzx TMP1, BASE, RB
3400    |   .if DUALNUM
3401    |     lwzx TMP2, KBASE, RC
3402    |   .endif
3403    |    lfdx f14, BASE, RB
3404    |    lfdx f15, KBASE, RC
3405    |   .if DUALNUM
3406    |     checknum cr0, TMP1
3407    |     checknum cr1, TMP2
3408    |     crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3409    |     bge ->vmeta_arith_vn
3410    |   .else
3411    |     checknum TMP1; bge ->vmeta_arith_vn
3412    |   .endif
3413    ||  break;
3414    ||case 1:
3415    |   lwzx TMP1, BASE, RB
3416    |   .if DUALNUM
3417    |     lwzx TMP2, KBASE, RC
3418    |   .endif
3419    |    lfdx f15, BASE, RB
3420    |    lfdx f14, KBASE, RC
3421    |   .if DUALNUM
3422    |     checknum cr0, TMP1
3423    |     checknum cr1, TMP2
3424    |     crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3425    |     bge ->vmeta_arith_nv
3426    |   .else
3427    |     checknum TMP1; bge ->vmeta_arith_nv
3428    |   .endif
3429    ||  break;
3430    ||default:
3431    |   lwzx TMP1, BASE, RB
3432    |   lwzx TMP2, BASE, RC
3433    |    lfdx f14, BASE, RB
3434    |    lfdx f15, BASE, RC
3435    |   checknum cr0, TMP1
3436    |   checknum cr1, TMP2
3437    |   crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3438    |   bge ->vmeta_arith_vv
3439    ||  break;
3440    ||}
3441    |.endmacro
3442    |
3443    |.macro ins_arithfallback, ins
3444    ||switch (vk) {
3445    ||case 0:
3446    |   ins ->vmeta_arith_vn2
3447    ||  break;
3448    ||case 1:
3449    |   ins ->vmeta_arith_nv2
3450    ||  break;
3451    ||default:
3452    |   ins ->vmeta_arith_vv2
3453    ||  break;
3454    ||}
3455    |.endmacro
3456    |
3457    |.macro intmod, a, b, c
3458    |  bl ->vm_modi
3459    |.endmacro
3460    |
3461    |.macro fpmod, a, b, c
3462    |->BC_MODVN_Z:
3463    |  fdiv FARG1, b, c
3464    |  // NYI: Use internal implementation of floor.
3465    |  blex floor			// floor(b/c)
3466    |  fmul a, FARG1, c
3467    |  fsub a, b, a			// b - floor(b/c)*c
3468    |.endmacro
3469    |
3470    |.macro ins_arithfp, fpins
3471    |  ins_arithpre
3472    |.if "fpins" == "fpmod_"
3473    |  b ->BC_MODVN_Z			// Avoid 3 copies. It's slow anyway.
3474    |.else
3475    |  fpins f0, f14, f15
3476    |  ins_next1
3477    |  stfdx f0, BASE, RA
3478    |  ins_next2
3479    |.endif
3480    |.endmacro
3481    |
3482    |.macro ins_arithdn, intins, fpins
3483    |  // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8
3484    ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
3485    ||switch (vk) {
3486    ||case 0:
3487    |   lwzux TMP1, RB, BASE
3488    |   lwzux TMP2, RC, KBASE
3489    |    lwz CARG1, 4(RB)
3490    |   checknum cr0, TMP1
3491    |    lwz CARG2, 4(RC)
3492    ||  break;
3493    ||case 1:
3494    |   lwzux TMP1, RB, BASE
3495    |   lwzux TMP2, RC, KBASE
3496    |    lwz CARG2, 4(RB)
3497    |   checknum cr0, TMP1
3498    |    lwz CARG1, 4(RC)
3499    ||  break;
3500    ||default:
3501    |   lwzux TMP1, RB, BASE
3502    |   lwzux TMP2, RC, BASE
3503    |    lwz CARG1, 4(RB)
3504    |   checknum cr0, TMP1
3505    |    lwz CARG2, 4(RC)
3506    ||  break;
3507    ||}
3508    |  checknum cr1, TMP2
3509    |  bne >5
3510    |  bne cr1, >5
3511    |  intins CARG1, CARG1, CARG2
3512    |  bso >4
3513    |1:
3514    |  ins_next1
3515    |  stwux TISNUM, RA, BASE
3516    |  stw CARG1, 4(RA)
3517    |2:
3518    |  ins_next2
3519    |4:  // Overflow.
3520    |  checkov TMP0, <1			// Ignore unrelated overflow.
3521    |  ins_arithfallback b
3522    |5:  // FP variant.
3523    ||if (vk == 1) {
3524    |  lfd f15, 0(RB)
3525    |   crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3526    |  lfd f14, 0(RC)
3527    ||} else {
3528    |  lfd f14, 0(RB)
3529    |   crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3530    |  lfd f15, 0(RC)
3531    ||}
3532    |   ins_arithfallback bge
3533    |.if "fpins" == "fpmod_"
3534    |  b ->BC_MODVN_Z			// Avoid 3 copies. It's slow anyway.
3535    |.else
3536    |  fpins f0, f14, f15
3537    |  ins_next1
3538    |  stfdx f0, BASE, RA
3539    |  b <2
3540    |.endif
3541    |.endmacro
3542    |
3543    |.macro ins_arith, intins, fpins
3544    |.if DUALNUM
3545    |  ins_arithdn intins, fpins
3546    |.else
3547    |  ins_arithfp fpins
3548    |.endif
3549    |.endmacro
3550
3551  case BC_ADDVN: case BC_ADDNV: case BC_ADDVV:
3552    |.if GPR64
3553    |.macro addo32., y, a, b
3554    |  // Need to check overflow for (a<<32) + (b<<32).
3555    |  rldicr TMP0, a, 32, 31
3556    |  rldicr TMP3, b, 32, 31
3557    |  addo. TMP0, TMP0, TMP3
3558    |  add y, a, b
3559    |.endmacro
3560    |  ins_arith addo32., fadd
3561    |.else
3562    |  ins_arith addo., fadd
3563    |.endif
3564    break;
3565  case BC_SUBVN: case BC_SUBNV: case BC_SUBVV:
3566    |.if GPR64
3567    |.macro subo32., y, a, b
3568    |  // Need to check overflow for (a<<32) - (b<<32).
3569    |  rldicr TMP0, a, 32, 31
3570    |  rldicr TMP3, b, 32, 31
3571    |  subo. TMP0, TMP0, TMP3
3572    |  sub y, a, b
3573    |.endmacro
3574    |  ins_arith subo32., fsub
3575    |.else
3576    |  ins_arith subo., fsub
3577    |.endif
3578    break;
3579  case BC_MULVN: case BC_MULNV: case BC_MULVV:
3580    |  ins_arith mullwo., fmul
3581    break;
3582  case BC_DIVVN: case BC_DIVNV: case BC_DIVVV:
3583    |  ins_arithfp fdiv
3584    break;
3585  case BC_MODVN:
3586    |  ins_arith intmod, fpmod
3587    break;
3588  case BC_MODNV: case BC_MODVV:
3589    |  ins_arith intmod, fpmod_
3590    break;
3591  case BC_POW:
3592    |  // NYI: (partial) integer arithmetic.
3593    |  lwzx TMP1, BASE, RB
3594    |   lfdx FARG1, BASE, RB
3595    |  lwzx TMP2, BASE, RC
3596    |   lfdx FARG2, BASE, RC
3597    |  checknum cr0, TMP1
3598    |  checknum cr1, TMP2
3599    |  crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3600    |  bge ->vmeta_arith_vv
3601    |  blex pow
3602    |  ins_next1
3603    |  stfdx FARG1, BASE, RA
3604    |  ins_next2
3605    break;
3606
3607  case BC_CAT:
3608    |  // RA = dst*8, RB = src_start*8, RC = src_end*8
3609    |  sub CARG3, RC, RB
3610    |   stp BASE, L->base
3611    |  add CARG2, BASE, RC
3612    |  mr SAVE0, RB
3613    |->BC_CAT_Z:
3614    |   stw PC, SAVE_PC
3615    |  mr CARG1, L
3616    |  srwi CARG3, CARG3, 3
3617    |  bl extern lj_meta_cat		// (lua_State *L, TValue *top, int left)
3618    |  // Returns NULL (finished) or TValue * (metamethod).
3619    |  cmplwi CRET1, 0
3620    |   lp BASE, L->base
3621    |  bne ->vmeta_binop
3622    |  ins_next1
3623    |  lfdx f0, BASE, SAVE0		// Copy result from RB to RA.
3624    |  stfdx f0, BASE, RA
3625    |  ins_next2
3626    break;
3627
3628  /* -- Constant ops ------------------------------------------------------ */
3629
3630  case BC_KSTR:
3631    |  // RA = dst*8, RD = str_const*8 (~)
3632    |  srwi TMP1, RD, 1
3633    |  subfic TMP1, TMP1, -4
3634    |  ins_next1
3635    |  lwzx TMP0, KBASE, TMP1		// KBASE-4-str_const*4
3636    |  li TMP2, LJ_TSTR
3637    |  stwux TMP2, RA, BASE
3638    |  stw TMP0, 4(RA)
3639    |  ins_next2
3640    break;
3641  case BC_KCDATA:
3642    |.if FFI
3643    |  // RA = dst*8, RD = cdata_const*8 (~)
3644    |  srwi TMP1, RD, 1
3645    |  subfic TMP1, TMP1, -4
3646    |  ins_next1
3647    |  lwzx TMP0, KBASE, TMP1		// KBASE-4-cdata_const*4
3648    |  li TMP2, LJ_TCDATA
3649    |  stwux TMP2, RA, BASE
3650    |  stw TMP0, 4(RA)
3651    |  ins_next2
3652    |.endif
3653    break;
3654  case BC_KSHORT:
3655    |  // RA = dst*8, RD = int16_literal*8
3656    |.if DUALNUM
3657    |  slwi RD, RD, 13
3658    |  srawi RD, RD, 16
3659    |  ins_next1
3660    |   stwux TISNUM, RA, BASE
3661    |   stw RD, 4(RA)
3662    |  ins_next2
3663    |.else
3664    |  // The soft-float approach is faster.
3665    |  slwi RD, RD, 13
3666    |  srawi TMP1, RD, 31
3667    |  xor TMP2, TMP1, RD
3668    |  sub TMP2, TMP2, TMP1		// TMP2 = abs(x)
3669    |  cntlzw TMP3, TMP2
3670    |  subfic TMP1, TMP3, 0x40d		// TMP1 = exponent-1
3671    |   slw TMP2, TMP2, TMP3		// TMP2 = left aligned mantissa
3672    |    subfic TMP3, RD, 0
3673    |  slwi TMP1, TMP1, 20
3674    |   rlwimi RD, TMP2, 21, 1, 31	// hi = sign(x) | (mantissa>>11)
3675    |    subfe TMP0, TMP0, TMP0
3676    |   add RD, RD, TMP1		// hi = hi + exponent-1
3677    |    and RD, RD, TMP0		// hi = x == 0 ? 0 : hi
3678    |  ins_next1
3679    |    stwux RD, RA, BASE
3680    |    stw ZERO, 4(RA)
3681    |  ins_next2
3682    |.endif
3683    break;
3684  case BC_KNUM:
3685    |  // RA = dst*8, RD = num_const*8
3686    |  ins_next1
3687    |  lfdx f0, KBASE, RD
3688    |  stfdx f0, BASE, RA
3689    |  ins_next2
3690    break;
3691  case BC_KPRI:
3692    |  // RA = dst*8, RD = primitive_type*8 (~)
3693    |  srwi TMP1, RD, 3
3694    |  not TMP0, TMP1
3695    |  ins_next1
3696    |  stwx TMP0, BASE, RA
3697    |  ins_next2
3698    break;
3699  case BC_KNIL:
3700    |  // RA = base*8, RD = end*8
3701    |  stwx TISNIL, BASE, RA
3702    |   addi RA, RA, 8
3703    |1:
3704    |  stwx TISNIL, BASE, RA
3705    |  cmpw RA, RD
3706    |   addi RA, RA, 8
3707    |  blt <1
3708    |  ins_next_
3709    break;
3710
3711  /* -- Upvalue and function ops ------------------------------------------ */
3712
3713  case BC_UGET:
3714    |  // RA = dst*8, RD = uvnum*8
3715    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3716    |   srwi RD, RD, 1
3717    |   addi RD, RD, offsetof(GCfuncL, uvptr)
3718    |  lwzx UPVAL:RB, LFUNC:RB, RD
3719    |  ins_next1
3720    |  lwz TMP1, UPVAL:RB->v
3721    |  lfd f0, 0(TMP1)
3722    |  stfdx f0, BASE, RA
3723    |  ins_next2
3724    break;
3725  case BC_USETV:
3726    |  // RA = uvnum*8, RD = src*8
3727    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3728    |    srwi RA, RA, 1
3729    |    addi RA, RA, offsetof(GCfuncL, uvptr)
3730    |   lfdux f0, RD, BASE
3731    |  lwzx UPVAL:RB, LFUNC:RB, RA
3732    |  lbz TMP3, UPVAL:RB->marked
3733    |   lwz CARG2, UPVAL:RB->v
3734    |  andix. TMP3, TMP3, LJ_GC_BLACK	// isblack(uv)
3735    |    lbz TMP0, UPVAL:RB->closed
3736    |   lwz TMP2, 0(RD)
3737    |   stfd f0, 0(CARG2)
3738    |    cmplwi cr1, TMP0, 0
3739    |   lwz TMP1, 4(RD)
3740    |  cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
3741    |   subi TMP2, TMP2, (LJ_TNUMX+1)
3742    |  bne >2				// Upvalue is closed and black?
3743    |1:
3744    |  ins_next
3745    |
3746    |2:  // Check if new value is collectable.
3747    |  cmplwi TMP2, LJ_TISGCV - (LJ_TNUMX+1)
3748    |  bge <1				// tvisgcv(v)
3749    |  lbz TMP3, GCOBJ:TMP1->gch.marked
3750    |  andix. TMP3, TMP3, LJ_GC_WHITES	// iswhite(v)
3751    |   la CARG1, GG_DISP2G(DISPATCH)
3752    |  // Crossed a write barrier. Move the barrier forward.
3753    |  beq <1
3754    |  bl extern lj_gc_barrieruv	// (global_State *g, TValue *tv)
3755    |  b <1
3756    break;
3757  case BC_USETS:
3758    |  // RA = uvnum*8, RD = str_const*8 (~)
3759    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3760    |   srwi TMP1, RD, 1
3761    |    srwi RA, RA, 1
3762    |   subfic TMP1, TMP1, -4
3763    |    addi RA, RA, offsetof(GCfuncL, uvptr)
3764    |   lwzx STR:TMP1, KBASE, TMP1	// KBASE-4-str_const*4
3765    |  lwzx UPVAL:RB, LFUNC:RB, RA
3766    |  lbz TMP3, UPVAL:RB->marked
3767    |   lwz CARG2, UPVAL:RB->v
3768    |  andix. TMP3, TMP3, LJ_GC_BLACK	// isblack(uv)
3769    |   lbz TMP3, STR:TMP1->marked
3770    |   lbz TMP2, UPVAL:RB->closed
3771    |   li TMP0, LJ_TSTR
3772    |   stw STR:TMP1, 4(CARG2)
3773    |   stw TMP0, 0(CARG2)
3774    |  bne >2
3775    |1:
3776    |  ins_next
3777    |
3778    |2:  // Check if string is white and ensure upvalue is closed.
3779    |  andix. TMP3, TMP3, LJ_GC_WHITES	// iswhite(str)
3780    |   cmplwi cr1, TMP2, 0
3781    |  cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
3782    |   la CARG1, GG_DISP2G(DISPATCH)
3783    |  // Crossed a write barrier. Move the barrier forward.
3784    |  beq <1
3785    |  bl extern lj_gc_barrieruv	// (global_State *g, TValue *tv)
3786    |  b <1
3787    break;
3788  case BC_USETN:
3789    |  // RA = uvnum*8, RD = num_const*8
3790    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3791    |   srwi RA, RA, 1
3792    |   addi RA, RA, offsetof(GCfuncL, uvptr)
3793    |    lfdx f0, KBASE, RD
3794    |  lwzx UPVAL:RB, LFUNC:RB, RA
3795    |  ins_next1
3796    |  lwz TMP1, UPVAL:RB->v
3797    |  stfd f0, 0(TMP1)
3798    |  ins_next2
3799    break;
3800  case BC_USETP:
3801    |  // RA = uvnum*8, RD = primitive_type*8 (~)
3802    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3803    |   srwi RA, RA, 1
3804    |    srwi TMP0, RD, 3
3805    |   addi RA, RA, offsetof(GCfuncL, uvptr)
3806    |    not TMP0, TMP0
3807    |  lwzx UPVAL:RB, LFUNC:RB, RA
3808    |  ins_next1
3809    |  lwz TMP1, UPVAL:RB->v
3810    |  stw TMP0, 0(TMP1)
3811    |  ins_next2
3812    break;
3813
3814  case BC_UCLO:
3815    |  // RA = level*8, RD = target
3816    |  lwz TMP1, L->openupval
3817    |  branch_RD			// Do this first since RD is not saved.
3818    |   stp BASE, L->base
3819    |  cmplwi TMP1, 0
3820    |   mr CARG1, L
3821    |  beq >1
3822    |   add CARG2, BASE, RA
3823    |  bl extern lj_func_closeuv	// (lua_State *L, TValue *level)
3824    |  lp BASE, L->base
3825    |1:
3826    |  ins_next
3827    break;
3828
3829  case BC_FNEW:
3830    |  // RA = dst*8, RD = proto_const*8 (~) (holding function prototype)
3831    |  srwi TMP1, RD, 1
3832    |   stp BASE, L->base
3833    |  subfic TMP1, TMP1, -4
3834    |   stw PC, SAVE_PC
3835    |  lwzx CARG2, KBASE, TMP1		// KBASE-4-tab_const*4
3836    |   mr CARG1, L
3837    |  lwz CARG3, FRAME_FUNC(BASE)
3838    |  // (lua_State *L, GCproto *pt, GCfuncL *parent)
3839    |  bl extern lj_func_newL_gc
3840    |  // Returns GCfuncL *.
3841    |  lp BASE, L->base
3842    |   li TMP0, LJ_TFUNC
3843    |  stwux TMP0, RA, BASE
3844    |  stw LFUNC:CRET1, 4(RA)
3845    |  ins_next
3846    break;
3847
3848  /* -- Table ops --------------------------------------------------------- */
3849
3850  case BC_TNEW:
3851  case BC_TDUP:
3852    |  // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~)
3853    |  lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH)
3854    |   mr CARG1, L
3855    |  lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
3856    |   stp BASE, L->base
3857    |  cmplw TMP0, TMP1
3858    |   stw PC, SAVE_PC
3859    |  bge >5
3860    |1:
3861    if (op == BC_TNEW) {
3862      |  rlwinm CARG2, RD, 29, 21, 31
3863      |  rlwinm CARG3, RD, 18, 27, 31
3864      |  cmpwi CARG2, 0x7ff; beq >3
3865      |2:
3866      |  bl extern lj_tab_new  // (lua_State *L, int32_t asize, uint32_t hbits)
3867      |  // Returns Table *.
3868    } else {
3869      |  srwi TMP1, RD, 1
3870      |  subfic TMP1, TMP1, -4
3871      |  lwzx CARG2, KBASE, TMP1		// KBASE-4-tab_const*4
3872      |  bl extern lj_tab_dup  // (lua_State *L, Table *kt)
3873      |  // Returns Table *.
3874    }
3875    |  lp BASE, L->base
3876    |   li TMP0, LJ_TTAB
3877    |  stwux TMP0, RA, BASE
3878    |  stw TAB:CRET1, 4(RA)
3879    |  ins_next
3880    if (op == BC_TNEW) {
3881      |3:
3882      |  li CARG2, 0x801
3883      |  b <2
3884    }
3885    |5:
3886    |  mr SAVE0, RD
3887    |  bl extern lj_gc_step_fixtop  // (lua_State *L)
3888    |  mr RD, SAVE0
3889    |  mr CARG1, L
3890    |  b <1
3891    break;
3892
3893  case BC_GGET:
3894    |  // RA = dst*8, RD = str_const*8 (~)
3895  case BC_GSET:
3896    |  // RA = src*8, RD = str_const*8 (~)
3897    |  lwz LFUNC:TMP2, FRAME_FUNC(BASE)
3898    |   srwi TMP1, RD, 1
3899    |  lwz TAB:RB, LFUNC:TMP2->env
3900    |   subfic TMP1, TMP1, -4
3901    |   lwzx STR:RC, KBASE, TMP1	// KBASE-4-str_const*4
3902    if (op == BC_GGET) {
3903      |  b ->BC_TGETS_Z
3904    } else {
3905      |  b ->BC_TSETS_Z
3906    }
3907    break;
3908
3909  case BC_TGETV:
3910    |  // RA = dst*8, RB = table*8, RC = key*8
3911    |  lwzux CARG1, RB, BASE
3912    |  lwzux CARG2, RC, BASE
3913    |   lwz TAB:RB, 4(RB)
3914    |.if DUALNUM
3915    |   lwz RC, 4(RC)
3916    |.else
3917    |   lfd f0, 0(RC)
3918    |.endif
3919    |  checktab CARG1
3920    |   checknum cr1, CARG2
3921    |  bne ->vmeta_tgetv
3922    |.if DUALNUM
3923    |  lwz TMP0, TAB:RB->asize
3924    |   bne cr1, >5
3925    |   lwz TMP1, TAB:RB->array
3926    |  cmplw TMP0, RC
3927    |   slwi TMP2, RC, 3
3928    |.else
3929    |   bge cr1, >5
3930    |  // Convert number key to integer, check for integerness and range.
3931    |  fctiwz f1, f0
3932    |    fadd f2, f0, TOBIT
3933    |  stfd f1, TMPD
3934    |   lwz TMP0, TAB:RB->asize
3935    |    fsub f2, f2, TOBIT
3936    |  lwz TMP2, TMPD_LO
3937    |   lwz TMP1, TAB:RB->array
3938    |    fcmpu cr1, f0, f2
3939    |  cmplw cr0, TMP0, TMP2
3940    |  crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq
3941    |   slwi TMP2, TMP2, 3
3942    |.endif
3943    |  ble ->vmeta_tgetv		// Integer key and in array part?
3944    |  lwzx TMP0, TMP1, TMP2
3945    |   lfdx f14, TMP1, TMP2
3946    |  checknil TMP0; beq >2
3947    |1:
3948    |  ins_next1
3949    |   stfdx f14, BASE, RA
3950    |  ins_next2
3951    |
3952    |2:  // Check for __index if table value is nil.
3953    |  lwz TAB:TMP2, TAB:RB->metatable
3954    |  cmplwi TAB:TMP2, 0
3955    |  beq <1				// No metatable: done.
3956    |  lbz TMP0, TAB:TMP2->nomm
3957    |  andix. TMP0, TMP0, 1<<MM_index
3958    |  bne <1				// 'no __index' flag set: done.
3959    |  b ->vmeta_tgetv
3960    |
3961    |5:
3962    |  checkstr CARG2; bne ->vmeta_tgetv
3963    |.if not DUALNUM
3964    |  lwz STR:RC, 4(RC)
3965    |.endif
3966    |  b ->BC_TGETS_Z			// String key?
3967    break;
3968  case BC_TGETS:
3969    |  // RA = dst*8, RB = table*8, RC = str_const*8 (~)
3970    |  lwzux CARG1, RB, BASE
3971    |   srwi TMP1, RC, 1
3972    |    lwz TAB:RB, 4(RB)
3973    |   subfic TMP1, TMP1, -4
3974    |  checktab CARG1
3975    |   lwzx STR:RC, KBASE, TMP1	// KBASE-4-str_const*4
3976    |  bne ->vmeta_tgets1
3977    |->BC_TGETS_Z:
3978    |  // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8
3979    |  lwz TMP0, TAB:RB->hmask
3980    |  lwz TMP1, STR:RC->hash
3981    |  lwz NODE:TMP2, TAB:RB->node
3982    |  and TMP1, TMP1, TMP0		// idx = str->hash & tab->hmask
3983    |  slwi TMP0, TMP1, 5
3984    |  slwi TMP1, TMP1, 3
3985    |  sub TMP1, TMP0, TMP1
3986    |  add NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
3987    |1:
3988    |  lwz CARG1, NODE:TMP2->key
3989    |   lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
3990    |    lwz CARG2, NODE:TMP2->val
3991    |     lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2)
3992    |  checkstr CARG1; bne >4
3993    |   cmpw TMP0, STR:RC; bne >4
3994    |    checknil CARG2; beq >5		// Key found, but nil value?
3995    |3:
3996    |    stwux CARG2, RA, BASE
3997    |     stw TMP1, 4(RA)
3998    |  ins_next
3999    |
4000    |4:  // Follow hash chain.
4001    |  lwz NODE:TMP2, NODE:TMP2->next
4002    |  cmplwi NODE:TMP2, 0
4003    |  bne <1
4004    |  // End of hash chain: key not found, nil result.
4005    |   li CARG2, LJ_TNIL
4006    |
4007    |5:  // Check for __index if table value is nil.
4008    |  lwz TAB:TMP2, TAB:RB->metatable
4009    |  cmplwi TAB:TMP2, 0
4010    |  beq <3				// No metatable: done.
4011    |  lbz TMP0, TAB:TMP2->nomm
4012    |  andix. TMP0, TMP0, 1<<MM_index
4013    |  bne <3				// 'no __index' flag set: done.
4014    |  b ->vmeta_tgets
4015    break;
4016  case BC_TGETB:
4017    |  // RA = dst*8, RB = table*8, RC = index*8
4018    |  lwzux CARG1, RB, BASE
4019    |   srwi TMP0, RC, 3
4020    |   lwz TAB:RB, 4(RB)
4021    |  checktab CARG1; bne ->vmeta_tgetb
4022    |  lwz TMP1, TAB:RB->asize
4023    |   lwz TMP2, TAB:RB->array
4024    |  cmplw TMP0, TMP1; bge ->vmeta_tgetb
4025    |  lwzx TMP1, TMP2, RC
4026    |   lfdx f0, TMP2, RC
4027    |  checknil TMP1; beq >5
4028    |1:
4029    |  ins_next1
4030    |   stfdx f0, BASE, RA
4031    |  ins_next2
4032    |
4033    |5:  // Check for __index if table value is nil.
4034    |  lwz TAB:TMP2, TAB:RB->metatable
4035    |  cmplwi TAB:TMP2, 0
4036    |  beq <1				// No metatable: done.
4037    |  lbz TMP2, TAB:TMP2->nomm
4038    |  andix. TMP2, TMP2, 1<<MM_index
4039    |  bne <1				// 'no __index' flag set: done.
4040    |  b ->vmeta_tgetb			// Caveat: preserve TMP0!
4041    break;
4042
4043  case BC_TSETV:
4044    |  // RA = src*8, RB = table*8, RC = key*8
4045    |  lwzux CARG1, RB, BASE
4046    |  lwzux CARG2, RC, BASE
4047    |   lwz TAB:RB, 4(RB)
4048    |.if DUALNUM
4049    |   lwz RC, 4(RC)
4050    |.else
4051    |   lfd f0, 0(RC)
4052    |.endif
4053    |  checktab CARG1
4054    |   checknum cr1, CARG2
4055    |  bne ->vmeta_tsetv
4056    |.if DUALNUM
4057    |  lwz TMP0, TAB:RB->asize
4058    |   bne cr1, >5
4059    |   lwz TMP1, TAB:RB->array
4060    |  cmplw TMP0, RC
4061    |   slwi TMP0, RC, 3
4062    |.else
4063    |   bge cr1, >5
4064    |  // Convert number key to integer, check for integerness and range.
4065    |  fctiwz f1, f0
4066    |    fadd f2, f0, TOBIT
4067    |  stfd f1, TMPD
4068    |   lwz TMP0, TAB:RB->asize
4069    |    fsub f2, f2, TOBIT
4070    |  lwz TMP2, TMPD_LO
4071    |   lwz TMP1, TAB:RB->array
4072    |    fcmpu cr1, f0, f2
4073    |  cmplw cr0, TMP0, TMP2
4074    |  crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq
4075    |   slwi TMP0, TMP2, 3
4076    |.endif
4077    |  ble ->vmeta_tsetv		// Integer key and in array part?
4078    |   lwzx TMP2, TMP1, TMP0
4079    |  lbz TMP3, TAB:RB->marked
4080    |    lfdx f14, BASE, RA
4081    |   checknil TMP2; beq >3
4082    |1:
4083    |  andix. TMP2, TMP3, LJ_GC_BLACK	// isblack(table)
4084    |    stfdx f14, TMP1, TMP0
4085    |  bne >7
4086    |2:
4087    |  ins_next
4088    |
4089    |3:  // Check for __newindex if previous value is nil.
4090    |  lwz TAB:TMP2, TAB:RB->metatable
4091    |  cmplwi TAB:TMP2, 0
4092    |  beq <1				// No metatable: done.
4093    |  lbz TMP2, TAB:TMP2->nomm
4094    |  andix. TMP2, TMP2, 1<<MM_newindex
4095    |  bne <1				// 'no __newindex' flag set: done.
4096    |  b ->vmeta_tsetv
4097    |
4098    |5:
4099    |  checkstr CARG2; bne ->vmeta_tsetv
4100    |.if not DUALNUM
4101    |  lwz STR:RC, 4(RC)
4102    |.endif
4103    |  b ->BC_TSETS_Z			// String key?
4104    |
4105    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4106    |  barrierback TAB:RB, TMP3, TMP0
4107    |  b <2
4108    break;
4109  case BC_TSETS:
4110    |  // RA = src*8, RB = table*8, RC = str_const*8 (~)
4111    |  lwzux CARG1, RB, BASE
4112    |   srwi TMP1, RC, 1
4113    |    lwz TAB:RB, 4(RB)
4114    |   subfic TMP1, TMP1, -4
4115    |  checktab CARG1
4116    |   lwzx STR:RC, KBASE, TMP1	// KBASE-4-str_const*4
4117    |  bne ->vmeta_tsets1
4118    |->BC_TSETS_Z:
4119    |  // TAB:RB = GCtab *, STR:RC = GCstr *, RA = src*8
4120    |  lwz TMP0, TAB:RB->hmask
4121    |  lwz TMP1, STR:RC->hash
4122    |  lwz NODE:TMP2, TAB:RB->node
4123    |    stb ZERO, TAB:RB->nomm		// Clear metamethod cache.
4124    |  and TMP1, TMP1, TMP0		// idx = str->hash & tab->hmask
4125    |    lfdx f14, BASE, RA
4126    |  slwi TMP0, TMP1, 5
4127    |  slwi TMP1, TMP1, 3
4128    |  sub TMP1, TMP0, TMP1
4129    |    lbz TMP3, TAB:RB->marked
4130    |  add NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
4131    |1:
4132    |  lwz CARG1, NODE:TMP2->key
4133    |   lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
4134    |    lwz CARG2, NODE:TMP2->val
4135    |     lwz NODE:TMP1, NODE:TMP2->next
4136    |  checkstr CARG1; bne >5
4137    |   cmpw TMP0, STR:RC; bne >5
4138    |    checknil CARG2; beq >4		// Key found, but nil value?
4139    |2:
4140    |  andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
4141    |    stfd f14, NODE:TMP2->val
4142    |  bne >7
4143    |3:
4144    |  ins_next
4145    |
4146    |4:  // Check for __newindex if previous value is nil.
4147    |  lwz TAB:TMP1, TAB:RB->metatable
4148    |  cmplwi TAB:TMP1, 0
4149    |  beq <2				// No metatable: done.
4150    |  lbz TMP0, TAB:TMP1->nomm
4151    |  andix. TMP0, TMP0, 1<<MM_newindex
4152    |  bne <2				// 'no __newindex' flag set: done.
4153    |  b ->vmeta_tsets
4154    |
4155    |5:  // Follow hash chain.
4156    |  cmplwi NODE:TMP1, 0
4157    |   mr NODE:TMP2, NODE:TMP1
4158    |  bne <1
4159    |  // End of hash chain: key not found, add a new one.
4160    |
4161    |  // But check for __newindex first.
4162    |  lwz TAB:TMP1, TAB:RB->metatable
4163    |   la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
4164    |   stw PC, SAVE_PC
4165    |   mr CARG1, L
4166    |  cmplwi TAB:TMP1, 0
4167    |   stp BASE, L->base
4168    |  beq >6				// No metatable: continue.
4169    |  lbz TMP0, TAB:TMP1->nomm
4170    |  andix. TMP0, TMP0, 1<<MM_newindex
4171    |  beq ->vmeta_tsets		// 'no __newindex' flag NOT set: check.
4172    |6:
4173    |  li TMP0, LJ_TSTR
4174    |   stw STR:RC, 4(CARG3)
4175    |   mr CARG2, TAB:RB
4176    |  stw TMP0, 0(CARG3)
4177    |  bl extern lj_tab_newkey		// (lua_State *L, GCtab *t, TValue *k)
4178    |  // Returns TValue *.
4179    |  lp BASE, L->base
4180    |  stfd f14, 0(CRET1)
4181    |  b <3				// No 2nd write barrier needed.
4182    |
4183    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4184    |  barrierback TAB:RB, TMP3, TMP0
4185    |  b <3
4186    break;
4187  case BC_TSETB:
4188    |  // RA = src*8, RB = table*8, RC = index*8
4189    |  lwzux CARG1, RB, BASE
4190    |   srwi TMP0, RC, 3
4191    |   lwz TAB:RB, 4(RB)
4192    |  checktab CARG1; bne ->vmeta_tsetb
4193    |  lwz TMP1, TAB:RB->asize
4194    |   lwz TMP2, TAB:RB->array
4195    |    lbz TMP3, TAB:RB->marked
4196    |  cmplw TMP0, TMP1
4197    |   lfdx f14, BASE, RA
4198    |  bge ->vmeta_tsetb
4199    |  lwzx TMP1, TMP2, RC
4200    |  checknil TMP1; beq >5
4201    |1:
4202    |  andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
4203    |   stfdx f14, TMP2, RC
4204    |  bne >7
4205    |2:
4206    |  ins_next
4207    |
4208    |5:  // Check for __newindex if previous value is nil.
4209    |  lwz TAB:TMP1, TAB:RB->metatable
4210    |  cmplwi TAB:TMP1, 0
4211    |  beq <1				// No metatable: done.
4212    |  lbz TMP1, TAB:TMP1->nomm
4213    |  andix. TMP1, TMP1, 1<<MM_newindex
4214    |  bne <1				// 'no __newindex' flag set: done.
4215    |  b ->vmeta_tsetb			// Caveat: preserve TMP0!
4216    |
4217    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4218    |  barrierback TAB:RB, TMP3, TMP0
4219    |  b <2
4220    break;
4221
4222  case BC_TSETM:
4223    |  // RA = base*8 (table at base-1), RD = num_const*8 (start index)
4224    |  add RA, BASE, RA
4225    |1:
4226    |   add TMP3, KBASE, RD
4227    |  lwz TAB:CARG2, -4(RA)		// Guaranteed to be a table.
4228    |    addic. TMP0, MULTRES, -8
4229    |   lwz TMP3, 4(TMP3)		// Integer constant is in lo-word.
4230    |    srwi CARG3, TMP0, 3
4231    |    beq >4				// Nothing to copy?
4232    |  add CARG3, CARG3, TMP3
4233    |  lwz TMP2, TAB:CARG2->asize
4234    |   slwi TMP1, TMP3, 3
4235    |    lbz TMP3, TAB:CARG2->marked
4236    |  cmplw CARG3, TMP2
4237    |   add TMP2, RA, TMP0
4238    |   lwz TMP0, TAB:CARG2->array
4239    |  bgt >5
4240    |   add TMP1, TMP1, TMP0
4241    |    andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
4242    |3:  // Copy result slots to table.
4243    |   lfd f0, 0(RA)
4244    |  addi RA, RA, 8
4245    |  cmpw cr1, RA, TMP2
4246    |   stfd f0, 0(TMP1)
4247    |    addi TMP1, TMP1, 8
4248    |  blt cr1, <3
4249    |  bne >7
4250    |4:
4251    |  ins_next
4252    |
4253    |5:  // Need to resize array part.
4254    |   stp BASE, L->base
4255    |  mr CARG1, L
4256    |   stw PC, SAVE_PC
4257    |  mr SAVE0, RD
4258    |  bl extern lj_tab_reasize		// (lua_State *L, GCtab *t, int nasize)
4259    |  // Must not reallocate the stack.
4260    |  mr RD, SAVE0
4261    |  b <1
4262    |
4263    |7:  // Possible table write barrier for any value. Skip valiswhite check.
4264    |  barrierback TAB:CARG2, TMP3, TMP0
4265    |  b <4
4266    break;
4267
4268  /* -- Calls and vararg handling ----------------------------------------- */
4269
4270  case BC_CALLM:
4271    |  // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8
4272    |  add NARGS8:RC, NARGS8:RC, MULTRES
4273    |  // Fall through. Assumes BC_CALL follows.
4274    break;
4275  case BC_CALL:
4276    |  // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8
4277    |  mr TMP2, BASE
4278    |  lwzux TMP0, BASE, RA
4279    |   lwz LFUNC:RB, 4(BASE)
4280    |    subi NARGS8:RC, NARGS8:RC, 8
4281    |   addi BASE, BASE, 8
4282    |  checkfunc TMP0; bne ->vmeta_call
4283    |  ins_call
4284    break;
4285
4286  case BC_CALLMT:
4287    |  // RA = base*8, (RB = 0,) RC = extra_nargs*8
4288    |  add NARGS8:RC, NARGS8:RC, MULTRES
4289    |  // Fall through. Assumes BC_CALLT follows.
4290    break;
4291  case BC_CALLT:
4292    |  // RA = base*8, (RB = 0,) RC = (nargs+1)*8
4293    |  lwzux TMP0, RA, BASE
4294    |   lwz LFUNC:RB, 4(RA)
4295    |    subi NARGS8:RC, NARGS8:RC, 8
4296    |    lwz TMP1, FRAME_PC(BASE)
4297    |  checkfunc TMP0
4298    |   addi RA, RA, 8
4299    |  bne ->vmeta_callt
4300    |->BC_CALLT_Z:
4301    |  andix. TMP0, TMP1, FRAME_TYPE	// Caveat: preserve cr0 until the crand.
4302    |   lbz TMP3, LFUNC:RB->ffid
4303    |    xori TMP2, TMP1, FRAME_VARG
4304    |    cmplwi cr1, NARGS8:RC, 0
4305    |  bne >7
4306    |1:
4307    |  stw LFUNC:RB, FRAME_FUNC(BASE)	// Copy function down, but keep PC.
4308    |  li TMP2, 0
4309    |   cmplwi cr7, TMP3, 1		// (> FF_C) Calling a fast function?
4310    |    beq cr1, >3
4311    |2:
4312    |  addi TMP3, TMP2, 8
4313    |   lfdx f0, RA, TMP2
4314    |  cmplw cr1, TMP3, NARGS8:RC
4315    |   stfdx f0, BASE, TMP2
4316    |  mr TMP2, TMP3
4317    |  bne cr1, <2
4318    |3:
4319    |  crand 4*cr0+eq, 4*cr0+eq, 4*cr7+gt
4320    |  beq >5
4321    |4:
4322    |  ins_callt
4323    |
4324    |5:  // Tailcall to a fast function with a Lua frame below.
4325    |  lwz INS, -4(TMP1)
4326    |  decode_RA8 RA, INS
4327    |  sub TMP1, BASE, RA
4328    |  lwz LFUNC:TMP1, FRAME_FUNC-8(TMP1)
4329    |  lwz TMP1, LFUNC:TMP1->pc
4330    |  lwz KBASE, PC2PROTO(k)(TMP1)	// Need to prepare KBASE.
4331    |  b <4
4332    |
4333    |7:  // Tailcall from a vararg function.
4334    |  andix. TMP0, TMP2, FRAME_TYPEP
4335    |  bne <1				// Vararg frame below?
4336    |  sub BASE, BASE, TMP2		// Relocate BASE down.
4337    |  lwz TMP1, FRAME_PC(BASE)
4338    |  andix. TMP0, TMP1, FRAME_TYPE
4339    |  b <1
4340    break;
4341
4342  case BC_ITERC:
4343    |  // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8))
4344    |  mr TMP2, BASE
4345    |  add BASE, BASE, RA
4346    |  lwz TMP1, -24(BASE)
4347    |   lwz LFUNC:RB, -20(BASE)
4348    |    lfd f1, -8(BASE)
4349    |    lfd f0, -16(BASE)
4350    |  stw TMP1, 0(BASE)		// Copy callable.
4351    |   stw LFUNC:RB, 4(BASE)
4352    |  checkfunc TMP1
4353    |    stfd f1, 16(BASE)		// Copy control var.
4354    |     li NARGS8:RC, 16		// Iterators get 2 arguments.
4355    |    stfdu f0, 8(BASE)		// Copy state.
4356    |  bne ->vmeta_call
4357    |  ins_call
4358    break;
4359
4360  case BC_ITERN:
4361    |  // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8)
4362    |.if JIT
4363    |  // NYI: add hotloop, record BC_ITERN.
4364    |.endif
4365    |  add RA, BASE, RA
4366    |  lwz TAB:RB, -12(RA)
4367    |  lwz RC, -4(RA)			// Get index from control var.
4368    |  lwz TMP0, TAB:RB->asize
4369    |  lwz TMP1, TAB:RB->array
4370    |   addi PC, PC, 4
4371    |1:  // Traverse array part.
4372    |  cmplw RC, TMP0
4373    |   slwi TMP3, RC, 3
4374    |  bge >5				// Index points after array part?
4375    |  lwzx TMP2, TMP1, TMP3
4376    |   lfdx f0, TMP1, TMP3
4377    |  checknil TMP2
4378    |     lwz INS, -4(PC)
4379    |  beq >4
4380    |.if DUALNUM
4381    |   stw RC, 4(RA)
4382    |   stw TISNUM, 0(RA)
4383    |.else
4384    |   tonum_u f1, RC
4385    |.endif
4386    |    addi RC, RC, 1
4387    |     addis TMP3, PC, -(BCBIAS_J*4 >> 16)
4388    |  stfd f0, 8(RA)
4389    |     decode_RD4 TMP1, INS
4390    |    stw RC, -4(RA)			// Update control var.
4391    |     add PC, TMP1, TMP3
4392    |.if not DUALNUM
4393    |   stfd f1, 0(RA)
4394    |.endif
4395    |3:
4396    |  ins_next
4397    |
4398    |4:  // Skip holes in array part.
4399    |  addi RC, RC, 1
4400    |  b <1
4401    |
4402    |5:  // Traverse hash part.
4403    |  lwz TMP1, TAB:RB->hmask
4404    |  sub RC, RC, TMP0
4405    |   lwz TMP2, TAB:RB->node
4406    |6:
4407    |  cmplw RC, TMP1			// End of iteration? Branch to ITERL+1.
4408    |   slwi TMP3, RC, 5
4409    |  bgty <3
4410    |   slwi RB, RC, 3
4411    |   sub TMP3, TMP3, RB
4412    |  lwzx RB, TMP2, TMP3
4413    |  lfdx f0, TMP2, TMP3
4414    |   add NODE:TMP3, TMP2, TMP3
4415    |  checknil RB
4416    |     lwz INS, -4(PC)
4417    |  beq >7
4418    |   lfd f1, NODE:TMP3->key
4419    |     addis TMP2, PC, -(BCBIAS_J*4 >> 16)
4420    |  stfd f0, 8(RA)
4421    |    add RC, RC, TMP0
4422    |     decode_RD4 TMP1, INS
4423    |   stfd f1, 0(RA)
4424    |    addi RC, RC, 1
4425    |     add PC, TMP1, TMP2
4426    |    stw RC, -4(RA)			// Update control var.
4427    |  b <3
4428    |
4429    |7:  // Skip holes in hash part.
4430    |  addi RC, RC, 1
4431    |  b <6
4432    break;
4433
4434  case BC_ISNEXT:
4435    |  // RA = base*8, RD = target (points to ITERN)
4436    |  add RA, BASE, RA
4437    |  lwz TMP0, -24(RA)
4438    |  lwz CFUNC:TMP1, -20(RA)
4439    |   lwz TMP2, -16(RA)
4440    |    lwz TMP3, -8(RA)
4441    |   cmpwi cr0, TMP2, LJ_TTAB
4442    |  cmpwi cr1, TMP0, LJ_TFUNC
4443    |    cmpwi cr6, TMP3, LJ_TNIL
4444    |  bne cr1, >5
4445    |  lbz TMP1, CFUNC:TMP1->ffid
4446    |   crand 4*cr0+eq, 4*cr0+eq, 4*cr6+eq
4447    |  cmpwi cr7, TMP1, FF_next_N
4448    |    srwi TMP0, RD, 1
4449    |  crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq
4450    |    add TMP3, PC, TMP0
4451    |  bne cr0, >5
4452    |  lus TMP1, 0xfffe
4453    |  ori TMP1, TMP1, 0x7fff
4454    |  stw ZERO, -4(RA)			// Initialize control var.
4455    |  stw TMP1, -8(RA)
4456    |    addis PC, TMP3, -(BCBIAS_J*4 >> 16)
4457    |1:
4458    |  ins_next
4459    |5:  // Despecialize bytecode if any of the checks fail.
4460    |  li TMP0, BC_JMP
4461    |   li TMP1, BC_ITERC
4462    |  stb TMP0, -1(PC)
4463    |    addis PC, TMP3, -(BCBIAS_J*4 >> 16)
4464    |   stb TMP1, 3(PC)
4465    |  b <1
4466    break;
4467
4468  case BC_VARG:
4469    |  // RA = base*8, RB = (nresults+1)*8, RC = numparams*8
4470    |  lwz TMP0, FRAME_PC(BASE)
4471    |  add RC, BASE, RC
4472    |   add RA, BASE, RA
4473    |  addi RC, RC, FRAME_VARG
4474    |   add TMP2, RA, RB
4475    |  subi TMP3, BASE, 8		// TMP3 = vtop
4476    |  sub RC, RC, TMP0			// RC = vbase
4477    |  // Note: RC may now be even _above_ BASE if nargs was < numparams.
4478    |  cmplwi cr1, RB, 0
4479    |.if PPE
4480    |   sub TMP1, TMP3, RC
4481    |   cmpwi TMP1, 0
4482    |.else
4483    |   sub. TMP1, TMP3, RC
4484    |.endif
4485    |  beq cr1, >5			// Copy all varargs?
4486    |   subi TMP2, TMP2, 16
4487    |   ble >2				// No vararg slots?
4488    |1:  // Copy vararg slots to destination slots.
4489    |  lfd f0, 0(RC)
4490    |   addi RC, RC, 8
4491    |  stfd f0, 0(RA)
4492    |  cmplw RA, TMP2
4493    |   cmplw cr1, RC, TMP3
4494    |  bge >3				// All destination slots filled?
4495    |    addi RA, RA, 8
4496    |   blt cr1, <1			// More vararg slots?
4497    |2:  // Fill up remainder with nil.
4498    |  stw TISNIL, 0(RA)
4499    |  cmplw RA, TMP2
4500    |   addi RA, RA, 8
4501    |  blt <2
4502    |3:
4503    |  ins_next
4504    |
4505    |5:  // Copy all varargs.
4506    |  lwz TMP0, L->maxstack
4507    |   li MULTRES, 8			// MULTRES = (0+1)*8
4508    |  bley <3				// No vararg slots?
4509    |  add TMP2, RA, TMP1
4510    |  cmplw TMP2, TMP0
4511    |   addi MULTRES, TMP1, 8
4512    |  bgt >7
4513    |6:
4514    |  lfd f0, 0(RC)
4515    |   addi RC, RC, 8
4516    |  stfd f0, 0(RA)
4517    |  cmplw RC, TMP3
4518    |   addi RA, RA, 8
4519    |  blt <6				// More vararg slots?
4520    |  b <3
4521    |
4522    |7:  // Grow stack for varargs.
4523    |  mr CARG1, L
4524    |   stp RA, L->top
4525    |  sub SAVE0, RC, BASE		// Need delta, because BASE may change.
4526    |   stp BASE, L->base
4527    |  sub RA, RA, BASE
4528    |   stw PC, SAVE_PC
4529    |  srwi CARG2, TMP1, 3
4530    |  bl extern lj_state_growstack	// (lua_State *L, int n)
4531    |  lp BASE, L->base
4532    |  add RA, BASE, RA
4533    |  add RC, BASE, SAVE0
4534    |  subi TMP3, BASE, 8
4535    |  b <6
4536    break;
4537
4538  /* -- Returns ----------------------------------------------------------- */
4539
4540  case BC_RETM:
4541    |  // RA = results*8, RD = extra_nresults*8
4542    |  add RD, RD, MULTRES		// MULTRES >= 8, so RD >= 8.
4543    |  // Fall through. Assumes BC_RET follows.
4544    break;
4545
4546  case BC_RET:
4547    |  // RA = results*8, RD = (nresults+1)*8
4548    |  lwz PC, FRAME_PC(BASE)
4549    |   add RA, BASE, RA
4550    |    mr MULTRES, RD
4551    |1:
4552    |  andix. TMP0, PC, FRAME_TYPE
4553    |   xori TMP1, PC, FRAME_VARG
4554    |  bne ->BC_RETV_Z
4555    |
4556    |->BC_RET_Z:
4557    |  // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return
4558    |   lwz INS, -4(PC)
4559    |  cmpwi RD, 8
4560    |   subi TMP2, BASE, 8
4561    |   subi RC, RD, 8
4562    |   decode_RB8 RB, INS
4563    |  beq >3
4564    |   li TMP1, 0
4565    |2:
4566    |  addi TMP3, TMP1, 8
4567    |   lfdx f0, RA, TMP1
4568    |  cmpw TMP3, RC
4569    |   stfdx f0, TMP2, TMP1
4570    |  beq >3
4571    |  addi TMP1, TMP3, 8
4572    |   lfdx f1, RA, TMP3
4573    |  cmpw TMP1, RC
4574    |   stfdx f1, TMP2, TMP3
4575    |  bne <2
4576    |3:
4577    |5:
4578    |  cmplw RB, RD
4579    |   decode_RA8 RA, INS
4580    |  bgt >6
4581    |   sub BASE, TMP2, RA
4582    |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
4583    |  ins_next1
4584    |  lwz TMP1, LFUNC:TMP1->pc
4585    |  lwz KBASE, PC2PROTO(k)(TMP1)
4586    |  ins_next2
4587    |
4588    |6:  // Fill up results with nil.
4589    |  subi TMP1, RD, 8
4590    |   addi RD, RD, 8
4591    |  stwx TISNIL, TMP2, TMP1
4592    |  b <5
4593    |
4594    |->BC_RETV_Z:  // Non-standard return case.
4595    |  andix. TMP2, TMP1, FRAME_TYPEP
4596    |  bne ->vm_return
4597    |  // Return from vararg function: relocate BASE down.
4598    |  sub BASE, BASE, TMP1
4599    |  lwz PC, FRAME_PC(BASE)
4600    |  b <1
4601    break;
4602
4603  case BC_RET0: case BC_RET1:
4604    |  // RA = results*8, RD = (nresults+1)*8
4605    |  lwz PC, FRAME_PC(BASE)
4606    |   add RA, BASE, RA
4607    |    mr MULTRES, RD
4608    |  andix. TMP0, PC, FRAME_TYPE
4609    |   xori TMP1, PC, FRAME_VARG
4610    |  bney ->BC_RETV_Z
4611    |
4612    |  lwz INS, -4(PC)
4613    |   subi TMP2, BASE, 8
4614    |  decode_RB8 RB, INS
4615    if (op == BC_RET1) {
4616      |  lfd f0, 0(RA)
4617      |  stfd f0, 0(TMP2)
4618    }
4619    |5:
4620    |  cmplw RB, RD
4621    |   decode_RA8 RA, INS
4622    |  bgt >6
4623    |   sub BASE, TMP2, RA
4624    |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
4625    |  ins_next1
4626    |  lwz TMP1, LFUNC:TMP1->pc
4627    |  lwz KBASE, PC2PROTO(k)(TMP1)
4628    |  ins_next2
4629    |
4630    |6:  // Fill up results with nil.
4631    |  subi TMP1, RD, 8
4632    |   addi RD, RD, 8
4633    |  stwx TISNIL, TMP2, TMP1
4634    |  b <5
4635    break;
4636
4637  /* -- Loops and branches ------------------------------------------------ */
4638
4639  case BC_FORL:
4640    |.if JIT
4641    |  hotloop
4642    |.endif
4643    |  // Fall through. Assumes BC_IFORL follows.
4644    break;
4645
4646  case BC_JFORI:
4647  case BC_JFORL:
4648#if !LJ_HASJIT
4649    break;
4650#endif
4651  case BC_FORI:
4652  case BC_IFORL:
4653    |  // RA = base*8, RD = target (after end of loop or start of loop)
4654    vk = (op == BC_IFORL || op == BC_JFORL);
4655    |.if DUALNUM
4656    |  // Integer loop.
4657    |  lwzux TMP1, RA, BASE
4658    |   lwz CARG1, FORL_IDX*8+4(RA)
4659    |  cmplw cr0, TMP1, TISNUM
4660    if (vk) {
4661      |   lwz CARG3, FORL_STEP*8+4(RA)
4662      |  bne >9
4663      |.if GPR64
4664      |  // Need to check overflow for (a<<32) + (b<<32).
4665      |  rldicr TMP0, CARG1, 32, 31
4666      |  rldicr TMP2, CARG3, 32, 31
4667      |  add CARG1, CARG1, CARG3
4668      |  addo. TMP0, TMP0, TMP2
4669      |.else
4670      |  addo. CARG1, CARG1, CARG3
4671      |.endif
4672      |    cmpwi cr6, CARG3, 0
4673      |   lwz CARG2, FORL_STOP*8+4(RA)
4674      |  bso >6
4675      |4:
4676      |  stw CARG1, FORL_IDX*8+4(RA)
4677    } else {
4678      |  lwz TMP3, FORL_STEP*8(RA)
4679      |   lwz CARG3, FORL_STEP*8+4(RA)
4680      |  lwz TMP2, FORL_STOP*8(RA)
4681      |   lwz CARG2, FORL_STOP*8+4(RA)
4682      |  cmplw cr7, TMP3, TISNUM
4683      |  cmplw cr1, TMP2, TISNUM
4684      |  crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq
4685      |  crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
4686      |    cmpwi cr6, CARG3, 0
4687      |  bne >9
4688    }
4689    |    blt cr6, >5
4690    |  cmpw CARG1, CARG2
4691    |1:
4692    |   stw TISNUM, FORL_EXT*8(RA)
4693    if (op != BC_JFORL) {
4694      |  srwi RD, RD, 1
4695    }
4696    |   stw CARG1, FORL_EXT*8+4(RA)
4697    if (op != BC_JFORL) {
4698      |  add RD, PC, RD
4699    }
4700    if (op == BC_FORI) {
4701      |  bgt >3  // See FP loop below.
4702    } else if (op == BC_JFORI) {
4703      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4704      |  bley >7
4705    } else if (op == BC_IFORL) {
4706      |  bgt >2
4707      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4708    } else {
4709      |  bley =>BC_JLOOP
4710    }
4711    |2:
4712    |  ins_next
4713    |5:  // Invert check for negative step.
4714    |  cmpw CARG2, CARG1
4715    |  b <1
4716    if (vk) {
4717      |6:  // Potential overflow.
4718      |  checkov TMP0, <4		// Ignore unrelated overflow.
4719      |  b <2
4720    }
4721    |.endif
4722    if (vk) {
4723      |.if DUALNUM
4724      |9:  // FP loop.
4725      |  lfd f1, FORL_IDX*8(RA)
4726      |.else
4727      |  lfdux f1, RA, BASE
4728      |.endif
4729      |  lfd f3, FORL_STEP*8(RA)
4730      |  lfd f2, FORL_STOP*8(RA)
4731      |   lwz TMP3, FORL_STEP*8(RA)
4732      |  fadd f1, f1, f3
4733      |  stfd f1, FORL_IDX*8(RA)
4734    } else {
4735      |.if DUALNUM
4736      |9:  // FP loop.
4737      |.else
4738      |  lwzux TMP1, RA, BASE
4739      |  lwz TMP3, FORL_STEP*8(RA)
4740      |  lwz TMP2, FORL_STOP*8(RA)
4741      |  cmplw cr0, TMP1, TISNUM
4742      |  cmplw cr7, TMP3, TISNUM
4743      |  cmplw cr1, TMP2, TISNUM
4744      |.endif
4745      |   lfd f1, FORL_IDX*8(RA)
4746      |  crand 4*cr0+lt, 4*cr0+lt, 4*cr7+lt
4747      |  crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
4748      |   lfd f2, FORL_STOP*8(RA)
4749      |  bge ->vmeta_for
4750    }
4751    |  cmpwi cr6, TMP3, 0
4752    if (op != BC_JFORL) {
4753      |  srwi RD, RD, 1
4754    }
4755    |   stfd f1, FORL_EXT*8(RA)
4756    if (op != BC_JFORL) {
4757      |  add RD, PC, RD
4758    }
4759    |  fcmpu cr0, f1, f2
4760    if (op == BC_JFORI) {
4761      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4762    }
4763    |  blt cr6, >5
4764    if (op == BC_FORI) {
4765      |  bgt >3
4766    } else if (op == BC_IFORL) {
4767      |.if DUALNUM
4768      |  bgty <2
4769      |.else
4770      |  bgt >2
4771      |.endif
4772      |1:
4773      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4774    } else if (op == BC_JFORI) {
4775      |  bley >7
4776    } else {
4777      |  bley =>BC_JLOOP
4778    }
4779    |.if DUALNUM
4780    |  b <2
4781    |.else
4782    |2:
4783    |  ins_next
4784    |.endif
4785    |5:  // Negative step.
4786    if (op == BC_FORI) {
4787      |  bge <2
4788      |3:  // Used by integer loop, too.
4789      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4790    } else if (op == BC_IFORL) {
4791      |  bgey <1
4792    } else if (op == BC_JFORI) {
4793      |  bgey >7
4794    } else {
4795      |  bgey =>BC_JLOOP
4796    }
4797    |  b <2
4798    if (op == BC_JFORI) {
4799      |7:
4800      |  lwz INS, -4(PC)
4801      |  decode_RD8 RD, INS
4802      |  b =>BC_JLOOP
4803    }
4804    break;
4805
4806  case BC_ITERL:
4807    |.if JIT
4808    |  hotloop
4809    |.endif
4810    |  // Fall through. Assumes BC_IITERL follows.
4811    break;
4812
4813  case BC_JITERL:
4814#if !LJ_HASJIT
4815    break;
4816#endif
4817  case BC_IITERL:
4818    |  // RA = base*8, RD = target
4819    |  lwzux TMP1, RA, BASE
4820    |   lwz TMP2, 4(RA)
4821    |  checknil TMP1; beq >1		// Stop if iterator returned nil.
4822    if (op == BC_JITERL) {
4823      |  stw TMP1, -8(RA)
4824      |   stw TMP2, -4(RA)
4825      |  b =>BC_JLOOP
4826    } else {
4827      |  branch_RD			// Otherwise save control var + branch.
4828      |  stw TMP1, -8(RA)
4829      |   stw TMP2, -4(RA)
4830    }
4831    |1:
4832    |  ins_next
4833    break;
4834
4835  case BC_LOOP:
4836    |  // RA = base*8, RD = target (loop extent)
4837    |  // Note: RA/RD is only used by trace recorder to determine scope/extent
4838    |  // This opcode does NOT jump, it's only purpose is to detect a hot loop.
4839    |.if JIT
4840    |  hotloop
4841    |.endif
4842    |  // Fall through. Assumes BC_ILOOP follows.
4843    break;
4844
4845  case BC_ILOOP:
4846    |  // RA = base*8, RD = target (loop extent)
4847    |  ins_next
4848    break;
4849
4850  case BC_JLOOP:
4851    |.if JIT
4852    |  // RA = base*8 (ignored), RD = traceno*8
4853    |  lwz TMP1, DISPATCH_J(trace)(DISPATCH)
4854    |  srwi RD, RD, 1
4855    |  // Traces on PPC don't store the trace number, so use 0.
4856    |   stw ZERO, DISPATCH_GL(vmstate)(DISPATCH)
4857    |  lwzx TRACE:TMP2, TMP1, RD
4858    |  clrso TMP1
4859    |  lp TMP2, TRACE:TMP2->mcode
4860    |   stw BASE, DISPATCH_GL(jit_base)(DISPATCH)
4861    |  mtctr TMP2
4862    |   stw L, DISPATCH_GL(jit_L)(DISPATCH)
4863    |   addi JGL, DISPATCH, GG_DISP2G+32768
4864    |  bctr
4865    |.endif
4866    break;
4867
4868  case BC_JMP:
4869    |  // RA = base*8 (only used by trace recorder), RD = target
4870    |  branch_RD
4871    |  ins_next
4872    break;
4873
4874  /* -- Function headers -------------------------------------------------- */
4875
4876  case BC_FUNCF:
4877    |.if JIT
4878    |  hotcall
4879    |.endif
4880  case BC_FUNCV:  /* NYI: compiled vararg functions. */
4881    |  // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow.
4882    break;
4883
4884  case BC_JFUNCF:
4885#if !LJ_HASJIT
4886    break;
4887#endif
4888  case BC_IFUNCF:
4889    |  // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
4890    |  lwz TMP2, L->maxstack
4891    |   lbz TMP1, -4+PC2PROTO(numparams)(PC)
4892    |    lwz KBASE, -4+PC2PROTO(k)(PC)
4893    |  cmplw RA, TMP2
4894    |   slwi TMP1, TMP1, 3
4895    |  bgt ->vm_growstack_l
4896    if (op != BC_JFUNCF) {
4897      |  ins_next1
4898    }
4899    |2:
4900    |  cmplw NARGS8:RC, TMP1		// Check for missing parameters.
4901    |  blt >3
4902    if (op == BC_JFUNCF) {
4903      |  decode_RD8 RD, INS
4904      |  b =>BC_JLOOP
4905    } else {
4906      |  ins_next2
4907    }
4908    |
4909    |3:  // Clear missing parameters.
4910    |  stwx TISNIL, BASE, NARGS8:RC
4911    |  addi NARGS8:RC, NARGS8:RC, 8
4912    |  b <2
4913    break;
4914
4915  case BC_JFUNCV:
4916#if !LJ_HASJIT
4917    break;
4918#endif
4919    |  NYI  // NYI: compiled vararg functions
4920    break;  /* NYI: compiled vararg functions. */
4921
4922  case BC_IFUNCV:
4923    |  // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
4924    |  lwz TMP2, L->maxstack
4925    |   add TMP1, BASE, RC
4926    |  add TMP0, RA, RC
4927    |   stw LFUNC:RB, 4(TMP1)		// Store copy of LFUNC.
4928    |   addi TMP3, RC, 8+FRAME_VARG
4929    |    lwz KBASE, -4+PC2PROTO(k)(PC)
4930    |  cmplw TMP0, TMP2
4931    |   stw TMP3, 0(TMP1)		// Store delta + FRAME_VARG.
4932    |  bge ->vm_growstack_l
4933    |  lbz TMP2, -4+PC2PROTO(numparams)(PC)
4934    |   mr RA, BASE
4935    |   mr RC, TMP1
4936    |  ins_next1
4937    |  cmpwi TMP2, 0
4938    |   addi BASE, TMP1, 8
4939    |  beq >3
4940    |1:
4941    |  cmplw RA, RC			// Less args than parameters?
4942    |   lwz TMP0, 0(RA)
4943    |   lwz TMP3, 4(RA)
4944    |  bge >4
4945    |    stw TISNIL, 0(RA)		// Clear old fixarg slot (help the GC).
4946    |    addi RA, RA, 8
4947    |2:
4948    |  addic. TMP2, TMP2, -1
4949    |   stw TMP0, 8(TMP1)
4950    |   stw TMP3, 12(TMP1)
4951    |    addi TMP1, TMP1, 8
4952    |  bne <1
4953    |3:
4954    |  ins_next2
4955    |
4956    |4:  // Clear missing parameters.
4957    |  li TMP0, LJ_TNIL
4958    |  b <2
4959    break;
4960
4961  case BC_FUNCC:
4962  case BC_FUNCCW:
4963    |  // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8
4964    if (op == BC_FUNCC) {
4965      |  lp RD, CFUNC:RB->f
4966    } else {
4967      |  lp RD, DISPATCH_GL(wrapf)(DISPATCH)
4968    }
4969    |   add TMP1, RA, NARGS8:RC
4970    |   lwz TMP2, L->maxstack
4971    |  .toc lp TMP3, 0(RD)
4972    |    add RC, BASE, NARGS8:RC
4973    |   stp BASE, L->base
4974    |   cmplw TMP1, TMP2
4975    |    stp RC, L->top
4976    |     li_vmstate C
4977    |.if TOC
4978    |  mtctr TMP3
4979    |.else
4980    |  mtctr RD
4981    |.endif
4982    if (op == BC_FUNCCW) {
4983      |  lp CARG2, CFUNC:RB->f
4984    }
4985    |  mr CARG1, L
4986    |   bgt ->vm_growstack_c		// Need to grow stack.
4987    |  .toc lp TOCREG, TOC_OFS(RD)
4988    |  .tocenv lp ENVREG, ENV_OFS(RD)
4989    |     st_vmstate
4990    |  bctrl				// (lua_State *L [, lua_CFunction f])
4991    |  // Returns nresults.
4992    |  lp BASE, L->base
4993    |  .toc ld TOCREG, SAVE_TOC
4994    |   slwi RD, CRET1, 3
4995    |  lp TMP1, L->top
4996    |    li_vmstate INTERP
4997    |  lwz PC, FRAME_PC(BASE)		// Fetch PC of caller.
4998    |   sub RA, TMP1, RD		// RA = L->top - nresults*8
4999    |    st_vmstate
5000    |  b ->vm_returnc
5001    break;
5002
5003  /* ---------------------------------------------------------------------- */
5004
5005  default:
5006    fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]);
5007    exit(2);
5008    break;
5009  }
5010}
5011
5012static int build_backend(BuildCtx *ctx)
5013{
5014  int op;
5015
5016  dasm_growpc(Dst, BC__MAX);
5017
5018  build_subroutines(ctx);
5019
5020  |.code_op
5021  for (op = 0; op < BC__MAX; op++)
5022    build_ins(ctx, (BCOp)op, op);
5023
5024  return BC__MAX;
5025}
5026
5027/* Emit pseudo frame-info for all assembler functions. */
5028static void emit_asm_debug(BuildCtx *ctx)
5029{
5030  int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code);
5031  int i;
5032  switch (ctx->mode) {
5033  case BUILD_elfasm:
5034    fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n");
5035    fprintf(ctx->fp,
5036	".Lframe0:\n"
5037	"\t.long .LECIE0-.LSCIE0\n"
5038	".LSCIE0:\n"
5039	"\t.long 0xffffffff\n"
5040	"\t.byte 0x1\n"
5041	"\t.string \"\"\n"
5042	"\t.uleb128 0x1\n"
5043	"\t.sleb128 -4\n"
5044	"\t.byte 65\n"
5045	"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
5046	"\t.align 2\n"
5047	".LECIE0:\n\n");
5048    fprintf(ctx->fp,
5049	".LSFDE0:\n"
5050	"\t.long .LEFDE0-.LASFDE0\n"
5051	".LASFDE0:\n"
5052	"\t.long .Lframe0\n"
5053	"\t.long .Lbegin\n"
5054	"\t.long %d\n"
5055	"\t.byte 0xe\n\t.uleb128 %d\n"
5056	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5057	"\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n",
5058	fcofs, CFRAME_SIZE);
5059    for (i = 14; i <= 31; i++)
5060      fprintf(ctx->fp,
5061	"\t.byte %d\n\t.uleb128 %d\n"
5062	"\t.byte %d\n\t.uleb128 %d\n",
5063	0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i));
5064    fprintf(ctx->fp,
5065	"\t.align 2\n"
5066	".LEFDE0:\n\n");
5067#if LJ_HASFFI
5068    fprintf(ctx->fp,
5069	".LSFDE1:\n"
5070	"\t.long .LEFDE1-.LASFDE1\n"
5071	".LASFDE1:\n"
5072	"\t.long .Lframe0\n"
5073#if LJ_TARGET_PS3
5074	"\t.long .lj_vm_ffi_call\n"
5075#else
5076	"\t.long lj_vm_ffi_call\n"
5077#endif
5078	"\t.long %d\n"
5079	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5080	"\t.byte 0x8e\n\t.uleb128 2\n"
5081	"\t.byte 0xd\n\t.uleb128 0xe\n"
5082	"\t.align 2\n"
5083	".LEFDE1:\n\n", (int)ctx->codesz - fcofs);
5084#endif
5085#if !LJ_NO_UNWIND
5086    fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n");
5087    fprintf(ctx->fp,
5088	".Lframe1:\n"
5089	"\t.long .LECIE1-.LSCIE1\n"
5090	".LSCIE1:\n"
5091	"\t.long 0\n"
5092	"\t.byte 0x1\n"
5093	"\t.string \"zPR\"\n"
5094	"\t.uleb128 0x1\n"
5095	"\t.sleb128 -4\n"
5096	"\t.byte 65\n"
5097	"\t.uleb128 6\n"			/* augmentation length */
5098	"\t.byte 0x1b\n"			/* pcrel|sdata4 */
5099	"\t.long lj_err_unwind_dwarf-.\n"
5100	"\t.byte 0x1b\n"			/* pcrel|sdata4 */
5101	"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
5102	"\t.align 2\n"
5103	".LECIE1:\n\n");
5104    fprintf(ctx->fp,
5105	".LSFDE2:\n"
5106	"\t.long .LEFDE2-.LASFDE2\n"
5107	".LASFDE2:\n"
5108	"\t.long .LASFDE2-.Lframe1\n"
5109	"\t.long .Lbegin-.\n"
5110	"\t.long %d\n"
5111	"\t.uleb128 0\n"			/* augmentation length */
5112	"\t.byte 0xe\n\t.uleb128 %d\n"
5113	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5114	"\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n",
5115	fcofs, CFRAME_SIZE);
5116    for (i = 14; i <= 31; i++)
5117      fprintf(ctx->fp,
5118	"\t.byte %d\n\t.uleb128 %d\n"
5119	"\t.byte %d\n\t.uleb128 %d\n",
5120	0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i));
5121    fprintf(ctx->fp,
5122	"\t.align 2\n"
5123	".LEFDE2:\n\n");
5124#if LJ_HASFFI
5125    fprintf(ctx->fp,
5126	".Lframe2:\n"
5127	"\t.long .LECIE2-.LSCIE2\n"
5128	".LSCIE2:\n"
5129	"\t.long 0\n"
5130	"\t.byte 0x1\n"
5131	"\t.string \"zR\"\n"
5132	"\t.uleb128 0x1\n"
5133	"\t.sleb128 -4\n"
5134	"\t.byte 65\n"
5135	"\t.uleb128 1\n"			/* augmentation length */
5136	"\t.byte 0x1b\n"			/* pcrel|sdata4 */
5137	"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
5138	"\t.align 2\n"
5139	".LECIE2:\n\n");
5140    fprintf(ctx->fp,
5141	".LSFDE3:\n"
5142	"\t.long .LEFDE3-.LASFDE3\n"
5143	".LASFDE3:\n"
5144	"\t.long .LASFDE3-.Lframe2\n"
5145	"\t.long lj_vm_ffi_call-.\n"
5146	"\t.long %d\n"
5147	"\t.uleb128 0\n"			/* augmentation length */
5148	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5149	"\t.byte 0x8e\n\t.uleb128 2\n"
5150	"\t.byte 0xd\n\t.uleb128 0xe\n"
5151	"\t.align 2\n"
5152	".LEFDE3:\n\n", (int)ctx->codesz - fcofs);
5153#endif
5154#endif
5155    break;
5156  default:
5157    break;
5158  }
5159}
5160
5161