1 #ifndef GC_CPP_H
2 #define GC_CPP_H
3 /****************************************************************************
4 Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
5 
6 THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
7 OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
8 
9 Permission is hereby granted to use or copy this program for any
10 purpose, provided the above notices are retained on all copies.
11 Permission to modify the code and to distribute modified code is
12 granted, provided the above notices are retained, and a notice that
13 the code was modified is included with the above copyright notice.
14 ****************************************************************************
15 
16 C++ Interface to the Boehm Collector
17 
18     John R. Ellis and Jesse Hull
19 
20 This interface provides access to the Boehm collector.  It provides
21 basic facilities similar to those described in "Safe, Efficient
22 Garbage Collection for C++", by John R. Elis and David L. Detlefs
23 (ftp://ftp.parc.xerox.com/pub/ellis/gc).
24 
25 All heap-allocated objects are either "collectable" or
26 "uncollectable".  Programs must explicitly delete uncollectable
27 objects, whereas the garbage collector will automatically delete
28 collectable objects when it discovers them to be inaccessible.
29 Collectable objects may freely point at uncollectable objects and vice
30 versa.
31 
32 Objects allocated with the built-in "::operator new" are uncollectable.
33 
34 Objects derived from class "gc" are collectable.  For example:
35 
36     class A: public gc {...};
37     A* a = new A;       // a is collectable.
38 
39 Collectable instances of non-class types can be allocated using the GC
40 (or UseGC) placement:
41 
42     typedef int A[ 10 ];
43     A* a = new (GC) A;
44 
45 Uncollectable instances of classes derived from "gc" can be allocated
46 using the NoGC placement:
47 
48     class A: public gc {...};
49     A* a = new (NoGC) A;   // a is uncollectable.
50 
51 Both uncollectable and collectable objects can be explicitly deleted
52 with "delete", which invokes an object's destructors and frees its
53 storage immediately.
54 
55 A collectable object may have a clean-up function, which will be
56 invoked when the collector discovers the object to be inaccessible.
57 An object derived from "gc_cleanup" or containing a member derived
58 from "gc_cleanup" has a default clean-up function that invokes the
59 object's destructors.  Explicit clean-up functions may be specified as
60 an additional placement argument:
61 
62     A* a = ::new (GC, MyCleanup) A;
63 
64 An object is considered "accessible" by the collector if it can be
65 reached by a path of pointers from static variables, automatic
66 variables of active functions, or from some object with clean-up
67 enabled; pointers from an object to itself are ignored.
68 
69 Thus, if objects A and B both have clean-up functions, and A points at
70 B, B is considered accessible.  After A's clean-up is invoked and its
71 storage released, B will then become inaccessible and will have its
72 clean-up invoked.  If A points at B and B points to A, forming a
73 cycle, then that's considered a storage leak, and neither will be
74 collectable.  See the interface gc.h for low-level facilities for
75 handling such cycles of objects with clean-up.
76 
77 The collector cannot guarantee that it will find all inaccessible
78 objects.  In practice, it finds almost all of them.
79 
80 
81 Cautions:
82 
83 1. Be sure the collector has been augmented with "make c++".
84 
85 2.  If your compiler supports the new "operator new[]" syntax, then
86 add -DGC_OPERATOR_NEW_ARRAY to the Makefile.
87 
88 If your compiler doesn't support "operator new[]", beware that an
89 array of type T, where T is derived from "gc", may or may not be
90 allocated as a collectable object (it depends on the compiler).  Use
91 the explicit GC placement to make the array collectable.  For example:
92 
93     class A: public gc {...};
94     A* a1 = new A[ 10 ];        // collectable or uncollectable?
95     A* a2 = new (GC) A[ 10 ];   // collectable
96 
97 3. The destructors of collectable arrays of objects derived from
98 "gc_cleanup" will not be invoked properly.  For example:
99 
100     class A: public gc_cleanup {...};
101     A* a = new (GC) A[ 10 ];    // destructors not invoked correctly
102 
103 Typically, only the destructor for the first element of the array will
104 be invoked when the array is garbage-collected.  To get all the
105 destructors of any array executed, you must supply an explicit
106 clean-up function:
107 
108     A* a = new (GC, MyCleanUp) A[ 10 ];
109 
110 (Implementing clean-up of arrays correctly, portably, and in a way
111 that preserves the correct exception semantics requires a language
112 extension, e.g. the "gc" keyword.)
113 
114 4. Compiler bugs:
115 
116 * Solaris 2's CC (SC3.0) doesn't implement t->~T() correctly, so the
117 destructors of classes derived from gc_cleanup won't be invoked.
118 You'll have to explicitly register a clean-up function with
119 new-placement syntax.
120 
121 * Evidently cfront 3.0 does not allow destructors to be explicitly
122 invoked using the ANSI-conforming syntax t->~T().  If you're using
123 cfront 3.0, you'll have to comment out the class gc_cleanup, which
124 uses explicit invocation.
125 
126 5. GC name conflicts:
127 
128 Many other systems seem to use the identifier "GC" as an abbreviation
129 for "Graphics Context".  Since version 5.0, GC placement has been replaced
130 by UseGC.  GC is an alias for UseGC, unless GC_NAME_CONFLICT is defined.
131 
132 ****************************************************************************/
133 
134 #include "gc.h"
135 
136 #ifndef THINK_CPLUS
137 #  define GC_cdecl
138 #else
139 #  define GC_cdecl _cdecl
140 #endif
141 
142 #if ! defined( GC_NO_OPERATOR_NEW_ARRAY ) \
143     && !defined(_ENABLE_ARRAYNEW) /* Digimars */ \
144     && (defined(__BORLANDC__) && (__BORLANDC__ < 0x450) \
145 	|| (defined(__GNUC__) && \
146 	    (__GNUC__ < 2 || __GNUC__ == 2 && __GNUC_MINOR__ < 6)) \
147 	|| (defined(__WATCOMC__) && __WATCOMC__ < 1050))
148 #   define GC_NO_OPERATOR_NEW_ARRAY
149 #endif
150 
151 #if !defined(GC_NO_OPERATOR_NEW_ARRAY) && !defined(GC_OPERATOR_NEW_ARRAY)
152 #   define GC_OPERATOR_NEW_ARRAY
153 #endif
154 
155 #if    ! defined ( __BORLANDC__ )  /* Confuses the Borland compiler. */ \
156     && ! defined ( __sgi )
157 #  define GC_PLACEMENT_DELETE
158 #endif
159 
160 enum GCPlacement {UseGC,
161 #ifndef GC_NAME_CONFLICT
162 		  GC=UseGC,
163 #endif
164                   NoGC, PointerFreeGC};
165 
166 class gc {public:
167     inline void* operator new( size_t size );
168     inline void* operator new( size_t size, GCPlacement gcp );
169     inline void* operator new( size_t size, void *p );
170     	/* Must be redefined here, since the other overloadings	*/
171     	/* hide the global definition.				*/
172     inline void operator delete( void* obj );
173 #   ifdef GC_PLACEMENT_DELETE
174       inline void operator delete( void*, void* );
175 #   endif
176 
177 #ifdef GC_OPERATOR_NEW_ARRAY
178     inline void* operator new[]( size_t size );
179     inline void* operator new[]( size_t size, GCPlacement gcp );
180     inline void* operator new[]( size_t size, void *p );
181     inline void operator delete[]( void* obj );
182 #   ifdef GC_PLACEMENT_DELETE
183       inline void gc::operator delete[]( void*, void* );
184 #   endif
185 #endif /* GC_OPERATOR_NEW_ARRAY */
186     };
187     /*
188     Instances of classes derived from "gc" will be allocated in the
189     collected heap by default, unless an explicit NoGC placement is
190     specified. */
191 
192 class gc_cleanup: virtual public gc {public:
193     inline gc_cleanup();
194     inline virtual ~gc_cleanup();
195 private:
196     inline static void GC_cdecl cleanup( void* obj, void* clientData );};
197     /*
198     Instances of classes derived from "gc_cleanup" will be allocated
199     in the collected heap by default.  When the collector discovers an
200     inaccessible object derived from "gc_cleanup" or containing a
201     member derived from "gc_cleanup", its destructors will be
202     invoked. */
203 
204 extern "C" {typedef void (*GCCleanUpFunc)( void* obj, void* clientData );}
205 
206 #ifdef _MSC_VER
207   // Disable warning that "no matching operator delete found; memory will
208   // not be freed if initialization throws an exception"
209 # pragma warning(disable:4291)
210 #endif
211 
212 inline void* operator new(
213     size_t size,
214     GCPlacement gcp,
215     GCCleanUpFunc cleanup = 0,
216     void* clientData = 0 );
217     /*
218     Allocates a collectable or uncollected object, according to the
219     value of "gcp".
220 
221     For collectable objects, if "cleanup" is non-null, then when the
222     allocated object "obj" becomes inaccessible, the collector will
223     invoke the function "cleanup( obj, clientData )" but will not
224     invoke the object's destructors.  It is an error to explicitly
225     delete an object allocated with a non-null "cleanup".
226 
227     It is an error to specify a non-null "cleanup" with NoGC or for
228     classes derived from "gc_cleanup" or containing members derived
229     from "gc_cleanup". */
230 
231 
232 #ifdef _MSC_VER
233  /** This ensures that the system default operator new[] doesn't get
234   *  undefined, which is what seems to happen on VC++ 6 for some reason
235   *  if we define a multi-argument operator new[].
236   *  There seems to be really redirect new in this environment without
237   *  including this everywhere.
238   */
239  void *operator new[]( size_t size );
240 
241  void operator delete[](void* obj);
242 
243  void* operator new( size_t size);
244 
245  void operator delete(void* obj);
246 
247  // This new operator is used by VC++ in case of Debug builds !
248  void* operator new(  size_t size,
249 		      int ,//nBlockUse,
250 		      const char * szFileName,
251 		      int nLine );
252 #endif /* _MSC_VER */
253 
254 
255 #ifdef GC_OPERATOR_NEW_ARRAY
256 
257 inline void* operator new[](
258     size_t size,
259     GCPlacement gcp,
260     GCCleanUpFunc cleanup = 0,
261     void* clientData = 0 );
262     /*
263     The operator new for arrays, identical to the above. */
264 
265 #endif /* GC_OPERATOR_NEW_ARRAY */
266 
267 /****************************************************************************
268 
269 Inline implementation
270 
271 ****************************************************************************/
272 
new(size_t size)273 inline void* gc::operator new( size_t size ) {
274     return GC_MALLOC( size );}
275 
new(size_t size,GCPlacement gcp)276 inline void* gc::operator new( size_t size, GCPlacement gcp ) {
277     if (gcp == UseGC)
278         return GC_MALLOC( size );
279     else if (gcp == PointerFreeGC)
280 	return GC_MALLOC_ATOMIC( size );
281     else
282         return GC_MALLOC_UNCOLLECTABLE( size );}
283 
new(size_t size,void * p)284 inline void* gc::operator new( size_t size, void *p ) {
285     return p;}
286 
delete(void * obj)287 inline void gc::operator delete( void* obj ) {
288     GC_FREE( obj );}
289 
290 #ifdef GC_PLACEMENT_DELETE
delete(void *,void *)291   inline void gc::operator delete( void*, void* ) {}
292 #endif
293 
294 #ifdef GC_OPERATOR_NEW_ARRAY
295 
296 inline void* gc::operator new[]( size_t size ) {
297     return gc::operator new( size );}
298 
299 inline void* gc::operator new[]( size_t size, GCPlacement gcp ) {
300     return gc::operator new( size, gcp );}
301 
302 inline void* gc::operator new[]( size_t size, void *p ) {
303     return p;}
304 
305 inline void gc::operator delete[]( void* obj ) {
306     gc::operator delete( obj );}
307 
308 #ifdef GC_PLACEMENT_DELETE
309   inline void gc::operator delete[]( void*, void* ) {}
310 #endif
311 
312 #endif /* GC_OPERATOR_NEW_ARRAY */
313 
314 
~gc_cleanup()315 inline gc_cleanup::~gc_cleanup() {
316     GC_register_finalizer_ignore_self( GC_base(this), 0, 0, 0, 0 );}
317 
cleanup(void * obj,void * displ)318 inline void gc_cleanup::cleanup( void* obj, void* displ ) {
319     ((gc_cleanup*) ((char*) obj + (ptrdiff_t) displ))->~gc_cleanup();}
320 
gc_cleanup()321 inline gc_cleanup::gc_cleanup() {
322     GC_finalization_proc oldProc;
323     void* oldData;
324     void* base = GC_base( (void *) this );
325     if (0 != base)  {
326       // Don't call the debug version, since this is a real base address.
327       GC_register_finalizer_ignore_self(
328         base, (GC_finalization_proc)cleanup, (void*) ((char*) this - (char*) base),
329         &oldProc, &oldData );
330       if (0 != oldProc) {
331         GC_register_finalizer_ignore_self( base, oldProc, oldData, 0, 0 );}}}
332 
new(size_t size,GCPlacement gcp,GCCleanUpFunc cleanup,void * clientData)333 inline void* operator new(
334     size_t size,
335     GCPlacement gcp,
336     GCCleanUpFunc cleanup,
337     void* clientData )
338 {
339     void* obj;
340 
341     if (gcp == UseGC) {
342         obj = GC_MALLOC( size );
343         if (cleanup != 0)
344             GC_REGISTER_FINALIZER_IGNORE_SELF(
345                 obj, cleanup, clientData, 0, 0 );}
346     else if (gcp == PointerFreeGC) {
347         obj = GC_MALLOC_ATOMIC( size );}
348     else {
349         obj = GC_MALLOC_UNCOLLECTABLE( size );};
350     return obj;}
351 
352 
353 #ifdef GC_OPERATOR_NEW_ARRAY
354 
355 inline void* operator new[](
356     size_t size,
357     GCPlacement gcp,
358     GCCleanUpFunc cleanup,
359     void* clientData )
360 {
361     return ::operator new( size, gcp, cleanup, clientData );}
362 
363 #endif /* GC_OPERATOR_NEW_ARRAY */
364 
365 
366 #endif /* GC_CPP_H */
367 
368