1 /*    regcomp.c
2  */
3 
4 /*
5  * 'A fair jaw-cracker dwarf-language must be.'            --Samwise Gamgee
6  *
7  *     [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
8  */
9 
10 /* This file contains functions for compiling a regular expression.  See
11  * also regexec.c which funnily enough, contains functions for executing
12  * a regular expression.
13  *
14  * This file is also copied at build time to ext/re/re_comp.c, where
15  * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16  * This causes the main functions to be compiled under new names and with
17  * debugging support added, which makes "use re 'debug'" work.
18  */
19 
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21  * confused with the original package (see point 3 below).  Thanks, Henry!
22  */
23 
24 /* Additional note: this code is very heavily munged from Henry's version
25  * in places.  In some spots I've traded clarity for efficiency, so don't
26  * blame Henry for some of the lack of readability.
27  */
28 
29 /* The names of the functions have been changed from regcomp and
30  * regexec to pregcomp and pregexec in order to avoid conflicts
31  * with the POSIX routines of the same names.
32 */
33 
34 #ifdef PERL_EXT_RE_BUILD
35 #include "re_top.h"
36 #endif
37 
38 /*
39  * pregcomp and pregexec -- regsub and regerror are not used in perl
40  *
41  *	Copyright (c) 1986 by University of Toronto.
42  *	Written by Henry Spencer.  Not derived from licensed software.
43  *
44  *	Permission is granted to anyone to use this software for any
45  *	purpose on any computer system, and to redistribute it freely,
46  *	subject to the following restrictions:
47  *
48  *	1. The author is not responsible for the consequences of use of
49  *		this software, no matter how awful, even if they arise
50  *		from defects in it.
51  *
52  *	2. The origin of this software must not be misrepresented, either
53  *		by explicit claim or by omission.
54  *
55  *	3. Altered versions must be plainly marked as such, and must not
56  *		be misrepresented as being the original software.
57  *
58  *
59  ****    Alterations to Henry's code are...
60  ****
61  ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62  ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63  ****    by Larry Wall and others
64  ****
65  ****    You may distribute under the terms of either the GNU General Public
66  ****    License or the Artistic License, as specified in the README file.
67 
68  *
69  * Beware that some of this code is subtly aware of the way operator
70  * precedence is structured in regular expressions.  Serious changes in
71  * regular-expression syntax might require a total rethink.
72  */
73 
74 /* Note on debug output:
75  *
76  * This is set up so that -Dr turns on debugging like all other flags that are
77  * enabled by -DDEBUGGING.  -Drv gives more verbose output.  This applies to
78  * all regular expressions encountered in a program, and gives a huge amount of
79  * output for all but the shortest programs.
80  *
81  * The ability to output pattern debugging information lexically, and with much
82  * finer grained control was added, with 'use re qw(Debug ....);' available even
83  * in non-DEBUGGING builds.  This is accomplished by copying the contents of
84  * regcomp.c to ext/re/re_comp.c, and regexec.c is copied to ext/re/re_exec.c.
85  * Those files are compiled and linked into the perl executable, and they are
86  * compiled essentially as if DEBUGGING were enabled, and controlled by calls
87  * to re.pm.
88  *
89  * That would normally mean linking errors when two functions of the same name
90  * are attempted to be placed into the same executable.  That is solved in one
91  * of four ways:
92  *  1)  Static functions aren't known outside the file they are in, so for the
93  *      many functions of that type in this file, it just isn't a problem.
94  *  2)  Most externally known functions are enclosed in
95  *          #ifndef PERL_IN_XSUB_RE
96  *          ...
97  *          #endif
98  *      blocks, so there is only one defintion for them in the whole
99  *      executable, the one in regcomp.c (or regexec.c).  The implication of
100  *      that is any debugging info that comes from them is controlled only by
101  *      -Dr.  Further, any static function they call will also be the version
102  *      in regcomp.c (or regexec.c), so its debugging will also be by -Dr.
103  *  3)  About a dozen external functions are re-#defined in ext/re/re_top.h, to
104  *      have different names, so that what gets loaded in the executable is
105  *      'Perl_foo' from regcomp.c (and regexec.c), and the identical function
106  *      from re_comp.c (and re_exec.c), but with the name 'my_foo'  Debugging
107  *      in the 'Perl_foo' versions is controlled by -Dr, but the 'my_foo'
108  *      versions and their callees are under control of re.pm.   The catch is
109  *      that references to all these go through the regexp_engine structure,
110  *      which is initialized in regcomp.h to the Perl_foo versions, and
111  *      substituted out in lexical scopes where 'use re' is in effect to the
112  *      'my_foo' ones.   That structure is public API, so it would be a hard
113  *      sell to add any additional members.
114  *  4)  For functions in regcomp.c and re_comp.c that are called only from,
115  *      respectively, regexec.c and re_exec.c, they can have two different
116  *      names, depending on #ifdef'ing PERL_IN_XSUB_RE, in both regexec.c and
117  *      embed.fnc.
118  *
119  * The bottom line is that if you add code to one of the public functions
120  * listed in ext/re/re_top.h, debugging automagically works.  But if you write
121  * a new function that needs to do debugging or there is a chain of calls from
122  * it that need to do debugging, all functions in the chain should use options
123  * 2) or 4) above.
124  *
125  * A function may have to be split so that debugging stuff is static, but it
126  * calls out to some other function that only gets compiled in regcomp.c to
127  * access data that we don't want to duplicate.
128  */
129 
130 #include "EXTERN.h"
131 #define PERL_IN_REGCOMP_C
132 #include "perl.h"
133 
134 #define REG_COMP_C
135 #ifdef PERL_IN_XSUB_RE
136 #  include "re_comp.h"
137 EXTERN_C const struct regexp_engine my_reg_engine;
138 EXTERN_C const struct regexp_engine wild_reg_engine;
139 #else
140 #  include "regcomp.h"
141 #endif
142 
143 #include "invlist_inline.h"
144 #include "unicode_constants.h"
145 
146 #ifndef STATIC
147 #define	STATIC	static
148 #endif
149 
150 /* this is a chain of data about sub patterns we are processing that
151    need to be handled separately/specially in study_chunk. Its so
152    we can simulate recursion without losing state.  */
153 struct scan_frame;
154 typedef struct scan_frame {
155     regnode *last_regnode;      /* last node to process in this frame */
156     regnode *next_regnode;      /* next node to process when last is reached */
157     U32 prev_recursed_depth;
158     I32 stopparen;              /* what stopparen do we use */
159     bool in_gosub;              /* this or an outer frame is for GOSUB */
160 
161     struct scan_frame *this_prev_frame; /* this previous frame */
162     struct scan_frame *prev_frame;      /* previous frame */
163     struct scan_frame *next_frame;      /* next frame */
164 } scan_frame;
165 
166 /* Certain characters are output as a sequence with the first being a
167  * backslash. */
168 #define isBACKSLASHED_PUNCT(c)  memCHRs("-[]\\^", c)
169 
170 
171 struct RExC_state_t {
172     U32		flags;			/* RXf_* are we folding, multilining? */
173     U32		pm_flags;		/* PMf_* stuff from the calling PMOP */
174     char	*precomp;		/* uncompiled string. */
175     char	*precomp_end;		/* pointer to end of uncompiled string. */
176     REGEXP	*rx_sv;			/* The SV that is the regexp. */
177     regexp	*rx;                    /* perl core regexp structure */
178     regexp_internal	*rxi;           /* internal data for regexp object
179                                            pprivate field */
180     char	*start;			/* Start of input for compile */
181     char	*end;			/* End of input for compile */
182     char	*parse;			/* Input-scan pointer. */
183     char        *copy_start;            /* start of copy of input within
184                                            constructed parse string */
185     char        *save_copy_start;       /* Provides one level of saving
186                                            and restoring 'copy_start' */
187     char        *copy_start_in_input;   /* Position in input string
188                                            corresponding to copy_start */
189     SSize_t	whilem_seen;		/* number of WHILEM in this expr */
190     regnode	*emit_start;		/* Start of emitted-code area */
191     regnode_offset emit;		/* Code-emit pointer */
192     I32		naughty;		/* How bad is this pattern? */
193     I32		sawback;		/* Did we see \1, ...? */
194     SSize_t	size;			/* Number of regnode equivalents in
195                                            pattern */
196     Size_t      sets_depth;              /* Counts recursion depth of already-
197                                            compiled regex set patterns */
198     U32		seen;
199 
200     I32      parens_buf_size;           /* #slots malloced open/close_parens */
201     regnode_offset *open_parens;	/* offsets to open parens */
202     regnode_offset *close_parens;	/* offsets to close parens */
203     HV		*paren_names;		/* Paren names */
204 
205     /* position beyond 'precomp' of the warning message furthest away from
206      * 'precomp'.  During the parse, no warnings are raised for any problems
207      * earlier in the parse than this position.  This works if warnings are
208      * raised the first time a given spot is parsed, and if only one
209      * independent warning is raised for any given spot */
210     Size_t	latest_warn_offset;
211 
212     I32         npar;                   /* Capture buffer count so far in the
213                                            parse, (OPEN) plus one. ("par" 0 is
214                                            the whole pattern)*/
215     I32         total_par;              /* During initial parse, is either 0,
216                                            or -1; the latter indicating a
217                                            reparse is needed.  After that pass,
218                                            it is what 'npar' became after the
219                                            pass.  Hence, it being > 0 indicates
220                                            we are in a reparse situation */
221     I32		nestroot;		/* root parens we are in - used by
222                                            accept */
223     I32		seen_zerolen;
224     regnode     *end_op;                /* END node in program */
225     I32		utf8;		/* whether the pattern is utf8 or not */
226     I32		orig_utf8;	/* whether the pattern was originally in utf8 */
227                                 /* XXX use this for future optimisation of case
228                                  * where pattern must be upgraded to utf8. */
229     I32		uni_semantics;	/* If a d charset modifier should use unicode
230                                    rules, even if the pattern is not in
231                                    utf8 */
232 
233     I32         recurse_count;          /* Number of recurse regops we have generated */
234     regnode	**recurse;		/* Recurse regops */
235     U8          *study_chunk_recursed;  /* bitmap of which subs we have moved
236                                            through */
237     U32         study_chunk_recursed_bytes;  /* bytes in bitmap */
238     I32		in_lookaround;
239     I32		contains_locale;
240     I32		override_recoding;
241     I32         recode_x_to_native;
242     I32		in_multi_char_class;
243     int		code_index;		/* next code_blocks[] slot */
244     struct reg_code_blocks *code_blocks;/* positions of literal (?{})
245                                             within pattern */
246     SSize_t     maxlen;                        /* mininum possible number of chars in string to match */
247     scan_frame *frame_head;
248     scan_frame *frame_last;
249     U32         frame_count;
250     AV         *warn_text;
251     HV         *unlexed_names;
252     SV		*runtime_code_qr;	/* qr with the runtime code blocks */
253 #ifdef DEBUGGING
254     const char  *lastparse;
255     I32         lastnum;
256     U32         study_chunk_recursed_count;
257     AV          *paren_name_list;       /* idx -> name */
258     SV          *mysv1;
259     SV          *mysv2;
260 
261 #define RExC_lastparse	(pRExC_state->lastparse)
262 #define RExC_lastnum	(pRExC_state->lastnum)
263 #define RExC_paren_name_list    (pRExC_state->paren_name_list)
264 #define RExC_study_chunk_recursed_count    (pRExC_state->study_chunk_recursed_count)
265 #define RExC_mysv	(pRExC_state->mysv1)
266 #define RExC_mysv1	(pRExC_state->mysv1)
267 #define RExC_mysv2	(pRExC_state->mysv2)
268 
269 #endif
270     bool        seen_d_op;
271     bool        strict;
272     bool        study_started;
273     bool        in_script_run;
274     bool        use_BRANCHJ;
275     bool        sWARN_EXPERIMENTAL__VLB;
276     bool        sWARN_EXPERIMENTAL__REGEX_SETS;
277 };
278 
279 #define RExC_flags	(pRExC_state->flags)
280 #define RExC_pm_flags	(pRExC_state->pm_flags)
281 #define RExC_precomp	(pRExC_state->precomp)
282 #define RExC_copy_start_in_input (pRExC_state->copy_start_in_input)
283 #define RExC_copy_start_in_constructed  (pRExC_state->copy_start)
284 #define RExC_save_copy_start_in_constructed  (pRExC_state->save_copy_start)
285 #define RExC_precomp_end (pRExC_state->precomp_end)
286 #define RExC_rx_sv	(pRExC_state->rx_sv)
287 #define RExC_rx		(pRExC_state->rx)
288 #define RExC_rxi	(pRExC_state->rxi)
289 #define RExC_start	(pRExC_state->start)
290 #define RExC_end	(pRExC_state->end)
291 #define RExC_parse	(pRExC_state->parse)
292 #define RExC_latest_warn_offset (pRExC_state->latest_warn_offset )
293 #define RExC_whilem_seen	(pRExC_state->whilem_seen)
294 #define RExC_seen_d_op (pRExC_state->seen_d_op) /* Seen something that differs
295                                                    under /d from /u ? */
296 
297 #ifdef RE_TRACK_PATTERN_OFFSETS
298 #  define RExC_offsets	(RExC_rxi->u.offsets) /* I am not like the
299                                                          others */
300 #endif
301 #define RExC_emit	(pRExC_state->emit)
302 #define RExC_emit_start	(pRExC_state->emit_start)
303 #define RExC_sawback	(pRExC_state->sawback)
304 #define RExC_seen	(pRExC_state->seen)
305 #define RExC_size	(pRExC_state->size)
306 #define RExC_maxlen        (pRExC_state->maxlen)
307 #define RExC_npar	(pRExC_state->npar)
308 #define RExC_total_parens	(pRExC_state->total_par)
309 #define RExC_parens_buf_size	(pRExC_state->parens_buf_size)
310 #define RExC_nestroot   (pRExC_state->nestroot)
311 #define RExC_seen_zerolen	(pRExC_state->seen_zerolen)
312 #define RExC_utf8	(pRExC_state->utf8)
313 #define RExC_uni_semantics	(pRExC_state->uni_semantics)
314 #define RExC_orig_utf8	(pRExC_state->orig_utf8)
315 #define RExC_open_parens	(pRExC_state->open_parens)
316 #define RExC_close_parens	(pRExC_state->close_parens)
317 #define RExC_end_op	(pRExC_state->end_op)
318 #define RExC_paren_names	(pRExC_state->paren_names)
319 #define RExC_recurse	(pRExC_state->recurse)
320 #define RExC_recurse_count	(pRExC_state->recurse_count)
321 #define RExC_sets_depth         (pRExC_state->sets_depth)
322 #define RExC_study_chunk_recursed        (pRExC_state->study_chunk_recursed)
323 #define RExC_study_chunk_recursed_bytes  \
324                                    (pRExC_state->study_chunk_recursed_bytes)
325 #define RExC_in_lookaround	(pRExC_state->in_lookaround)
326 #define RExC_contains_locale	(pRExC_state->contains_locale)
327 #define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
328 
329 #ifdef EBCDIC
330 #  define SET_recode_x_to_native(x)                                         \
331                     STMT_START { RExC_recode_x_to_native = (x); } STMT_END
332 #else
333 #  define SET_recode_x_to_native(x) NOOP
334 #endif
335 
336 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
337 #define RExC_frame_head (pRExC_state->frame_head)
338 #define RExC_frame_last (pRExC_state->frame_last)
339 #define RExC_frame_count (pRExC_state->frame_count)
340 #define RExC_strict (pRExC_state->strict)
341 #define RExC_study_started      (pRExC_state->study_started)
342 #define RExC_warn_text (pRExC_state->warn_text)
343 #define RExC_in_script_run      (pRExC_state->in_script_run)
344 #define RExC_use_BRANCHJ        (pRExC_state->use_BRANCHJ)
345 #define RExC_warned_WARN_EXPERIMENTAL__VLB (pRExC_state->sWARN_EXPERIMENTAL__VLB)
346 #define RExC_warned_WARN_EXPERIMENTAL__REGEX_SETS (pRExC_state->sWARN_EXPERIMENTAL__REGEX_SETS)
347 #define RExC_unlexed_names (pRExC_state->unlexed_names)
348 
349 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
350  * a flag to disable back-off on the fixed/floating substrings - if it's
351  * a high complexity pattern we assume the benefit of avoiding a full match
352  * is worth the cost of checking for the substrings even if they rarely help.
353  */
354 #define RExC_naughty	(pRExC_state->naughty)
355 #define TOO_NAUGHTY (10)
356 #define MARK_NAUGHTY(add) \
357     if (RExC_naughty < TOO_NAUGHTY) \
358         RExC_naughty += (add)
359 #define MARK_NAUGHTY_EXP(exp, add) \
360     if (RExC_naughty < TOO_NAUGHTY) \
361         RExC_naughty += RExC_naughty / (exp) + (add)
362 
363 #define	isNON_BRACE_QUANTIFIER(c)   ((c) == '*' || (c) == '+' || (c) == '?')
364 #define	isQUANTIFIER(s,e)  (   isNON_BRACE_QUANTIFIER(*s)                      \
365                             || ((*s) == '{' && regcurly(s, e, NULL)))
366 
367 /*
368  * Flags to be passed up.
369  */
370 #define	HASWIDTH	0x01	/* Known to not match null strings, could match
371                                    non-null ones. */
372 #define	SIMPLE		0x02    /* Exactly one character wide */
373                                 /* (or LNBREAK as a special case) */
374 #define POSTPONED	0x08    /* (?1),(?&name), (??{...}) or similar */
375 #define TRYAGAIN	0x10	/* Weeded out a declaration. */
376 #define RESTART_PARSE   0x20    /* Need to redo the parse */
377 #define NEED_UTF8       0x40    /* In conjunction with RESTART_PARSE, need to
378                                    calcuate sizes as UTF-8 */
379 
380 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
381 
382 /* whether trie related optimizations are enabled */
383 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
384 #define TRIE_STUDY_OPT
385 #define FULL_TRIE_STUDY
386 #define TRIE_STCLASS
387 #endif
388 
389 
390 
391 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
392 #define PBITVAL(paren) (1 << ((paren) & 7))
393 #define PAREN_OFFSET(depth) \
394     (RExC_study_chunk_recursed + (depth) * RExC_study_chunk_recursed_bytes)
395 #define PAREN_TEST(depth, paren) \
396     (PBYTE(PAREN_OFFSET(depth), paren) & PBITVAL(paren))
397 #define PAREN_SET(depth, paren) \
398     (PBYTE(PAREN_OFFSET(depth), paren) |= PBITVAL(paren))
399 #define PAREN_UNSET(depth, paren) \
400     (PBYTE(PAREN_OFFSET(depth), paren) &= ~PBITVAL(paren))
401 
402 #define REQUIRE_UTF8(flagp) STMT_START {                                   \
403                                      if (!UTF) {                           \
404                                          *flagp = RESTART_PARSE|NEED_UTF8; \
405                                          return 0;                         \
406                                      }                                     \
407                              } STMT_END
408 
409 /* /u is to be chosen if we are supposed to use Unicode rules, or if the
410  * pattern is in UTF-8.  This latter condition is in case the outermost rules
411  * are locale.  See GH #17278 */
412 #define toUSE_UNI_CHARSET_NOT_DEPENDS (RExC_uni_semantics || UTF)
413 
414 /* Change from /d into /u rules, and restart the parse.  RExC_uni_semantics is
415  * a flag that indicates we need to override /d with /u as a result of
416  * something in the pattern.  It should only be used in regards to calling
417  * set_regex_charset() or get_regex_charset() */
418 #define REQUIRE_UNI_RULES(flagp, restart_retval)                            \
419     STMT_START {                                                            \
420             if (DEPENDS_SEMANTICS) {                                        \
421                 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET);      \
422                 RExC_uni_semantics = 1;                                     \
423                 if (RExC_seen_d_op && LIKELY(! IN_PARENS_PASS)) {           \
424                     /* No need to restart the parse if we haven't seen      \
425                      * anything that differs between /u and /d, and no need \
426                      * to restart immediately if we're going to reparse     \
427                      * anyway to count parens */                            \
428                     *flagp |= RESTART_PARSE;                                \
429                     return restart_retval;                                  \
430                 }                                                           \
431             }                                                               \
432     } STMT_END
433 
434 #define REQUIRE_BRANCHJ(flagp, restart_retval)                              \
435     STMT_START {                                                            \
436                 RExC_use_BRANCHJ = 1;                                       \
437                 *flagp |= RESTART_PARSE;                                    \
438                 return restart_retval;                                      \
439     } STMT_END
440 
441 /* Until we have completed the parse, we leave RExC_total_parens at 0 or
442  * less.  After that, it must always be positive, because the whole re is
443  * considered to be surrounded by virtual parens.  Setting it to negative
444  * indicates there is some construct that needs to know the actual number of
445  * parens to be properly handled.  And that means an extra pass will be
446  * required after we've counted them all */
447 #define ALL_PARENS_COUNTED (RExC_total_parens > 0)
448 #define REQUIRE_PARENS_PASS                                                 \
449     STMT_START {  /* No-op if have completed a pass */                      \
450                     if (! ALL_PARENS_COUNTED) RExC_total_parens = -1;       \
451     } STMT_END
452 #define IN_PARENS_PASS (RExC_total_parens < 0)
453 
454 
455 /* This is used to return failure (zero) early from the calling function if
456  * various flags in 'flags' are set.  Two flags always cause a return:
457  * 'RESTART_PARSE' and 'NEED_UTF8'.   'extra' can be used to specify any
458  * additional flags that should cause a return; 0 if none.  If the return will
459  * be done, '*flagp' is first set to be all of the flags that caused the
460  * return. */
461 #define RETURN_FAIL_ON_RESTART_OR_FLAGS(flags,flagp,extra)                  \
462     STMT_START {                                                            \
463             if ((flags) & (RESTART_PARSE|NEED_UTF8|(extra))) {              \
464                 *(flagp) = (flags) & (RESTART_PARSE|NEED_UTF8|(extra));     \
465                 return 0;                                                   \
466             }                                                               \
467     } STMT_END
468 
469 #define MUST_RESTART(flags) ((flags) & (RESTART_PARSE))
470 
471 #define RETURN_FAIL_ON_RESTART(flags,flagp)                                 \
472                         RETURN_FAIL_ON_RESTART_OR_FLAGS( flags, flagp, 0)
473 #define RETURN_FAIL_ON_RESTART_FLAGP(flagp)                                 \
474                                     if (MUST_RESTART(*(flagp))) return 0
475 
476 /* This converts the named class defined in regcomp.h to its equivalent class
477  * number defined in handy.h. */
478 #define namedclass_to_classnum(class)  ((int) ((class) / 2))
479 #define classnum_to_namedclass(classnum)  ((classnum) * 2)
480 
481 #define _invlist_union_complement_2nd(a, b, output) \
482                         _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
483 #define _invlist_intersection_complement_2nd(a, b, output) \
484                  _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
485 
486 /* We add a marker if we are deferring expansion of a property that is both
487  * 1) potentiallly user-defined; and
488  * 2) could also be an official Unicode property.
489  *
490  * Without this marker, any deferred expansion can only be for a user-defined
491  * one.  This marker shouldn't conflict with any that could be in a legal name,
492  * and is appended to its name to indicate this.  There is a string and
493  * character form */
494 #define DEFERRED_COULD_BE_OFFICIAL_MARKERs  "~"
495 #define DEFERRED_COULD_BE_OFFICIAL_MARKERc  '~'
496 
497 /* What is infinity for optimization purposes */
498 #define OPTIMIZE_INFTY  SSize_t_MAX
499 
500 /* About scan_data_t.
501 
502   During optimisation we recurse through the regexp program performing
503   various inplace (keyhole style) optimisations. In addition study_chunk
504   and scan_commit populate this data structure with information about
505   what strings MUST appear in the pattern. We look for the longest
506   string that must appear at a fixed location, and we look for the
507   longest string that may appear at a floating location. So for instance
508   in the pattern:
509 
510     /FOO[xX]A.*B[xX]BAR/
511 
512   Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
513   strings (because they follow a .* construct). study_chunk will identify
514   both FOO and BAR as being the longest fixed and floating strings respectively.
515 
516   The strings can be composites, for instance
517 
518      /(f)(o)(o)/
519 
520   will result in a composite fixed substring 'foo'.
521 
522   For each string some basic information is maintained:
523 
524   - min_offset
525     This is the position the string must appear at, or not before.
526     It also implicitly (when combined with minlenp) tells us how many
527     characters must match before the string we are searching for.
528     Likewise when combined with minlenp and the length of the string it
529     tells us how many characters must appear after the string we have
530     found.
531 
532   - max_offset
533     Only used for floating strings. This is the rightmost point that
534     the string can appear at. If set to OPTIMIZE_INFTY it indicates that the
535     string can occur infinitely far to the right.
536     For fixed strings, it is equal to min_offset.
537 
538   - minlenp
539     A pointer to the minimum number of characters of the pattern that the
540     string was found inside. This is important as in the case of positive
541     lookahead or positive lookbehind we can have multiple patterns
542     involved. Consider
543 
544     /(?=FOO).*F/
545 
546     The minimum length of the pattern overall is 3, the minimum length
547     of the lookahead part is 3, but the minimum length of the part that
548     will actually match is 1. So 'FOO's minimum length is 3, but the
549     minimum length for the F is 1. This is important as the minimum length
550     is used to determine offsets in front of and behind the string being
551     looked for.  Since strings can be composites this is the length of the
552     pattern at the time it was committed with a scan_commit. Note that
553     the length is calculated by study_chunk, so that the minimum lengths
554     are not known until the full pattern has been compiled, thus the
555     pointer to the value.
556 
557   - lookbehind
558 
559     In the case of lookbehind the string being searched for can be
560     offset past the start point of the final matching string.
561     If this value was just blithely removed from the min_offset it would
562     invalidate some of the calculations for how many chars must match
563     before or after (as they are derived from min_offset and minlen and
564     the length of the string being searched for).
565     When the final pattern is compiled and the data is moved from the
566     scan_data_t structure into the regexp structure the information
567     about lookbehind is factored in, with the information that would
568     have been lost precalculated in the end_shift field for the
569     associated string.
570 
571   The fields pos_min and pos_delta are used to store the minimum offset
572   and the delta to the maximum offset at the current point in the pattern.
573 
574 */
575 
576 struct scan_data_substrs {
577     SV      *str;       /* longest substring found in pattern */
578     SSize_t min_offset; /* earliest point in string it can appear */
579     SSize_t max_offset; /* latest point in string it can appear */
580     SSize_t *minlenp;   /* pointer to the minlen relevant to the string */
581     SSize_t lookbehind; /* is the pos of the string modified by LB */
582     I32 flags;          /* per substring SF_* and SCF_* flags */
583 };
584 
585 typedef struct scan_data_t {
586     /*I32 len_min;      unused */
587     /*I32 len_delta;    unused */
588     SSize_t pos_min;
589     SSize_t pos_delta;
590     SV *last_found;
591     SSize_t last_end;	    /* min value, <0 unless valid. */
592     SSize_t last_start_min;
593     SSize_t last_start_max;
594     U8      cur_is_floating; /* whether the last_* values should be set as
595                               * the next fixed (0) or floating (1)
596                               * substring */
597 
598     /* [0] is longest fixed substring so far, [1] is longest float so far */
599     struct scan_data_substrs  substrs[2];
600 
601     I32 flags;             /* common SF_* and SCF_* flags */
602     I32 whilem_c;
603     SSize_t *last_closep;
604     regnode_ssc *start_class;
605 } scan_data_t;
606 
607 /*
608  * Forward declarations for pregcomp()'s friends.
609  */
610 
611 static const scan_data_t zero_scan_data = {
612     0, 0, NULL, 0, 0, 0, 0,
613     {
614         { NULL, 0, 0, 0, 0, 0 },
615         { NULL, 0, 0, 0, 0, 0 },
616     },
617     0, 0, NULL, NULL
618 };
619 
620 /* study flags */
621 
622 #define SF_BEFORE_SEOL		0x0001
623 #define SF_BEFORE_MEOL		0x0002
624 #define SF_BEFORE_EOL		(SF_BEFORE_SEOL|SF_BEFORE_MEOL)
625 
626 #define SF_IS_INF		0x0040
627 #define SF_HAS_PAR		0x0080
628 #define SF_IN_PAR		0x0100
629 #define SF_HAS_EVAL		0x0200
630 
631 
632 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
633  * longest substring in the pattern. When it is not set the optimiser keeps
634  * track of position, but does not keep track of the actual strings seen,
635  *
636  * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
637  * /foo/i will not.
638  *
639  * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
640  * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
641  * turned off because of the alternation (BRANCH). */
642 #define SCF_DO_SUBSTR		0x0400
643 
644 #define SCF_DO_STCLASS_AND	0x0800
645 #define SCF_DO_STCLASS_OR	0x1000
646 #define SCF_DO_STCLASS		(SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
647 #define SCF_WHILEM_VISITED_POS	0x2000
648 
649 #define SCF_TRIE_RESTUDY        0x4000 /* Do restudy? */
650 #define SCF_SEEN_ACCEPT         0x8000
651 #define SCF_TRIE_DOING_RESTUDY 0x10000
652 #define SCF_IN_DEFINE          0x20000
653 
654 
655 
656 
657 #define UTF cBOOL(RExC_utf8)
658 
659 /* The enums for all these are ordered so things work out correctly */
660 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
661 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags)                    \
662                                                      == REGEX_DEPENDS_CHARSET)
663 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
664 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags)                \
665                                                      >= REGEX_UNICODE_CHARSET)
666 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags)                      \
667                                             == REGEX_ASCII_RESTRICTED_CHARSET)
668 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags)             \
669                                             >= REGEX_ASCII_RESTRICTED_CHARSET)
670 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags)                 \
671                                         == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
672 
673 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
674 
675 /* For programs that want to be strictly Unicode compatible by dying if any
676  * attempt is made to match a non-Unicode code point against a Unicode
677  * property.  */
678 #define ALWAYS_WARN_SUPER  ckDEAD(packWARN(WARN_NON_UNICODE))
679 
680 #define OOB_NAMEDCLASS		-1
681 
682 /* There is no code point that is out-of-bounds, so this is problematic.  But
683  * its only current use is to initialize a variable that is always set before
684  * looked at. */
685 #define OOB_UNICODE		0xDEADBEEF
686 
687 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
688 
689 
690 /* length of regex to show in messages that don't mark a position within */
691 #define RegexLengthToShowInErrorMessages 127
692 
693 /*
694  * If MARKER[12] are adjusted, be sure to adjust the constants at the top
695  * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
696  * op/pragma/warn/regcomp.
697  */
698 #define MARKER1 "<-- HERE"    /* marker as it appears in the description */
699 #define MARKER2 " <-- HERE "  /* marker as it appears within the regex */
700 
701 #define REPORT_LOCATION " in regex; marked by " MARKER1    \
702                         " in m/%" UTF8f MARKER2 "%" UTF8f "/"
703 
704 /* The code in this file in places uses one level of recursion with parsing
705  * rebased to an alternate string constructed by us in memory.  This can take
706  * the form of something that is completely different from the input, or
707  * something that uses the input as part of the alternate.  In the first case,
708  * there should be no possibility of an error, as we are in complete control of
709  * the alternate string.  But in the second case we don't completely control
710  * the input portion, so there may be errors in that.  Here's an example:
711  *      /[abc\x{DF}def]/ui
712  * is handled specially because \x{df} folds to a sequence of more than one
713  * character: 'ss'.  What is done is to create and parse an alternate string,
714  * which looks like this:
715  *      /(?:\x{DF}|[abc\x{DF}def])/ui
716  * where it uses the input unchanged in the middle of something it constructs,
717  * which is a branch for the DF outside the character class, and clustering
718  * parens around the whole thing. (It knows enough to skip the DF inside the
719  * class while in this substitute parse.) 'abc' and 'def' may have errors that
720  * need to be reported.  The general situation looks like this:
721  *
722  *                                       |<------- identical ------>|
723  *              sI                       tI               xI       eI
724  * Input:       ---------------------------------------------------------------
725  * Constructed:         ---------------------------------------------------
726  *                      sC               tC               xC       eC     EC
727  *                                       |<------- identical ------>|
728  *
729  * sI..eI   is the portion of the input pattern we are concerned with here.
730  * sC..EC   is the constructed substitute parse string.
731  *  sC..tC  is constructed by us
732  *  tC..eC  is an exact duplicate of the portion of the input pattern tI..eI.
733  *          In the diagram, these are vertically aligned.
734  *  eC..EC  is also constructed by us.
735  * xC       is the position in the substitute parse string where we found a
736  *          problem.
737  * xI       is the position in the original pattern corresponding to xC.
738  *
739  * We want to display a message showing the real input string.  Thus we need to
740  * translate from xC to xI.  We know that xC >= tC, since the portion of the
741  * string sC..tC has been constructed by us, and so shouldn't have errors.  We
742  * get:
743  *      xI = tI + (xC - tC)
744  *
745  * When the substitute parse is constructed, the code needs to set:
746  *      RExC_start (sC)
747  *      RExC_end (eC)
748  *      RExC_copy_start_in_input  (tI)
749  *      RExC_copy_start_in_constructed (tC)
750  * and restore them when done.
751  *
752  * During normal processing of the input pattern, both
753  * 'RExC_copy_start_in_input' and 'RExC_copy_start_in_constructed' are set to
754  * sI, so that xC equals xI.
755  */
756 
757 #define sI              RExC_precomp
758 #define eI              RExC_precomp_end
759 #define sC              RExC_start
760 #define eC              RExC_end
761 #define tI              RExC_copy_start_in_input
762 #define tC              RExC_copy_start_in_constructed
763 #define xI(xC)          (tI + (xC - tC))
764 #define xI_offset(xC)   (xI(xC) - sI)
765 
766 #define REPORT_LOCATION_ARGS(xC)                                            \
767     UTF8fARG(UTF,                                                           \
768              (xI(xC) > eI) /* Don't run off end */                          \
769               ? eI - sI   /* Length before the <--HERE */                   \
770               : ((xI_offset(xC) >= 0)                                       \
771                  ? xI_offset(xC)                                            \
772                  : (Perl_croak(aTHX_ "panic: %s: %d: negative offset: %"    \
773                                     IVdf " trying to output message for "   \
774                                     " pattern %.*s",                        \
775                                     __FILE__, __LINE__, (IV) xI_offset(xC), \
776                                     ((int) (eC - sC)), sC), 0)),            \
777              sI),         /* The input pattern printed up to the <--HERE */ \
778     UTF8fARG(UTF,                                                           \
779              (xI(xC) > eI) ? 0 : eI - xI(xC), /* Length after <--HERE */    \
780              (xI(xC) > eI) ? eI : xI(xC))     /* pattern after <--HERE */
781 
782 /* Used to point after bad bytes for an error message, but avoid skipping
783  * past a nul byte. */
784 #define SKIP_IF_CHAR(s, e) (!*(s) ? 0 : UTF ? UTF8_SAFE_SKIP(s, e) : 1)
785 
786 /* Set up to clean up after our imminent demise */
787 #define PREPARE_TO_DIE                                                      \
788     STMT_START {					                    \
789         if (RExC_rx_sv)                                                     \
790             SAVEFREESV(RExC_rx_sv);                                         \
791         if (RExC_open_parens)                                               \
792             SAVEFREEPV(RExC_open_parens);                                   \
793         if (RExC_close_parens)                                              \
794             SAVEFREEPV(RExC_close_parens);                                  \
795     } STMT_END
796 
797 /*
798  * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
799  * arg. Show regex, up to a maximum length. If it's too long, chop and add
800  * "...".
801  */
802 #define _FAIL(code) STMT_START {					\
803     const char *ellipses = "";						\
804     IV len = RExC_precomp_end - RExC_precomp;				\
805                                                                         \
806     PREPARE_TO_DIE;						        \
807     if (len > RegexLengthToShowInErrorMessages) {			\
808         /* chop 10 shorter than the max, to ensure meaning of "..." */	\
809         len = RegexLengthToShowInErrorMessages - 10;			\
810         ellipses = "...";						\
811     }									\
812     code;                                                               \
813 } STMT_END
814 
815 #define	FAIL(msg) _FAIL(			    \
816     Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/",	    \
817             msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
818 
819 #define	FAIL2(msg,arg) _FAIL(			    \
820     Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/",	    \
821             arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
822 
823 #define	FAIL3(msg,arg1,arg2) _FAIL(			    \
824     Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/",	    \
825      arg1, arg2, UTF8fARG(UTF, len, RExC_precomp), ellipses))
826 
827 /*
828  * Simple_vFAIL -- like FAIL, but marks the current location in the scan
829  */
830 #define	Simple_vFAIL(m) STMT_START {					\
831     Perl_croak(aTHX_ "%s" REPORT_LOCATION,				\
832             m, REPORT_LOCATION_ARGS(RExC_parse));	                \
833 } STMT_END
834 
835 /*
836  * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
837  */
838 #define	vFAIL(m) STMT_START {				\
839     PREPARE_TO_DIE;                                     \
840     Simple_vFAIL(m);					\
841 } STMT_END
842 
843 /*
844  * Like Simple_vFAIL(), but accepts two arguments.
845  */
846 #define	Simple_vFAIL2(m,a1) STMT_START {			\
847     S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1,		\
848                       REPORT_LOCATION_ARGS(RExC_parse));	\
849 } STMT_END
850 
851 /*
852  * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
853  */
854 #define	vFAIL2(m,a1) STMT_START {			\
855     PREPARE_TO_DIE;                                     \
856     Simple_vFAIL2(m, a1);				\
857 } STMT_END
858 
859 
860 /*
861  * Like Simple_vFAIL(), but accepts three arguments.
862  */
863 #define	Simple_vFAIL3(m, a1, a2) STMT_START {			\
864     S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, a2,		\
865             REPORT_LOCATION_ARGS(RExC_parse));	                \
866 } STMT_END
867 
868 /*
869  * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
870  */
871 #define	vFAIL3(m,a1,a2) STMT_START {			\
872     PREPARE_TO_DIE;                                     \
873     Simple_vFAIL3(m, a1, a2);				\
874 } STMT_END
875 
876 /*
877  * Like Simple_vFAIL(), but accepts four arguments.
878  */
879 #define	Simple_vFAIL4(m, a1, a2, a3) STMT_START {		\
880     S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, a2, a3,	\
881             REPORT_LOCATION_ARGS(RExC_parse));	                \
882 } STMT_END
883 
884 #define	vFAIL4(m,a1,a2,a3) STMT_START {			\
885     PREPARE_TO_DIE;                                     \
886     Simple_vFAIL4(m, a1, a2, a3);			\
887 } STMT_END
888 
889 /* A specialized version of vFAIL2 that works with UTF8f */
890 #define vFAIL2utf8f(m, a1) STMT_START {             \
891     PREPARE_TO_DIE;                                 \
892     S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1,  \
893             REPORT_LOCATION_ARGS(RExC_parse));      \
894 } STMT_END
895 
896 #define vFAIL3utf8f(m, a1, a2) STMT_START {             \
897     PREPARE_TO_DIE;                                     \
898     S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, a2,  \
899             REPORT_LOCATION_ARGS(RExC_parse));          \
900 } STMT_END
901 
902 /* Setting this to NULL is a signal to not output warnings */
903 #define TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE                               \
904     STMT_START {                                                            \
905       RExC_save_copy_start_in_constructed  = RExC_copy_start_in_constructed;\
906       RExC_copy_start_in_constructed = NULL;                                \
907     } STMT_END
908 #define RESTORE_WARNINGS                                                    \
909     RExC_copy_start_in_constructed = RExC_save_copy_start_in_constructed
910 
911 /* Since a warning can be generated multiple times as the input is reparsed, we
912  * output it the first time we come to that point in the parse, but suppress it
913  * otherwise.  'RExC_copy_start_in_constructed' being NULL is a flag to not
914  * generate any warnings */
915 #define TO_OUTPUT_WARNINGS(loc)                                         \
916   (   RExC_copy_start_in_constructed                                    \
917    && ((xI(loc)) - RExC_precomp) > (Ptrdiff_t) RExC_latest_warn_offset)
918 
919 /* After we've emitted a warning, we save the position in the input so we don't
920  * output it again */
921 #define UPDATE_WARNINGS_LOC(loc)                                        \
922     STMT_START {                                                        \
923         if (TO_OUTPUT_WARNINGS(loc)) {                                  \
924             RExC_latest_warn_offset = MAX(sI, MIN(eI, xI(loc)))         \
925                                                        - RExC_precomp;  \
926         }                                                               \
927     } STMT_END
928 
929 /* 'warns' is the output of the packWARNx macro used in 'code' */
930 #define _WARN_HELPER(loc, warns, code)                                  \
931     STMT_START {                                                        \
932         if (! RExC_copy_start_in_constructed) {                         \
933             Perl_croak( aTHX_ "panic! %s: %d: Tried to warn when none"  \
934                               " expected at '%s'",                      \
935                               __FILE__, __LINE__, loc);                 \
936         }                                                               \
937         if (TO_OUTPUT_WARNINGS(loc)) {                                  \
938             if (ckDEAD(warns))                                          \
939                 PREPARE_TO_DIE;                                         \
940             code;                                                       \
941             UPDATE_WARNINGS_LOC(loc);                                   \
942         }                                                               \
943     } STMT_END
944 
945 /* m is not necessarily a "literal string", in this macro */
946 #define warn_non_literal_string(loc, packed_warn, m)                    \
947     _WARN_HELPER(loc, packed_warn,                                      \
948                       Perl_warner(aTHX_ packed_warn,                    \
949                                        "%s" REPORT_LOCATION,            \
950                                   m, REPORT_LOCATION_ARGS(loc)))
951 #define reg_warn_non_literal_string(loc, m)                             \
952                 warn_non_literal_string(loc, packWARN(WARN_REGEXP), m)
953 
954 #define ckWARN2_non_literal_string(loc, packwarn, m, a1)                    \
955     STMT_START {                                                            \
956                 char * format;                                              \
957                 Size_t format_size = strlen(m) + strlen(REPORT_LOCATION)+ 1;\
958                 Newx(format, format_size, char);                            \
959                 my_strlcpy(format, m, format_size);                         \
960                 my_strlcat(format, REPORT_LOCATION, format_size);           \
961                 SAVEFREEPV(format);                                         \
962                 _WARN_HELPER(loc, packwarn,                                 \
963                       Perl_ck_warner(aTHX_ packwarn,                        \
964                                         format,                             \
965                                         a1, REPORT_LOCATION_ARGS(loc)));    \
966     } STMT_END
967 
968 #define	ckWARNreg(loc,m) 					        \
969     _WARN_HELPER(loc, packWARN(WARN_REGEXP),                            \
970                       Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),       \
971                                           m REPORT_LOCATION,	        \
972                                           REPORT_LOCATION_ARGS(loc)))
973 
974 #define	vWARN(loc, m)           				        \
975     _WARN_HELPER(loc, packWARN(WARN_REGEXP),                            \
976                       Perl_warner(aTHX_ packWARN(WARN_REGEXP),          \
977                                        m REPORT_LOCATION,               \
978                                        REPORT_LOCATION_ARGS(loc)))      \
979 
980 #define	vWARN_dep(loc, m)           				        \
981     _WARN_HELPER(loc, packWARN(WARN_DEPRECATED),                        \
982                       Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),      \
983                                        m REPORT_LOCATION,               \
984                                        REPORT_LOCATION_ARGS(loc)))
985 
986 #define	ckWARNdep(loc,m)            				        \
987     _WARN_HELPER(loc, packWARN(WARN_DEPRECATED),                        \
988                       Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
989                                             m REPORT_LOCATION,          \
990                                             REPORT_LOCATION_ARGS(loc)))
991 
992 #define	ckWARNregdep(loc,m)             				    \
993     _WARN_HELPER(loc, packWARN2(WARN_DEPRECATED, WARN_REGEXP),              \
994                       Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED,     \
995                                                       WARN_REGEXP),         \
996                                              m REPORT_LOCATION,             \
997                                              REPORT_LOCATION_ARGS(loc)))
998 
999 #define	ckWARN2reg_d(loc,m, a1)             				    \
1000     _WARN_HELPER(loc, packWARN(WARN_REGEXP),                                \
1001                       Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP),         \
1002                                             m REPORT_LOCATION,              \
1003                                             a1, REPORT_LOCATION_ARGS(loc)))
1004 
1005 #define	ckWARN2reg(loc, m, a1)                                              \
1006     _WARN_HELPER(loc, packWARN(WARN_REGEXP),                                \
1007                       Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),           \
1008                                           m REPORT_LOCATION,	            \
1009                                           a1, REPORT_LOCATION_ARGS(loc)))
1010 
1011 #define	vWARN3(loc, m, a1, a2)          				    \
1012     _WARN_HELPER(loc, packWARN(WARN_REGEXP),                                \
1013                       Perl_warner(aTHX_ packWARN(WARN_REGEXP),              \
1014                                        m REPORT_LOCATION,                   \
1015                                        a1, a2, REPORT_LOCATION_ARGS(loc)))
1016 
1017 #define	ckWARN3reg(loc, m, a1, a2)          				    \
1018     _WARN_HELPER(loc, packWARN(WARN_REGEXP),                                \
1019                       Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),           \
1020                                           m REPORT_LOCATION,                \
1021                                           a1, a2,                           \
1022                                           REPORT_LOCATION_ARGS(loc)))
1023 
1024 #define	vWARN4(loc, m, a1, a2, a3)          				\
1025     _WARN_HELPER(loc, packWARN(WARN_REGEXP),                            \
1026                       Perl_warner(aTHX_ packWARN(WARN_REGEXP),          \
1027                                        m REPORT_LOCATION,               \
1028                                        a1, a2, a3,                      \
1029                                        REPORT_LOCATION_ARGS(loc)))
1030 
1031 #define	ckWARN4reg(loc, m, a1, a2, a3)          			\
1032     _WARN_HELPER(loc, packWARN(WARN_REGEXP),                            \
1033                       Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),       \
1034                                           m REPORT_LOCATION,            \
1035                                           a1, a2, a3,                   \
1036                                           REPORT_LOCATION_ARGS(loc)))
1037 
1038 #define	vWARN5(loc, m, a1, a2, a3, a4)          			\
1039     _WARN_HELPER(loc, packWARN(WARN_REGEXP),                            \
1040                       Perl_warner(aTHX_ packWARN(WARN_REGEXP),          \
1041                                        m REPORT_LOCATION,		\
1042                                        a1, a2, a3, a4,                  \
1043                                        REPORT_LOCATION_ARGS(loc)))
1044 
1045 #define	ckWARNexperimental(loc, class, m)                               \
1046     STMT_START {                                                        \
1047         if (! RExC_warned_ ## class) { /* warn once per compilation */  \
1048             RExC_warned_ ## class = 1;                                  \
1049             _WARN_HELPER(loc, packWARN(class),                          \
1050                       Perl_ck_warner_d(aTHX_ packWARN(class),           \
1051                                             m REPORT_LOCATION,          \
1052                                             REPORT_LOCATION_ARGS(loc)));\
1053         }                                                               \
1054     } STMT_END
1055 
1056 /* Convert between a pointer to a node and its offset from the beginning of the
1057  * program */
1058 #define REGNODE_p(offset)    (RExC_emit_start + (offset))
1059 #define REGNODE_OFFSET(node) ((node) - RExC_emit_start)
1060 
1061 /* Macros for recording node offsets.   20001227 mjd@plover.com
1062  * Nodes are numbered 1, 2, 3, 4.  Node #n's position is recorded in
1063  * element 2*n-1 of the array.  Element #2n holds the byte length node #n.
1064  * Element 0 holds the number n.
1065  * Position is 1 indexed.
1066  */
1067 #ifndef RE_TRACK_PATTERN_OFFSETS
1068 #define Set_Node_Offset_To_R(offset,byte)
1069 #define Set_Node_Offset(node,byte)
1070 #define Set_Cur_Node_Offset
1071 #define Set_Node_Length_To_R(node,len)
1072 #define Set_Node_Length(node,len)
1073 #define Set_Node_Cur_Length(node,start)
1074 #define Node_Offset(n)
1075 #define Node_Length(n)
1076 #define Set_Node_Offset_Length(node,offset,len)
1077 #define ProgLen(ri) ri->u.proglen
1078 #define SetProgLen(ri,x) ri->u.proglen = x
1079 #define Track_Code(code)
1080 #else
1081 #define ProgLen(ri) ri->u.offsets[0]
1082 #define SetProgLen(ri,x) ri->u.offsets[0] = x
1083 #define Set_Node_Offset_To_R(offset,byte) STMT_START {			\
1084         MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n",		\
1085                     __LINE__, (int)(offset), (int)(byte)));		\
1086         if((offset) < 0) {						\
1087             Perl_croak(aTHX_ "value of node is %d in Offset macro",     \
1088                                          (int)(offset));                \
1089         } else {							\
1090             RExC_offsets[2*(offset)-1] = (byte);	                \
1091         }								\
1092 } STMT_END
1093 
1094 #define Set_Node_Offset(node,byte)                                      \
1095     Set_Node_Offset_To_R(REGNODE_OFFSET(node), (byte)-RExC_start)
1096 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
1097 
1098 #define Set_Node_Length_To_R(node,len) STMT_START {			\
1099         MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n",		\
1100                 __LINE__, (int)(node), (int)(len)));			\
1101         if((node) < 0) {						\
1102             Perl_croak(aTHX_ "value of node is %d in Length macro",     \
1103                                          (int)(node));                  \
1104         } else {							\
1105             RExC_offsets[2*(node)] = (len);				\
1106         }								\
1107 } STMT_END
1108 
1109 #define Set_Node_Length(node,len) \
1110     Set_Node_Length_To_R(REGNODE_OFFSET(node), len)
1111 #define Set_Node_Cur_Length(node, start)                \
1112     Set_Node_Length(node, RExC_parse - start)
1113 
1114 /* Get offsets and lengths */
1115 #define Node_Offset(n) (RExC_offsets[2*(REGNODE_OFFSET(n))-1])
1116 #define Node_Length(n) (RExC_offsets[2*(REGNODE_OFFSET(n))])
1117 
1118 #define Set_Node_Offset_Length(node,offset,len) STMT_START {	\
1119     Set_Node_Offset_To_R(REGNODE_OFFSET(node), (offset));	\
1120     Set_Node_Length_To_R(REGNODE_OFFSET(node), (len));	\
1121 } STMT_END
1122 
1123 #define Track_Code(code) STMT_START { code } STMT_END
1124 #endif
1125 
1126 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
1127 #define EXPERIMENTAL_INPLACESCAN
1128 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
1129 
1130 #ifdef DEBUGGING
1131 int
Perl_re_printf(pTHX_ const char * fmt,...)1132 Perl_re_printf(pTHX_ const char *fmt, ...)
1133 {
1134     va_list ap;
1135     int result;
1136     PerlIO *f= Perl_debug_log;
1137     PERL_ARGS_ASSERT_RE_PRINTF;
1138     va_start(ap, fmt);
1139     result = PerlIO_vprintf(f, fmt, ap);
1140     va_end(ap);
1141     return result;
1142 }
1143 
1144 int
Perl_re_indentf(pTHX_ const char * fmt,U32 depth,...)1145 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
1146 {
1147     va_list ap;
1148     int result;
1149     PerlIO *f= Perl_debug_log;
1150     PERL_ARGS_ASSERT_RE_INDENTF;
1151     va_start(ap, depth);
1152     PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
1153     result = PerlIO_vprintf(f, fmt, ap);
1154     va_end(ap);
1155     return result;
1156 }
1157 #endif /* DEBUGGING */
1158 
1159 #define DEBUG_RExC_seen()                                                   \
1160         DEBUG_OPTIMISE_MORE_r({                                             \
1161             Perl_re_printf( aTHX_ "RExC_seen: ");                           \
1162                                                                             \
1163             if (RExC_seen & REG_ZERO_LEN_SEEN)                              \
1164                 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN ");                \
1165                                                                             \
1166             if (RExC_seen & REG_LOOKBEHIND_SEEN)                            \
1167                 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN ");              \
1168                                                                             \
1169             if (RExC_seen & REG_GPOS_SEEN)                                  \
1170                 Perl_re_printf( aTHX_ "REG_GPOS_SEEN ");                    \
1171                                                                             \
1172             if (RExC_seen & REG_RECURSE_SEEN)                               \
1173                 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN ");                 \
1174                                                                             \
1175             if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)                    \
1176                 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN ");      \
1177                                                                             \
1178             if (RExC_seen & REG_VERBARG_SEEN)                               \
1179                 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN ");                 \
1180                                                                             \
1181             if (RExC_seen & REG_CUTGROUP_SEEN)                              \
1182                 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN ");                \
1183                                                                             \
1184             if (RExC_seen & REG_RUN_ON_COMMENT_SEEN)                        \
1185                 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN ");          \
1186                                                                             \
1187             if (RExC_seen & REG_UNFOLDED_MULTI_SEEN)                        \
1188                 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN ");          \
1189                                                                             \
1190             if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)                  \
1191                 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN ");    \
1192                                                                             \
1193             Perl_re_printf( aTHX_ "\n");                                    \
1194         });
1195 
1196 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
1197   if ((flags) & flag) Perl_re_printf( aTHX_  "%s ", #flag)
1198 
1199 
1200 #ifdef DEBUGGING
1201 static void
S_debug_show_study_flags(pTHX_ U32 flags,const char * open_str,const char * close_str)1202 S_debug_show_study_flags(pTHX_ U32 flags, const char *open_str,
1203                                     const char *close_str)
1204 {
1205     if (!flags)
1206         return;
1207 
1208     Perl_re_printf( aTHX_  "%s", open_str);
1209     DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_SEOL);
1210     DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_MEOL);
1211     DEBUG_SHOW_STUDY_FLAG(flags, SF_IS_INF);
1212     DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_PAR);
1213     DEBUG_SHOW_STUDY_FLAG(flags, SF_IN_PAR);
1214     DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_EVAL);
1215     DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_SUBSTR);
1216     DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_AND);
1217     DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_OR);
1218     DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS);
1219     DEBUG_SHOW_STUDY_FLAG(flags, SCF_WHILEM_VISITED_POS);
1220     DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_RESTUDY);
1221     DEBUG_SHOW_STUDY_FLAG(flags, SCF_SEEN_ACCEPT);
1222     DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_DOING_RESTUDY);
1223     DEBUG_SHOW_STUDY_FLAG(flags, SCF_IN_DEFINE);
1224     Perl_re_printf( aTHX_  "%s", close_str);
1225 }
1226 
1227 
1228 static void
S_debug_studydata(pTHX_ const char * where,scan_data_t * data,U32 depth,int is_inf)1229 S_debug_studydata(pTHX_ const char *where, scan_data_t *data,
1230                     U32 depth, int is_inf)
1231 {
1232     DECLARE_AND_GET_RE_DEBUG_FLAGS;
1233 
1234     DEBUG_OPTIMISE_MORE_r({
1235         if (!data)
1236             return;
1237         Perl_re_indentf(aTHX_  "%s: Pos:%" IVdf "/%" IVdf " Flags: 0x%" UVXf,
1238             depth,
1239             where,
1240             (IV)data->pos_min,
1241             (IV)data->pos_delta,
1242             (UV)data->flags
1243         );
1244 
1245         S_debug_show_study_flags(aTHX_ data->flags," [","]");
1246 
1247         Perl_re_printf( aTHX_
1248             " Whilem_c: %" IVdf " Lcp: %" IVdf " %s",
1249             (IV)data->whilem_c,
1250             (IV)(data->last_closep ? *((data)->last_closep) : -1),
1251             is_inf ? "INF " : ""
1252         );
1253 
1254         if (data->last_found) {
1255             int i;
1256             Perl_re_printf(aTHX_
1257                 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf,
1258                     SvPVX_const(data->last_found),
1259                     (IV)data->last_end,
1260                     (IV)data->last_start_min,
1261                     (IV)data->last_start_max
1262             );
1263 
1264             for (i = 0; i < 2; i++) {
1265                 Perl_re_printf(aTHX_
1266                     " %s%s: '%s' @ %" IVdf "/%" IVdf,
1267                     data->cur_is_floating == i ? "*" : "",
1268                     i ? "Float" : "Fixed",
1269                     SvPVX_const(data->substrs[i].str),
1270                     (IV)data->substrs[i].min_offset,
1271                     (IV)data->substrs[i].max_offset
1272                 );
1273                 S_debug_show_study_flags(aTHX_ data->substrs[i].flags," [","]");
1274             }
1275         }
1276 
1277         Perl_re_printf( aTHX_ "\n");
1278     });
1279 }
1280 
1281 
1282 static void
S_debug_peep(pTHX_ const char * str,const RExC_state_t * pRExC_state,regnode * scan,U32 depth,U32 flags)1283 S_debug_peep(pTHX_ const char *str, const RExC_state_t *pRExC_state,
1284                 regnode *scan, U32 depth, U32 flags)
1285 {
1286     DECLARE_AND_GET_RE_DEBUG_FLAGS;
1287 
1288     DEBUG_OPTIMISE_r({
1289         regnode *Next;
1290 
1291         if (!scan)
1292             return;
1293         Next = regnext(scan);
1294         regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
1295         Perl_re_indentf( aTHX_   "%s>%3d: %s (%d)",
1296             depth,
1297             str,
1298             REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),
1299             Next ? (REG_NODE_NUM(Next)) : 0 );
1300         S_debug_show_study_flags(aTHX_ flags," [ ","]");
1301         Perl_re_printf( aTHX_  "\n");
1302    });
1303 }
1304 
1305 
1306 #  define DEBUG_STUDYDATA(where, data, depth, is_inf) \
1307                     S_debug_studydata(aTHX_ where, data, depth, is_inf)
1308 
1309 #  define DEBUG_PEEP(str, scan, depth, flags)   \
1310                     S_debug_peep(aTHX_ str, pRExC_state, scan, depth, flags)
1311 
1312 #else
1313 #  define DEBUG_STUDYDATA(where, data, depth, is_inf) NOOP
1314 #  define DEBUG_PEEP(str, scan, depth, flags)         NOOP
1315 #endif
1316 
1317 
1318 /* =========================================================
1319  * BEGIN edit_distance stuff.
1320  *
1321  * This calculates how many single character changes of any type are needed to
1322  * transform a string into another one.  It is taken from version 3.1 of
1323  *
1324  * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1325  */
1326 
1327 /* Our unsorted dictionary linked list.   */
1328 /* Note we use UVs, not chars. */
1329 
1330 struct dictionary{
1331   UV key;
1332   UV value;
1333   struct dictionary* next;
1334 };
1335 typedef struct dictionary item;
1336 
1337 
1338 PERL_STATIC_INLINE item*
push(UV key,item * curr)1339 push(UV key, item* curr)
1340 {
1341     item* head;
1342     Newx(head, 1, item);
1343     head->key = key;
1344     head->value = 0;
1345     head->next = curr;
1346     return head;
1347 }
1348 
1349 
1350 PERL_STATIC_INLINE item*
find(item * head,UV key)1351 find(item* head, UV key)
1352 {
1353     item* iterator = head;
1354     while (iterator){
1355         if (iterator->key == key){
1356             return iterator;
1357         }
1358         iterator = iterator->next;
1359     }
1360 
1361     return NULL;
1362 }
1363 
1364 PERL_STATIC_INLINE item*
uniquePush(item * head,UV key)1365 uniquePush(item* head, UV key)
1366 {
1367     item* iterator = head;
1368 
1369     while (iterator){
1370         if (iterator->key == key) {
1371             return head;
1372         }
1373         iterator = iterator->next;
1374     }
1375 
1376     return push(key, head);
1377 }
1378 
1379 PERL_STATIC_INLINE void
dict_free(item * head)1380 dict_free(item* head)
1381 {
1382     item* iterator = head;
1383 
1384     while (iterator) {
1385         item* temp = iterator;
1386         iterator = iterator->next;
1387         Safefree(temp);
1388     }
1389 
1390     head = NULL;
1391 }
1392 
1393 /* End of Dictionary Stuff */
1394 
1395 /* All calculations/work are done here */
1396 STATIC int
S_edit_distance(const UV * src,const UV * tgt,const STRLEN x,const STRLEN y,const SSize_t maxDistance)1397 S_edit_distance(const UV* src,
1398                 const UV* tgt,
1399                 const STRLEN x,             /* length of src[] */
1400                 const STRLEN y,             /* length of tgt[] */
1401                 const SSize_t maxDistance
1402 )
1403 {
1404     item *head = NULL;
1405     UV swapCount, swapScore, targetCharCount, i, j;
1406     UV *scores;
1407     UV score_ceil = x + y;
1408 
1409     PERL_ARGS_ASSERT_EDIT_DISTANCE;
1410 
1411     /* intialize matrix start values */
1412     Newx(scores, ( (x + 2) * (y + 2)), UV);
1413     scores[0] = score_ceil;
1414     scores[1 * (y + 2) + 0] = score_ceil;
1415     scores[0 * (y + 2) + 1] = score_ceil;
1416     scores[1 * (y + 2) + 1] = 0;
1417     head = uniquePush(uniquePush(head, src[0]), tgt[0]);
1418 
1419     /* work loops    */
1420     /* i = src index */
1421     /* j = tgt index */
1422     for (i=1;i<=x;i++) {
1423         if (i < x)
1424             head = uniquePush(head, src[i]);
1425         scores[(i+1) * (y + 2) + 1] = i;
1426         scores[(i+1) * (y + 2) + 0] = score_ceil;
1427         swapCount = 0;
1428 
1429         for (j=1;j<=y;j++) {
1430             if (i == 1) {
1431                 if(j < y)
1432                 head = uniquePush(head, tgt[j]);
1433                 scores[1 * (y + 2) + (j + 1)] = j;
1434                 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1435             }
1436 
1437             targetCharCount = find(head, tgt[j-1])->value;
1438             swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1439 
1440             if (src[i-1] != tgt[j-1]){
1441                 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1442             }
1443             else {
1444                 swapCount = j;
1445                 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1446             }
1447         }
1448 
1449         find(head, src[i-1])->value = i;
1450     }
1451 
1452     {
1453         IV score = scores[(x+1) * (y + 2) + (y + 1)];
1454         dict_free(head);
1455         Safefree(scores);
1456         return (maxDistance != 0 && maxDistance < score)?(-1):score;
1457     }
1458 }
1459 
1460 /* END of edit_distance() stuff
1461  * ========================================================= */
1462 
1463 /* Mark that we cannot extend a found fixed substring at this point.
1464    Update the longest found anchored substring or the longest found
1465    floating substrings if needed. */
1466 
1467 STATIC void
S_scan_commit(pTHX_ const RExC_state_t * pRExC_state,scan_data_t * data,SSize_t * minlenp,int is_inf)1468 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1469                     SSize_t *minlenp, int is_inf)
1470 {
1471     const STRLEN l = CHR_SVLEN(data->last_found);
1472     SV * const longest_sv = data->substrs[data->cur_is_floating].str;
1473     const STRLEN old_l = CHR_SVLEN(longest_sv);
1474     DECLARE_AND_GET_RE_DEBUG_FLAGS;
1475 
1476     PERL_ARGS_ASSERT_SCAN_COMMIT;
1477 
1478     if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1479         const U8 i = data->cur_is_floating;
1480         SvSetMagicSV(longest_sv, data->last_found);
1481         data->substrs[i].min_offset = l ? data->last_start_min : data->pos_min;
1482 
1483         if (!i) /* fixed */
1484             data->substrs[0].max_offset = data->substrs[0].min_offset;
1485         else { /* float */
1486             data->substrs[1].max_offset =
1487                       (is_inf)
1488                        ? OPTIMIZE_INFTY
1489                        : (l
1490                           ? data->last_start_max
1491                           /* temporary underflow guard for 5.32 */
1492                           : data->pos_delta < 0 ? OPTIMIZE_INFTY
1493                           : (data->pos_delta > OPTIMIZE_INFTY - data->pos_min
1494                                          ? OPTIMIZE_INFTY
1495                                          : data->pos_min + data->pos_delta));
1496         }
1497 
1498         data->substrs[i].flags &= ~SF_BEFORE_EOL;
1499         data->substrs[i].flags |= data->flags & SF_BEFORE_EOL;
1500         data->substrs[i].minlenp = minlenp;
1501         data->substrs[i].lookbehind = 0;
1502     }
1503 
1504     SvCUR_set(data->last_found, 0);
1505     {
1506         SV * const sv = data->last_found;
1507         if (SvUTF8(sv) && SvMAGICAL(sv)) {
1508             MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1509             if (mg)
1510                 mg->mg_len = 0;
1511         }
1512     }
1513     data->last_end = -1;
1514     data->flags &= ~SF_BEFORE_EOL;
1515     DEBUG_STUDYDATA("commit", data, 0, is_inf);
1516 }
1517 
1518 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1519  * list that describes which code points it matches */
1520 
1521 STATIC void
S_ssc_anything(pTHX_ regnode_ssc * ssc)1522 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1523 {
1524     /* Set the SSC 'ssc' to match an empty string or any code point */
1525 
1526     PERL_ARGS_ASSERT_SSC_ANYTHING;
1527 
1528     assert(is_ANYOF_SYNTHETIC(ssc));
1529 
1530     /* mortalize so won't leak */
1531     ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1532     ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING;  /* Plus matches empty */
1533 }
1534 
1535 STATIC int
S_ssc_is_anything(const regnode_ssc * ssc)1536 S_ssc_is_anything(const regnode_ssc *ssc)
1537 {
1538     /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1539      * point; FALSE otherwise.  Thus, this is used to see if using 'ssc' buys
1540      * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1541      * in any way, so there's no point in using it */
1542 
1543     UV start, end;
1544     bool ret;
1545 
1546     PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1547 
1548     assert(is_ANYOF_SYNTHETIC(ssc));
1549 
1550     if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1551         return FALSE;
1552     }
1553 
1554     /* See if the list consists solely of the range 0 - Infinity */
1555     invlist_iterinit(ssc->invlist);
1556     ret = invlist_iternext(ssc->invlist, &start, &end)
1557           && start == 0
1558           && end == UV_MAX;
1559 
1560     invlist_iterfinish(ssc->invlist);
1561 
1562     if (ret) {
1563         return TRUE;
1564     }
1565 
1566     /* If e.g., both \w and \W are set, matches everything */
1567     if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1568         int i;
1569         for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1570             if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1571                 return TRUE;
1572             }
1573         }
1574     }
1575 
1576     return FALSE;
1577 }
1578 
1579 STATIC void
S_ssc_init(pTHX_ const RExC_state_t * pRExC_state,regnode_ssc * ssc)1580 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1581 {
1582     /* Initializes the SSC 'ssc'.  This includes setting it to match an empty
1583      * string, any code point, or any posix class under locale */
1584 
1585     PERL_ARGS_ASSERT_SSC_INIT;
1586 
1587     Zero(ssc, 1, regnode_ssc);
1588     set_ANYOF_SYNTHETIC(ssc);
1589     ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1590     ssc_anything(ssc);
1591 
1592     /* If any portion of the regex is to operate under locale rules that aren't
1593      * fully known at compile time, initialization includes it.  The reason
1594      * this isn't done for all regexes is that the optimizer was written under
1595      * the assumption that locale was all-or-nothing.  Given the complexity and
1596      * lack of documentation in the optimizer, and that there are inadequate
1597      * test cases for locale, many parts of it may not work properly, it is
1598      * safest to avoid locale unless necessary. */
1599     if (RExC_contains_locale) {
1600         ANYOF_POSIXL_SETALL(ssc);
1601     }
1602     else {
1603         ANYOF_POSIXL_ZERO(ssc);
1604     }
1605 }
1606 
1607 STATIC int
S_ssc_is_cp_posixl_init(const RExC_state_t * pRExC_state,const regnode_ssc * ssc)1608 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1609                         const regnode_ssc *ssc)
1610 {
1611     /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1612      * to the list of code points matched, and locale posix classes; hence does
1613      * not check its flags) */
1614 
1615     UV start, end;
1616     bool ret;
1617 
1618     PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1619 
1620     assert(is_ANYOF_SYNTHETIC(ssc));
1621 
1622     invlist_iterinit(ssc->invlist);
1623     ret = invlist_iternext(ssc->invlist, &start, &end)
1624           && start == 0
1625           && end == UV_MAX;
1626 
1627     invlist_iterfinish(ssc->invlist);
1628 
1629     if (! ret) {
1630         return FALSE;
1631     }
1632 
1633     if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1634         return FALSE;
1635     }
1636 
1637     return TRUE;
1638 }
1639 
1640 #define INVLIST_INDEX 0
1641 #define ONLY_LOCALE_MATCHES_INDEX 1
1642 #define DEFERRED_USER_DEFINED_INDEX 2
1643 
1644 STATIC SV*
S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t * pRExC_state,const regnode_charclass * const node)1645 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1646                                const regnode_charclass* const node)
1647 {
1648     /* Returns a mortal inversion list defining which code points are matched
1649      * by 'node', which is of type ANYOF.  Handles complementing the result if
1650      * appropriate.  If some code points aren't knowable at this time, the
1651      * returned list must, and will, contain every code point that is a
1652      * possibility. */
1653 
1654     SV* invlist = NULL;
1655     SV* only_utf8_locale_invlist = NULL;
1656     unsigned int i;
1657     const U32 n = ARG(node);
1658     bool new_node_has_latin1 = FALSE;
1659     const U8 flags = (inRANGE(OP(node), ANYOFH, ANYOFRb))
1660                       ? 0
1661                       : ANYOF_FLAGS(node);
1662 
1663     PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1664 
1665     /* Look at the data structure created by S_set_ANYOF_arg() */
1666     if (n != ANYOF_ONLY_HAS_BITMAP) {
1667         SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1668         AV * const av = MUTABLE_AV(SvRV(rv));
1669         SV **const ary = AvARRAY(av);
1670         assert(RExC_rxi->data->what[n] == 's');
1671 
1672         if (av_tindex_skip_len_mg(av) >= DEFERRED_USER_DEFINED_INDEX) {
1673 
1674             /* Here there are things that won't be known until runtime -- we
1675              * have to assume it could be anything */
1676             invlist = sv_2mortal(_new_invlist(1));
1677             return _add_range_to_invlist(invlist, 0, UV_MAX);
1678         }
1679         else if (ary[INVLIST_INDEX]) {
1680 
1681             /* Use the node's inversion list */
1682             invlist = sv_2mortal(invlist_clone(ary[INVLIST_INDEX], NULL));
1683         }
1684 
1685         /* Get the code points valid only under UTF-8 locales */
1686         if (   (flags & ANYOFL_FOLD)
1687             &&  av_tindex_skip_len_mg(av) >= ONLY_LOCALE_MATCHES_INDEX)
1688         {
1689             only_utf8_locale_invlist = ary[ONLY_LOCALE_MATCHES_INDEX];
1690         }
1691     }
1692 
1693     if (! invlist) {
1694         invlist = sv_2mortal(_new_invlist(0));
1695     }
1696 
1697     /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1698      * code points, and an inversion list for the others, but if there are code
1699      * points that should match only conditionally on the target string being
1700      * UTF-8, those are placed in the inversion list, and not the bitmap.
1701      * Since there are circumstances under which they could match, they are
1702      * included in the SSC.  But if the ANYOF node is to be inverted, we have
1703      * to exclude them here, so that when we invert below, the end result
1704      * actually does include them.  (Think about "\xe0" =~ /[^\xc0]/di;).  We
1705      * have to do this here before we add the unconditionally matched code
1706      * points */
1707     if (flags & ANYOF_INVERT) {
1708         _invlist_intersection_complement_2nd(invlist,
1709                                              PL_UpperLatin1,
1710                                              &invlist);
1711     }
1712 
1713     /* Add in the points from the bit map */
1714     if (! inRANGE(OP(node), ANYOFH, ANYOFRb)) {
1715         for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1716             if (ANYOF_BITMAP_TEST(node, i)) {
1717                 unsigned int start = i++;
1718 
1719                 for (;    i < NUM_ANYOF_CODE_POINTS
1720                        && ANYOF_BITMAP_TEST(node, i); ++i)
1721                 {
1722                     /* empty */
1723                 }
1724                 invlist = _add_range_to_invlist(invlist, start, i-1);
1725                 new_node_has_latin1 = TRUE;
1726             }
1727         }
1728     }
1729 
1730     /* If this can match all upper Latin1 code points, have to add them
1731      * as well.  But don't add them if inverting, as when that gets done below,
1732      * it would exclude all these characters, including the ones it shouldn't
1733      * that were added just above */
1734     if (! (flags & ANYOF_INVERT) && OP(node) == ANYOFD
1735         && (flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1736     {
1737         _invlist_union(invlist, PL_UpperLatin1, &invlist);
1738     }
1739 
1740     /* Similarly for these */
1741     if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1742         _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1743     }
1744 
1745     if (flags & ANYOF_INVERT) {
1746         _invlist_invert(invlist);
1747     }
1748     else if (flags & ANYOFL_FOLD) {
1749         if (new_node_has_latin1) {
1750 
1751             /* Under /li, any 0-255 could fold to any other 0-255, depending on
1752              * the locale.  We can skip this if there are no 0-255 at all. */
1753             _invlist_union(invlist, PL_Latin1, &invlist);
1754 
1755             invlist = add_cp_to_invlist(invlist, LATIN_SMALL_LETTER_DOTLESS_I);
1756             invlist = add_cp_to_invlist(invlist, LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
1757         }
1758         else {
1759             if (_invlist_contains_cp(invlist, LATIN_SMALL_LETTER_DOTLESS_I)) {
1760                 invlist = add_cp_to_invlist(invlist, 'I');
1761             }
1762             if (_invlist_contains_cp(invlist,
1763                                         LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE))
1764             {
1765                 invlist = add_cp_to_invlist(invlist, 'i');
1766             }
1767         }
1768     }
1769 
1770     /* Similarly add the UTF-8 locale possible matches.  These have to be
1771      * deferred until after the non-UTF-8 locale ones are taken care of just
1772      * above, or it leads to wrong results under ANYOF_INVERT */
1773     if (only_utf8_locale_invlist) {
1774         _invlist_union_maybe_complement_2nd(invlist,
1775                                             only_utf8_locale_invlist,
1776                                             flags & ANYOF_INVERT,
1777                                             &invlist);
1778     }
1779 
1780     return invlist;
1781 }
1782 
1783 /* These two functions currently do the exact same thing */
1784 #define ssc_init_zero		ssc_init
1785 
1786 #define ssc_add_cp(ssc, cp)   ssc_add_range((ssc), (cp), (cp))
1787 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1788 
1789 /* 'AND' a given class with another one.  Can create false positives.  'ssc'
1790  * should not be inverted.  'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1791  * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1792 
1793 STATIC void
S_ssc_and(pTHX_ const RExC_state_t * pRExC_state,regnode_ssc * ssc,const regnode_charclass * and_with)1794 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1795                 const regnode_charclass *and_with)
1796 {
1797     /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1798      * another SSC or a regular ANYOF class.  Can create false positives. */
1799 
1800     SV* anded_cp_list;
1801     U8  and_with_flags = inRANGE(OP(and_with), ANYOFH, ANYOFRb)
1802                           ? 0
1803                           : ANYOF_FLAGS(and_with);
1804     U8  anded_flags;
1805 
1806     PERL_ARGS_ASSERT_SSC_AND;
1807 
1808     assert(is_ANYOF_SYNTHETIC(ssc));
1809 
1810     /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1811      * the code point inversion list and just the relevant flags */
1812     if (is_ANYOF_SYNTHETIC(and_with)) {
1813         anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1814         anded_flags = and_with_flags;
1815 
1816         /* XXX This is a kludge around what appears to be deficiencies in the
1817          * optimizer.  If we make S_ssc_anything() add in the WARN_SUPER flag,
1818          * there are paths through the optimizer where it doesn't get weeded
1819          * out when it should.  And if we don't make some extra provision for
1820          * it like the code just below, it doesn't get added when it should.
1821          * This solution is to add it only when AND'ing, which is here, and
1822          * only when what is being AND'ed is the pristine, original node
1823          * matching anything.  Thus it is like adding it to ssc_anything() but
1824          * only when the result is to be AND'ed.  Probably the same solution
1825          * could be adopted for the same problem we have with /l matching,
1826          * which is solved differently in S_ssc_init(), and that would lead to
1827          * fewer false positives than that solution has.  But if this solution
1828          * creates bugs, the consequences are only that a warning isn't raised
1829          * that should be; while the consequences for having /l bugs is
1830          * incorrect matches */
1831         if (ssc_is_anything((regnode_ssc *)and_with)) {
1832             anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1833         }
1834     }
1835     else {
1836         anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1837         if (OP(and_with) == ANYOFD) {
1838             anded_flags = and_with_flags & ANYOF_COMMON_FLAGS;
1839         }
1840         else {
1841             anded_flags = and_with_flags
1842             &( ANYOF_COMMON_FLAGS
1843               |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1844               |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1845             if (ANYOFL_UTF8_LOCALE_REQD(and_with_flags)) {
1846                 anded_flags &=
1847                     ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1848             }
1849         }
1850     }
1851 
1852     ANYOF_FLAGS(ssc) &= anded_flags;
1853 
1854     /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1855      * C2 is the list of code points in 'and-with'; P2, its posix classes.
1856      * 'and_with' may be inverted.  When not inverted, we have the situation of
1857      * computing:
1858      *  (C1 | P1) & (C2 | P2)
1859      *                     =  (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1860      *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1861      *                    <=  ((C1 & C2) |       P2)) | ( P1       | (P1 & P2))
1862      *                    <=  ((C1 & C2) | P1 | P2)
1863      * Alternatively, the last few steps could be:
1864      *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1865      *                    <=  ((C1 & C2) |  C1      ) | (      C2  | (P1 & P2))
1866      *                    <=  (C1 | C2 | (P1 & P2))
1867      * We favor the second approach if either P1 or P2 is non-empty.  This is
1868      * because these components are a barrier to doing optimizations, as what
1869      * they match cannot be known until the moment of matching as they are
1870      * dependent on the current locale, 'AND"ing them likely will reduce or
1871      * eliminate them.
1872      * But we can do better if we know that C1,P1 are in their initial state (a
1873      * frequent occurrence), each matching everything:
1874      *  (<everything>) & (C2 | P2) =  C2 | P2
1875      * Similarly, if C2,P2 are in their initial state (again a frequent
1876      * occurrence), the result is a no-op
1877      *  (C1 | P1) & (<everything>) =  C1 | P1
1878      *
1879      * Inverted, we have
1880      *  (C1 | P1) & ~(C2 | P2)  =  (C1 | P1) & (~C2 & ~P2)
1881      *                          =  (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1882      *                         <=  (C1 & ~C2) | (P1 & ~P2)
1883      * */
1884 
1885     if ((and_with_flags & ANYOF_INVERT)
1886         && ! is_ANYOF_SYNTHETIC(and_with))
1887     {
1888         unsigned int i;
1889 
1890         ssc_intersection(ssc,
1891                          anded_cp_list,
1892                          FALSE /* Has already been inverted */
1893                          );
1894 
1895         /* If either P1 or P2 is empty, the intersection will be also; can skip
1896          * the loop */
1897         if (! (and_with_flags & ANYOF_MATCHES_POSIXL)) {
1898             ANYOF_POSIXL_ZERO(ssc);
1899         }
1900         else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1901 
1902             /* Note that the Posix class component P from 'and_with' actually
1903              * looks like:
1904              *      P = Pa | Pb | ... | Pn
1905              * where each component is one posix class, such as in [\w\s].
1906              * Thus
1907              *      ~P = ~(Pa | Pb | ... | Pn)
1908              *         = ~Pa & ~Pb & ... & ~Pn
1909              *        <= ~Pa | ~Pb | ... | ~Pn
1910              * The last is something we can easily calculate, but unfortunately
1911              * is likely to have many false positives.  We could do better
1912              * in some (but certainly not all) instances if two classes in
1913              * P have known relationships.  For example
1914              *      :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1915              * So
1916              *      :lower: & :print: = :lower:
1917              * And similarly for classes that must be disjoint.  For example,
1918              * since \s and \w can have no elements in common based on rules in
1919              * the POSIX standard,
1920              *      \w & ^\S = nothing
1921              * Unfortunately, some vendor locales do not meet the Posix
1922              * standard, in particular almost everything by Microsoft.
1923              * The loop below just changes e.g., \w into \W and vice versa */
1924 
1925             regnode_charclass_posixl temp;
1926             int add = 1;    /* To calculate the index of the complement */
1927 
1928             Zero(&temp, 1, regnode_charclass_posixl);
1929             ANYOF_POSIXL_ZERO(&temp);
1930             for (i = 0; i < ANYOF_MAX; i++) {
1931                 assert(i % 2 != 0
1932                        || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1933                        || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1934 
1935                 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1936                     ANYOF_POSIXL_SET(&temp, i + add);
1937                 }
1938                 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1939             }
1940             ANYOF_POSIXL_AND(&temp, ssc);
1941 
1942         } /* else ssc already has no posixes */
1943     } /* else: Not inverted.  This routine is a no-op if 'and_with' is an SSC
1944          in its initial state */
1945     else if (! is_ANYOF_SYNTHETIC(and_with)
1946              || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1947     {
1948         /* But if 'ssc' is in its initial state, the result is just 'and_with';
1949          * copy it over 'ssc' */
1950         if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1951             if (is_ANYOF_SYNTHETIC(and_with)) {
1952                 StructCopy(and_with, ssc, regnode_ssc);
1953             }
1954             else {
1955                 ssc->invlist = anded_cp_list;
1956                 ANYOF_POSIXL_ZERO(ssc);
1957                 if (and_with_flags & ANYOF_MATCHES_POSIXL) {
1958                     ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1959                 }
1960             }
1961         }
1962         else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1963                  || (and_with_flags & ANYOF_MATCHES_POSIXL))
1964         {
1965             /* One or the other of P1, P2 is non-empty. */
1966             if (and_with_flags & ANYOF_MATCHES_POSIXL) {
1967                 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1968             }
1969             ssc_union(ssc, anded_cp_list, FALSE);
1970         }
1971         else { /* P1 = P2 = empty */
1972             ssc_intersection(ssc, anded_cp_list, FALSE);
1973         }
1974     }
1975 }
1976 
1977 STATIC void
S_ssc_or(pTHX_ const RExC_state_t * pRExC_state,regnode_ssc * ssc,const regnode_charclass * or_with)1978 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1979                const regnode_charclass *or_with)
1980 {
1981     /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1982      * another SSC or a regular ANYOF class.  Can create false positives if
1983      * 'or_with' is to be inverted. */
1984 
1985     SV* ored_cp_list;
1986     U8 ored_flags;
1987     U8  or_with_flags = inRANGE(OP(or_with), ANYOFH, ANYOFRb)
1988                          ? 0
1989                          : ANYOF_FLAGS(or_with);
1990 
1991     PERL_ARGS_ASSERT_SSC_OR;
1992 
1993     assert(is_ANYOF_SYNTHETIC(ssc));
1994 
1995     /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1996      * the code point inversion list and just the relevant flags */
1997     if (is_ANYOF_SYNTHETIC(or_with)) {
1998         ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1999         ored_flags = or_with_flags;
2000     }
2001     else {
2002         ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
2003         ored_flags = or_with_flags & ANYOF_COMMON_FLAGS;
2004         if (OP(or_with) != ANYOFD) {
2005             ored_flags
2006             |= or_with_flags
2007              & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
2008                 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
2009             if (ANYOFL_UTF8_LOCALE_REQD(or_with_flags)) {
2010                 ored_flags |=
2011                     ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
2012             }
2013         }
2014     }
2015 
2016     ANYOF_FLAGS(ssc) |= ored_flags;
2017 
2018     /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
2019      * C2 is the list of code points in 'or-with'; P2, its posix classes.
2020      * 'or_with' may be inverted.  When not inverted, we have the simple
2021      * situation of computing:
2022      *  (C1 | P1) | (C2 | P2)  =  (C1 | C2) | (P1 | P2)
2023      * If P1|P2 yields a situation with both a class and its complement are
2024      * set, like having both \w and \W, this matches all code points, and we
2025      * can delete these from the P component of the ssc going forward.  XXX We
2026      * might be able to delete all the P components, but I (khw) am not certain
2027      * about this, and it is better to be safe.
2028      *
2029      * Inverted, we have
2030      *  (C1 | P1) | ~(C2 | P2)  =  (C1 | P1) | (~C2 & ~P2)
2031      *                         <=  (C1 | P1) | ~C2
2032      *                         <=  (C1 | ~C2) | P1
2033      * (which results in actually simpler code than the non-inverted case)
2034      * */
2035 
2036     if ((or_with_flags & ANYOF_INVERT)
2037         && ! is_ANYOF_SYNTHETIC(or_with))
2038     {
2039         /* We ignore P2, leaving P1 going forward */
2040     }   /* else  Not inverted */
2041     else if (or_with_flags & ANYOF_MATCHES_POSIXL) {
2042         ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
2043         if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
2044             unsigned int i;
2045             for (i = 0; i < ANYOF_MAX; i += 2) {
2046                 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
2047                 {
2048                     ssc_match_all_cp(ssc);
2049                     ANYOF_POSIXL_CLEAR(ssc, i);
2050                     ANYOF_POSIXL_CLEAR(ssc, i+1);
2051                 }
2052             }
2053         }
2054     }
2055 
2056     ssc_union(ssc,
2057               ored_cp_list,
2058               FALSE /* Already has been inverted */
2059               );
2060 }
2061 
2062 STATIC void
S_ssc_union(pTHX_ regnode_ssc * ssc,SV * const invlist,const bool invert2nd)2063 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
2064 {
2065     PERL_ARGS_ASSERT_SSC_UNION;
2066 
2067     assert(is_ANYOF_SYNTHETIC(ssc));
2068 
2069     _invlist_union_maybe_complement_2nd(ssc->invlist,
2070                                         invlist,
2071                                         invert2nd,
2072                                         &ssc->invlist);
2073 }
2074 
2075 STATIC void
S_ssc_intersection(pTHX_ regnode_ssc * ssc,SV * const invlist,const bool invert2nd)2076 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
2077                          SV* const invlist,
2078                          const bool invert2nd)
2079 {
2080     PERL_ARGS_ASSERT_SSC_INTERSECTION;
2081 
2082     assert(is_ANYOF_SYNTHETIC(ssc));
2083 
2084     _invlist_intersection_maybe_complement_2nd(ssc->invlist,
2085                                                invlist,
2086                                                invert2nd,
2087                                                &ssc->invlist);
2088 }
2089 
2090 STATIC void
S_ssc_add_range(pTHX_ regnode_ssc * ssc,const UV start,const UV end)2091 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
2092 {
2093     PERL_ARGS_ASSERT_SSC_ADD_RANGE;
2094 
2095     assert(is_ANYOF_SYNTHETIC(ssc));
2096 
2097     ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
2098 }
2099 
2100 STATIC void
S_ssc_cp_and(pTHX_ regnode_ssc * ssc,const UV cp)2101 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
2102 {
2103     /* AND just the single code point 'cp' into the SSC 'ssc' */
2104 
2105     SV* cp_list = _new_invlist(2);
2106 
2107     PERL_ARGS_ASSERT_SSC_CP_AND;
2108 
2109     assert(is_ANYOF_SYNTHETIC(ssc));
2110 
2111     cp_list = add_cp_to_invlist(cp_list, cp);
2112     ssc_intersection(ssc, cp_list,
2113                      FALSE /* Not inverted */
2114                      );
2115     SvREFCNT_dec_NN(cp_list);
2116 }
2117 
2118 STATIC void
S_ssc_clear_locale(regnode_ssc * ssc)2119 S_ssc_clear_locale(regnode_ssc *ssc)
2120 {
2121     /* Set the SSC 'ssc' to not match any locale things */
2122     PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
2123 
2124     assert(is_ANYOF_SYNTHETIC(ssc));
2125 
2126     ANYOF_POSIXL_ZERO(ssc);
2127     ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
2128 }
2129 
2130 STATIC bool
S_is_ssc_worth_it(const RExC_state_t * pRExC_state,const regnode_ssc * ssc)2131 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
2132 {
2133     /* The synthetic start class is used to hopefully quickly winnow down
2134      * places where a pattern could start a match in the target string.  If it
2135      * doesn't really narrow things down that much, there isn't much point to
2136      * having the overhead of using it.  This function uses some very crude
2137      * heuristics to decide if to use the ssc or not.
2138      *
2139      * It returns TRUE if 'ssc' rules out more than half what it considers to
2140      * be the "likely" possible matches, but of course it doesn't know what the
2141      * actual things being matched are going to be; these are only guesses
2142      *
2143      * For /l matches, it assumes that the only likely matches are going to be
2144      *      in the 0-255 range, uniformly distributed, so half of that is 127
2145      * For /a and /d matches, it assumes that the likely matches will be just
2146      *      the ASCII range, so half of that is 63
2147      * For /u and there isn't anything matching above the Latin1 range, it
2148      *      assumes that that is the only range likely to be matched, and uses
2149      *      half that as the cut-off: 127.  If anything matches above Latin1,
2150      *      it assumes that all of Unicode could match (uniformly), except for
2151      *      non-Unicode code points and things in the General Category "Other"
2152      *      (unassigned, private use, surrogates, controls and formats).  This
2153      *      is a much large number. */
2154 
2155     U32 count = 0;      /* Running total of number of code points matched by
2156                            'ssc' */
2157     UV start, end;      /* Start and end points of current range in inversion
2158                            XXX outdated.  UTF-8 locales are common, what about invert? list */
2159     const U32 max_code_points = (LOC)
2160                                 ?  256
2161                                 : ((  ! UNI_SEMANTICS
2162                                     ||  invlist_highest(ssc->invlist) < 256)
2163                                   ? 128
2164                                   : NON_OTHER_COUNT);
2165     const U32 max_match = max_code_points / 2;
2166 
2167     PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
2168 
2169     invlist_iterinit(ssc->invlist);
2170     while (invlist_iternext(ssc->invlist, &start, &end)) {
2171         if (start >= max_code_points) {
2172             break;
2173         }
2174         end = MIN(end, max_code_points - 1);
2175         count += end - start + 1;
2176         if (count >= max_match) {
2177             invlist_iterfinish(ssc->invlist);
2178             return FALSE;
2179         }
2180     }
2181 
2182     return TRUE;
2183 }
2184 
2185 
2186 STATIC void
S_ssc_finalize(pTHX_ RExC_state_t * pRExC_state,regnode_ssc * ssc)2187 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
2188 {
2189     /* The inversion list in the SSC is marked mortal; now we need a more
2190      * permanent copy, which is stored the same way that is done in a regular
2191      * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
2192      * map */
2193 
2194     SV* invlist = invlist_clone(ssc->invlist, NULL);
2195 
2196     PERL_ARGS_ASSERT_SSC_FINALIZE;
2197 
2198     assert(is_ANYOF_SYNTHETIC(ssc));
2199 
2200     /* The code in this file assumes that all but these flags aren't relevant
2201      * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
2202      * by the time we reach here */
2203     assert(! (ANYOF_FLAGS(ssc)
2204         & ~( ANYOF_COMMON_FLAGS
2205             |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
2206             |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
2207 
2208     populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
2209 
2210     set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist, NULL, NULL);
2211     SvREFCNT_dec(invlist);
2212 
2213     /* Make sure is clone-safe */
2214     ssc->invlist = NULL;
2215 
2216     if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
2217         ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
2218         OP(ssc) = ANYOFPOSIXL;
2219     }
2220     else if (RExC_contains_locale) {
2221         OP(ssc) = ANYOFL;
2222     }
2223 
2224     assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
2225 }
2226 
2227 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
2228 #define TRIE_LIST_CUR(state)  ( TRIE_LIST_ITEM( state, 0 ).forid )
2229 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
2230 #define TRIE_LIST_USED(idx)  ( trie->states[state].trans.list         \
2231                                ? (TRIE_LIST_CUR( idx ) - 1)           \
2232                                : 0 )
2233 
2234 
2235 #ifdef DEBUGGING
2236 /*
2237    dump_trie(trie,widecharmap,revcharmap)
2238    dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
2239    dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
2240 
2241    These routines dump out a trie in a somewhat readable format.
2242    The _interim_ variants are used for debugging the interim
2243    tables that are used to generate the final compressed
2244    representation which is what dump_trie expects.
2245 
2246    Part of the reason for their existence is to provide a form
2247    of documentation as to how the different representations function.
2248 
2249 */
2250 
2251 /*
2252   Dumps the final compressed table form of the trie to Perl_debug_log.
2253   Used for debugging make_trie().
2254 */
2255 
2256 STATIC void
S_dump_trie(pTHX_ const struct _reg_trie_data * trie,HV * widecharmap,AV * revcharmap,U32 depth)2257 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
2258             AV *revcharmap, U32 depth)
2259 {
2260     U32 state;
2261     SV *sv=sv_newmortal();
2262     int colwidth= widecharmap ? 6 : 4;
2263     U16 word;
2264     DECLARE_AND_GET_RE_DEBUG_FLAGS;
2265 
2266     PERL_ARGS_ASSERT_DUMP_TRIE;
2267 
2268     Perl_re_indentf( aTHX_  "Char : %-6s%-6s%-4s ",
2269         depth+1, "Match","Base","Ofs" );
2270 
2271     for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
2272         SV ** const tmp = av_fetch( revcharmap, state, 0);
2273         if ( tmp ) {
2274             Perl_re_printf( aTHX_  "%*s",
2275                 colwidth,
2276                 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2277                             PL_colors[0], PL_colors[1],
2278                             (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2279                             PERL_PV_ESCAPE_FIRSTCHAR
2280                 )
2281             );
2282         }
2283     }
2284     Perl_re_printf( aTHX_  "\n");
2285     Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2286 
2287     for( state = 0 ; state < trie->uniquecharcount ; state++ )
2288         Perl_re_printf( aTHX_  "%.*s", colwidth, "--------");
2289     Perl_re_printf( aTHX_  "\n");
2290 
2291     for( state = 1 ; state < trie->statecount ; state++ ) {
2292         const U32 base = trie->states[ state ].trans.base;
2293 
2294         Perl_re_indentf( aTHX_  "#%4" UVXf "|", depth+1, (UV)state);
2295 
2296         if ( trie->states[ state ].wordnum ) {
2297             Perl_re_printf( aTHX_  " W%4X", trie->states[ state ].wordnum );
2298         } else {
2299             Perl_re_printf( aTHX_  "%6s", "" );
2300         }
2301 
2302         Perl_re_printf( aTHX_  " @%4" UVXf " ", (UV)base );
2303 
2304         if ( base ) {
2305             U32 ofs = 0;
2306 
2307             while( ( base + ofs  < trie->uniquecharcount ) ||
2308                    ( base + ofs - trie->uniquecharcount < trie->lasttrans
2309                      && trie->trans[ base + ofs - trie->uniquecharcount ].check
2310                                                                     != state))
2311                     ofs++;
2312 
2313             Perl_re_printf( aTHX_  "+%2" UVXf "[ ", (UV)ofs);
2314 
2315             for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2316                 if ( ( base + ofs >= trie->uniquecharcount )
2317                         && ( base + ofs - trie->uniquecharcount
2318                                                         < trie->lasttrans )
2319                         && trie->trans[ base + ofs
2320                                     - trie->uniquecharcount ].check == state )
2321                 {
2322                    Perl_re_printf( aTHX_  "%*" UVXf, colwidth,
2323                     (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2324                    );
2325                 } else {
2326                     Perl_re_printf( aTHX_  "%*s", colwidth,"   ." );
2327                 }
2328             }
2329 
2330             Perl_re_printf( aTHX_  "]");
2331 
2332         }
2333         Perl_re_printf( aTHX_  "\n" );
2334     }
2335     Perl_re_indentf( aTHX_  "word_info N:(prev,len)=",
2336                                 depth);
2337     for (word=1; word <= trie->wordcount; word++) {
2338         Perl_re_printf( aTHX_  " %d:(%d,%d)",
2339             (int)word, (int)(trie->wordinfo[word].prev),
2340             (int)(trie->wordinfo[word].len));
2341     }
2342     Perl_re_printf( aTHX_  "\n" );
2343 }
2344 /*
2345   Dumps a fully constructed but uncompressed trie in list form.
2346   List tries normally only are used for construction when the number of
2347   possible chars (trie->uniquecharcount) is very high.
2348   Used for debugging make_trie().
2349 */
2350 STATIC void
S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data * trie,HV * widecharmap,AV * revcharmap,U32 next_alloc,U32 depth)2351 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2352                          HV *widecharmap, AV *revcharmap, U32 next_alloc,
2353                          U32 depth)
2354 {
2355     U32 state;
2356     SV *sv=sv_newmortal();
2357     int colwidth= widecharmap ? 6 : 4;
2358     DECLARE_AND_GET_RE_DEBUG_FLAGS;
2359 
2360     PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2361 
2362     /* print out the table precompression.  */
2363     Perl_re_indentf( aTHX_  "State :Word | Transition Data\n",
2364             depth+1 );
2365     Perl_re_indentf( aTHX_  "%s",
2366             depth+1, "------:-----+-----------------\n" );
2367 
2368     for( state=1 ; state < next_alloc ; state ++ ) {
2369         U16 charid;
2370 
2371         Perl_re_indentf( aTHX_  " %4" UVXf " :",
2372             depth+1, (UV)state  );
2373         if ( ! trie->states[ state ].wordnum ) {
2374             Perl_re_printf( aTHX_  "%5s| ","");
2375         } else {
2376             Perl_re_printf( aTHX_  "W%4x| ",
2377                 trie->states[ state ].wordnum
2378             );
2379         }
2380         for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2381             SV ** const tmp = av_fetch( revcharmap,
2382                                         TRIE_LIST_ITEM(state, charid).forid, 0);
2383             if ( tmp ) {
2384                 Perl_re_printf( aTHX_  "%*s:%3X=%4" UVXf " | ",
2385                     colwidth,
2386                     pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2387                               colwidth,
2388                               PL_colors[0], PL_colors[1],
2389                               (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2390                               | PERL_PV_ESCAPE_FIRSTCHAR
2391                     ) ,
2392                     TRIE_LIST_ITEM(state, charid).forid,
2393                     (UV)TRIE_LIST_ITEM(state, charid).newstate
2394                 );
2395                 if (!(charid % 10))
2396                     Perl_re_printf( aTHX_  "\n%*s| ",
2397                         (int)((depth * 2) + 14), "");
2398             }
2399         }
2400         Perl_re_printf( aTHX_  "\n");
2401     }
2402 }
2403 
2404 /*
2405   Dumps a fully constructed but uncompressed trie in table form.
2406   This is the normal DFA style state transition table, with a few
2407   twists to facilitate compression later.
2408   Used for debugging make_trie().
2409 */
2410 STATIC void
S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data * trie,HV * widecharmap,AV * revcharmap,U32 next_alloc,U32 depth)2411 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2412                           HV *widecharmap, AV *revcharmap, U32 next_alloc,
2413                           U32 depth)
2414 {
2415     U32 state;
2416     U16 charid;
2417     SV *sv=sv_newmortal();
2418     int colwidth= widecharmap ? 6 : 4;
2419     DECLARE_AND_GET_RE_DEBUG_FLAGS;
2420 
2421     PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2422 
2423     /*
2424        print out the table precompression so that we can do a visual check
2425        that they are identical.
2426      */
2427 
2428     Perl_re_indentf( aTHX_  "Char : ", depth+1 );
2429 
2430     for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2431         SV ** const tmp = av_fetch( revcharmap, charid, 0);
2432         if ( tmp ) {
2433             Perl_re_printf( aTHX_  "%*s",
2434                 colwidth,
2435                 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2436                             PL_colors[0], PL_colors[1],
2437                             (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2438                             PERL_PV_ESCAPE_FIRSTCHAR
2439                 )
2440             );
2441         }
2442     }
2443 
2444     Perl_re_printf( aTHX_ "\n");
2445     Perl_re_indentf( aTHX_  "State+-", depth+1 );
2446 
2447     for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2448         Perl_re_printf( aTHX_  "%.*s", colwidth,"--------");
2449     }
2450 
2451     Perl_re_printf( aTHX_  "\n" );
2452 
2453     for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2454 
2455         Perl_re_indentf( aTHX_  "%4" UVXf " : ",
2456             depth+1,
2457             (UV)TRIE_NODENUM( state ) );
2458 
2459         for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2460             UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2461             if (v)
2462                 Perl_re_printf( aTHX_  "%*" UVXf, colwidth, v );
2463             else
2464                 Perl_re_printf( aTHX_  "%*s", colwidth, "." );
2465         }
2466         if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2467             Perl_re_printf( aTHX_  " (%4" UVXf ")\n",
2468                                             (UV)trie->trans[ state ].check );
2469         } else {
2470             Perl_re_printf( aTHX_  " (%4" UVXf ") W%4X\n",
2471                                             (UV)trie->trans[ state ].check,
2472             trie->states[ TRIE_NODENUM( state ) ].wordnum );
2473         }
2474     }
2475 }
2476 
2477 #endif
2478 
2479 
2480 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2481   startbranch: the first branch in the whole branch sequence
2482   first      : start branch of sequence of branch-exact nodes.
2483                May be the same as startbranch
2484   last       : Thing following the last branch.
2485                May be the same as tail.
2486   tail       : item following the branch sequence
2487   count      : words in the sequence
2488   flags      : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2489   depth      : indent depth
2490 
2491 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2492 
2493 A trie is an N'ary tree where the branches are determined by digital
2494 decomposition of the key. IE, at the root node you look up the 1st character and
2495 follow that branch repeat until you find the end of the branches. Nodes can be
2496 marked as "accepting" meaning they represent a complete word. Eg:
2497 
2498   /he|she|his|hers/
2499 
2500 would convert into the following structure. Numbers represent states, letters
2501 following numbers represent valid transitions on the letter from that state, if
2502 the number is in square brackets it represents an accepting state, otherwise it
2503 will be in parenthesis.
2504 
2505       +-h->+-e->[3]-+-r->(8)-+-s->[9]
2506       |    |
2507       |   (2)
2508       |    |
2509      (1)   +-i->(6)-+-s->[7]
2510       |
2511       +-s->(3)-+-h->(4)-+-e->[5]
2512 
2513       Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2514 
2515 This shows that when matching against the string 'hers' we will begin at state 1
2516 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2517 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2518 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2519 single traverse. We store a mapping from accepting to state to which word was
2520 matched, and then when we have multiple possibilities we try to complete the
2521 rest of the regex in the order in which they occurred in the alternation.
2522 
2523 The only prior NFA like behaviour that would be changed by the TRIE support is
2524 the silent ignoring of duplicate alternations which are of the form:
2525 
2526  / (DUPE|DUPE) X? (?{ ... }) Y /x
2527 
2528 Thus EVAL blocks following a trie may be called a different number of times with
2529 and without the optimisation. With the optimisations dupes will be silently
2530 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2531 the following demonstrates:
2532 
2533  'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2534 
2535 which prints out 'word' three times, but
2536 
2537  'words'=~/(word|word|word)(?{ print $1 })S/
2538 
2539 which doesnt print it out at all. This is due to other optimisations kicking in.
2540 
2541 Example of what happens on a structural level:
2542 
2543 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2544 
2545    1: CURLYM[1] {1,32767}(18)
2546    5:   BRANCH(8)
2547    6:     EXACT <ac>(16)
2548    8:   BRANCH(11)
2549    9:     EXACT <ad>(16)
2550   11:   BRANCH(14)
2551   12:     EXACT <ab>(16)
2552   16:   SUCCEED(0)
2553   17:   NOTHING(18)
2554   18: END(0)
2555 
2556 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2557 and should turn into:
2558 
2559    1: CURLYM[1] {1,32767}(18)
2560    5:   TRIE(16)
2561         [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2562           <ac>
2563           <ad>
2564           <ab>
2565   16:   SUCCEED(0)
2566   17:   NOTHING(18)
2567   18: END(0)
2568 
2569 Cases where tail != last would be like /(?foo|bar)baz/:
2570 
2571    1: BRANCH(4)
2572    2:   EXACT <foo>(8)
2573    4: BRANCH(7)
2574    5:   EXACT <bar>(8)
2575    7: TAIL(8)
2576    8: EXACT <baz>(10)
2577   10: END(0)
2578 
2579 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2580 and would end up looking like:
2581 
2582     1: TRIE(8)
2583       [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2584         <foo>
2585         <bar>
2586    7: TAIL(8)
2587    8: EXACT <baz>(10)
2588   10: END(0)
2589 
2590     d = uvchr_to_utf8_flags(d, uv, 0);
2591 
2592 is the recommended Unicode-aware way of saying
2593 
2594     *(d++) = uv;
2595 */
2596 
2597 #define TRIE_STORE_REVCHAR(val)                                            \
2598     STMT_START {                                                           \
2599         if (UTF) {							   \
2600             SV *zlopp = newSV(UTF8_MAXBYTES);				   \
2601             unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp);	   \
2602             unsigned char *const kapow = uvchr_to_utf8(flrbbbbb, val);     \
2603             *kapow = '\0';                                                 \
2604             SvCUR_set(zlopp, kapow - flrbbbbb);				   \
2605             SvPOK_on(zlopp);						   \
2606             SvUTF8_on(zlopp);						   \
2607             av_push(revcharmap, zlopp);					   \
2608         } else {							   \
2609             char ooooff = (char)val;                                           \
2610             av_push(revcharmap, newSVpvn(&ooooff, 1));			   \
2611         }								   \
2612         } STMT_END
2613 
2614 /* This gets the next character from the input, folding it if not already
2615  * folded. */
2616 #define TRIE_READ_CHAR STMT_START {                                           \
2617     wordlen++;                                                                \
2618     if ( UTF ) {                                                              \
2619         /* if it is UTF then it is either already folded, or does not need    \
2620          * folding */                                                         \
2621         uvc = valid_utf8_to_uvchr( (const U8*) uc, &len);                     \
2622     }                                                                         \
2623     else if (folder == PL_fold_latin1) {                                      \
2624         /* This folder implies Unicode rules, which in the range expressible  \
2625          *  by not UTF is the lower case, with the two exceptions, one of     \
2626          *  which should have been taken care of before calling this */       \
2627         assert(*uc != LATIN_SMALL_LETTER_SHARP_S);                            \
2628         uvc = toLOWER_L1(*uc);                                                \
2629         if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU;         \
2630         len = 1;                                                              \
2631     } else {                                                                  \
2632         /* raw data, will be folded later if needed */                        \
2633         uvc = (U32)*uc;                                                       \
2634         len = 1;                                                              \
2635     }                                                                         \
2636 } STMT_END
2637 
2638 
2639 
2640 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START {               \
2641     if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) {    \
2642         U32 ging = TRIE_LIST_LEN( state ) * 2;                  \
2643         Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2644         TRIE_LIST_LEN( state ) = ging;                          \
2645     }                                                           \
2646     TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid;     \
2647     TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns;   \
2648     TRIE_LIST_CUR( state )++;                                   \
2649 } STMT_END
2650 
2651 #define TRIE_LIST_NEW(state) STMT_START {                       \
2652     Newx( trie->states[ state ].trans.list,                     \
2653         4, reg_trie_trans_le );                                 \
2654      TRIE_LIST_CUR( state ) = 1;                                \
2655      TRIE_LIST_LEN( state ) = 4;                                \
2656 } STMT_END
2657 
2658 #define TRIE_HANDLE_WORD(state) STMT_START {                    \
2659     U16 dupe= trie->states[ state ].wordnum;                    \
2660     regnode * const noper_next = regnext( noper );              \
2661                                                                 \
2662     DEBUG_r({                                                   \
2663         /* store the word for dumping */                        \
2664         SV* tmp;                                                \
2665         if (OP(noper) != NOTHING)                               \
2666             tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF);	\
2667         else                                                    \
2668             tmp = newSVpvn_utf8( "", 0, UTF );			\
2669         av_push( trie_words, tmp );                             \
2670     });                                                         \
2671                                                                 \
2672     curword++;                                                  \
2673     trie->wordinfo[curword].prev   = 0;                         \
2674     trie->wordinfo[curword].len    = wordlen;                   \
2675     trie->wordinfo[curword].accept = state;                     \
2676                                                                 \
2677     if ( noper_next < tail ) {                                  \
2678         if (!trie->jump)                                        \
2679             trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2680                                                  sizeof(U16) ); \
2681         trie->jump[curword] = (U16)(noper_next - convert);      \
2682         if (!jumper)                                            \
2683             jumper = noper_next;                                \
2684         if (!nextbranch)                                        \
2685             nextbranch= regnext(cur);                           \
2686     }                                                           \
2687                                                                 \
2688     if ( dupe ) {                                               \
2689         /* It's a dupe. Pre-insert into the wordinfo[].prev   */\
2690         /* chain, so that when the bits of chain are later    */\
2691         /* linked together, the dups appear in the chain      */\
2692         trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2693         trie->wordinfo[dupe].prev = curword;                    \
2694     } else {                                                    \
2695         /* we haven't inserted this word yet.                */ \
2696         trie->states[ state ].wordnum = curword;                \
2697     }                                                           \
2698 } STMT_END
2699 
2700 
2701 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special)		\
2702      ( ( base + charid >=  ucharcount					\
2703          && base + charid < ubound					\
2704          && state == trie->trans[ base - ucharcount + charid ].check	\
2705          && trie->trans[ base - ucharcount + charid ].next )		\
2706            ? trie->trans[ base - ucharcount + charid ].next		\
2707            : ( state==1 ? special : 0 )					\
2708       )
2709 
2710 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder)           \
2711 STMT_START {                                                \
2712     TRIE_BITMAP_SET(trie, uvc);                             \
2713     /* store the folded codepoint */                        \
2714     if ( folder )                                           \
2715         TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);           \
2716                                                             \
2717     if ( !UTF ) {                                           \
2718         /* store first byte of utf8 representation of */    \
2719         /* variant codepoints */                            \
2720         if (! UVCHR_IS_INVARIANT(uvc)) {                    \
2721             TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));   \
2722         }                                                   \
2723     }                                                       \
2724 } STMT_END
2725 #define MADE_TRIE       1
2726 #define MADE_JUMP_TRIE  2
2727 #define MADE_EXACT_TRIE 4
2728 
2729 STATIC I32
S_make_trie(pTHX_ RExC_state_t * pRExC_state,regnode * startbranch,regnode * first,regnode * last,regnode * tail,U32 word_count,U32 flags,U32 depth)2730 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2731                   regnode *first, regnode *last, regnode *tail,
2732                   U32 word_count, U32 flags, U32 depth)
2733 {
2734     /* first pass, loop through and scan words */
2735     reg_trie_data *trie;
2736     HV *widecharmap = NULL;
2737     AV *revcharmap = newAV();
2738     regnode *cur;
2739     STRLEN len = 0;
2740     UV uvc = 0;
2741     U16 curword = 0;
2742     U32 next_alloc = 0;
2743     regnode *jumper = NULL;
2744     regnode *nextbranch = NULL;
2745     regnode *convert = NULL;
2746     U32 *prev_states; /* temp array mapping each state to previous one */
2747     /* we just use folder as a flag in utf8 */
2748     const U8 * folder = NULL;
2749 
2750     /* in the below add_data call we are storing either 'tu' or 'tuaa'
2751      * which stands for one trie structure, one hash, optionally followed
2752      * by two arrays */
2753 #ifdef DEBUGGING
2754     const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuaa"));
2755     AV *trie_words = NULL;
2756     /* along with revcharmap, this only used during construction but both are
2757      * useful during debugging so we store them in the struct when debugging.
2758      */
2759 #else
2760     const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2761     STRLEN trie_charcount=0;
2762 #endif
2763     SV *re_trie_maxbuff;
2764     DECLARE_AND_GET_RE_DEBUG_FLAGS;
2765 
2766     PERL_ARGS_ASSERT_MAKE_TRIE;
2767 #ifndef DEBUGGING
2768     PERL_UNUSED_ARG(depth);
2769 #endif
2770 
2771     switch (flags) {
2772         case EXACT: case EXACT_REQ8: case EXACTL: break;
2773         case EXACTFAA:
2774         case EXACTFUP:
2775         case EXACTFU:
2776         case EXACTFLU8: folder = PL_fold_latin1; break;
2777         case EXACTF:  folder = PL_fold; break;
2778         default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2779     }
2780 
2781     trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2782     trie->refcount = 1;
2783     trie->startstate = 1;
2784     trie->wordcount = word_count;
2785     RExC_rxi->data->data[ data_slot ] = (void*)trie;
2786     trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2787     if (flags == EXACT || flags == EXACT_REQ8 || flags == EXACTL)
2788         trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2789     trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2790                        trie->wordcount+1, sizeof(reg_trie_wordinfo));
2791 
2792     DEBUG_r({
2793         trie_words = newAV();
2794     });
2795 
2796     re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, GV_ADD);
2797     assert(re_trie_maxbuff);
2798     if (!SvIOK(re_trie_maxbuff)) {
2799         sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2800     }
2801     DEBUG_TRIE_COMPILE_r({
2802         Perl_re_indentf( aTHX_
2803           "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2804           depth+1,
2805           REG_NODE_NUM(startbranch), REG_NODE_NUM(first),
2806           REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2807     });
2808 
2809    /* Find the node we are going to overwrite */
2810     if ( first == startbranch && OP( last ) != BRANCH ) {
2811         /* whole branch chain */
2812         convert = first;
2813     } else {
2814         /* branch sub-chain */
2815         convert = NEXTOPER( first );
2816     }
2817 
2818     /*  -- First loop and Setup --
2819 
2820        We first traverse the branches and scan each word to determine if it
2821        contains widechars, and how many unique chars there are, this is
2822        important as we have to build a table with at least as many columns as we
2823        have unique chars.
2824 
2825        We use an array of integers to represent the character codes 0..255
2826        (trie->charmap) and we use a an HV* to store Unicode characters. We use
2827        the native representation of the character value as the key and IV's for
2828        the coded index.
2829 
2830        *TODO* If we keep track of how many times each character is used we can
2831        remap the columns so that the table compression later on is more
2832        efficient in terms of memory by ensuring the most common value is in the
2833        middle and the least common are on the outside.  IMO this would be better
2834        than a most to least common mapping as theres a decent chance the most
2835        common letter will share a node with the least common, meaning the node
2836        will not be compressible. With a middle is most common approach the worst
2837        case is when we have the least common nodes twice.
2838 
2839      */
2840 
2841     for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2842         regnode *noper = NEXTOPER( cur );
2843         const U8 *uc;
2844         const U8 *e;
2845         int foldlen = 0;
2846         U32 wordlen      = 0;         /* required init */
2847         STRLEN minchars = 0;
2848         STRLEN maxchars = 0;
2849         bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2850                                                bitmap?*/
2851 
2852         if (OP(noper) == NOTHING) {
2853             /* skip past a NOTHING at the start of an alternation
2854              * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2855              *
2856              * If the next node is not something we are supposed to process
2857              * we will just ignore it due to the condition guarding the
2858              * next block.
2859              */
2860 
2861             regnode *noper_next= regnext(noper);
2862             if (noper_next < tail)
2863                 noper= noper_next;
2864         }
2865 
2866         if (    noper < tail
2867             && (    OP(noper) == flags
2868                 || (flags == EXACT && OP(noper) == EXACT_REQ8)
2869                 || (flags == EXACTFU && (   OP(noper) == EXACTFU_REQ8
2870                                          || OP(noper) == EXACTFUP))))
2871         {
2872             uc= (U8*)STRING(noper);
2873             e= uc + STR_LEN(noper);
2874         } else {
2875             trie->minlen= 0;
2876             continue;
2877         }
2878 
2879 
2880         if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2881             TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2882                                           regardless of encoding */
2883             if (OP( noper ) == EXACTFUP) {
2884                 /* false positives are ok, so just set this */
2885                 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2886             }
2887         }
2888 
2889         for ( ; uc < e ; uc += len ) {  /* Look at each char in the current
2890                                            branch */
2891             TRIE_CHARCOUNT(trie)++;
2892             TRIE_READ_CHAR;
2893 
2894             /* TRIE_READ_CHAR returns the current character, or its fold if /i
2895              * is in effect.  Under /i, this character can match itself, or
2896              * anything that folds to it.  If not under /i, it can match just
2897              * itself.  Most folds are 1-1, for example k, K, and KELVIN SIGN
2898              * all fold to k, and all are single characters.   But some folds
2899              * expand to more than one character, so for example LATIN SMALL
2900              * LIGATURE FFI folds to the three character sequence 'ffi'.  If
2901              * the string beginning at 'uc' is 'ffi', it could be matched by
2902              * three characters, or just by the one ligature character. (It
2903              * could also be matched by two characters: LATIN SMALL LIGATURE FF
2904              * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2905              * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2906              * match.)  The trie needs to know the minimum and maximum number
2907              * of characters that could match so that it can use size alone to
2908              * quickly reject many match attempts.  The max is simple: it is
2909              * the number of folded characters in this branch (since a fold is
2910              * never shorter than what folds to it. */
2911 
2912             maxchars++;
2913 
2914             /* And the min is equal to the max if not under /i (indicated by
2915              * 'folder' being NULL), or there are no multi-character folds.  If
2916              * there is a multi-character fold, the min is incremented just
2917              * once, for the character that folds to the sequence.  Each
2918              * character in the sequence needs to be added to the list below of
2919              * characters in the trie, but we count only the first towards the
2920              * min number of characters needed.  This is done through the
2921              * variable 'foldlen', which is returned by the macros that look
2922              * for these sequences as the number of bytes the sequence
2923              * occupies.  Each time through the loop, we decrement 'foldlen' by
2924              * how many bytes the current char occupies.  Only when it reaches
2925              * 0 do we increment 'minchars' or look for another multi-character
2926              * sequence. */
2927             if (folder == NULL) {
2928                 minchars++;
2929             }
2930             else if (foldlen > 0) {
2931                 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2932             }
2933             else {
2934                 minchars++;
2935 
2936                 /* See if *uc is the beginning of a multi-character fold.  If
2937                  * so, we decrement the length remaining to look at, to account
2938                  * for the current character this iteration.  (We can use 'uc'
2939                  * instead of the fold returned by TRIE_READ_CHAR because the
2940                  * macro is smart enough to account for any unfolded
2941                  * characters. */
2942                 if (UTF) {
2943                     if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2944                         foldlen -= UTF8SKIP(uc);
2945                     }
2946                 }
2947                 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2948                     foldlen--;
2949                 }
2950             }
2951 
2952             /* The current character (and any potential folds) should be added
2953              * to the possible matching characters for this position in this
2954              * branch */
2955             if ( uvc < 256 ) {
2956                 if ( folder ) {
2957                     U8 folded= folder[ (U8) uvc ];
2958                     if ( !trie->charmap[ folded ] ) {
2959                         trie->charmap[ folded ]=( ++trie->uniquecharcount );
2960                         TRIE_STORE_REVCHAR( folded );
2961                     }
2962                 }
2963                 if ( !trie->charmap[ uvc ] ) {
2964                     trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2965                     TRIE_STORE_REVCHAR( uvc );
2966                 }
2967                 if ( set_bit ) {
2968                     /* store the codepoint in the bitmap, and its folded
2969                      * equivalent. */
2970                     TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2971                     set_bit = 0; /* We've done our bit :-) */
2972                 }
2973             } else {
2974 
2975                 /* XXX We could come up with the list of code points that fold
2976                  * to this using PL_utf8_foldclosures, except not for
2977                  * multi-char folds, as there may be multiple combinations
2978                  * there that could work, which needs to wait until runtime to
2979                  * resolve (The comment about LIGATURE FFI above is such an
2980                  * example */
2981 
2982                 SV** svpp;
2983                 if ( !widecharmap )
2984                     widecharmap = newHV();
2985 
2986                 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2987 
2988                 if ( !svpp )
2989                     Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2990 
2991                 if ( !SvTRUE( *svpp ) ) {
2992                     sv_setiv( *svpp, ++trie->uniquecharcount );
2993                     TRIE_STORE_REVCHAR(uvc);
2994                 }
2995             }
2996         } /* end loop through characters in this branch of the trie */
2997 
2998         /* We take the min and max for this branch and combine to find the min
2999          * and max for all branches processed so far */
3000         if( cur == first ) {
3001             trie->minlen = minchars;
3002             trie->maxlen = maxchars;
3003         } else if (minchars < trie->minlen) {
3004             trie->minlen = minchars;
3005         } else if (maxchars > trie->maxlen) {
3006             trie->maxlen = maxchars;
3007         }
3008     } /* end first pass */
3009     DEBUG_TRIE_COMPILE_r(
3010         Perl_re_indentf( aTHX_
3011                 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
3012                 depth+1,
3013                 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
3014                 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
3015                 (int)trie->minlen, (int)trie->maxlen )
3016     );
3017 
3018     /*
3019         We now know what we are dealing with in terms of unique chars and
3020         string sizes so we can calculate how much memory a naive
3021         representation using a flat table  will take. If it's over a reasonable
3022         limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
3023         conservative but potentially much slower representation using an array
3024         of lists.
3025 
3026         At the end we convert both representations into the same compressed
3027         form that will be used in regexec.c for matching with. The latter
3028         is a form that cannot be used to construct with but has memory
3029         properties similar to the list form and access properties similar
3030         to the table form making it both suitable for fast searches and
3031         small enough that its feasable to store for the duration of a program.
3032 
3033         See the comment in the code where the compressed table is produced
3034         inplace from the flat tabe representation for an explanation of how
3035         the compression works.
3036 
3037     */
3038 
3039 
3040     Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
3041     prev_states[1] = 0;
3042 
3043     if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
3044                                                     > SvIV(re_trie_maxbuff) )
3045     {
3046         /*
3047             Second Pass -- Array Of Lists Representation
3048 
3049             Each state will be represented by a list of charid:state records
3050             (reg_trie_trans_le) the first such element holds the CUR and LEN
3051             points of the allocated array. (See defines above).
3052 
3053             We build the initial structure using the lists, and then convert
3054             it into the compressed table form which allows faster lookups
3055             (but cant be modified once converted).
3056         */
3057 
3058         STRLEN transcount = 1;
3059 
3060         DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_  "Compiling trie using list compiler\n",
3061             depth+1));
3062 
3063         trie->states = (reg_trie_state *)
3064             PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
3065                                   sizeof(reg_trie_state) );
3066         TRIE_LIST_NEW(1);
3067         next_alloc = 2;
3068 
3069         for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3070 
3071             regnode *noper   = NEXTOPER( cur );
3072             U32 state        = 1;         /* required init */
3073             U16 charid       = 0;         /* sanity init */
3074             U32 wordlen      = 0;         /* required init */
3075 
3076             if (OP(noper) == NOTHING) {
3077                 regnode *noper_next= regnext(noper);
3078                 if (noper_next < tail)
3079                     noper= noper_next;
3080                 /* we will undo this assignment if noper does not
3081                  * point at a trieable type in the else clause of
3082                  * the following statement. */
3083             }
3084 
3085             if (    noper < tail
3086                 && (    OP(noper) == flags
3087                     || (flags == EXACT && OP(noper) == EXACT_REQ8)
3088                     || (flags == EXACTFU && (   OP(noper) == EXACTFU_REQ8
3089                                              || OP(noper) == EXACTFUP))))
3090             {
3091                 const U8 *uc= (U8*)STRING(noper);
3092                 const U8 *e= uc + STR_LEN(noper);
3093 
3094                 for ( ; uc < e ; uc += len ) {
3095 
3096                     TRIE_READ_CHAR;
3097 
3098                     if ( uvc < 256 ) {
3099                         charid = trie->charmap[ uvc ];
3100                     } else {
3101                         SV** const svpp = hv_fetch( widecharmap,
3102                                                     (char*)&uvc,
3103                                                     sizeof( UV ),
3104                                                     0);
3105                         if ( !svpp ) {
3106                             charid = 0;
3107                         } else {
3108                             charid=(U16)SvIV( *svpp );
3109                         }
3110                     }
3111                     /* charid is now 0 if we dont know the char read, or
3112                      * nonzero if we do */
3113                     if ( charid ) {
3114 
3115                         U16 check;
3116                         U32 newstate = 0;
3117 
3118                         charid--;
3119                         if ( !trie->states[ state ].trans.list ) {
3120                             TRIE_LIST_NEW( state );
3121                         }
3122                         for ( check = 1;
3123                               check <= TRIE_LIST_USED( state );
3124                               check++ )
3125                         {
3126                             if ( TRIE_LIST_ITEM( state, check ).forid
3127                                                                     == charid )
3128                             {
3129                                 newstate = TRIE_LIST_ITEM( state, check ).newstate;
3130                                 break;
3131                             }
3132                         }
3133                         if ( ! newstate ) {
3134                             newstate = next_alloc++;
3135                             prev_states[newstate] = state;
3136                             TRIE_LIST_PUSH( state, charid, newstate );
3137                             transcount++;
3138                         }
3139                         state = newstate;
3140                     } else {
3141                         Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3142                     }
3143                 }
3144             } else {
3145                 /* If we end up here it is because we skipped past a NOTHING, but did not end up
3146                  * on a trieable type. So we need to reset noper back to point at the first regop
3147                  * in the branch before we call TRIE_HANDLE_WORD()
3148                 */
3149                 noper= NEXTOPER(cur);
3150             }
3151             TRIE_HANDLE_WORD(state);
3152 
3153         } /* end second pass */
3154 
3155         /* next alloc is the NEXT state to be allocated */
3156         trie->statecount = next_alloc;
3157         trie->states = (reg_trie_state *)
3158             PerlMemShared_realloc( trie->states,
3159                                    next_alloc
3160                                    * sizeof(reg_trie_state) );
3161 
3162         /* and now dump it out before we compress it */
3163         DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
3164                                                          revcharmap, next_alloc,
3165                                                          depth+1)
3166         );
3167 
3168         trie->trans = (reg_trie_trans *)
3169             PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
3170         {
3171             U32 state;
3172             U32 tp = 0;
3173             U32 zp = 0;
3174 
3175 
3176             for( state=1 ; state < next_alloc ; state ++ ) {
3177                 U32 base=0;
3178 
3179                 /*
3180                 DEBUG_TRIE_COMPILE_MORE_r(
3181                     Perl_re_printf( aTHX_  "tp: %d zp: %d ",tp,zp)
3182                 );
3183                 */
3184 
3185                 if (trie->states[state].trans.list) {
3186                     U16 minid=TRIE_LIST_ITEM( state, 1).forid;
3187                     U16 maxid=minid;
3188                     U16 idx;
3189 
3190                     for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3191                         const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
3192                         if ( forid < minid ) {
3193                             minid=forid;
3194                         } else if ( forid > maxid ) {
3195                             maxid=forid;
3196                         }
3197                     }
3198                     if ( transcount < tp + maxid - minid + 1) {
3199                         transcount *= 2;
3200                         trie->trans = (reg_trie_trans *)
3201                             PerlMemShared_realloc( trie->trans,
3202                                                      transcount
3203                                                      * sizeof(reg_trie_trans) );
3204                         Zero( trie->trans + (transcount / 2),
3205                               transcount / 2,
3206                               reg_trie_trans );
3207                     }
3208                     base = trie->uniquecharcount + tp - minid;
3209                     if ( maxid == minid ) {
3210                         U32 set = 0;
3211                         for ( ; zp < tp ; zp++ ) {
3212                             if ( ! trie->trans[ zp ].next ) {
3213                                 base = trie->uniquecharcount + zp - minid;
3214                                 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
3215                                                                    1).newstate;
3216                                 trie->trans[ zp ].check = state;
3217                                 set = 1;
3218                                 break;
3219                             }
3220                         }
3221                         if ( !set ) {
3222                             trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
3223                                                                    1).newstate;
3224                             trie->trans[ tp ].check = state;
3225                             tp++;
3226                             zp = tp;
3227                         }
3228                     } else {
3229                         for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3230                             const U32 tid = base
3231                                            - trie->uniquecharcount
3232                                            + TRIE_LIST_ITEM( state, idx ).forid;
3233                             trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
3234                                                                 idx ).newstate;
3235                             trie->trans[ tid ].check = state;
3236                         }
3237                         tp += ( maxid - minid + 1 );
3238                     }
3239                     Safefree(trie->states[ state ].trans.list);
3240                 }
3241                 /*
3242                 DEBUG_TRIE_COMPILE_MORE_r(
3243                     Perl_re_printf( aTHX_  " base: %d\n",base);
3244                 );
3245                 */
3246                 trie->states[ state ].trans.base=base;
3247             }
3248             trie->lasttrans = tp + 1;
3249         }
3250     } else {
3251         /*
3252            Second Pass -- Flat Table Representation.
3253 
3254            we dont use the 0 slot of either trans[] or states[] so we add 1 to
3255            each.  We know that we will need Charcount+1 trans at most to store
3256            the data (one row per char at worst case) So we preallocate both
3257            structures assuming worst case.
3258 
3259            We then construct the trie using only the .next slots of the entry
3260            structs.
3261 
3262            We use the .check field of the first entry of the node temporarily
3263            to make compression both faster and easier by keeping track of how
3264            many non zero fields are in the node.
3265 
3266            Since trans are numbered from 1 any 0 pointer in the table is a FAIL
3267            transition.
3268 
3269            There are two terms at use here: state as a TRIE_NODEIDX() which is
3270            a number representing the first entry of the node, and state as a
3271            TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
3272            and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
3273            if there are 2 entrys per node. eg:
3274 
3275              A B       A B
3276           1. 2 4    1. 3 7
3277           2. 0 3    3. 0 5
3278           3. 0 0    5. 0 0
3279           4. 0 0    7. 0 0
3280 
3281            The table is internally in the right hand, idx form. However as we
3282            also have to deal with the states array which is indexed by nodenum
3283            we have to use TRIE_NODENUM() to convert.
3284 
3285         */
3286         DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_  "Compiling trie using table compiler\n",
3287             depth+1));
3288 
3289         trie->trans = (reg_trie_trans *)
3290             PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
3291                                   * trie->uniquecharcount + 1,
3292                                   sizeof(reg_trie_trans) );
3293         trie->states = (reg_trie_state *)
3294             PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
3295                                   sizeof(reg_trie_state) );
3296         next_alloc = trie->uniquecharcount + 1;
3297 
3298 
3299         for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3300 
3301             regnode *noper   = NEXTOPER( cur );
3302 
3303             U32 state        = 1;         /* required init */
3304 
3305             U16 charid       = 0;         /* sanity init */
3306             U32 accept_state = 0;         /* sanity init */
3307 
3308             U32 wordlen      = 0;         /* required init */
3309 
3310             if (OP(noper) == NOTHING) {
3311                 regnode *noper_next= regnext(noper);
3312                 if (noper_next < tail)
3313                     noper= noper_next;
3314                 /* we will undo this assignment if noper does not
3315                  * point at a trieable type in the else clause of
3316                  * the following statement. */
3317             }
3318 
3319             if (    noper < tail
3320                 && (    OP(noper) == flags
3321                     || (flags == EXACT && OP(noper) == EXACT_REQ8)
3322                     || (flags == EXACTFU && (   OP(noper) == EXACTFU_REQ8
3323                                              || OP(noper) == EXACTFUP))))
3324             {
3325                 const U8 *uc= (U8*)STRING(noper);
3326                 const U8 *e= uc + STR_LEN(noper);
3327 
3328                 for ( ; uc < e ; uc += len ) {
3329 
3330                     TRIE_READ_CHAR;
3331 
3332                     if ( uvc < 256 ) {
3333                         charid = trie->charmap[ uvc ];
3334                     } else {
3335                         SV* const * const svpp = hv_fetch( widecharmap,
3336                                                            (char*)&uvc,
3337                                                            sizeof( UV ),
3338                                                            0);
3339                         charid = svpp ? (U16)SvIV(*svpp) : 0;
3340                     }
3341                     if ( charid ) {
3342                         charid--;
3343                         if ( !trie->trans[ state + charid ].next ) {
3344                             trie->trans[ state + charid ].next = next_alloc;
3345                             trie->trans[ state ].check++;
3346                             prev_states[TRIE_NODENUM(next_alloc)]
3347                                     = TRIE_NODENUM(state);
3348                             next_alloc += trie->uniquecharcount;
3349                         }
3350                         state = trie->trans[ state + charid ].next;
3351                     } else {
3352                         Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3353                     }
3354                     /* charid is now 0 if we dont know the char read, or
3355                      * nonzero if we do */
3356                 }
3357             } else {
3358                 /* If we end up here it is because we skipped past a NOTHING, but did not end up
3359                  * on a trieable type. So we need to reset noper back to point at the first regop
3360                  * in the branch before we call TRIE_HANDLE_WORD().
3361                 */
3362                 noper= NEXTOPER(cur);
3363             }
3364             accept_state = TRIE_NODENUM( state );
3365             TRIE_HANDLE_WORD(accept_state);
3366 
3367         } /* end second pass */
3368 
3369         /* and now dump it out before we compress it */
3370         DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3371                                                           revcharmap,
3372                                                           next_alloc, depth+1));
3373 
3374         {
3375         /*
3376            * Inplace compress the table.*
3377 
3378            For sparse data sets the table constructed by the trie algorithm will
3379            be mostly 0/FAIL transitions or to put it another way mostly empty.
3380            (Note that leaf nodes will not contain any transitions.)
3381 
3382            This algorithm compresses the tables by eliminating most such
3383            transitions, at the cost of a modest bit of extra work during lookup:
3384 
3385            - Each states[] entry contains a .base field which indicates the
3386            index in the state[] array wheres its transition data is stored.
3387 
3388            - If .base is 0 there are no valid transitions from that node.
3389 
3390            - If .base is nonzero then charid is added to it to find an entry in
3391            the trans array.
3392 
3393            -If trans[states[state].base+charid].check!=state then the
3394            transition is taken to be a 0/Fail transition. Thus if there are fail
3395            transitions at the front of the node then the .base offset will point
3396            somewhere inside the previous nodes data (or maybe even into a node
3397            even earlier), but the .check field determines if the transition is
3398            valid.
3399 
3400            XXX - wrong maybe?
3401            The following process inplace converts the table to the compressed
3402            table: We first do not compress the root node 1,and mark all its
3403            .check pointers as 1 and set its .base pointer as 1 as well. This
3404            allows us to do a DFA construction from the compressed table later,
3405            and ensures that any .base pointers we calculate later are greater
3406            than 0.
3407 
3408            - We set 'pos' to indicate the first entry of the second node.
3409 
3410            - We then iterate over the columns of the node, finding the first and
3411            last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3412            and set the .check pointers accordingly, and advance pos
3413            appropriately and repreat for the next node. Note that when we copy
3414            the next pointers we have to convert them from the original
3415            NODEIDX form to NODENUM form as the former is not valid post
3416            compression.
3417 
3418            - If a node has no transitions used we mark its base as 0 and do not
3419            advance the pos pointer.
3420 
3421            - If a node only has one transition we use a second pointer into the
3422            structure to fill in allocated fail transitions from other states.
3423            This pointer is independent of the main pointer and scans forward
3424            looking for null transitions that are allocated to a state. When it
3425            finds one it writes the single transition into the "hole".  If the
3426            pointer doesnt find one the single transition is appended as normal.
3427 
3428            - Once compressed we can Renew/realloc the structures to release the
3429            excess space.
3430 
3431            See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3432            specifically Fig 3.47 and the associated pseudocode.
3433 
3434            demq
3435         */
3436         const U32 laststate = TRIE_NODENUM( next_alloc );
3437         U32 state, charid;
3438         U32 pos = 0, zp=0;
3439         trie->statecount = laststate;
3440 
3441         for ( state = 1 ; state < laststate ; state++ ) {
3442             U8 flag = 0;
3443             const U32 stateidx = TRIE_NODEIDX( state );
3444             const U32 o_used = trie->trans[ stateidx ].check;
3445             U32 used = trie->trans[ stateidx ].check;
3446             trie->trans[ stateidx ].check = 0;
3447 
3448             for ( charid = 0;
3449                   used && charid < trie->uniquecharcount;
3450                   charid++ )
3451             {
3452                 if ( flag || trie->trans[ stateidx + charid ].next ) {
3453                     if ( trie->trans[ stateidx + charid ].next ) {
3454                         if (o_used == 1) {
3455                             for ( ; zp < pos ; zp++ ) {
3456                                 if ( ! trie->trans[ zp ].next ) {
3457                                     break;
3458                                 }
3459                             }
3460                             trie->states[ state ].trans.base
3461                                                     = zp
3462                                                       + trie->uniquecharcount
3463                                                       - charid ;
3464                             trie->trans[ zp ].next
3465                                 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3466                                                              + charid ].next );
3467                             trie->trans[ zp ].check = state;
3468                             if ( ++zp > pos ) pos = zp;
3469                             break;
3470                         }
3471                         used--;
3472                     }
3473                     if ( !flag ) {
3474                         flag = 1;
3475                         trie->states[ state ].trans.base
3476                                        = pos + trie->uniquecharcount - charid ;
3477                     }
3478                     trie->trans[ pos ].next
3479                         = SAFE_TRIE_NODENUM(
3480                                        trie->trans[ stateidx + charid ].next );
3481                     trie->trans[ pos ].check = state;
3482                     pos++;
3483                 }
3484             }
3485         }
3486         trie->lasttrans = pos + 1;
3487         trie->states = (reg_trie_state *)
3488             PerlMemShared_realloc( trie->states, laststate
3489                                    * sizeof(reg_trie_state) );
3490         DEBUG_TRIE_COMPILE_MORE_r(
3491             Perl_re_indentf( aTHX_  "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3492                 depth+1,
3493                 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3494                        + 1 ),
3495                 (IV)next_alloc,
3496                 (IV)pos,
3497                 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3498             );
3499 
3500         } /* end table compress */
3501     }
3502     DEBUG_TRIE_COMPILE_MORE_r(
3503             Perl_re_indentf( aTHX_  "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3504                 depth+1,
3505                 (UV)trie->statecount,
3506                 (UV)trie->lasttrans)
3507     );
3508     /* resize the trans array to remove unused space */
3509     trie->trans = (reg_trie_trans *)
3510         PerlMemShared_realloc( trie->trans, trie->lasttrans
3511                                * sizeof(reg_trie_trans) );
3512 
3513     {   /* Modify the program and insert the new TRIE node */
3514         U8 nodetype =(U8) flags;
3515         char *str=NULL;
3516 
3517 #ifdef DEBUGGING
3518         regnode *optimize = NULL;
3519 #ifdef RE_TRACK_PATTERN_OFFSETS
3520 
3521         U32 mjd_offset = 0;
3522         U32 mjd_nodelen = 0;
3523 #endif /* RE_TRACK_PATTERN_OFFSETS */
3524 #endif /* DEBUGGING */
3525         /*
3526            This means we convert either the first branch or the first Exact,
3527            depending on whether the thing following (in 'last') is a branch
3528            or not and whther first is the startbranch (ie is it a sub part of
3529            the alternation or is it the whole thing.)
3530            Assuming its a sub part we convert the EXACT otherwise we convert
3531            the whole branch sequence, including the first.
3532          */
3533         /* Find the node we are going to overwrite */
3534         if ( first != startbranch || OP( last ) == BRANCH ) {
3535             /* branch sub-chain */
3536             NEXT_OFF( first ) = (U16)(last - first);
3537 #ifdef RE_TRACK_PATTERN_OFFSETS
3538             DEBUG_r({
3539                 mjd_offset= Node_Offset((convert));
3540                 mjd_nodelen= Node_Length((convert));
3541             });
3542 #endif
3543             /* whole branch chain */
3544         }
3545 #ifdef RE_TRACK_PATTERN_OFFSETS
3546         else {
3547             DEBUG_r({
3548                 const  regnode *nop = NEXTOPER( convert );
3549                 mjd_offset= Node_Offset((nop));
3550                 mjd_nodelen= Node_Length((nop));
3551             });
3552         }
3553         DEBUG_OPTIMISE_r(
3554             Perl_re_indentf( aTHX_  "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3555                 depth+1,
3556                 (UV)mjd_offset, (UV)mjd_nodelen)
3557         );
3558 #endif
3559         /* But first we check to see if there is a common prefix we can
3560            split out as an EXACT and put in front of the TRIE node.  */
3561         trie->startstate= 1;
3562         if ( trie->bitmap && !widecharmap && !trie->jump  ) {
3563             /* we want to find the first state that has more than
3564              * one transition, if that state is not the first state
3565              * then we have a common prefix which we can remove.
3566              */
3567             U32 state;
3568             for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3569                 U32 ofs = 0;
3570                 I32 first_ofs = -1; /* keeps track of the ofs of the first
3571                                        transition, -1 means none */
3572                 U32 count = 0;
3573                 const U32 base = trie->states[ state ].trans.base;
3574 
3575                 /* does this state terminate an alternation? */
3576                 if ( trie->states[state].wordnum )
3577                         count = 1;
3578 
3579                 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3580                     if ( ( base + ofs >= trie->uniquecharcount ) &&
3581                          ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3582                          trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3583                     {
3584                         if ( ++count > 1 ) {
3585                             /* we have more than one transition */
3586                             SV **tmp;
3587                             U8 *ch;
3588                             /* if this is the first state there is no common prefix
3589                              * to extract, so we can exit */
3590                             if ( state == 1 ) break;
3591                             tmp = av_fetch( revcharmap, ofs, 0);
3592                             ch = (U8*)SvPV_nolen_const( *tmp );
3593 
3594                             /* if we are on count 2 then we need to initialize the
3595                              * bitmap, and store the previous char if there was one
3596                              * in it*/
3597                             if ( count == 2 ) {
3598                                 /* clear the bitmap */
3599                                 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3600                                 DEBUG_OPTIMISE_r(
3601                                     Perl_re_indentf( aTHX_  "New Start State=%" UVuf " Class: [",
3602                                         depth+1,
3603                                         (UV)state));
3604                                 if (first_ofs >= 0) {
3605                                     SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3606                                     const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3607 
3608                                     TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3609                                     DEBUG_OPTIMISE_r(
3610                                         Perl_re_printf( aTHX_  "%s", (char*)ch)
3611                                     );
3612                                 }
3613                             }
3614                             /* store the current firstchar in the bitmap */
3615                             TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3616                             DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3617                         }
3618                         first_ofs = ofs;
3619                     }
3620                 }
3621                 if ( count == 1 ) {
3622                     /* This state has only one transition, its transition is part
3623                      * of a common prefix - we need to concatenate the char it
3624                      * represents to what we have so far. */
3625                     SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3626                     STRLEN len;
3627                     char *ch = SvPV( *tmp, len );
3628                     DEBUG_OPTIMISE_r({
3629                         SV *sv=sv_newmortal();
3630                         Perl_re_indentf( aTHX_  "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3631                             depth+1,
3632                             (UV)state, (UV)first_ofs,
3633                             pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3634                                 PL_colors[0], PL_colors[1],
3635                                 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3636                                 PERL_PV_ESCAPE_FIRSTCHAR
3637                             )
3638                         );
3639                     });
3640                     if ( state==1 ) {
3641                         OP( convert ) = nodetype;
3642                         str=STRING(convert);
3643                         setSTR_LEN(convert, 0);
3644                     }
3645                     assert( ( STR_LEN(convert) + len ) < 256 );
3646                     setSTR_LEN(convert, (U8)(STR_LEN(convert) + len));
3647                     while (len--)
3648                         *str++ = *ch++;
3649                 } else {
3650 #ifdef DEBUGGING
3651                     if (state>1)
3652                         DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3653 #endif
3654                     break;
3655                 }
3656             }
3657             trie->prefixlen = (state-1);
3658             if (str) {
3659                 regnode *n = convert+NODE_SZ_STR(convert);
3660                 assert( NODE_SZ_STR(convert) <= U16_MAX );
3661                 NEXT_OFF(convert) = (U16)(NODE_SZ_STR(convert));
3662                 trie->startstate = state;
3663                 trie->minlen -= (state - 1);
3664                 trie->maxlen -= (state - 1);
3665 #ifdef DEBUGGING
3666                /* At least the UNICOS C compiler choked on this
3667                 * being argument to DEBUG_r(), so let's just have
3668                 * it right here. */
3669                if (
3670 #ifdef PERL_EXT_RE_BUILD
3671                    1
3672 #else
3673                    DEBUG_r_TEST
3674 #endif
3675                    ) {
3676                    regnode *fix = convert;
3677                    U32 word = trie->wordcount;
3678 #ifdef RE_TRACK_PATTERN_OFFSETS
3679                    mjd_nodelen++;
3680 #endif
3681                    Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3682                    while( ++fix < n ) {
3683                        Set_Node_Offset_Length(fix, 0, 0);
3684                    }
3685                    while (word--) {
3686                        SV ** const tmp = av_fetch( trie_words, word, 0 );
3687                        if (tmp) {
3688                            if ( STR_LEN(convert) <= SvCUR(*tmp) )
3689                                sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3690                            else
3691                                sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3692                        }
3693                    }
3694                }
3695 #endif
3696                 if (trie->maxlen) {
3697                     convert = n;
3698                 } else {
3699                     NEXT_OFF(convert) = (U16)(tail - convert);
3700                     DEBUG_r(optimize= n);
3701                 }
3702             }
3703         }
3704         if (!jumper)
3705             jumper = last;
3706         if ( trie->maxlen ) {
3707             NEXT_OFF( convert ) = (U16)(tail - convert);
3708             ARG_SET( convert, data_slot );
3709             /* Store the offset to the first unabsorbed branch in
3710                jump[0], which is otherwise unused by the jump logic.
3711                We use this when dumping a trie and during optimisation. */
3712             if (trie->jump)
3713                 trie->jump[0] = (U16)(nextbranch - convert);
3714 
3715             /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3716              *   and there is a bitmap
3717              *   and the first "jump target" node we found leaves enough room
3718              * then convert the TRIE node into a TRIEC node, with the bitmap
3719              * embedded inline in the opcode - this is hypothetically faster.
3720              */
3721             if ( !trie->states[trie->startstate].wordnum
3722                  && trie->bitmap
3723                  && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3724             {
3725                 OP( convert ) = TRIEC;
3726                 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3727                 PerlMemShared_free(trie->bitmap);
3728                 trie->bitmap= NULL;
3729             } else
3730                 OP( convert ) = TRIE;
3731 
3732             /* store the type in the flags */
3733             convert->flags = nodetype;
3734             DEBUG_r({
3735             optimize = convert
3736                       + NODE_STEP_REGNODE
3737                       + regarglen[ OP( convert ) ];
3738             });
3739             /* XXX We really should free up the resource in trie now,
3740                    as we won't use them - (which resources?) dmq */
3741         }
3742         /* needed for dumping*/
3743         DEBUG_r(if (optimize) {
3744             regnode *opt = convert;
3745 
3746             while ( ++opt < optimize) {
3747                 Set_Node_Offset_Length(opt, 0, 0);
3748             }
3749             /*
3750                 Try to clean up some of the debris left after the
3751                 optimisation.
3752              */
3753             while( optimize < jumper ) {
3754                 Track_Code( mjd_nodelen += Node_Length((optimize)); );
3755                 OP( optimize ) = OPTIMIZED;
3756                 Set_Node_Offset_Length(optimize, 0, 0);
3757                 optimize++;
3758             }
3759             Set_Node_Offset_Length(convert, mjd_offset, mjd_nodelen);
3760         });
3761     } /* end node insert */
3762 
3763     /*  Finish populating the prev field of the wordinfo array.  Walk back
3764      *  from each accept state until we find another accept state, and if
3765      *  so, point the first word's .prev field at the second word. If the
3766      *  second already has a .prev field set, stop now. This will be the
3767      *  case either if we've already processed that word's accept state,
3768      *  or that state had multiple words, and the overspill words were
3769      *  already linked up earlier.
3770      */
3771     {
3772         U16 word;
3773         U32 state;
3774         U16 prev;
3775 
3776         for (word=1; word <= trie->wordcount; word++) {
3777             prev = 0;
3778             if (trie->wordinfo[word].prev)
3779                 continue;
3780             state = trie->wordinfo[word].accept;
3781             while (state) {
3782                 state = prev_states[state];
3783                 if (!state)
3784                     break;
3785                 prev = trie->states[state].wordnum;
3786                 if (prev)
3787                     break;
3788             }
3789             trie->wordinfo[word].prev = prev;
3790         }
3791         Safefree(prev_states);
3792     }
3793 
3794 
3795     /* and now dump out the compressed format */
3796     DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3797 
3798     RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3799 #ifdef DEBUGGING
3800     RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3801     RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3802 #else
3803     SvREFCNT_dec_NN(revcharmap);
3804 #endif
3805     return trie->jump
3806            ? MADE_JUMP_TRIE
3807            : trie->startstate>1
3808              ? MADE_EXACT_TRIE
3809              : MADE_TRIE;
3810 }
3811 
3812 STATIC regnode *
S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t * pRExC_state,regnode * source,U32 depth)3813 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3814 {
3815 /* The Trie is constructed and compressed now so we can build a fail array if
3816  * it's needed
3817 
3818    This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3819    3.32 in the
3820    "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3821    Ullman 1985/88
3822    ISBN 0-201-10088-6
3823 
3824    We find the fail state for each state in the trie, this state is the longest
3825    proper suffix of the current state's 'word' that is also a proper prefix of
3826    another word in our trie. State 1 represents the word '' and is thus the
3827    default fail state. This allows the DFA not to have to restart after its
3828    tried and failed a word at a given point, it simply continues as though it
3829    had been matching the other word in the first place.
3830    Consider
3831       'abcdgu'=~/abcdefg|cdgu/
3832    When we get to 'd' we are still matching the first word, we would encounter
3833    'g' which would fail, which would bring us to the state representing 'd' in
3834    the second word where we would try 'g' and succeed, proceeding to match
3835    'cdgu'.
3836  */
3837  /* add a fail transition */
3838     const U32 trie_offset = ARG(source);
3839     reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3840     U32 *q;
3841     const U32 ucharcount = trie->uniquecharcount;
3842     const U32 numstates = trie->statecount;
3843     const U32 ubound = trie->lasttrans + ucharcount;
3844     U32 q_read = 0;
3845     U32 q_write = 0;
3846     U32 charid;
3847     U32 base = trie->states[ 1 ].trans.base;
3848     U32 *fail;
3849     reg_ac_data *aho;
3850     const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3851     regnode *stclass;
3852     DECLARE_AND_GET_RE_DEBUG_FLAGS;
3853 
3854     PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3855     PERL_UNUSED_CONTEXT;
3856 #ifndef DEBUGGING
3857     PERL_UNUSED_ARG(depth);
3858 #endif
3859 
3860     if ( OP(source) == TRIE ) {
3861         struct regnode_1 *op = (struct regnode_1 *)
3862             PerlMemShared_calloc(1, sizeof(struct regnode_1));
3863         StructCopy(source, op, struct regnode_1);
3864         stclass = (regnode *)op;
3865     } else {
3866         struct regnode_charclass *op = (struct regnode_charclass *)
3867             PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3868         StructCopy(source, op, struct regnode_charclass);
3869         stclass = (regnode *)op;
3870     }
3871     OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3872 
3873     ARG_SET( stclass, data_slot );
3874     aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3875     RExC_rxi->data->data[ data_slot ] = (void*)aho;
3876     aho->trie=trie_offset;
3877     aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3878     Copy( trie->states, aho->states, numstates, reg_trie_state );
3879     Newx( q, numstates, U32);
3880     aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3881     aho->refcount = 1;
3882     fail = aho->fail;
3883     /* initialize fail[0..1] to be 1 so that we always have
3884        a valid final fail state */
3885     fail[ 0 ] = fail[ 1 ] = 1;
3886 
3887     for ( charid = 0; charid < ucharcount ; charid++ ) {
3888         const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3889         if ( newstate ) {
3890             q[ q_write ] = newstate;
3891             /* set to point at the root */
3892             fail[ q[ q_write++ ] ]=1;
3893         }
3894     }
3895     while ( q_read < q_write) {
3896         const U32 cur = q[ q_read++ % numstates ];
3897         base = trie->states[ cur ].trans.base;
3898 
3899         for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3900             const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3901             if (ch_state) {
3902                 U32 fail_state = cur;
3903                 U32 fail_base;
3904                 do {
3905                     fail_state = fail[ fail_state ];
3906                     fail_base = aho->states[ fail_state ].trans.base;
3907                 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3908 
3909                 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3910                 fail[ ch_state ] = fail_state;
3911                 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3912                 {
3913                         aho->states[ ch_state ].wordnum =  aho->states[ fail_state ].wordnum;
3914                 }
3915                 q[ q_write++ % numstates] = ch_state;
3916             }
3917         }
3918     }
3919     /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3920        when we fail in state 1, this allows us to use the
3921        charclass scan to find a valid start char. This is based on the principle
3922        that theres a good chance the string being searched contains lots of stuff
3923        that cant be a start char.
3924      */
3925     fail[ 0 ] = fail[ 1 ] = 0;
3926     DEBUG_TRIE_COMPILE_r({
3927         Perl_re_indentf( aTHX_  "Stclass Failtable (%" UVuf " states): 0",
3928                       depth, (UV)numstates
3929         );
3930         for( q_read=1; q_read<numstates; q_read++ ) {
3931             Perl_re_printf( aTHX_  ", %" UVuf, (UV)fail[q_read]);
3932         }
3933         Perl_re_printf( aTHX_  "\n");
3934     });
3935     Safefree(q);
3936     /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3937     return stclass;
3938 }
3939 
3940 
3941 /* The below joins as many adjacent EXACTish nodes as possible into a single
3942  * one.  The regop may be changed if the node(s) contain certain sequences that
3943  * require special handling.  The joining is only done if:
3944  * 1) there is room in the current conglomerated node to entirely contain the
3945  *    next one.
3946  * 2) they are compatible node types
3947  *
3948  * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3949  * these get optimized out
3950  *
3951  * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3952  * as possible, even if that means splitting an existing node so that its first
3953  * part is moved to the preceding node.  This would maximise the efficiency of
3954  * memEQ during matching.
3955  *
3956  * If a node is to match under /i (folded), the number of characters it matches
3957  * can be different than its character length if it contains a multi-character
3958  * fold.  *min_subtract is set to the total delta number of characters of the
3959  * input nodes.
3960  *
3961  * And *unfolded_multi_char is set to indicate whether or not the node contains
3962  * an unfolded multi-char fold.  This happens when it won't be known until
3963  * runtime whether the fold is valid or not; namely
3964  *  1) for EXACTF nodes that contain LATIN SMALL LETTER SHARP S, as only if the
3965  *      target string being matched against turns out to be UTF-8 is that fold
3966  *      valid; or
3967  *  2) for EXACTFL nodes whose folding rules depend on the locale in force at
3968  *      runtime.
3969  * (Multi-char folds whose components are all above the Latin1 range are not
3970  * run-time locale dependent, and have already been folded by the time this
3971  * function is called.)
3972  *
3973  * This is as good a place as any to discuss the design of handling these
3974  * multi-character fold sequences.  It's been wrong in Perl for a very long
3975  * time.  There are three code points in Unicode whose multi-character folds
3976  * were long ago discovered to mess things up.  The previous designs for
3977  * dealing with these involved assigning a special node for them.  This
3978  * approach doesn't always work, as evidenced by this example:
3979  *      "\xDFs" =~ /s\xDF/ui    # Used to fail before these patches
3980  * Both sides fold to "sss", but if the pattern is parsed to create a node that
3981  * would match just the \xDF, it won't be able to handle the case where a
3982  * successful match would have to cross the node's boundary.  The new approach
3983  * that hopefully generally solves the problem generates an EXACTFUP node
3984  * that is "sss" in this case.
3985  *
3986  * It turns out that there are problems with all multi-character folds, and not
3987  * just these three.  Now the code is general, for all such cases.  The
3988  * approach taken is:
3989  * 1)   This routine examines each EXACTFish node that could contain multi-
3990  *      character folded sequences.  Since a single character can fold into
3991  *      such a sequence, the minimum match length for this node is less than
3992  *      the number of characters in the node.  This routine returns in
3993  *      *min_subtract how many characters to subtract from the actual
3994  *      length of the string to get a real minimum match length; it is 0 if
3995  *      there are no multi-char foldeds.  This delta is used by the caller to
3996  *      adjust the min length of the match, and the delta between min and max,
3997  *      so that the optimizer doesn't reject these possibilities based on size
3998  *      constraints.
3999  *
4000  * 2)   For the sequence involving the LATIN SMALL LETTER SHARP S (U+00DF)
4001  *      under /u, we fold it to 'ss' in regatom(), and in this routine, after
4002  *      joining, we scan for occurrences of the sequence 'ss' in non-UTF-8
4003  *      EXACTFU nodes.  The node type of such nodes is then changed to
4004  *      EXACTFUP, indicating it is problematic, and needs careful handling.
4005  *      (The procedures in step 1) above are sufficient to handle this case in
4006  *      UTF-8 encoded nodes.)  The reason this is problematic is that this is
4007  *      the only case where there is a possible fold length change in non-UTF-8
4008  *      patterns.  By reserving a special node type for problematic cases, the
4009  *      far more common regular EXACTFU nodes can be processed faster.
4010  *      regexec.c takes advantage of this.
4011  *
4012  *      EXACTFUP has been created as a grab-bag for (hopefully uncommon)
4013  *      problematic cases.   These all only occur when the pattern is not
4014  *      UTF-8.  In addition to the 'ss' sequence where there is a possible fold
4015  *      length change, it handles the situation where the string cannot be
4016  *      entirely folded.  The strings in an EXACTFish node are folded as much
4017  *      as possible during compilation in regcomp.c.  This saves effort in
4018  *      regex matching.  By using an EXACTFUP node when it is not possible to
4019  *      fully fold at compile time, regexec.c can know that everything in an
4020  *      EXACTFU node is folded, so folding can be skipped at runtime.  The only
4021  *      case where folding in EXACTFU nodes can't be done at compile time is
4022  *      the presumably uncommon MICRO SIGN, when the pattern isn't UTF-8.  This
4023  *      is because its fold requires UTF-8 to represent.  Thus EXACTFUP nodes
4024  *      handle two very different cases.  Alternatively, there could have been
4025  *      a node type where there are length changes, one for unfolded, and one
4026  *      for both.  If yet another special case needed to be created, the number
4027  *      of required node types would have to go to 7.  khw figures that even
4028  *      though there are plenty of node types to spare, that the maintenance
4029  *      cost wasn't worth the small speedup of doing it that way, especially
4030  *      since he thinks the MICRO SIGN is rarely encountered in practice.
4031  *
4032  *      There are other cases where folding isn't done at compile time, but
4033  *      none of them are under /u, and hence not for EXACTFU nodes.  The folds
4034  *      in EXACTFL nodes aren't known until runtime, and vary as the locale
4035  *      changes.  Some folds in EXACTF depend on if the runtime target string
4036  *      is UTF-8 or not.  (regatom() will create an EXACTFU node even under /di
4037  *      when no fold in it depends on the UTF-8ness of the target string.)
4038  *
4039  * 3)   A problem remains for unfolded multi-char folds. (These occur when the
4040  *      validity of the fold won't be known until runtime, and so must remain
4041  *      unfolded for now.  This happens for the sharp s in EXACTF and EXACTFAA
4042  *      nodes when the pattern isn't in UTF-8.  (Note, BTW, that there cannot
4043  *      be an EXACTF node with a UTF-8 pattern.)  They also occur for various
4044  *      folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
4045  *      The reason this is a problem is that the optimizer part of regexec.c
4046  *      (probably unwittingly, in Perl_regexec_flags()) makes an assumption
4047  *      that a character in the pattern corresponds to at most a single
4048  *      character in the target string.  (And I do mean character, and not byte
4049  *      here, unlike other parts of the documentation that have never been
4050  *      updated to account for multibyte Unicode.)  Sharp s in EXACTF and
4051  *      EXACTFL nodes can match the two character string 'ss'; in EXACTFAA
4052  *      nodes it can match "\x{17F}\x{17F}".  These, along with other ones in
4053  *      EXACTFL nodes, violate the assumption, and they are the only instances
4054  *      where it is violated.  I'm reluctant to try to change the assumption,
4055  *      as the code involved is impenetrable to me (khw), so instead the code
4056  *      here punts.  This routine examines EXACTFL nodes, and (when the pattern
4057  *      isn't UTF-8) EXACTF and EXACTFAA for such unfolded folds, and returns a
4058  *      boolean indicating whether or not the node contains such a fold.  When
4059  *      it is true, the caller sets a flag that later causes the optimizer in
4060  *      this file to not set values for the floating and fixed string lengths,
4061  *      and thus avoids the optimizer code in regexec.c that makes the invalid
4062  *      assumption.  Thus, there is no optimization based on string lengths for
4063  *      EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
4064  *      EXACTF and EXACTFAA nodes that contain the sharp s.  (The reason the
4065  *      assumption is wrong only in these cases is that all other non-UTF-8
4066  *      folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
4067  *      their expanded versions.  (Again, we can't prefold sharp s to 'ss' in
4068  *      EXACTF nodes because we don't know at compile time if it actually
4069  *      matches 'ss' or not.  For EXACTF nodes it will match iff the target
4070  *      string is in UTF-8.  This is in contrast to EXACTFU nodes, where it
4071  *      always matches; and EXACTFAA where it never does.  In an EXACTFAA node
4072  *      in a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
4073  *      problem; but in a non-UTF8 pattern, folding it to that above-Latin1
4074  *      string would require the pattern to be forced into UTF-8, the overhead
4075  *      of which we want to avoid.  Similarly the unfolded multi-char folds in
4076  *      EXACTFL nodes will match iff the locale at the time of match is a UTF-8
4077  *      locale.)
4078  *
4079  *      Similarly, the code that generates tries doesn't currently handle
4080  *      not-already-folded multi-char folds, and it looks like a pain to change
4081  *      that.  Therefore, trie generation of EXACTFAA nodes with the sharp s
4082  *      doesn't work.  Instead, such an EXACTFAA is turned into a new regnode,
4083  *      EXACTFAA_NO_TRIE, which the trie code knows not to handle.  Most people
4084  *      using /iaa matching will be doing so almost entirely with ASCII
4085  *      strings, so this should rarely be encountered in practice */
4086 
4087 STATIC U32
S_join_exact(pTHX_ RExC_state_t * pRExC_state,regnode * scan,UV * min_subtract,bool * unfolded_multi_char,U32 flags,regnode * val,U32 depth)4088 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
4089                    UV *min_subtract, bool *unfolded_multi_char,
4090                    U32 flags, regnode *val, U32 depth)
4091 {
4092     /* Merge several consecutive EXACTish nodes into one. */
4093 
4094     regnode *n = regnext(scan);
4095     U32 stringok = 1;
4096     regnode *next = scan + NODE_SZ_STR(scan);
4097     U32 merged = 0;
4098     U32 stopnow = 0;
4099 #ifdef DEBUGGING
4100     regnode *stop = scan;
4101     DECLARE_AND_GET_RE_DEBUG_FLAGS;
4102 #else
4103     PERL_UNUSED_ARG(depth);
4104 #endif
4105 
4106     PERL_ARGS_ASSERT_JOIN_EXACT;
4107 #ifndef EXPERIMENTAL_INPLACESCAN
4108     PERL_UNUSED_ARG(flags);
4109     PERL_UNUSED_ARG(val);
4110 #endif
4111     DEBUG_PEEP("join", scan, depth, 0);
4112 
4113     assert(PL_regkind[OP(scan)] == EXACT);
4114 
4115     /* Look through the subsequent nodes in the chain.  Skip NOTHING, merge
4116      * EXACT ones that are mergeable to the current one. */
4117     while (    n
4118            && (    PL_regkind[OP(n)] == NOTHING
4119                || (stringok && PL_regkind[OP(n)] == EXACT))
4120            && NEXT_OFF(n)
4121            && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
4122     {
4123 
4124         if (OP(n) == TAIL || n > next)
4125             stringok = 0;
4126         if (PL_regkind[OP(n)] == NOTHING) {
4127             DEBUG_PEEP("skip:", n, depth, 0);
4128             NEXT_OFF(scan) += NEXT_OFF(n);
4129             next = n + NODE_STEP_REGNODE;
4130 #ifdef DEBUGGING
4131             if (stringok)
4132                 stop = n;
4133 #endif
4134             n = regnext(n);
4135         }
4136         else if (stringok) {
4137             const unsigned int oldl = STR_LEN(scan);
4138             regnode * const nnext = regnext(n);
4139 
4140             /* XXX I (khw) kind of doubt that this works on platforms (should
4141              * Perl ever run on one) where U8_MAX is above 255 because of lots
4142              * of other assumptions */
4143             /* Don't join if the sum can't fit into a single node */
4144             if (oldl + STR_LEN(n) > U8_MAX)
4145                 break;
4146 
4147             /* Joining something that requires UTF-8 with something that
4148              * doesn't, means the result requires UTF-8. */
4149             if (OP(scan) == EXACT && (OP(n) == EXACT_REQ8)) {
4150                 OP(scan) = EXACT_REQ8;
4151             }
4152             else if (OP(scan) == EXACT_REQ8 && (OP(n) == EXACT)) {
4153                 ;   /* join is compatible, no need to change OP */
4154             }
4155             else if ((OP(scan) == EXACTFU) && (OP(n) == EXACTFU_REQ8)) {
4156                 OP(scan) = EXACTFU_REQ8;
4157             }
4158             else if ((OP(scan) == EXACTFU_REQ8) && (OP(n) == EXACTFU)) {
4159                 ;   /* join is compatible, no need to change OP */
4160             }
4161             else if (OP(scan) == EXACTFU && OP(n) == EXACTFU) {
4162                 ;   /* join is compatible, no need to change OP */
4163             }
4164             else if (OP(scan) == EXACTFU && OP(n) == EXACTFU_S_EDGE) {
4165 
4166                  /* Under /di, temporary EXACTFU_S_EDGE nodes are generated,
4167                   * which can join with EXACTFU ones.  We check for this case
4168                   * here.  These need to be resolved to either EXACTFU or
4169                   * EXACTF at joining time.  They have nothing in them that
4170                   * would forbid them from being the more desirable EXACTFU
4171                   * nodes except that they begin and/or end with a single [Ss].
4172                   * The reason this is problematic is because they could be
4173                   * joined in this loop with an adjacent node that ends and/or
4174                   * begins with [Ss] which would then form the sequence 'ss',
4175                   * which matches differently under /di than /ui, in which case
4176                   * EXACTFU can't be used.  If the 'ss' sequence doesn't get
4177                   * formed, the nodes get absorbed into any adjacent EXACTFU
4178                   * node.  And if the only adjacent node is EXACTF, they get
4179                   * absorbed into that, under the theory that a longer node is
4180                   * better than two shorter ones, even if one is EXACTFU.  Note
4181                   * that EXACTFU_REQ8 is generated only for UTF-8 patterns,
4182                   * and the EXACTFU_S_EDGE ones only for non-UTF-8.  */
4183 
4184                 if (STRING(n)[STR_LEN(n)-1] == 's') {
4185 
4186                     /* Here the joined node would end with 's'.  If the node
4187                      * following the combination is an EXACTF one, it's better to
4188                      * join this trailing edge 's' node with that one, leaving the
4189                      * current one in 'scan' be the more desirable EXACTFU */
4190                     if (OP(nnext) == EXACTF) {
4191                         break;
4192                     }
4193 
4194                     OP(scan) = EXACTFU_S_EDGE;
4195 
4196                 }   /* Otherwise, the beginning 's' of the 2nd node just
4197                        becomes an interior 's' in 'scan' */
4198             }
4199             else if (OP(scan) == EXACTF && OP(n) == EXACTF) {
4200                 ;   /* join is compatible, no need to change OP */
4201             }
4202             else if (OP(scan) == EXACTF && OP(n) == EXACTFU_S_EDGE) {
4203 
4204                 /* EXACTF nodes are compatible for joining with EXACTFU_S_EDGE
4205                  * nodes.  But the latter nodes can be also joined with EXACTFU
4206                  * ones, and that is a better outcome, so if the node following
4207                  * 'n' is EXACTFU, quit now so that those two can be joined
4208                  * later */
4209                 if (OP(nnext) == EXACTFU) {
4210                     break;
4211                 }
4212 
4213                 /* The join is compatible, and the combined node will be
4214                  * EXACTF.  (These don't care if they begin or end with 's' */
4215             }
4216             else if (OP(scan) == EXACTFU_S_EDGE && OP(n) == EXACTFU_S_EDGE) {
4217                 if (   STRING(scan)[STR_LEN(scan)-1] == 's'
4218                     && STRING(n)[0] == 's')
4219                 {
4220                     /* When combined, we have the sequence 'ss', which means we
4221                      * have to remain /di */
4222                     OP(scan) = EXACTF;
4223                 }
4224             }
4225             else if (OP(scan) == EXACTFU_S_EDGE && OP(n) == EXACTFU) {
4226                 if (STRING(n)[0] == 's') {
4227                     ;   /* Here the join is compatible and the combined node
4228                            starts with 's', no need to change OP */
4229                 }
4230                 else {  /* Now the trailing 's' is in the interior */
4231                     OP(scan) = EXACTFU;
4232                 }
4233             }
4234             else if (OP(scan) == EXACTFU_S_EDGE && OP(n) == EXACTF) {
4235 
4236                 /* The join is compatible, and the combined node will be
4237                  * EXACTF.  (These don't care if they begin or end with 's' */
4238                 OP(scan) = EXACTF;
4239             }
4240             else if (OP(scan) != OP(n)) {
4241 
4242                 /* The only other compatible joinings are the same node type */
4243                 break;
4244             }
4245 
4246             DEBUG_PEEP("merg", n, depth, 0);
4247             merged++;
4248 
4249             NEXT_OFF(scan) += NEXT_OFF(n);
4250             assert( ( STR_LEN(scan) + STR_LEN(n) ) < 256 );
4251             setSTR_LEN(scan, (U8)(STR_LEN(scan) + STR_LEN(n)));
4252             next = n + NODE_SZ_STR(n);
4253             /* Now we can overwrite *n : */
4254             Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
4255 #ifdef DEBUGGING
4256             stop = next - 1;
4257 #endif
4258             n = nnext;
4259             if (stopnow) break;
4260         }
4261 
4262 #ifdef EXPERIMENTAL_INPLACESCAN
4263         if (flags && !NEXT_OFF(n)) {
4264             DEBUG_PEEP("atch", val, depth, 0);
4265             if (reg_off_by_arg[OP(n)]) {
4266                 ARG_SET(n, val - n);
4267             }
4268             else {
4269                 NEXT_OFF(n) = val - n;
4270             }
4271             stopnow = 1;
4272         }
4273 #endif
4274     }
4275 
4276     /* This temporary node can now be turned into EXACTFU, and must, as
4277      * regexec.c doesn't handle it */
4278     if (OP(scan) == EXACTFU_S_EDGE) {
4279         OP(scan) = EXACTFU;
4280     }
4281 
4282     *min_subtract = 0;
4283     *unfolded_multi_char = FALSE;
4284 
4285     /* Here, all the adjacent mergeable EXACTish nodes have been merged.  We
4286      * can now analyze for sequences of problematic code points.  (Prior to
4287      * this final joining, sequences could have been split over boundaries, and
4288      * hence missed).  The sequences only happen in folding, hence for any
4289      * non-EXACT EXACTish node */
4290     if (OP(scan) != EXACT && OP(scan) != EXACT_REQ8 && OP(scan) != EXACTL) {
4291         U8* s0 = (U8*) STRING(scan);
4292         U8* s = s0;
4293         U8* s_end = s0 + STR_LEN(scan);
4294 
4295         int total_count_delta = 0;  /* Total delta number of characters that
4296                                        multi-char folds expand to */
4297 
4298         /* One pass is made over the node's string looking for all the
4299          * possibilities.  To avoid some tests in the loop, there are two main
4300          * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
4301          * non-UTF-8 */
4302         if (UTF) {
4303             U8* folded = NULL;
4304 
4305             if (OP(scan) == EXACTFL) {
4306                 U8 *d;
4307 
4308                 /* An EXACTFL node would already have been changed to another
4309                  * node type unless there is at least one character in it that
4310                  * is problematic; likely a character whose fold definition
4311                  * won't be known until runtime, and so has yet to be folded.
4312                  * For all but the UTF-8 locale, folds are 1-1 in length, but
4313                  * to handle the UTF-8 case, we need to create a temporary
4314                  * folded copy using UTF-8 locale rules in order to analyze it.
4315                  * This is because our macros that look to see if a sequence is
4316                  * a multi-char fold assume everything is folded (otherwise the
4317                  * tests in those macros would be too complicated and slow).
4318                  * Note that here, the non-problematic folds will have already
4319                  * been done, so we can just copy such characters.  We actually
4320                  * don't completely fold the EXACTFL string.  We skip the
4321                  * unfolded multi-char folds, as that would just create work
4322                  * below to figure out the size they already are */
4323 
4324                 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
4325                 d = folded;
4326                 while (s < s_end) {
4327                     STRLEN s_len = UTF8SKIP(s);
4328                     if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
4329                         Copy(s, d, s_len, U8);
4330                         d += s_len;
4331                     }
4332                     else if (is_FOLDS_TO_MULTI_utf8(s)) {
4333                         *unfolded_multi_char = TRUE;
4334                         Copy(s, d, s_len, U8);
4335                         d += s_len;
4336                     }
4337                     else if (isASCII(*s)) {
4338                         *(d++) = toFOLD(*s);
4339                     }
4340                     else {
4341                         STRLEN len;
4342                         _toFOLD_utf8_flags(s, s_end, d, &len, FOLD_FLAGS_FULL);
4343                         d += len;
4344                     }
4345                     s += s_len;
4346                 }
4347 
4348                 /* Point the remainder of the routine to look at our temporary
4349                  * folded copy */
4350                 s = folded;
4351                 s_end = d;
4352             } /* End of creating folded copy of EXACTFL string */
4353 
4354             /* Examine the string for a multi-character fold sequence.  UTF-8
4355              * patterns have all characters pre-folded by the time this code is
4356              * executed */
4357             while (s < s_end - 1) /* Can stop 1 before the end, as minimum
4358                                      length sequence we are looking for is 2 */
4359             {
4360                 int count = 0;  /* How many characters in a multi-char fold */
4361                 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
4362                 if (! len) {    /* Not a multi-char fold: get next char */
4363                     s += UTF8SKIP(s);
4364                     continue;
4365                 }
4366 
4367                 { /* Here is a generic multi-char fold. */
4368                     U8* multi_end  = s + len;
4369 
4370                     /* Count how many characters are in it.  In the case of
4371                      * /aa, no folds which contain ASCII code points are
4372                      * allowed, so check for those, and skip if found. */
4373                     if (OP(scan) != EXACTFAA && OP(scan) != EXACTFAA_NO_TRIE) {
4374                         count = utf8_length(s, multi_end);
4375                         s = multi_end;
4376                     }
4377                     else {
4378                         while (s < multi_end) {
4379                             if (isASCII(*s)) {
4380                                 s++;
4381                                 goto next_iteration;
4382                             }
4383                             else {
4384                                 s += UTF8SKIP(s);
4385                             }
4386                             count++;
4387                         }
4388                     }
4389                 }
4390 
4391                 /* The delta is how long the sequence is minus 1 (1 is how long
4392                  * the character that folds to the sequence is) */
4393                 total_count_delta += count - 1;
4394               next_iteration: ;
4395             }
4396 
4397             /* We created a temporary folded copy of the string in EXACTFL
4398              * nodes.  Therefore we need to be sure it doesn't go below zero,
4399              * as the real string could be shorter */
4400             if (OP(scan) == EXACTFL) {
4401                 int total_chars = utf8_length((U8*) STRING(scan),
4402                                            (U8*) STRING(scan) + STR_LEN(scan));
4403                 if (total_count_delta > total_chars) {
4404                     total_count_delta = total_chars;
4405                 }
4406             }
4407 
4408             *min_subtract += total_count_delta;
4409             Safefree(folded);
4410         }
4411         else if (OP(scan) == EXACTFAA) {
4412 
4413             /* Non-UTF-8 pattern, EXACTFAA node.  There can't be a multi-char
4414              * fold to the ASCII range (and there are no existing ones in the
4415              * upper latin1 range).  But, as outlined in the comments preceding
4416              * this function, we need to flag any occurrences of the sharp s.
4417              * This character forbids trie formation (because of added
4418              * complexity) */
4419 #if    UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */   \
4420    || (UNICODE_MAJOR_VERSION == 3 && (   UNICODE_DOT_VERSION > 0)       \
4421                                       || UNICODE_DOT_DOT_VERSION > 0)
4422             while (s < s_end) {
4423                 if (*s == LATIN_SMALL_LETTER_SHARP_S) {
4424                     OP(scan) = EXACTFAA_NO_TRIE;
4425                     *unfolded_multi_char = TRUE;
4426                     break;
4427                 }
4428                 s++;
4429             }
4430         }
4431         else if (OP(scan) != EXACTFAA_NO_TRIE) {
4432 
4433             /* Non-UTF-8 pattern, not EXACTFAA node.  Look for the multi-char
4434              * folds that are all Latin1.  As explained in the comments
4435              * preceding this function, we look also for the sharp s in EXACTF
4436              * and EXACTFL nodes; it can be in the final position.  Otherwise
4437              * we can stop looking 1 byte earlier because have to find at least
4438              * two characters for a multi-fold */
4439             const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
4440                               ? s_end
4441                               : s_end -1;
4442 
4443             while (s < upper) {
4444                 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
4445                 if (! len) {    /* Not a multi-char fold. */
4446                     if (*s == LATIN_SMALL_LETTER_SHARP_S
4447                         && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
4448                     {
4449                         *unfolded_multi_char = TRUE;
4450                     }
4451                     s++;
4452                     continue;
4453                 }
4454 
4455                 if (len == 2
4456                     && isALPHA_FOLD_EQ(*s, 's')
4457                     && isALPHA_FOLD_EQ(*(s+1), 's'))
4458                 {
4459 
4460                     /* EXACTF nodes need to know that the minimum length
4461                      * changed so that a sharp s in the string can match this
4462                      * ss in the pattern, but they remain EXACTF nodes, as they
4463                      * won't match this unless the target string is in UTF-8,
4464                      * which we don't know until runtime.  EXACTFL nodes can't
4465                      * transform into EXACTFU nodes */
4466                     if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
4467                         OP(scan) = EXACTFUP;
4468                     }
4469                 }
4470 
4471                 *min_subtract += len - 1;
4472                 s += len;
4473             }
4474 #endif
4475         }
4476     }
4477 
4478 #ifdef DEBUGGING
4479     /* Allow dumping but overwriting the collection of skipped
4480      * ops and/or strings with fake optimized ops */
4481     n = scan + NODE_SZ_STR(scan);
4482     while (n <= stop) {
4483         OP(n) = OPTIMIZED;
4484         FLAGS(n) = 0;
4485         NEXT_OFF(n) = 0;
4486         n++;
4487     }
4488 #endif
4489     DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl", scan, depth, 0);});
4490     return stopnow;
4491 }
4492 
4493 /* REx optimizer.  Converts nodes into quicker variants "in place".
4494    Finds fixed substrings.  */
4495 
4496 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
4497    to the position after last scanned or to NULL. */
4498 
4499 #define INIT_AND_WITHP \
4500     assert(!and_withp); \
4501     Newx(and_withp, 1, regnode_ssc); \
4502     SAVEFREEPV(and_withp)
4503 
4504 
4505 static void
S_unwind_scan_frames(pTHX_ const void * p)4506 S_unwind_scan_frames(pTHX_ const void *p)
4507 {
4508     scan_frame *f= (scan_frame *)p;
4509     do {
4510         scan_frame *n= f->next_frame;
4511         Safefree(f);
4512         f= n;
4513     } while (f);
4514 }
4515 
4516 /* Follow the next-chain of the current node and optimize away
4517    all the NOTHINGs from it.
4518  */
4519 STATIC void
S_rck_elide_nothing(pTHX_ regnode * node)4520 S_rck_elide_nothing(pTHX_ regnode *node)
4521 {
4522     PERL_ARGS_ASSERT_RCK_ELIDE_NOTHING;
4523 
4524     if (OP(node) != CURLYX) {
4525         const int max = (reg_off_by_arg[OP(node)]
4526                         ? I32_MAX
4527                           /* I32 may be smaller than U16 on CRAYs! */
4528                         : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
4529         int off = (reg_off_by_arg[OP(node)] ? ARG(node) : NEXT_OFF(node));
4530         int noff;
4531         regnode *n = node;
4532 
4533         /* Skip NOTHING and LONGJMP. */
4534         while (
4535             (n = regnext(n))
4536             && (
4537                 (PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
4538                 || ((OP(n) == LONGJMP) && (noff = ARG(n)))
4539             )
4540             && off + noff < max
4541         ) {
4542             off += noff;
4543         }
4544         if (reg_off_by_arg[OP(node)])
4545             ARG(node) = off;
4546         else
4547             NEXT_OFF(node) = off;
4548     }
4549     return;
4550 }
4551 
4552 /* the return from this sub is the minimum length that could possibly match */
4553 STATIC SSize_t
S_study_chunk(pTHX_ RExC_state_t * pRExC_state,regnode ** scanp,SSize_t * minlenp,SSize_t * deltap,regnode * last,scan_data_t * data,I32 stopparen,U32 recursed_depth,regnode_ssc * and_withp,U32 flags,U32 depth,bool was_mutate_ok)4554 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
4555                         SSize_t *minlenp, SSize_t *deltap,
4556                         regnode *last,
4557                         scan_data_t *data,
4558                         I32 stopparen,
4559                         U32 recursed_depth,
4560                         regnode_ssc *and_withp,
4561                         U32 flags, U32 depth, bool was_mutate_ok)
4562                         /* scanp: Start here (read-write). */
4563                         /* deltap: Write maxlen-minlen here. */
4564                         /* last: Stop before this one. */
4565                         /* data: string data about the pattern */
4566                         /* stopparen: treat close N as END */
4567                         /* recursed: which subroutines have we recursed into */
4568                         /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
4569 {
4570     SSize_t final_minlen;
4571     /* There must be at least this number of characters to match */
4572     SSize_t min = 0;
4573     I32 pars = 0, code;
4574     regnode *scan = *scanp, *next;
4575     SSize_t delta = 0;
4576     int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
4577     int is_inf_internal = 0;		/* The studied chunk is infinite */
4578     I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
4579     scan_data_t data_fake;
4580     SV *re_trie_maxbuff = NULL;
4581     regnode *first_non_open = scan;
4582     SSize_t stopmin = OPTIMIZE_INFTY;
4583     scan_frame *frame = NULL;
4584     DECLARE_AND_GET_RE_DEBUG_FLAGS;
4585 
4586     PERL_ARGS_ASSERT_STUDY_CHUNK;
4587     RExC_study_started= 1;
4588 
4589     Zero(&data_fake, 1, scan_data_t);
4590 
4591     if ( depth == 0 ) {
4592         while (first_non_open && OP(first_non_open) == OPEN)
4593             first_non_open=regnext(first_non_open);
4594     }
4595 
4596 
4597   fake_study_recurse:
4598     DEBUG_r(
4599         RExC_study_chunk_recursed_count++;
4600     );
4601     DEBUG_OPTIMISE_MORE_r(
4602     {
4603         Perl_re_indentf( aTHX_  "study_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
4604             depth, (long)stopparen,
4605             (unsigned long)RExC_study_chunk_recursed_count,
4606             (unsigned long)depth, (unsigned long)recursed_depth,
4607             scan,
4608             last);
4609         if (recursed_depth) {
4610             U32 i;
4611             U32 j;
4612             for ( j = 0 ; j < recursed_depth ; j++ ) {
4613                 for ( i = 0 ; i < (U32)RExC_total_parens ; i++ ) {
4614                     if (PAREN_TEST(j, i) && (!j || !PAREN_TEST(j - 1, i))) {
4615                         Perl_re_printf( aTHX_ " %d",(int)i);
4616                         break;
4617                     }
4618                 }
4619                 if ( j + 1 < recursed_depth ) {
4620                     Perl_re_printf( aTHX_  ",");
4621                 }
4622             }
4623         }
4624         Perl_re_printf( aTHX_ "\n");
4625     }
4626     );
4627     while ( scan && OP(scan) != END && scan < last ){
4628         UV min_subtract = 0;    /* How mmany chars to subtract from the minimum
4629                                    node length to get a real minimum (because
4630                                    the folded version may be shorter) */
4631         bool unfolded_multi_char = FALSE;
4632         /* avoid mutating ops if we are anywhere within the recursed or
4633          * enframed handling for a GOSUB: the outermost level will handle it.
4634          */
4635         bool mutate_ok = was_mutate_ok && !(frame && frame->in_gosub);
4636         /* Peephole optimizer: */
4637         DEBUG_STUDYDATA("Peep", data, depth, is_inf);
4638         DEBUG_PEEP("Peep", scan, depth, flags);
4639 
4640 
4641         /* The reason we do this here is that we need to deal with things like
4642          * /(?:f)(?:o)(?:o)/ which cant be dealt with by the normal EXACT
4643          * parsing code, as each (?:..) is handled by a different invocation of
4644          * reg() -- Yves
4645          */
4646         if (PL_regkind[OP(scan)] == EXACT
4647             && OP(scan) != LEXACT
4648             && OP(scan) != LEXACT_REQ8
4649             && mutate_ok
4650         ) {
4651             join_exact(pRExC_state, scan, &min_subtract, &unfolded_multi_char,
4652                     0, NULL, depth + 1);
4653         }
4654 
4655         /* Follow the next-chain of the current node and optimize
4656            away all the NOTHINGs from it.
4657          */
4658         rck_elide_nothing(scan);
4659 
4660         /* The principal pseudo-switch.  Cannot be a switch, since we look into
4661          * several different things.  */
4662         if ( OP(scan) == DEFINEP ) {
4663             SSize_t minlen = 0;
4664             SSize_t deltanext = 0;
4665             SSize_t fake_last_close = 0;
4666             I32 f = SCF_IN_DEFINE;
4667 
4668             StructCopy(&zero_scan_data, &data_fake, scan_data_t);
4669             scan = regnext(scan);
4670             assert( OP(scan) == IFTHEN );
4671             DEBUG_PEEP("expect IFTHEN", scan, depth, flags);
4672 
4673             data_fake.last_closep= &fake_last_close;
4674             minlen = *minlenp;
4675             next = regnext(scan);
4676             scan = NEXTOPER(NEXTOPER(scan));
4677             DEBUG_PEEP("scan", scan, depth, flags);
4678             DEBUG_PEEP("next", next, depth, flags);
4679 
4680             /* we suppose the run is continuous, last=next...
4681              * NOTE we dont use the return here! */
4682             /* DEFINEP study_chunk() recursion */
4683             (void)study_chunk(pRExC_state, &scan, &minlen,
4684                               &deltanext, next, &data_fake, stopparen,
4685                               recursed_depth, NULL, f, depth+1, mutate_ok);
4686 
4687             scan = next;
4688         } else
4689         if (
4690             OP(scan) == BRANCH  ||
4691             OP(scan) == BRANCHJ ||
4692             OP(scan) == IFTHEN
4693         ) {
4694             next = regnext(scan);
4695             code = OP(scan);
4696 
4697             /* The op(next)==code check below is to see if we
4698              * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
4699              * IFTHEN is special as it might not appear in pairs.
4700              * Not sure whether BRANCH-BRANCHJ is possible, regardless
4701              * we dont handle it cleanly. */
4702             if (OP(next) == code || code == IFTHEN) {
4703                 /* NOTE - There is similar code to this block below for
4704                  * handling TRIE nodes on a re-study.  If you change stuff here
4705                  * check there too. */
4706                 SSize_t max1 = 0, min1 = OPTIMIZE_INFTY, num = 0;
4707                 regnode_ssc accum;
4708                 regnode * const startbranch=scan;
4709 
4710                 if (flags & SCF_DO_SUBSTR) {
4711                     /* Cannot merge strings after this. */
4712                     scan_commit(pRExC_state, data, minlenp, is_inf);
4713                 }
4714 
4715                 if (flags & SCF_DO_STCLASS)
4716                     ssc_init_zero(pRExC_state, &accum);
4717 
4718                 while (OP(scan) == code) {
4719                     SSize_t deltanext, minnext, fake;
4720                     I32 f = 0;
4721                     regnode_ssc this_class;
4722 
4723                     DEBUG_PEEP("Branch", scan, depth, flags);
4724 
4725                     num++;
4726                     StructCopy(&zero_scan_data, &data_fake, scan_data_t);
4727                     if (data) {
4728                         data_fake.whilem_c = data->whilem_c;
4729                         data_fake.last_closep = data->last_closep;
4730                     }
4731                     else
4732                         data_fake.last_closep = &fake;
4733 
4734                     data_fake.pos_delta = delta;
4735                     next = regnext(scan);
4736 
4737                     scan = NEXTOPER(scan); /* everything */
4738                     if (code != BRANCH)    /* everything but BRANCH */
4739                         scan = NEXTOPER(scan);
4740 
4741                     if (flags & SCF_DO_STCLASS) {
4742                         ssc_init(pRExC_state, &this_class);
4743                         data_fake.start_class = &this_class;
4744                         f = SCF_DO_STCLASS_AND;
4745                     }
4746                     if (flags & SCF_WHILEM_VISITED_POS)
4747                         f |= SCF_WHILEM_VISITED_POS;
4748 
4749                     /* we suppose the run is continuous, last=next...*/
4750                     /* recurse study_chunk() for each BRANCH in an alternation */
4751                     minnext = study_chunk(pRExC_state, &scan, minlenp,
4752                                       &deltanext, next, &data_fake, stopparen,
4753                                       recursed_depth, NULL, f, depth+1,
4754                                       mutate_ok);
4755 
4756                     if (min1 > minnext)
4757                         min1 = minnext;
4758                     if (deltanext == OPTIMIZE_INFTY) {
4759                         is_inf = is_inf_internal = 1;
4760                         max1 = OPTIMIZE_INFTY;
4761                     } else if (max1 < minnext + deltanext)
4762                         max1 = minnext + deltanext;
4763                     scan = next;
4764                     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4765                         pars++;
4766                     if (data_fake.flags & SCF_SEEN_ACCEPT) {
4767                         if ( stopmin > minnext)
4768                             stopmin = min + min1;
4769                         flags &= ~SCF_DO_SUBSTR;
4770                         if (data)
4771                             data->flags |= SCF_SEEN_ACCEPT;
4772                     }
4773                     if (data) {
4774                         if (data_fake.flags & SF_HAS_EVAL)
4775                             data->flags |= SF_HAS_EVAL;
4776                         data->whilem_c = data_fake.whilem_c;
4777                     }
4778                     if (flags & SCF_DO_STCLASS)
4779                         ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
4780                 }
4781                 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
4782                     min1 = 0;
4783                 if (flags & SCF_DO_SUBSTR) {
4784                     data->pos_min += min1;
4785                     if (data->pos_delta >= OPTIMIZE_INFTY - (max1 - min1))
4786                         data->pos_delta = OPTIMIZE_INFTY;
4787                     else
4788                         data->pos_delta += max1 - min1;
4789                     if (max1 != min1 || is_inf)
4790                         data->cur_is_floating = 1;
4791                 }
4792                 min += min1;
4793                 if (delta == OPTIMIZE_INFTY
4794                  || OPTIMIZE_INFTY - delta - (max1 - min1) < 0)
4795                     delta = OPTIMIZE_INFTY;
4796                 else
4797                     delta += max1 - min1;
4798                 if (flags & SCF_DO_STCLASS_OR) {
4799                     ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
4800                     if (min1) {
4801                         ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
4802                         flags &= ~SCF_DO_STCLASS;
4803                     }
4804                 }
4805                 else if (flags & SCF_DO_STCLASS_AND) {
4806                     if (min1) {
4807                         ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
4808                         flags &= ~SCF_DO_STCLASS;
4809                     }
4810                     else {
4811                         /* Switch to OR mode: cache the old value of
4812                          * data->start_class */
4813                         INIT_AND_WITHP;
4814                         StructCopy(data->start_class, and_withp, regnode_ssc);
4815                         flags &= ~SCF_DO_STCLASS_AND;
4816                         StructCopy(&accum, data->start_class, regnode_ssc);
4817                         flags |= SCF_DO_STCLASS_OR;
4818                     }
4819                 }
4820 
4821                 if (PERL_ENABLE_TRIE_OPTIMISATION
4822                     && OP(startbranch) == BRANCH
4823                     && mutate_ok
4824                 ) {
4825                 /* demq.
4826 
4827                    Assuming this was/is a branch we are dealing with: 'scan'
4828                    now points at the item that follows the branch sequence,
4829                    whatever it is. We now start at the beginning of the
4830                    sequence and look for subsequences of
4831 
4832                    BRANCH->EXACT=>x1
4833                    BRANCH->EXACT=>x2
4834                    tail
4835 
4836                    which would be constructed from a pattern like
4837                    /A|LIST|OF|WORDS/
4838 
4839                    If we can find such a subsequence we need to turn the first
4840                    element into a trie and then add the subsequent branch exact
4841                    strings to the trie.
4842 
4843                    We have two cases
4844 
4845                      1. patterns where the whole set of branches can be
4846                         converted.
4847 
4848                      2. patterns where only a subset can be converted.
4849 
4850                    In case 1 we can replace the whole set with a single regop
4851                    for the trie. In case 2 we need to keep the start and end
4852                    branches so
4853 
4854                      'BRANCH EXACT; BRANCH EXACT; BRANCH X'
4855                      becomes BRANCH TRIE; BRANCH X;
4856 
4857                   There is an additional case, that being where there is a
4858                   common prefix, which gets split out into an EXACT like node
4859                   preceding the TRIE node.
4860 
4861                   If x(1..n)==tail then we can do a simple trie, if not we make
4862                   a "jump" trie, such that when we match the appropriate word
4863                   we "jump" to the appropriate tail node. Essentially we turn
4864                   a nested if into a case structure of sorts.
4865 
4866                 */
4867 
4868                     int made=0;
4869                     if (!re_trie_maxbuff) {
4870                         re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
4871                         if (!SvIOK(re_trie_maxbuff))
4872                             sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
4873                     }
4874                     if ( SvIV(re_trie_maxbuff)>=0  ) {
4875                         regnode *cur;
4876                         regnode *first = (regnode *)NULL;
4877                         regnode *prev = (regnode *)NULL;
4878                         regnode *tail = scan;
4879                         U8 trietype = 0;
4880                         U32 count=0;
4881 
4882                         /* var tail is used because there may be a TAIL
4883                            regop in the way. Ie, the exacts will point to the
4884                            thing following the TAIL, but the last branch will
4885                            point at the TAIL. So we advance tail. If we
4886                            have nested (?:) we may have to move through several
4887                            tails.
4888                          */
4889 
4890                         while ( OP( tail ) == TAIL ) {
4891                             /* this is the TAIL generated by (?:) */
4892                             tail = regnext( tail );
4893                         }
4894 
4895 
4896                         DEBUG_TRIE_COMPILE_r({
4897                             regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
4898                             Perl_re_indentf( aTHX_  "%s %" UVuf ":%s\n",
4899                               depth+1,
4900                               "Looking for TRIE'able sequences. Tail node is ",
4901                               (UV) REGNODE_OFFSET(tail),
4902                               SvPV_nolen_const( RExC_mysv )
4903                             );
4904                         });
4905 
4906                         /*
4907 
4908                             Step through the branches
4909                                 cur represents each branch,
4910                                 noper is the first thing to be matched as part
4911                                       of that branch
4912                                 noper_next is the regnext() of that node.
4913 
4914                             We normally handle a case like this
4915                             /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
4916                             support building with NOJUMPTRIE, which restricts
4917                             the trie logic to structures like /FOO|BAR/.
4918 
4919                             If noper is a trieable nodetype then the branch is
4920                             a possible optimization target. If we are building
4921                             under NOJUMPTRIE then we require that noper_next is
4922                             the same as scan (our current position in the regex
4923                             program).
4924 
4925                             Once we have two or more consecutive such branches
4926                             we can create a trie of the EXACT's contents and
4927                             stitch it in place into the program.
4928 
4929                             If the sequence represents all of the branches in
4930                             the alternation we replace the entire thing with a
4931                             single TRIE node.
4932 
4933                             Otherwise when it is a subsequence we need to
4934                             stitch it in place and replace only the relevant
4935                             branches. This means the first branch has to remain
4936                             as it is used by the alternation logic, and its
4937                             next pointer, and needs to be repointed at the item
4938                             on the branch chain following the last branch we
4939                             have optimized away.
4940 
4941                             This could be either a BRANCH, in which case the
4942                             subsequence is internal, or it could be the item
4943                             following the branch sequence in which case the
4944                             subsequence is at the end (which does not
4945                             necessarily mean the first node is the start of the
4946                             alternation).
4947 
4948                             TRIE_TYPE(X) is a define which maps the optype to a
4949                             trietype.
4950 
4951                                 optype          |  trietype
4952                                 ----------------+-----------
4953                                 NOTHING         | NOTHING
4954                                 EXACT           | EXACT
4955                                 EXACT_REQ8     | EXACT
4956                                 EXACTFU         | EXACTFU
4957                                 EXACTFU_REQ8   | EXACTFU
4958                                 EXACTFUP        | EXACTFU
4959                                 EXACTFAA        | EXACTFAA
4960                                 EXACTL          | EXACTL
4961                                 EXACTFLU8       | EXACTFLU8
4962 
4963 
4964                         */
4965 #define TRIE_TYPE(X) ( ( NOTHING == (X) )                                   \
4966                        ? NOTHING                                            \
4967                        : ( EXACT == (X) || EXACT_REQ8 == (X) )             \
4968                          ? EXACT                                            \
4969                          : (     EXACTFU == (X)                             \
4970                               || EXACTFU_REQ8 == (X)                       \
4971                               || EXACTFUP == (X) )                          \
4972                            ? EXACTFU                                        \
4973                            : ( EXACTFAA == (X) )                            \
4974                              ? EXACTFAA                                     \
4975                              : ( EXACTL == (X) )                            \
4976                                ? EXACTL                                     \
4977                                : ( EXACTFLU8 == (X) )                       \
4978                                  ? EXACTFLU8                                \
4979                                  : 0 )
4980 
4981                         /* dont use tail as the end marker for this traverse */
4982                         for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
4983                             regnode * const noper = NEXTOPER( cur );
4984                             U8 noper_type = OP( noper );
4985                             U8 noper_trietype = TRIE_TYPE( noper_type );
4986 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
4987                             regnode * const noper_next = regnext( noper );
4988                             U8 noper_next_type = (noper_next && noper_next < tail) ? OP(noper_next) : 0;
4989                             U8 noper_next_trietype = (noper_next && noper_next < tail) ? TRIE_TYPE( noper_next_type ) :0;
4990 #endif
4991 
4992                             DEBUG_TRIE_COMPILE_r({
4993                                 regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
4994                                 Perl_re_indentf( aTHX_  "- %d:%s (%d)",
4995                                    depth+1,
4996                                    REG_NODE_NUM(cur), SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
4997 
4998                                 regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
4999                                 Perl_re_printf( aTHX_  " -> %d:%s",
5000                                     REG_NODE_NUM(noper), SvPV_nolen_const(RExC_mysv));
5001 
5002                                 if ( noper_next ) {
5003                                   regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
5004                                   Perl_re_printf( aTHX_ "\t=> %d:%s\t",
5005                                     REG_NODE_NUM(noper_next), SvPV_nolen_const(RExC_mysv));
5006                                 }
5007                                 Perl_re_printf( aTHX_  "(First==%d,Last==%d,Cur==%d,tt==%s,ntt==%s,nntt==%s)\n",
5008                                    REG_NODE_NUM(first), REG_NODE_NUM(prev), REG_NODE_NUM(cur),
5009                                    PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
5010                                 );
5011                             });
5012 
5013                             /* Is noper a trieable nodetype that can be merged
5014                              * with the current trie (if there is one)? */
5015                             if ( noper_trietype
5016                                   &&
5017                                   (
5018                                         ( noper_trietype == NOTHING )
5019                                         || ( trietype == NOTHING )
5020                                         || ( trietype == noper_trietype )
5021                                   )
5022 #ifdef NOJUMPTRIE
5023                                   && noper_next >= tail
5024 #endif
5025                                   && count < U16_MAX)
5026                             {
5027                                 /* Handle mergable triable node Either we are
5028                                  * the first node in a new trieable sequence,
5029                                  * in which case we do some bookkeeping,
5030                                  * otherwise we update the end pointer. */
5031                                 if ( !first ) {
5032                                     first = cur;
5033                                     if ( noper_trietype == NOTHING ) {
5034 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
5035                                         regnode * const noper_next = regnext( noper );
5036                                         U8 noper_next_type = (noper_next && noper_next < tail) ? OP(noper_next) : 0;
5037                                         U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
5038 #endif
5039 
5040                                         if ( noper_next_trietype ) {
5041                                             trietype = noper_next_trietype;
5042                                         } else if (noper_next_type)  {
5043                                             /* a NOTHING regop is 1 regop wide.
5044                                              * We need at least two for a trie
5045                                              * so we can't merge this in */
5046                                             first = NULL;
5047                                         }
5048                                     } else {
5049                                         trietype = noper_trietype;
5050                                     }
5051                                 } else {
5052                                     if ( trietype == NOTHING )
5053                                         trietype = noper_trietype;
5054                                     prev = cur;
5055                                 }
5056                                 if (first)
5057                                     count++;
5058                             } /* end handle mergable triable node */
5059                             else {
5060                                 /* handle unmergable node -
5061                                  * noper may either be a triable node which can
5062                                  * not be tried together with the current trie,
5063                                  * or a non triable node */
5064                                 if ( prev ) {
5065                                     /* If last is set and trietype is not
5066                                      * NOTHING then we have found at least two
5067                                      * triable branch sequences in a row of a
5068                                      * similar trietype so we can turn them
5069                                      * into a trie. If/when we allow NOTHING to
5070                                      * start a trie sequence this condition
5071                                      * will be required, and it isn't expensive
5072                                      * so we leave it in for now. */
5073                                     if ( trietype && trietype != NOTHING )
5074                                         make_trie( pRExC_state,
5075                                                 startbranch, first, cur, tail,
5076                                                 count, trietype, depth+1 );
5077                                     prev = NULL; /* note: we clear/update
5078                                                     first, trietype etc below,
5079                                                     so we dont do it here */
5080                                 }
5081                                 if ( noper_trietype
5082 #ifdef NOJUMPTRIE
5083                                      && noper_next >= tail
5084 #endif
5085                                 ){
5086                                     /* noper is triable, so we can start a new
5087                                      * trie sequence */
5088                                     count = 1;
5089                                     first = cur;
5090                                     trietype = noper_trietype;
5091                                 } else if (first) {
5092                                     /* if we already saw a first but the
5093                                      * current node is not triable then we have
5094                                      * to reset the first information. */
5095                                     count = 0;
5096                                     first = NULL;
5097                                     trietype = 0;
5098                                 }
5099                             } /* end handle unmergable node */
5100                         } /* loop over branches */
5101                         DEBUG_TRIE_COMPILE_r({
5102                             regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
5103                             Perl_re_indentf( aTHX_  "- %s (%d) <SCAN FINISHED> ",
5104                               depth+1, SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur));
5105                             Perl_re_printf( aTHX_  "(First==%d, Last==%d, Cur==%d, tt==%s)\n",
5106                                REG_NODE_NUM(first), REG_NODE_NUM(prev), REG_NODE_NUM(cur),
5107                                PL_reg_name[trietype]
5108                             );
5109 
5110                         });
5111                         if ( prev && trietype ) {
5112                             if ( trietype != NOTHING ) {
5113                                 /* the last branch of the sequence was part of
5114                                  * a trie, so we have to construct it here
5115                                  * outside of the loop */
5116                                 made= make_trie( pRExC_state, startbranch,
5117                                                  first, scan, tail, count,
5118                                                  trietype, depth+1 );
5119 #ifdef TRIE_STUDY_OPT
5120                                 if ( ((made == MADE_EXACT_TRIE &&
5121                                      startbranch == first)
5122                                      || ( first_non_open == first )) &&
5123                                      depth==0 ) {
5124                                     flags |= SCF_TRIE_RESTUDY;
5125                                     if ( startbranch == first
5126                                          && scan >= tail )
5127                                     {
5128                                         RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
5129                                     }
5130                                 }
5131 #endif
5132                             } else {
5133                                 /* at this point we know whatever we have is a
5134                                  * NOTHING sequence/branch AND if 'startbranch'
5135                                  * is 'first' then we can turn the whole thing
5136                                  * into a NOTHING
5137                                  */
5138                                 if ( startbranch == first ) {
5139                                     regnode *opt;
5140                                     /* the entire thing is a NOTHING sequence,
5141                                      * something like this: (?:|) So we can
5142                                      * turn it into a plain NOTHING op. */
5143                                     DEBUG_TRIE_COMPILE_r({
5144                                         regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
5145                                         Perl_re_indentf( aTHX_  "- %s (%d) <NOTHING BRANCH SEQUENCE>\n",
5146                                           depth+1,
5147                                           SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur));
5148 
5149                                     });
5150                                     OP(startbranch)= NOTHING;
5151                                     NEXT_OFF(startbranch)= tail - startbranch;
5152                                     for ( opt= startbranch + 1; opt < tail ; opt++ )
5153                                         OP(opt)= OPTIMIZED;
5154                                 }
5155                             }
5156                         } /* end if ( prev) */
5157                     } /* TRIE_MAXBUF is non zero */
5158                 } /* do trie */
5159 
5160             }
5161             else if ( code == BRANCHJ ) {  /* single branch is optimized. */
5162                 scan = NEXTOPER(NEXTOPER(scan));
5163             } else			/* single branch is optimized. */
5164                 scan = NEXTOPER(scan);
5165             continue;
5166         } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB) {
5167             I32 paren = 0;
5168             regnode *start = NULL;
5169             regnode *end = NULL;
5170             U32 my_recursed_depth= recursed_depth;
5171 
5172             if (OP(scan) != SUSPEND) { /* GOSUB */
5173                 /* Do setup, note this code has side effects beyond
5174                  * the rest of this block. Specifically setting
5175                  * RExC_recurse[] must happen at least once during
5176                  * study_chunk(). */
5177                 paren = ARG(scan);
5178                 RExC_recurse[ARG2L(scan)] = scan;
5179                 start = REGNODE_p(RExC_open_parens[paren]);
5180                 end   = REGNODE_p(RExC_close_parens[paren]);
5181 
5182                 /* NOTE we MUST always execute the above code, even
5183                  * if we do nothing with a GOSUB */
5184                 if (
5185                     ( flags & SCF_IN_DEFINE )
5186                     ||
5187                     (
5188                         (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
5189                         &&
5190                         ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
5191                     )
5192                 ) {
5193                     /* no need to do anything here if we are in a define. */
5194                     /* or we are after some kind of infinite construct
5195                      * so we can skip recursing into this item.
5196                      * Since it is infinite we will not change the maxlen
5197                      * or delta, and if we miss something that might raise
5198                      * the minlen it will merely pessimise a little.
5199                      *
5200                      * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
5201                      * might result in a minlen of 1 and not of 4,
5202                      * but this doesn't make us mismatch, just try a bit
5203                      * harder than we should.
5204                      *
5205                      * However we must assume this GOSUB is infinite, to
5206                      * avoid wrongly applying other optimizations in the
5207                      * enclosing scope - see GH 18096, for example.
5208                      */
5209                     is_inf = is_inf_internal = 1;
5210                     scan= regnext(scan);
5211                     continue;
5212                 }
5213 
5214                 if (
5215                     !recursed_depth
5216                     || !PAREN_TEST(recursed_depth - 1, paren)
5217                 ) {
5218                     /* it is quite possible that there are more efficient ways
5219                      * to do this. We maintain a bitmap per level of recursion
5220                      * of which patterns we have entered so we can detect if a
5221                      * pattern creates a possible infinite loop. When we
5222                      * recurse down a level we copy the previous levels bitmap
5223                      * down. When we are at recursion level 0 we zero the top
5224                      * level bitmap. It would be nice to implement a different
5225                      * more efficient way of doing this. In particular the top
5226                      * level bitmap may be unnecessary.
5227                      */
5228                     if (!recursed_depth) {
5229                         Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
5230                     } else {
5231                         Copy(PAREN_OFFSET(recursed_depth - 1),
5232                              PAREN_OFFSET(recursed_depth),
5233                              RExC_study_chunk_recursed_bytes, U8);
5234                     }
5235                     /* we havent recursed into this paren yet, so recurse into it */
5236                     DEBUG_STUDYDATA("gosub-set", data, depth, is_inf);
5237                     PAREN_SET(recursed_depth, paren);
5238                     my_recursed_depth= recursed_depth + 1;
5239                 } else {
5240                     DEBUG_STUDYDATA("gosub-inf", data, depth, is_inf);
5241                     /* some form of infinite recursion, assume infinite length
5242                      * */
5243                     if (flags & SCF_DO_SUBSTR) {
5244                         scan_commit(pRExC_state, data, minlenp, is_inf);
5245                         data->cur_is_floating = 1;
5246                     }
5247                     is_inf = is_inf_internal = 1;
5248                     if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
5249                         ssc_anything(data->start_class);
5250                     flags &= ~SCF_DO_STCLASS;
5251 
5252                     start= NULL; /* reset start so we dont recurse later on. */
5253                 }
5254             } else {
5255                 paren = stopparen;
5256                 start = scan + 2;
5257                 end = regnext(scan);
5258             }
5259             if (start) {
5260                 scan_frame *newframe;
5261                 assert(end);
5262                 if (!RExC_frame_last) {
5263                     Newxz(newframe, 1, scan_frame);
5264                     SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
5265                     RExC_frame_head= newframe;
5266                     RExC_frame_count++;
5267                 } else if (!RExC_frame_last->next_frame) {
5268                     Newxz(newframe, 1, scan_frame);
5269                     RExC_frame_last->next_frame= newframe;
5270                     newframe->prev_frame= RExC_frame_last;
5271                     RExC_frame_count++;
5272                 } else {
5273                     newframe= RExC_frame_last->next_frame;
5274                 }
5275                 RExC_frame_last= newframe;
5276 
5277                 newframe->next_regnode = regnext(scan);
5278                 newframe->last_regnode = last;
5279                 newframe->stopparen = stopparen;
5280                 newframe->prev_recursed_depth = recursed_depth;
5281                 newframe->this_prev_frame= frame;
5282                 newframe->in_gosub = (
5283                     (frame && frame->in_gosub) || OP(scan) == GOSUB
5284                 );
5285 
5286                 DEBUG_STUDYDATA("frame-new", data, depth, is_inf);
5287                 DEBUG_PEEP("fnew", scan, depth, flags);
5288 
5289                 frame = newframe;
5290                 scan =  start;
5291                 stopparen = paren;
5292                 last = end;
5293                 depth = depth + 1;
5294                 recursed_depth= my_recursed_depth;
5295 
5296                 continue;
5297             }
5298         }
5299         else if (PL_regkind[OP(scan)] == EXACT && ! isEXACTFish(OP(scan))) {
5300             SSize_t bytelen = STR_LEN(scan), charlen;
5301             UV uc;
5302             assert(bytelen);
5303             if (UTF) {
5304                 const U8 * const s = (U8*)STRING(scan);
5305                 uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
5306                 charlen = utf8_length(s, s + bytelen);
5307             } else {
5308                 uc = *((U8*)STRING(scan));
5309                 charlen = bytelen;
5310             }
5311             min += charlen;
5312             if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
5313                 /* The code below prefers earlier match for fixed
5314                    offset, later match for variable offset.  */
5315                 if (data->last_end == -1) { /* Update the start info. */
5316                     data->last_start_min = data->pos_min;
5317                     data->last_start_max =
5318                         is_inf ? OPTIMIZE_INFTY
5319                         : (data->pos_delta > OPTIMIZE_INFTY - data->pos_min)
5320                             ? OPTIMIZE_INFTY : data->pos_min + data->pos_delta;
5321                 }
5322                 sv_catpvn(data->last_found, STRING(scan), bytelen);
5323                 if (UTF)
5324                     SvUTF8_on(data->last_found);
5325                 {
5326                     SV * const sv = data->last_found;
5327                     MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
5328                         mg_find(sv, PERL_MAGIC_utf8) : NULL;
5329                     if (mg && mg->mg_len >= 0)
5330                         mg->mg_len += charlen;
5331                 }
5332                 data->last_end = data->pos_min + charlen;
5333                 data->pos_min += charlen; /* As in the first entry. */
5334                 data->flags &= ~SF_BEFORE_EOL;
5335             }
5336 
5337             /* ANDing the code point leaves at most it, and not in locale, and
5338              * can't match null string */
5339             if (flags & SCF_DO_STCLASS_AND) {
5340                 ssc_cp_and(data->start_class, uc);
5341                 ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
5342                 ssc_clear_locale(data->start_class);
5343             }
5344             else if (flags & SCF_DO_STCLASS_OR) {
5345                 ssc_add_cp(data->start_class, uc);
5346                 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
5347 
5348                 /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
5349                 ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
5350             }
5351             flags &= ~SCF_DO_STCLASS;
5352         }
5353         else if (PL_regkind[OP(scan)] == EXACT) {
5354             /* But OP != EXACT!, so is EXACTFish */
5355             SSize_t bytelen = STR_LEN(scan), charlen;
5356             const U8 * s = (U8*)STRING(scan);
5357 
5358             /* Replace a length 1 ASCII fold pair node with an ANYOFM node,
5359              * with the mask set to the complement of the bit that differs
5360              * between upper and lower case, and the lowest code point of the
5361              * pair (which the '&' forces) */
5362             if (     bytelen == 1
5363                 &&   isALPHA_A(*s)
5364                 &&  (         OP(scan) == EXACTFAA
5365                      || (     OP(scan) == EXACTFU
5366                          && ! HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(*s)))
5367                 &&   mutate_ok
5368             ) {
5369                 U8 mask = ~ ('A' ^ 'a'); /* These differ in just one bit */
5370 
5371                 OP(scan) = ANYOFM;
5372                 ARG_SET(scan, *s & mask);
5373                 FLAGS(scan) = mask;
5374                 /* we're not EXACTFish any more, so restudy */
5375                 continue;
5376             }
5377 
5378             /* Search for fixed substrings supports EXACT only. */
5379             if (flags & SCF_DO_SUBSTR) {
5380                 assert(data);
5381                 scan_commit(pRExC_state, data, minlenp, is_inf);
5382             }
5383             charlen = UTF ? (SSize_t) utf8_length(s, s + bytelen) : bytelen;
5384             if (unfolded_multi_char) {
5385                 RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
5386             }
5387             min += charlen - min_subtract;
5388             assert (min >= 0);
5389             if ((SSize_t)min_subtract < OPTIMIZE_INFTY
5390                 && delta < OPTIMIZE_INFTY - (SSize_t)min_subtract
5391             ) {
5392                 delta += min_subtract;
5393             } else {
5394                 delta = OPTIMIZE_INFTY;
5395             }
5396             if (flags & SCF_DO_SUBSTR) {
5397                 data->pos_min += charlen - min_subtract;
5398                 if (data->pos_min < 0) {
5399                     data->pos_min = 0;
5400                 }
5401                 if ((SSize_t)min_subtract < OPTIMIZE_INFTY
5402                     && data->pos_delta < OPTIMIZE_INFTY - (SSize_t)min_subtract
5403                 ) {
5404                     data->pos_delta += min_subtract;
5405                 } else {
5406                     data->pos_delta = OPTIMIZE_INFTY;
5407                 }
5408                 if (min_subtract) {
5409                     data->cur_is_floating = 1; /* float */
5410                 }
5411             }
5412 
5413             if (flags & SCF_DO_STCLASS) {
5414                 SV* EXACTF_invlist = make_exactf_invlist(pRExC_state, scan);
5415 
5416                 assert(EXACTF_invlist);
5417                 if (flags & SCF_DO_STCLASS_AND) {
5418                     if (OP(scan) != EXACTFL)
5419                         ssc_clear_locale(data->start_class);
5420                     ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
5421                     ANYOF_POSIXL_ZERO(data->start_class);
5422                     ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
5423                 }
5424                 else {  /* SCF_DO_STCLASS_OR */
5425                     ssc_union(data->start_class, EXACTF_invlist, FALSE);
5426                     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
5427 
5428                     /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
5429                     ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
5430                 }
5431                 flags &= ~SCF_DO_STCLASS;
5432                 SvREFCNT_dec(EXACTF_invlist);
5433             }
5434         }
5435         else if (REGNODE_VARIES(OP(scan))) {
5436             SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
5437             I32 fl = 0, f = flags;
5438             regnode * const oscan = scan;
5439             regnode_ssc this_class;
5440             regnode_ssc *oclass = NULL;
5441             I32 next_is_eval = 0;
5442 
5443             switch (PL_regkind[OP(scan)]) {
5444             case WHILEM:		/* End of (?:...)* . */
5445                 scan = NEXTOPER(scan);
5446                 goto finish;
5447             case PLUS:
5448                 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
5449                     next = NEXTOPER(scan);
5450                     if (   (     PL_regkind[OP(next)] == EXACT
5451                             && ! isEXACTFish(OP(next)))
5452                         || (flags & SCF_DO_STCLASS))
5453                     {
5454                         mincount = 1;
5455                         maxcount = REG_INFTY;
5456                         next = regnext(scan);
5457                         scan = NEXTOPER(scan);
5458                         goto do_curly;
5459                     }
5460                 }
5461                 if (flags & SCF_DO_SUBSTR)
5462                     data->pos_min++;
5463                 /* This will bypass the formal 'min += minnext * mincount'
5464                  * calculation in the do_curly path, so assumes min width
5465                  * of the PLUS payload is exactly one. */
5466                 min++;
5467                 /* FALLTHROUGH */
5468             case STAR:
5469                 next = NEXTOPER(scan);
5470 
5471                 /* This temporary node can now be turned into EXACTFU, and
5472                  * must, as regexec.c doesn't handle it */
5473                 if (OP(next) == EXACTFU_S_EDGE && mutate_ok) {
5474                     OP(next) = EXACTFU;
5475                 }
5476 
5477                 if (     STR_LEN(next) == 1
5478                     &&   isALPHA_A(* STRING(next))
5479                     && (         OP(next) == EXACTFAA
5480                         || (     OP(next) == EXACTFU
5481                             && ! HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(* STRING(next))))
5482                     &&   mutate_ok
5483                 ) {
5484                     /* These differ in just one bit */
5485                     U8 mask = ~ ('A' ^ 'a');
5486 
5487                     assert(isALPHA_A(* STRING(next)));
5488 
5489                     /* Then replace it by an ANYOFM node, with
5490                     * the mask set to the complement of the
5491                     * bit that differs between upper and lower
5492                     * case, and the lowest code point of the
5493                     * pair (which the '&' forces) */
5494                     OP(next) = ANYOFM;
5495                     ARG_SET(next, *STRING(next) & mask);
5496                     FLAGS(next) = mask;
5497                 }
5498 
5499                 if (flags & SCF_DO_STCLASS) {
5500                     mincount = 0;
5501                     maxcount = REG_INFTY;
5502                     next = regnext(scan);
5503                     scan = NEXTOPER(scan);
5504                     goto do_curly;
5505                 }
5506                 if (flags & SCF_DO_SUBSTR) {
5507                     scan_commit(pRExC_state, data, minlenp, is_inf);
5508                     /* Cannot extend fixed substrings */
5509                     data->cur_is_floating = 1; /* float */
5510                 }
5511                 is_inf = is_inf_internal = 1;
5512                 scan = regnext(scan);
5513                 goto optimize_curly_tail;
5514             case CURLY:
5515                 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
5516                     && (scan->flags == stopparen))
5517                 {
5518                     mincount = 1;
5519                     maxcount = 1;
5520                 } else {
5521                     mincount = ARG1(scan);
5522                     maxcount = ARG2(scan);
5523                 }
5524                 next = regnext(scan);
5525                 if (OP(scan) == CURLYX) {
5526                     I32 lp = (data ? *(data->last_closep) : 0);
5527                     scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
5528                 }
5529                 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
5530                 next_is_eval = (OP(scan) == EVAL);
5531               do_curly:
5532                 if (flags & SCF_DO_SUBSTR) {
5533                     if (mincount == 0)
5534                         scan_commit(pRExC_state, data, minlenp, is_inf);
5535                     /* Cannot extend fixed substrings */
5536                     pos_before = data->pos_min;
5537                 }
5538                 if (data) {
5539                     fl = data->flags;
5540                     data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
5541                     if (is_inf)
5542                         data->flags |= SF_IS_INF;
5543                 }
5544                 if (flags & SCF_DO_STCLASS) {
5545                     ssc_init(pRExC_state, &this_class);
5546                     oclass = data->start_class;
5547                     data->start_class = &this_class;
5548                     f |= SCF_DO_STCLASS_AND;
5549                     f &= ~SCF_DO_STCLASS_OR;
5550                 }
5551                 /* Exclude from super-linear cache processing any {n,m}
5552                    regops for which the combination of input pos and regex
5553                    pos is not enough information to determine if a match
5554                    will be possible.
5555 
5556                    For example, in the regex /foo(bar\s*){4,8}baz/ with the
5557                    regex pos at the \s*, the prospects for a match depend not
5558                    only on the input position but also on how many (bar\s*)
5559                    repeats into the {4,8} we are. */
5560                if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
5561                     f &= ~SCF_WHILEM_VISITED_POS;
5562 
5563                 /* This will finish on WHILEM, setting scan, or on NULL: */
5564                 /* recurse study_chunk() on loop bodies */
5565                 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
5566                                   last, data, stopparen, recursed_depth, NULL,
5567                                   (mincount == 0
5568                                    ? (f & ~SCF_DO_SUBSTR)
5569                                    : f)
5570                                   , depth+1, mutate_ok);
5571 
5572                 if (flags & SCF_DO_STCLASS)
5573                     data->start_class = oclass;
5574                 if (mincount == 0 || minnext == 0) {
5575                     if (flags & SCF_DO_STCLASS_OR) {
5576                         ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
5577                     }
5578                     else if (flags & SCF_DO_STCLASS_AND) {
5579                         /* Switch to OR mode: cache the old value of
5580                          * data->start_class */
5581                         INIT_AND_WITHP;
5582                         StructCopy(data->start_class, and_withp, regnode_ssc);
5583                         flags &= ~SCF_DO_STCLASS_AND;
5584                         StructCopy(&this_class, data->start_class, regnode_ssc);
5585                         flags |= SCF_DO_STCLASS_OR;
5586                         ANYOF_FLAGS(data->start_class)
5587                                                 |= SSC_MATCHES_EMPTY_STRING;
5588                     }
5589                 } else {		/* Non-zero len */
5590                     if (flags & SCF_DO_STCLASS_OR) {
5591                         ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
5592                         ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
5593                     }
5594                     else if (flags & SCF_DO_STCLASS_AND)
5595                         ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
5596                     flags &= ~SCF_DO_STCLASS;
5597                 }
5598                 if (!scan) 		/* It was not CURLYX, but CURLY. */
5599                     scan = next;
5600                 if (((flags & (SCF_TRIE_DOING_RESTUDY|SCF_DO_SUBSTR))==SCF_DO_SUBSTR)
5601                     /* ? quantifier ok, except for (?{ ... }) */
5602                     && (next_is_eval || !(mincount == 0 && maxcount == 1))
5603                     && (minnext == 0) && (deltanext == 0)
5604                     && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
5605                     && maxcount <= REG_INFTY/3) /* Complement check for big
5606                                                    count */
5607                 {
5608                     _WARN_HELPER(RExC_precomp_end, packWARN(WARN_REGEXP),
5609                         Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
5610                             "Quantifier unexpected on zero-length expression "
5611                             "in regex m/%" UTF8f "/",
5612                              UTF8fARG(UTF, RExC_precomp_end - RExC_precomp,
5613                                   RExC_precomp)));
5614                 }
5615 
5616                 if ( ( minnext > 0 && mincount >= SSize_t_MAX / minnext )
5617                     || min >= SSize_t_MAX - minnext * mincount )
5618                 {
5619                     FAIL("Regexp out of space");
5620                 }
5621 
5622                 min += minnext * mincount;
5623                 is_inf_internal |= deltanext == OPTIMIZE_INFTY
5624                          || (maxcount == REG_INFTY && minnext + deltanext > 0);
5625                 is_inf |= is_inf_internal;
5626                 if (is_inf) {
5627                     delta = OPTIMIZE_INFTY;
5628                 } else {
5629                     delta += (minnext + deltanext) * maxcount
5630                              - minnext * mincount;
5631                 }
5632                 /* Try powerful optimization CURLYX => CURLYN. */
5633                 if (  OP(oscan) == CURLYX && data
5634                       && data->flags & SF_IN_PAR
5635                       && !(data->flags & SF_HAS_EVAL)
5636                       && !deltanext && minnext == 1
5637                       && mutate_ok
5638                 ) {
5639                     /* Try to optimize to CURLYN.  */
5640                     regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
5641                     regnode * const nxt1 = nxt;
5642 #ifdef DEBUGGING
5643                     regnode *nxt2;
5644 #endif
5645 
5646                     /* Skip open. */
5647                     nxt = regnext(nxt);
5648                     if (!REGNODE_SIMPLE(OP(nxt))
5649                         && !(PL_regkind[OP(nxt)] == EXACT
5650                              && STR_LEN(nxt) == 1))
5651                         goto nogo;
5652 #ifdef DEBUGGING
5653                     nxt2 = nxt;
5654 #endif
5655                     nxt = regnext(nxt);
5656                     if (OP(nxt) != CLOSE)
5657                         goto nogo;
5658                     if (RExC_open_parens) {
5659 
5660                         /*open->CURLYM*/
5661                         RExC_open_parens[ARG(nxt1)] = REGNODE_OFFSET(oscan);
5662 
5663                         /*close->while*/
5664                         RExC_close_parens[ARG(nxt1)] = REGNODE_OFFSET(nxt) + 2;
5665                     }
5666                     /* Now we know that nxt2 is the only contents: */
5667                     oscan->flags = (U8)ARG(nxt);
5668                     OP(oscan) = CURLYN;
5669                     OP(nxt1) = NOTHING;	/* was OPEN. */
5670 
5671 #ifdef DEBUGGING
5672                     OP(nxt1 + 1) = OPTIMIZED; /* was count. */
5673                     NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
5674                     NEXT_OFF(nxt2) = 0;	/* just for consistency with CURLY. */
5675                     OP(nxt) = OPTIMIZED;	/* was CLOSE. */
5676                     OP(nxt + 1) = OPTIMIZED; /* was count. */
5677                     NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
5678 #endif
5679                 }
5680               nogo:
5681 
5682                 /* Try optimization CURLYX => CURLYM. */
5683                 if (  OP(oscan) == CURLYX && data
5684                       && !(data->flags & SF_HAS_PAR)
5685                       && !(data->flags & SF_HAS_EVAL)
5686                       && !deltanext	/* atom is fixed width */
5687                       && minnext != 0	/* CURLYM can't handle zero width */
5688                          /* Nor characters whose fold at run-time may be
5689                           * multi-character */
5690                       && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
5691                       && mutate_ok
5692                 ) {
5693                     /* XXXX How to optimize if data == 0? */
5694                     /* Optimize to a simpler form.  */
5695                     regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
5696                     regnode *nxt2;
5697 
5698                     OP(oscan) = CURLYM;
5699                     while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
5700                             && (OP(nxt2) != WHILEM))
5701                         nxt = nxt2;
5702                     OP(nxt2)  = SUCCEED; /* Whas WHILEM */
5703                     /* Need to optimize away parenths. */
5704                     if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
5705                         /* Set the parenth number.  */
5706                         regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
5707 
5708                         oscan->flags = (U8)ARG(nxt);
5709                         if (RExC_open_parens) {
5710                              /*open->CURLYM*/
5711                             RExC_open_parens[ARG(nxt1)] = REGNODE_OFFSET(oscan);
5712 
5713                             /*close->NOTHING*/
5714                             RExC_close_parens[ARG(nxt1)] = REGNODE_OFFSET(nxt2)
5715                                                          + 1;
5716                         }
5717                         OP(nxt1) = OPTIMIZED;	/* was OPEN. */
5718                         OP(nxt) = OPTIMIZED;	/* was CLOSE. */
5719 
5720 #ifdef DEBUGGING
5721                         OP(nxt1 + 1) = OPTIMIZED; /* was count. */
5722                         OP(nxt + 1) = OPTIMIZED; /* was count. */
5723                         NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
5724                         NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
5725 #endif
5726 #if 0
5727                         while ( nxt1 && (OP(nxt1) != WHILEM)) {
5728                             regnode *nnxt = regnext(nxt1);
5729                             if (nnxt == nxt) {
5730                                 if (reg_off_by_arg[OP(nxt1)])
5731                                     ARG_SET(nxt1, nxt2 - nxt1);
5732                                 else if (nxt2 - nxt1 < U16_MAX)
5733                                     NEXT_OFF(nxt1) = nxt2 - nxt1;
5734                                 else
5735                                     OP(nxt) = NOTHING;	/* Cannot beautify */
5736                             }
5737                             nxt1 = nnxt;
5738                         }
5739 #endif
5740                         /* Optimize again: */
5741                         /* recurse study_chunk() on optimised CURLYX => CURLYM */
5742                         study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
5743                                     NULL, stopparen, recursed_depth, NULL, 0,
5744                                     depth+1, mutate_ok);
5745                     }
5746                     else
5747                         oscan->flags = 0;
5748                 }
5749                 else if ((OP(oscan) == CURLYX)
5750                          && (flags & SCF_WHILEM_VISITED_POS)
5751                          /* See the comment on a similar expression above.
5752                             However, this time it's not a subexpression
5753                             we care about, but the expression itself. */
5754                          && (maxcount == REG_INFTY)
5755                          && data) {
5756                     /* This stays as CURLYX, we can put the count/of pair. */
5757                     /* Find WHILEM (as in regexec.c) */
5758                     regnode *nxt = oscan + NEXT_OFF(oscan);
5759 
5760                     if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
5761                         nxt += ARG(nxt);
5762                     nxt = PREVOPER(nxt);
5763                     if (nxt->flags & 0xf) {
5764                         /* we've already set whilem count on this node */
5765                     } else if (++data->whilem_c < 16) {
5766                         assert(data->whilem_c <= RExC_whilem_seen);
5767                         nxt->flags = (U8)(data->whilem_c
5768                             | (RExC_whilem_seen << 4)); /* On WHILEM */
5769                     }
5770                 }
5771                 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
5772                     pars++;
5773                 if (flags & SCF_DO_SUBSTR) {
5774                     SV *last_str = NULL;
5775                     STRLEN last_chrs = 0;
5776                     int counted = mincount != 0;
5777 
5778                     if (data->last_end > 0 && mincount != 0) { /* Ends with a
5779                                                                   string. */
5780                         SSize_t b = pos_before >= data->last_start_min
5781                             ? pos_before : data->last_start_min;
5782                         STRLEN l;
5783                         const char * const s = SvPV_const(data->last_found, l);
5784                         SSize_t old = b - data->last_start_min;
5785                         assert(old >= 0);
5786 
5787                         if (UTF)
5788                             old = utf8_hop_forward((U8*)s, old,
5789                                                (U8 *) SvEND(data->last_found))
5790                                 - (U8*)s;
5791                         l -= old;
5792                         /* Get the added string: */
5793                         last_str = newSVpvn_utf8(s  + old, l, UTF);
5794                         last_chrs = UTF ? utf8_length((U8*)(s + old),
5795                                             (U8*)(s + old + l)) : l;
5796                         if (deltanext == 0 && pos_before == b) {
5797                             /* What was added is a constant string */
5798                             if (mincount > 1) {
5799 
5800                                 SvGROW(last_str, (mincount * l) + 1);
5801                                 repeatcpy(SvPVX(last_str) + l,
5802                                           SvPVX_const(last_str), l,
5803                                           mincount - 1);
5804                                 SvCUR_set(last_str, SvCUR(last_str) * mincount);
5805                                 /* Add additional parts. */
5806                                 SvCUR_set(data->last_found,
5807                                           SvCUR(data->last_found) - l);
5808                                 sv_catsv(data->last_found, last_str);
5809                                 {
5810                                     SV * sv = data->last_found;
5811                                     MAGIC *mg =
5812                                         SvUTF8(sv) && SvMAGICAL(sv) ?
5813                                         mg_find(sv, PERL_MAGIC_utf8) : NULL;
5814                                     if (mg && mg->mg_len >= 0)
5815                                         mg->mg_len += last_chrs * (mincount-1);
5816                                 }
5817                                 last_chrs *= mincount;
5818                                 data->last_end += l * (mincount - 1);
5819                             }
5820                         } else {
5821                             /* start offset must point into the last copy */
5822                             data->last_start_min += minnext * (mincount - 1);
5823                             data->last_start_max =
5824                               is_inf
5825                                ? OPTIMIZE_INFTY
5826                                : data->last_start_max +
5827                                  (maxcount - 1) * (minnext + data->pos_delta);
5828                         }
5829                     }
5830                     /* It is counted once already... */
5831                     data->pos_min += minnext * (mincount - counted);
5832 #if 0
5833     Perl_re_printf( aTHX_  "counted=%" UVuf " deltanext=%" UVuf
5834                               " OPTIMIZE_INFTY=%" UVuf " minnext=%" UVuf
5835                               " maxcount=%" UVuf " mincount=%" UVuf
5836                               " data->pos_delta=%" UVuf "\n",
5837         (UV)counted, (UV)deltanext, (UV)OPTIMIZE_INFTY, (UV)minnext,
5838         (UV)maxcount, (UV)mincount, (UV)data->pos_delta);
5839     if (deltanext != OPTIMIZE_INFTY)
5840         Perl_re_printf( aTHX_  "LHS=%" UVuf " RHS=%" UVuf "\n",
5841             (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
5842             - minnext * mincount), (UV)(OPTIMIZE_INFTY - data->pos_delta));
5843 #endif
5844                     if (deltanext == OPTIMIZE_INFTY
5845                         || data->pos_delta == OPTIMIZE_INFTY
5846                         || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= OPTIMIZE_INFTY - data->pos_delta)
5847                         data->pos_delta = OPTIMIZE_INFTY;
5848                     else
5849                         data->pos_delta += - counted * deltanext +
5850                         (minnext + deltanext) * maxcount - minnext * mincount;
5851                     if (mincount != maxcount) {
5852                          /* Cannot extend fixed substrings found inside
5853                             the group.  */
5854                         scan_commit(pRExC_state, data, minlenp, is_inf);
5855                         if (mincount && last_str) {
5856                             SV * const sv = data->last_found;
5857                             MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
5858                                 mg_find(sv, PERL_MAGIC_utf8) : NULL;
5859 
5860                             if (mg)
5861                                 mg->mg_len = -1;
5862                             sv_setsv(sv, last_str);
5863                             data->last_end = data->pos_min;
5864                             data->last_start_min = data->pos_min - last_chrs;
5865                             data->last_start_max = is_inf
5866                                 ? OPTIMIZE_INFTY
5867                                 : data->pos_min + data->pos_delta - last_chrs;
5868                         }
5869                         data->cur_is_floating = 1; /* float */
5870                     }
5871                     SvREFCNT_dec(last_str);
5872                 }
5873                 if (data && (fl & SF_HAS_EVAL))
5874                     data->flags |= SF_HAS_EVAL;
5875               optimize_curly_tail:
5876                 rck_elide_nothing(oscan);
5877                 continue;
5878 
5879             default:
5880                 Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
5881                                                                     OP(scan));
5882             case REF:
5883             case CLUMP:
5884                 if (flags & SCF_DO_SUBSTR) {
5885                     /* Cannot expect anything... */
5886                     scan_commit(pRExC_state, data, minlenp, is_inf);
5887                     data->cur_is_floating = 1; /* float */
5888                 }
5889                 is_inf = is_inf_internal = 1;
5890                 if (flags & SCF_DO_STCLASS_OR) {
5891                     if (OP(scan) == CLUMP) {
5892                         /* Actually is any start char, but very few code points
5893                          * aren't start characters */
5894                         ssc_match_all_cp(data->start_class);
5895                     }
5896                     else {
5897                         ssc_anything(data->start_class);
5898                     }
5899                 }
5900                 flags &= ~SCF_DO_STCLASS;
5901                 break;
5902             }
5903         }
5904         else if (OP(scan) == LNBREAK) {
5905             if (flags & SCF_DO_STCLASS) {
5906                 if (flags & SCF_DO_STCLASS_AND) {
5907                     ssc_intersection(data->start_class,
5908                                     PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
5909                     ssc_clear_locale(data->start_class);
5910                     ANYOF_FLAGS(data->start_class)
5911                                                 &= ~SSC_MATCHES_EMPTY_STRING;
5912                 }
5913                 else if (flags & SCF_DO_STCLASS_OR) {
5914                     ssc_union(data->start_class,
5915                               PL_XPosix_ptrs[_CC_VERTSPACE],
5916                               FALSE);
5917                     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
5918 
5919                     /* See commit msg for
5920                      * 749e076fceedeb708a624933726e7989f2302f6a */
5921                     ANYOF_FLAGS(data->start_class)
5922                                                 &= ~SSC_MATCHES_EMPTY_STRING;
5923                 }
5924                 flags &= ~SCF_DO_STCLASS;
5925             }
5926             min++;
5927             if (delta != OPTIMIZE_INFTY)
5928                 delta++;    /* Because of the 2 char string cr-lf */
5929             if (flags & SCF_DO_SUBSTR) {
5930                 /* Cannot expect anything... */
5931                 scan_commit(pRExC_state, data, minlenp, is_inf);
5932                 data->pos_min += 1;
5933                 if (data->pos_delta != OPTIMIZE_INFTY) {
5934                     data->pos_delta += 1;
5935                 }
5936                 data->cur_is_floating = 1; /* float */
5937             }
5938         }
5939         else if (REGNODE_SIMPLE(OP(scan))) {
5940 
5941             if (flags & SCF_DO_SUBSTR) {
5942                 scan_commit(pRExC_state, data, minlenp, is_inf);
5943                 data->pos_min++;
5944             }
5945             min++;
5946             if (flags & SCF_DO_STCLASS) {
5947                 bool invert = 0;
5948                 SV* my_invlist = NULL;
5949                 U8 namedclass;
5950 
5951                 /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
5952                 ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
5953 
5954                 /* Some of the logic below assumes that switching
5955                    locale on will only add false positives. */
5956                 switch (OP(scan)) {
5957 
5958                 default:
5959 #ifdef DEBUGGING
5960                    Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
5961                                                                      OP(scan));
5962 #endif
5963                 case SANY:
5964                     if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
5965                         ssc_match_all_cp(data->start_class);
5966                     break;
5967 
5968                 case REG_ANY:
5969                     {
5970                         SV* REG_ANY_invlist = _new_invlist(2);
5971                         REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
5972                                                             '\n');
5973                         if (flags & SCF_DO_STCLASS_OR) {
5974                             ssc_union(data->start_class,
5975                                       REG_ANY_invlist,
5976                                       TRUE /* TRUE => invert, hence all but \n
5977                                             */
5978                                       );
5979                         }
5980                         else if (flags & SCF_DO_STCLASS_AND) {
5981                             ssc_intersection(data->start_class,
5982                                              REG_ANY_invlist,
5983                                              TRUE  /* TRUE => invert */
5984                                              );
5985                             ssc_clear_locale(data->start_class);
5986                         }
5987                         SvREFCNT_dec_NN(REG_ANY_invlist);
5988                     }
5989                     break;
5990 
5991                 case ANYOFD:
5992                 case ANYOFL:
5993                 case ANYOFPOSIXL:
5994                 case ANYOFH:
5995                 case ANYOFHb:
5996                 case ANYOFHr:
5997                 case ANYOFHs:
5998                 case ANYOF:
5999                     if (flags & SCF_DO_STCLASS_AND)
6000                         ssc_and(pRExC_state, data->start_class,
6001                                 (regnode_charclass *) scan);
6002                     else
6003                         ssc_or(pRExC_state, data->start_class,
6004                                                           (regnode_charclass *) scan);
6005                     break;
6006 
6007                 case NANYOFM: /* NANYOFM already contains the inversion of the
6008                                  input ANYOF data, so, unlike things like
6009                                  NPOSIXA, don't change 'invert' to TRUE */
6010                     /* FALLTHROUGH */
6011                 case ANYOFM:
6012                   {
6013                     SV* cp_list = get_ANYOFM_contents(scan);
6014 
6015                     if (flags & SCF_DO_STCLASS_OR) {
6016                         ssc_union(data->start_class, cp_list, invert);
6017                     }
6018                     else if (flags & SCF_DO_STCLASS_AND) {
6019                         ssc_intersection(data->start_class, cp_list, invert);
6020                     }
6021 
6022                     SvREFCNT_dec_NN(cp_list);
6023                     break;
6024                   }
6025 
6026                 case ANYOFR:
6027                 case ANYOFRb:
6028                   {
6029                     SV* cp_list = NULL;
6030 
6031                     cp_list = _add_range_to_invlist(cp_list,
6032                                         ANYOFRbase(scan),
6033                                         ANYOFRbase(scan) + ANYOFRdelta(scan));
6034 
6035                     if (flags & SCF_DO_STCLASS_OR) {
6036                         ssc_union(data->start_class, cp_list, invert);
6037                     }
6038                     else if (flags & SCF_DO_STCLASS_AND) {
6039                         ssc_intersection(data->start_class, cp_list, invert);
6040                     }
6041 
6042                     SvREFCNT_dec_NN(cp_list);
6043                     break;
6044                   }
6045 
6046                 case NPOSIXL:
6047                     invert = 1;
6048                     /* FALLTHROUGH */
6049 
6050                 case POSIXL:
6051                     namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
6052                     if (flags & SCF_DO_STCLASS_AND) {
6053                         bool was_there = cBOOL(
6054                                           ANYOF_POSIXL_TEST(data->start_class,
6055                                                                  namedclass));
6056                         ANYOF_POSIXL_ZERO(data->start_class);
6057                         if (was_there) {    /* Do an AND */
6058                             ANYOF_POSIXL_SET(data->start_class, namedclass);
6059                         }
6060                         /* No individual code points can now match */
6061                         data->start_class->invlist
6062                                                 = sv_2mortal(_new_invlist(0));
6063                     }
6064                     else {
6065                         int complement = namedclass + ((invert) ? -1 : 1);
6066 
6067                         assert(flags & SCF_DO_STCLASS_OR);
6068 
6069                         /* If the complement of this class was already there,
6070                          * the result is that they match all code points,
6071                          * (\d + \D == everything).  Remove the classes from
6072                          * future consideration.  Locale is not relevant in
6073                          * this case */
6074                         if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
6075                             ssc_match_all_cp(data->start_class);
6076                             ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
6077                             ANYOF_POSIXL_CLEAR(data->start_class, complement);
6078                         }
6079                         else {  /* The usual case; just add this class to the
6080                                    existing set */
6081                             ANYOF_POSIXL_SET(data->start_class, namedclass);
6082                         }
6083                     }
6084                     break;
6085 
6086                 case NPOSIXA:   /* For these, we always know the exact set of
6087                                    what's matched */
6088                     invert = 1;
6089                     /* FALLTHROUGH */
6090                 case POSIXA:
6091                     my_invlist = invlist_clone(PL_Posix_ptrs[FLAGS(scan)], NULL);
6092                     goto join_posix_and_ascii;
6093 
6094                 case NPOSIXD:
6095                 case NPOSIXU:
6096                     invert = 1;
6097                     /* FALLTHROUGH */
6098                 case POSIXD:
6099                 case POSIXU:
6100                     my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)], NULL);
6101 
6102                     /* NPOSIXD matches all upper Latin1 code points unless the
6103                      * target string being matched is UTF-8, which is
6104                      * unknowable until match time.  Since we are going to
6105                      * invert, we want to get rid of all of them so that the
6106                      * inversion will match all */
6107                     if (OP(scan) == NPOSIXD) {
6108                         _invlist_subtract(my_invlist, PL_UpperLatin1,
6109                                           &my_invlist);
6110                     }
6111 
6112                   join_posix_and_ascii:
6113 
6114                     if (flags & SCF_DO_STCLASS_AND) {
6115                         ssc_intersection(data->start_class, my_invlist, invert);
6116                         ssc_clear_locale(data->start_class);
6117                     }
6118                     else {
6119                         assert(flags & SCF_DO_STCLASS_OR);
6120                         ssc_union(data->start_class, my_invlist, invert);
6121                     }
6122                     SvREFCNT_dec(my_invlist);
6123                 }
6124                 if (flags & SCF_DO_STCLASS_OR)
6125                     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
6126                 flags &= ~SCF_DO_STCLASS;
6127             }
6128         }
6129         else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
6130             data->flags |= (OP(scan) == MEOL
6131                             ? SF_BEFORE_MEOL
6132                             : SF_BEFORE_SEOL);
6133             scan_commit(pRExC_state, data, minlenp, is_inf);
6134 
6135         }
6136         else if (  PL_regkind[OP(scan)] == BRANCHJ
6137                  /* Lookbehind, or need to calculate parens/evals/stclass: */
6138                    && (scan->flags || data || (flags & SCF_DO_STCLASS))
6139                    && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
6140         {
6141             if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
6142                 || OP(scan) == UNLESSM )
6143             {
6144                 /* Negative Lookahead/lookbehind
6145                    In this case we can't do fixed string optimisation.
6146                 */
6147 
6148                 SSize_t deltanext, minnext, fake = 0;
6149                 regnode *nscan;
6150                 regnode_ssc intrnl;
6151                 int f = 0;
6152 
6153                 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
6154                 if (data) {
6155                     data_fake.whilem_c = data->whilem_c;
6156                     data_fake.last_closep = data->last_closep;
6157                 }
6158                 else
6159                     data_fake.last_closep = &fake;
6160                 data_fake.pos_delta = delta;
6161                 if ( flags & SCF_DO_STCLASS && !scan->flags
6162                      && OP(scan) == IFMATCH ) { /* Lookahead */
6163                     ssc_init(pRExC_state, &intrnl);
6164                     data_fake.start_class = &intrnl;
6165                     f |= SCF_DO_STCLASS_AND;
6166                 }
6167                 if (flags & SCF_WHILEM_VISITED_POS)
6168                     f |= SCF_WHILEM_VISITED_POS;
6169                 next = regnext(scan);
6170                 nscan = NEXTOPER(NEXTOPER(scan));
6171 
6172                 /* recurse study_chunk() for lookahead body */
6173                 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
6174                                       last, &data_fake, stopparen,
6175                                       recursed_depth, NULL, f, depth+1,
6176                                       mutate_ok);
6177                 if (scan->flags) {
6178                     if (   deltanext < 0
6179                         || deltanext > (I32) U8_MAX
6180                         || minnext > (I32)U8_MAX
6181                         || minnext + deltanext > (I32)U8_MAX)
6182                     {
6183                         FAIL2("Lookbehind longer than %" UVuf " not implemented",
6184                               (UV)U8_MAX);
6185                     }
6186 
6187                     /* The 'next_off' field has been repurposed to count the
6188                      * additional starting positions to try beyond the initial
6189                      * one.  (This leaves it at 0 for non-variable length
6190                      * matches to avoid breakage for those not using this
6191                      * extension) */
6192                     if (deltanext) {
6193                         scan->next_off = deltanext;
6194                         ckWARNexperimental(RExC_parse,
6195                             WARN_EXPERIMENTAL__VLB,
6196                             "Variable length lookbehind is experimental");
6197                     }
6198                     scan->flags = (U8)minnext + deltanext;
6199                 }
6200                 if (data) {
6201                     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
6202                         pars++;
6203                     if (data_fake.flags & SF_HAS_EVAL)
6204                         data->flags |= SF_HAS_EVAL;
6205                     data->whilem_c = data_fake.whilem_c;
6206                 }
6207                 if (f & SCF_DO_STCLASS_AND) {
6208                     if (flags & SCF_DO_STCLASS_OR) {
6209                         /* OR before, AND after: ideally we would recurse with
6210                          * data_fake to get the AND applied by study of the
6211                          * remainder of the pattern, and then derecurse;
6212                          * *** HACK *** for now just treat as "no information".
6213                          * See [perl #56690].
6214                          */
6215                         ssc_init(pRExC_state, data->start_class);
6216                     }  else {
6217                         /* AND before and after: combine and continue.  These
6218                          * assertions are zero-length, so can match an EMPTY
6219                          * string */
6220                         ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
6221                         ANYOF_FLAGS(data->start_class)
6222                                                    |= SSC_MATCHES_EMPTY_STRING;
6223                     }
6224                 }
6225             }
6226 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
6227             else {
6228                 /* Positive Lookahead/lookbehind
6229                    In this case we can do fixed string optimisation,
6230                    but we must be careful about it. Note in the case of
6231                    lookbehind the positions will be offset by the minimum
6232                    length of the pattern, something we won't know about
6233                    until after the recurse.
6234                 */
6235                 SSize_t deltanext, fake = 0;
6236                 regnode *nscan;
6237                 regnode_ssc intrnl;
6238                 int f = 0;
6239                 /* We use SAVEFREEPV so that when the full compile
6240                     is finished perl will clean up the allocated
6241                     minlens when it's all done. This way we don't
6242                     have to worry about freeing them when we know
6243                     they wont be used, which would be a pain.
6244                  */
6245                 SSize_t *minnextp;
6246                 Newx( minnextp, 1, SSize_t );
6247                 SAVEFREEPV(minnextp);
6248 
6249                 if (data) {
6250                     StructCopy(data, &data_fake, scan_data_t);
6251                     if ((flags & SCF_DO_SUBSTR) && data->last_found) {
6252                         f |= SCF_DO_SUBSTR;
6253                         if (scan->flags)
6254                             scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
6255                         data_fake.last_found=newSVsv(data->last_found);
6256                     }
6257                 }
6258                 else
6259                     data_fake.last_closep = &fake;
6260                 data_fake.flags = 0;
6261                 data_fake.substrs[0].flags = 0;
6262                 data_fake.substrs[1].flags = 0;
6263                 data_fake.pos_delta = delta;
6264                 if (is_inf)
6265                     data_fake.flags |= SF_IS_INF;
6266                 if ( flags & SCF_DO_STCLASS && !scan->flags
6267                      && OP(scan) == IFMATCH ) { /* Lookahead */
6268                     ssc_init(pRExC_state, &intrnl);
6269                     data_fake.start_class = &intrnl;
6270                     f |= SCF_DO_STCLASS_AND;
6271                 }
6272                 if (flags & SCF_WHILEM_VISITED_POS)
6273                     f |= SCF_WHILEM_VISITED_POS;
6274                 next = regnext(scan);
6275                 nscan = NEXTOPER(NEXTOPER(scan));
6276 
6277                 /* positive lookahead study_chunk() recursion */
6278                 *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
6279                                         &deltanext, last, &data_fake,
6280                                         stopparen, recursed_depth, NULL,
6281                                         f, depth+1, mutate_ok);
6282                 if (scan->flags) {
6283                     assert(0);  /* This code has never been tested since this
6284                                    is normally not compiled */
6285                     if (   deltanext < 0
6286                         || deltanext > (I32) U8_MAX
6287                         || *minnextp > (I32)U8_MAX
6288                         || *minnextp + deltanext > (I32)U8_MAX)
6289                     {
6290                         FAIL2("Lookbehind longer than %" UVuf " not implemented",
6291                               (UV)U8_MAX);
6292                     }
6293 
6294                     if (deltanext) {
6295                         scan->next_off = deltanext;
6296                     }
6297                     scan->flags = (U8)*minnextp + deltanext;
6298                 }
6299 
6300                 *minnextp += min;
6301 
6302                 if (f & SCF_DO_STCLASS_AND) {
6303                     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
6304                     ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
6305                 }
6306                 if (data) {
6307                     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
6308                         pars++;
6309                     if (data_fake.flags & SF_HAS_EVAL)
6310                         data->flags |= SF_HAS_EVAL;
6311                     data->whilem_c = data_fake.whilem_c;
6312                     if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
6313                         int i;
6314                         if (RExC_rx->minlen<*minnextp)
6315                             RExC_rx->minlen=*minnextp;
6316                         scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
6317                         SvREFCNT_dec_NN(data_fake.last_found);
6318 
6319                         for (i = 0; i < 2; i++) {
6320                             if (data_fake.substrs[i].minlenp != minlenp) {
6321                                 data->substrs[i].min_offset =
6322                                             data_fake.substrs[i].min_offset;
6323                                 data->substrs[i].max_offset =
6324                                             data_fake.substrs[i].max_offset;
6325                                 data->substrs[i].minlenp =
6326                                             data_fake.substrs[i].minlenp;
6327                                 data->substrs[i].lookbehind += scan->flags;
6328                             }
6329                         }
6330                     }
6331                 }
6332             }
6333 #endif
6334         }
6335         else if (OP(scan) == OPEN) {
6336             if (stopparen != (I32)ARG(scan))
6337                 pars++;
6338         }
6339         else if (OP(scan) == CLOSE) {
6340             if (stopparen == (I32)ARG(scan)) {
6341                 break;
6342             }
6343             if ((I32)ARG(scan) == is_par) {
6344                 next = regnext(scan);
6345 
6346                 if ( next && (OP(next) != WHILEM) && next < last)
6347                     is_par = 0;		/* Disable optimization */
6348             }
6349             if (data)
6350                 *(data->last_closep) = ARG(scan);
6351         }
6352         else if (OP(scan) == EVAL) {
6353             if (data)
6354                 data->flags |= SF_HAS_EVAL;
6355         }
6356         else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
6357             if (flags & SCF_DO_SUBSTR) {
6358                 scan_commit(pRExC_state, data, minlenp, is_inf);
6359                 flags &= ~SCF_DO_SUBSTR;
6360             }
6361             if (OP(scan)==ACCEPT) {
6362                 /* m{(*ACCEPT)x} does not have to start with 'x' */
6363                 flags &= ~SCF_DO_STCLASS;
6364                 if (data) {
6365                     data->flags |= SCF_SEEN_ACCEPT;
6366                     if (stopmin > min)
6367                         stopmin = min;
6368                 }
6369             }
6370         }
6371         else if (OP(scan) == COMMIT) {
6372             /* gh18770: m{abc(*COMMIT)xyz} must fail on "abc abcxyz", so we
6373              * must not end up with "abcxyz" as a fixed substring else we'll
6374              * skip straight to attempting to match at offset 4.
6375              */
6376             if (flags & SCF_DO_SUBSTR) {
6377                 scan_commit(pRExC_state, data, minlenp, is_inf);
6378                 flags &= ~SCF_DO_SUBSTR;
6379             }
6380         }
6381         else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
6382         {
6383                 if (flags & SCF_DO_SUBSTR) {
6384                     scan_commit(pRExC_state, data, minlenp, is_inf);
6385                     data->cur_is_floating = 1; /* float */
6386                 }
6387                 is_inf = is_inf_internal = 1;
6388                 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
6389                     ssc_anything(data->start_class);
6390                 flags &= ~SCF_DO_STCLASS;
6391         }
6392         else if (OP(scan) == GPOS) {
6393             if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
6394                 !(delta || is_inf || (data && data->pos_delta)))
6395             {
6396                 if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
6397                     RExC_rx->intflags |= PREGf_ANCH_GPOS;
6398                 if (RExC_rx->gofs < (STRLEN)min)
6399                     RExC_rx->gofs = min;
6400             } else {
6401                 RExC_rx->intflags |= PREGf_GPOS_FLOAT;
6402                 RExC_rx->gofs = 0;
6403             }
6404         }
6405 #ifdef TRIE_STUDY_OPT
6406 #ifdef FULL_TRIE_STUDY
6407         else if (PL_regkind[OP(scan)] == TRIE) {
6408             /* NOTE - There is similar code to this block above for handling
6409                BRANCH nodes on the initial study.  If you change stuff here
6410                check there too. */
6411             regnode *trie_node= scan;
6412             regnode *tail= regnext(scan);
6413             reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
6414             SSize_t max1 = 0, min1 = OPTIMIZE_INFTY;
6415             regnode_ssc accum;
6416 
6417             if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
6418                 /* Cannot merge strings after this. */
6419                 scan_commit(pRExC_state, data, minlenp, is_inf);
6420             }
6421             if (flags & SCF_DO_STCLASS)
6422                 ssc_init_zero(pRExC_state, &accum);
6423 
6424             if (!trie->jump) {
6425                 min1= trie->minlen;
6426                 max1= trie->maxlen;
6427             } else {
6428                 const regnode *nextbranch= NULL;
6429                 U32 word;
6430 
6431                 for ( word=1 ; word <= trie->wordcount ; word++)
6432                 {
6433                     SSize_t deltanext=0, minnext=0, f = 0, fake;
6434                     regnode_ssc this_class;
6435 
6436                     StructCopy(&zero_scan_data, &data_fake, scan_data_t);
6437                     if (data) {
6438                         data_fake.whilem_c = data->whilem_c;
6439                         data_fake.last_closep = data->last_closep;
6440                     }
6441                     else
6442                         data_fake.last_closep = &fake;
6443                     data_fake.pos_delta = delta;
6444                     if (flags & SCF_DO_STCLASS) {
6445                         ssc_init(pRExC_state, &this_class);
6446                         data_fake.start_class = &this_class;
6447                         f = SCF_DO_STCLASS_AND;
6448                     }
6449                     if (flags & SCF_WHILEM_VISITED_POS)
6450                         f |= SCF_WHILEM_VISITED_POS;
6451 
6452                     if (trie->jump[word]) {
6453                         if (!nextbranch)
6454                             nextbranch = trie_node + trie->jump[0];
6455                         scan= trie_node + trie->jump[word];
6456                         /* We go from the jump point to the branch that follows
6457                            it. Note this means we need the vestigal unused
6458                            branches even though they arent otherwise used. */
6459                         /* optimise study_chunk() for TRIE */
6460                         minnext = study_chunk(pRExC_state, &scan, minlenp,
6461                             &deltanext, (regnode *)nextbranch, &data_fake,
6462                             stopparen, recursed_depth, NULL, f, depth+1,
6463                             mutate_ok);
6464                     }
6465                     if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
6466                         nextbranch= regnext((regnode*)nextbranch);
6467 
6468                     if (min1 > (SSize_t)(minnext + trie->minlen))
6469                         min1 = minnext + trie->minlen;
6470                     if (deltanext == OPTIMIZE_INFTY) {
6471                         is_inf = is_inf_internal = 1;
6472                         max1 = OPTIMIZE_INFTY;
6473                     } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
6474                         max1 = minnext + deltanext + trie->maxlen;
6475 
6476                     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
6477                         pars++;
6478                     if (data_fake.flags & SCF_SEEN_ACCEPT) {
6479                         if ( stopmin > min + min1)
6480                             stopmin = min + min1;
6481                         flags &= ~SCF_DO_SUBSTR;
6482                         if (data)
6483                             data->flags |= SCF_SEEN_ACCEPT;
6484                     }
6485                     if (data) {
6486                         if (data_fake.flags & SF_HAS_EVAL)
6487                             data->flags |= SF_HAS_EVAL;
6488                         data->whilem_c = data_fake.whilem_c;
6489                     }
6490                     if (flags & SCF_DO_STCLASS)
6491                         ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
6492                 }
6493             }
6494             if (flags & SCF_DO_SUBSTR) {
6495                 data->pos_min += min1;
6496                 data->pos_delta += max1 - min1;
6497                 if (max1 != min1 || is_inf)
6498                     data->cur_is_floating = 1; /* float */
6499             }
6500             min += min1;
6501             if (delta != OPTIMIZE_INFTY) {
6502                 if (OPTIMIZE_INFTY - (max1 - min1) >= delta)
6503                     delta += max1 - min1;
6504                 else
6505                     delta = OPTIMIZE_INFTY;
6506             }
6507             if (flags & SCF_DO_STCLASS_OR) {
6508                 ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
6509                 if (min1) {
6510                     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
6511                     flags &= ~SCF_DO_STCLASS;
6512                 }
6513             }
6514             else if (flags & SCF_DO_STCLASS_AND) {
6515                 if (min1) {
6516                     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
6517                     flags &= ~SCF_DO_STCLASS;
6518                 }
6519                 else {
6520                     /* Switch to OR mode: cache the old value of
6521                      * data->start_class */
6522                     INIT_AND_WITHP;
6523                     StructCopy(data->start_class, and_withp, regnode_ssc);
6524                     flags &= ~SCF_DO_STCLASS_AND;
6525                     StructCopy(&accum, data->start_class, regnode_ssc);
6526                     flags |= SCF_DO_STCLASS_OR;
6527                 }
6528             }
6529             scan= tail;
6530             continue;
6531         }
6532 #else
6533         else if (PL_regkind[OP(scan)] == TRIE) {
6534             reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
6535             U8*bang=NULL;
6536 
6537             min += trie->minlen;
6538             delta += (trie->maxlen - trie->minlen);
6539             flags &= ~SCF_DO_STCLASS; /* xxx */
6540             if (flags & SCF_DO_SUBSTR) {
6541                 /* Cannot expect anything... */
6542                 scan_commit(pRExC_state, data, minlenp, is_inf);
6543                 data->pos_min += trie->minlen;
6544                 data->pos_delta += (trie->maxlen - trie->minlen);
6545                 if (trie->maxlen != trie->minlen)
6546                     data->cur_is_floating = 1; /* float */
6547             }
6548             if (trie->jump) /* no more substrings -- for now /grr*/
6549                flags &= ~SCF_DO_SUBSTR;
6550         }
6551 
6552 #endif /* old or new */
6553 #endif /* TRIE_STUDY_OPT */
6554 
6555         else if (OP(scan) == REGEX_SET) {
6556             Perl_croak(aTHX_ "panic: %s regnode should be resolved"
6557                              " before optimization", PL_reg_name[REGEX_SET]);
6558         }
6559 
6560         /* Else: zero-length, ignore. */
6561         scan = regnext(scan);
6562     }
6563 
6564   finish:
6565     if (frame) {
6566         /* we need to unwind recursion. */
6567         depth = depth - 1;
6568 
6569         DEBUG_STUDYDATA("frame-end", data, depth, is_inf);
6570         DEBUG_PEEP("fend", scan, depth, flags);
6571 
6572         /* restore previous context */
6573         last = frame->last_regnode;
6574         scan = frame->next_regnode;
6575         stopparen = frame->stopparen;
6576         recursed_depth = frame->prev_recursed_depth;
6577 
6578         RExC_frame_last = frame->prev_frame;
6579         frame = frame->this_prev_frame;
6580         goto fake_study_recurse;
6581     }
6582 
6583     assert(!frame);
6584     DEBUG_STUDYDATA("pre-fin", data, depth, is_inf);
6585 
6586     *scanp = scan;
6587     *deltap = is_inf_internal ? OPTIMIZE_INFTY : delta;
6588 
6589     if (flags & SCF_DO_SUBSTR && is_inf)
6590         data->pos_delta = OPTIMIZE_INFTY - data->pos_min;
6591     if (is_par > (I32)U8_MAX)
6592         is_par = 0;
6593     if (is_par && pars==1 && data) {
6594         data->flags |= SF_IN_PAR;
6595         data->flags &= ~SF_HAS_PAR;
6596     }
6597     else if (pars && data) {
6598         data->flags |= SF_HAS_PAR;
6599         data->flags &= ~SF_IN_PAR;
6600     }
6601     if (flags & SCF_DO_STCLASS_OR)
6602         ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
6603     if (flags & SCF_TRIE_RESTUDY)
6604         data->flags |= 	SCF_TRIE_RESTUDY;
6605 
6606     DEBUG_STUDYDATA("post-fin", data, depth, is_inf);
6607 
6608     final_minlen = min < stopmin
6609             ? min : stopmin;
6610 
6611     if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
6612         if (final_minlen > OPTIMIZE_INFTY - delta)
6613             RExC_maxlen = OPTIMIZE_INFTY;
6614         else if (RExC_maxlen < final_minlen + delta)
6615             RExC_maxlen = final_minlen + delta;
6616     }
6617     return final_minlen;
6618 }
6619 
6620 STATIC U32
S_add_data(RExC_state_t * const pRExC_state,const char * const s,const U32 n)6621 S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
6622 {
6623     U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
6624 
6625     PERL_ARGS_ASSERT_ADD_DATA;
6626 
6627     Renewc(RExC_rxi->data,
6628            sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
6629            char, struct reg_data);
6630     if(count)
6631         Renew(RExC_rxi->data->what, count + n, U8);
6632     else
6633         Newx(RExC_rxi->data->what, n, U8);
6634     RExC_rxi->data->count = count + n;
6635     Copy(s, RExC_rxi->data->what + count, n, U8);
6636     return count;
6637 }
6638 
6639 /*XXX: todo make this not included in a non debugging perl, but appears to be
6640  * used anyway there, in 'use re' */
6641 #ifndef PERL_IN_XSUB_RE
6642 void
Perl_reginitcolors(pTHX)6643 Perl_reginitcolors(pTHX)
6644 {
6645     const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
6646     if (s) {
6647         char *t = savepv(s);
6648         int i = 0;
6649         PL_colors[0] = t;
6650         while (++i < 6) {
6651             t = strchr(t, '\t');
6652             if (t) {
6653                 *t = '\0';
6654                 PL_colors[i] = ++t;
6655             }
6656             else
6657                 PL_colors[i] = t = (char *)"";
6658         }
6659     } else {
6660         int i = 0;
6661         while (i < 6)
6662             PL_colors[i++] = (char *)"";
6663     }
6664     PL_colorset = 1;
6665 }
6666 #endif
6667 
6668 
6669 #ifdef TRIE_STUDY_OPT
6670 #define CHECK_RESTUDY_GOTO_butfirst(dOsomething)            \
6671     STMT_START {                                            \
6672         if (                                                \
6673               (data.flags & SCF_TRIE_RESTUDY)               \
6674               && ! restudied++                              \
6675         ) {                                                 \
6676             dOsomething;                                    \
6677             goto reStudy;                                   \
6678         }                                                   \
6679     } STMT_END
6680 #else
6681 #define CHECK_RESTUDY_GOTO_butfirst
6682 #endif
6683 
6684 /*
6685  * pregcomp - compile a regular expression into internal code
6686  *
6687  * Decides which engine's compiler to call based on the hint currently in
6688  * scope
6689  */
6690 
6691 #ifndef PERL_IN_XSUB_RE
6692 
6693 /* return the currently in-scope regex engine (or the default if none)  */
6694 
6695 regexp_engine const *
Perl_current_re_engine(pTHX)6696 Perl_current_re_engine(pTHX)
6697 {
6698     if (IN_PERL_COMPILETIME) {
6699         HV * const table = GvHV(PL_hintgv);
6700         SV **ptr;
6701 
6702         if (!table || !(PL_hints & HINT_LOCALIZE_HH))
6703             return &PL_core_reg_engine;
6704         ptr = hv_fetchs(table, "regcomp", FALSE);
6705         if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
6706             return &PL_core_reg_engine;
6707         return INT2PTR(regexp_engine*, SvIV(*ptr));
6708     }
6709     else {
6710         SV *ptr;
6711         if (!PL_curcop->cop_hints_hash)
6712             return &PL_core_reg_engine;
6713         ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
6714         if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
6715             return &PL_core_reg_engine;
6716         return INT2PTR(regexp_engine*, SvIV(ptr));
6717     }
6718 }
6719 
6720 
6721 REGEXP *
Perl_pregcomp(pTHX_ SV * const pattern,const U32 flags)6722 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
6723 {
6724     regexp_engine const *eng = current_re_engine();
6725     DECLARE_AND_GET_RE_DEBUG_FLAGS;
6726 
6727     PERL_ARGS_ASSERT_PREGCOMP;
6728 
6729     /* Dispatch a request to compile a regexp to correct regexp engine. */
6730     DEBUG_COMPILE_r({
6731         Perl_re_printf( aTHX_  "Using engine %" UVxf "\n",
6732                         PTR2UV(eng));
6733     });
6734     return CALLREGCOMP_ENG(eng, pattern, flags);
6735 }
6736 #endif
6737 
6738 /* public(ish) entry point for the perl core's own regex compiling code.
6739  * It's actually a wrapper for Perl_re_op_compile that only takes an SV
6740  * pattern rather than a list of OPs, and uses the internal engine rather
6741  * than the current one */
6742 
6743 REGEXP *
Perl_re_compile(pTHX_ SV * const pattern,U32 rx_flags)6744 Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
6745 {
6746     SV *pat = pattern; /* defeat constness! */
6747 
6748     PERL_ARGS_ASSERT_RE_COMPILE;
6749 
6750     return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
6751 #ifdef PERL_IN_XSUB_RE
6752                                 &my_reg_engine,
6753 #else
6754                                 &PL_core_reg_engine,
6755 #endif
6756                                 NULL, NULL, rx_flags, 0);
6757 }
6758 
6759 static void
S_free_codeblocks(pTHX_ struct reg_code_blocks * cbs)6760 S_free_codeblocks(pTHX_ struct reg_code_blocks *cbs)
6761 {
6762     int n;
6763 
6764     if (--cbs->refcnt > 0)
6765         return;
6766     for (n = 0; n < cbs->count; n++) {
6767         REGEXP *rx = cbs->cb[n].src_regex;
6768         if (rx) {
6769             cbs->cb[n].src_regex = NULL;
6770             SvREFCNT_dec_NN(rx);
6771         }
6772     }
6773     Safefree(cbs->cb);
6774     Safefree(cbs);
6775 }
6776 
6777 
6778 static struct reg_code_blocks *
S_alloc_code_blocks(pTHX_ int ncode)6779 S_alloc_code_blocks(pTHX_  int ncode)
6780 {
6781      struct reg_code_blocks *cbs;
6782     Newx(cbs, 1, struct reg_code_blocks);
6783     cbs->count = ncode;
6784     cbs->refcnt = 1;
6785     SAVEDESTRUCTOR_X(S_free_codeblocks, cbs);
6786     if (ncode)
6787         Newx(cbs->cb, ncode, struct reg_code_block);
6788     else
6789         cbs->cb = NULL;
6790     return cbs;
6791 }
6792 
6793 
6794 /* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
6795  * blocks, recalculate the indices. Update pat_p and plen_p in-place to
6796  * point to the realloced string and length.
6797  *
6798  * This is essentially a copy of Perl_bytes_to_utf8() with the code index
6799  * stuff added */
6800 
6801 static void
S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,char ** pat_p,STRLEN * plen_p,int num_code_blocks)6802 S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
6803                     char **pat_p, STRLEN *plen_p, int num_code_blocks)
6804 {
6805     U8 *const src = (U8*)*pat_p;
6806     U8 *dst, *d;
6807     int n=0;
6808     STRLEN s = 0;
6809     bool do_end = 0;
6810     DECLARE_AND_GET_RE_DEBUG_FLAGS;
6811 
6812     DEBUG_PARSE_r(Perl_re_printf( aTHX_
6813         "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
6814 
6815     /* 1 for each byte + 1 for each byte that expands to two, + trailing NUL */
6816     Newx(dst, *plen_p + variant_under_utf8_count(src, src + *plen_p) + 1, U8);
6817     d = dst;
6818 
6819     while (s < *plen_p) {
6820         append_utf8_from_native_byte(src[s], &d);
6821 
6822         if (n < num_code_blocks) {
6823             assert(pRExC_state->code_blocks);
6824             if (!do_end && pRExC_state->code_blocks->cb[n].start == s) {
6825                 pRExC_state->code_blocks->cb[n].start = d - dst - 1;
6826                 assert(*(d - 1) == '(');
6827                 do_end = 1;
6828             }
6829             else if (do_end && pRExC_state->code_blocks->cb[n].end == s) {
6830                 pRExC_state->code_blocks->cb[n].end = d - dst - 1;
6831                 assert(*(d - 1) == ')');
6832                 do_end = 0;
6833                 n++;
6834             }
6835         }
6836         s++;
6837     }
6838     *d = '\0';
6839     *plen_p = d - dst;
6840     *pat_p = (char*) dst;
6841     SAVEFREEPV(*pat_p);
6842     RExC_orig_utf8 = RExC_utf8 = 1;
6843 }
6844 
6845 
6846 
6847 /* S_concat_pat(): concatenate a list of args to the pattern string pat,
6848  * while recording any code block indices, and handling overloading,
6849  * nested qr// objects etc.  If pat is null, it will allocate a new
6850  * string, or just return the first arg, if there's only one.
6851  *
6852  * Returns the malloced/updated pat.
6853  * patternp and pat_count is the array of SVs to be concatted;
6854  * oplist is the optional list of ops that generated the SVs;
6855  * recompile_p is a pointer to a boolean that will be set if
6856  *   the regex will need to be recompiled.
6857  * delim, if non-null is an SV that will be inserted between each element
6858  */
6859 
6860 static SV*
S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,SV * pat,SV ** const patternp,int pat_count,OP * oplist,bool * recompile_p,SV * delim)6861 S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
6862                 SV *pat, SV ** const patternp, int pat_count,
6863                 OP *oplist, bool *recompile_p, SV *delim)
6864 {
6865     SV **svp;
6866     int n = 0;
6867     bool use_delim = FALSE;
6868     bool alloced = FALSE;
6869 
6870     /* if we know we have at least two args, create an empty string,
6871      * then concatenate args to that. For no args, return an empty string */
6872     if (!pat && pat_count != 1) {
6873         pat = newSVpvs("");
6874         SAVEFREESV(pat);
6875         alloced = TRUE;
6876     }
6877 
6878     for (svp = patternp; svp < patternp + pat_count; svp++) {
6879         SV *sv;
6880         SV *rx  = NULL;
6881         STRLEN orig_patlen = 0;
6882         bool code = 0;
6883         SV *msv = use_delim ? delim : *svp;
6884         if (!msv) msv = &PL_sv_undef;
6885 
6886         /* if we've got a delimiter, we go round the loop twice for each
6887          * svp slot (except the last), using the delimiter the second
6888          * time round */
6889         if (use_delim) {
6890             svp--;
6891             use_delim = FALSE;
6892         }
6893         else if (delim)
6894             use_delim = TRUE;
6895 
6896         if (SvTYPE(msv) == SVt_PVAV) {
6897             /* we've encountered an interpolated array within
6898              * the pattern, e.g. /...@a..../. Expand the list of elements,
6899              * then recursively append elements.
6900              * The code in this block is based on S_pushav() */
6901 
6902             AV *const av = (AV*)msv;
6903             const SSize_t maxarg = AvFILL(av) + 1;
6904             SV **array;
6905 
6906             if (oplist) {
6907                 assert(oplist->op_type == OP_PADAV
6908                     || oplist->op_type == OP_RV2AV);
6909                 oplist = OpSIBLING(oplist);
6910             }
6911 
6912             if (SvRMAGICAL(av)) {
6913                 SSize_t i;
6914 
6915                 Newx(array, maxarg, SV*);
6916                 SAVEFREEPV(array);
6917                 for (i=0; i < maxarg; i++) {
6918                     SV ** const svp = av_fetch(av, i, FALSE);
6919                     array[i] = svp ? *svp : &PL_sv_undef;
6920                 }
6921             }
6922             else
6923                 array = AvARRAY(av);
6924 
6925             pat = S_concat_pat(aTHX_ pRExC_state, pat,
6926                                 array, maxarg, NULL, recompile_p,
6927                                 /* $" */
6928                                 GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
6929 
6930             continue;
6931         }
6932 
6933 
6934         /* we make the assumption here that each op in the list of
6935          * op_siblings maps to one SV pushed onto the stack,
6936          * except for code blocks, with have both an OP_NULL and
6937          * an OP_CONST.
6938          * This allows us to match up the list of SVs against the
6939          * list of OPs to find the next code block.
6940          *
6941          * Note that       PUSHMARK PADSV PADSV ..
6942          * is optimised to
6943          *                 PADRANGE PADSV  PADSV  ..
6944          * so the alignment still works. */
6945 
6946         if (oplist) {
6947             if (oplist->op_type == OP_NULL
6948                 && (oplist->op_flags & OPf_SPECIAL))
6949             {
6950                 assert(n < pRExC_state->code_blocks->count);
6951                 pRExC_state->code_blocks->cb[n].start = pat ? SvCUR(pat) : 0;
6952                 pRExC_state->code_blocks->cb[n].block = oplist;
6953                 pRExC_state->code_blocks->cb[n].src_regex = NULL;
6954                 n++;
6955                 code = 1;
6956                 oplist = OpSIBLING(oplist); /* skip CONST */
6957                 assert(oplist);
6958             }
6959             oplist = OpSIBLING(oplist);;
6960         }
6961 
6962         /* apply magic and QR overloading to arg */
6963 
6964         SvGETMAGIC(msv);
6965         if (SvROK(msv) && SvAMAGIC(msv)) {
6966             SV *sv = AMG_CALLunary(msv, regexp_amg);
6967             if (sv) {
6968                 if (SvROK(sv))
6969                     sv = SvRV(sv);
6970                 if (SvTYPE(sv) != SVt_REGEXP)
6971                     Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
6972                 msv = sv;
6973             }
6974         }
6975 
6976         /* try concatenation overload ... */
6977         if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
6978                 (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
6979         {
6980             sv_setsv(pat, sv);
6981             /* overloading involved: all bets are off over literal
6982              * code. Pretend we haven't seen it */
6983             if (n)
6984                 pRExC_state->code_blocks->count -= n;
6985             n = 0;
6986         }
6987         else {
6988             /* ... or failing that, try "" overload */
6989             while (SvAMAGIC(msv)
6990                     && (sv = AMG_CALLunary(msv, string_amg))
6991                     && sv != msv
6992                     &&  !(   SvROK(msv)
6993                           && SvROK(sv)
6994                           && SvRV(msv) == SvRV(sv))
6995             ) {
6996                 msv = sv;
6997                 SvGETMAGIC(msv);
6998             }
6999             if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
7000                 msv = SvRV(msv);
7001 
7002             if (pat) {
7003                 /* this is a partially unrolled
7004                  *     sv_catsv_nomg(pat, msv);
7005                  * that allows us to adjust code block indices if
7006                  * needed */
7007                 STRLEN dlen;
7008                 char *dst = SvPV_force_nomg(pat, dlen);
7009                 orig_patlen = dlen;
7010                 if (SvUTF8(msv) && !SvUTF8(pat)) {
7011                     S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
7012                     sv_setpvn(pat, dst, dlen);
7013                     SvUTF8_on(pat);
7014                 }
7015                 sv_catsv_nomg(pat, msv);
7016                 rx = msv;
7017             }
7018             else {
7019                 /* We have only one SV to process, but we need to verify
7020                  * it is properly null terminated or we will fail asserts
7021                  * later. In theory we probably shouldn't get such SV's,
7022                  * but if we do we should handle it gracefully. */
7023                 if ( SvTYPE(msv) != SVt_PV || (SvLEN(msv) > SvCUR(msv) && *(SvEND(msv)) == 0) || SvIsCOW_shared_hash(msv) ) {
7024                     /* not a string, or a string with a trailing null */
7025                     pat = msv;
7026                 } else {
7027                     /* a string with no trailing null, we need to copy it
7028                      * so it has a trailing null */
7029                     pat = sv_2mortal(newSVsv(msv));
7030                 }
7031             }
7032 
7033             if (code)
7034                 pRExC_state->code_blocks->cb[n-1].end = SvCUR(pat)-1;
7035         }
7036 
7037         /* extract any code blocks within any embedded qr//'s */
7038         if (rx && SvTYPE(rx) == SVt_REGEXP
7039             && RX_ENGINE((REGEXP*)rx)->op_comp)
7040         {
7041 
7042             RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
7043             if (ri->code_blocks && ri->code_blocks->count) {
7044                 int i;
7045                 /* the presence of an embedded qr// with code means
7046                  * we should always recompile: the text of the
7047                  * qr// may not have changed, but it may be a
7048                  * different closure than last time */
7049                 *recompile_p = 1;
7050                 if (pRExC_state->code_blocks) {
7051                     int new_count = pRExC_state->code_blocks->count
7052                             + ri->code_blocks->count;
7053                     Renew(pRExC_state->code_blocks->cb,
7054                             new_count, struct reg_code_block);
7055                     pRExC_state->code_blocks->count = new_count;
7056                 }
7057                 else
7058                     pRExC_state->code_blocks = S_alloc_code_blocks(aTHX_
7059                                                     ri->code_blocks->count);
7060 
7061                 for (i=0; i < ri->code_blocks->count; i++) {
7062                     struct reg_code_block *src, *dst;
7063                     STRLEN offset =  orig_patlen
7064                         + ReANY((REGEXP *)rx)->pre_prefix;
7065                     assert(n < pRExC_state->code_blocks->count);
7066                     src = &ri->code_blocks->cb[i];
7067                     dst = &pRExC_state->code_blocks->cb[n];
7068                     dst->start	    = src->start + offset;
7069                     dst->end	    = src->end   + offset;
7070                     dst->block	    = src->block;
7071                     dst->src_regex  = (REGEXP*) SvREFCNT_inc( (SV*)
7072                                             src->src_regex
7073                                                 ? src->src_regex
7074                                                 : (REGEXP*)rx);
7075                     n++;
7076                 }
7077             }
7078         }
7079     }
7080     /* avoid calling magic multiple times on a single element e.g. =~ $qr */
7081     if (alloced)
7082         SvSETMAGIC(pat);
7083 
7084     return pat;
7085 }
7086 
7087 
7088 
7089 /* see if there are any run-time code blocks in the pattern.
7090  * False positives are allowed */
7091 
7092 static bool
S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,char * pat,STRLEN plen)7093 S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
7094                     char *pat, STRLEN plen)
7095 {
7096     int n = 0;
7097     STRLEN s;
7098 
7099     PERL_UNUSED_CONTEXT;
7100 
7101     for (s = 0; s < plen; s++) {
7102         if (   pRExC_state->code_blocks
7103             && n < pRExC_state->code_blocks->count
7104             && s == pRExC_state->code_blocks->cb[n].start)
7105         {
7106             s = pRExC_state->code_blocks->cb[n].end;
7107             n++;
7108             continue;
7109         }
7110         /* TODO ideally should handle [..], (#..), /#.../x to reduce false
7111          * positives here */
7112         if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
7113             (pat[s+2] == '{'
7114                 || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
7115         )
7116             return 1;
7117     }
7118     return 0;
7119 }
7120 
7121 /* Handle run-time code blocks. We will already have compiled any direct
7122  * or indirect literal code blocks. Now, take the pattern 'pat' and make a
7123  * copy of it, but with any literal code blocks blanked out and
7124  * appropriate chars escaped; then feed it into
7125  *
7126  *    eval "qr'modified_pattern'"
7127  *
7128  * For example,
7129  *
7130  *       a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
7131  *
7132  * becomes
7133  *
7134  *    qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
7135  *
7136  * After eval_sv()-ing that, grab any new code blocks from the returned qr
7137  * and merge them with any code blocks of the original regexp.
7138  *
7139  * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
7140  * instead, just save the qr and return FALSE; this tells our caller that
7141  * the original pattern needs upgrading to utf8.
7142  */
7143 
7144 static bool
S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,char * pat,STRLEN plen)7145 S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
7146     char *pat, STRLEN plen)
7147 {
7148     SV *qr;
7149 
7150     DECLARE_AND_GET_RE_DEBUG_FLAGS;
7151 
7152     if (pRExC_state->runtime_code_qr) {
7153         /* this is the second time we've been called; this should
7154          * only happen if the main pattern got upgraded to utf8
7155          * during compilation; re-use the qr we compiled first time
7156          * round (which should be utf8 too)
7157          */
7158         qr = pRExC_state->runtime_code_qr;
7159         pRExC_state->runtime_code_qr = NULL;
7160         assert(RExC_utf8 && SvUTF8(qr));
7161     }
7162     else {
7163         int n = 0;
7164         STRLEN s;
7165         char *p, *newpat;
7166         int newlen = plen + 7; /* allow for "qr''xx\0" extra chars */
7167         SV *sv, *qr_ref;
7168         dSP;
7169 
7170         /* determine how many extra chars we need for ' and \ escaping */
7171         for (s = 0; s < plen; s++) {
7172             if (pat[s] == '\'' || pat[s] == '\\')
7173                 newlen++;
7174         }
7175 
7176         Newx(newpat, newlen, char);
7177         p = newpat;
7178         *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
7179 
7180         for (s = 0; s < plen; s++) {
7181             if (   pRExC_state->code_blocks
7182                 && n < pRExC_state->code_blocks->count
7183                 && s == pRExC_state->code_blocks->cb[n].start)
7184             {
7185                 /* blank out literal code block so that they aren't
7186                  * recompiled: eg change from/to:
7187                  *     /(?{xyz})/
7188                  *     /(?=====)/
7189                  * and
7190                  *     /(??{xyz})/
7191                  *     /(?======)/
7192                  * and
7193                  *     /(?(?{xyz}))/
7194                  *     /(?(?=====))/
7195                 */
7196                 assert(pat[s]   == '(');
7197                 assert(pat[s+1] == '?');
7198                 *p++ = '(';
7199                 *p++ = '?';
7200                 s += 2;
7201                 while (s < pRExC_state->code_blocks->cb[n].end) {
7202                     *p++ = '=';
7203                     s++;
7204                 }
7205                 *p++ = ')';
7206                 n++;
7207                 continue;
7208             }
7209             if (pat[s] == '\'' || pat[s] == '\\')
7210                 *p++ = '\\';
7211             *p++ = pat[s];
7212         }
7213         *p++ = '\'';
7214         if (pRExC_state->pm_flags & RXf_PMf_EXTENDED) {
7215             *p++ = 'x';
7216             if (pRExC_state->pm_flags & RXf_PMf_EXTENDED_MORE) {
7217                 *p++ = 'x';
7218             }
7219         }
7220         *p++ = '\0';
7221         DEBUG_COMPILE_r({
7222             Perl_re_printf( aTHX_
7223                 "%sre-parsing pattern for runtime code:%s %s\n",
7224                 PL_colors[4], PL_colors[5], newpat);
7225         });
7226 
7227         sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
7228         Safefree(newpat);
7229 
7230         ENTER;
7231         SAVETMPS;
7232         save_re_context();
7233         PUSHSTACKi(PERLSI_REQUIRE);
7234         /* G_RE_REPARSING causes the toker to collapse \\ into \ when
7235          * parsing qr''; normally only q'' does this. It also alters
7236          * hints handling */
7237         eval_sv(sv, G_SCALAR|G_RE_REPARSING);
7238         SvREFCNT_dec_NN(sv);
7239         SPAGAIN;
7240         qr_ref = POPs;
7241         PUTBACK;
7242         {
7243             SV * const errsv = ERRSV;
7244             if (SvTRUE_NN(errsv))
7245                 /* use croak_sv ? */
7246                 Perl_croak_nocontext("%" SVf, SVfARG(errsv));
7247         }
7248         assert(SvROK(qr_ref));
7249         qr = SvRV(qr_ref);
7250         assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
7251         /* the leaving below frees the tmp qr_ref.
7252          * Give qr a life of its own */
7253         SvREFCNT_inc(qr);
7254         POPSTACK;
7255         FREETMPS;
7256         LEAVE;
7257 
7258     }
7259 
7260     if (!RExC_utf8 && SvUTF8(qr)) {
7261         /* first time through; the pattern got upgraded; save the
7262          * qr for the next time through */
7263         assert(!pRExC_state->runtime_code_qr);
7264         pRExC_state->runtime_code_qr = qr;
7265         return 0;
7266     }
7267 
7268 
7269     /* extract any code blocks within the returned qr//  */
7270 
7271 
7272     /* merge the main (r1) and run-time (r2) code blocks into one */
7273     {
7274         RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
7275         struct reg_code_block *new_block, *dst;
7276         RExC_state_t * const r1 = pRExC_state; /* convenient alias */
7277         int i1 = 0, i2 = 0;
7278         int r1c, r2c;
7279 
7280         if (!r2->code_blocks || !r2->code_blocks->count) /* we guessed wrong */
7281         {
7282             SvREFCNT_dec_NN(qr);
7283             return 1;
7284         }
7285 
7286         if (!r1->code_blocks)
7287             r1->code_blocks = S_alloc_code_blocks(aTHX_ 0);
7288 
7289         r1c = r1->code_blocks->count;
7290         r2c = r2->code_blocks->count;
7291 
7292         Newx(new_block, r1c + r2c, struct reg_code_block);
7293 
7294         dst = new_block;
7295 
7296         while (i1 < r1c || i2 < r2c) {
7297             struct reg_code_block *src;
7298             bool is_qr = 0;
7299 
7300             if (i1 == r1c) {
7301                 src = &r2->code_blocks->cb[i2++];
7302                 is_qr = 1;
7303             }
7304             else if (i2 == r2c)
7305                 src = &r1->code_blocks->cb[i1++];
7306             else if (  r1->code_blocks->cb[i1].start
7307                      < r2->code_blocks->cb[i2].start)
7308             {
7309                 src = &r1->code_blocks->cb[i1++];
7310                 assert(src->end < r2->code_blocks->cb[i2].start);
7311             }
7312             else {
7313                 assert(  r1->code_blocks->cb[i1].start
7314                        > r2->code_blocks->cb[i2].start);
7315                 src = &r2->code_blocks->cb[i2++];
7316                 is_qr = 1;
7317                 assert(src->end < r1->code_blocks->cb[i1].start);
7318             }
7319 
7320             assert(pat[src->start] == '(');
7321             assert(pat[src->end]   == ')');
7322             dst->start	    = src->start;
7323             dst->end	    = src->end;
7324             dst->block	    = src->block;
7325             dst->src_regex  = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
7326                                     : src->src_regex;
7327             dst++;
7328         }
7329         r1->code_blocks->count += r2c;
7330         Safefree(r1->code_blocks->cb);
7331         r1->code_blocks->cb = new_block;
7332     }
7333 
7334     SvREFCNT_dec_NN(qr);
7335     return 1;
7336 }
7337 
7338 
7339 STATIC bool
S_setup_longest(pTHX_ RExC_state_t * pRExC_state,struct reg_substr_datum * rsd,struct scan_data_substrs * sub,STRLEN longest_length)7340 S_setup_longest(pTHX_ RExC_state_t *pRExC_state,
7341                       struct reg_substr_datum  *rsd,
7342                       struct scan_data_substrs *sub,
7343                       STRLEN longest_length)
7344 {
7345     /* This is the common code for setting up the floating and fixed length
7346      * string data extracted from Perl_re_op_compile() below.  Returns a boolean
7347      * as to whether succeeded or not */
7348 
7349     I32 t;
7350     SSize_t ml;
7351     bool eol  = cBOOL(sub->flags & SF_BEFORE_EOL);
7352     bool meol = cBOOL(sub->flags & SF_BEFORE_MEOL);
7353 
7354     if (! (longest_length
7355            || (eol /* Can't have SEOL and MULTI */
7356                && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
7357           )
7358             /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
7359         || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
7360     {
7361         return FALSE;
7362     }
7363 
7364     /* copy the information about the longest from the reg_scan_data
7365         over to the program. */
7366     if (SvUTF8(sub->str)) {
7367         rsd->substr      = NULL;
7368         rsd->utf8_substr = sub->str;
7369     } else {
7370         rsd->substr      = sub->str;
7371         rsd->utf8_substr = NULL;
7372     }
7373     /* end_shift is how many chars that must be matched that
7374         follow this item. We calculate it ahead of time as once the
7375         lookbehind offset is added in we lose the ability to correctly
7376         calculate it.*/
7377     ml = sub->minlenp ? *(sub->minlenp) : (SSize_t)longest_length;
7378     rsd->end_shift = ml - sub->min_offset
7379         - longest_length
7380             /* XXX SvTAIL is always false here - did you mean FBMcf_TAIL
7381              * intead? - DAPM
7382             + (SvTAIL(sub->str) != 0)
7383             */
7384         + sub->lookbehind;
7385 
7386     t = (eol/* Can't have SEOL and MULTI */
7387          && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
7388     fbm_compile(sub->str, t ? FBMcf_TAIL : 0);
7389 
7390     return TRUE;
7391 }
7392 
7393 STATIC void
S_set_regex_pv(pTHX_ RExC_state_t * pRExC_state,REGEXP * Rx)7394 S_set_regex_pv(pTHX_ RExC_state_t *pRExC_state, REGEXP *Rx)
7395 {
7396     /* Calculates and sets in the compiled pattern 'Rx' the string to compile,
7397      * properly wrapped with the right modifiers */
7398 
7399     bool has_p     = ((RExC_rx->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
7400     bool has_charset = RExC_utf8 || (get_regex_charset(RExC_rx->extflags)
7401                                                 != REGEX_DEPENDS_CHARSET);
7402 
7403     /* The caret is output if there are any defaults: if not all the STD
7404         * flags are set, or if no character set specifier is needed */
7405     bool has_default =
7406                 (((RExC_rx->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
7407                 || ! has_charset);
7408     bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
7409                                                 == REG_RUN_ON_COMMENT_SEEN);
7410     U8 reganch = (U8)((RExC_rx->extflags & RXf_PMf_STD_PMMOD)
7411                         >> RXf_PMf_STD_PMMOD_SHIFT);
7412     const char *fptr = STD_PAT_MODS;        /*"msixxn"*/
7413     char *p;
7414     STRLEN pat_len = RExC_precomp_end - RExC_precomp;
7415 
7416     /* We output all the necessary flags; we never output a minus, as all
7417         * those are defaults, so are
7418         * covered by the caret */
7419     const STRLEN wraplen = pat_len + has_p + has_runon
7420         + has_default       /* If needs a caret */
7421         + PL_bitcount[reganch] /* 1 char for each set standard flag */
7422 
7423             /* If needs a character set specifier */
7424         + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
7425         + (sizeof("(?:)") - 1);
7426 
7427     PERL_ARGS_ASSERT_SET_REGEX_PV;
7428 
7429     /* make sure PL_bitcount bounds not exceeded */
7430     STATIC_ASSERT_STMT(sizeof(STD_PAT_MODS) <= 8);
7431 
7432     p = sv_grow(MUTABLE_SV(Rx), wraplen + 1); /* +1 for the ending NUL */
7433     SvPOK_on(Rx);
7434     if (RExC_utf8)
7435         SvFLAGS(Rx) |= SVf_UTF8;
7436     *p++='('; *p++='?';
7437 
7438     /* If a default, cover it using the caret */
7439     if (has_default) {
7440         *p++= DEFAULT_PAT_MOD;
7441     }
7442     if (has_charset) {
7443         STRLEN len;
7444         const char* name;
7445 
7446         name = get_regex_charset_name(RExC_rx->extflags, &len);
7447         if (strEQ(name, DEPENDS_PAT_MODS)) {  /* /d under UTF-8 => /u */
7448             assert(RExC_utf8);
7449             name = UNICODE_PAT_MODS;
7450             len = sizeof(UNICODE_PAT_MODS) - 1;
7451         }
7452         Copy(name, p, len, char);
7453         p += len;
7454     }
7455     if (has_p)
7456         *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
7457     {
7458         char ch;
7459         while((ch = *fptr++)) {
7460             if(reganch & 1)
7461                 *p++ = ch;
7462             reganch >>= 1;
7463         }
7464     }
7465 
7466     *p++ = ':';
7467     Copy(RExC_precomp, p, pat_len, char);
7468     assert ((RX_WRAPPED(Rx) - p) < 16);
7469     RExC_rx->pre_prefix = p - RX_WRAPPED(Rx);
7470     p += pat_len;
7471 
7472     /* Adding a trailing \n causes this to compile properly:
7473             my $R = qr / A B C # D E/x; /($R)/
7474         Otherwise the parens are considered part of the comment */
7475     if (has_runon)
7476         *p++ = '\n';
7477     *p++ = ')';
7478     *p = 0;
7479     SvCUR_set(Rx, p - RX_WRAPPED(Rx));
7480 }
7481 
7482 /*
7483  * Perl_re_op_compile - the perl internal RE engine's function to compile a
7484  * regular expression into internal code.
7485  * The pattern may be passed either as:
7486  *    a list of SVs (patternp plus pat_count)
7487  *    a list of OPs (expr)
7488  * If both are passed, the SV list is used, but the OP list indicates
7489  * which SVs are actually pre-compiled code blocks
7490  *
7491  * The SVs in the list have magic and qr overloading applied to them (and
7492  * the list may be modified in-place with replacement SVs in the latter
7493  * case).
7494  *
7495  * If the pattern hasn't changed from old_re, then old_re will be
7496  * returned.
7497  *
7498  * eng is the current engine. If that engine has an op_comp method, then
7499  * handle directly (i.e. we assume that op_comp was us); otherwise, just
7500  * do the initial concatenation of arguments and pass on to the external
7501  * engine.
7502  *
7503  * If is_bare_re is not null, set it to a boolean indicating whether the
7504  * arg list reduced (after overloading) to a single bare regex which has
7505  * been returned (i.e. /$qr/).
7506  *
7507  * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
7508  *
7509  * pm_flags contains the PMf_* flags, typically based on those from the
7510  * pm_flags field of the related PMOP. Currently we're only interested in
7511  * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL, PMf_WILDCARD.
7512  *
7513  * For many years this code had an initial sizing pass that calculated
7514  * (sometimes incorrectly, leading to security holes) the size needed for the
7515  * compiled pattern.  That was changed by commit
7516  * 7c932d07cab18751bfc7515b4320436273a459e2 in 5.29, which reallocs the size, a
7517  * node at a time, as parsing goes along.  Patches welcome to fix any obsolete
7518  * references to this sizing pass.
7519  *
7520  * Now, an initial crude guess as to the size needed is made, based on the
7521  * length of the pattern.  Patches welcome to improve that guess.  That amount
7522  * of space is malloc'd and then immediately freed, and then clawed back node
7523  * by node.  This design is to minimze, to the extent possible, memory churn
7524  * when doing the reallocs.
7525  *
7526  * A separate parentheses counting pass may be needed in some cases.
7527  * (Previously the sizing pass did this.)  Patches welcome to reduce the number
7528  * of these cases.
7529  *
7530  * The existence of a sizing pass necessitated design decisions that are no
7531  * longer needed.  There are potential areas of simplification.
7532  *
7533  * Beware that the optimization-preparation code in here knows about some
7534  * of the structure of the compiled regexp.  [I'll say.]
7535  */
7536 
7537 REGEXP *
Perl_re_op_compile(pTHX_ SV ** const patternp,int pat_count,OP * expr,const regexp_engine * eng,REGEXP * old_re,bool * is_bare_re,const U32 orig_rx_flags,const U32 pm_flags)7538 Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
7539                     OP *expr, const regexp_engine* eng, REGEXP *old_re,
7540                      bool *is_bare_re, const U32 orig_rx_flags, const U32 pm_flags)
7541 {
7542     REGEXP *Rx;         /* Capital 'R' means points to a REGEXP */
7543     STRLEN plen;
7544     char *exp;
7545     regnode *scan;
7546     I32 flags;
7547     SSize_t minlen = 0;
7548     U32 rx_flags;
7549     SV *pat;
7550     SV** new_patternp = patternp;
7551 
7552     /* these are all flags - maybe they should be turned
7553      * into a single int with different bit masks */
7554     I32 sawlookahead = 0;
7555     I32 sawplus = 0;
7556     I32 sawopen = 0;
7557     I32 sawminmod = 0;
7558 
7559     regex_charset initial_charset = get_regex_charset(orig_rx_flags);
7560     bool recompile = 0;
7561     bool runtime_code = 0;
7562     scan_data_t data;
7563     RExC_state_t RExC_state;
7564     RExC_state_t * const pRExC_state = &RExC_state;
7565 #ifdef TRIE_STUDY_OPT
7566     int restudied = 0;
7567     RExC_state_t copyRExC_state;
7568 #endif
7569     DECLARE_AND_GET_RE_DEBUG_FLAGS;
7570 
7571     PERL_ARGS_ASSERT_RE_OP_COMPILE;
7572 
7573     DEBUG_r(if (!PL_colorset) reginitcolors());
7574 
7575 
7576     pRExC_state->warn_text = NULL;
7577     pRExC_state->unlexed_names = NULL;
7578     pRExC_state->code_blocks = NULL;
7579 
7580     if (is_bare_re)
7581         *is_bare_re = FALSE;
7582 
7583     if (expr && (expr->op_type == OP_LIST ||
7584                 (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
7585         /* allocate code_blocks if needed */
7586         OP *o;
7587         int ncode = 0;
7588 
7589         for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
7590             if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
7591                 ncode++; /* count of DO blocks */
7592 
7593         if (ncode)
7594             pRExC_state->code_blocks = S_alloc_code_blocks(aTHX_ ncode);
7595     }
7596 
7597     if (!pat_count) {
7598         /* compile-time pattern with just OP_CONSTs and DO blocks */
7599 
7600         int n;
7601         OP *o;
7602 
7603         /* find how many CONSTs there are */
7604         assert(expr);
7605         n = 0;
7606         if (expr->op_type == OP_CONST)
7607             n = 1;
7608         else
7609             for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
7610                 if (o->op_type == OP_CONST)
7611                     n++;
7612             }
7613 
7614         /* fake up an SV array */
7615 
7616         assert(!new_patternp);
7617         Newx(new_patternp, n, SV*);
7618         SAVEFREEPV(new_patternp);
7619         pat_count = n;
7620 
7621         n = 0;
7622         if (expr->op_type == OP_CONST)
7623             new_patternp[n] = cSVOPx_sv(expr);
7624         else
7625             for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
7626                 if (o->op_type == OP_CONST)
7627                     new_patternp[n++] = cSVOPo_sv;
7628             }
7629 
7630     }
7631 
7632     DEBUG_PARSE_r(Perl_re_printf( aTHX_
7633         "Assembling pattern from %d elements%s\n", pat_count,
7634             orig_rx_flags & RXf_SPLIT ? " for split" : ""));
7635 
7636     /* set expr to the first arg op */
7637 
7638     if (pRExC_state->code_blocks && pRExC_state->code_blocks->count
7639          && expr->op_type != OP_CONST)
7640     {
7641             expr = cLISTOPx(expr)->op_first;
7642             assert(   expr->op_type == OP_PUSHMARK
7643                    || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
7644                    || expr->op_type == OP_PADRANGE);
7645             expr = OpSIBLING(expr);
7646     }
7647 
7648     pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
7649                         expr, &recompile, NULL);
7650 
7651     /* handle bare (possibly after overloading) regex: foo =~ $re */
7652     {
7653         SV *re = pat;
7654         if (SvROK(re))
7655             re = SvRV(re);
7656         if (SvTYPE(re) == SVt_REGEXP) {
7657             if (is_bare_re)
7658                 *is_bare_re = TRUE;
7659             SvREFCNT_inc(re);
7660             DEBUG_PARSE_r(Perl_re_printf( aTHX_
7661                 "Precompiled pattern%s\n",
7662                     orig_rx_flags & RXf_SPLIT ? " for split" : ""));
7663 
7664             return (REGEXP*)re;
7665         }
7666     }
7667 
7668     exp = SvPV_nomg(pat, plen);
7669 
7670     if (!eng->op_comp) {
7671         if ((SvUTF8(pat) && IN_BYTES)
7672                 || SvGMAGICAL(pat) || SvAMAGIC(pat))
7673         {
7674             /* make a temporary copy; either to convert to bytes,
7675              * or to avoid repeating get-magic / overloaded stringify */
7676             pat = newSVpvn_flags(exp, plen, SVs_TEMP |
7677                                         (IN_BYTES ? 0 : SvUTF8(pat)));
7678         }
7679         return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
7680     }
7681 
7682     /* ignore the utf8ness if the pattern is 0 length */
7683     RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
7684     RExC_uni_semantics = 0;
7685     RExC_contains_locale = 0;
7686     RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
7687     RExC_in_script_run = 0;
7688     RExC_study_started = 0;
7689     pRExC_state->runtime_code_qr = NULL;
7690     RExC_frame_head= NULL;
7691     RExC_frame_last= NULL;
7692     RExC_frame_count= 0;
7693     RExC_latest_warn_offset = 0;
7694     RExC_use_BRANCHJ = 0;
7695     RExC_warned_WARN_EXPERIMENTAL__VLB = 0;
7696     RExC_warned_WARN_EXPERIMENTAL__REGEX_SETS = 0;
7697     RExC_total_parens = 0;
7698     RExC_open_parens = NULL;
7699     RExC_close_parens = NULL;
7700     RExC_paren_names = NULL;
7701     RExC_size = 0;
7702     RExC_seen_d_op = FALSE;
7703 #ifdef DEBUGGING
7704     RExC_paren_name_list = NULL;
7705 #endif
7706 
7707     DEBUG_r({
7708         RExC_mysv1= sv_newmortal();
7709         RExC_mysv2= sv_newmortal();
7710     });
7711 
7712     DEBUG_COMPILE_r({
7713             SV *dsv= sv_newmortal();
7714             RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, PL_dump_re_max_len);
7715             Perl_re_printf( aTHX_  "%sCompiling REx%s %s\n",
7716                           PL_colors[4], PL_colors[5], s);
7717         });
7718 
7719     /* we jump here if we have to recompile, e.g., from upgrading the pattern
7720      * to utf8 */
7721 
7722     if ((pm_flags & PMf_USE_RE_EVAL)
7723                 /* this second condition covers the non-regex literal case,
7724                  * i.e.  $foo =~ '(?{})'. */
7725                 || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
7726     )
7727         runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
7728 
7729   redo_parse:
7730     /* return old regex if pattern hasn't changed */
7731     /* XXX: note in the below we have to check the flags as well as the
7732      * pattern.
7733      *
7734      * Things get a touch tricky as we have to compare the utf8 flag
7735      * independently from the compile flags.  */
7736 
7737     if (   old_re
7738         && !recompile
7739         && !!RX_UTF8(old_re) == !!RExC_utf8
7740         && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
7741         && RX_PRECOMP(old_re)
7742         && RX_PRELEN(old_re) == plen
7743         && memEQ(RX_PRECOMP(old_re), exp, plen)
7744         && !runtime_code /* with runtime code, always recompile */ )
7745     {
7746         DEBUG_COMPILE_r({
7747             SV *dsv= sv_newmortal();
7748             RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, PL_dump_re_max_len);
7749             Perl_re_printf( aTHX_  "%sSkipping recompilation of unchanged REx%s %s\n",
7750                           PL_colors[4], PL_colors[5], s);
7751         });
7752         return old_re;
7753     }
7754 
7755     /* Allocate the pattern's SV */
7756     RExC_rx_sv = Rx = (REGEXP*) newSV_type(SVt_REGEXP);
7757     RExC_rx = ReANY(Rx);
7758     if ( RExC_rx == NULL )
7759         FAIL("Regexp out of space");
7760 
7761     rx_flags = orig_rx_flags;
7762 
7763     if (   toUSE_UNI_CHARSET_NOT_DEPENDS
7764         && initial_charset == REGEX_DEPENDS_CHARSET)
7765     {
7766 
7767         /* Set to use unicode semantics if the pattern is in utf8 and has the
7768          * 'depends' charset specified, as it means unicode when utf8  */
7769         set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
7770         RExC_uni_semantics = 1;
7771     }
7772 
7773     RExC_pm_flags = pm_flags;
7774 
7775     if (runtime_code) {
7776         assert(TAINTING_get || !TAINT_get);
7777         if (TAINT_get)
7778             Perl_croak(aTHX_ "Eval-group in insecure regular expression");
7779 
7780         if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
7781             /* whoops, we have a non-utf8 pattern, whilst run-time code
7782              * got compiled as utf8. Try again with a utf8 pattern */
7783             S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
7784                 pRExC_state->code_blocks ? pRExC_state->code_blocks->count : 0);
7785             goto redo_parse;
7786         }
7787     }
7788     assert(!pRExC_state->runtime_code_qr);
7789 
7790     RExC_sawback = 0;
7791 
7792     RExC_seen = 0;
7793     RExC_maxlen = 0;
7794     RExC_in_lookaround = 0;
7795     RExC_seen_zerolen = *exp == '^' ? -1 : 0;
7796     RExC_recode_x_to_native = 0;
7797     RExC_in_multi_char_class = 0;
7798 
7799     RExC_start = RExC_copy_start_in_constructed = RExC_copy_start_in_input = RExC_precomp = exp;
7800     RExC_precomp_end = RExC_end = exp + plen;
7801     RExC_nestroot = 0;
7802     RExC_whilem_seen = 0;
7803     RExC_end_op = NULL;
7804     RExC_recurse = NULL;
7805     RExC_study_chunk_recursed = NULL;
7806     RExC_study_chunk_recursed_bytes= 0;
7807     RExC_recurse_count = 0;
7808     RExC_sets_depth = 0;
7809     pRExC_state->code_index = 0;
7810 
7811     /* Initialize the string in the compiled pattern.  This is so that there is
7812      * something to output if necessary */
7813     set_regex_pv(pRExC_state, Rx);
7814 
7815     DEBUG_PARSE_r({
7816         Perl_re_printf( aTHX_
7817             "Starting parse and generation\n");
7818         RExC_lastnum=0;
7819         RExC_lastparse=NULL;
7820     });
7821 
7822     /* Allocate space and zero-initialize. Note, the two step process
7823        of zeroing when in debug mode, thus anything assigned has to
7824        happen after that */
7825     if (!  RExC_size) {
7826 
7827         /* On the first pass of the parse, we guess how big this will be.  Then
7828          * we grow in one operation to that amount and then give it back.  As
7829          * we go along, we re-allocate what we need.
7830          *
7831          * XXX Currently the guess is essentially that the pattern will be an
7832          * EXACT node with one byte input, one byte output.  This is crude, and
7833          * better heuristics are welcome.
7834          *
7835          * On any subsequent passes, we guess what we actually computed in the
7836          * latest earlier pass.  Such a pass probably didn't complete so is
7837          * missing stuff.  We could improve those guesses by knowing where the
7838          * parse stopped, and use the length so far plus apply the above
7839          * assumption to what's left. */
7840         RExC_size = STR_SZ(RExC_end - RExC_start);
7841     }
7842 
7843     Newxc(RExC_rxi, sizeof(regexp_internal) + RExC_size, char, regexp_internal);
7844     if ( RExC_rxi == NULL )
7845         FAIL("Regexp out of space");
7846 
7847     Zero(RExC_rxi, sizeof(regexp_internal) + RExC_size, char);
7848     RXi_SET( RExC_rx, RExC_rxi );
7849 
7850     /* We start from 0 (over from 0 in the case this is a reparse.  The first
7851      * node parsed will give back any excess memory we have allocated so far).
7852      * */
7853     RExC_size = 0;
7854 
7855     /* non-zero initialization begins here */
7856     RExC_rx->engine= eng;
7857     RExC_rx->extflags = rx_flags;
7858     RXp_COMPFLAGS(RExC_rx) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
7859 
7860     if (pm_flags & PMf_IS_QR) {
7861         RExC_rxi->code_blocks = pRExC_state->code_blocks;
7862         if (RExC_rxi->code_blocks) {
7863             RExC_rxi->code_blocks->refcnt++;
7864         }
7865     }
7866 
7867     RExC_rx->intflags = 0;
7868 
7869     RExC_flags = rx_flags;	/* don't let top level (?i) bleed */
7870     RExC_parse = exp;
7871 
7872     /* This NUL is guaranteed because the pattern comes from an SV*, and the sv
7873      * code makes sure the final byte is an uncounted NUL.  But should this
7874      * ever not be the case, lots of things could read beyond the end of the
7875      * buffer: loops like
7876      *      while(isFOO(*RExC_parse)) RExC_parse++;
7877      *      strchr(RExC_parse, "foo");
7878      * etc.  So it is worth noting. */
7879     assert(*RExC_end == '\0');
7880 
7881     RExC_naughty = 0;
7882     RExC_npar = 1;
7883     RExC_parens_buf_size = 0;
7884     RExC_emit_start = RExC_rxi->program;
7885     pRExC_state->code_index = 0;
7886 
7887     *((char*) RExC_emit_start) = (char) REG_MAGIC;
7888     RExC_emit = 1;
7889 
7890     /* Do the parse */
7891     if (reg(pRExC_state, 0, &flags, 1)) {
7892 
7893         /* Success!, But we may need to redo the parse knowing how many parens
7894          * there actually are */
7895         if (IN_PARENS_PASS) {
7896             flags |= RESTART_PARSE;
7897         }
7898 
7899         /* We have that number in RExC_npar */
7900         RExC_total_parens = RExC_npar;
7901     }
7902     else if (! MUST_RESTART(flags)) {
7903         ReREFCNT_dec(Rx);
7904         Perl_croak(aTHX_ "panic: reg returned failure to re_op_compile, flags=%#" UVxf, (UV) flags);
7905     }
7906 
7907     /* Here, we either have success, or we have to redo the parse for some reason */
7908     if (MUST_RESTART(flags)) {
7909 
7910         /* It's possible to write a regexp in ascii that represents Unicode
7911         codepoints outside of the byte range, such as via \x{100}. If we
7912         detect such a sequence we have to convert the entire pattern to utf8
7913         and then recompile, as our sizing calculation will have been based
7914         on 1 byte == 1 character, but we will need to use utf8 to encode
7915         at least some part of the pattern, and therefore must convert the whole
7916         thing.
7917         -- dmq */
7918         if (flags & NEED_UTF8) {
7919 
7920             /* We have stored the offset of the final warning output so far.
7921              * That must be adjusted.  Any variant characters between the start
7922              * of the pattern and this warning count for 2 bytes in the final,
7923              * so just add them again */
7924             if (UNLIKELY(RExC_latest_warn_offset > 0)) {
7925                 RExC_latest_warn_offset +=
7926                             variant_under_utf8_count((U8 *) exp, (U8 *) exp
7927                                                 + RExC_latest_warn_offset);
7928             }
7929             S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
7930             pRExC_state->code_blocks ? pRExC_state->code_blocks->count : 0);
7931             DEBUG_PARSE_r(Perl_re_printf( aTHX_ "Need to redo parse after upgrade\n"));
7932         }
7933         else {
7934             DEBUG_PARSE_r(Perl_re_printf( aTHX_ "Need to redo parse\n"));
7935         }
7936 
7937         if (ALL_PARENS_COUNTED) {
7938             /* Make enough room for all the known parens, and zero it */
7939             Renew(RExC_open_parens, RExC_total_parens, regnode_offset);
7940             Zero(RExC_open_parens, RExC_total_parens, regnode_offset);
7941             RExC_open_parens[0] = 1;    /* +1 for REG_MAGIC */
7942 
7943             Renew(RExC_close_parens, RExC_total_parens, regnode_offset);
7944             Zero(RExC_close_parens, RExC_total_parens, regnode_offset);
7945         }
7946         else { /* Parse did not complete.  Reinitialize the parentheses
7947                   structures */
7948             RExC_total_parens = 0;
7949             if (RExC_open_parens) {
7950                 Safefree(RExC_open_parens);
7951                 RExC_open_parens = NULL;
7952             }
7953             if (RExC_close_parens) {
7954                 Safefree(RExC_close_parens);
7955                 RExC_close_parens = NULL;
7956             }
7957         }
7958 
7959         /* Clean up what we did in this parse */
7960         SvREFCNT_dec_NN(RExC_rx_sv);
7961 
7962         goto redo_parse;
7963     }
7964 
7965     /* Here, we have successfully parsed and generated the pattern's program
7966      * for the regex engine.  We are ready to finish things up and look for
7967      * optimizations. */
7968 
7969     /* Update the string to compile, with correct modifiers, etc */
7970     set_regex_pv(pRExC_state, Rx);
7971 
7972     RExC_rx->nparens = RExC_total_parens - 1;
7973 
7974     /* Uses the upper 4 bits of the FLAGS field, so keep within that size */
7975     if (RExC_whilem_seen > 15)
7976         RExC_whilem_seen = 15;
7977 
7978     DEBUG_PARSE_r({
7979         Perl_re_printf( aTHX_
7980             "Required size %" IVdf " nodes\n", (IV)RExC_size);
7981         RExC_lastnum=0;
7982         RExC_lastparse=NULL;
7983     });
7984 
7985 #ifdef RE_TRACK_PATTERN_OFFSETS
7986     DEBUG_OFFSETS_r(Perl_re_printf( aTHX_
7987                           "%s %" UVuf " bytes for offset annotations.\n",
7988                           RExC_offsets ? "Got" : "Couldn't get",
7989                           (UV)((RExC_offsets[0] * 2 + 1))));
7990     DEBUG_OFFSETS_r(if (RExC_offsets) {
7991         const STRLEN len = RExC_offsets[0];
7992         STRLEN i;
7993         DECLARE_AND_GET_RE_DEBUG_FLAGS;
7994         Perl_re_printf( aTHX_
7995                       "Offsets: [%" UVuf "]\n\t", (UV)RExC_offsets[0]);
7996         for (i = 1; i <= len; i++) {
7997             if (RExC_offsets[i*2-1] || RExC_offsets[i*2])
7998                 Perl_re_printf( aTHX_  "%" UVuf ":%" UVuf "[%" UVuf "] ",
7999                 (UV)i, (UV)RExC_offsets[i*2-1], (UV)RExC_offsets[i*2]);
8000         }
8001         Perl_re_printf( aTHX_  "\n");
8002     });
8003 
8004 #else
8005     SetProgLen(RExC_rxi,RExC_size);
8006 #endif
8007 
8008     DEBUG_DUMP_PRE_OPTIMIZE_r({
8009         SV * const sv = sv_newmortal();
8010         RXi_GET_DECL(RExC_rx, ri);
8011         DEBUG_RExC_seen();
8012         Perl_re_printf( aTHX_ "Program before optimization:\n");
8013 
8014         (void)dumpuntil(RExC_rx, ri->program, ri->program + 1, NULL, NULL,
8015                         sv, 0, 0);
8016     });
8017 
8018     DEBUG_OPTIMISE_r(
8019         Perl_re_printf( aTHX_  "Starting post parse optimization\n");
8020     );
8021 
8022     /* XXXX To minimize changes to RE engine we always allocate
8023        3-units-long substrs field. */
8024     Newx(RExC_rx->substrs, 1, struct reg_substr_data);
8025     if (RExC_recurse_count) {
8026         Newx(RExC_recurse, RExC_recurse_count, regnode *);
8027         SAVEFREEPV(RExC_recurse);
8028     }
8029 
8030     if (RExC_seen & REG_RECURSE_SEEN) {
8031         /* Note, RExC_total_parens is 1 + the number of parens in a pattern.
8032          * So its 1 if there are no parens. */
8033         RExC_study_chunk_recursed_bytes= (RExC_total_parens >> 3) +
8034                                          ((RExC_total_parens & 0x07) != 0);
8035         Newx(RExC_study_chunk_recursed,
8036              RExC_study_chunk_recursed_bytes * RExC_total_parens, U8);
8037         SAVEFREEPV(RExC_study_chunk_recursed);
8038     }
8039 
8040   reStudy:
8041     RExC_rx->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
8042     DEBUG_r(
8043         RExC_study_chunk_recursed_count= 0;
8044     );
8045     Zero(RExC_rx->substrs, 1, struct reg_substr_data);
8046     if (RExC_study_chunk_recursed) {
8047         Zero(RExC_study_chunk_recursed,
8048              RExC_study_chunk_recursed_bytes * RExC_total_parens, U8);
8049     }
8050 
8051 
8052 #ifdef TRIE_STUDY_OPT
8053     if (!restudied) {
8054         StructCopy(&zero_scan_data, &data, scan_data_t);
8055         copyRExC_state = RExC_state;
8056     } else {
8057         U32 seen=RExC_seen;
8058         DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "Restudying\n"));
8059 
8060         RExC_state = copyRExC_state;
8061         if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
8062             RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
8063         else
8064             RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
8065         StructCopy(&zero_scan_data, &data, scan_data_t);
8066     }
8067 #else
8068     StructCopy(&zero_scan_data, &data, scan_data_t);
8069 #endif
8070 
8071     /* Dig out information for optimizations. */
8072     RExC_rx->extflags = RExC_flags; /* was pm_op */
8073     /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
8074 
8075     if (UTF)
8076         SvUTF8_on(Rx);	/* Unicode in it? */
8077     RExC_rxi->regstclass = NULL;
8078     if (RExC_naughty >= TOO_NAUGHTY)	/* Probably an expensive pattern. */
8079         RExC_rx->intflags |= PREGf_NAUGHTY;
8080     scan = RExC_rxi->program + 1;		/* First BRANCH. */
8081 
8082     /* testing for BRANCH here tells us whether there is "must appear"
8083        data in the pattern. If there is then we can use it for optimisations */
8084     if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /*  Only one top-level choice.
8085                                                   */
8086         SSize_t fake;
8087         STRLEN longest_length[2];
8088         regnode_ssc ch_class; /* pointed to by data */
8089         int stclass_flag;
8090         SSize_t last_close = 0; /* pointed to by data */
8091         regnode *first= scan;
8092         regnode *first_next= regnext(first);
8093         int i;
8094 
8095         /*
8096          * Skip introductions and multiplicators >= 1
8097          * so that we can extract the 'meat' of the pattern that must
8098          * match in the large if() sequence following.
8099          * NOTE that EXACT is NOT covered here, as it is normally
8100          * picked up by the optimiser separately.
8101          *
8102          * This is unfortunate as the optimiser isnt handling lookahead
8103          * properly currently.
8104          *
8105          */
8106         while ((OP(first) == OPEN && (sawopen = 1)) ||
8107                /* An OR of *one* alternative - should not happen now. */
8108             (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
8109             /* for now we can't handle lookbehind IFMATCH*/
8110             (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
8111             (OP(first) == PLUS) ||
8112             (OP(first) == MINMOD) ||
8113                /* An {n,m} with n>0 */
8114             (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
8115             (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
8116         {
8117                 /*
8118                  * the only op that could be a regnode is PLUS, all the rest
8119                  * will be regnode_1 or regnode_2.
8120                  *
8121                  * (yves doesn't think this is true)
8122                  */
8123                 if (OP(first) == PLUS)
8124                     sawplus = 1;
8125                 else {
8126                     if (OP(first) == MINMOD)
8127                         sawminmod = 1;
8128                     first += regarglen[OP(first)];
8129                 }
8130                 first = NEXTOPER(first);
8131                 first_next= regnext(first);
8132         }
8133 
8134         /* Starting-point info. */
8135       again:
8136         DEBUG_PEEP("first:", first, 0, 0);
8137         /* Ignore EXACT as we deal with it later. */
8138         if (PL_regkind[OP(first)] == EXACT) {
8139             if (! isEXACTFish(OP(first))) {
8140                 NOOP;	/* Empty, get anchored substr later. */
8141             }
8142             else
8143                 RExC_rxi->regstclass = first;
8144         }
8145 #ifdef TRIE_STCLASS
8146         else if (PL_regkind[OP(first)] == TRIE &&
8147                 ((reg_trie_data *)RExC_rxi->data->data[ ARG(first) ])->minlen>0)
8148         {
8149             /* this can happen only on restudy */
8150             RExC_rxi->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
8151         }
8152 #endif
8153         else if (REGNODE_SIMPLE(OP(first)))
8154             RExC_rxi->regstclass = first;
8155         else if (PL_regkind[OP(first)] == BOUND ||
8156                  PL_regkind[OP(first)] == NBOUND)
8157             RExC_rxi->regstclass = first;
8158         else if (PL_regkind[OP(first)] == BOL) {
8159             RExC_rx->intflags |= (OP(first) == MBOL
8160                            ? PREGf_ANCH_MBOL
8161                            : PREGf_ANCH_SBOL);
8162             first = NEXTOPER(first);
8163             goto again;
8164         }
8165         else if (OP(first) == GPOS) {
8166             RExC_rx->intflags |= PREGf_ANCH_GPOS;
8167             first = NEXTOPER(first);
8168             goto again;
8169         }
8170         else if ((!sawopen || !RExC_sawback) &&
8171             !sawlookahead &&
8172             (OP(first) == STAR &&
8173             PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
8174             !(RExC_rx->intflags & PREGf_ANCH) && !pRExC_state->code_blocks)
8175         {
8176             /* turn .* into ^.* with an implied $*=1 */
8177             const int type =
8178                 (OP(NEXTOPER(first)) == REG_ANY)
8179                     ? PREGf_ANCH_MBOL
8180                     : PREGf_ANCH_SBOL;
8181             RExC_rx->intflags |= (type | PREGf_IMPLICIT);
8182             first = NEXTOPER(first);
8183             goto again;
8184         }
8185         if (sawplus && !sawminmod && !sawlookahead
8186             && (!sawopen || !RExC_sawback)
8187             && !pRExC_state->code_blocks) /* May examine pos and $& */
8188             /* x+ must match at the 1st pos of run of x's */
8189             RExC_rx->intflags |= PREGf_SKIP;
8190 
8191         /* Scan is after the zeroth branch, first is atomic matcher. */
8192 #ifdef TRIE_STUDY_OPT
8193         DEBUG_PARSE_r(
8194             if (!restudied)
8195                 Perl_re_printf( aTHX_  "first at %" IVdf "\n",
8196                               (IV)(first - scan + 1))
8197         );
8198 #else
8199         DEBUG_PARSE_r(
8200             Perl_re_printf( aTHX_  "first at %" IVdf "\n",
8201                 (IV)(first - scan + 1))
8202         );
8203 #endif
8204 
8205 
8206         /*
8207         * If there's something expensive in the r.e., find the
8208         * longest literal string that must appear and make it the
8209         * regmust.  Resolve ties in favor of later strings, since
8210         * the regstart check works with the beginning of the r.e.
8211         * and avoiding duplication strengthens checking.  Not a
8212         * strong reason, but sufficient in the absence of others.
8213         * [Now we resolve ties in favor of the earlier string if
8214         * it happens that c_offset_min has been invalidated, since the
8215         * earlier string may buy us something the later one won't.]
8216         */
8217 
8218         data.substrs[0].str = newSVpvs("");
8219         data.substrs[1].str = newSVpvs("");
8220         data.last_found = newSVpvs("");
8221         data.cur_is_floating = 0; /* initially any found substring is fixed */
8222         ENTER_with_name("study_chunk");
8223         SAVEFREESV(data.substrs[0].str);
8224         SAVEFREESV(data.substrs[1].str);
8225         SAVEFREESV(data.last_found);
8226         first = scan;
8227         if (!RExC_rxi->regstclass) {
8228             ssc_init(pRExC_state, &ch_class);
8229             data.start_class = &ch_class;
8230             stclass_flag = SCF_DO_STCLASS_AND;
8231         } else				/* XXXX Check for BOUND? */
8232             stclass_flag = 0;
8233         data.last_closep = &last_close;
8234 
8235         DEBUG_RExC_seen();
8236         /*
8237          * MAIN ENTRY FOR study_chunk() FOR m/PATTERN/
8238          * (NO top level branches)
8239          */
8240         minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
8241                              scan + RExC_size, /* Up to end */
8242             &data, -1, 0, NULL,
8243             SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
8244                           | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
8245             0, TRUE);
8246 
8247 
8248         CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
8249 
8250 
8251         if ( RExC_total_parens == 1 && !data.cur_is_floating
8252              && data.last_start_min == 0 && data.last_end > 0
8253              && !RExC_seen_zerolen
8254              && !(RExC_seen & REG_VERBARG_SEEN)
8255              && !(RExC_seen & REG_GPOS_SEEN)
8256         ){
8257             RExC_rx->extflags |= RXf_CHECK_ALL;
8258         }
8259         scan_commit(pRExC_state, &data,&minlen, 0);
8260 
8261 
8262         /* XXX this is done in reverse order because that's the way the
8263          * code was before it was parameterised. Don't know whether it
8264          * actually needs doing in reverse order. DAPM */
8265         for (i = 1; i >= 0; i--) {
8266             longest_length[i] = CHR_SVLEN(data.substrs[i].str);
8267 
8268             if (   !(   i
8269                      && SvCUR(data.substrs[0].str)  /* ok to leave SvCUR */
8270                      &&    data.substrs[0].min_offset
8271                         == data.substrs[1].min_offset
8272                      &&    SvCUR(data.substrs[0].str)
8273                         == SvCUR(data.substrs[1].str)
8274                     )
8275                 && S_setup_longest (aTHX_ pRExC_state,
8276                                         &(RExC_rx->substrs->data[i]),
8277                                         &(data.substrs[i]),
8278                                         longest_length[i]))
8279             {
8280                 RExC_rx->substrs->data[i].min_offset =
8281                         data.substrs[i].min_offset - data.substrs[i].lookbehind;
8282 
8283                 RExC_rx->substrs->data[i].max_offset = data.substrs[i].max_offset;
8284                 /* Don't offset infinity */
8285                 if (data.substrs[i].max_offset < OPTIMIZE_INFTY)
8286                     RExC_rx->substrs->data[i].max_offset -= data.substrs[i].lookbehind;
8287                 SvREFCNT_inc_simple_void_NN(data.substrs[i].str);
8288             }
8289             else {
8290                 RExC_rx->substrs->data[i].substr      = NULL;
8291                 RExC_rx->substrs->data[i].utf8_substr = NULL;
8292                 longest_length[i] = 0;
8293             }
8294         }
8295 
8296         LEAVE_with_name("study_chunk");
8297 
8298         if (RExC_rxi->regstclass
8299             && (OP(RExC_rxi->regstclass) == REG_ANY || OP(RExC_rxi->regstclass) == SANY))
8300             RExC_rxi->regstclass = NULL;
8301 
8302         if ((!(RExC_rx->substrs->data[0].substr || RExC_rx->substrs->data[0].utf8_substr)
8303               || RExC_rx->substrs->data[0].min_offset)
8304             && stclass_flag
8305             && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
8306             && is_ssc_worth_it(pRExC_state, data.start_class))
8307         {
8308             const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
8309 
8310             ssc_finalize(pRExC_state, data.start_class);
8311 
8312             Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
8313             StructCopy(data.start_class,
8314                        (regnode_ssc*)RExC_rxi->data->data[n],
8315                        regnode_ssc);
8316             RExC_rxi->regstclass = (regnode*)RExC_rxi->data->data[n];
8317             RExC_rx->intflags &= ~PREGf_SKIP;	/* Used in find_byclass(). */
8318             DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
8319                       regprop(RExC_rx, sv, (regnode*)data.start_class, NULL, pRExC_state);
8320                       Perl_re_printf( aTHX_
8321                                     "synthetic stclass \"%s\".\n",
8322                                     SvPVX_const(sv));});
8323             data.start_class = NULL;
8324         }
8325 
8326         /* A temporary algorithm prefers floated substr to fixed one of
8327          * same length to dig more info. */
8328         i = (longest_length[0] <= longest_length[1]);
8329         RExC_rx->substrs->check_ix = i;
8330         RExC_rx->check_end_shift  = RExC_rx->substrs->data[i].end_shift;
8331         RExC_rx->check_substr     = RExC_rx->substrs->data[i].substr;
8332         RExC_rx->check_utf8       = RExC_rx->substrs->data[i].utf8_substr;
8333         RExC_rx->check_offset_min = RExC_rx->substrs->data[i].min_offset;
8334         RExC_rx->check_offset_max = RExC_rx->substrs->data[i].max_offset;
8335         if (!i && (RExC_rx->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS)))
8336             RExC_rx->intflags |= PREGf_NOSCAN;
8337 
8338         if ((RExC_rx->check_substr || RExC_rx->check_utf8) ) {
8339             RExC_rx->extflags |= RXf_USE_INTUIT;
8340             if (SvTAIL(RExC_rx->check_substr ? RExC_rx->check_substr : RExC_rx->check_utf8))
8341                 RExC_rx->extflags |= RXf_INTUIT_TAIL;
8342         }
8343 
8344         /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
8345         if ( (STRLEN)minlen < longest_length[1] )
8346             minlen= longest_length[1];
8347         if ( (STRLEN)minlen < longest_length[0] )
8348             minlen= longest_length[0];
8349         */
8350     }
8351     else {
8352         /* Several toplevels. Best we can is to set minlen. */
8353         SSize_t fake;
8354         regnode_ssc ch_class;
8355         SSize_t last_close = 0;
8356 
8357         DEBUG_PARSE_r(Perl_re_printf( aTHX_  "\nMulti Top Level\n"));
8358 
8359         scan = RExC_rxi->program + 1;
8360         ssc_init(pRExC_state, &ch_class);
8361         data.start_class = &ch_class;
8362         data.last_closep = &last_close;
8363 
8364         DEBUG_RExC_seen();
8365         /*
8366          * MAIN ENTRY FOR study_chunk() FOR m/P1|P2|.../
8367          * (patterns WITH top level branches)
8368          */
8369         minlen = study_chunk(pRExC_state,
8370             &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
8371             SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
8372                                                       ? SCF_TRIE_DOING_RESTUDY
8373                                                       : 0),
8374             0, TRUE);
8375 
8376         CHECK_RESTUDY_GOTO_butfirst(NOOP);
8377 
8378         RExC_rx->check_substr = NULL;
8379         RExC_rx->check_utf8 = NULL;
8380         RExC_rx->substrs->data[0].substr      = NULL;
8381         RExC_rx->substrs->data[0].utf8_substr = NULL;
8382         RExC_rx->substrs->data[1].substr      = NULL;
8383         RExC_rx->substrs->data[1].utf8_substr = NULL;
8384 
8385         if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
8386             && is_ssc_worth_it(pRExC_state, data.start_class))
8387         {
8388             const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
8389 
8390             ssc_finalize(pRExC_state, data.start_class);
8391 
8392             Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
8393             StructCopy(data.start_class,
8394                        (regnode_ssc*)RExC_rxi->data->data[n],
8395                        regnode_ssc);
8396             RExC_rxi->regstclass = (regnode*)RExC_rxi->data->data[n];
8397             RExC_rx->intflags &= ~PREGf_SKIP;	/* Used in find_byclass(). */
8398             DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
8399                       regprop(RExC_rx, sv, (regnode*)data.start_class, NULL, pRExC_state);
8400                       Perl_re_printf( aTHX_
8401                                     "synthetic stclass \"%s\".\n",
8402                                     SvPVX_const(sv));});
8403             data.start_class = NULL;
8404         }
8405     }
8406 
8407     if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
8408         RExC_rx->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
8409         RExC_rx->maxlen = REG_INFTY;
8410     }
8411     else {
8412         RExC_rx->maxlen = RExC_maxlen;
8413     }
8414 
8415     /* Guard against an embedded (?=) or (?<=) with a longer minlen than
8416        the "real" pattern. */
8417     DEBUG_OPTIMISE_r({
8418         Perl_re_printf( aTHX_ "minlen: %" IVdf " RExC_rx->minlen:%" IVdf " maxlen:%" IVdf "\n",
8419                       (IV)minlen, (IV)RExC_rx->minlen, (IV)RExC_maxlen);
8420     });
8421     RExC_rx->minlenret = minlen;
8422     if (RExC_rx->minlen < minlen)
8423         RExC_rx->minlen = minlen;
8424 
8425     if (RExC_seen & REG_RECURSE_SEEN ) {
8426         RExC_rx->intflags |= PREGf_RECURSE_SEEN;
8427         Newx(RExC_rx->recurse_locinput, RExC_rx->nparens + 1, char *);
8428     }
8429     if (RExC_seen & REG_GPOS_SEEN)
8430         RExC_rx->intflags |= PREGf_GPOS_SEEN;
8431     if (RExC_seen & REG_LOOKBEHIND_SEEN)
8432         RExC_rx->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
8433                                                 lookbehind */
8434     if (pRExC_state->code_blocks)
8435         RExC_rx->extflags |= RXf_EVAL_SEEN;
8436     if (RExC_seen & REG_VERBARG_SEEN)
8437     {
8438         RExC_rx->intflags |= PREGf_VERBARG_SEEN;
8439         RExC_rx->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
8440     }
8441     if (RExC_seen & REG_CUTGROUP_SEEN)
8442         RExC_rx->intflags |= PREGf_CUTGROUP_SEEN;
8443     if (pm_flags & PMf_USE_RE_EVAL)
8444         RExC_rx->intflags |= PREGf_USE_RE_EVAL;
8445     if (RExC_paren_names)
8446         RXp_PAREN_NAMES(RExC_rx) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
8447     else
8448         RXp_PAREN_NAMES(RExC_rx) = NULL;
8449 
8450     /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
8451      * so it can be used in pp.c */
8452     if (RExC_rx->intflags & PREGf_ANCH)
8453         RExC_rx->extflags |= RXf_IS_ANCHORED;
8454 
8455 
8456     {
8457         /* this is used to identify "special" patterns that might result
8458          * in Perl NOT calling the regex engine and instead doing the match "itself",
8459          * particularly special cases in split//. By having the regex compiler
8460          * do this pattern matching at a regop level (instead of by inspecting the pattern)
8461          * we avoid weird issues with equivalent patterns resulting in different behavior,
8462          * AND we allow non Perl engines to get the same optimizations by the setting the
8463          * flags appropriately - Yves */
8464         regnode *first = RExC_rxi->program + 1;
8465         U8 fop = OP(first);
8466         regnode *next = NEXTOPER(first);
8467         /* It's safe to read through *next only if OP(first) is a regop of
8468          * the right type (not EXACT, for example).
8469          */
8470         U8 nop = (fop == NOTHING || fop == MBOL || fop == SBOL || fop == PLUS)
8471                 ? OP(next) : 0;
8472 
8473         if (PL_regkind[fop] == NOTHING && nop == END)
8474             RExC_rx->extflags |= RXf_NULL;
8475         else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
8476             /* when fop is SBOL first->flags will be true only when it was
8477              * produced by parsing /\A/, and not when parsing /^/. This is
8478              * very important for the split code as there we want to
8479              * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
8480              * See rt #122761 for more details. -- Yves */
8481             RExC_rx->extflags |= RXf_START_ONLY;
8482         else if (fop == PLUS
8483                  && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
8484                  && OP(regnext(first)) == END)
8485             RExC_rx->extflags |= RXf_WHITE;
8486         else if ( RExC_rx->extflags & RXf_SPLIT
8487                   && (PL_regkind[fop] == EXACT && ! isEXACTFish(fop))
8488                   && STR_LEN(first) == 1
8489                   && *(STRING(first)) == ' '
8490                   && OP(regnext(first)) == END )
8491             RExC_rx->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
8492 
8493     }
8494 
8495     if (RExC_contains_locale) {
8496         RXp_EXTFLAGS(RExC_rx) |= RXf_TAINTED;
8497     }
8498 
8499 #ifdef DEBUGGING
8500     if (RExC_paren_names) {
8501         RExC_rxi->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
8502         RExC_rxi->data->data[RExC_rxi->name_list_idx]
8503                                    = (void*)SvREFCNT_inc(RExC_paren_name_list);
8504     } else
8505 #endif
8506     RExC_rxi->name_list_idx = 0;
8507 
8508     while ( RExC_recurse_count > 0 ) {
8509         const regnode *scan = RExC_recurse[ --RExC_recurse_count ];
8510         /*
8511          * This data structure is set up in study_chunk() and is used
8512          * to calculate the distance between a GOSUB regopcode and
8513          * the OPEN/CURLYM (CURLYM's are special and can act like OPEN's)
8514          * it refers to.
8515          *
8516          * If for some reason someone writes code that optimises
8517          * away a GOSUB opcode then the assert should be changed to
8518          * an if(scan) to guard the ARG2L_SET() - Yves
8519          *
8520          */
8521         assert(scan && OP(scan) == GOSUB);
8522         ARG2L_SET( scan, RExC_open_parens[ARG(scan)] - REGNODE_OFFSET(scan));
8523     }
8524 
8525     Newxz(RExC_rx->offs, RExC_total_parens, regexp_paren_pair);
8526     /* assume we don't need to swap parens around before we match */
8527     DEBUG_TEST_r({
8528         Perl_re_printf( aTHX_ "study_chunk_recursed_count: %lu\n",
8529             (unsigned long)RExC_study_chunk_recursed_count);
8530     });
8531     DEBUG_DUMP_r({
8532         DEBUG_RExC_seen();
8533         Perl_re_printf( aTHX_ "Final program:\n");
8534         regdump(RExC_rx);
8535     });
8536 
8537     if (RExC_open_parens) {
8538         Safefree(RExC_open_parens);
8539         RExC_open_parens = NULL;
8540     }
8541     if (RExC_close_parens) {
8542         Safefree(RExC_close_parens);
8543         RExC_close_parens = NULL;
8544     }
8545 
8546 #ifdef USE_ITHREADS
8547     /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
8548      * by setting the regexp SV to readonly-only instead. If the
8549      * pattern's been recompiled, the USEDness should remain. */
8550     if (old_re && SvREADONLY(old_re))
8551         SvREADONLY_on(Rx);
8552 #endif
8553     return Rx;
8554 }
8555 
8556 
8557 SV*
Perl_reg_named_buff(pTHX_ REGEXP * const rx,SV * const key,SV * const value,const U32 flags)8558 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
8559                     const U32 flags)
8560 {
8561     PERL_ARGS_ASSERT_REG_NAMED_BUFF;
8562 
8563     PERL_UNUSED_ARG(value);
8564 
8565     if (flags & RXapif_FETCH) {
8566         return reg_named_buff_fetch(rx, key, flags);
8567     } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
8568         Perl_croak_no_modify();
8569         return NULL;
8570     } else if (flags & RXapif_EXISTS) {
8571         return reg_named_buff_exists(rx, key, flags)
8572             ? &PL_sv_yes
8573             : &PL_sv_no;
8574     } else if (flags & RXapif_REGNAMES) {
8575         return reg_named_buff_all(rx, flags);
8576     } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
8577         return reg_named_buff_scalar(rx, flags);
8578     } else {
8579         Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
8580         return NULL;
8581     }
8582 }
8583 
8584 SV*
Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx,const SV * const lastkey,const U32 flags)8585 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
8586                          const U32 flags)
8587 {
8588     PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
8589     PERL_UNUSED_ARG(lastkey);
8590 
8591     if (flags & RXapif_FIRSTKEY)
8592         return reg_named_buff_firstkey(rx, flags);
8593     else if (flags & RXapif_NEXTKEY)
8594         return reg_named_buff_nextkey(rx, flags);
8595     else {
8596         Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
8597                                             (int)flags);
8598         return NULL;
8599     }
8600 }
8601 
8602 SV*
Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r,SV * const namesv,const U32 flags)8603 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
8604                           const U32 flags)
8605 {
8606     SV *ret;
8607     struct regexp *const rx = ReANY(r);
8608 
8609     PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
8610 
8611     if (rx && RXp_PAREN_NAMES(rx)) {
8612         HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
8613         if (he_str) {
8614             IV i;
8615             SV* sv_dat=HeVAL(he_str);
8616             I32 *nums=(I32*)SvPVX(sv_dat);
8617             AV * const retarray = (flags & RXapif_ALL) ? newAV() : NULL;
8618             for ( i=0; i<SvIVX(sv_dat); i++ ) {
8619                 if ((I32)(rx->nparens) >= nums[i]
8620                     && rx->offs[nums[i]].start != -1
8621                     && rx->offs[nums[i]].end != -1)
8622                 {
8623                     ret = newSVpvs("");
8624                     CALLREG_NUMBUF_FETCH(r, nums[i], ret);
8625                     if (!retarray)
8626                         return ret;
8627                 } else {
8628                     if (retarray)
8629                         ret = newSVsv(&PL_sv_undef);
8630                 }
8631                 if (retarray)
8632                     av_push(retarray, ret);
8633             }
8634             if (retarray)
8635                 return newRV_noinc(MUTABLE_SV(retarray));
8636         }
8637     }
8638     return NULL;
8639 }
8640 
8641 bool
Perl_reg_named_buff_exists(pTHX_ REGEXP * const r,SV * const key,const U32 flags)8642 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
8643                            const U32 flags)
8644 {
8645     struct regexp *const rx = ReANY(r);
8646 
8647     PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
8648 
8649     if (rx && RXp_PAREN_NAMES(rx)) {
8650         if (flags & RXapif_ALL) {
8651             return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
8652         } else {
8653             SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
8654             if (sv) {
8655                 SvREFCNT_dec_NN(sv);
8656                 return TRUE;
8657             } else {
8658                 return FALSE;
8659             }
8660         }
8661     } else {
8662         return FALSE;
8663     }
8664 }
8665 
8666 SV*
Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r,const U32 flags)8667 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
8668 {
8669     struct regexp *const rx = ReANY(r);
8670 
8671     PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
8672 
8673     if ( rx && RXp_PAREN_NAMES(rx) ) {
8674         (void)hv_iterinit(RXp_PAREN_NAMES(rx));
8675 
8676         return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
8677     } else {
8678         return FALSE;
8679     }
8680 }
8681 
8682 SV*
Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r,const U32 flags)8683 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
8684 {
8685     struct regexp *const rx = ReANY(r);
8686     DECLARE_AND_GET_RE_DEBUG_FLAGS;
8687 
8688     PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
8689 
8690     if (rx && RXp_PAREN_NAMES(rx)) {
8691         HV *hv = RXp_PAREN_NAMES(rx);
8692         HE *temphe;
8693         while ( (temphe = hv_iternext_flags(hv, 0)) ) {
8694             IV i;
8695             IV parno = 0;
8696             SV* sv_dat = HeVAL(temphe);
8697             I32 *nums = (I32*)SvPVX(sv_dat);
8698             for ( i = 0; i < SvIVX(sv_dat); i++ ) {
8699                 if ((I32)(rx->lastparen) >= nums[i] &&
8700                     rx->offs[nums[i]].start != -1 &&
8701                     rx->offs[nums[i]].end != -1)
8702                 {
8703                     parno = nums[i];
8704                     break;
8705                 }
8706             }
8707             if (parno || flags & RXapif_ALL) {
8708                 return newSVhek(HeKEY_hek(temphe));
8709             }
8710         }
8711     }
8712     return NULL;
8713 }
8714 
8715 SV*
Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r,const U32 flags)8716 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
8717 {
8718     SV *ret;
8719     AV *av;
8720     SSize_t length;
8721     struct regexp *const rx = ReANY(r);
8722 
8723     PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
8724 
8725     if (rx && RXp_PAREN_NAMES(rx)) {
8726         if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
8727             return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
8728         } else if (flags & RXapif_ONE) {
8729             ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
8730             av = MUTABLE_AV(SvRV(ret));
8731             length = av_count(av);
8732             SvREFCNT_dec_NN(ret);
8733             return newSViv(length);
8734         } else {
8735             Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
8736                                                 (int)flags);
8737             return NULL;
8738         }
8739     }
8740     return &PL_sv_undef;
8741 }
8742 
8743 SV*
Perl_reg_named_buff_all(pTHX_ REGEXP * const r,const U32 flags)8744 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
8745 {
8746     struct regexp *const rx = ReANY(r);
8747     AV *av = newAV();
8748 
8749     PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
8750 
8751     if (rx && RXp_PAREN_NAMES(rx)) {
8752         HV *hv= RXp_PAREN_NAMES(rx);
8753         HE *temphe;
8754         (void)hv_iterinit(hv);
8755         while ( (temphe = hv_iternext_flags(hv, 0)) ) {
8756             IV i;
8757             IV parno = 0;
8758             SV* sv_dat = HeVAL(temphe);
8759             I32 *nums = (I32*)SvPVX(sv_dat);
8760             for ( i = 0; i < SvIVX(sv_dat); i++ ) {
8761                 if ((I32)(rx->lastparen) >= nums[i] &&
8762                     rx->offs[nums[i]].start != -1 &&
8763                     rx->offs[nums[i]].end != -1)
8764                 {
8765                     parno = nums[i];
8766                     break;
8767                 }
8768             }
8769             if (parno || flags & RXapif_ALL) {
8770                 av_push(av, newSVhek(HeKEY_hek(temphe)));
8771             }
8772         }
8773     }
8774 
8775     return newRV_noinc(MUTABLE_SV(av));
8776 }
8777 
8778 void
Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r,const I32 paren,SV * const sv)8779 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
8780                              SV * const sv)
8781 {
8782     struct regexp *const rx = ReANY(r);
8783     char *s = NULL;
8784     SSize_t i = 0;
8785     SSize_t s1, t1;
8786     I32 n = paren;
8787 
8788     PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
8789 
8790     if (      n == RX_BUFF_IDX_CARET_PREMATCH
8791            || n == RX_BUFF_IDX_CARET_FULLMATCH
8792            || n == RX_BUFF_IDX_CARET_POSTMATCH
8793        )
8794     {
8795         bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
8796         if (!keepcopy) {
8797             /* on something like
8798              *    $r = qr/.../;
8799              *    /$qr/p;
8800              * the KEEPCOPY is set on the PMOP rather than the regex */
8801             if (PL_curpm && r == PM_GETRE(PL_curpm))
8802                  keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
8803         }
8804         if (!keepcopy)
8805             goto ret_undef;
8806     }
8807 
8808     if (!rx->subbeg)
8809         goto ret_undef;
8810 
8811     if (n == RX_BUFF_IDX_CARET_FULLMATCH)
8812         /* no need to distinguish between them any more */
8813         n = RX_BUFF_IDX_FULLMATCH;
8814 
8815     if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
8816         && rx->offs[0].start != -1)
8817     {
8818         /* $`, ${^PREMATCH} */
8819         i = rx->offs[0].start;
8820         s = rx->subbeg;
8821     }
8822     else
8823     if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
8824         && rx->offs[0].end != -1)
8825     {
8826         /* $', ${^POSTMATCH} */
8827         s = rx->subbeg - rx->suboffset + rx->offs[0].end;
8828         i = rx->sublen + rx->suboffset - rx->offs[0].end;
8829     }
8830     else
8831     if (inRANGE(n, 0, (I32)rx->nparens) &&
8832         (s1 = rx->offs[n].start) != -1  &&
8833         (t1 = rx->offs[n].end) != -1)
8834     {
8835         /* $&, ${^MATCH},  $1 ... */
8836         i = t1 - s1;
8837         s = rx->subbeg + s1 - rx->suboffset;
8838     } else {
8839         goto ret_undef;
8840     }
8841 
8842     assert(s >= rx->subbeg);
8843     assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
8844     if (i >= 0) {
8845 #ifdef NO_TAINT_SUPPORT
8846         sv_setpvn(sv, s, i);
8847 #else
8848         const int oldtainted = TAINT_get;
8849         TAINT_NOT;
8850         sv_setpvn(sv, s, i);
8851         TAINT_set(oldtainted);
8852 #endif
8853         if (RXp_MATCH_UTF8(rx))
8854             SvUTF8_on(sv);
8855         else
8856             SvUTF8_off(sv);
8857         if (TAINTING_get) {
8858             if (RXp_MATCH_TAINTED(rx)) {
8859                 if (SvTYPE(sv) >= SVt_PVMG) {
8860                     MAGIC* const mg = SvMAGIC(sv);
8861                     MAGIC* mgt;
8862                     TAINT;
8863                     SvMAGIC_set(sv, mg->mg_moremagic);
8864                     SvTAINT(sv);
8865                     if ((mgt = SvMAGIC(sv))) {
8866                         mg->mg_moremagic = mgt;
8867                         SvMAGIC_set(sv, mg);
8868                     }
8869                 } else {
8870                     TAINT;
8871                     SvTAINT(sv);
8872                 }
8873             } else
8874                 SvTAINTED_off(sv);
8875         }
8876     } else {
8877       ret_undef:
8878         sv_set_undef(sv);
8879         return;
8880     }
8881 }
8882 
8883 void
Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx,const I32 paren,SV const * const value)8884 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
8885                                                          SV const * const value)
8886 {
8887     PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
8888 
8889     PERL_UNUSED_ARG(rx);
8890     PERL_UNUSED_ARG(paren);
8891     PERL_UNUSED_ARG(value);
8892 
8893     if (!PL_localizing)
8894         Perl_croak_no_modify();
8895 }
8896 
8897 I32
Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r,const SV * const sv,const I32 paren)8898 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
8899                               const I32 paren)
8900 {
8901     struct regexp *const rx = ReANY(r);
8902     I32 i;
8903     I32 s1, t1;
8904 
8905     PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
8906 
8907     if (   paren == RX_BUFF_IDX_CARET_PREMATCH
8908         || paren == RX_BUFF_IDX_CARET_FULLMATCH
8909         || paren == RX_BUFF_IDX_CARET_POSTMATCH
8910     )
8911     {
8912         bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
8913         if (!keepcopy) {
8914             /* on something like
8915              *    $r = qr/.../;
8916              *    /$qr/p;
8917              * the KEEPCOPY is set on the PMOP rather than the regex */
8918             if (PL_curpm && r == PM_GETRE(PL_curpm))
8919                  keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
8920         }
8921         if (!keepcopy)
8922             goto warn_undef;
8923     }
8924 
8925     /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
8926     switch (paren) {
8927       case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
8928       case RX_BUFF_IDX_PREMATCH:       /* $` */
8929         if (rx->offs[0].start != -1) {
8930                         i = rx->offs[0].start;
8931                         if (i > 0) {
8932                                 s1 = 0;
8933                                 t1 = i;
8934                                 goto getlen;
8935                         }
8936             }
8937         return 0;
8938 
8939       case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
8940       case RX_BUFF_IDX_POSTMATCH:       /* $' */
8941             if (rx->offs[0].end != -1) {
8942                         i = rx->sublen - rx->offs[0].end;
8943                         if (i > 0) {
8944                                 s1 = rx->offs[0].end;
8945                                 t1 = rx->sublen;
8946                                 goto getlen;
8947                         }
8948             }
8949         return 0;
8950 
8951       default: /* $& / ${^MATCH}, $1, $2, ... */
8952             if (paren <= (I32)rx->nparens &&
8953             (s1 = rx->offs[paren].start) != -1 &&
8954             (t1 = rx->offs[paren].end) != -1)
8955             {
8956             i = t1 - s1;
8957             goto getlen;
8958         } else {
8959           warn_undef:
8960             if (ckWARN(WARN_UNINITIALIZED))
8961                 report_uninit((const SV *)sv);
8962             return 0;
8963         }
8964     }
8965   getlen:
8966     if (i > 0 && RXp_MATCH_UTF8(rx)) {
8967         const char * const s = rx->subbeg - rx->suboffset + s1;
8968         const U8 *ep;
8969         STRLEN el;
8970 
8971         i = t1 - s1;
8972         if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
8973             i = el;
8974     }
8975     return i;
8976 }
8977 
8978 SV*
Perl_reg_qr_package(pTHX_ REGEXP * const rx)8979 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
8980 {
8981     PERL_ARGS_ASSERT_REG_QR_PACKAGE;
8982         PERL_UNUSED_ARG(rx);
8983         if (0)
8984             return NULL;
8985         else
8986             return newSVpvs("Regexp");
8987 }
8988 
8989 /* Scans the name of a named buffer from the pattern.
8990  * If flags is REG_RSN_RETURN_NULL returns null.
8991  * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
8992  * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
8993  * to the parsed name as looked up in the RExC_paren_names hash.
8994  * If there is an error throws a vFAIL().. type exception.
8995  */
8996 
8997 #define REG_RSN_RETURN_NULL    0
8998 #define REG_RSN_RETURN_NAME    1
8999 #define REG_RSN_RETURN_DATA    2
9000 
9001 STATIC SV*
S_reg_scan_name(pTHX_ RExC_state_t * pRExC_state,U32 flags)9002 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
9003 {
9004     char *name_start = RExC_parse;
9005     SV* sv_name;
9006 
9007     PERL_ARGS_ASSERT_REG_SCAN_NAME;
9008 
9009     assert (RExC_parse <= RExC_end);
9010     if (RExC_parse == RExC_end) NOOP;
9011     else if (isIDFIRST_lazy_if_safe(RExC_parse, RExC_end, UTF)) {
9012          /* Note that the code here assumes well-formed UTF-8.  Skip IDFIRST by
9013           * using do...while */
9014         if (UTF)
9015             do {
9016                 RExC_parse += UTF8SKIP(RExC_parse);
9017             } while (   RExC_parse < RExC_end
9018                      && isWORDCHAR_utf8_safe((U8*)RExC_parse, (U8*) RExC_end));
9019         else
9020             do {
9021                 RExC_parse++;
9022             } while (RExC_parse < RExC_end && isWORDCHAR(*RExC_parse));
9023     } else {
9024         RExC_parse++; /* so the <- from the vFAIL is after the offending
9025                          character */
9026         vFAIL("Group name must start with a non-digit word character");
9027     }
9028     sv_name = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
9029                              SVs_TEMP | (UTF ? SVf_UTF8 : 0));
9030     if ( flags == REG_RSN_RETURN_NAME)
9031         return sv_name;
9032     else if (flags==REG_RSN_RETURN_DATA) {
9033         HE *he_str = NULL;
9034         SV *sv_dat = NULL;
9035         if ( ! sv_name )      /* should not happen*/
9036             Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
9037         if (RExC_paren_names)
9038             he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
9039         if ( he_str )
9040             sv_dat = HeVAL(he_str);
9041         if ( ! sv_dat ) {   /* Didn't find group */
9042 
9043             /* It might be a forward reference; we can't fail until we
9044                 * know, by completing the parse to get all the groups, and
9045                 * then reparsing */
9046             if (ALL_PARENS_COUNTED)  {
9047                 vFAIL("Reference to nonexistent named group");
9048             }
9049             else {
9050                 REQUIRE_PARENS_PASS;
9051             }
9052         }
9053         return sv_dat;
9054     }
9055 
9056     Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
9057                      (unsigned long) flags);
9058 }
9059 
9060 #define DEBUG_PARSE_MSG(funcname)     DEBUG_PARSE_r({           \
9061     if (RExC_lastparse!=RExC_parse) {                           \
9062         Perl_re_printf( aTHX_  "%s",                            \
9063             Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse,        \
9064                 RExC_end - RExC_parse, 16,                      \
9065                 "", "",                                         \
9066                 PERL_PV_ESCAPE_UNI_DETECT |                     \
9067                 PERL_PV_PRETTY_ELLIPSES   |                     \
9068                 PERL_PV_PRETTY_LTGT       |                     \
9069                 PERL_PV_ESCAPE_RE         |                     \
9070                 PERL_PV_PRETTY_EXACTSIZE                        \
9071             )                                                   \
9072         );                                                      \
9073     } else                                                      \
9074         Perl_re_printf( aTHX_ "%16s","");                       \
9075                                                                 \
9076     if (RExC_lastnum!=RExC_emit)                                \
9077        Perl_re_printf( aTHX_ "|%4zu", RExC_emit);                \
9078     else                                                        \
9079        Perl_re_printf( aTHX_ "|%4s","");                        \
9080     Perl_re_printf( aTHX_ "|%*s%-4s",                           \
9081         (int)((depth*2)), "",                                   \
9082         (funcname)                                              \
9083     );                                                          \
9084     RExC_lastnum=RExC_emit;                                     \
9085     RExC_lastparse=RExC_parse;                                  \
9086 })
9087 
9088 
9089 
9090 #define DEBUG_PARSE(funcname)     DEBUG_PARSE_r({           \
9091     DEBUG_PARSE_MSG((funcname));                            \
9092     Perl_re_printf( aTHX_ "%4s","\n");                                  \
9093 })
9094 #define DEBUG_PARSE_FMT(funcname,fmt,args)     DEBUG_PARSE_r({\
9095     DEBUG_PARSE_MSG((funcname));                            \
9096     Perl_re_printf( aTHX_ fmt "\n",args);                               \
9097 })
9098 
9099 /* This section of code defines the inversion list object and its methods.  The
9100  * interfaces are highly subject to change, so as much as possible is static to
9101  * this file.  An inversion list is here implemented as a malloc'd C UV array
9102  * as an SVt_INVLIST scalar.
9103  *
9104  * An inversion list for Unicode is an array of code points, sorted by ordinal
9105  * number.  Each element gives the code point that begins a range that extends
9106  * up-to but not including the code point given by the next element.  The final
9107  * element gives the first code point of a range that extends to the platform's
9108  * infinity.  The even-numbered elements (invlist[0], invlist[2], invlist[4],
9109  * ...) give ranges whose code points are all in the inversion list.  We say
9110  * that those ranges are in the set.  The odd-numbered elements give ranges
9111  * whose code points are not in the inversion list, and hence not in the set.
9112  * Thus, element [0] is the first code point in the list.  Element [1]
9113  * is the first code point beyond that not in the list; and element [2] is the
9114  * first code point beyond that that is in the list.  In other words, the first
9115  * range is invlist[0]..(invlist[1]-1), and all code points in that range are
9116  * in the inversion list.  The second range is invlist[1]..(invlist[2]-1), and
9117  * all code points in that range are not in the inversion list.  The third
9118  * range invlist[2]..(invlist[3]-1) gives code points that are in the inversion
9119  * list, and so forth.  Thus every element whose index is divisible by two
9120  * gives the beginning of a range that is in the list, and every element whose
9121  * index is not divisible by two gives the beginning of a range not in the
9122  * list.  If the final element's index is divisible by two, the inversion list
9123  * extends to the platform's infinity; otherwise the highest code point in the
9124  * inversion list is the contents of that element minus 1.
9125  *
9126  * A range that contains just a single code point N will look like
9127  *  invlist[i]   == N
9128  *  invlist[i+1] == N+1
9129  *
9130  * If N is UV_MAX (the highest representable code point on the machine), N+1 is
9131  * impossible to represent, so element [i+1] is omitted.  The single element
9132  * inversion list
9133  *  invlist[0] == UV_MAX
9134  * contains just UV_MAX, but is interpreted as matching to infinity.
9135  *
9136  * Taking the complement (inverting) an inversion list is quite simple, if the
9137  * first element is 0, remove it; otherwise add a 0 element at the beginning.
9138  * This implementation reserves an element at the beginning of each inversion
9139  * list to always contain 0; there is an additional flag in the header which
9140  * indicates if the list begins at the 0, or is offset to begin at the next
9141  * element.  This means that the inversion list can be inverted without any
9142  * copying; just flip the flag.
9143  *
9144  * More about inversion lists can be found in "Unicode Demystified"
9145  * Chapter 13 by Richard Gillam, published by Addison-Wesley.
9146  *
9147  * The inversion list data structure is currently implemented as an SV pointing
9148  * to an array of UVs that the SV thinks are bytes.  This allows us to have an
9149  * array of UV whose memory management is automatically handled by the existing
9150  * facilities for SV's.
9151  *
9152  * Some of the methods should always be private to the implementation, and some
9153  * should eventually be made public */
9154 
9155 /* The header definitions are in F<invlist_inline.h> */
9156 
9157 #ifndef PERL_IN_XSUB_RE
9158 
9159 PERL_STATIC_INLINE UV*
S__invlist_array_init(SV * const invlist,const bool will_have_0)9160 S__invlist_array_init(SV* const invlist, const bool will_have_0)
9161 {
9162     /* Returns a pointer to the first element in the inversion list's array.
9163      * This is called upon initialization of an inversion list.  Where the
9164      * array begins depends on whether the list has the code point U+0000 in it
9165      * or not.  The other parameter tells it whether the code that follows this
9166      * call is about to put a 0 in the inversion list or not.  The first
9167      * element is either the element reserved for 0, if TRUE, or the element
9168      * after it, if FALSE */
9169 
9170     bool* offset = get_invlist_offset_addr(invlist);
9171     UV* zero_addr = (UV *) SvPVX(invlist);
9172 
9173     PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
9174 
9175     /* Must be empty */
9176     assert(! _invlist_len(invlist));
9177 
9178     *zero_addr = 0;
9179 
9180     /* 1^1 = 0; 1^0 = 1 */
9181     *offset = 1 ^ will_have_0;
9182     return zero_addr + *offset;
9183 }
9184 
9185 STATIC void
S_invlist_replace_list_destroys_src(pTHX_ SV * dest,SV * src)9186 S_invlist_replace_list_destroys_src(pTHX_ SV * dest, SV * src)
9187 {
9188     /* Replaces the inversion list in 'dest' with the one from 'src'.  It
9189      * steals the list from 'src', so 'src' is made to have a NULL list.  This
9190      * is similar to what SvSetMagicSV() would do, if it were implemented on
9191      * inversion lists, though this routine avoids a copy */
9192 
9193     const UV src_len          = _invlist_len(src);
9194     const bool src_offset     = *get_invlist_offset_addr(src);
9195     const STRLEN src_byte_len = SvLEN(src);
9196     char * array              = SvPVX(src);
9197 
9198     const int oldtainted = TAINT_get;
9199 
9200     PERL_ARGS_ASSERT_INVLIST_REPLACE_LIST_DESTROYS_SRC;
9201 
9202     assert(is_invlist(src));
9203     assert(is_invlist(dest));
9204     assert(! invlist_is_iterating(src));
9205     assert(SvCUR(src) == 0 || SvCUR(src) < SvLEN(src));
9206 
9207     /* Make sure it ends in the right place with a NUL, as our inversion list
9208      * manipulations aren't careful to keep this true, but sv_usepvn_flags()
9209      * asserts it */
9210     array[src_byte_len - 1] = '\0';
9211 
9212     TAINT_NOT;      /* Otherwise it breaks */
9213     sv_usepvn_flags(dest,
9214                     (char *) array,
9215                     src_byte_len - 1,
9216 
9217                     /* This flag is documented to cause a copy to be avoided */
9218                     SV_HAS_TRAILING_NUL);
9219     TAINT_set(oldtainted);
9220     SvPV_set(src, 0);
9221     SvLEN_set(src, 0);
9222     SvCUR_set(src, 0);
9223 
9224     /* Finish up copying over the other fields in an inversion list */
9225     *get_invlist_offset_addr(dest) = src_offset;
9226     invlist_set_len(dest, src_len, src_offset);
9227     *get_invlist_previous_index_addr(dest) = 0;
9228     invlist_iterfinish(dest);
9229 }
9230 
9231 PERL_STATIC_INLINE IV*
S_get_invlist_previous_index_addr(SV * invlist)9232 S_get_invlist_previous_index_addr(SV* invlist)
9233 {
9234     /* Return the address of the IV that is reserved to hold the cached index
9235      * */
9236     PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
9237 
9238     assert(is_invlist(invlist));
9239 
9240     return &(((XINVLIST*) SvANY(invlist))->prev_index);
9241 }
9242 
9243 PERL_STATIC_INLINE IV
S_invlist_previous_index(SV * const invlist)9244 S_invlist_previous_index(SV* const invlist)
9245 {
9246     /* Returns cached index of previous search */
9247 
9248     PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
9249 
9250     return *get_invlist_previous_index_addr(invlist);
9251 }
9252 
9253 PERL_STATIC_INLINE void
S_invlist_set_previous_index(SV * const invlist,const IV index)9254 S_invlist_set_previous_index(SV* const invlist, const IV index)
9255 {
9256     /* Caches <index> for later retrieval */
9257 
9258     PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
9259 
9260     assert(index == 0 || index < (int) _invlist_len(invlist));
9261 
9262     *get_invlist_previous_index_addr(invlist) = index;
9263 }
9264 
9265 PERL_STATIC_INLINE void
S_invlist_trim(SV * invlist)9266 S_invlist_trim(SV* invlist)
9267 {
9268     /* Free the not currently-being-used space in an inversion list */
9269 
9270     /* But don't free up the space needed for the 0 UV that is always at the
9271      * beginning of the list, nor the trailing NUL */
9272     const UV min_size = TO_INTERNAL_SIZE(1) + 1;
9273 
9274     PERL_ARGS_ASSERT_INVLIST_TRIM;
9275 
9276     assert(is_invlist(invlist));
9277 
9278     SvPV_renew(invlist, MAX(min_size, SvCUR(invlist) + 1));
9279 }
9280 
9281 PERL_STATIC_INLINE void
S_invlist_clear(pTHX_ SV * invlist)9282 S_invlist_clear(pTHX_ SV* invlist)    /* Empty the inversion list */
9283 {
9284     PERL_ARGS_ASSERT_INVLIST_CLEAR;
9285 
9286     assert(is_invlist(invlist));
9287 
9288     invlist_set_len(invlist, 0, 0);
9289     invlist_trim(invlist);
9290 }
9291 
9292 #endif /* ifndef PERL_IN_XSUB_RE */
9293 
9294 PERL_STATIC_INLINE bool
S_invlist_is_iterating(SV * const invlist)9295 S_invlist_is_iterating(SV* const invlist)
9296 {
9297     PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
9298 
9299     return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
9300 }
9301 
9302 #ifndef PERL_IN_XSUB_RE
9303 
9304 PERL_STATIC_INLINE UV
S_invlist_max(SV * const invlist)9305 S_invlist_max(SV* const invlist)
9306 {
9307     /* Returns the maximum number of elements storable in the inversion list's
9308      * array, without having to realloc() */
9309 
9310     PERL_ARGS_ASSERT_INVLIST_MAX;
9311 
9312     assert(is_invlist(invlist));
9313 
9314     /* Assumes worst case, in which the 0 element is not counted in the
9315      * inversion list, so subtracts 1 for that */
9316     return SvLEN(invlist) == 0  /* This happens under _new_invlist_C_array */
9317            ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
9318            : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
9319 }
9320 
9321 STATIC void
S_initialize_invlist_guts(pTHX_ SV * invlist,const Size_t initial_size)9322 S_initialize_invlist_guts(pTHX_ SV* invlist, const Size_t initial_size)
9323 {
9324     PERL_ARGS_ASSERT_INITIALIZE_INVLIST_GUTS;
9325 
9326     /* First 1 is in case the zero element isn't in the list; second 1 is for
9327      * trailing NUL */
9328     SvGROW(invlist, TO_INTERNAL_SIZE(initial_size + 1) + 1);
9329     invlist_set_len(invlist, 0, 0);
9330 
9331     /* Force iterinit() to be used to get iteration to work */
9332     invlist_iterfinish(invlist);
9333 
9334     *get_invlist_previous_index_addr(invlist) = 0;
9335     SvPOK_on(invlist);  /* This allows B to extract the PV */
9336 }
9337 
9338 SV*
Perl__new_invlist(pTHX_ IV initial_size)9339 Perl__new_invlist(pTHX_ IV initial_size)
9340 {
9341 
9342     /* Return a pointer to a newly constructed inversion list, with enough
9343      * space to store 'initial_size' elements.  If that number is negative, a
9344      * system default is used instead */
9345 
9346     SV* new_list;
9347 
9348     if (initial_size < 0) {
9349         initial_size = 10;
9350     }
9351 
9352     new_list = newSV_type(SVt_INVLIST);
9353     initialize_invlist_guts(new_list, initial_size);
9354 
9355     return new_list;
9356 }
9357 
9358 SV*
Perl__new_invlist_C_array(pTHX_ const UV * const list)9359 Perl__new_invlist_C_array(pTHX_ const UV* const list)
9360 {
9361     /* Return a pointer to a newly constructed inversion list, initialized to
9362      * point to <list>, which has to be in the exact correct inversion list
9363      * form, including internal fields.  Thus this is a dangerous routine that
9364      * should not be used in the wrong hands.  The passed in 'list' contains
9365      * several header fields at the beginning that are not part of the
9366      * inversion list body proper */
9367 
9368     const STRLEN length = (STRLEN) list[0];
9369     const UV version_id =          list[1];
9370     const bool offset   =    cBOOL(list[2]);
9371 #define HEADER_LENGTH 3
9372     /* If any of the above changes in any way, you must change HEADER_LENGTH
9373      * (if appropriate) and regenerate INVLIST_VERSION_ID by running
9374      *      perl -E 'say int(rand 2**31-1)'
9375      */
9376 #define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
9377                                         data structure type, so that one being
9378                                         passed in can be validated to be an
9379                                         inversion list of the correct vintage.
9380                                        */
9381 
9382     SV* invlist = newSV_type(SVt_INVLIST);
9383 
9384     PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
9385 
9386     if (version_id != INVLIST_VERSION_ID) {
9387         Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
9388     }
9389 
9390     /* The generated array passed in includes header elements that aren't part
9391      * of the list proper, so start it just after them */
9392     SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
9393 
9394     SvLEN_set(invlist, 0);  /* Means we own the contents, and the system
9395                                shouldn't touch it */
9396 
9397     *(get_invlist_offset_addr(invlist)) = offset;
9398 
9399     /* The 'length' passed to us is the physical number of elements in the
9400      * inversion list.  But if there is an offset the logical number is one
9401      * less than that */
9402     invlist_set_len(invlist, length  - offset, offset);
9403 
9404     invlist_set_previous_index(invlist, 0);
9405 
9406     /* Initialize the iteration pointer. */
9407     invlist_iterfinish(invlist);
9408 
9409     SvREADONLY_on(invlist);
9410     SvPOK_on(invlist);
9411 
9412     return invlist;
9413 }
9414 
9415 STATIC void
S__append_range_to_invlist(pTHX_ SV * const invlist,const UV start,const UV end)9416 S__append_range_to_invlist(pTHX_ SV* const invlist,
9417                                  const UV start, const UV end)
9418 {
9419    /* Subject to change or removal.  Append the range from 'start' to 'end' at
9420     * the end of the inversion list.  The range must be above any existing
9421     * ones. */
9422 
9423     UV* array;
9424     UV max = invlist_max(invlist);
9425     UV len = _invlist_len(invlist);
9426     bool offset;
9427 
9428     PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
9429 
9430     if (len == 0) { /* Empty lists must be initialized */
9431         offset = start != 0;
9432         array = _invlist_array_init(invlist, ! offset);
9433     }
9434     else {
9435         /* Here, the existing list is non-empty. The current max entry in the
9436          * list is generally the first value not in the set, except when the
9437          * set extends to the end of permissible values, in which case it is
9438          * the first entry in that final set, and so this call is an attempt to
9439          * append out-of-order */
9440 
9441         UV final_element = len - 1;
9442         array = invlist_array(invlist);
9443         if (   array[final_element] > start
9444             || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
9445         {
9446             Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%" UVuf ", start=%" UVuf ", match=%c",
9447                      array[final_element], start,
9448                      ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
9449         }
9450 
9451         /* Here, it is a legal append.  If the new range begins 1 above the end
9452          * of the range below it, it is extending the range below it, so the
9453          * new first value not in the set is one greater than the newly
9454          * extended range.  */
9455         offset = *get_invlist_offset_addr(invlist);
9456         if (array[final_element] == start) {
9457             if (end != UV_MAX) {
9458                 array[final_element] = end + 1;
9459             }
9460             else {
9461                 /* But if the end is the maximum representable on the machine,
9462                  * assume that infinity was actually what was meant.  Just let
9463                  * the range that this would extend to have no end */
9464                 invlist_set_len(invlist, len - 1, offset);
9465             }
9466             return;
9467         }
9468     }
9469 
9470     /* Here the new range doesn't extend any existing set.  Add it */
9471 
9472     len += 2;	/* Includes an element each for the start and end of range */
9473 
9474     /* If wll overflow the existing space, extend, which may cause the array to
9475      * be moved */
9476     if (max < len) {
9477         invlist_extend(invlist, len);
9478 
9479         /* Have to set len here to avoid assert failure in invlist_array() */
9480         invlist_set_len(invlist, len, offset);
9481 
9482         array = invlist_array(invlist);
9483     }
9484     else {
9485         invlist_set_len(invlist, len, offset);
9486     }
9487 
9488     /* The next item on the list starts the range, the one after that is
9489      * one past the new range.  */
9490     array[len - 2] = start;
9491     if (end != UV_MAX) {
9492         array[len - 1] = end + 1;
9493     }
9494     else {
9495         /* But if the end is the maximum representable on the machine, just let
9496          * the range have no end */
9497         invlist_set_len(invlist, len - 1, offset);
9498     }
9499 }
9500 
9501 SSize_t
Perl__invlist_search(SV * const invlist,const UV cp)9502 Perl__invlist_search(SV* const invlist, const UV cp)
9503 {
9504     /* Searches the inversion list for the entry that contains the input code
9505      * point <cp>.  If <cp> is not in the list, -1 is returned.  Otherwise, the
9506      * return value is the index into the list's array of the range that
9507      * contains <cp>, that is, 'i' such that
9508      *	array[i] <= cp < array[i+1]
9509      */
9510 
9511     IV low = 0;
9512     IV mid;
9513     IV high = _invlist_len(invlist);
9514     const IV highest_element = high - 1;
9515     const UV* array;
9516 
9517     PERL_ARGS_ASSERT__INVLIST_SEARCH;
9518 
9519     /* If list is empty, return failure. */
9520     if (UNLIKELY(high == 0)) {
9521         return -1;
9522     }
9523 
9524     /* (We can't get the array unless we know the list is non-empty) */
9525     array = invlist_array(invlist);
9526 
9527     mid = invlist_previous_index(invlist);
9528     assert(mid >=0);
9529     if (UNLIKELY(mid > highest_element)) {
9530         mid = highest_element;
9531     }
9532 
9533     /* <mid> contains the cache of the result of the previous call to this
9534      * function (0 the first time).  See if this call is for the same result,
9535      * or if it is for mid-1.  This is under the theory that calls to this
9536      * function will often be for related code points that are near each other.
9537      * And benchmarks show that caching gives better results.  We also test
9538      * here if the code point is within the bounds of the list.  These tests
9539      * replace others that would have had to be made anyway to make sure that
9540      * the array bounds were not exceeded, and these give us extra information
9541      * at the same time */
9542     if (cp >= array[mid]) {
9543         if (cp >= array[highest_element]) {
9544             return highest_element;
9545         }
9546 
9547         /* Here, array[mid] <= cp < array[highest_element].  This means that
9548          * the final element is not the answer, so can exclude it; it also
9549          * means that <mid> is not the final element, so can refer to 'mid + 1'
9550          * safely */
9551         if (cp < array[mid + 1]) {
9552             return mid;
9553         }
9554         high--;
9555         low = mid + 1;
9556     }
9557     else { /* cp < aray[mid] */
9558         if (cp < array[0]) { /* Fail if outside the array */
9559             return -1;
9560         }
9561         high = mid;
9562         if (cp >= array[mid - 1]) {
9563             goto found_entry;
9564         }
9565     }
9566 
9567     /* Binary search.  What we are looking for is <i> such that
9568      *	array[i] <= cp < array[i+1]
9569      * The loop below converges on the i+1.  Note that there may not be an
9570      * (i+1)th element in the array, and things work nonetheless */
9571     while (low < high) {
9572         mid = (low + high) / 2;
9573         assert(mid <= highest_element);
9574         if (array[mid] <= cp) { /* cp >= array[mid] */
9575             low = mid + 1;
9576 
9577             /* We could do this extra test to exit the loop early.
9578             if (cp < array[low]) {
9579                 return mid;
9580             }
9581             */
9582         }
9583         else { /* cp < array[mid] */
9584             high = mid;
9585         }
9586     }
9587 
9588   found_entry:
9589     high--;
9590     invlist_set_previous_index(invlist, high);
9591     return high;
9592 }
9593 
9594 void
Perl__invlist_union_maybe_complement_2nd(pTHX_ SV * const a,SV * const b,const bool complement_b,SV ** output)9595 Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
9596                                          const bool complement_b, SV** output)
9597 {
9598     /* Take the union of two inversion lists and point '*output' to it.  On
9599      * input, '*output' MUST POINT TO NULL OR TO AN SV* INVERSION LIST (possibly
9600      * even 'a' or 'b').  If to an inversion list, the contents of the original
9601      * list will be replaced by the union.  The first list, 'a', may be
9602      * NULL, in which case a copy of the second list is placed in '*output'.
9603      * If 'complement_b' is TRUE, the union is taken of the complement
9604      * (inversion) of 'b' instead of b itself.
9605      *
9606      * The basis for this comes from "Unicode Demystified" Chapter 13 by
9607      * Richard Gillam, published by Addison-Wesley, and explained at some
9608      * length there.  The preface says to incorporate its examples into your
9609      * code at your own risk.
9610      *
9611      * The algorithm is like a merge sort. */
9612 
9613     const UV* array_a;    /* a's array */
9614     const UV* array_b;
9615     UV len_a;	    /* length of a's array */
9616     UV len_b;
9617 
9618     SV* u;			/* the resulting union */
9619     UV* array_u;
9620     UV len_u = 0;
9621 
9622     UV i_a = 0;		    /* current index into a's array */
9623     UV i_b = 0;
9624     UV i_u = 0;
9625 
9626     /* running count, as explained in the algorithm source book; items are
9627      * stopped accumulating and are output when the count changes to/from 0.
9628      * The count is incremented when we start a range that's in an input's set,
9629      * and decremented when we start a range that's not in a set.  So this
9630      * variable can be 0, 1, or 2.  When it is 0 neither input is in their set,
9631      * and hence nothing goes into the union; 1, just one of the inputs is in
9632      * its set (and its current range gets added to the union); and 2 when both
9633      * inputs are in their sets.  */
9634     UV count = 0;
9635 
9636     PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
9637     assert(a != b);
9638     assert(*output == NULL || is_invlist(*output));
9639 
9640     len_b = _invlist_len(b);
9641     if (len_b == 0) {
9642 
9643         /* Here, 'b' is empty, hence it's complement is all possible code
9644          * points.  So if the union includes the complement of 'b', it includes
9645          * everything, and we need not even look at 'a'.  It's easiest to
9646          * create a new inversion list that matches everything.  */
9647         if (complement_b) {
9648             SV* everything = _add_range_to_invlist(NULL, 0, UV_MAX);
9649 
9650             if (*output == NULL) { /* If the output didn't exist, just point it
9651                                       at the new list */
9652                 *output = everything;
9653             }
9654             else { /* Otherwise, replace its contents with the new list */
9655                 invlist_replace_list_destroys_src(*output, everything);
9656                 SvREFCNT_dec_NN(everything);
9657             }
9658 
9659             return;
9660         }
9661 
9662         /* Here, we don't want the complement of 'b', and since 'b' is empty,
9663          * the union will come entirely from 'a'.  If 'a' is NULL or empty, the
9664          * output will be empty */
9665 
9666         if (a == NULL || _invlist_len(a) == 0) {
9667             if (*output == NULL) {
9668                 *output = _new_invlist(0);
9669             }
9670             else {
9671                 invlist_clear(*output);
9672             }
9673             return;
9674         }
9675 
9676         /* Here, 'a' is not empty, but 'b' is, so 'a' entirely determines the
9677          * union.  We can just return a copy of 'a' if '*output' doesn't point
9678          * to an existing list */
9679         if (*output == NULL) {
9680             *output = invlist_clone(a, NULL);
9681             return;
9682         }
9683 
9684         /* If the output is to overwrite 'a', we have a no-op, as it's
9685          * already in 'a' */
9686         if (*output == a) {
9687             return;
9688         }
9689 
9690         /* Here, '*output' is to be overwritten by 'a' */
9691         u = invlist_clone(a, NULL);
9692         invlist_replace_list_destroys_src(*output, u);
9693         SvREFCNT_dec_NN(u);
9694 
9695         return;
9696     }
9697 
9698     /* Here 'b' is not empty.  See about 'a' */
9699 
9700     if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
9701 
9702         /* Here, 'a' is empty (and b is not).  That means the union will come
9703          * entirely from 'b'.  If '*output' is NULL, we can directly return a
9704          * clone of 'b'.  Otherwise, we replace the contents of '*output' with
9705          * the clone */
9706 
9707         SV ** dest = (*output == NULL) ? output : &u;
9708         *dest = invlist_clone(b, NULL);
9709         if (complement_b) {
9710             _invlist_invert(*dest);
9711         }
9712 
9713         if (dest == &u) {
9714             invlist_replace_list_destroys_src(*output, u);
9715             SvREFCNT_dec_NN(u);
9716         }
9717 
9718         return;
9719     }
9720 
9721     /* Here both lists exist and are non-empty */
9722     array_a = invlist_array(a);
9723     array_b = invlist_array(b);
9724 
9725     /* If are to take the union of 'a' with the complement of b, set it
9726      * up so are looking at b's complement. */
9727     if (complement_b) {
9728 
9729         /* To complement, we invert: if the first element is 0, remove it.  To
9730          * do this, we just pretend the array starts one later */
9731         if (array_b[0] == 0) {
9732             array_b++;
9733             len_b--;
9734         }
9735         else {
9736 
9737             /* But if the first element is not zero, we pretend the list starts
9738              * at the 0 that is always stored immediately before the array. */
9739             array_b--;
9740             len_b++;
9741         }
9742     }
9743 
9744     /* Size the union for the worst case: that the sets are completely
9745      * disjoint */
9746     u = _new_invlist(len_a + len_b);
9747 
9748     /* Will contain U+0000 if either component does */
9749     array_u = _invlist_array_init(u, (    len_a > 0 && array_a[0] == 0)
9750                                       || (len_b > 0 && array_b[0] == 0));
9751 
9752     /* Go through each input list item by item, stopping when have exhausted
9753      * one of them */
9754     while (i_a < len_a && i_b < len_b) {
9755         UV cp;	    /* The element to potentially add to the union's array */
9756         bool cp_in_set;   /* is it in the input list's set or not */
9757 
9758         /* We need to take one or the other of the two inputs for the union.
9759          * Since we are merging two sorted lists, we take the smaller of the
9760          * next items.  In case of a tie, we take first the one that is in its
9761          * set.  If we first took the one not in its set, it would decrement
9762          * the count, possibly to 0 which would cause it to be output as ending
9763          * the range, and the next time through we would take the same number,
9764          * and output it again as beginning the next range.  By doing it the
9765          * opposite way, there is no possibility that the count will be
9766          * momentarily decremented to 0, and thus the two adjoining ranges will
9767          * be seamlessly merged.  (In a tie and both are in the set or both not
9768          * in the set, it doesn't matter which we take first.) */
9769         if (       array_a[i_a] < array_b[i_b]
9770             || (   array_a[i_a] == array_b[i_b]
9771                 && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
9772         {
9773             cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
9774             cp = array_a[i_a++];
9775         }
9776         else {
9777             cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
9778             cp = array_b[i_b++];
9779         }
9780 
9781         /* Here, have chosen which of the two inputs to look at.  Only output
9782          * if the running count changes to/from 0, which marks the
9783          * beginning/end of a range that's in the set */
9784         if (cp_in_set) {
9785             if (count == 0) {
9786                 array_u[i_u++] = cp;
9787             }
9788             count++;
9789         }
9790         else {
9791             count--;
9792             if (count == 0) {
9793                 array_u[i_u++] = cp;
9794             }
9795         }
9796     }
9797 
9798 
9799     /* The loop above increments the index into exactly one of the input lists
9800      * each iteration, and ends when either index gets to its list end.  That
9801      * means the other index is lower than its end, and so something is
9802      * remaining in that one.  We decrement 'count', as explained below, if
9803      * that list is in its set.  (i_a and i_b each currently index the element
9804      * beyond the one we care about.) */
9805     if (   (i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
9806         || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
9807     {
9808         count--;
9809     }
9810 
9811     /* Above we decremented 'count' if the list that had unexamined elements in
9812      * it was in its set.  This has made it so that 'count' being non-zero
9813      * means there isn't anything left to output; and 'count' equal to 0 means
9814      * that what is left to output is precisely that which is left in the
9815      * non-exhausted input list.
9816      *
9817      * To see why, note first that the exhausted input obviously has nothing
9818      * left to add to the union.  If it was in its set at its end, that means
9819      * the set extends from here to the platform's infinity, and hence so does
9820      * the union and the non-exhausted set is irrelevant.  The exhausted set
9821      * also contributed 1 to 'count'.  If 'count' was 2, it got decremented to
9822      * 1, but if it was 1, the non-exhausted set wasn't in its set, and so
9823      * 'count' remains at 1.  This is consistent with the decremented 'count'
9824      * != 0 meaning there's nothing left to add to the union.
9825      *
9826      * But if the exhausted input wasn't in its set, it contributed 0 to
9827      * 'count', and the rest of the union will be whatever the other input is.
9828      * If 'count' was 0, neither list was in its set, and 'count' remains 0;
9829      * otherwise it gets decremented to 0.  This is consistent with 'count'
9830      * == 0 meaning the remainder of the union is whatever is left in the
9831      * non-exhausted list. */
9832     if (count != 0) {
9833         len_u = i_u;
9834     }
9835     else {
9836         IV copy_count = len_a - i_a;
9837         if (copy_count > 0) {   /* The non-exhausted input is 'a' */
9838             Copy(array_a + i_a, array_u + i_u, copy_count, UV);
9839         }
9840         else { /* The non-exhausted input is b */
9841             copy_count = len_b - i_b;
9842             Copy(array_b + i_b, array_u + i_u, copy_count, UV);
9843         }
9844         len_u = i_u + copy_count;
9845     }
9846 
9847     /* Set the result to the final length, which can change the pointer to
9848      * array_u, so re-find it.  (Note that it is unlikely that this will
9849      * change, as we are shrinking the space, not enlarging it) */
9850     if (len_u != _invlist_len(u)) {
9851         invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
9852         invlist_trim(u);
9853         array_u = invlist_array(u);
9854     }
9855 
9856     if (*output == NULL) {  /* Simply return the new inversion list */
9857         *output = u;
9858     }
9859     else {
9860         /* Otherwise, overwrite the inversion list that was in '*output'.  We
9861          * could instead free '*output', and then set it to 'u', but experience
9862          * has shown [perl #127392] that if the input is a mortal, we can get a
9863          * huge build-up of these during regex compilation before they get
9864          * freed. */
9865         invlist_replace_list_destroys_src(*output, u);
9866         SvREFCNT_dec_NN(u);
9867     }
9868 
9869     return;
9870 }
9871 
9872 void
Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV * const a,SV * const b,const bool complement_b,SV ** i)9873 Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
9874                                                const bool complement_b, SV** i)
9875 {
9876     /* Take the intersection of two inversion lists and point '*i' to it.  On
9877      * input, '*i' MUST POINT TO NULL OR TO AN SV* INVERSION LIST (possibly
9878      * even 'a' or 'b').  If to an inversion list, the contents of the original
9879      * list will be replaced by the intersection.  The first list, 'a', may be
9880      * NULL, in which case '*i' will be an empty list.  If 'complement_b' is
9881      * TRUE, the result will be the intersection of 'a' and the complement (or
9882      * inversion) of 'b' instead of 'b' directly.
9883      *
9884      * The basis for this comes from "Unicode Demystified" Chapter 13 by
9885      * Richard Gillam, published by Addison-Wesley, and explained at some
9886      * length there.  The preface says to incorporate its examples into your
9887      * code at your own risk.  In fact, it had bugs
9888      *
9889      * The algorithm is like a merge sort, and is essentially the same as the
9890      * union above
9891      */
9892 
9893     const UV* array_a;		/* a's array */
9894     const UV* array_b;
9895     UV len_a;	/* length of a's array */
9896     UV len_b;
9897 
9898     SV* r;		     /* the resulting intersection */
9899     UV* array_r;
9900     UV len_r = 0;
9901 
9902     UV i_a = 0;		    /* current index into a's array */
9903     UV i_b = 0;
9904     UV i_r = 0;
9905 
9906     /* running count of how many of the two inputs are postitioned at ranges
9907      * that are in their sets.  As explained in the algorithm source book,
9908      * items are stopped accumulating and are output when the count changes
9909      * to/from 2.  The count is incremented when we start a range that's in an
9910      * input's set, and decremented when we start a range that's not in a set.
9911      * Only when it is 2 are we in the intersection. */
9912     UV count = 0;
9913 
9914     PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
9915     assert(a != b);
9916     assert(*i == NULL || is_invlist(*i));
9917 
9918     /* Special case if either one is empty */
9919     len_a = (a == NULL) ? 0 : _invlist_len(a);
9920     if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
9921         if (len_a != 0 && complement_b) {
9922 
9923             /* Here, 'a' is not empty, therefore from the enclosing 'if', 'b'
9924              * must be empty.  Here, also we are using 'b's complement, which
9925              * hence must be every possible code point.  Thus the intersection
9926              * is simply 'a'. */
9927 
9928             if (*i == a) {  /* No-op */
9929                 return;
9930             }
9931 
9932             if (*i == NULL) {
9933                 *i = invlist_clone(a, NULL);
9934                 return;
9935             }
9936 
9937             r = invlist_clone(a, NULL);
9938             invlist_replace_list_destroys_src(*i, r);
9939             SvREFCNT_dec_NN(r);
9940             return;
9941         }
9942 
9943         /* Here, 'a' or 'b' is empty and not using the complement of 'b'.  The
9944          * intersection must be empty */
9945         if (*i == NULL) {
9946             *i = _new_invlist(0);
9947             return;
9948         }
9949 
9950         invlist_clear(*i);
9951         return;
9952     }
9953 
9954     /* Here both lists exist and are non-empty */
9955     array_a = invlist_array(a);
9956     array_b = invlist_array(b);
9957 
9958     /* If are to take the intersection of 'a' with the complement of b, set it
9959      * up so are looking at b's complement. */
9960     if (complement_b) {
9961 
9962         /* To complement, we invert: if the first element is 0, remove it.  To
9963          * do this, we just pretend the array starts one later */
9964         if (array_b[0] == 0) {
9965             array_b++;
9966             len_b--;
9967         }
9968         else {
9969 
9970             /* But if the first element is not zero, we pretend the list starts
9971              * at the 0 that is always stored immediately before the array. */
9972             array_b--;
9973             len_b++;
9974         }
9975     }
9976 
9977     /* Size the intersection for the worst case: that the intersection ends up
9978      * fragmenting everything to be completely disjoint */
9979     r= _new_invlist(len_a + len_b);
9980 
9981     /* Will contain U+0000 iff both components do */
9982     array_r = _invlist_array_init(r,    len_a > 0 && array_a[0] == 0
9983                                      && len_b > 0 && array_b[0] == 0);
9984 
9985     /* Go through each list item by item, stopping when have exhausted one of
9986      * them */
9987     while (i_a < len_a && i_b < len_b) {
9988         UV cp;	    /* The element to potentially add to the intersection's
9989                        array */
9990         bool cp_in_set;	/* Is it in the input list's set or not */
9991 
9992         /* We need to take one or the other of the two inputs for the
9993          * intersection.  Since we are merging two sorted lists, we take the
9994          * smaller of the next items.  In case of a tie, we take first the one
9995          * that is not in its set (a difference from the union algorithm).  If
9996          * we first took the one in its set, it would increment the count,
9997          * possibly to 2 which would cause it to be output as starting a range
9998          * in the intersection, and the next time through we would take that
9999          * same number, and output it again as ending the set.  By doing the
10000          * opposite of this, there is no possibility that the count will be
10001          * momentarily incremented to 2.  (In a tie and both are in the set or
10002          * both not in the set, it doesn't matter which we take first.) */
10003         if (       array_a[i_a] < array_b[i_b]
10004             || (   array_a[i_a] == array_b[i_b]
10005                 && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
10006         {
10007             cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
10008             cp = array_a[i_a++];
10009         }
10010         else {
10011             cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
10012             cp= array_b[i_b++];
10013         }
10014 
10015         /* Here, have chosen which of the two inputs to look at.  Only output
10016          * if the running count changes to/from 2, which marks the
10017          * beginning/end of a range that's in the intersection */
10018         if (cp_in_set) {
10019             count++;
10020             if (count == 2) {
10021                 array_r[i_r++] = cp;
10022             }
10023         }
10024         else {
10025             if (count == 2) {
10026                 array_r[i_r++] = cp;
10027             }
10028             count--;
10029         }
10030 
10031     }
10032 
10033     /* The loop above increments the index into exactly one of the input lists
10034      * each iteration, and ends when either index gets to its list end.  That
10035      * means the other index is lower than its end, and so something is
10036      * remaining in that one.  We increment 'count', as explained below, if the
10037      * exhausted list was in its set.  (i_a and i_b each currently index the
10038      * element beyond the one we care about.) */
10039     if (   (i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
10040         || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
10041     {
10042         count++;
10043     }
10044 
10045     /* Above we incremented 'count' if the exhausted list was in its set.  This
10046      * has made it so that 'count' being below 2 means there is nothing left to
10047      * output; otheriwse what's left to add to the intersection is precisely
10048      * that which is left in the non-exhausted input list.
10049      *
10050      * To see why, note first that the exhausted input obviously has nothing
10051      * left to affect the intersection.  If it was in its set at its end, that
10052      * means the set extends from here to the platform's infinity, and hence
10053      * anything in the non-exhausted's list will be in the intersection, and
10054      * anything not in it won't be.  Hence, the rest of the intersection is
10055      * precisely what's in the non-exhausted list  The exhausted set also
10056      * contributed 1 to 'count', meaning 'count' was at least 1.  Incrementing
10057      * it means 'count' is now at least 2.  This is consistent with the
10058      * incremented 'count' being >= 2 means to add the non-exhausted list to
10059      * the intersection.
10060      *
10061      * But if the exhausted input wasn't in its set, it contributed 0 to
10062      * 'count', and the intersection can't include anything further; the
10063      * non-exhausted set is irrelevant.  'count' was at most 1, and doesn't get
10064      * incremented.  This is consistent with 'count' being < 2 meaning nothing
10065      * further to add to the intersection. */
10066     if (count < 2) { /* Nothing left to put in the intersection. */
10067         len_r = i_r;
10068     }
10069     else { /* copy the non-exhausted list, unchanged. */
10070         IV copy_count = len_a - i_a;
10071         if (copy_count > 0) {   /* a is the one with stuff left */
10072             Copy(array_a + i_a, array_r + i_r, copy_count, UV);
10073         }
10074         else {  /* b is the one with stuff left */
10075             copy_count = len_b - i_b;
10076             Copy(array_b + i_b, array_r + i_r, copy_count, UV);
10077         }
10078         len_r = i_r + copy_count;
10079     }
10080 
10081     /* Set the result to the final length, which can change the pointer to
10082      * array_r, so re-find it.  (Note that it is unlikely that this will
10083      * change, as we are shrinking the space, not enlarging it) */
10084     if (len_r != _invlist_len(r)) {
10085         invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
10086         invlist_trim(r);
10087         array_r = invlist_array(r);
10088     }
10089 
10090     if (*i == NULL) { /* Simply return the calculated intersection */
10091         *i = r;
10092     }
10093     else { /* Otherwise, replace the existing inversion list in '*i'.  We could
10094               instead free '*i', and then set it to 'r', but experience has
10095               shown [perl #127392] that if the input is a mortal, we can get a
10096               huge build-up of these during regex compilation before they get
10097               freed. */
10098         if (len_r) {
10099             invlist_replace_list_destroys_src(*i, r);
10100         }
10101         else {
10102             invlist_clear(*i);
10103         }
10104         SvREFCNT_dec_NN(r);
10105     }
10106 
10107     return;
10108 }
10109 
10110 SV*
Perl__add_range_to_invlist(pTHX_ SV * invlist,UV start,UV end)10111 Perl__add_range_to_invlist(pTHX_ SV* invlist, UV start, UV end)
10112 {
10113     /* Add the range from 'start' to 'end' inclusive to the inversion list's
10114      * set.  A pointer to the inversion list is returned.  This may actually be
10115      * a new list, in which case the passed in one has been destroyed.  The
10116      * passed-in inversion list can be NULL, in which case a new one is created
10117      * with just the one range in it.  The new list is not necessarily
10118      * NUL-terminated.  Space is not freed if the inversion list shrinks as a
10119      * result of this function.  The gain would not be large, and in many
10120      * cases, this is called multiple times on a single inversion list, so
10121      * anything freed may almost immediately be needed again.
10122      *
10123      * This used to mostly call the 'union' routine, but that is much more
10124      * heavyweight than really needed for a single range addition */
10125 
10126     UV* array;              /* The array implementing the inversion list */
10127     UV len;                 /* How many elements in 'array' */
10128     SSize_t i_s;            /* index into the invlist array where 'start'
10129                                should go */
10130     SSize_t i_e = 0;        /* And the index where 'end' should go */
10131     UV cur_highest;         /* The highest code point in the inversion list
10132                                upon entry to this function */
10133 
10134     /* This range becomes the whole inversion list if none already existed */
10135     if (invlist == NULL) {
10136         invlist = _new_invlist(2);
10137         _append_range_to_invlist(invlist, start, end);
10138         return invlist;
10139     }
10140 
10141     /* Likewise, if the inversion list is currently empty */
10142     len = _invlist_len(invlist);
10143     if (len == 0) {
10144         _append_range_to_invlist(invlist, start, end);
10145         return invlist;
10146     }
10147 
10148     /* Starting here, we have to know the internals of the list */
10149     array = invlist_array(invlist);
10150 
10151     /* If the new range ends higher than the current highest ... */
10152     cur_highest = invlist_highest(invlist);
10153     if (end > cur_highest) {
10154 
10155         /* If the whole range is higher, we can just append it */
10156         if (start > cur_highest) {
10157             _append_range_to_invlist(invlist, start, end);
10158             return invlist;
10159         }
10160 
10161         /* Otherwise, add the portion that is higher ... */
10162         _append_range_to_invlist(invlist, cur_highest + 1, end);
10163 
10164         /* ... and continue on below to handle the rest.  As a result of the
10165          * above append, we know that the index of the end of the range is the
10166          * final even numbered one of the array.  Recall that the final element
10167          * always starts a range that extends to infinity.  If that range is in
10168          * the set (meaning the set goes from here to infinity), it will be an
10169          * even index, but if it isn't in the set, it's odd, and the final
10170          * range in the set is one less, which is even. */
10171         if (end == UV_MAX) {
10172             i_e = len;
10173         }
10174         else {
10175             i_e = len - 2;
10176         }
10177     }
10178 
10179     /* We have dealt with appending, now see about prepending.  If the new
10180      * range starts lower than the current lowest ... */
10181     if (start < array[0]) {
10182 
10183         /* Adding something which has 0 in it is somewhat tricky, and uncommon.
10184          * Let the union code handle it, rather than having to know the
10185          * trickiness in two code places.  */
10186         if (UNLIKELY(start == 0)) {
10187             SV* range_invlist;
10188 
10189             range_invlist = _new_invlist(2);
10190             _append_range_to_invlist(range_invlist, start, end);
10191 
10192             _invlist_union(invlist, range_invlist, &invlist);
10193 
10194             SvREFCNT_dec_NN(range_invlist);
10195 
10196             return invlist;
10197         }
10198 
10199         /* If the whole new range comes before the first entry, and doesn't
10200          * extend it, we have to insert it as an additional range */
10201         if (end < array[0] - 1) {
10202             i_s = i_e = -1;
10203             goto splice_in_new_range;
10204         }
10205 
10206         /* Here the new range adjoins the existing first range, extending it
10207          * downwards. */
10208         array[0] = start;
10209 
10210         /* And continue on below to handle the rest.  We know that the index of
10211          * the beginning of the range is the first one of the array */
10212         i_s = 0;
10213     }
10214     else { /* Not prepending any part of the new range to the existing list.
10215             * Find where in the list it should go.  This finds i_s, such that:
10216             *     invlist[i_s] <= start < array[i_s+1]
10217             */
10218         i_s = _invlist_search(invlist, start);
10219     }
10220 
10221     /* At this point, any extending before the beginning of the inversion list
10222      * and/or after the end has been done.  This has made it so that, in the
10223      * code below, each endpoint of the new range is either in a range that is
10224      * in the set, or is in a gap between two ranges that are.  This means we
10225      * don't have to worry about exceeding the array bounds.
10226      *
10227      * Find where in the list the new range ends (but we can skip this if we
10228      * have already determined what it is, or if it will be the same as i_s,
10229      * which we already have computed) */
10230     if (i_e == 0) {
10231         i_e = (start == end)
10232               ? i_s
10233               : _invlist_search(invlist, end);
10234     }
10235 
10236     /* Here generally invlist[i_e] <= end < array[i_e+1].  But if invlist[i_e]
10237      * is a range that goes to infinity there is no element at invlist[i_e+1],
10238      * so only the first relation holds. */
10239 
10240     if ( ! ELEMENT_RANGE_MATCHES_INVLIST(i_s)) {
10241 
10242         /* Here, the ranges on either side of the beginning of the new range
10243          * are in the set, and this range starts in the gap between them.
10244          *
10245          * The new range extends the range above it downwards if the new range
10246          * ends at or above that range's start */
10247         const bool extends_the_range_above = (   end == UV_MAX
10248                                               || end + 1 >= array[i_s+1]);
10249 
10250         /* The new range extends the range below it upwards if it begins just
10251          * after where that range ends */
10252         if (start == array[i_s]) {
10253 
10254             /* If the new range fills the entire gap between the other ranges,
10255              * they will get merged together.  Other ranges may also get
10256              * merged, depending on how many of them the new range spans.  In
10257              * the general case, we do the merge later, just once, after we
10258              * figure out how many to merge.  But in the case where the new
10259              * range exactly spans just this one gap (possibly extending into
10260              * the one above), we do the merge here, and an early exit.  This
10261              * is done here to avoid having to special case later. */
10262             if (i_e - i_s <= 1) {
10263 
10264                 /* If i_e - i_s == 1, it means that the new range terminates
10265                  * within the range above, and hence 'extends_the_range_above'
10266                  * must be true.  (If the range above it extends to infinity,
10267                  * 'i_s+2' will be above the array's limit, but 'len-i_s-2'
10268                  * will be 0, so no harm done.) */
10269                 if (extends_the_range_above) {
10270                     Move(array + i_s + 2, array + i_s, len - i_s - 2, UV);
10271                     invlist_set_len(invlist,
10272                                     len - 2,
10273                                     *(get_invlist_offset_addr(invlist)));
10274                     return invlist;
10275                 }
10276 
10277                 /* Here, i_e must == i_s.  We keep them in sync, as they apply
10278                  * to the same range, and below we are about to decrement i_s
10279                  * */
10280                 i_e--;
10281             }
10282 
10283             /* Here, the new range is adjacent to the one below.  (It may also
10284              * span beyond the range above, but that will get resolved later.)
10285              * Extend the range below to include this one. */
10286             array[i_s] = (end == UV_MAX) ? UV_MAX : end + 1;
10287             i_s--;
10288             start = array[i_s];
10289         }
10290         else if (extends_the_range_above) {
10291 
10292             /* Here the new range only extends the range above it, but not the
10293              * one below.  It merges with the one above.  Again, we keep i_e
10294              * and i_s in sync if they point to the same range */
10295             if (i_e == i_s) {
10296                 i_e++;
10297             }
10298             i_s++;
10299             array[i_s] = start;
10300         }
10301     }
10302 
10303     /* Here, we've dealt with the new range start extending any adjoining
10304      * existing ranges.
10305      *
10306      * If the new range extends to infinity, it is now the final one,
10307      * regardless of what was there before */
10308     if (UNLIKELY(end == UV_MAX)) {
10309         invlist_set_len(invlist, i_s + 1, *(get_invlist_offset_addr(invlist)));
10310         return invlist;
10311     }
10312 
10313     /* If i_e started as == i_s, it has also been dealt with,
10314      * and been updated to the new i_s, which will fail the following if */
10315     if (! ELEMENT_RANGE_MATCHES_INVLIST(i_e)) {
10316 
10317         /* Here, the ranges on either side of the end of the new range are in
10318          * the set, and this range ends in the gap between them.
10319          *
10320          * If this range is adjacent to (hence extends) the range above it, it
10321          * becomes part of that range; likewise if it extends the range below,
10322          * it becomes part of that range */
10323         if (end + 1 == array[i_e+1]) {
10324             i_e++;
10325             array[i_e] = start;
10326         }
10327         else if (start <= array[i_e]) {
10328             array[i_e] = end + 1;
10329             i_e--;
10330         }
10331     }
10332 
10333     if (i_s == i_e) {
10334 
10335         /* If the range fits entirely in an existing range (as possibly already
10336          * extended above), it doesn't add anything new */
10337         if (ELEMENT_RANGE_MATCHES_INVLIST(i_s)) {
10338             return invlist;
10339         }
10340 
10341         /* Here, no part of the range is in the list.  Must add it.  It will
10342          * occupy 2 more slots */
10343       splice_in_new_range:
10344 
10345         invlist_extend(invlist, len + 2);
10346         array = invlist_array(invlist);
10347         /* Move the rest of the array down two slots. Don't include any
10348          * trailing NUL */
10349         Move(array + i_e + 1, array + i_e + 3, len - i_e - 1, UV);
10350 
10351         /* Do the actual splice */
10352         array[i_e+1] = start;
10353         array[i_e+2] = end + 1;
10354         invlist_set_len(invlist, len + 2, *(get_invlist_offset_addr(invlist)));
10355         return invlist;
10356     }
10357 
10358     /* Here the new range crossed the boundaries of a pre-existing range.  The
10359      * code above has adjusted things so that both ends are in ranges that are
10360      * in the set.  This means everything in between must also be in the set.
10361      * Just squash things together */
10362     Move(array + i_e + 1, array + i_s + 1, len - i_e - 1, UV);
10363     invlist_set_len(invlist,
10364                     len - i_e + i_s,
10365                     *(get_invlist_offset_addr(invlist)));
10366 
10367     return invlist;
10368 }
10369 
10370 SV*
Perl__setup_canned_invlist(pTHX_ const STRLEN size,const UV element0,UV ** other_elements_ptr)10371 Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
10372                                  UV** other_elements_ptr)
10373 {
10374     /* Create and return an inversion list whose contents are to be populated
10375      * by the caller.  The caller gives the number of elements (in 'size') and
10376      * the very first element ('element0').  This function will set
10377      * '*other_elements_ptr' to an array of UVs, where the remaining elements
10378      * are to be placed.
10379      *
10380      * Obviously there is some trust involved that the caller will properly
10381      * fill in the other elements of the array.
10382      *
10383      * (The first element needs to be passed in, as the underlying code does
10384      * things differently depending on whether it is zero or non-zero) */
10385 
10386     SV* invlist = _new_invlist(size);
10387     bool offset;
10388 
10389     PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
10390 
10391     invlist = add_cp_to_invlist(invlist, element0);
10392     offset = *get_invlist_offset_addr(invlist);
10393 
10394     invlist_set_len(invlist, size, offset);
10395     *other_elements_ptr = invlist_array(invlist) + 1;
10396     return invlist;
10397 }
10398 
10399 #endif
10400 
10401 #ifndef PERL_IN_XSUB_RE
10402 void
Perl__invlist_invert(pTHX_ SV * const invlist)10403 Perl__invlist_invert(pTHX_ SV* const invlist)
10404 {
10405     /* Complement the input inversion list.  This adds a 0 if the list didn't
10406      * have a zero; removes it otherwise.  As described above, the data
10407      * structure is set up so that this is very efficient */
10408 
10409     PERL_ARGS_ASSERT__INVLIST_INVERT;
10410 
10411     assert(! invlist_is_iterating(invlist));
10412 
10413     /* The inverse of matching nothing is matching everything */
10414     if (_invlist_len(invlist) == 0) {
10415         _append_range_to_invlist(invlist, 0, UV_MAX);
10416         return;
10417     }
10418 
10419     *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
10420 }
10421 
10422 SV*
Perl_invlist_clone(pTHX_ SV * const invlist,SV * new_invlist)10423 Perl_invlist_clone(pTHX_ SV* const invlist, SV* new_invlist)
10424 {
10425     /* Return a new inversion list that is a copy of the input one, which is
10426      * unchanged.  The new list will not be mortal even if the old one was. */
10427 
10428     const STRLEN nominal_length = _invlist_len(invlist);
10429     const STRLEN physical_length = SvCUR(invlist);
10430     const bool offset = *(get_invlist_offset_addr(invlist));
10431 
10432     PERL_ARGS_ASSERT_INVLIST_CLONE;
10433 
10434     if (new_invlist == NULL) {
10435         new_invlist = _new_invlist(nominal_length);
10436     }
10437     else {
10438         sv_upgrade(new_invlist, SVt_INVLIST);
10439         initialize_invlist_guts(new_invlist, nominal_length);
10440     }
10441 
10442     *(get_invlist_offset_addr(new_invlist)) = offset;
10443     invlist_set_len(new_invlist, nominal_length, offset);
10444     Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
10445 
10446     return new_invlist;
10447 }
10448 
10449 #endif
10450 
10451 PERL_STATIC_INLINE UV
S_invlist_lowest(SV * const invlist)10452 S_invlist_lowest(SV* const invlist)
10453 {
10454     /* Returns the lowest code point that matches an inversion list.  This API
10455      * has an ambiguity, as it returns 0 under either the lowest is actually
10456      * 0, or if the list is empty.  If this distinction matters to you, check
10457      * for emptiness before calling this function */
10458 
10459     UV len = _invlist_len(invlist);
10460     UV *array;
10461 
10462     PERL_ARGS_ASSERT_INVLIST_LOWEST;
10463 
10464     if (len == 0) {
10465         return 0;
10466     }
10467 
10468     array = invlist_array(invlist);
10469 
10470     return array[0];
10471 }
10472 
10473 STATIC SV *
S_invlist_contents(pTHX_ SV * const invlist,const bool traditional_style)10474 S_invlist_contents(pTHX_ SV* const invlist, const bool traditional_style)
10475 {
10476     /* Get the contents of an inversion list into a string SV so that they can
10477      * be printed out.  If 'traditional_style' is TRUE, it uses the format
10478      * traditionally done for debug tracing; otherwise it uses a format
10479      * suitable for just copying to the output, with blanks between ranges and
10480      * a dash between range components */
10481 
10482     UV start, end;
10483     SV* output;
10484     const char intra_range_delimiter = (traditional_style ? '\t' : '-');
10485     const char inter_range_delimiter = (traditional_style ? '\n' : ' ');
10486 
10487     if (traditional_style) {
10488         output = newSVpvs("\n");
10489     }
10490     else {
10491         output = newSVpvs("");
10492     }
10493 
10494     PERL_ARGS_ASSERT_INVLIST_CONTENTS;
10495 
10496     assert(! invlist_is_iterating(invlist));
10497 
10498     invlist_iterinit(invlist);
10499     while (invlist_iternext(invlist, &start, &end)) {
10500         if (end == UV_MAX) {
10501             Perl_sv_catpvf(aTHX_ output, "%04" UVXf "%cINFTY%c",
10502                                           start, intra_range_delimiter,
10503                                                  inter_range_delimiter);
10504         }
10505         else if (end != start) {
10506             Perl_sv_catpvf(aTHX_ output, "%04" UVXf "%c%04" UVXf "%c",
10507                                           start,
10508                                                    intra_range_delimiter,
10509                                                   end, inter_range_delimiter);
10510         }
10511         else {
10512             Perl_sv_catpvf(aTHX_ output, "%04" UVXf "%c",
10513                                           start, inter_range_delimiter);
10514         }
10515     }
10516 
10517     if (SvCUR(output) && ! traditional_style) {/* Get rid of trailing blank */
10518         SvCUR_set(output, SvCUR(output) - 1);
10519     }
10520 
10521     return output;
10522 }
10523 
10524 #ifndef PERL_IN_XSUB_RE
10525 void
Perl__invlist_dump(pTHX_ PerlIO * file,I32 level,const char * const indent,SV * const invlist)10526 Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
10527                          const char * const indent, SV* const invlist)
10528 {
10529     /* Designed to be called only by do_sv_dump().  Dumps out the ranges of the
10530      * inversion list 'invlist' to 'file' at 'level'  Each line is prefixed by
10531      * the string 'indent'.  The output looks like this:
10532          [0] 0x000A .. 0x000D
10533          [2] 0x0085
10534          [4] 0x2028 .. 0x2029
10535          [6] 0x3104 .. INFTY
10536      * This means that the first range of code points matched by the list are
10537      * 0xA through 0xD; the second range contains only the single code point
10538      * 0x85, etc.  An inversion list is an array of UVs.  Two array elements
10539      * are used to define each range (except if the final range extends to
10540      * infinity, only a single element is needed).  The array index of the
10541      * first element for the corresponding range is given in brackets. */
10542 
10543     UV start, end;
10544     STRLEN count = 0;
10545 
10546     PERL_ARGS_ASSERT__INVLIST_DUMP;
10547 
10548     if (invlist_is_iterating(invlist)) {
10549         Perl_dump_indent(aTHX_ level, file,
10550              "%sCan't dump inversion list because is in middle of iterating\n",
10551              indent);
10552         return;
10553     }
10554 
10555     invlist_iterinit(invlist);
10556     while (invlist_iternext(invlist, &start, &end)) {
10557         if (end == UV_MAX) {
10558             Perl_dump_indent(aTHX_ level, file,
10559                                        "%s[%" UVuf "] 0x%04" UVXf " .. INFTY\n",
10560                                    indent, (UV)count, start);
10561         }
10562         else if (end != start) {
10563             Perl_dump_indent(aTHX_ level, file,
10564                                     "%s[%" UVuf "] 0x%04" UVXf " .. 0x%04" UVXf "\n",
10565                                 indent, (UV)count, start,         end);
10566         }
10567         else {
10568             Perl_dump_indent(aTHX_ level, file, "%s[%" UVuf "] 0x%04" UVXf "\n",
10569                                             indent, (UV)count, start);
10570         }
10571         count += 2;
10572     }
10573 }
10574 
10575 #endif
10576 
10577 #if defined(PERL_ARGS_ASSERT__INVLISTEQ) && !defined(PERL_IN_XSUB_RE)
10578 bool
Perl__invlistEQ(pTHX_ SV * const a,SV * const b,const bool complement_b)10579 Perl__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
10580 {
10581     /* Return a boolean as to if the two passed in inversion lists are
10582      * identical.  The final argument, if TRUE, says to take the complement of
10583      * the second inversion list before doing the comparison */
10584 
10585     const UV len_a = _invlist_len(a);
10586     UV len_b = _invlist_len(b);
10587 
10588     const UV* array_a = NULL;
10589     const UV* array_b = NULL;
10590 
10591     PERL_ARGS_ASSERT__INVLISTEQ;
10592 
10593     /* This code avoids accessing the arrays unless it knows the length is
10594      * non-zero */
10595 
10596     if (len_a == 0) {
10597         if (len_b == 0) {
10598             return ! complement_b;
10599         }
10600     }
10601     else {
10602         array_a = invlist_array(a);
10603     }
10604 
10605     if (len_b != 0) {
10606         array_b = invlist_array(b);
10607     }
10608 
10609     /* If are to compare 'a' with the complement of b, set it
10610      * up so are looking at b's complement. */
10611     if (complement_b) {
10612 
10613         /* The complement of nothing is everything, so <a> would have to have
10614          * just one element, starting at zero (ending at infinity) */
10615         if (len_b == 0) {
10616             return (len_a == 1 && array_a[0] == 0);
10617         }
10618         if (array_b[0] == 0) {
10619 
10620             /* Otherwise, to complement, we invert.  Here, the first element is
10621              * 0, just remove it.  To do this, we just pretend the array starts
10622              * one later */
10623 
10624             array_b++;
10625             len_b--;
10626         }
10627         else {
10628 
10629             /* But if the first element is not zero, we pretend the list starts
10630              * at the 0 that is always stored immediately before the array. */
10631             array_b--;
10632             len_b++;
10633         }
10634     }
10635 
10636     return    len_a == len_b
10637            && memEQ(array_a, array_b, len_a * sizeof(array_a[0]));
10638 
10639 }
10640 #endif
10641 
10642 /*
10643  * As best we can, determine the characters that can match the start of
10644  * the given EXACTF-ish node.  This is for use in creating ssc nodes, so there
10645  * can be false positive matches
10646  *
10647  * Returns the invlist as a new SV*; it is the caller's responsibility to
10648  * call SvREFCNT_dec() when done with it.
10649  */
10650 STATIC SV*
S_make_exactf_invlist(pTHX_ RExC_state_t * pRExC_state,regnode * node)10651 S_make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
10652 {
10653     const U8 * s = (U8*)STRING(node);
10654     SSize_t bytelen = STR_LEN(node);
10655     UV uc;
10656     /* Start out big enough for 2 separate code points */
10657     SV* invlist = _new_invlist(4);
10658 
10659     PERL_ARGS_ASSERT_MAKE_EXACTF_INVLIST;
10660 
10661     if (! UTF) {
10662         uc = *s;
10663 
10664         /* We punt and assume can match anything if the node begins
10665          * with a multi-character fold.  Things are complicated.  For
10666          * example, /ffi/i could match any of:
10667          *  "\N{LATIN SMALL LIGATURE FFI}"
10668          *  "\N{LATIN SMALL LIGATURE FF}I"
10669          *  "F\N{LATIN SMALL LIGATURE FI}"
10670          *  plus several other things; and making sure we have all the
10671          *  possibilities is hard. */
10672         if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
10673             invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
10674         }
10675         else {
10676             /* Any Latin1 range character can potentially match any
10677              * other depending on the locale, and in Turkic locales, U+130 and
10678              * U+131 */
10679             if (OP(node) == EXACTFL) {
10680                 _invlist_union(invlist, PL_Latin1, &invlist);
10681                 invlist = add_cp_to_invlist(invlist,
10682                                                 LATIN_SMALL_LETTER_DOTLESS_I);
10683                 invlist = add_cp_to_invlist(invlist,
10684                                         LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
10685             }
10686             else {
10687                 /* But otherwise, it matches at least itself.  We can
10688                  * quickly tell if it has a distinct fold, and if so,
10689                  * it matches that as well */
10690                 invlist = add_cp_to_invlist(invlist, uc);
10691                 if (IS_IN_SOME_FOLD_L1(uc))
10692                     invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
10693             }
10694 
10695             /* Some characters match above-Latin1 ones under /i.  This
10696              * is true of EXACTFL ones when the locale is UTF-8 */
10697             if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
10698                 && (! isASCII(uc) || ! inRANGE(OP(node), EXACTFAA,
10699                                                          EXACTFAA_NO_TRIE)))
10700             {
10701                 add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
10702             }
10703         }
10704     }
10705     else {  /* Pattern is UTF-8 */
10706         U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
10707         const U8* e = s + bytelen;
10708         IV fc;
10709 
10710         fc = uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
10711 
10712         /* The only code points that aren't folded in a UTF EXACTFish
10713          * node are the problematic ones in EXACTFL nodes */
10714         if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
10715             /* We need to check for the possibility that this EXACTFL
10716              * node begins with a multi-char fold.  Therefore we fold
10717              * the first few characters of it so that we can make that
10718              * check */
10719             U8 *d = folded;
10720             int i;
10721 
10722             fc = -1;
10723             for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
10724                 if (isASCII(*s)) {
10725                     *(d++) = (U8) toFOLD(*s);
10726                     if (fc < 0) {       /* Save the first fold */
10727                         fc = *(d-1);
10728                     }
10729                     s++;
10730                 }
10731                 else {
10732                     STRLEN len;
10733                     UV fold = toFOLD_utf8_safe(s, e, d, &len);
10734                     if (fc < 0) {       /* Save the first fold */
10735                         fc = fold;
10736                     }
10737                     d += len;
10738                     s += UTF8SKIP(s);
10739                 }
10740             }
10741 
10742             /* And set up so the code below that looks in this folded
10743              * buffer instead of the node's string */
10744             e = d;
10745             s = folded;
10746         }
10747 
10748         /* When we reach here 's' points to the fold of the first
10749          * character(s) of the node; and 'e' points to far enough along
10750          * the folded string to be just past any possible multi-char
10751          * fold.
10752          *
10753          * Like the non-UTF case above, we punt if the node begins with a
10754          * multi-char fold  */
10755 
10756         if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
10757             invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
10758         }
10759         else {  /* Single char fold */
10760             unsigned int k;
10761             U32 first_fold;
10762             const U32 * remaining_folds;
10763             Size_t folds_count;
10764 
10765             /* It matches itself */
10766             invlist = add_cp_to_invlist(invlist, fc);
10767 
10768             /* ... plus all the things that fold to it, which are found in
10769              * PL_utf8_foldclosures */
10770             folds_count = _inverse_folds(fc, &first_fold,
10771                                                 &remaining_folds);
10772             for (k = 0; k < folds_count; k++) {
10773                 UV c = (k == 0) ? first_fold : remaining_folds[k-1];
10774 
10775                 /* /aa doesn't allow folds between ASCII and non- */
10776                 if (   inRANGE(OP(node), EXACTFAA, EXACTFAA_NO_TRIE)
10777                     && isASCII(c) != isASCII(fc))
10778                 {
10779                     continue;
10780                 }
10781 
10782                 invlist = add_cp_to_invlist(invlist, c);
10783             }
10784 
10785             if (OP(node) == EXACTFL) {
10786 
10787                 /* If either [iI] are present in an EXACTFL node the above code
10788                  * should have added its normal case pair, but under a Turkish
10789                  * locale they could match instead the case pairs from it.  Add
10790                  * those as potential matches as well */
10791                 if (isALPHA_FOLD_EQ(fc, 'I')) {
10792                     invlist = add_cp_to_invlist(invlist,
10793                                                 LATIN_SMALL_LETTER_DOTLESS_I);
10794                     invlist = add_cp_to_invlist(invlist,
10795                                         LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
10796                 }
10797                 else if (fc == LATIN_SMALL_LETTER_DOTLESS_I) {
10798                     invlist = add_cp_to_invlist(invlist, 'I');
10799                 }
10800                 else if (fc == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
10801                     invlist = add_cp_to_invlist(invlist, 'i');
10802                 }
10803             }
10804         }
10805     }
10806 
10807     return invlist;
10808 }
10809 
10810 #undef HEADER_LENGTH
10811 #undef TO_INTERNAL_SIZE
10812 #undef FROM_INTERNAL_SIZE
10813 #undef INVLIST_VERSION_ID
10814 
10815 /* End of inversion list object */
10816 
10817 STATIC void
S_parse_lparen_question_flags(pTHX_ RExC_state_t * pRExC_state)10818 S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
10819 {
10820     /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
10821      * constructs, and updates RExC_flags with them.  On input, RExC_parse
10822      * should point to the first flag; it is updated on output to point to the
10823      * final ')' or ':'.  There needs to be at least one flag, or this will
10824      * abort */
10825 
10826     /* for (?g), (?gc), and (?o) warnings; warning
10827        about (?c) will warn about (?g) -- japhy    */
10828 
10829 #define WASTED_O  0x01
10830 #define WASTED_G  0x02
10831 #define WASTED_C  0x04
10832 #define WASTED_GC (WASTED_G|WASTED_C)
10833     I32 wastedflags = 0x00;
10834     U32 posflags = 0, negflags = 0;
10835     U32 *flagsp = &posflags;
10836     char has_charset_modifier = '\0';
10837     regex_charset cs;
10838     bool has_use_defaults = FALSE;
10839     const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
10840     int x_mod_count = 0;
10841 
10842     PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
10843 
10844     /* '^' as an initial flag sets certain defaults */
10845     if (UCHARAT(RExC_parse) == '^') {
10846         RExC_parse++;
10847         has_use_defaults = TRUE;
10848         STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
10849         cs = (toUSE_UNI_CHARSET_NOT_DEPENDS)
10850              ? REGEX_UNICODE_CHARSET
10851              : REGEX_DEPENDS_CHARSET;
10852         set_regex_charset(&RExC_flags, cs);
10853     }
10854     else {
10855         cs = get_regex_charset(RExC_flags);
10856         if (   cs == REGEX_DEPENDS_CHARSET
10857             && (toUSE_UNI_CHARSET_NOT_DEPENDS))
10858         {
10859             cs = REGEX_UNICODE_CHARSET;
10860         }
10861     }
10862 
10863     while (RExC_parse < RExC_end) {
10864         /* && memCHRs("iogcmsx", *RExC_parse) */
10865         /* (?g), (?gc) and (?o) are useless here
10866            and must be globally applied -- japhy */
10867         if ((RExC_pm_flags & PMf_WILDCARD)) {
10868             if (flagsp == & negflags) {
10869                 if (*RExC_parse == 'm') {
10870                     RExC_parse++;
10871                     /* diag_listed_as: Use of %s is not allowed in Unicode
10872                        property wildcard subpatterns in regex; marked by <--
10873                        HERE in m/%s/ */
10874                     vFAIL("Use of modifier '-m' is not allowed in Unicode"
10875                           " property wildcard subpatterns");
10876                 }
10877             }
10878             else {
10879                 if (*RExC_parse == 's') {
10880                     goto modifier_illegal_in_wildcard;
10881                 }
10882             }
10883         }
10884 
10885         switch (*RExC_parse) {
10886 
10887             /* Code for the imsxn flags */
10888             CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
10889 
10890             case LOCALE_PAT_MOD:
10891                 if (has_charset_modifier) {
10892                     goto excess_modifier;
10893                 }
10894                 else if (flagsp == &negflags) {
10895                     goto neg_modifier;
10896                 }
10897                 cs = REGEX_LOCALE_CHARSET;
10898                 has_charset_modifier = LOCALE_PAT_MOD;
10899                 break;
10900             case UNICODE_PAT_MOD:
10901                 if (has_charset_modifier) {
10902                     goto excess_modifier;
10903                 }
10904                 else if (flagsp == &negflags) {
10905                     goto neg_modifier;
10906                 }
10907                 cs = REGEX_UNICODE_CHARSET;
10908                 has_charset_modifier = UNICODE_PAT_MOD;
10909                 break;
10910             case ASCII_RESTRICT_PAT_MOD:
10911                 if (flagsp == &negflags) {
10912                     goto neg_modifier;
10913                 }
10914                 if (has_charset_modifier) {
10915                     if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
10916                         goto excess_modifier;
10917                     }
10918                     /* Doubled modifier implies more restricted */
10919                     cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
10920                 }
10921                 else {
10922                     cs = REGEX_ASCII_RESTRICTED_CHARSET;
10923                 }
10924                 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
10925                 break;
10926             case DEPENDS_PAT_MOD:
10927                 if (has_use_defaults) {
10928                     goto fail_modifiers;
10929                 }
10930                 else if (flagsp == &negflags) {
10931                     goto neg_modifier;
10932                 }
10933                 else if (has_charset_modifier) {
10934                     goto excess_modifier;
10935                 }
10936 
10937                 /* The dual charset means unicode semantics if the
10938                  * pattern (or target, not known until runtime) are
10939                  * utf8, or something in the pattern indicates unicode
10940                  * semantics */
10941                 cs = (toUSE_UNI_CHARSET_NOT_DEPENDS)
10942                      ? REGEX_UNICODE_CHARSET
10943                      : REGEX_DEPENDS_CHARSET;
10944                 has_charset_modifier = DEPENDS_PAT_MOD;
10945                 break;
10946               excess_modifier:
10947                 RExC_parse++;
10948                 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
10949                     vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
10950                 }
10951                 else if (has_charset_modifier == *(RExC_parse - 1)) {
10952                     vFAIL2("Regexp modifier \"%c\" may not appear twice",
10953                                         *(RExC_parse - 1));
10954                 }
10955                 else {
10956                     vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
10957                 }
10958                 NOT_REACHED; /*NOTREACHED*/
10959               neg_modifier:
10960                 RExC_parse++;
10961                 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
10962                                     *(RExC_parse - 1));
10963                 NOT_REACHED; /*NOTREACHED*/
10964             case GLOBAL_PAT_MOD: /* 'g' */
10965                 if (RExC_pm_flags & PMf_WILDCARD) {
10966                     goto modifier_illegal_in_wildcard;
10967                 }
10968                 /*FALLTHROUGH*/
10969             case ONCE_PAT_MOD: /* 'o' */
10970                 if (ckWARN(WARN_REGEXP)) {
10971                     const I32 wflagbit = *RExC_parse == 'o'
10972                                          ? WASTED_O
10973                                          : WASTED_G;
10974                     if (! (wastedflags & wflagbit) ) {
10975                         wastedflags |= wflagbit;
10976                         /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
10977                         vWARN5(
10978                             RExC_parse + 1,
10979                             "Useless (%s%c) - %suse /%c modifier",
10980                             flagsp == &negflags ? "?-" : "?",
10981                             *RExC_parse,
10982                             flagsp == &negflags ? "don't " : "",
10983                             *RExC_parse
10984                         );
10985                     }
10986                 }
10987                 break;
10988 
10989             case CONTINUE_PAT_MOD: /* 'c' */
10990                 if (RExC_pm_flags & PMf_WILDCARD) {
10991                     goto modifier_illegal_in_wildcard;
10992                 }
10993                 if (ckWARN(WARN_REGEXP)) {
10994                     if (! (wastedflags & WASTED_C) ) {
10995                         wastedflags |= WASTED_GC;
10996                         /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
10997                         vWARN3(
10998                             RExC_parse + 1,
10999                             "Useless (%sc) - %suse /gc modifier",
11000                             flagsp == &negflags ? "?-" : "?",
11001                             flagsp == &negflags ? "don't " : ""
11002                         );
11003                     }
11004                 }
11005                 break;
11006             case KEEPCOPY_PAT_MOD: /* 'p' */
11007                 if (RExC_pm_flags & PMf_WILDCARD) {
11008                     goto modifier_illegal_in_wildcard;
11009                 }
11010                 if (flagsp == &negflags) {
11011                     ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
11012                 } else {
11013                     *flagsp |= RXf_PMf_KEEPCOPY;
11014                 }
11015                 break;
11016             case '-':
11017                 /* A flag is a default iff it is following a minus, so
11018                  * if there is a minus, it means will be trying to
11019                  * re-specify a default which is an error */
11020                 if (has_use_defaults || flagsp == &negflags) {
11021                     goto fail_modifiers;
11022                 }
11023                 flagsp = &negflags;
11024                 wastedflags = 0;  /* reset so (?g-c) warns twice */
11025                 x_mod_count = 0;
11026                 break;
11027             case ':':
11028             case ')':
11029 
11030                 if (  (RExC_pm_flags & PMf_WILDCARD)
11031                     && cs != REGEX_ASCII_MORE_RESTRICTED_CHARSET)
11032                 {
11033                     RExC_parse++;
11034                     /* diag_listed_as: Use of %s is not allowed in Unicode
11035                        property wildcard subpatterns in regex; marked by <--
11036                        HERE in m/%s/ */
11037                     vFAIL2("Use of modifier '%c' is not allowed in Unicode"
11038                            " property wildcard subpatterns",
11039                            has_charset_modifier);
11040                 }
11041 
11042                 if ((posflags & (RXf_PMf_EXTENDED|RXf_PMf_EXTENDED_MORE)) == RXf_PMf_EXTENDED) {
11043                     negflags |= RXf_PMf_EXTENDED_MORE;
11044                 }
11045                 RExC_flags |= posflags;
11046 
11047                 if (negflags & RXf_PMf_EXTENDED) {
11048                     negflags |= RXf_PMf_EXTENDED_MORE;
11049                 }
11050                 RExC_flags &= ~negflags;
11051                 set_regex_charset(&RExC_flags, cs);
11052 
11053                 return;
11054             default:
11055               fail_modifiers:
11056                 RExC_parse += SKIP_IF_CHAR(RExC_parse, RExC_end);
11057                 /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
11058                 vFAIL2utf8f("Sequence (%" UTF8f "...) not recognized",
11059                       UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
11060                 NOT_REACHED; /*NOTREACHED*/
11061         }
11062 
11063         RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
11064     }
11065 
11066     vFAIL("Sequence (?... not terminated");
11067 
11068   modifier_illegal_in_wildcard:
11069     RExC_parse++;
11070     /* diag_listed_as: Use of %s is not allowed in Unicode property wildcard
11071        subpatterns in regex; marked by <-- HERE in m/%s/ */
11072     vFAIL2("Use of modifier '%c' is not allowed in Unicode property wildcard"
11073            " subpatterns", *(RExC_parse - 1));
11074 }
11075 
11076 /*
11077  - reg - regular expression, i.e. main body or parenthesized thing
11078  *
11079  * Caller must absorb opening parenthesis.
11080  *
11081  * Combining parenthesis handling with the base level of regular expression
11082  * is a trifle forced, but the need to tie the tails of the branches to what
11083  * follows makes it hard to avoid.
11084  */
11085 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
11086 #ifdef DEBUGGING
11087 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
11088 #else
11089 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
11090 #endif
11091 
11092 STATIC regnode_offset
S_handle_named_backref(pTHX_ RExC_state_t * pRExC_state,I32 * flagp,char * parse_start,char ch)11093 S_handle_named_backref(pTHX_ RExC_state_t *pRExC_state,
11094                              I32 *flagp,
11095                              char * parse_start,
11096                              char ch
11097                       )
11098 {
11099     regnode_offset ret;
11100     char* name_start = RExC_parse;
11101     U32 num = 0;
11102     SV *sv_dat = reg_scan_name(pRExC_state, REG_RSN_RETURN_DATA);
11103     DECLARE_AND_GET_RE_DEBUG_FLAGS;
11104 
11105     PERL_ARGS_ASSERT_HANDLE_NAMED_BACKREF;
11106 
11107     if (RExC_parse != name_start && ch == '}') {
11108         while (isBLANK(*RExC_parse)) {
11109             RExC_parse++;
11110         }
11111     }
11112     if (RExC_parse == name_start || *RExC_parse != ch) {
11113         /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
11114         vFAIL2("Sequence %.3s... not terminated", parse_start);
11115     }
11116 
11117     if (sv_dat) {
11118         num = add_data( pRExC_state, STR_WITH_LEN("S"));
11119         RExC_rxi->data->data[num]=(void*)sv_dat;
11120         SvREFCNT_inc_simple_void_NN(sv_dat);
11121     }
11122     RExC_sawback = 1;
11123     ret = reganode(pRExC_state,
11124                    ((! FOLD)
11125                      ? REFN
11126                      : (ASCII_FOLD_RESTRICTED)
11127                        ? REFFAN
11128                        : (AT_LEAST_UNI_SEMANTICS)
11129                          ? REFFUN
11130                          : (LOC)
11131                            ? REFFLN
11132                            : REFFN),
11133                     num);
11134     *flagp |= HASWIDTH;
11135 
11136     Set_Node_Offset(REGNODE_p(ret), parse_start+1);
11137     Set_Node_Cur_Length(REGNODE_p(ret), parse_start);
11138 
11139     nextchar(pRExC_state);
11140     return ret;
11141 }
11142 
11143 /* Below are the main parsing routines.
11144  *
11145  * S_reg()      parses a whole pattern or subpattern.  It itself handles things
11146  *              like the 'xyz' in '(?xyz:...)', and calls S_regbranch for each
11147  *              alternation '|' in the '...' pattern.
11148  * S_regbranch() effectively implements the concatenation operator, handling
11149  *              one alternative of '|', repeatedly calling S_regpiece on each
11150  *              segment of the input.
11151  * S_regpiece() calls S_regatom to handle the next atomic chunk of the input,
11152  *              and then adds any quantifier for that chunk.
11153  * S_regatom()  parses the next chunk of the input, returning when it
11154  *              determines it has found a complete atomic chunk.  The chunk may
11155  *              be a nested subpattern, in which case S_reg is called
11156  *              recursively
11157  *
11158  * The functions generate regnodes as they go along, appending each to the
11159  * pattern data structure so far.  They return the offset of the current final
11160  * node into that structure, or 0 on failure.
11161  *
11162  * There are three parameters common to all of them:
11163  *   pRExC_state    is a structure with much information about the current
11164  *                  state of the parse.  It's easy to add new elements to
11165  *                  convey new information, but beware that an error return may
11166  *                  require clearing the element.
11167  *   flagp          is a pointer to bit flags set in a lower level to pass up
11168  *                  to higher levels information, such as the cause of a
11169  *                  failure, or some characteristic about the generated node
11170  *   depth          is roughly the recursion depth, mostly unused except for
11171  *                  pretty printing debugging info.
11172  *
11173  * There are ancillary functions that these may farm work out to, using the
11174  * same parameters.
11175  *
11176  * The protocol for handling flags is that each function will, before
11177  * returning, add into *flagp the flags it needs to pass up.  Each function has
11178  * a second flags variable, typically named 'flags', which it sets and clears
11179  * at will.  Flag bits in it are used in that function, and it calls the next
11180  * layer down with its 'flagp' parameter set to '&flags'.  Thus, upon return,
11181  * 'flags' will contain whatever it had before the call, plus whatever that
11182  * function passed up.  If it wants to pass any of these up to its caller, it
11183  * has to add them to its *flagp.  This means that it takes extra steps to keep
11184  * passing a flag upwards, and otherwise the flag bit is cleared for higher
11185  * functions.
11186  */
11187 
11188 /* On success, returns the offset at which any next node should be placed into
11189  * the regex engine program being compiled.
11190  *
11191  * Returns 0 otherwise, with *flagp set to indicate why:
11192  *  TRYAGAIN        at the end of (?) that only sets flags.
11193  *  RESTART_PARSE   if the parse needs to be restarted, or'd with
11194  *                  NEED_UTF8 if the pattern needs to be upgraded to UTF-8.
11195  *  Otherwise would only return 0 if regbranch() returns 0, which cannot
11196  *  happen.  */
11197 STATIC regnode_offset
S_reg(pTHX_ RExC_state_t * pRExC_state,I32 paren,I32 * flagp,U32 depth)11198 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp, U32 depth)
11199     /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
11200      * 2 is like 1, but indicates that nextchar() has been called to advance
11201      * RExC_parse beyond the '('.  Things like '(?' are indivisible tokens, and
11202      * this flag alerts us to the need to check for that */
11203 {
11204     regnode_offset ret = 0;    /* Will be the head of the group. */
11205     regnode_offset br;
11206     regnode_offset lastbr;
11207     regnode_offset ender = 0;
11208     I32 parno = 0;
11209     I32 flags;
11210     U32 oregflags = RExC_flags;
11211     bool have_branch = 0;
11212     bool is_open = 0;
11213     I32 freeze_paren = 0;
11214     I32 after_freeze = 0;
11215     I32 num; /* numeric backreferences */
11216     SV * max_open;  /* Max number of unclosed parens */
11217     I32 was_in_lookaround = RExC_in_lookaround;
11218 
11219     char * parse_start = RExC_parse; /* MJD */
11220     char * const oregcomp_parse = RExC_parse;
11221 
11222     DECLARE_AND_GET_RE_DEBUG_FLAGS;
11223 
11224     PERL_ARGS_ASSERT_REG;
11225     DEBUG_PARSE("reg ");
11226 
11227     max_open = get_sv(RE_COMPILE_RECURSION_LIMIT, GV_ADD);
11228     assert(max_open);
11229     if (!SvIOK(max_open)) {
11230         sv_setiv(max_open, RE_COMPILE_RECURSION_INIT);
11231     }
11232     if (depth > 4 * (UV) SvIV(max_open)) { /* We increase depth by 4 for each
11233                                               open paren */
11234         vFAIL("Too many nested open parens");
11235     }
11236 
11237     *flagp = 0;				/* Initialize. */
11238 
11239     /* Having this true makes it feasible to have a lot fewer tests for the
11240      * parse pointer being in scope.  For example, we can write
11241      *      while(isFOO(*RExC_parse)) RExC_parse++;
11242      * instead of
11243      *      while(RExC_parse < RExC_end && isFOO(*RExC_parse)) RExC_parse++;
11244      */
11245     assert(*RExC_end == '\0');
11246 
11247     /* Make an OPEN node, if parenthesized. */
11248     if (paren) {
11249 
11250         /* Under /x, space and comments can be gobbled up between the '(' and
11251          * here (if paren ==2).  The forms '(*VERB' and '(?...' disallow such
11252          * intervening space, as the sequence is a token, and a token should be
11253          * indivisible */
11254         bool has_intervening_patws = (paren == 2)
11255                                   && *(RExC_parse - 1) != '(';
11256 
11257         if (RExC_parse >= RExC_end) {
11258             vFAIL("Unmatched (");
11259         }
11260 
11261         if (paren == 'r') {     /* Atomic script run */
11262             paren = '>';
11263             goto parse_rest;
11264         }
11265         else if ( *RExC_parse == '*') { /* (*VERB:ARG), (*construct:...) */
11266             char *start_verb = RExC_parse + 1;
11267             STRLEN verb_len;
11268             char *start_arg = NULL;
11269             unsigned char op = 0;
11270             int arg_required = 0;
11271             int internal_argval = -1; /* if >-1 we are not allowed an argument*/
11272             bool has_upper = FALSE;
11273 
11274             if (has_intervening_patws) {
11275                 RExC_parse++;   /* past the '*' */
11276 
11277                 /* For strict backwards compatibility, don't change the message
11278                  * now that we also have lowercase operands */
11279                 if (isUPPER(*RExC_parse)) {
11280                     vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
11281                 }
11282                 else {
11283                     vFAIL("In '(*...)', the '(' and '*' must be adjacent");
11284                 }
11285             }
11286             while (RExC_parse < RExC_end && *RExC_parse != ')' ) {
11287                 if ( *RExC_parse == ':' ) {
11288                     start_arg = RExC_parse + 1;
11289                     break;
11290                 }
11291                 else if (! UTF) {
11292                     if (isUPPER(*RExC_parse)) {
11293                         has_upper = TRUE;
11294                     }
11295                     RExC_parse++;
11296                 }
11297                 else {
11298                     RExC_parse += UTF8SKIP(RExC_parse);
11299                 }
11300             }
11301             verb_len = RExC_parse - start_verb;
11302             if ( start_arg ) {
11303                 if (RExC_parse >= RExC_end) {
11304                     goto unterminated_verb_pattern;
11305                 }
11306 
11307                 RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
11308                 while ( RExC_parse < RExC_end && *RExC_parse != ')' ) {
11309                     RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
11310                 }
11311                 if ( RExC_parse >= RExC_end || *RExC_parse != ')' ) {
11312                   unterminated_verb_pattern:
11313                     if (has_upper) {
11314                         vFAIL("Unterminated verb pattern argument");
11315                     }
11316                     else {
11317                         vFAIL("Unterminated '(*...' argument");
11318                     }
11319                 }
11320             } else {
11321                 if ( RExC_parse >= RExC_end || *RExC_parse != ')' ) {
11322                     if (has_upper) {
11323                         vFAIL("Unterminated verb pattern");
11324                     }
11325                     else {
11326                         vFAIL("Unterminated '(*...' construct");
11327                     }
11328                 }
11329             }
11330 
11331             /* Here, we know that RExC_parse < RExC_end */
11332 
11333             switch ( *start_verb ) {
11334             case 'A':  /* (*ACCEPT) */
11335                 if ( memEQs(start_verb, verb_len,"ACCEPT") ) {
11336                     op = ACCEPT;
11337                     internal_argval = RExC_nestroot;
11338                 }
11339                 break;
11340             case 'C':  /* (*COMMIT) */
11341                 if ( memEQs(start_verb, verb_len,"COMMIT") )
11342                     op = COMMIT;
11343                 break;
11344             case 'F':  /* (*FAIL) */
11345                 if ( verb_len==1 || memEQs(start_verb, verb_len,"FAIL") ) {
11346                     op = OPFAIL;
11347                 }
11348                 break;
11349             case ':':  /* (*:NAME) */
11350             case 'M':  /* (*MARK:NAME) */
11351                 if ( verb_len==0 || memEQs(start_verb, verb_len,"MARK") ) {
11352                     op = MARKPOINT;
11353                     arg_required = 1;
11354                 }
11355                 break;
11356             case 'P':  /* (*PRUNE) */
11357                 if ( memEQs(start_verb, verb_len,"PRUNE") )
11358                     op = PRUNE;
11359                 break;
11360             case 'S':   /* (*SKIP) */
11361                 if ( memEQs(start_verb, verb_len,"SKIP") )
11362                     op = SKIP;
11363                 break;
11364             case 'T':  /* (*THEN) */
11365                 /* [19:06] <TimToady> :: is then */
11366                 if ( memEQs(start_verb, verb_len,"THEN") ) {
11367                     op = CUTGROUP;
11368                     RExC_seen |= REG_CUTGROUP_SEEN;
11369                 }
11370                 break;
11371             case 'a':
11372                 if (   memEQs(start_verb, verb_len, "asr")
11373                     || memEQs(start_verb, verb_len, "atomic_script_run"))
11374                 {
11375                     paren = 'r';        /* Mnemonic: recursed run */
11376                     goto script_run;
11377                 }
11378                 else if (memEQs(start_verb, verb_len, "atomic")) {
11379                     paren = 't';    /* AtOMIC */
11380                     goto alpha_assertions;
11381                 }
11382                 break;
11383             case 'p':
11384                 if (   memEQs(start_verb, verb_len, "plb")
11385                     || memEQs(start_verb, verb_len, "positive_lookbehind"))
11386                 {
11387                     paren = 'b';
11388                     goto lookbehind_alpha_assertions;
11389                 }
11390                 else if (   memEQs(start_verb, verb_len, "pla")
11391                          || memEQs(start_verb, verb_len, "positive_lookahead"))
11392                 {
11393                     paren = 'a';
11394                     goto alpha_assertions;
11395                 }
11396                 break;
11397             case 'n':
11398                 if (   memEQs(start_verb, verb_len, "nlb")
11399                     || memEQs(start_verb, verb_len, "negative_lookbehind"))
11400                 {
11401                     paren = 'B';
11402                     goto lookbehind_alpha_assertions;
11403                 }
11404                 else if (   memEQs(start_verb, verb_len, "nla")
11405                          || memEQs(start_verb, verb_len, "negative_lookahead"))
11406                 {
11407                     paren = 'A';
11408                     goto alpha_assertions;
11409                 }
11410                 break;
11411             case 's':
11412                 if (   memEQs(start_verb, verb_len, "sr")
11413                     || memEQs(start_verb, verb_len, "script_run"))
11414                 {
11415                     regnode_offset atomic;
11416 
11417                     paren = 's';
11418 
11419                    script_run:
11420 
11421                     /* This indicates Unicode rules. */
11422                     REQUIRE_UNI_RULES(flagp, 0);
11423 
11424                     if (! start_arg) {
11425                         goto no_colon;
11426                     }
11427 
11428                     RExC_parse = start_arg;
11429 
11430                     if (RExC_in_script_run) {
11431 
11432                         /*  Nested script runs are treated as no-ops, because
11433                          *  if the nested one fails, the outer one must as
11434                          *  well.  It could fail sooner, and avoid (??{} with
11435                          *  side effects, but that is explicitly documented as
11436                          *  undefined behavior. */
11437 
11438                         ret = 0;
11439 
11440                         if (paren == 's') {
11441                             paren = ':';
11442                             goto parse_rest;
11443                         }
11444 
11445                         /* But, the atomic part of a nested atomic script run
11446                          * isn't a no-op, but can be treated just like a '(?>'
11447                          * */
11448                         paren = '>';
11449                         goto parse_rest;
11450                     }
11451 
11452                     if (paren == 's') {
11453                         /* Here, we're starting a new regular script run */
11454                         ret = reg_node(pRExC_state, SROPEN);
11455                         RExC_in_script_run = 1;
11456                         is_open = 1;
11457                         goto parse_rest;
11458                     }
11459 
11460                     /* Here, we are starting an atomic script run.  This is
11461                      * handled by recursing to deal with the atomic portion
11462                      * separately, enclosed in SROPEN ... SRCLOSE nodes */
11463 
11464                     ret = reg_node(pRExC_state, SROPEN);
11465 
11466                     RExC_in_script_run = 1;
11467 
11468                     atomic = reg(pRExC_state, 'r', &flags, depth);
11469                     if (flags & (RESTART_PARSE|NEED_UTF8)) {
11470                         *flagp = flags & (RESTART_PARSE|NEED_UTF8);
11471                         return 0;
11472                     }
11473 
11474                     if (! REGTAIL(pRExC_state, ret, atomic)) {
11475                         REQUIRE_BRANCHJ(flagp, 0);
11476                     }
11477 
11478                     if (! REGTAIL(pRExC_state, atomic, reg_node(pRExC_state,
11479                                                                 SRCLOSE)))
11480                     {
11481                         REQUIRE_BRANCHJ(flagp, 0);
11482                     }
11483 
11484                     RExC_in_script_run = 0;
11485                     return ret;
11486                 }
11487 
11488                 break;
11489 
11490             lookbehind_alpha_assertions:
11491                 RExC_seen |= REG_LOOKBEHIND_SEEN;
11492                 /*FALLTHROUGH*/
11493 
11494             alpha_assertions:
11495 
11496                 RExC_in_lookaround++;
11497                 RExC_seen_zerolen++;
11498 
11499                 if (! start_arg) {
11500                     goto no_colon;
11501                 }
11502 
11503                 /* An empty negative lookahead assertion simply is failure */
11504                 if (paren == 'A' && RExC_parse == start_arg) {
11505                     ret=reganode(pRExC_state, OPFAIL, 0);
11506                     nextchar(pRExC_state);
11507                     return ret;
11508                 }
11509 
11510                 RExC_parse = start_arg;
11511                 goto parse_rest;
11512 
11513               no_colon:
11514                 vFAIL2utf8f(
11515                 "'(*%" UTF8f "' requires a terminating ':'",
11516                 UTF8fARG(UTF, verb_len, start_verb));
11517                 NOT_REACHED; /*NOTREACHED*/
11518 
11519             } /* End of switch */
11520             if ( ! op ) {
11521                 RExC_parse += UTF
11522                               ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
11523                               : 1;
11524                 if (has_upper || verb_len == 0) {
11525                     vFAIL2utf8f(
11526                     "Unknown verb pattern '%" UTF8f "'",
11527                     UTF8fARG(UTF, verb_len, start_verb));
11528                 }
11529                 else {
11530                     vFAIL2utf8f(
11531                     "Unknown '(*...)' construct '%" UTF8f "'",
11532                     UTF8fARG(UTF, verb_len, start_verb));
11533                 }
11534             }
11535             if ( RExC_parse == start_arg ) {
11536                 start_arg = NULL;
11537             }
11538             if ( arg_required && !start_arg ) {
11539                 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
11540                     (int) verb_len, start_verb);
11541             }
11542             if (internal_argval == -1) {
11543                 ret = reganode(pRExC_state, op, 0);
11544             } else {
11545                 ret = reg2Lanode(pRExC_state, op, 0, internal_argval);
11546             }
11547             RExC_seen |= REG_VERBARG_SEEN;
11548             if (start_arg) {
11549                 SV *sv = newSVpvn( start_arg,
11550                                     RExC_parse - start_arg);
11551                 ARG(REGNODE_p(ret)) = add_data( pRExC_state,
11552                                         STR_WITH_LEN("S"));
11553                 RExC_rxi->data->data[ARG(REGNODE_p(ret))]=(void*)sv;
11554                 FLAGS(REGNODE_p(ret)) = 1;
11555             } else {
11556                 FLAGS(REGNODE_p(ret)) = 0;
11557             }
11558             if ( internal_argval != -1 )
11559                 ARG2L_SET(REGNODE_p(ret), internal_argval);
11560             nextchar(pRExC_state);
11561             return ret;
11562         }
11563         else if (*RExC_parse == '?') { /* (?...) */
11564             bool is_logical = 0;
11565             const char * const seqstart = RExC_parse;
11566             const char * endptr;
11567             const char non_existent_group_msg[]
11568                                             = "Reference to nonexistent group";
11569             const char impossible_group[] = "Invalid reference to group";
11570 
11571             if (has_intervening_patws) {
11572                 RExC_parse++;
11573                 vFAIL("In '(?...)', the '(' and '?' must be adjacent");
11574             }
11575 
11576             RExC_parse++;           /* past the '?' */
11577             paren = *RExC_parse;    /* might be a trailing NUL, if not
11578                                        well-formed */
11579             RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
11580             if (RExC_parse > RExC_end) {
11581                 paren = '\0';
11582             }
11583             ret = 0;			/* For look-ahead/behind. */
11584             switch (paren) {
11585 
11586             case 'P':	/* (?P...) variants for those used to PCRE/Python */
11587                 paren = *RExC_parse;
11588                 if ( paren == '<') {    /* (?P<...>) named capture */
11589                     RExC_parse++;
11590                     if (RExC_parse >= RExC_end) {
11591                         vFAIL("Sequence (?P<... not terminated");
11592                     }
11593                     goto named_capture;
11594                 }
11595                 else if (paren == '>') {   /* (?P>name) named recursion */
11596                     RExC_parse++;
11597                     if (RExC_parse >= RExC_end) {
11598                         vFAIL("Sequence (?P>... not terminated");
11599                     }
11600                     goto named_recursion;
11601                 }
11602                 else if (paren == '=') {   /* (?P=...)  named backref */
11603                     RExC_parse++;
11604                     return handle_named_backref(pRExC_state, flagp,
11605                                                 parse_start, ')');
11606                 }
11607                 RExC_parse += SKIP_IF_CHAR(RExC_parse, RExC_end);
11608                 /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
11609                 vFAIL3("Sequence (%.*s...) not recognized",
11610                                 (int) (RExC_parse - seqstart), seqstart);
11611                 NOT_REACHED; /*NOTREACHED*/
11612             case '<':           /* (?<...) */
11613                 /* If you want to support (?<*...), first reconcile with GH #17363 */
11614                 if (*RExC_parse == '!')
11615                     paren = ',';
11616                 else if (*RExC_parse != '=')
11617               named_capture:
11618                 {               /* (?<...>) */
11619                     char *name_start;
11620                     SV *svname;
11621                     paren= '>';
11622                 /* FALLTHROUGH */
11623             case '\'':          /* (?'...') */
11624                     name_start = RExC_parse;
11625                     svname = reg_scan_name(pRExC_state, REG_RSN_RETURN_NAME);
11626                     if (   RExC_parse == name_start
11627                         || RExC_parse >= RExC_end
11628                         || *RExC_parse != paren)
11629                     {
11630                         vFAIL2("Sequence (?%c... not terminated",
11631                             paren=='>' ? '<' : (char) paren);
11632                     }
11633                     {
11634                         HE *he_str;
11635                         SV *sv_dat = NULL;
11636                         if (!svname) /* shouldn't happen */
11637                             Perl_croak(aTHX_
11638                                 "panic: reg_scan_name returned NULL");
11639                         if (!RExC_paren_names) {
11640                             RExC_paren_names= newHV();
11641                             sv_2mortal(MUTABLE_SV(RExC_paren_names));
11642 #ifdef DEBUGGING
11643                             RExC_paren_name_list= newAV();
11644                             sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
11645 #endif
11646                         }
11647                         he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
11648                         if ( he_str )
11649                             sv_dat = HeVAL(he_str);
11650                         if ( ! sv_dat ) {
11651                             /* croak baby croak */
11652                             Perl_croak(aTHX_
11653                                 "panic: paren_name hash element allocation failed");
11654                         } else if ( SvPOK(sv_dat) ) {
11655                             /* (?|...) can mean we have dupes so scan to check
11656                                its already been stored. Maybe a flag indicating
11657                                we are inside such a construct would be useful,
11658                                but the arrays are likely to be quite small, so
11659                                for now we punt -- dmq */
11660                             IV count = SvIV(sv_dat);
11661                             I32 *pv = (I32*)SvPVX(sv_dat);
11662                             IV i;
11663                             for ( i = 0 ; i < count ; i++ ) {
11664                                 if ( pv[i] == RExC_npar ) {
11665                                     count = 0;
11666                                     break;
11667                                 }
11668                             }
11669                             if ( count ) {
11670                                 pv = (I32*)SvGROW(sv_dat,
11671                                                 SvCUR(sv_dat) + sizeof(I32)+1);
11672                                 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
11673                                 pv[count] = RExC_npar;
11674                                 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
11675                             }
11676                         } else {
11677                             (void)SvUPGRADE(sv_dat, SVt_PVNV);
11678                             sv_setpvn(sv_dat, (char *)&(RExC_npar),
11679                                                                 sizeof(I32));
11680                             SvIOK_on(sv_dat);
11681                             SvIV_set(sv_dat, 1);
11682                         }
11683 #ifdef DEBUGGING
11684                         /* Yes this does cause a memory leak in debugging Perls
11685                          * */
11686                         if (!av_store(RExC_paren_name_list,
11687                                       RExC_npar, SvREFCNT_inc_NN(svname)))
11688                             SvREFCNT_dec_NN(svname);
11689 #endif
11690 
11691                         /*sv_dump(sv_dat);*/
11692                     }
11693                     nextchar(pRExC_state);
11694                     paren = 1;
11695                     goto capturing_parens;
11696                 }
11697 
11698                 RExC_seen |= REG_LOOKBEHIND_SEEN;
11699                 RExC_in_lookaround++;
11700                 RExC_parse++;
11701                 if (RExC_parse >= RExC_end) {
11702                     vFAIL("Sequence (?... not terminated");
11703                 }
11704                 RExC_seen_zerolen++;
11705                 break;
11706             case '=':           /* (?=...) */
11707                 RExC_seen_zerolen++;
11708                 RExC_in_lookaround++;
11709                 break;
11710             case '!':           /* (?!...) */
11711                 RExC_seen_zerolen++;
11712                 /* check if we're really just a "FAIL" assertion */
11713                 skip_to_be_ignored_text(pRExC_state, &RExC_parse,
11714                                         FALSE /* Don't force to /x */ );
11715                 if (*RExC_parse == ')') {
11716                     ret=reganode(pRExC_state, OPFAIL, 0);
11717                     nextchar(pRExC_state);
11718                     return ret;
11719                 }
11720                 RExC_in_lookaround++;
11721                 break;
11722             case '|':           /* (?|...) */
11723                 /* branch reset, behave like a (?:...) except that
11724                    buffers in alternations share the same numbers */
11725                 paren = ':';
11726                 after_freeze = freeze_paren = RExC_npar;
11727 
11728                 /* XXX This construct currently requires an extra pass.
11729                  * Investigation would be required to see if that could be
11730                  * changed */
11731                 REQUIRE_PARENS_PASS;
11732                 break;
11733             case ':':           /* (?:...) */
11734             case '>':           /* (?>...) */
11735                 break;
11736             case '$':           /* (?$...) */
11737             case '@':           /* (?@...) */
11738                 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
11739                 break;
11740             case '0' :           /* (?0) */
11741             case 'R' :           /* (?R) */
11742                 if (RExC_parse == RExC_end || *RExC_parse != ')')
11743                     FAIL("Sequence (?R) not terminated");
11744                 num = 0;
11745                 RExC_seen |= REG_RECURSE_SEEN;
11746 
11747                 /* XXX These constructs currently require an extra pass.
11748                  * It probably could be changed */
11749                 REQUIRE_PARENS_PASS;
11750 
11751                 *flagp |= POSTPONED;
11752                 goto gen_recurse_regop;
11753                 /*notreached*/
11754             /* named and numeric backreferences */
11755             case '&':            /* (?&NAME) */
11756                 parse_start = RExC_parse - 1;
11757               named_recursion:
11758                 {
11759                     SV *sv_dat = reg_scan_name(pRExC_state,
11760                                                REG_RSN_RETURN_DATA);
11761                    num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
11762                 }
11763                 if (RExC_parse >= RExC_end || *RExC_parse != ')')
11764                     vFAIL("Sequence (?&... not terminated");
11765                 goto gen_recurse_regop;
11766                 /* NOTREACHED */
11767             case '+':
11768                 if (! inRANGE(RExC_parse[0], '1', '9')) {
11769                     RExC_parse++;
11770                     vFAIL("Illegal pattern");
11771                 }
11772                 goto parse_recursion;
11773                 /* NOTREACHED*/
11774             case '-': /* (?-1) */
11775                 if (! inRANGE(RExC_parse[0], '1', '9')) {
11776                     RExC_parse--; /* rewind to let it be handled later */
11777                     goto parse_flags;
11778                 }
11779                 /* FALLTHROUGH */
11780             case '1': case '2': case '3': case '4': /* (?1) */
11781             case '5': case '6': case '7': case '8': case '9':
11782                 RExC_parse = (char *) seqstart + 1;  /* Point to the digit */
11783               parse_recursion:
11784                 {
11785                     bool is_neg = FALSE;
11786                     UV unum;
11787                     parse_start = RExC_parse - 1; /* MJD */
11788                     if (*RExC_parse == '-') {
11789                         RExC_parse++;
11790                         is_neg = TRUE;
11791                     }
11792                     endptr = RExC_end;
11793                     if (grok_atoUV(RExC_parse, &unum, &endptr)
11794                         && unum <= I32_MAX
11795                     ) {
11796                         num = (I32)unum;
11797                         RExC_parse = (char*)endptr;
11798                     }
11799                     else {  /* Overflow, or something like that.  Position
11800                                beyond all digits for the message */
11801                         while (RExC_parse < RExC_end && isDIGIT(*RExC_parse))  {
11802                             RExC_parse++;
11803                         }
11804                         vFAIL(impossible_group);
11805                     }
11806                     if (is_neg) {
11807                         /* -num is always representable on 1 and 2's complement
11808                          * machines */
11809                         num = -num;
11810                     }
11811                 }
11812                 if (*RExC_parse!=')')
11813                     vFAIL("Expecting close bracket");
11814 
11815               gen_recurse_regop:
11816                 if (paren == '-' || paren == '+') {
11817 
11818                     /* Don't overflow */
11819                     if (UNLIKELY(I32_MAX - RExC_npar < num)) {
11820                         RExC_parse++;
11821                         vFAIL(impossible_group);
11822                     }
11823 
11824                     /*
11825                     Diagram of capture buffer numbering.
11826                     Top line is the normal capture buffer numbers
11827                     Bottom line is the negative indexing as from
11828                     the X (the (?-2))
11829 
11830                         1 2    3 4 5 X   Y      6 7
11831                        /(a(x)y)(a(b(c(?+2)d)e)f)(g(h))/
11832                        /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
11833                     -   5 4    3 2 1 X   Y      x x
11834 
11835                     Resolve to absolute group.  Recall that RExC_npar is +1 of
11836                     the actual parenthesis group number.  For lookahead, we
11837                     have to compensate for that.  Using the above example, when
11838                     we get to Y in the parse, num is 2 and RExC_npar is 6.  We
11839                     want 7 for +2, and 4 for -2.
11840                     */
11841                     if ( paren == '+' ) {
11842                         num--;
11843                     }
11844 
11845                     num += RExC_npar;
11846 
11847                     if (paren == '-' && num < 1) {
11848                         RExC_parse++;
11849                         vFAIL(non_existent_group_msg);
11850                     }
11851                 }
11852 
11853                 if (num >= RExC_npar) {
11854 
11855                     /* It might be a forward reference; we can't fail until we
11856                      * know, by completing the parse to get all the groups, and
11857                      * then reparsing */
11858                     if (ALL_PARENS_COUNTED)  {
11859                         if (num >= RExC_total_parens) {
11860                             RExC_parse++;
11861                             vFAIL(non_existent_group_msg);
11862                         }
11863                     }
11864                     else {
11865                         REQUIRE_PARENS_PASS;
11866                     }
11867                 }
11868 
11869                 /* We keep track how many GOSUB items we have produced.
11870                    To start off the ARG2L() of the GOSUB holds its "id",
11871                    which is used later in conjunction with RExC_recurse
11872                    to calculate the offset we need to jump for the GOSUB,
11873                    which it will store in the final representation.
11874                    We have to defer the actual calculation until much later
11875                    as the regop may move.
11876                  */
11877                 ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
11878                 RExC_recurse_count++;
11879                 DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
11880                     "%*s%*s Recurse #%" UVuf " to %" IVdf "\n",
11881                             22, "|    |", (int)(depth * 2 + 1), "",
11882                             (UV)ARG(REGNODE_p(ret)),
11883                             (IV)ARG2L(REGNODE_p(ret))));
11884                 RExC_seen |= REG_RECURSE_SEEN;
11885 
11886                 Set_Node_Length(REGNODE_p(ret),
11887                                 1 + regarglen[OP(REGNODE_p(ret))]); /* MJD */
11888                 Set_Node_Offset(REGNODE_p(ret), parse_start); /* MJD */
11889 
11890                 *flagp |= POSTPONED;
11891                 assert(*RExC_parse == ')');
11892                 nextchar(pRExC_state);
11893                 return ret;
11894 
11895             /* NOTREACHED */
11896 
11897             case '?':           /* (??...) */
11898                 is_logical = 1;
11899                 if (*RExC_parse != '{') {
11900                     RExC_parse += SKIP_IF_CHAR(RExC_parse, RExC_end);
11901                     /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
11902                     vFAIL2utf8f(
11903                         "Sequence (%" UTF8f "...) not recognized",
11904                         UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
11905                     NOT_REACHED; /*NOTREACHED*/
11906                 }
11907                 *flagp |= POSTPONED;
11908                 paren = '{';
11909                 RExC_parse++;
11910                 /* FALLTHROUGH */
11911             case '{':           /* (?{...}) */
11912             {
11913                 U32 n = 0;
11914                 struct reg_code_block *cb;
11915                 OP * o;
11916 
11917                 RExC_seen_zerolen++;
11918 
11919                 if (   !pRExC_state->code_blocks
11920                     || pRExC_state->code_index
11921                                         >= pRExC_state->code_blocks->count
11922                     || pRExC_state->code_blocks->cb[pRExC_state->code_index].start
11923                         != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
11924                             - RExC_start)
11925                 ) {
11926                     if (RExC_pm_flags & PMf_USE_RE_EVAL)
11927                         FAIL("panic: Sequence (?{...}): no code block found\n");
11928                     FAIL("Eval-group not allowed at runtime, use re 'eval'");
11929                 }
11930                 /* this is a pre-compiled code block (?{...}) */
11931                 cb = &pRExC_state->code_blocks->cb[pRExC_state->code_index];
11932                 RExC_parse = RExC_start + cb->end;
11933                 o = cb->block;
11934                 if (cb->src_regex) {
11935                     n = add_data(pRExC_state, STR_WITH_LEN("rl"));
11936                     RExC_rxi->data->data[n] =
11937                         (void*)SvREFCNT_inc((SV*)cb->src_regex);
11938                     RExC_rxi->data->data[n+1] = (void*)o;
11939                 }
11940                 else {
11941                     n = add_data(pRExC_state,
11942                             (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
11943                     RExC_rxi->data->data[n] = (void*)o;
11944                 }
11945                 pRExC_state->code_index++;
11946                 nextchar(pRExC_state);
11947 
11948                 if (is_logical) {
11949                     regnode_offset eval;
11950                     ret = reg_node(pRExC_state, LOGICAL);
11951 
11952                     eval = reg2Lanode(pRExC_state, EVAL,
11953                                        n,
11954 
11955                                        /* for later propagation into (??{})
11956                                         * return value */
11957                                        RExC_flags & RXf_PMf_COMPILETIME
11958                                       );
11959                     FLAGS(REGNODE_p(ret)) = 2;
11960                     if (! REGTAIL(pRExC_state, ret, eval)) {
11961                         REQUIRE_BRANCHJ(flagp, 0);
11962                     }
11963                     /* deal with the length of this later - MJD */
11964                     return ret;
11965                 }
11966                 ret = reg2Lanode(pRExC_state, EVAL, n, 0);
11967                 Set_Node_Length(REGNODE_p(ret), RExC_parse - parse_start + 1);
11968                 Set_Node_Offset(REGNODE_p(ret), parse_start);
11969                 return ret;
11970             }
11971             case '(':           /* (?(?{...})...) and (?(?=...)...) */
11972             {
11973                 int is_define= 0;
11974                 const int DEFINE_len = sizeof("DEFINE") - 1;
11975                 if (    RExC_parse < RExC_end - 1
11976                     && (   (       RExC_parse[0] == '?'        /* (?(?...)) */
11977                             && (   RExC_parse[1] == '='
11978                                 || RExC_parse[1] == '!'
11979                                 || RExC_parse[1] == '<'
11980                                 || RExC_parse[1] == '{'))
11981                         || (       RExC_parse[0] == '*'        /* (?(*...)) */
11982                             && (   memBEGINs(RExC_parse + 1,
11983                                          (Size_t) (RExC_end - (RExC_parse + 1)),
11984                                          "pla:")
11985                                 || memBEGINs(RExC_parse + 1,
11986                                          (Size_t) (RExC_end - (RExC_parse + 1)),
11987                                          "plb:")
11988                                 || memBEGINs(RExC_parse + 1,
11989                                          (Size_t) (RExC_end - (RExC_parse + 1)),
11990                                          "nla:")
11991                                 || memBEGINs(RExC_parse + 1,
11992                                          (Size_t) (RExC_end - (RExC_parse + 1)),
11993                                          "nlb:")
11994                                 || memBEGINs(RExC_parse + 1,
11995                                          (Size_t) (RExC_end - (RExC_parse + 1)),
11996                                          "positive_lookahead:")
11997                                 || memBEGINs(RExC_parse + 1,
11998                                          (Size_t) (RExC_end - (RExC_parse + 1)),
11999                                          "positive_lookbehind:")
12000                                 || memBEGINs(RExC_parse + 1,
12001                                          (Size_t) (RExC_end - (RExC_parse + 1)),
12002                                          "negative_lookahead:")
12003                                 || memBEGINs(RExC_parse + 1,
12004                                          (Size_t) (RExC_end - (RExC_parse + 1)),
12005                                          "negative_lookbehind:"))))
12006                 ) { /* Lookahead or eval. */
12007                     I32 flag;
12008                     regnode_offset tail;
12009 
12010                     ret = reg_node(pRExC_state, LOGICAL);
12011                     FLAGS(REGNODE_p(ret)) = 1;
12012 
12013                     tail = reg(pRExC_state, 1, &flag, depth+1);
12014                     RETURN_FAIL_ON_RESTART(flag, flagp);
12015                     if (! REGTAIL(pRExC_state, ret, tail)) {
12016                         REQUIRE_BRANCHJ(flagp, 0);
12017                     }
12018                     goto insert_if;
12019                 }
12020                 else if (   RExC_parse[0] == '<'     /* (?(<NAME>)...) */
12021                          || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
12022                 {
12023                     char ch = RExC_parse[0] == '<' ? '>' : '\'';
12024                     char *name_start= RExC_parse++;
12025                     U32 num = 0;
12026                     SV *sv_dat=reg_scan_name(pRExC_state, REG_RSN_RETURN_DATA);
12027                     if (   RExC_parse == name_start
12028                         || RExC_parse >= RExC_end
12029                         || *RExC_parse != ch)
12030                     {
12031                         vFAIL2("Sequence (?(%c... not terminated",
12032                             (ch == '>' ? '<' : ch));
12033                     }
12034                     RExC_parse++;
12035                     if (sv_dat) {
12036                         num = add_data( pRExC_state, STR_WITH_LEN("S"));
12037                         RExC_rxi->data->data[num]=(void*)sv_dat;
12038                         SvREFCNT_inc_simple_void_NN(sv_dat);
12039                     }
12040                     ret = reganode(pRExC_state, GROUPPN, num);
12041                     goto insert_if_check_paren;
12042                 }
12043                 else if (memBEGINs(RExC_parse,
12044                                    (STRLEN) (RExC_end - RExC_parse),
12045                                    "DEFINE"))
12046                 {
12047                     ret = reganode(pRExC_state, DEFINEP, 0);
12048                     RExC_parse += DEFINE_len;
12049                     is_define = 1;
12050                     goto insert_if_check_paren;
12051                 }
12052                 else if (RExC_parse[0] == 'R') {
12053                     RExC_parse++;
12054                     /* parno == 0 => /(?(R)YES|NO)/  "in any form of recursion OR eval"
12055                      * parno == 1 => /(?(R0)YES|NO)/ "in GOSUB (?0) / (?R)"
12056                      * parno == 2 => /(?(R1)YES|NO)/ "in GOSUB (?1) (parno-1)"
12057                      */
12058                     parno = 0;
12059                     if (RExC_parse[0] == '0') {
12060                         parno = 1;
12061                         RExC_parse++;
12062                     }
12063                     else if (inRANGE(RExC_parse[0], '1', '9')) {
12064                         UV uv;
12065                         endptr = RExC_end;
12066                         if (grok_atoUV(RExC_parse, &uv, &endptr)
12067                             && uv <= I32_MAX
12068                         ) {
12069                             parno = (I32)uv + 1;
12070                             RExC_parse = (char*)endptr;
12071                         }
12072                         /* else "Switch condition not recognized" below */
12073                     } else if (RExC_parse[0] == '&') {
12074                         SV *sv_dat;
12075                         RExC_parse++;
12076                         sv_dat = reg_scan_name(pRExC_state,
12077                                                REG_RSN_RETURN_DATA);
12078                         if (sv_dat)
12079                             parno = 1 + *((I32 *)SvPVX(sv_dat));
12080                     }
12081                     ret = reganode(pRExC_state, INSUBP, parno);
12082                     goto insert_if_check_paren;
12083                 }
12084                 else if (inRANGE(RExC_parse[0], '1', '9')) {
12085                     /* (?(1)...) */
12086                     char c;
12087                     UV uv;
12088                     endptr = RExC_end;
12089                     if (grok_atoUV(RExC_parse, &uv, &endptr)
12090                         && uv <= I32_MAX
12091                     ) {
12092                         parno = (I32)uv;
12093                         RExC_parse = (char*)endptr;
12094                     }
12095                     else {
12096                         vFAIL("panic: grok_atoUV returned FALSE");
12097                     }
12098                     ret = reganode(pRExC_state, GROUPP, parno);
12099 
12100                  insert_if_check_paren:
12101                     if (UCHARAT(RExC_parse) != ')') {
12102                         RExC_parse += UTF
12103                                       ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
12104                                       : 1;
12105                         vFAIL("Switch condition not recognized");
12106                     }
12107                     nextchar(pRExC_state);
12108                   insert_if:
12109                     if (! REGTAIL(pRExC_state, ret, reganode(pRExC_state,
12110                                                              IFTHEN, 0)))
12111                     {
12112                         REQUIRE_BRANCHJ(flagp, 0);
12113                     }
12114                     br = regbranch(pRExC_state, &flags, 1, depth+1);
12115                     if (br == 0) {
12116                         RETURN_FAIL_ON_RESTART(flags,flagp);
12117                         FAIL2("panic: regbranch returned failure, flags=%#" UVxf,
12118                               (UV) flags);
12119                     } else
12120                     if (! REGTAIL(pRExC_state, br, reganode(pRExC_state,
12121                                                              LONGJMP, 0)))
12122                     {
12123                         REQUIRE_BRANCHJ(flagp, 0);
12124                     }
12125                     c = UCHARAT(RExC_parse);
12126                     nextchar(pRExC_state);
12127                     if (flags&HASWIDTH)
12128                         *flagp |= HASWIDTH;
12129                     if (c == '|') {
12130                         if (is_define)
12131                             vFAIL("(?(DEFINE)....) does not allow branches");
12132 
12133                         /* Fake one for optimizer.  */
12134                         lastbr = reganode(pRExC_state, IFTHEN, 0);
12135 
12136                         if (!regbranch(pRExC_state, &flags, 1, depth+1)) {
12137                             RETURN_FAIL_ON_RESTART(flags, flagp);
12138                             FAIL2("panic: regbranch returned failure, flags=%#" UVxf,
12139                                   (UV) flags);
12140                         }
12141                         if (! REGTAIL(pRExC_state, ret, lastbr)) {
12142                             REQUIRE_BRANCHJ(flagp, 0);
12143                         }
12144                         if (flags&HASWIDTH)
12145                             *flagp |= HASWIDTH;
12146                         c = UCHARAT(RExC_parse);
12147                         nextchar(pRExC_state);
12148                     }
12149                     else
12150                         lastbr = 0;
12151                     if (c != ')') {
12152                         if (RExC_parse >= RExC_end)
12153                             vFAIL("Switch (?(condition)... not terminated");
12154                         else
12155                             vFAIL("Switch (?(condition)... contains too many branches");
12156                     }
12157                     ender = reg_node(pRExC_state, TAIL);
12158                     if (! REGTAIL(pRExC_state, br, ender)) {
12159                         REQUIRE_BRANCHJ(flagp, 0);
12160                     }
12161                     if (lastbr) {
12162                         if (! REGTAIL(pRExC_state, lastbr, ender)) {
12163                             REQUIRE_BRANCHJ(flagp, 0);
12164                         }
12165                         if (! REGTAIL(pRExC_state,
12166                                       REGNODE_OFFSET(
12167                                                  NEXTOPER(
12168                                                  NEXTOPER(REGNODE_p(lastbr)))),
12169                                       ender))
12170                         {
12171                             REQUIRE_BRANCHJ(flagp, 0);
12172                         }
12173                     }
12174                     else
12175                         if (! REGTAIL(pRExC_state, ret, ender)) {
12176                             REQUIRE_BRANCHJ(flagp, 0);
12177                         }
12178 #if 0  /* Removing this doesn't cause failures in the test suite -- khw */
12179                     RExC_size++; /* XXX WHY do we need this?!!
12180                                     For large programs it seems to be required
12181                                     but I can't figure out why. -- dmq*/
12182 #endif
12183                     return ret;
12184                 }
12185                 RExC_parse += UTF
12186                               ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
12187                               : 1;
12188                 vFAIL("Unknown switch condition (?(...))");
12189             }
12190             case '[':           /* (?[ ... ]) */
12191                 return handle_regex_sets(pRExC_state, NULL, flagp, depth+1,
12192                                          oregcomp_parse);
12193             case 0: /* A NUL */
12194                 RExC_parse--; /* for vFAIL to print correctly */
12195                 vFAIL("Sequence (? incomplete");
12196                 break;
12197 
12198             case ')':
12199                 if (RExC_strict) {  /* [perl #132851] */
12200                     ckWARNreg(RExC_parse, "Empty (?) without any modifiers");
12201                 }
12202                 /* FALLTHROUGH */
12203             case '*': /* If you want to support (?*...), first reconcile with GH #17363 */
12204             /* FALLTHROUGH */
12205             default: /* e.g., (?i) */
12206                 RExC_parse = (char *) seqstart + 1;
12207               parse_flags:
12208                 parse_lparen_question_flags(pRExC_state);
12209                 if (UCHARAT(RExC_parse) != ':') {
12210                     if (RExC_parse < RExC_end)
12211                         nextchar(pRExC_state);
12212                     *flagp = TRYAGAIN;
12213                     return 0;
12214                 }
12215                 paren = ':';
12216                 nextchar(pRExC_state);
12217                 ret = 0;
12218                 goto parse_rest;
12219             } /* end switch */
12220         }
12221         else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) {   /* (...) */
12222           capturing_parens:
12223             parno = RExC_npar;
12224             RExC_npar++;
12225             if (! ALL_PARENS_COUNTED) {
12226                 /* If we are in our first pass through (and maybe only pass),
12227                  * we  need to allocate memory for the capturing parentheses
12228                  * data structures.
12229                  */
12230 
12231                 if (!RExC_parens_buf_size) {
12232                     /* first guess at number of parens we might encounter */
12233                     RExC_parens_buf_size = 10;
12234 
12235                     /* setup RExC_open_parens, which holds the address of each
12236                      * OPEN tag, and to make things simpler for the 0 index the
12237                      * start of the program - this is used later for offsets */
12238                     Newxz(RExC_open_parens, RExC_parens_buf_size,
12239                             regnode_offset);
12240                     RExC_open_parens[0] = 1;    /* +1 for REG_MAGIC */
12241 
12242                     /* setup RExC_close_parens, which holds the address of each
12243                      * CLOSE tag, and to make things simpler for the 0 index
12244                      * the end of the program - this is used later for offsets
12245                      * */
12246                     Newxz(RExC_close_parens, RExC_parens_buf_size,
12247                             regnode_offset);
12248                     /* we dont know where end op starts yet, so we dont need to
12249                      * set RExC_close_parens[0] like we do RExC_open_parens[0]
12250                      * above */
12251                 }
12252                 else if (RExC_npar > RExC_parens_buf_size) {
12253                     I32 old_size = RExC_parens_buf_size;
12254 
12255                     RExC_parens_buf_size *= 2;
12256 
12257                     Renew(RExC_open_parens, RExC_parens_buf_size,
12258                             regnode_offset);
12259                     Zero(RExC_open_parens + old_size,
12260                             RExC_parens_buf_size - old_size, regnode_offset);
12261 
12262                     Renew(RExC_close_parens, RExC_parens_buf_size,
12263                             regnode_offset);
12264                     Zero(RExC_close_parens + old_size,
12265                             RExC_parens_buf_size - old_size, regnode_offset);
12266                 }
12267             }
12268 
12269             ret = reganode(pRExC_state, OPEN, parno);
12270             if (!RExC_nestroot)
12271                 RExC_nestroot = parno;
12272             if (RExC_open_parens && !RExC_open_parens[parno])
12273             {
12274                 DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
12275                     "%*s%*s Setting open paren #%" IVdf " to %zu\n",
12276                     22, "|    |", (int)(depth * 2 + 1), "",
12277                     (IV)parno, ret));
12278                 RExC_open_parens[parno]= ret;
12279             }
12280 
12281             Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
12282             Set_Node_Offset(REGNODE_p(ret), RExC_parse); /* MJD */
12283             is_open = 1;
12284         } else {
12285             /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
12286             paren = ':';
12287             ret = 0;
12288         }
12289     }
12290     else                        /* ! paren */
12291         ret = 0;
12292 
12293    parse_rest:
12294     /* Pick up the branches, linking them together. */
12295     parse_start = RExC_parse;   /* MJD */
12296     br = regbranch(pRExC_state, &flags, 1, depth+1);
12297 
12298     /*     branch_len = (paren != 0); */
12299 
12300     if (br == 0) {
12301         RETURN_FAIL_ON_RESTART(flags, flagp);
12302         FAIL2("panic: regbranch returned failure, flags=%#" UVxf, (UV) flags);
12303     }
12304     if (*RExC_parse == '|') {
12305         if (RExC_use_BRANCHJ) {
12306             reginsert(pRExC_state, BRANCHJ, br, depth+1);
12307         }
12308         else {                  /* MJD */
12309             reginsert(pRExC_state, BRANCH, br, depth+1);
12310             Set_Node_Length(REGNODE_p(br), paren != 0);
12311             Set_Node_Offset_To_R(br, parse_start-RExC_start);
12312         }
12313         have_branch = 1;
12314     }
12315     else if (paren == ':') {
12316         *flagp |= flags&SIMPLE;
12317     }
12318     if (is_open) {				/* Starts with OPEN. */
12319         if (! REGTAIL(pRExC_state, ret, br)) {  /* OPEN -> first. */
12320             REQUIRE_BRANCHJ(flagp, 0);
12321         }
12322     }
12323     else if (paren != '?')		/* Not Conditional */
12324         ret = br;
12325     *flagp |= flags & (HASWIDTH | POSTPONED);
12326     lastbr = br;
12327     while (*RExC_parse == '|') {
12328         if (RExC_use_BRANCHJ) {
12329             bool shut_gcc_up;
12330 
12331             ender = reganode(pRExC_state, LONGJMP, 0);
12332 
12333             /* Append to the previous. */
12334             shut_gcc_up = REGTAIL(pRExC_state,
12335                          REGNODE_OFFSET(NEXTOPER(NEXTOPER(REGNODE_p(lastbr)))),
12336                          ender);
12337             PERL_UNUSED_VAR(shut_gcc_up);
12338         }
12339         nextchar(pRExC_state);
12340         if (freeze_paren) {
12341             if (RExC_npar > after_freeze)
12342                 after_freeze = RExC_npar;
12343             RExC_npar = freeze_paren;
12344         }
12345         br = regbranch(pRExC_state, &flags, 0, depth+1);
12346 
12347         if (br == 0) {
12348             RETURN_FAIL_ON_RESTART(flags, flagp);
12349             FAIL2("panic: regbranch returned failure, flags=%#" UVxf, (UV) flags);
12350         }
12351         if (!  REGTAIL(pRExC_state, lastbr, br)) {  /* BRANCH -> BRANCH. */
12352             REQUIRE_BRANCHJ(flagp, 0);
12353         }
12354         lastbr = br;
12355         *flagp |= flags & (HASWIDTH | POSTPONED);
12356     }
12357 
12358     if (have_branch || paren != ':') {
12359         regnode * br;
12360 
12361         /* Make a closing node, and hook it on the end. */
12362         switch (paren) {
12363         case ':':
12364             ender = reg_node(pRExC_state, TAIL);
12365             break;
12366         case 1: case 2:
12367             ender = reganode(pRExC_state, CLOSE, parno);
12368             if ( RExC_close_parens ) {
12369                 DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
12370                         "%*s%*s Setting close paren #%" IVdf " to %zu\n",
12371                         22, "|    |", (int)(depth * 2 + 1), "",
12372                         (IV)parno, ender));
12373                 RExC_close_parens[parno]= ender;
12374                 if (RExC_nestroot == parno)
12375                     RExC_nestroot = 0;
12376             }
12377             Set_Node_Offset(REGNODE_p(ender), RExC_parse+1); /* MJD */
12378             Set_Node_Length(REGNODE_p(ender), 1); /* MJD */
12379             break;
12380         case 's':
12381             ender = reg_node(pRExC_state, SRCLOSE);
12382             RExC_in_script_run = 0;
12383             break;
12384         case '<':
12385         case 'a':
12386         case 'A':
12387         case 'b':
12388         case 'B':
12389         case ',':
12390         case '=':
12391         case '!':
12392             *flagp &= ~HASWIDTH;
12393             /* FALLTHROUGH */
12394         case 't':   /* aTomic */
12395         case '>':
12396             ender = reg_node(pRExC_state, SUCCEED);
12397             break;
12398         case 0:
12399             ender = reg_node(pRExC_state, END);
12400             assert(!RExC_end_op); /* there can only be one! */
12401             RExC_end_op = REGNODE_p(ender);
12402             if (RExC_close_parens) {
12403                 DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
12404                     "%*s%*s Setting close paren #0 (END) to %zu\n",
12405                     22, "|    |", (int)(depth * 2 + 1), "",
12406                     ender));
12407 
12408                 RExC_close_parens[0]= ender;
12409             }
12410             break;
12411         }
12412         DEBUG_PARSE_r({
12413             DEBUG_PARSE_MSG("lsbr");
12414             regprop(RExC_rx, RExC_mysv1, REGNODE_p(lastbr), NULL, pRExC_state);
12415             regprop(RExC_rx, RExC_mysv2, REGNODE_p(ender), NULL, pRExC_state);
12416             Perl_re_printf( aTHX_  "~ tying lastbr %s (%" IVdf ") to ender %s (%" IVdf ") offset %" IVdf "\n",
12417                           SvPV_nolen_const(RExC_mysv1),
12418                           (IV)lastbr,
12419                           SvPV_nolen_const(RExC_mysv2),
12420                           (IV)ender,
12421                           (IV)(ender - lastbr)
12422             );
12423         });
12424         if (! REGTAIL(pRExC_state, lastbr, ender)) {
12425             REQUIRE_BRANCHJ(flagp, 0);
12426         }
12427 
12428         if (have_branch) {
12429             char is_nothing= 1;
12430             if (depth==1)
12431                 RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
12432 
12433             /* Hook the tails of the branches to the closing node. */
12434             for (br = REGNODE_p(ret); br; br = regnext(br)) {
12435                 const U8 op = PL_regkind[OP(br)];
12436                 if (op == BRANCH) {
12437                     if (! REGTAIL_STUDY(pRExC_state,
12438                                         REGNODE_OFFSET(NEXTOPER(br)),
12439                                         ender))
12440                     {
12441                         REQUIRE_BRANCHJ(flagp, 0);
12442                     }
12443                     if ( OP(NEXTOPER(br)) != NOTHING
12444                          || regnext(NEXTOPER(br)) != REGNODE_p(ender))
12445                         is_nothing= 0;
12446                 }
12447                 else if (op == BRANCHJ) {
12448                     bool shut_gcc_up = REGTAIL_STUDY(pRExC_state,
12449                                         REGNODE_OFFSET(NEXTOPER(NEXTOPER(br))),
12450                                         ender);
12451                     PERL_UNUSED_VAR(shut_gcc_up);
12452                     /* for now we always disable this optimisation * /
12453                     if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
12454                          || regnext(NEXTOPER(NEXTOPER(br))) != REGNODE_p(ender))
12455                     */
12456                         is_nothing= 0;
12457                 }
12458             }
12459             if (is_nothing) {
12460                 regnode * ret_as_regnode = REGNODE_p(ret);
12461                 br= PL_regkind[OP(ret_as_regnode)] != BRANCH
12462                                ? regnext(ret_as_regnode)
12463                                : ret_as_regnode;
12464                 DEBUG_PARSE_r({
12465                     DEBUG_PARSE_MSG("NADA");
12466                     regprop(RExC_rx, RExC_mysv1, ret_as_regnode,
12467                                      NULL, pRExC_state);
12468                     regprop(RExC_rx, RExC_mysv2, REGNODE_p(ender),
12469                                      NULL, pRExC_state);
12470                     Perl_re_printf( aTHX_  "~ converting ret %s (%" IVdf ") to ender %s (%" IVdf ") offset %" IVdf "\n",
12471                                   SvPV_nolen_const(RExC_mysv1),
12472                                   (IV)REG_NODE_NUM(ret_as_regnode),
12473                                   SvPV_nolen_const(RExC_mysv2),
12474                                   (IV)ender,
12475                                   (IV)(ender - ret)
12476                     );
12477                 });
12478                 OP(br)= NOTHING;
12479                 if (OP(REGNODE_p(ender)) == TAIL) {
12480                     NEXT_OFF(br)= 0;
12481                     RExC_emit= REGNODE_OFFSET(br) + 1;
12482                 } else {
12483                     regnode *opt;
12484                     for ( opt= br + 1; opt < REGNODE_p(ender) ; opt++ )
12485                         OP(opt)= OPTIMIZED;
12486                     NEXT_OFF(br)= REGNODE_p(ender) - br;
12487                 }
12488             }
12489         }
12490     }
12491 
12492     {
12493         const char *p;
12494          /* Even/odd or x=don't care: 010101x10x */
12495         static const char parens[] = "=!aA<,>Bbt";
12496          /* flag below is set to 0 up through 'A'; 1 for larger */
12497 
12498         if (paren && (p = strchr(parens, paren))) {
12499             U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
12500             int flag = (p - parens) > 3;
12501 
12502             if (paren == '>' || paren == 't') {
12503                 node = SUSPEND, flag = 0;
12504             }
12505 
12506             reginsert(pRExC_state, node, ret, depth+1);
12507             Set_Node_Cur_Length(REGNODE_p(ret), parse_start);
12508             Set_Node_Offset(REGNODE_p(ret), parse_start + 1);
12509             FLAGS(REGNODE_p(ret)) = flag;
12510             if (! REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL)))
12511             {
12512                 REQUIRE_BRANCHJ(flagp, 0);
12513             }
12514         }
12515     }
12516 
12517     /* Check for proper termination. */
12518     if (paren) {
12519         /* restore original flags, but keep (?p) and, if we've encountered
12520          * something in the parse that changes /d rules into /u, keep the /u */
12521         RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
12522         if (DEPENDS_SEMANTICS && toUSE_UNI_CHARSET_NOT_DEPENDS) {
12523             set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET);
12524         }
12525         if (RExC_parse >= RExC_end || UCHARAT(RExC_parse) != ')') {
12526             RExC_parse = oregcomp_parse;
12527             vFAIL("Unmatched (");
12528         }
12529         nextchar(pRExC_state);
12530     }
12531     else if (!paren && RExC_parse < RExC_end) {
12532         if (*RExC_parse == ')') {
12533             RExC_parse++;
12534             vFAIL("Unmatched )");
12535         }
12536         else
12537             FAIL("Junk on end of regexp");	/* "Can't happen". */
12538         NOT_REACHED; /* NOTREACHED */
12539     }
12540 
12541     if (after_freeze > RExC_npar)
12542         RExC_npar = after_freeze;
12543 
12544     RExC_in_lookaround = was_in_lookaround;
12545 
12546     return(ret);
12547 }
12548 
12549 /*
12550  - regbranch - one alternative of an | operator
12551  *
12552  * Implements the concatenation operator.
12553  *
12554  * On success, returns the offset at which any next node should be placed into
12555  * the regex engine program being compiled.
12556  *
12557  * Returns 0 otherwise, setting flagp to RESTART_PARSE if the parse needs
12558  * to be restarted, or'd with NEED_UTF8 if the pattern needs to be upgraded to
12559  * UTF-8
12560  */
12561 STATIC regnode_offset
S_regbranch(pTHX_ RExC_state_t * pRExC_state,I32 * flagp,I32 first,U32 depth)12562 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
12563 {
12564     regnode_offset ret;
12565     regnode_offset chain = 0;
12566     regnode_offset latest;
12567     I32 flags = 0, c = 0;
12568     DECLARE_AND_GET_RE_DEBUG_FLAGS;
12569 
12570     PERL_ARGS_ASSERT_REGBRANCH;
12571 
12572     DEBUG_PARSE("brnc");
12573 
12574     if (first)
12575         ret = 0;
12576     else {
12577         if (RExC_use_BRANCHJ)
12578             ret = reganode(pRExC_state, BRANCHJ, 0);
12579         else {
12580             ret = reg_node(pRExC_state, BRANCH);
12581             Set_Node_Length(REGNODE_p(ret), 1);
12582         }
12583     }
12584 
12585     *flagp = 0;			/* Initialize. */
12586 
12587     skip_to_be_ignored_text(pRExC_state, &RExC_parse,
12588                             FALSE /* Don't force to /x */ );
12589     while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
12590         flags &= ~TRYAGAIN;
12591         latest = regpiece(pRExC_state, &flags, depth+1);
12592         if (latest == 0) {
12593             if (flags & TRYAGAIN)
12594                 continue;
12595             RETURN_FAIL_ON_RESTART(flags, flagp);
12596             FAIL2("panic: regpiece returned failure, flags=%#" UVxf, (UV) flags);
12597         }
12598         else if (ret == 0)
12599             ret = latest;
12600         *flagp |= flags&(HASWIDTH|POSTPONED);
12601         if (chain != 0) {
12602             /* FIXME adding one for every branch after the first is probably
12603              * excessive now we have TRIE support. (hv) */
12604             MARK_NAUGHTY(1);
12605             if (! REGTAIL(pRExC_state, chain, latest)) {
12606                 /* XXX We could just redo this branch, but figuring out what
12607                  * bookkeeping needs to be reset is a pain, and it's likely
12608                  * that other branches that goto END will also be too large */
12609                 REQUIRE_BRANCHJ(flagp, 0);
12610             }
12611         }
12612         chain = latest;
12613         c++;
12614     }
12615     if (chain == 0) {	/* Loop ran zero times. */
12616         chain = reg_node(pRExC_state, NOTHING);
12617         if (ret == 0)
12618             ret = chain;
12619     }
12620     if (c == 1) {
12621         *flagp |= flags&SIMPLE;
12622     }
12623 
12624     return ret;
12625 }
12626 
12627 #define RBRACE  0
12628 #define MIN_S   1
12629 #define MIN_E   2
12630 #define MAX_S   3
12631 #define MAX_E   4
12632 
12633 #ifndef PERL_IN_XSUB_RE
12634 bool
Perl_regcurly(const char * s,const char * e,const char * result[5])12635 Perl_regcurly(const char *s, const char *e, const char * result[5])
12636 {
12637     /* This function matches a {m,n} quantifier.  When called with a NULL final
12638      * argument, it simply parses the input from 's' up through 'e-1', and
12639      * returns a boolean as to whether or not this input is syntactically a
12640      * {m,n} quantifier.
12641      *
12642      * When called with a non-NULL final parameter, and when the function
12643      * returns TRUE, it additionally stores information into the array
12644      * specified by that parameter about what it found in the parse.  The
12645      * parameter must be a pointer into a 5 element array of 'const char *'
12646      * elements.  The returned information is as follows:
12647      *   result[RBRACE]  points to the closing brace
12648      *   result[MIN_S]   points to the first byte of the lower bound
12649      *   result[MIN_E]   points to one beyond the final byte of the lower bound
12650      *   result[MAX_S]   points to the first byte of the upper bound
12651      *   result[MAX_E]   points to one beyond the final byte of the upper bound
12652      *
12653      * If the quantifier is of the form {m,} (meaning an infinite upper
12654      * bound), result[MAX_E] is set to result[MAX_S]; what they actually point
12655      * to is irrelevant, just that it's the same place
12656      *
12657      * If instead the quantifier is of the form {m} there is actually only
12658      * one bound, and both the upper and lower result[] elements are set to
12659      * point to it.
12660      *
12661      * This function checks only for syntactic validity; it leaves checking for
12662      * semantic validity and raising any diagnostics to the caller.  This
12663      * function is called in multiple places to check for syntax, but only from
12664      * one for semantics.  It makes it as simple as possible for the
12665      * syntax-only callers, while furnishing just enough information for the
12666      * semantic caller.
12667      */
12668 
12669     const char * min_start = NULL;
12670     const char * max_start = NULL;
12671     const char * min_end = NULL;
12672     const char * max_end = NULL;
12673 
12674     bool has_comma = FALSE;
12675 
12676     PERL_ARGS_ASSERT_REGCURLY;
12677 
12678     if (s >= e || *s++ != '{')
12679         return FALSE;
12680 
12681     while (s < e && isBLANK(*s)) {
12682         s++;
12683     }
12684 
12685     if isDIGIT(*s) {
12686         min_start = s;
12687         do {
12688             s++;
12689         } while (s < e && isDIGIT(*s));
12690         min_end = s;
12691     }
12692 
12693     while (s < e && isBLANK(*s)) {
12694         s++;
12695     }
12696 
12697     if (*s == ',') {
12698         has_comma = TRUE;
12699         s++;
12700 
12701         while (s < e && isBLANK(*s)) {
12702             s++;
12703         }
12704 
12705         if isDIGIT(*s) {
12706             max_start = s;
12707             do {
12708                 s++;
12709             } while (s < e && isDIGIT(*s));
12710             max_end = s;
12711         }
12712     }
12713 
12714     while (s < e && isBLANK(*s)) {
12715         s++;
12716     }
12717                                /* Need at least one number */
12718     if (s >= e || *s != '}' || (! min_start && ! max_end)) {
12719         return FALSE;
12720     }
12721 
12722     if (result) {
12723 
12724         result[RBRACE] = s;
12725 
12726         result[MIN_S] = min_start;
12727         result[MIN_E] = min_end;
12728         if (has_comma) {
12729             if (max_start) {
12730                 result[MAX_S] = max_start;
12731                 result[MAX_E] = max_end;
12732             }
12733             else {
12734                 /* Having no value after the comma is signalled by setting
12735                  * start and end to the same value.  What that value is isn't
12736                  * relevant; NULL is chosen simply because it will fail if the
12737                  * caller mistakenly uses it */
12738                 result[MAX_S] = result[MAX_E] = NULL;
12739             }
12740         }
12741         else {  /* No comma means lower and upper bounds are the same */
12742             result[MAX_S] = min_start;
12743             result[MAX_E] = min_end;
12744         }
12745     }
12746 
12747     return TRUE;
12748 }
12749 #endif
12750 
12751 U32
S_get_quantifier_value(pTHX_ RExC_state_t * pRExC_state,const char * start,const char * end)12752 S_get_quantifier_value(pTHX_ RExC_state_t *pRExC_state,
12753                        const char * start, const char * end)
12754 {
12755     /* This is a helper function for regpiece() to compute, given the
12756      * quantifier {m,n}, the value of either m or n, based on the starting
12757      * position 'start' in the string, through the byte 'end-1', returning it
12758      * if valid, and failing appropriately if not.  It knows the restrictions
12759      * imposed on quantifier values */
12760 
12761     UV uv;
12762     STATIC_ASSERT_DECL(REG_INFTY <= U32_MAX);
12763 
12764     PERL_ARGS_ASSERT_GET_QUANTIFIER_VALUE;
12765 
12766     if (grok_atoUV(start, &uv, &end)) {
12767         if (uv < REG_INFTY) {   /* A valid, small-enough number */
12768             return (U32) uv;
12769         }
12770     }
12771     else if (*start == '0') { /* grok_atoUV() fails for only two reasons:
12772                                  leading zeros or overflow */
12773         RExC_parse = (char * ) end;
12774 
12775         /* Perhaps too generic a msg for what is only failure from having
12776          * leading zeros, but this is how it's always behaved. */
12777         vFAIL("Invalid quantifier in {,}");
12778         NOT_REACHED; /*NOTREACHED*/
12779     }
12780 
12781     /* Here, found a quantifier, but was too large; either it overflowed or was
12782      * too big a legal number */
12783     RExC_parse = (char * ) end;
12784     vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
12785 
12786     NOT_REACHED; /*NOTREACHED*/
12787     return U32_MAX; /* Perhaps some compilers will be expecting a return */
12788 }
12789 
12790 /*
12791  - regpiece - something followed by possible quantifier * + ? {n,m}
12792  *
12793  * Note that the branching code sequences used for ? and the general cases
12794  * of * and + are somewhat optimized:  they use the same NOTHING node as
12795  * both the endmarker for their branch list and the body of the last branch.
12796  * It might seem that this node could be dispensed with entirely, but the
12797  * endmarker role is not redundant.
12798  *
12799  * On success, returns the offset at which any next node should be placed into
12800  * the regex engine program being compiled.
12801  *
12802  * Returns 0 otherwise, with *flagp set to indicate why:
12803  *  TRYAGAIN        if regatom() returns 0 with TRYAGAIN.
12804  *  RESTART_PARSE   if the parse needs to be restarted, or'd with
12805  *                  NEED_UTF8 if the pattern needs to be upgraded to UTF-8.
12806  */
12807 STATIC regnode_offset
S_regpiece(pTHX_ RExC_state_t * pRExC_state,I32 * flagp,U32 depth)12808 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
12809 {
12810     regnode_offset ret;
12811     char op;
12812     I32 flags;
12813     const char * const origparse = RExC_parse;
12814     I32 min;
12815     I32 max = REG_INFTY;
12816 #ifdef RE_TRACK_PATTERN_OFFSETS
12817     char *parse_start;
12818 #endif
12819 
12820     /* Save the original in case we change the emitted regop to a FAIL. */
12821     const regnode_offset orig_emit = RExC_emit;
12822 
12823     DECLARE_AND_GET_RE_DEBUG_FLAGS;
12824 
12825     PERL_ARGS_ASSERT_REGPIECE;
12826 
12827     DEBUG_PARSE("piec");
12828 
12829     ret = regatom(pRExC_state, &flags, depth+1);
12830     if (ret == 0) {
12831         RETURN_FAIL_ON_RESTART_OR_FLAGS(flags, flagp, TRYAGAIN);
12832         FAIL2("panic: regatom returned failure, flags=%#" UVxf, (UV) flags);
12833     }
12834 
12835 #ifdef RE_TRACK_PATTERN_OFFSETS
12836     parse_start = RExC_parse;
12837 #endif
12838 
12839     op = *RExC_parse;
12840     switch (op) {
12841         const char * regcurly_return[5];
12842 
12843       case '*':
12844         nextchar(pRExC_state);
12845         min = 0;
12846         break;
12847 
12848       case '+':
12849         nextchar(pRExC_state);
12850         min = 1;
12851         break;
12852 
12853       case '?':
12854         nextchar(pRExC_state);
12855         min = 0; max = 1;
12856         break;
12857 
12858       case '{':  /* A '{' may or may not indicate a quantifier; call regcurly()
12859                     to determine which */
12860         if (regcurly(RExC_parse, RExC_end, regcurly_return)) {
12861             const char * min_start = regcurly_return[MIN_S];
12862             const char * min_end   = regcurly_return[MIN_E];
12863             const char * max_start = regcurly_return[MAX_S];
12864             const char * max_end   = regcurly_return[MAX_E];
12865 
12866             if (min_start) {
12867                 min = get_quantifier_value(pRExC_state, min_start, min_end);
12868             }
12869             else {
12870                 min = 0;
12871             }
12872 
12873             if (max_start == max_end) {     /* Was of the form {m,} */
12874                 max = REG_INFTY;
12875             }
12876             else if (max_start == min_start) {  /* Was of the form {m} */
12877                 max = min;
12878             }
12879             else {  /* Was of the form {m,n} */
12880                 assert(max_end >= max_start);
12881 
12882                 max = get_quantifier_value(pRExC_state, max_start, max_end);
12883             }
12884 
12885             RExC_parse = (char *) regcurly_return[RBRACE];
12886             nextchar(pRExC_state);
12887 
12888             if (max < min) {    /* If can't match, warn and optimize to fail
12889                                    unconditionally */
12890                 reginsert(pRExC_state, OPFAIL, orig_emit, depth+1);
12891                 ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
12892                 NEXT_OFF(REGNODE_p(orig_emit)) =
12893                                     regarglen[OPFAIL] + NODE_STEP_REGNODE;
12894                 return ret;
12895             }
12896             else if (min == max && *RExC_parse == '?') {
12897                 ckWARN2reg(RExC_parse + 1,
12898                            "Useless use of greediness modifier '%c'",
12899                            *RExC_parse);
12900             }
12901 
12902             break;
12903         } /* End of is {m,n} */
12904 
12905         /* Here was a '{', but what followed it didn't form a quantifier. */
12906         /* FALLTHROUGH */
12907 
12908       default:
12909         *flagp = flags;
12910         return(ret);
12911         NOT_REACHED; /*NOTREACHED*/
12912     }
12913 
12914     /* Here we have a quantifier, and have calculated 'min' and 'max'.
12915      *
12916      * Check and possibly adjust a zero width operand */
12917     if (! (flags & (HASWIDTH|POSTPONED))) {
12918         if (max > REG_INFTY/3) {
12919             if (origparse[0] == '\\' && origparse[1] == 'K') {
12920                 vFAIL2utf8f(
12921                            "%" UTF8f " is forbidden - matches null string"
12922                            " many times",
12923                            UTF8fARG(UTF, (RExC_parse >= origparse
12924                                          ? RExC_parse - origparse
12925                                          : 0),
12926                            origparse));
12927             } else {
12928                 ckWARN2reg(RExC_parse,
12929                            "%" UTF8f " matches null string many times",
12930                            UTF8fARG(UTF, (RExC_parse >= origparse
12931                                          ? RExC_parse - origparse
12932                                          : 0),
12933                            origparse));
12934             }
12935         }
12936 
12937         /* There's no point in trying to match something 0 length more than
12938          * once except for extra side effects, which we don't have here since
12939          * not POSTPONED */
12940         if (max > 1) {
12941             max = 1;
12942             if (min > max) {
12943                 min = max;
12944             }
12945         }
12946     }
12947 
12948     /* If this is a code block pass it up */
12949     *flagp |= (flags & POSTPONED);
12950 
12951     if (max > 0) {
12952         *flagp |= (flags & HASWIDTH);
12953         if (max == REG_INFTY)
12954             RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
12955     }
12956 
12957     /* 'SIMPLE' operands don't require full generality */
12958     if ((flags&SIMPLE)) {
12959         if (max == REG_INFTY) {
12960             if (min == 0) {
12961                 if (UNLIKELY(RExC_pm_flags & PMf_WILDCARD)) {
12962                     goto min0_maxINF_wildcard_forbidden;
12963                 }
12964 
12965                 reginsert(pRExC_state, STAR, ret, depth+1);
12966                 MARK_NAUGHTY(4);
12967                 goto done_main_op;
12968             }
12969             else if (min == 1) {
12970                 reginsert(pRExC_state, PLUS, ret, depth+1);
12971                 MARK_NAUGHTY(3);
12972                 goto done_main_op;
12973             }
12974         }
12975 
12976         /* Here, SIMPLE, but not the '*' and '+' special cases */
12977 
12978         MARK_NAUGHTY_EXP(2, 2);
12979         reginsert(pRExC_state, CURLY, ret, depth+1);
12980         Set_Node_Offset(REGNODE_p(ret), parse_start+1); /* MJD */
12981         Set_Node_Cur_Length(REGNODE_p(ret), parse_start);
12982     }
12983     else {  /* not SIMPLE */
12984         const regnode_offset w = reg_node(pRExC_state, WHILEM);
12985 
12986         FLAGS(REGNODE_p(w)) = 0;
12987         if (!  REGTAIL(pRExC_state, ret, w)) {
12988             REQUIRE_BRANCHJ(flagp, 0);
12989         }
12990         if (RExC_use_BRANCHJ) {
12991             reginsert(pRExC_state, LONGJMP, ret, depth+1);
12992             reginsert(pRExC_state, NOTHING, ret, depth+1);
12993             NEXT_OFF(REGNODE_p(ret)) = 3;        /* Go over LONGJMP. */
12994         }
12995         reginsert(pRExC_state, CURLYX, ret, depth+1);
12996                         /* MJD hk */
12997         Set_Node_Offset(REGNODE_p(ret), parse_start+1);
12998         Set_Node_Length(REGNODE_p(ret),
12999                         op == '{' ? (RExC_parse - parse_start) : 1);
13000 
13001         if (RExC_use_BRANCHJ)
13002             NEXT_OFF(REGNODE_p(ret)) = 3;   /* Go over NOTHING to
13003                                                LONGJMP. */
13004         if (! REGTAIL(pRExC_state, ret, reg_node(pRExC_state,
13005                                                   NOTHING)))
13006         {
13007             REQUIRE_BRANCHJ(flagp, 0);
13008         }
13009         RExC_whilem_seen++;
13010         MARK_NAUGHTY_EXP(1, 4);     /* compound interest */
13011     }
13012 
13013     /* Finish up the CURLY/CURLYX case */
13014     FLAGS(REGNODE_p(ret)) = 0;
13015 
13016     ARG1_SET(REGNODE_p(ret), (U16)min);
13017     ARG2_SET(REGNODE_p(ret), (U16)max);
13018 
13019   done_main_op:
13020 
13021     /* Process any greediness modifiers */
13022     if (*RExC_parse == '?') {
13023         nextchar(pRExC_state);
13024         reginsert(pRExC_state, MINMOD, ret, depth+1);
13025         if (! REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE)) {
13026             REQUIRE_BRANCHJ(flagp, 0);
13027         }
13028     }
13029     else if (*RExC_parse == '+') {
13030         regnode_offset ender;
13031         nextchar(pRExC_state);
13032         ender = reg_node(pRExC_state, SUCCEED);
13033         if (! REGTAIL(pRExC_state, ret, ender)) {
13034             REQUIRE_BRANCHJ(flagp, 0);
13035         }
13036         reginsert(pRExC_state, SUSPEND, ret, depth+1);
13037         ender = reg_node(pRExC_state, TAIL);
13038         if (! REGTAIL(pRExC_state, ret, ender)) {
13039             REQUIRE_BRANCHJ(flagp, 0);
13040         }
13041     }
13042 
13043     /* Forbid extra quantifiers */
13044     if (isQUANTIFIER(RExC_parse, RExC_end)) {
13045         RExC_parse++;
13046         vFAIL("Nested quantifiers");
13047     }
13048 
13049     return(ret);
13050 
13051   min0_maxINF_wildcard_forbidden:
13052 
13053     /* Here we are in a wildcard match, and the minimum match length is 0, and
13054      * the max could be infinity.  This is currently forbidden.  The only
13055      * reason is to make it harder to write patterns that take a long long time
13056      * to halt, and because the use of this construct isn't necessary in
13057      * matching Unicode property values */
13058     RExC_parse++;
13059     /* diag_listed_as: Use of %s is not allowed in Unicode property wildcard
13060        subpatterns in regex; marked by <-- HERE in m/%s/
13061      */
13062     vFAIL("Use of quantifier '*' is not allowed in Unicode property wildcard"
13063           " subpatterns");
13064 
13065     /* Note, don't need to worry about the input being '{0,}', as a '}' isn't
13066      * legal at all in wildcards, so can't get this far */
13067 
13068     NOT_REACHED; /*NOTREACHED*/
13069 }
13070 
13071 STATIC bool
S_grok_bslash_N(pTHX_ RExC_state_t * pRExC_state,regnode_offset * node_p,UV * code_point_p,int * cp_count,I32 * flagp,const bool strict,const U32 depth)13072 S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
13073                 regnode_offset * node_p,
13074                 UV * code_point_p,
13075                 int * cp_count,
13076                 I32 * flagp,
13077                 const bool strict,
13078                 const U32 depth
13079     )
13080 {
13081  /* This routine teases apart the various meanings of \N and returns
13082   * accordingly.  The input parameters constrain which meaning(s) is/are valid
13083   * in the current context.
13084   *
13085   * Exactly one of <node_p> and <code_point_p> must be non-NULL.
13086   *
13087   * If <code_point_p> is not NULL, the context is expecting the result to be a
13088   * single code point.  If this \N instance turns out to a single code point,
13089   * the function returns TRUE and sets *code_point_p to that code point.
13090   *
13091   * If <node_p> is not NULL, the context is expecting the result to be one of
13092   * the things representable by a regnode.  If this \N instance turns out to be
13093   * one such, the function generates the regnode, returns TRUE and sets *node_p
13094   * to point to the offset of that regnode into the regex engine program being
13095   * compiled.
13096   *
13097   * If this instance of \N isn't legal in any context, this function will
13098   * generate a fatal error and not return.
13099   *
13100   * On input, RExC_parse should point to the first char following the \N at the
13101   * time of the call.  On successful return, RExC_parse will have been updated
13102   * to point to just after the sequence identified by this routine.  Also
13103   * *flagp has been updated as needed.
13104   *
13105   * When there is some problem with the current context and this \N instance,
13106   * the function returns FALSE, without advancing RExC_parse, nor setting
13107   * *node_p, nor *code_point_p, nor *flagp.
13108   *
13109   * If <cp_count> is not NULL, the caller wants to know the length (in code
13110   * points) that this \N sequence matches.  This is set, and the input is
13111   * parsed for errors, even if the function returns FALSE, as detailed below.
13112   *
13113   * There are 6 possibilities here, as detailed in the next 6 paragraphs.
13114   *
13115   * Probably the most common case is for the \N to specify a single code point.
13116   * *cp_count will be set to 1, and *code_point_p will be set to that code
13117   * point.
13118   *
13119   * Another possibility is for the input to be an empty \N{}.  This is no
13120   * longer accepted, and will generate a fatal error.
13121   *
13122   * Another possibility is for a custom charnames handler to be in effect which
13123   * translates the input name to an empty string.  *cp_count will be set to 0.
13124   * *node_p will be set to a generated NOTHING node.
13125   *
13126   * Still another possibility is for the \N to mean [^\n]. *cp_count will be
13127   * set to 0. *node_p will be set to a generated REG_ANY node.
13128   *
13129   * The fifth possibility is that \N resolves to a sequence of more than one
13130   * code points.  *cp_count will be set to the number of code points in the
13131   * sequence. *node_p will be set to a generated node returned by this
13132   * function calling S_reg().
13133   *
13134   * The sixth and final possibility is that it is premature to be calling this
13135   * function; the parse needs to be restarted.  This can happen when this
13136   * changes from /d to /u rules, or when the pattern needs to be upgraded to
13137   * UTF-8.  The latter occurs only when the fifth possibility would otherwise
13138   * be in effect, and is because one of those code points requires the pattern
13139   * to be recompiled as UTF-8.  The function returns FALSE, and sets the
13140   * RESTART_PARSE and NEED_UTF8 flags in *flagp, as appropriate.  When this
13141   * happens, the caller needs to desist from continuing parsing, and return
13142   * this information to its caller.  This is not set for when there is only one
13143   * code point, as this can be called as part of an ANYOF node, and they can
13144   * store above-Latin1 code points without the pattern having to be in UTF-8.
13145   *
13146   * For non-single-quoted regexes, the tokenizer has resolved character and
13147   * sequence names inside \N{...} into their Unicode values, normalizing the
13148   * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
13149   * hex-represented code points in the sequence.  This is done there because
13150   * the names can vary based on what charnames pragma is in scope at the time,
13151   * so we need a way to take a snapshot of what they resolve to at the time of
13152   * the original parse. [perl #56444].
13153   *
13154   * That parsing is skipped for single-quoted regexes, so here we may get
13155   * '\N{NAME}', which is parsed now.  If the single-quoted regex is something
13156   * like '\N{U+41}', that code point is Unicode, and has to be translated into
13157   * the native character set for non-ASCII platforms.  The other possibilities
13158   * are already native, so no translation is done. */
13159 
13160     char * endbrace;    /* points to '}' following the name */
13161     char * e;           /* points to final non-blank before endbrace */
13162     char* p = RExC_parse; /* Temporary */
13163 
13164     SV * substitute_parse = NULL;
13165     char *orig_end;
13166     char *save_start;
13167     I32 flags;
13168 
13169     DECLARE_AND_GET_RE_DEBUG_FLAGS;
13170 
13171     PERL_ARGS_ASSERT_GROK_BSLASH_N;
13172 
13173     assert(cBOOL(node_p) ^ cBOOL(code_point_p));  /* Exactly one should be set */
13174     assert(! (node_p && cp_count));               /* At most 1 should be set */
13175 
13176     if (cp_count) {     /* Initialize return for the most common case */
13177         *cp_count = 1;
13178     }
13179 
13180     /* The [^\n] meaning of \N ignores spaces and comments under the /x
13181      * modifier.  The other meanings do not (except blanks adjacent to and
13182      * within the braces), so use a temporary until we find out which we are
13183      * being called with */
13184     skip_to_be_ignored_text(pRExC_state, &p,
13185                             FALSE /* Don't force to /x */ );
13186 
13187     /* Disambiguate between \N meaning a named character versus \N meaning
13188      * [^\n].  The latter is assumed when the {...} following the \N is a legal
13189      * quantifier, or if there is no '{' at all */
13190     if (*p != '{' || regcurly(p, RExC_end, NULL)) {
13191         RExC_parse = p;
13192         if (cp_count) {
13193             *cp_count = -1;
13194         }
13195 
13196         if (! node_p) {
13197             return FALSE;
13198         }
13199 
13200         *node_p = reg_node(pRExC_state, REG_ANY);
13201         *flagp |= HASWIDTH|SIMPLE;
13202         MARK_NAUGHTY(1);
13203         Set_Node_Length(REGNODE_p(*(node_p)), 1); /* MJD */
13204         return TRUE;
13205     }
13206 
13207     /* The test above made sure that the next real character is a '{', but
13208      * under the /x modifier, it could be separated by space (or a comment and
13209      * \n) and this is not allowed (for consistency with \x{...} and the
13210      * tokenizer handling of \N{NAME}). */
13211     if (*RExC_parse != '{') {
13212         vFAIL("Missing braces on \\N{}");
13213     }
13214 
13215     RExC_parse++;       /* Skip past the '{' */
13216 
13217     endbrace = (char *) memchr(RExC_parse, '}', RExC_end - RExC_parse);
13218     if (! endbrace) { /* no trailing brace */
13219         vFAIL2("Missing right brace on \\%c{}", 'N');
13220     }
13221 
13222     /* Here, we have decided it should be a named character or sequence.  These
13223      * imply Unicode semantics */
13224     REQUIRE_UNI_RULES(flagp, FALSE);
13225 
13226     /* \N{_} is what toke.c returns to us to indicate a name that evaluates to
13227      * nothing at all (not allowed under strict) */
13228     if (endbrace - RExC_parse == 1 && *RExC_parse == '_') {
13229         RExC_parse = endbrace;
13230         if (strict) {
13231             RExC_parse++;   /* Position after the "}" */
13232             vFAIL("Zero length \\N{}");
13233         }
13234 
13235         if (cp_count) {
13236             *cp_count = 0;
13237         }
13238         nextchar(pRExC_state);
13239         if (! node_p) {
13240             return FALSE;
13241         }
13242 
13243         *node_p = reg_node(pRExC_state, NOTHING);
13244         return TRUE;
13245     }
13246 
13247     while (isBLANK(*RExC_parse)) {
13248         RExC_parse++;
13249     }
13250 
13251     e = endbrace;
13252     while (RExC_parse < e && isBLANK(*(e-1))) {
13253         e--;
13254     }
13255 
13256     if (e - RExC_parse < 2 || ! strBEGINs(RExC_parse, "U+")) {
13257 
13258         /* Here, the name isn't of the form  U+....  This can happen if the
13259          * pattern is single-quoted, so didn't get evaluated in toke.c.  Now
13260          * is the time to find out what the name means */
13261 
13262         const STRLEN name_len = e - RExC_parse;
13263         SV *  value_sv;     /* What does this name evaluate to */
13264         SV ** value_svp;
13265         const U8 * value;   /* string of name's value */
13266         STRLEN value_len;   /* and its length */
13267 
13268         /*  RExC_unlexed_names is a hash of names that weren't evaluated by
13269          *  toke.c, and their values. Make sure is initialized */
13270         if (! RExC_unlexed_names) {
13271             RExC_unlexed_names = newHV();
13272         }
13273 
13274         /* If we have already seen this name in this pattern, use that.  This
13275          * allows us to only call the charnames handler once per name per
13276          * pattern.  A broken or malicious handler could return something
13277          * different each time, which could cause the results to vary depending
13278          * on if something gets added or subtracted from the pattern that
13279          * causes the number of passes to change, for example */
13280         if ((value_svp = hv_fetch(RExC_unlexed_names, RExC_parse,
13281                                                       name_len, 0)))
13282         {
13283             value_sv = *value_svp;
13284         }
13285         else { /* Otherwise we have to go out and get the name */
13286             const char * error_msg = NULL;
13287             value_sv = get_and_check_backslash_N_name(RExC_parse, e,
13288                                                       UTF,
13289                                                       &error_msg);
13290             if (error_msg) {
13291                 RExC_parse = endbrace;
13292                 vFAIL(error_msg);
13293             }
13294 
13295             /* If no error message, should have gotten a valid return */
13296             assert (value_sv);
13297 
13298             /* Save the name's meaning for later use */
13299             if (! hv_store(RExC_unlexed_names, RExC_parse, name_len,
13300                            value_sv, 0))
13301             {
13302                 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
13303             }
13304         }
13305 
13306         /* Here, we have the value the name evaluates to in 'value_sv' */
13307         value = (U8 *) SvPV(value_sv, value_len);
13308 
13309         /* See if the result is one code point vs 0 or multiple */
13310         if (inRANGE(value_len, 1, ((UV) SvUTF8(value_sv)
13311                                   ? UTF8SKIP(value)
13312                                   : 1)))
13313         {
13314             /* Here, exactly one code point.  If that isn't what is wanted,
13315              * fail */
13316             if (! code_point_p) {
13317                 RExC_parse = p;
13318                 return FALSE;
13319             }
13320 
13321             /* Convert from string to numeric code point */
13322             *code_point_p = (SvUTF8(value_sv))
13323                             ? valid_utf8_to_uvchr(value, NULL)
13324                             : *value;
13325 
13326             /* Have parsed this entire single code point \N{...}.  *cp_count
13327              * has already been set to 1, so don't do it again. */
13328             RExC_parse = endbrace;
13329             nextchar(pRExC_state);
13330             return TRUE;
13331         } /* End of is a single code point */
13332 
13333         /* Count the code points, if caller desires.  The API says to do this
13334          * even if we will later return FALSE */
13335         if (cp_count) {
13336             *cp_count = 0;
13337 
13338             *cp_count = (SvUTF8(value_sv))
13339                         ? utf8_length(value, value + value_len)
13340                         : value_len;
13341         }
13342 
13343         /* Fail if caller doesn't want to handle a multi-code-point sequence.
13344          * But don't back the pointer up if the caller wants to know how many
13345          * code points there are (they need to handle it themselves in this
13346          * case).  */
13347         if (! node_p) {
13348             if (! cp_count) {
13349                 RExC_parse = p;
13350             }
13351             return FALSE;
13352         }
13353 
13354         /* Convert this to a sub-pattern of the form "(?: ... )", and then call
13355          * reg recursively to parse it.  That way, it retains its atomicness,
13356          * while not having to worry about any special handling that some code
13357          * points may have. */
13358 
13359         substitute_parse = newSVpvs("?:");
13360         sv_catsv(substitute_parse, value_sv);
13361         sv_catpv(substitute_parse, ")");
13362 
13363         /* The value should already be native, so no need to convert on EBCDIC
13364          * platforms.*/
13365         assert(! RExC_recode_x_to_native);
13366 
13367     }
13368     else {   /* \N{U+...} */
13369         Size_t count = 0;   /* code point count kept internally */
13370 
13371         /* We can get to here when the input is \N{U+...} or when toke.c has
13372          * converted a name to the \N{U+...} form.  This include changing a
13373          * name that evaluates to multiple code points to \N{U+c1.c2.c3 ...} */
13374 
13375         RExC_parse += 2;    /* Skip past the 'U+' */
13376 
13377         /* Code points are separated by dots.  The '}' terminates the whole
13378          * thing. */
13379 
13380         do {    /* Loop until the ending brace */
13381             I32 flags = PERL_SCAN_SILENT_OVERFLOW
13382                       | PERL_SCAN_SILENT_ILLDIGIT
13383                       | PERL_SCAN_NOTIFY_ILLDIGIT
13384                       | PERL_SCAN_ALLOW_MEDIAL_UNDERSCORES
13385                       | PERL_SCAN_DISALLOW_PREFIX;
13386             STRLEN len = e - RExC_parse;
13387             NV overflow_value;
13388             char * start_digit = RExC_parse;
13389             UV cp = grok_hex(RExC_parse, &len, &flags, &overflow_value);
13390 
13391             if (len == 0) {
13392                 RExC_parse++;
13393               bad_NU:
13394                 vFAIL("Invalid hexadecimal number in \\N{U+...}");
13395             }
13396 
13397             RExC_parse += len;
13398 
13399             if (cp > MAX_LEGAL_CP) {
13400                 vFAIL(form_cp_too_large_msg(16, start_digit, len, 0));
13401             }
13402 
13403             if (RExC_parse >= e) { /* Got to the closing '}' */
13404                 if (count) {
13405                     goto do_concat;
13406                 }
13407 
13408                 /* Here, is a single code point; fail if doesn't want that */
13409                 if (! code_point_p) {
13410                     RExC_parse = p;
13411                     return FALSE;
13412                 }
13413 
13414                 /* A single code point is easy to handle; just return it */
13415                 *code_point_p = UNI_TO_NATIVE(cp);
13416                 RExC_parse = endbrace;
13417                 nextchar(pRExC_state);
13418                 return TRUE;
13419             }
13420 
13421             /* Here, the parse stopped bfore the ending brace.  This is legal
13422              * only if that character is a dot separating code points, like a
13423              * multiple character sequence (of the form "\N{U+c1.c2. ... }".
13424              * So the next character must be a dot (and the one after that
13425              * can't be the ending brace, or we'd have something like
13426              * \N{U+100.} )
13427              * */
13428             if (*RExC_parse != '.' || RExC_parse + 1 >= e) {
13429                 RExC_parse += (RExC_orig_utf8)  /* point to after 1st invalid */
13430                               ? UTF8SKIP(RExC_parse)
13431                               : 1;
13432                 RExC_parse = MIN(e, RExC_parse);/* Guard against malformed utf8
13433                                                  */
13434                 goto bad_NU;
13435             }
13436 
13437             /* Here, looks like its really a multiple character sequence.  Fail
13438              * if that's not what the caller wants.  But continue with counting
13439              * and error checking if they still want a count */
13440             if (! node_p && ! cp_count) {
13441                 return FALSE;
13442             }
13443 
13444             /* What is done here is to convert this to a sub-pattern of the
13445              * form \x{char1}\x{char2}...  and then call reg recursively to
13446              * parse it (enclosing in "(?: ... )" ).  That way, it retains its
13447              * atomicness, while not having to worry about special handling
13448              * that some code points may have.  We don't create a subpattern,
13449              * but go through the motions of code point counting and error
13450              * checking, if the caller doesn't want a node returned. */
13451 
13452             if (node_p && ! substitute_parse) {
13453                 substitute_parse = newSVpvs("?:");
13454             }
13455 
13456           do_concat:
13457 
13458             if (node_p) {
13459                 /* Convert to notation the rest of the code understands */
13460                 sv_catpvs(substitute_parse, "\\x{");
13461                 sv_catpvn(substitute_parse, start_digit,
13462                                             RExC_parse - start_digit);
13463                 sv_catpvs(substitute_parse, "}");
13464             }
13465 
13466             /* Move to after the dot (or ending brace the final time through.)
13467              * */
13468             RExC_parse++;
13469             count++;
13470 
13471         } while (RExC_parse < e);
13472 
13473         if (! node_p) { /* Doesn't want the node */
13474             assert (cp_count);
13475 
13476             *cp_count = count;
13477             return FALSE;
13478         }
13479 
13480         sv_catpvs(substitute_parse, ")");
13481 
13482         /* The values are Unicode, and therefore have to be converted to native
13483          * on a non-Unicode (meaning non-ASCII) platform. */
13484         SET_recode_x_to_native(1);
13485     }
13486 
13487     /* Here, we have the string the name evaluates to, ready to be parsed,
13488      * stored in 'substitute_parse' as a series of valid "\x{...}\x{...}"
13489      * constructs.  This can be called from within a substitute parse already.
13490      * The error reporting mechanism doesn't work for 2 levels of this, but the
13491      * code above has validated this new construct, so there should be no
13492      * errors generated by the below.  And this isn't an exact copy, so the
13493      * mechanism to seamlessly deal with this won't work, so turn off warnings
13494      * during it */
13495     save_start = RExC_start;
13496     orig_end = RExC_end;
13497 
13498     RExC_parse = RExC_start = SvPVX(substitute_parse);
13499     RExC_end = RExC_parse + SvCUR(substitute_parse);
13500     TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE;
13501 
13502     *node_p = reg(pRExC_state, 1, &flags, depth+1);
13503 
13504     /* Restore the saved values */
13505     RESTORE_WARNINGS;
13506     RExC_start = save_start;
13507     RExC_parse = endbrace;
13508     RExC_end = orig_end;
13509     SET_recode_x_to_native(0);
13510 
13511     SvREFCNT_dec_NN(substitute_parse);
13512 
13513     if (! *node_p) {
13514         RETURN_FAIL_ON_RESTART(flags, flagp);
13515         FAIL2("panic: reg returned failure to grok_bslash_N, flags=%#" UVxf,
13516             (UV) flags);
13517     }
13518     *flagp |= flags&(HASWIDTH|SIMPLE|POSTPONED);
13519 
13520     nextchar(pRExC_state);
13521 
13522     return TRUE;
13523 }
13524 
13525 
13526 STATIC U8
S_compute_EXACTish(RExC_state_t * pRExC_state)13527 S_compute_EXACTish(RExC_state_t *pRExC_state)
13528 {
13529     U8 op;
13530 
13531     PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
13532 
13533     if (! FOLD) {
13534         return (LOC)
13535                 ? EXACTL
13536                 : EXACT;
13537     }
13538 
13539     op = get_regex_charset(RExC_flags);
13540     if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
13541         op--; /* /a is same as /u, and map /aa's offset to what /a's would have
13542                  been, so there is no hole */
13543     }
13544 
13545     return op + EXACTF;
13546 }
13547 
13548 /* Parse backref decimal value, unless it's too big to sensibly be a backref,
13549  * in which case return I32_MAX (rather than possibly 32-bit wrapping) */
13550 
13551 static I32
S_backref_value(char * p,char * e)13552 S_backref_value(char *p, char *e)
13553 {
13554     const char* endptr = e;
13555     UV val;
13556     if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
13557         return (I32)val;
13558     return I32_MAX;
13559 }
13560 
13561 
13562 /*
13563  - regatom - the lowest level
13564 
13565    Try to identify anything special at the start of the current parse position.
13566    If there is, then handle it as required. This may involve generating a
13567    single regop, such as for an assertion; or it may involve recursing, such as
13568    to handle a () structure.
13569 
13570    If the string doesn't start with something special then we gobble up
13571    as much literal text as we can.  If we encounter a quantifier, we have to
13572    back off the final literal character, as that quantifier applies to just it
13573    and not to the whole string of literals.
13574 
13575    Once we have been able to handle whatever type of thing started the
13576    sequence, we return the offset into the regex engine program being compiled
13577    at which any  next regnode should be placed.
13578 
13579    Returns 0, setting *flagp to TRYAGAIN if reg() returns 0 with TRYAGAIN.
13580    Returns 0, setting *flagp to RESTART_PARSE if the parse needs to be
13581    restarted, or'd with NEED_UTF8 if the pattern needs to be upgraded to UTF-8
13582    Otherwise does not return 0.
13583 
13584    Note: we have to be careful with escapes, as they can be both literal
13585    and special, and in the case of \10 and friends, context determines which.
13586 
13587    A summary of the code structure is:
13588 
13589    switch (first_byte) {
13590         cases for each special:
13591             handle this special;
13592             break;
13593         case '\\':
13594             switch (2nd byte) {
13595                 cases for each unambiguous special:
13596                     handle this special;
13597                     break;
13598                 cases for each ambigous special/literal:
13599                     disambiguate;
13600                     if (special)  handle here
13601                     else goto defchar;
13602                 default: // unambiguously literal:
13603                     goto defchar;
13604             }
13605         default:  // is a literal char
13606             // FALL THROUGH
13607         defchar:
13608             create EXACTish node for literal;
13609             while (more input and node isn't full) {
13610                 switch (input_byte) {
13611                    cases for each special;
13612                        make sure parse pointer is set so that the next call to
13613                            regatom will see this special first
13614                        goto loopdone; // EXACTish node terminated by prev. char
13615                    default:
13616                        append char to EXACTISH node;
13617                 }
13618                 get next input byte;
13619             }
13620         loopdone:
13621    }
13622    return the generated node;
13623 
13624    Specifically there are two separate switches for handling
13625    escape sequences, with the one for handling literal escapes requiring
13626    a dummy entry for all of the special escapes that are actually handled
13627    by the other.
13628 
13629 */
13630 
13631 STATIC regnode_offset
S_regatom(pTHX_ RExC_state_t * pRExC_state,I32 * flagp,U32 depth)13632 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
13633 {
13634     regnode_offset ret = 0;
13635     I32 flags = 0;
13636     char *parse_start;
13637     U8 op;
13638     int invert = 0;
13639 
13640     DECLARE_AND_GET_RE_DEBUG_FLAGS;
13641 
13642     *flagp = 0;		/* Initialize. */
13643 
13644     DEBUG_PARSE("atom");
13645 
13646     PERL_ARGS_ASSERT_REGATOM;
13647 
13648   tryagain:
13649     parse_start = RExC_parse;
13650     assert(RExC_parse < RExC_end);
13651     switch ((U8)*RExC_parse) {
13652     case '^':
13653         RExC_seen_zerolen++;
13654         nextchar(pRExC_state);
13655         if (RExC_flags & RXf_PMf_MULTILINE)
13656             ret = reg_node(pRExC_state, MBOL);
13657         else
13658             ret = reg_node(pRExC_state, SBOL);
13659         Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
13660         break;
13661     case '$':
13662         nextchar(pRExC_state);
13663         if (*RExC_parse)
13664             RExC_seen_zerolen++;
13665         if (RExC_flags & RXf_PMf_MULTILINE)
13666             ret = reg_node(pRExC_state, MEOL);
13667         else
13668             ret = reg_node(pRExC_state, SEOL);
13669         Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
13670         break;
13671     case '.':
13672         nextchar(pRExC_state);
13673         if (RExC_flags & RXf_PMf_SINGLELINE)
13674             ret = reg_node(pRExC_state, SANY);
13675         else
13676             ret = reg_node(pRExC_state, REG_ANY);
13677         *flagp |= HASWIDTH|SIMPLE;
13678         MARK_NAUGHTY(1);
13679         Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
13680         break;
13681     case '[':
13682     {
13683         char * const oregcomp_parse = ++RExC_parse;
13684         ret = regclass(pRExC_state, flagp, depth+1,
13685                        FALSE, /* means parse the whole char class */
13686                        TRUE, /* allow multi-char folds */
13687                        FALSE, /* don't silence non-portable warnings. */
13688                        (bool) RExC_strict,
13689                        TRUE, /* Allow an optimized regnode result */
13690                        NULL);
13691         if (ret == 0) {
13692             RETURN_FAIL_ON_RESTART_FLAGP(flagp);
13693             FAIL2("panic: regclass returned failure to regatom, flags=%#" UVxf,
13694                   (UV) *flagp);
13695         }
13696         if (*RExC_parse != ']') {
13697             RExC_parse = oregcomp_parse;
13698             vFAIL("Unmatched [");
13699         }
13700         nextchar(pRExC_state);
13701         Set_Node_Length(REGNODE_p(ret), RExC_parse - oregcomp_parse + 1); /* MJD */
13702         break;
13703     }
13704     case '(':
13705         nextchar(pRExC_state);
13706         ret = reg(pRExC_state, 2, &flags, depth+1);
13707         if (ret == 0) {
13708                 if (flags & TRYAGAIN) {
13709                     if (RExC_parse >= RExC_end) {
13710                          /* Make parent create an empty node if needed. */
13711                         *flagp |= TRYAGAIN;
13712                         return(0);
13713                     }
13714                     goto tryagain;
13715                 }
13716                 RETURN_FAIL_ON_RESTART(flags, flagp);
13717                 FAIL2("panic: reg returned failure to regatom, flags=%#" UVxf,
13718                                                                  (UV) flags);
13719         }
13720         *flagp |= flags&(HASWIDTH|SIMPLE|POSTPONED);
13721         break;
13722     case '|':
13723     case ')':
13724         if (flags & TRYAGAIN) {
13725             *flagp |= TRYAGAIN;
13726             return 0;
13727         }
13728         vFAIL("Internal urp");
13729                                 /* Supposed to be caught earlier. */
13730         break;
13731     case '?':
13732     case '+':
13733     case '*':
13734         RExC_parse++;
13735         vFAIL("Quantifier follows nothing");
13736         break;
13737     case '\\':
13738         /* Special Escapes
13739 
13740            This switch handles escape sequences that resolve to some kind
13741            of special regop and not to literal text. Escape sequences that
13742            resolve to literal text are handled below in the switch marked
13743            "Literal Escapes".
13744 
13745            Every entry in this switch *must* have a corresponding entry
13746            in the literal escape switch. However, the opposite is not
13747            required, as the default for this switch is to jump to the
13748            literal text handling code.
13749         */
13750         RExC_parse++;
13751         switch ((U8)*RExC_parse) {
13752         /* Special Escapes */
13753         case 'A':
13754             RExC_seen_zerolen++;
13755             /* Under wildcards, this is changed to match \n; should be
13756              * invisible to the user, as they have to compile under /m */
13757             if (RExC_pm_flags & PMf_WILDCARD) {
13758                 ret = reg_node(pRExC_state, MBOL);
13759             }
13760             else {
13761                 ret = reg_node(pRExC_state, SBOL);
13762                 /* SBOL is shared with /^/ so we set the flags so we can tell
13763                  * /\A/ from /^/ in split. */
13764                 FLAGS(REGNODE_p(ret)) = 1;
13765             }
13766             goto finish_meta_pat;
13767         case 'G':
13768             if (RExC_pm_flags & PMf_WILDCARD) {
13769                 RExC_parse++;
13770                 /* diag_listed_as: Use of %s is not allowed in Unicode property
13771                    wildcard subpatterns in regex; marked by <-- HERE in m/%s/
13772                  */
13773                 vFAIL("Use of '\\G' is not allowed in Unicode property"
13774                       " wildcard subpatterns");
13775             }
13776             ret = reg_node(pRExC_state, GPOS);
13777             RExC_seen |= REG_GPOS_SEEN;
13778             goto finish_meta_pat;
13779         case 'K':
13780             if (!RExC_in_lookaround) {
13781                 RExC_seen_zerolen++;
13782                 ret = reg_node(pRExC_state, KEEPS);
13783                 /* XXX:dmq : disabling in-place substitution seems to
13784                  * be necessary here to avoid cases of memory corruption, as
13785                  * with: C<$_="x" x 80; s/x\K/y/> -- rgs
13786                  */
13787                 RExC_seen |= REG_LOOKBEHIND_SEEN;
13788                 goto finish_meta_pat;
13789             }
13790             else {
13791                 ++RExC_parse; /* advance past the 'K' */
13792                 vFAIL("\\K not permitted in lookahead/lookbehind");
13793             }
13794         case 'Z':
13795             if (RExC_pm_flags & PMf_WILDCARD) {
13796                 /* See comment under \A above */
13797                 ret = reg_node(pRExC_state, MEOL);
13798             }
13799             else {
13800                 ret = reg_node(pRExC_state, SEOL);
13801             }
13802             RExC_seen_zerolen++;		/* Do not optimize RE away */
13803             goto finish_meta_pat;
13804         case 'z':
13805             if (RExC_pm_flags & PMf_WILDCARD) {
13806                 /* See comment under \A above */
13807                 ret = reg_node(pRExC_state, MEOL);
13808             }
13809             else {
13810                 ret = reg_node(pRExC_state, EOS);
13811             }
13812             RExC_seen_zerolen++;		/* Do not optimize RE away */
13813             goto finish_meta_pat;
13814         case 'C':
13815             vFAIL("\\C no longer supported");
13816         case 'X':
13817             ret = reg_node(pRExC_state, CLUMP);
13818             *flagp |= HASWIDTH;
13819             goto finish_meta_pat;
13820 
13821         case 'B':
13822             invert = 1;
13823             /* FALLTHROUGH */
13824         case 'b':
13825           {
13826             U8 flags = 0;
13827             regex_charset charset = get_regex_charset(RExC_flags);
13828 
13829             RExC_seen_zerolen++;
13830             RExC_seen |= REG_LOOKBEHIND_SEEN;
13831             op = BOUND + charset;
13832 
13833             if (RExC_parse >= RExC_end || *(RExC_parse + 1) != '{') {
13834                 flags = TRADITIONAL_BOUND;
13835                 if (op > BOUNDA) {  /* /aa is same as /a */
13836                     op = BOUNDA;
13837                 }
13838             }
13839             else {
13840                 STRLEN length;
13841                 char name = *RExC_parse;
13842                 char * endbrace =  (char *) memchr(RExC_parse, '}',
13843                                                    RExC_end - RExC_parse);
13844                 char * e = endbrace;
13845 
13846                 RExC_parse += 2;
13847 
13848                 if (! endbrace) {
13849                     vFAIL2("Missing right brace on \\%c{}", name);
13850                 }
13851 
13852                 while (isBLANK(*RExC_parse)) {
13853                     RExC_parse++;
13854                 }
13855 
13856                 while (RExC_parse < e && isBLANK(*(e - 1))) {
13857                     e--;
13858                 }
13859 
13860                 if (e == RExC_parse) {
13861                     RExC_parse = endbrace + 1;  /* After the '}' */
13862                     vFAIL2("Empty \\%c{}", name);
13863                 }
13864 
13865                 length = e - RExC_parse;
13866 
13867                 switch (*RExC_parse) {
13868                     case 'g':
13869                         if (    length != 1
13870                             && (memNEs(RExC_parse + 1, length - 1, "cb")))
13871                         {
13872                             goto bad_bound_type;
13873                         }
13874                         flags = GCB_BOUND;
13875                         break;
13876                     case 'l':
13877                         if (length != 2 || *(RExC_parse + 1) != 'b') {
13878                             goto bad_bound_type;
13879                         }
13880                         flags = LB_BOUND;
13881                         break;
13882                     case 's':
13883                         if (length != 2 || *(RExC_parse + 1) != 'b') {
13884                             goto bad_bound_type;
13885                         }
13886                         flags = SB_BOUND;
13887                         break;
13888                     case 'w':
13889                         if (length != 2 || *(RExC_parse + 1) != 'b') {
13890                             goto bad_bound_type;
13891                         }
13892                         flags = WB_BOUND;
13893                         break;
13894                     default:
13895                       bad_bound_type:
13896                         RExC_parse = e;
13897                         vFAIL2utf8f(
13898                             "'%" UTF8f "' is an unknown bound type",
13899                             UTF8fARG(UTF, length, e - length));
13900                         NOT_REACHED; /*NOTREACHED*/
13901                 }
13902                 RExC_parse = endbrace;
13903                 REQUIRE_UNI_RULES(flagp, 0);
13904 
13905                 if (op == BOUND) {
13906                     op = BOUNDU;
13907                 }
13908                 else if (op >= BOUNDA) {  /* /aa is same as /a */
13909                     op = BOUNDU;
13910                     length += 4;
13911 
13912                     /* Don't have to worry about UTF-8, in this message because
13913                      * to get here the contents of the \b must be ASCII */
13914                     ckWARN4reg(RExC_parse + 1,  /* Include the '}' in msg */
13915                               "Using /u for '%.*s' instead of /%s",
13916                               (unsigned) length,
13917                               endbrace - length + 1,
13918                               (charset == REGEX_ASCII_RESTRICTED_CHARSET)
13919                               ? ASCII_RESTRICT_PAT_MODS
13920                               : ASCII_MORE_RESTRICT_PAT_MODS);
13921                 }
13922             }
13923 
13924             if (op == BOUND) {
13925                 RExC_seen_d_op = TRUE;
13926             }
13927             else if (op == BOUNDL) {
13928                 RExC_contains_locale = 1;
13929             }
13930 
13931             if (invert) {
13932                 op += NBOUND - BOUND;
13933             }
13934 
13935             ret = reg_node(pRExC_state, op);
13936             FLAGS(REGNODE_p(ret)) = flags;
13937 
13938             goto finish_meta_pat;
13939           }
13940 
13941         case 'R':
13942             ret = reg_node(pRExC_state, LNBREAK);
13943             *flagp |= HASWIDTH|SIMPLE;
13944             goto finish_meta_pat;
13945 
13946         case 'd':
13947         case 'D':
13948         case 'h':
13949         case 'H':
13950         case 'p':
13951         case 'P':
13952         case 's':
13953         case 'S':
13954         case 'v':
13955         case 'V':
13956         case 'w':
13957         case 'W':
13958             /* These all have the same meaning inside [brackets], and it knows
13959              * how to do the best optimizations for them.  So, pretend we found
13960              * these within brackets, and let it do the work */
13961             RExC_parse--;
13962 
13963             ret = regclass(pRExC_state, flagp, depth+1,
13964                            TRUE, /* means just parse this element */
13965                            FALSE, /* don't allow multi-char folds */
13966                            FALSE, /* don't silence non-portable warnings.  It
13967                                      would be a bug if these returned
13968                                      non-portables */
13969                            (bool) RExC_strict,
13970                            TRUE, /* Allow an optimized regnode result */
13971                            NULL);
13972             RETURN_FAIL_ON_RESTART_FLAGP(flagp);
13973             /* regclass() can only return RESTART_PARSE and NEED_UTF8 if
13974              * multi-char folds are allowed.  */
13975             if (!ret)
13976                 FAIL2("panic: regclass returned failure to regatom, flags=%#" UVxf,
13977                       (UV) *flagp);
13978 
13979             RExC_parse--;   /* regclass() leaves this one too far ahead */
13980 
13981           finish_meta_pat:
13982                    /* The escapes above that don't take a parameter can't be
13983                     * followed by a '{'.  But 'pX', 'p{foo}' and
13984                     * correspondingly 'P' can be */
13985             if (   RExC_parse - parse_start == 1
13986                 && UCHARAT(RExC_parse + 1) == '{'
13987                 && UNLIKELY(! regcurly(RExC_parse + 1, RExC_end, NULL)))
13988             {
13989                 RExC_parse += 2;
13990                 vFAIL("Unescaped left brace in regex is illegal here");
13991             }
13992             Set_Node_Offset(REGNODE_p(ret), parse_start);
13993             Set_Node_Length(REGNODE_p(ret), RExC_parse - parse_start + 1); /* MJD */
13994             nextchar(pRExC_state);
13995             break;
13996         case 'N':
13997             /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
13998              * \N{...} evaluates to a sequence of more than one code points).
13999              * The function call below returns a regnode, which is our result.
14000              * The parameters cause it to fail if the \N{} evaluates to a
14001              * single code point; we handle those like any other literal.  The
14002              * reason that the multicharacter case is handled here and not as
14003              * part of the EXACtish code is because of quantifiers.  In
14004              * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
14005              * this way makes that Just Happen. dmq.
14006              * join_exact() will join this up with adjacent EXACTish nodes
14007              * later on, if appropriate. */
14008             ++RExC_parse;
14009             if (grok_bslash_N(pRExC_state,
14010                               &ret,     /* Want a regnode returned */
14011                               NULL,     /* Fail if evaluates to a single code
14012                                            point */
14013                               NULL,     /* Don't need a count of how many code
14014                                            points */
14015                               flagp,
14016                               RExC_strict,
14017                               depth)
14018             ) {
14019                 break;
14020             }
14021 
14022             RETURN_FAIL_ON_RESTART_FLAGP(flagp);
14023 
14024             /* Here, evaluates to a single code point.  Go get that */
14025             RExC_parse = parse_start;
14026             goto defchar;
14027 
14028         case 'k':    /* Handle \k<NAME> and \k'NAME' and \k{NAME} */
14029       parse_named_seq:  /* Also handle non-numeric \g{...} */
14030         {
14031             char ch;
14032             if (   RExC_parse >= RExC_end - 1
14033                 || ((   ch = RExC_parse[1]) != '<'
14034                                       && ch != '\''
14035                                       && ch != '{'))
14036             {
14037                 RExC_parse++;
14038                 /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
14039                 vFAIL2("Sequence %.2s... not terminated", parse_start);
14040             } else {
14041                 RExC_parse += 2;
14042                 if (ch == '{') {
14043                     while (isBLANK(*RExC_parse)) {
14044                         RExC_parse++;
14045                     }
14046                 }
14047                 ret = handle_named_backref(pRExC_state,
14048                                            flagp,
14049                                            parse_start,
14050                                            (ch == '<')
14051                                            ? '>'
14052                                            : (ch == '{')
14053                                              ? '}'
14054                                              : '\'');
14055             }
14056             break;
14057         }
14058         case 'g':
14059         case '1': case '2': case '3': case '4':
14060         case '5': case '6': case '7': case '8': case '9':
14061             {
14062                 I32 num;
14063                 char * endbrace = NULL;
14064                 char * s = RExC_parse;
14065                 char * e = RExC_end;
14066 
14067                 if (*s == 'g') {
14068                     bool isrel = 0;
14069 
14070                     s++;
14071                     if (*s == '{') {
14072                         endbrace = (char *) memchr(s, '}', RExC_end - s);
14073                         if (! endbrace ) {
14074 
14075                             /* Missing '}'.  Position after the number to give
14076                              * a better indication to the user of where the
14077                              * problem is. */
14078                             s++;
14079                             if (*s == '-') {
14080                                 s++;
14081                             }
14082 
14083                             /* If it looks to be a name and not a number, go
14084                              * handle it there */
14085                             if (! isDIGIT(*s)) {
14086                                 goto parse_named_seq;
14087                             }
14088 
14089                             do {
14090                                 s++;
14091                             } while isDIGIT(*s);
14092 
14093                             RExC_parse = s;
14094                             vFAIL("Unterminated \\g{...} pattern");
14095                         }
14096 
14097                         s++;    /* Past the '{' */
14098 
14099                         while (isBLANK(*s)) {
14100                             s++;
14101                         }
14102 
14103                         /* Ignore trailing blanks */
14104                         e = endbrace;
14105                         while (s < e && isBLANK(*(e - 1))) {
14106                             e--;
14107                         }
14108                     }
14109 
14110                     /* Here, have isolated the meat of the construct from any
14111                      * surrounding braces */
14112 
14113                     if (*s == '-') {
14114                         isrel = 1;
14115                         s++;
14116                     }
14117 
14118                     if (endbrace && !isDIGIT(*s)) {
14119                         goto parse_named_seq;
14120                     }
14121 
14122                     RExC_parse = s;
14123                     num = S_backref_value(RExC_parse, RExC_end);
14124                     if (num == 0)
14125                         vFAIL("Reference to invalid group 0");
14126                     else if (num == I32_MAX) {
14127                          if (isDIGIT(*RExC_parse))
14128                             vFAIL("Reference to nonexistent group");
14129                         else
14130                             vFAIL("Unterminated \\g... pattern");
14131                     }
14132 
14133                     if (isrel) {
14134                         num = RExC_npar - num;
14135                         if (num < 1)
14136                             vFAIL("Reference to nonexistent or unclosed group");
14137                     }
14138                 }
14139                 else {
14140                     num = S_backref_value(RExC_parse, RExC_end);
14141                     /* bare \NNN might be backref or octal - if it is larger
14142                      * than or equal RExC_npar then it is assumed to be an
14143                      * octal escape. Note RExC_npar is +1 from the actual
14144                      * number of parens. */
14145                     /* Note we do NOT check if num == I32_MAX here, as that is
14146                      * handled by the RExC_npar check */
14147 
14148                     if (    /* any numeric escape < 10 is always a backref */
14149                            num > 9
14150                             /* any numeric escape < RExC_npar is a backref */
14151                         && num >= RExC_npar
14152                             /* cannot be an octal escape if it starts with [89]
14153                              * */
14154                         && ! inRANGE(*RExC_parse, '8', '9')
14155                     ) {
14156                         /* Probably not meant to be a backref, instead likely
14157                          * to be an octal character escape, e.g. \35 or \777.
14158                          * The above logic should make it obvious why using
14159                          * octal escapes in patterns is problematic. - Yves */
14160                         RExC_parse = parse_start;
14161                         goto defchar;
14162                     }
14163                 }
14164 
14165                 /* At this point RExC_parse points at a numeric escape like
14166                  * \12 or \88 or the digits in \g{34} or \g34 or something
14167                  * similar, which we should NOT treat as an octal escape. It
14168                  * may or may not be a valid backref escape. For instance
14169                  * \88888888 is unlikely to be a valid backref.
14170                  *
14171                  * We've already figured out what value the digits represent.
14172                  * Now, move the parse to beyond them. */
14173                 if (endbrace) {
14174                     RExC_parse = endbrace + 1;
14175                 }
14176                 else while (isDIGIT(*RExC_parse)) {
14177                     RExC_parse++;
14178                 }
14179 
14180                 if (num >= (I32)RExC_npar) {
14181 
14182                     /* It might be a forward reference; we can't fail until we
14183                      * know, by completing the parse to get all the groups, and
14184                      * then reparsing */
14185                     if (ALL_PARENS_COUNTED)  {
14186                         if (num >= RExC_total_parens)  {
14187                             vFAIL("Reference to nonexistent group");
14188                         }
14189                     }
14190                     else {
14191                         REQUIRE_PARENS_PASS;
14192                     }
14193                 }
14194                 RExC_sawback = 1;
14195                 ret = reganode(pRExC_state,
14196                                ((! FOLD)
14197                                  ? REF
14198                                  : (ASCII_FOLD_RESTRICTED)
14199                                    ? REFFA
14200                                    : (AT_LEAST_UNI_SEMANTICS)
14201                                      ? REFFU
14202                                      : (LOC)
14203                                        ? REFFL
14204                                        : REFF),
14205                                 num);
14206                 if (OP(REGNODE_p(ret)) == REFF) {
14207                     RExC_seen_d_op = TRUE;
14208                 }
14209                 *flagp |= HASWIDTH;
14210 
14211                 /* override incorrect value set in reganode MJD */
14212                 Set_Node_Offset(REGNODE_p(ret), parse_start);
14213                 Set_Node_Cur_Length(REGNODE_p(ret), parse_start-1);
14214                 skip_to_be_ignored_text(pRExC_state, &RExC_parse,
14215                                         FALSE /* Don't force to /x */ );
14216             }
14217             break;
14218         case '\0':
14219             if (RExC_parse >= RExC_end)
14220                 FAIL("Trailing \\");
14221             /* FALLTHROUGH */
14222         default:
14223             /* Do not generate "unrecognized" warnings here, we fall
14224                back into the quick-grab loop below */
14225             RExC_parse = parse_start;
14226             goto defchar;
14227         } /* end of switch on a \foo sequence */
14228         break;
14229 
14230     case '#':
14231 
14232         /* '#' comments should have been spaced over before this function was
14233          * called */
14234         assert((RExC_flags & RXf_PMf_EXTENDED) == 0);
14235         /*
14236         if (RExC_flags & RXf_PMf_EXTENDED) {
14237             RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
14238             if (RExC_parse < RExC_end)
14239                 goto tryagain;
14240         }
14241         */
14242 
14243         /* FALLTHROUGH */
14244 
14245     default:
14246           defchar: {
14247 
14248             /* Here, we have determined that the next thing is probably a
14249              * literal character.  RExC_parse points to the first byte of its
14250              * definition.  (It still may be an escape sequence that evaluates
14251              * to a single character) */
14252 
14253             STRLEN len = 0;
14254             UV ender = 0;
14255             char *p;
14256             char *s, *old_s = NULL, *old_old_s = NULL;
14257             char *s0;
14258             U32 max_string_len = 255;
14259 
14260             /* We may have to reparse the node, artificially stopping filling
14261              * it early, based on info gleaned in the first parse.  This
14262              * variable gives where we stop.  Make it above the normal stopping
14263              * place first time through; otherwise it would stop too early */
14264             U32 upper_fill = max_string_len + 1;
14265 
14266             /* We start out as an EXACT node, even if under /i, until we find a
14267              * character which is in a fold.  The algorithm now segregates into
14268              * separate nodes, characters that fold from those that don't under
14269              * /i.  (This hopefully will create nodes that are fixed strings
14270              * even under /i, giving the optimizer something to grab on to.)
14271              * So, if a node has something in it and the next character is in
14272              * the opposite category, that node is closed up, and the function
14273              * returns.  Then regatom is called again, and a new node is
14274              * created for the new category. */
14275             U8 node_type = EXACT;
14276 
14277             /* Assume the node will be fully used; the excess is given back at
14278              * the end.  Under /i, we may need to temporarily add the fold of
14279              * an extra character or two at the end to check for splitting
14280              * multi-char folds, so allocate extra space for that.   We can't
14281              * make any other length assumptions, as a byte input sequence
14282              * could shrink down. */
14283             Ptrdiff_t current_string_nodes = STR_SZ(max_string_len
14284                                                  + ((! FOLD)
14285                                                     ? 0
14286                                                     : 2 * ((UTF)
14287                                                            ? UTF8_MAXBYTES_CASE
14288                         /* Max non-UTF-8 expansion is 2 */ : 2)));
14289 
14290             bool next_is_quantifier;
14291             char * oldp = NULL;
14292 
14293             /* We can convert EXACTF nodes to EXACTFU if they contain only
14294              * characters that match identically regardless of the target
14295              * string's UTF8ness.  The reason to do this is that EXACTF is not
14296              * trie-able, EXACTFU is, and EXACTFU requires fewer operations at
14297              * runtime.
14298              *
14299              * Similarly, we can convert EXACTFL nodes to EXACTFLU8 if they
14300              * contain only above-Latin1 characters (hence must be in UTF8),
14301              * which don't participate in folds with Latin1-range characters,
14302              * as the latter's folds aren't known until runtime. */
14303             bool maybe_exactfu = FOLD && (DEPENDS_SEMANTICS || LOC);
14304 
14305             /* Single-character EXACTish nodes are almost always SIMPLE.  This
14306              * allows us to override this as encountered */
14307             U8 maybe_SIMPLE = SIMPLE;
14308 
14309             /* Does this node contain something that can't match unless the
14310              * target string is (also) in UTF-8 */
14311             bool requires_utf8_target = FALSE;
14312 
14313             /* The sequence 'ss' is problematic in non-UTF-8 patterns. */
14314             bool has_ss = FALSE;
14315 
14316             /* So is the MICRO SIGN */
14317             bool has_micro_sign = FALSE;
14318 
14319             /* Set when we fill up the current node and there is still more
14320              * text to process */
14321             bool overflowed;
14322 
14323             /* Allocate an EXACT node.  The node_type may change below to
14324              * another EXACTish node, but since the size of the node doesn't
14325              * change, it works */
14326             ret = regnode_guts(pRExC_state, node_type, current_string_nodes,
14327                                                                     "exact");
14328             FILL_NODE(ret, node_type);
14329             RExC_emit++;
14330 
14331             s = STRING(REGNODE_p(ret));
14332 
14333             s0 = s;
14334 
14335           reparse:
14336 
14337             p = RExC_parse;
14338             len = 0;
14339             s = s0;
14340             node_type = EXACT;
14341             oldp = NULL;
14342             maybe_exactfu = FOLD && (DEPENDS_SEMANTICS || LOC);
14343             maybe_SIMPLE = SIMPLE;
14344             requires_utf8_target = FALSE;
14345             has_ss = FALSE;
14346             has_micro_sign = FALSE;
14347 
14348           continue_parse:
14349 
14350             /* This breaks under rare circumstances.  If folding, we do not
14351              * want to split a node at a character that is a non-final in a
14352              * multi-char fold, as an input string could just happen to want to
14353              * match across the node boundary.  The code at the end of the loop
14354              * looks for this, and backs off until it finds not such a
14355              * character, but it is possible (though extremely, extremely
14356              * unlikely) for all characters in the node to be non-final fold
14357              * ones, in which case we just leave the node fully filled, and
14358              * hope that it doesn't match the string in just the wrong place */
14359 
14360             assert( ! UTF     /* Is at the beginning of a character */
14361                    || UTF8_IS_INVARIANT(UCHARAT(RExC_parse))
14362                    || UTF8_IS_START(UCHARAT(RExC_parse)));
14363 
14364             overflowed = FALSE;
14365 
14366             /* Here, we have a literal character.  Find the maximal string of
14367              * them in the input that we can fit into a single EXACTish node.
14368              * We quit at the first non-literal or when the node gets full, or
14369              * under /i the categorization of folding/non-folding character
14370              * changes */
14371             while (p < RExC_end && len < upper_fill) {
14372 
14373                 /* In most cases each iteration adds one byte to the output.
14374                  * The exceptions override this */
14375                 Size_t added_len = 1;
14376 
14377                 oldp = p;
14378                 old_old_s = old_s;
14379                 old_s = s;
14380 
14381                 /* White space has already been ignored */
14382                 assert(   (RExC_flags & RXf_PMf_EXTENDED) == 0
14383                        || ! is_PATWS_safe((p), RExC_end, UTF));
14384 
14385                 switch ((U8)*p) {
14386                   const char* message;
14387                   U32 packed_warn;
14388                   U8 grok_c_char;
14389 
14390                 case '^':
14391                 case '$':
14392                 case '.':
14393                 case '[':
14394                 case '(':
14395                 case ')':
14396                 case '|':
14397                     goto loopdone;
14398                 case '\\':
14399                     /* Literal Escapes Switch
14400 
14401                        This switch is meant to handle escape sequences that
14402                        resolve to a literal character.
14403 
14404                        Every escape sequence that represents something
14405                        else, like an assertion or a char class, is handled
14406                        in the switch marked 'Special Escapes' above in this
14407                        routine, but also has an entry here as anything that
14408                        isn't explicitly mentioned here will be treated as
14409                        an unescaped equivalent literal.
14410                     */
14411 
14412                     switch ((U8)*++p) {
14413 
14414                     /* These are all the special escapes. */
14415                     case 'A':             /* Start assertion */
14416                     case 'b': case 'B':   /* Word-boundary assertion*/
14417                     case 'C':             /* Single char !DANGEROUS! */
14418                     case 'd': case 'D':   /* digit class */
14419                     case 'g': case 'G':   /* generic-backref, pos assertion */
14420                     case 'h': case 'H':   /* HORIZWS */
14421                     case 'k': case 'K':   /* named backref, keep marker */
14422                     case 'p': case 'P':   /* Unicode property */
14423                               case 'R':   /* LNBREAK */
14424                     case 's': case 'S':   /* space class */
14425                     case 'v': case 'V':   /* VERTWS */
14426                     case 'w': case 'W':   /* word class */
14427                     case 'X':             /* eXtended Unicode "combining
14428                                              character sequence" */
14429                     case 'z': case 'Z':   /* End of line/string assertion */
14430                         --p;
14431                         goto loopdone;
14432 
14433                     /* Anything after here is an escape that resolves to a
14434                        literal. (Except digits, which may or may not)
14435                      */
14436                     case 'n':
14437                         ender = '\n';
14438                         p++;
14439                         break;
14440                     case 'N': /* Handle a single-code point named character. */
14441                         RExC_parse = p + 1;
14442                         if (! grok_bslash_N(pRExC_state,
14443                                             NULL,   /* Fail if evaluates to
14444                                                        anything other than a
14445                                                        single code point */
14446                                             &ender, /* The returned single code
14447                                                        point */
14448                                             NULL,   /* Don't need a count of
14449                                                        how many code points */
14450                                             flagp,
14451                                             RExC_strict,
14452                                             depth)
14453                         ) {
14454                             if (*flagp & NEED_UTF8)
14455                                 FAIL("panic: grok_bslash_N set NEED_UTF8");
14456                             RETURN_FAIL_ON_RESTART_FLAGP(flagp);
14457 
14458                             /* Here, it wasn't a single code point.  Go close
14459                              * up this EXACTish node.  The switch() prior to
14460                              * this switch handles the other cases */
14461                             RExC_parse = p = oldp;
14462                             goto loopdone;
14463                         }
14464                         p = RExC_parse;
14465                         RExC_parse = parse_start;
14466 
14467                         /* The \N{} means the pattern, if previously /d,
14468                          * becomes /u.  That means it can't be an EXACTF node,
14469                          * but an EXACTFU */
14470                         if (node_type == EXACTF) {
14471                             node_type = EXACTFU;
14472 
14473                             /* If the node already contains something that
14474                              * differs between EXACTF and EXACTFU, reparse it
14475                              * as EXACTFU */
14476                             if (! maybe_exactfu) {
14477                                 len = 0;
14478                                 s = s0;
14479                                 goto reparse;
14480                             }
14481                         }
14482 
14483                         break;
14484                     case 'r':
14485                         ender = '\r';
14486                         p++;
14487                         break;
14488                     case 't':
14489                         ender = '\t';
14490                         p++;
14491                         break;
14492                     case 'f':
14493                         ender = '\f';
14494                         p++;
14495                         break;
14496                     case 'e':
14497                         ender = ESC_NATIVE;
14498                         p++;
14499                         break;
14500                     case 'a':
14501                         ender = '\a';
14502                         p++;
14503                         break;
14504                     case 'o':
14505                         if (! grok_bslash_o(&p,
14506                                             RExC_end,
14507                                             &ender,
14508                                             &message,
14509                                             &packed_warn,
14510                                             (bool) RExC_strict,
14511                                             FALSE, /* No illegal cp's */
14512                                             UTF))
14513                         {
14514                             RExC_parse = p; /* going to die anyway; point to
14515                                                exact spot of failure */
14516                             vFAIL(message);
14517                         }
14518 
14519                         if (message && TO_OUTPUT_WARNINGS(p)) {
14520                             warn_non_literal_string(p, packed_warn, message);
14521                         }
14522                         break;
14523                     case 'x':
14524                         if (! grok_bslash_x(&p,
14525                                             RExC_end,
14526                                             &ender,
14527                                             &message,
14528                                             &packed_warn,
14529                                             (bool) RExC_strict,
14530                                             FALSE, /* No illegal cp's */
14531                                             UTF))
14532                         {
14533                             RExC_parse = p;	/* going to die anyway; point
14534                                                    to exact spot of failure */
14535                             vFAIL(message);
14536                         }
14537 
14538                         if (message && TO_OUTPUT_WARNINGS(p)) {
14539                             warn_non_literal_string(p, packed_warn, message);
14540                         }
14541 
14542 #ifdef EBCDIC
14543                         if (ender < 0x100) {
14544                             if (RExC_recode_x_to_native) {
14545                                 ender = LATIN1_TO_NATIVE(ender);
14546                             }
14547                         }
14548 #endif
14549                         break;
14550                     case 'c':
14551                         p++;
14552                         if (! grok_bslash_c(*p, &grok_c_char,
14553                                             &message, &packed_warn))
14554                         {
14555                             /* going to die anyway; point to exact spot of
14556                              * failure */
14557                             RExC_parse = p + ((UTF)
14558                                               ? UTF8_SAFE_SKIP(p, RExC_end)
14559                                               : 1);
14560                             vFAIL(message);
14561                         }
14562 
14563                         ender = grok_c_char;
14564                         p++;
14565                         if (message && TO_OUTPUT_WARNINGS(p)) {
14566                             warn_non_literal_string(p, packed_warn, message);
14567                         }
14568 
14569                         break;
14570                     case '8': case '9': /* must be a backreference */
14571                         --p;
14572                         /* we have an escape like \8 which cannot be an octal escape
14573                          * so we exit the loop, and let the outer loop handle this
14574                          * escape which may or may not be a legitimate backref. */
14575                         goto loopdone;
14576                     case '1': case '2': case '3':case '4':
14577                     case '5': case '6': case '7':
14578 
14579                         /* When we parse backslash escapes there is ambiguity
14580                          * between backreferences and octal escapes. Any escape
14581                          * from \1 - \9 is a backreference, any multi-digit
14582                          * escape which does not start with 0 and which when
14583                          * evaluated as decimal could refer to an already
14584                          * parsed capture buffer is a back reference. Anything
14585                          * else is octal.
14586                          *
14587                          * Note this implies that \118 could be interpreted as
14588                          * 118 OR as "\11" . "8" depending on whether there
14589                          * were 118 capture buffers defined already in the
14590                          * pattern.  */
14591 
14592                         /* NOTE, RExC_npar is 1 more than the actual number of
14593                          * parens we have seen so far, hence the "<" as opposed
14594                          * to "<=" */
14595                         if ( !isDIGIT(p[1]) || S_backref_value(p, RExC_end) < RExC_npar)
14596                         {  /* Not to be treated as an octal constant, go
14597                                    find backref */
14598                             p = oldp;
14599                             goto loopdone;
14600                         }
14601                         /* FALLTHROUGH */
14602                     case '0':
14603                         {
14604                             I32 flags = PERL_SCAN_SILENT_ILLDIGIT
14605                                       | PERL_SCAN_NOTIFY_ILLDIGIT;
14606                             STRLEN numlen = 3;
14607                             ender = grok_oct(p, &numlen, &flags, NULL);
14608                             p += numlen;
14609                             if (  (flags & PERL_SCAN_NOTIFY_ILLDIGIT)
14610                                 && isDIGIT(*p)  /* like \08, \178 */
14611                                 && ckWARN(WARN_REGEXP))
14612                             {
14613                                 reg_warn_non_literal_string(
14614                                      p + 1,
14615                                      form_alien_digit_msg(8, numlen, p,
14616                                                         RExC_end, UTF, FALSE));
14617                             }
14618                         }
14619                         break;
14620                     case '\0':
14621                         if (p >= RExC_end)
14622                             FAIL("Trailing \\");
14623                         /* FALLTHROUGH */
14624                     default:
14625                         if (isALPHANUMERIC(*p)) {
14626                             /* An alpha followed by '{' is going to fail next
14627                              * iteration, so don't output this warning in that
14628                              * case */
14629                             if (! isALPHA(*p) || *(p + 1) != '{') {
14630                                 ckWARN2reg(p + 1, "Unrecognized escape \\%.1s"
14631                                                   " passed through", p);
14632                             }
14633                         }
14634                         goto normal_default;
14635                     } /* End of switch on '\' */
14636                     break;
14637                 case '{':
14638                     /* Trying to gain new uses for '{' without breaking too
14639                      * much existing code is hard.  The solution currently
14640                      * adopted is:
14641                      *  1)  If there is no ambiguity that a '{' should always
14642                      *      be taken literally, at the start of a construct, we
14643                      *      just do so.
14644                      *  2)  If the literal '{' conflicts with our desired use
14645                      *      of it as a metacharacter, we die.  The deprecation
14646                      *      cycles for this have come and gone.
14647                      *  3)  If there is ambiguity, we raise a simple warning.
14648                      *      This could happen, for example, if the user
14649                      *      intended it to introduce a quantifier, but slightly
14650                      *      misspelled the quantifier.  Without this warning,
14651                      *      the quantifier would silently be taken as a literal
14652                      *      string of characters instead of a meta construct */
14653                     if (len || (p > RExC_start && isALPHA_A(*(p - 1)))) {
14654                         if (      RExC_strict
14655                             || (  p > parse_start + 1
14656                                 && isALPHA_A(*(p - 1))
14657                                 && *(p - 2) == '\\'))
14658                         {
14659                             RExC_parse = p + 1;
14660                             vFAIL("Unescaped left brace in regex is "
14661                                   "illegal here");
14662                         }
14663                         ckWARNreg(p + 1, "Unescaped left brace in regex is"
14664                                          " passed through");
14665                     }
14666                     goto normal_default;
14667                 case '}':
14668                 case ']':
14669                     if (p > RExC_parse && RExC_strict) {
14670                         ckWARN2reg(p + 1, "Unescaped literal '%c'", *p);
14671                     }
14672                     /*FALLTHROUGH*/
14673                 default:    /* A literal character */
14674                   normal_default:
14675                     if (! UTF8_IS_INVARIANT(*p) && UTF) {
14676                         STRLEN numlen;
14677                         ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
14678                                                &numlen, UTF8_ALLOW_DEFAULT);
14679                         p += numlen;
14680                     }
14681                     else
14682                         ender = (U8) *p++;
14683                     break;
14684                 } /* End of switch on the literal */
14685 
14686                 /* Here, have looked at the literal character, and <ender>
14687                  * contains its ordinal; <p> points to the character after it.
14688                  * */
14689 
14690                 if (ender > 255) {
14691                     REQUIRE_UTF8(flagp);
14692                     if (   UNICODE_IS_PERL_EXTENDED(ender)
14693                         && TO_OUTPUT_WARNINGS(p))
14694                     {
14695                         ckWARN2_non_literal_string(p,
14696                                                    packWARN(WARN_PORTABLE),
14697                                                    PL_extended_cp_format,
14698                                                    ender);
14699                     }
14700                 }
14701 
14702                 /* We need to check if the next non-ignored thing is a
14703                  * quantifier.  Move <p> to after anything that should be
14704                  * ignored, which, as a side effect, positions <p> for the next
14705                  * loop iteration */
14706                 skip_to_be_ignored_text(pRExC_state, &p,
14707                                         FALSE /* Don't force to /x */ );
14708 
14709                 /* If the next thing is a quantifier, it applies to this
14710                  * character only, which means that this character has to be in
14711                  * its own node and can't just be appended to the string in an
14712                  * existing node, so if there are already other characters in
14713                  * the node, close the node with just them, and set up to do
14714                  * this character again next time through, when it will be the
14715                  * only thing in its new node */
14716 
14717                 next_is_quantifier =    LIKELY(p < RExC_end)
14718                                      && UNLIKELY(isQUANTIFIER(p, RExC_end));
14719 
14720                 if (next_is_quantifier && LIKELY(len)) {
14721                     p = oldp;
14722                     goto loopdone;
14723                 }
14724 
14725                 /* Ready to add 'ender' to the node */
14726 
14727                 if (! FOLD) {  /* The simple case, just append the literal */
14728                   not_fold_common:
14729 
14730                     /* Don't output if it would overflow */
14731                     if (UNLIKELY(len > max_string_len - ((UTF)
14732                                                       ? UVCHR_SKIP(ender)
14733                                                       : 1)))
14734                     {
14735                         overflowed = TRUE;
14736                         break;
14737                     }
14738 
14739                     if (UVCHR_IS_INVARIANT(ender) || ! UTF) {
14740                         *(s++) = (char) ender;
14741                     }
14742                     else {
14743                         U8 * new_s = uvchr_to_utf8((U8*)s, ender);
14744                         added_len = (char *) new_s - s;
14745                         s = (char *) new_s;
14746 
14747                         if (ender > 255)  {
14748                             requires_utf8_target = TRUE;
14749                         }
14750                     }
14751                 }
14752                 else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
14753 
14754                     /* Here are folding under /l, and the code point is
14755                      * problematic.  If this is the first character in the
14756                      * node, change the node type to folding.   Otherwise, if
14757                      * this is the first problematic character, close up the
14758                      * existing node, so can start a new node with this one */
14759                     if (! len) {
14760                         node_type = EXACTFL;
14761                         RExC_contains_locale = 1;
14762                     }
14763                     else if (node_type == EXACT) {
14764                         p = oldp;
14765                         goto loopdone;
14766                     }
14767 
14768                     /* This problematic code point means we can't simplify
14769                      * things */
14770                     maybe_exactfu = FALSE;
14771 
14772                     /* Although these two characters have folds that are
14773                      * locale-problematic, they also have folds to above Latin1
14774                      * that aren't a problem.  Doing these now helps at
14775                      * runtime. */
14776                     if (UNLIKELY(   ender == GREEK_CAPITAL_LETTER_MU
14777                                  || ender == LATIN_CAPITAL_LETTER_SHARP_S))
14778                     {
14779                         goto fold_anyway;
14780                     }
14781 
14782                     /* Here, we are adding a problematic fold character.
14783                      * "Problematic" in this context means that its fold isn't
14784                      * known until runtime.  (The non-problematic code points
14785                      * are the above-Latin1 ones that fold to also all
14786                      * above-Latin1.  Their folds don't vary no matter what the
14787                      * locale is.) But here we have characters whose fold
14788                      * depends on the locale.  We just add in the unfolded
14789                      * character, and wait until runtime to fold it */
14790                     goto not_fold_common;
14791                 }
14792                 else /* regular fold; see if actually is in a fold */
14793                      if (   (ender < 256 && ! IS_IN_SOME_FOLD_L1(ender))
14794                          || (ender > 255
14795                             && ! _invlist_contains_cp(PL_in_some_fold, ender)))
14796                 {
14797                     /* Here, folding, but the character isn't in a fold.
14798                      *
14799                      * Start a new node if previous characters in the node were
14800                      * folded */
14801                     if (len && node_type != EXACT) {
14802                         p = oldp;
14803                         goto loopdone;
14804                     }
14805 
14806                     /* Here, continuing a node with non-folded characters.  Add
14807                      * this one */
14808                     goto not_fold_common;
14809                 }
14810                 else {  /* Here, does participate in some fold */
14811 
14812                     /* If this is the first character in the node, change its
14813                      * type to folding.  Otherwise, if this is the first
14814                      * folding character in the node, close up the existing
14815                      * node, so can start a new node with this one.  */
14816                     if (! len) {
14817                         node_type = compute_EXACTish(pRExC_state);
14818                     }
14819                     else if (node_type == EXACT) {
14820                         p = oldp;
14821                         goto loopdone;
14822                     }
14823 
14824                     if (UTF) {  /* Alway use the folded value for UTF-8
14825                                    patterns */
14826                         if (UVCHR_IS_INVARIANT(ender)) {
14827                             if (UNLIKELY(len + 1 > max_string_len)) {
14828                                 overflowed = TRUE;
14829                                 break;
14830                             }
14831 
14832                             *(s)++ = (U8) toFOLD(ender);
14833                         }
14834                         else {
14835                             UV folded;
14836 
14837                           fold_anyway:
14838                             folded = _to_uni_fold_flags(
14839                                     ender,
14840                                     (U8 *) s,  /* We have allocated extra space
14841                                                   in 's' so can't run off the
14842                                                   end */
14843                                     &added_len,
14844                                     FOLD_FLAGS_FULL
14845                                   | ((   ASCII_FOLD_RESTRICTED
14846                                       || node_type == EXACTFL)
14847                                     ? FOLD_FLAGS_NOMIX_ASCII
14848                                     : 0));
14849                             if (UNLIKELY(len + added_len > max_string_len)) {
14850                                 overflowed = TRUE;
14851                                 break;
14852                             }
14853 
14854                             s += added_len;
14855 
14856                             if (   folded > 255
14857                                 && LIKELY(folded != GREEK_SMALL_LETTER_MU))
14858                             {
14859                                 /* U+B5 folds to the MU, so its possible for a
14860                                  * non-UTF-8 target to match it */
14861                                 requires_utf8_target = TRUE;
14862                             }
14863                         }
14864                     }
14865                     else { /* Here is non-UTF8. */
14866 
14867                         /* The fold will be one or (rarely) two characters.
14868                          * Check that there's room for at least a single one
14869                          * before setting any flags, etc.  Because otherwise an
14870                          * overflowing character could cause a flag to be set
14871                          * even though it doesn't end up in this node.  (For
14872                          * the two character fold, we check again, before
14873                          * setting any flags) */
14874                         if (UNLIKELY(len + 1 > max_string_len)) {
14875                             overflowed = TRUE;
14876                             break;
14877                         }
14878 
14879 #if    UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */   \
14880    || (UNICODE_MAJOR_VERSION == 3 && (   UNICODE_DOT_VERSION > 0)       \
14881                                       || UNICODE_DOT_DOT_VERSION > 0)
14882 
14883                         /* On non-ancient Unicodes, check for the only possible
14884                          * multi-char fold  */
14885                         if (UNLIKELY(ender == LATIN_SMALL_LETTER_SHARP_S)) {
14886 
14887                             /* This potential multi-char fold means the node
14888                              * can't be simple (because it could match more
14889                              * than a single char).  And in some cases it will
14890                              * match 'ss', so set that flag */
14891                             maybe_SIMPLE = 0;
14892                             has_ss = TRUE;
14893 
14894                             /* It can't change to be an EXACTFU (unless already
14895                              * is one).  We fold it iff under /u rules. */
14896                             if (node_type != EXACTFU) {
14897                                 maybe_exactfu = FALSE;
14898                             }
14899                             else {
14900                                 if (UNLIKELY(len + 2 > max_string_len)) {
14901                                     overflowed = TRUE;
14902                                     break;
14903                                 }
14904 
14905                                 *(s++) = 's';
14906                                 *(s++) = 's';
14907                                 added_len = 2;
14908 
14909                                 goto done_with_this_char;
14910                             }
14911                         }
14912                         else if (   UNLIKELY(isALPHA_FOLD_EQ(ender, 's'))
14913                                  && LIKELY(len > 0)
14914                                  && UNLIKELY(isALPHA_FOLD_EQ(*(s-1), 's')))
14915                         {
14916                             /* Also, the sequence 'ss' is special when not
14917                              * under /u.  If the target string is UTF-8, it
14918                              * should match SHARP S; otherwise it won't.  So,
14919                              * here we have to exclude the possibility of this
14920                              * node moving to /u.*/
14921                             has_ss = TRUE;
14922                             maybe_exactfu = FALSE;
14923                         }
14924 #endif
14925                         /* Here, the fold will be a single character */
14926 
14927                         if (UNLIKELY(ender == MICRO_SIGN)) {
14928                             has_micro_sign = TRUE;
14929                         }
14930                         else if (PL_fold[ender] != PL_fold_latin1[ender]) {
14931 
14932                             /* If the character's fold differs between /d and
14933                              * /u, this can't change to be an EXACTFU node */
14934                             maybe_exactfu = FALSE;
14935                         }
14936 
14937                         *(s++) = (DEPENDS_SEMANTICS)
14938                                  ? (char) toFOLD(ender)
14939 
14940                                    /* Under /u, the fold of any character in
14941                                     * the 0-255 range happens to be its
14942                                     * lowercase equivalent, except for LATIN
14943                                     * SMALL LETTER SHARP S, which was handled
14944                                     * above, and the MICRO SIGN, whose fold
14945                                     * requires UTF-8 to represent.  */
14946                                  : (char) toLOWER_L1(ender);
14947                     }
14948                 } /* End of adding current character to the node */
14949 
14950               done_with_this_char:
14951 
14952                 len += added_len;
14953 
14954                 if (next_is_quantifier) {
14955 
14956                     /* Here, the next input is a quantifier, and to get here,
14957                      * the current character is the only one in the node. */
14958                     goto loopdone;
14959                 }
14960 
14961             } /* End of loop through literal characters */
14962 
14963             /* Here we have either exhausted the input or run out of room in
14964              * the node.  If the former, we are done.  (If we encountered a
14965              * character that can't be in the node, transfer is made directly
14966              * to <loopdone>, and so we wouldn't have fallen off the end of the
14967              * loop.)  */
14968             if (LIKELY(! overflowed)) {
14969                 goto loopdone;
14970             }
14971 
14972             /* Here we have run out of room.  We can grow plain EXACT and
14973              * LEXACT nodes.  If the pattern is gigantic enough, though,
14974              * eventually we'll have to artificially chunk the pattern into
14975              * multiple nodes. */
14976             if (! LOC && (node_type == EXACT || node_type == LEXACT)) {
14977                 Size_t overhead = 1 + regarglen[OP(REGNODE_p(ret))];
14978                 Size_t overhead_expansion = 0;
14979                 char temp[256];
14980                 Size_t max_nodes_for_string;
14981                 Size_t achievable;
14982                 SSize_t delta;
14983 
14984                 /* Here we couldn't fit the final character in the current
14985                  * node, so it will have to be reparsed, no matter what else we
14986                  * do */
14987                 p = oldp;
14988 
14989                 /* If would have overflowed a regular EXACT node, switch
14990                  * instead to an LEXACT.  The code below is structured so that
14991                  * the actual growing code is common to changing from an EXACT
14992                  * or just increasing the LEXACT size.  This means that we have
14993                  * to save the string in the EXACT case before growing, and
14994                  * then copy it afterwards to its new location */
14995                 if (node_type == EXACT) {
14996                     overhead_expansion = regarglen[LEXACT] - regarglen[EXACT];
14997                     RExC_emit += overhead_expansion;
14998                     Copy(s0, temp, len, char);
14999                 }
15000 
15001                 /* Ready to grow.  If it was a plain EXACT, the string was
15002                  * saved, and the first few bytes of it overwritten by adding
15003                  * an argument field.  We assume, as we do elsewhere in this
15004                  * file, that one byte of remaining input will translate into
15005                  * one byte of output, and if that's too small, we grow again,
15006                  * if too large the excess memory is freed at the end */
15007 
15008                 max_nodes_for_string = U16_MAX - overhead - overhead_expansion;
15009                 achievable = MIN(max_nodes_for_string,
15010                                  current_string_nodes + STR_SZ(RExC_end - p));
15011                 delta = achievable - current_string_nodes;
15012 
15013                 /* If there is just no more room, go finish up this chunk of
15014                  * the pattern. */
15015                 if (delta <= 0) {
15016                     goto loopdone;
15017                 }
15018 
15019                 change_engine_size(pRExC_state, delta + overhead_expansion);
15020                 current_string_nodes += delta;
15021                 max_string_len
15022                            = sizeof(struct regnode) * current_string_nodes;
15023                 upper_fill = max_string_len + 1;
15024 
15025                 /* If the length was small, we know this was originally an
15026                  * EXACT node now converted to LEXACT, and the string has to be
15027                  * restored.  Otherwise the string was untouched.  260 is just
15028                  * a number safely above 255 so don't have to worry about
15029                  * getting it precise */
15030                 if (len < 260) {
15031                     node_type = LEXACT;
15032                     FILL_NODE(ret, node_type);
15033                     s0 = STRING(REGNODE_p(ret));
15034                     Copy(temp, s0, len, char);
15035                     s = s0 + len;
15036                 }
15037 
15038                 goto continue_parse;
15039             }
15040             else if (FOLD) {
15041                 bool splittable = FALSE;
15042                 bool backed_up = FALSE;
15043                 char * e;       /* should this be U8? */
15044                 char * s_start; /* should this be U8? */
15045 
15046                 /* Here is /i.  Running out of room creates a problem if we are
15047                  * folding, and the split happens in the middle of a
15048                  * multi-character fold, as a match that should have occurred,
15049                  * won't, due to the way nodes are matched, and our artificial
15050                  * boundary.  So back off until we aren't splitting such a
15051                  * fold.  If there is no such place to back off to, we end up
15052                  * taking the entire node as-is.  This can happen if the node
15053                  * consists entirely of 'f' or entirely of 's' characters (or
15054                  * things that fold to them) as 'ff' and 'ss' are
15055                  * multi-character folds.
15056                  *
15057                  * The Unicode standard says that multi character folds consist
15058                  * of either two or three characters.  That means we would be
15059                  * splitting one if the final character in the node is at the
15060                  * beginning of either type, or is the second of a three
15061                  * character fold.
15062                  *
15063                  * At this point:
15064                  *  ender     is the code point of the character that won't fit
15065                  *            in the node
15066                  *  s         points to just beyond the final byte in the node.
15067                  *            It's where we would place ender if there were
15068                  *            room, and where in fact we do place ender's fold
15069                  *            in the code below, as we've over-allocated space
15070                  *            for s0 (hence s) to allow for this
15071                  *  e         starts at 's' and advances as we append things.
15072                  *  old_s     is the same as 's'.  (If ender had fit, 's' would
15073                  *            have been advanced to beyond it).
15074                  *  old_old_s points to the beginning byte of the final
15075                  *            character in the node
15076                  *  p         points to the beginning byte in the input of the
15077                  *            character beyond 'ender'.
15078                  *  oldp      points to the beginning byte in the input of
15079                  *            'ender'.
15080                  *
15081                  * In the case of /il, we haven't folded anything that could be
15082                  * affected by the locale.  That means only above-Latin1
15083                  * characters that fold to other above-latin1 characters get
15084                  * folded at compile time.  To check where a good place to
15085                  * split nodes is, everything in it will have to be folded.
15086                  * The boolean 'maybe_exactfu' keeps track in /il if there are
15087                  * any unfolded characters in the node. */
15088                 bool need_to_fold_loc = LOC && ! maybe_exactfu;
15089 
15090                 /* If we do need to fold the node, we need a place to store the
15091                  * folded copy, and a way to map back to the unfolded original
15092                  * */
15093                 char * locfold_buf = NULL;
15094                 Size_t * loc_correspondence = NULL;
15095 
15096                 if (! need_to_fold_loc) {   /* The normal case.  Just
15097                                                initialize to the actual node */
15098                     e = s;
15099                     s_start = s0;
15100                     s = old_old_s;  /* Point to the beginning of the final char
15101                                        that fits in the node */
15102                 }
15103                 else {
15104 
15105                     /* Here, we have filled a /il node, and there are unfolded
15106                      * characters in it.  If the runtime locale turns out to be
15107                      * UTF-8, there are possible multi-character folds, just
15108                      * like when not under /l.  The node hence can't terminate
15109                      * in the middle of such a fold.  To determine this, we
15110                      * have to create a folded copy of this node.  That means
15111                      * reparsing the node, folding everything assuming a UTF-8
15112                      * locale.  (If at runtime it isn't such a locale, the
15113                      * actions here wouldn't have been necessary, but we have
15114                      * to assume the worst case.)  If we find we need to back
15115                      * off the folded string, we do so, and then map that
15116                      * position back to the original unfolded node, which then
15117                      * gets output, truncated at that spot */
15118 
15119                     char * redo_p = RExC_parse;
15120                     char * redo_e;
15121                     char * old_redo_e;
15122 
15123                     /* Allow enough space assuming a single byte input folds to
15124                      * a single byte output, plus assume that the two unparsed
15125                      * characters (that we may need) fold to the largest number
15126                      * of bytes possible, plus extra for one more worst case
15127                      * scenario.  In the loop below, if we start eating into
15128                      * that final spare space, we enlarge this initial space */
15129                     Size_t size = max_string_len + (3 * UTF8_MAXBYTES_CASE) + 1;
15130 
15131                     Newxz(locfold_buf, size, char);
15132                     Newxz(loc_correspondence, size, Size_t);
15133 
15134                     /* Redo this node's parse, folding into 'locfold_buf' */
15135                     redo_p = RExC_parse;
15136                     old_redo_e = redo_e = locfold_buf;
15137                     while (redo_p <= oldp) {
15138 
15139                         old_redo_e = redo_e;
15140                         loc_correspondence[redo_e - locfold_buf]
15141                                                         = redo_p - RExC_parse;
15142 
15143                         if (UTF) {
15144                             Size_t added_len;
15145 
15146                             (void) _to_utf8_fold_flags((U8 *) redo_p,
15147                                                        (U8 *) RExC_end,
15148                                                        (U8 *) redo_e,
15149                                                        &added_len,
15150                                                        FOLD_FLAGS_FULL);
15151                             redo_e += added_len;
15152                             redo_p += UTF8SKIP(redo_p);
15153                         }
15154                         else {
15155 
15156                             /* Note that if this code is run on some ancient
15157                              * Unicode versions, SHARP S doesn't fold to 'ss',
15158                              * but rather than clutter the code with #ifdef's,
15159                              * as is done above, we ignore that possibility.
15160                              * This is ok because this code doesn't affect what
15161                              * gets matched, but merely where the node gets
15162                              * split */
15163                             if (UCHARAT(redo_p) != LATIN_SMALL_LETTER_SHARP_S) {
15164                                 *redo_e++ = toLOWER_L1(UCHARAT(redo_p));
15165                             }
15166                             else {
15167                                 *redo_e++ = 's';
15168                                 *redo_e++ = 's';
15169                             }
15170                             redo_p++;
15171                         }
15172 
15173 
15174                         /* If we're getting so close to the end that a
15175                          * worst-case fold in the next character would cause us
15176                          * to overflow, increase, assuming one byte output byte
15177                          * per one byte input one, plus room for another worst
15178                          * case fold */
15179                         if (   redo_p <= oldp
15180                             && redo_e > locfold_buf + size
15181                                                     - (UTF8_MAXBYTES_CASE + 1))
15182                         {
15183                             Size_t new_size = size
15184                                             + (oldp - redo_p)
15185                                             + UTF8_MAXBYTES_CASE + 1;
15186                             Ptrdiff_t e_offset = redo_e - locfold_buf;
15187 
15188                             Renew(locfold_buf, new_size, char);
15189                             Renew(loc_correspondence, new_size, Size_t);
15190                             size = new_size;
15191 
15192                             redo_e = locfold_buf + e_offset;
15193                         }
15194                     }
15195 
15196                     /* Set so that things are in terms of the folded, temporary
15197                      * string */
15198                     s = old_redo_e;
15199                     s_start = locfold_buf;
15200                     e = redo_e;
15201 
15202                 }
15203 
15204                 /* Here, we have 's', 's_start' and 'e' set up to point to the
15205                  * input that goes into the node, folded.
15206                  *
15207                  * If the final character of the node and the fold of ender
15208                  * form the first two characters of a three character fold, we
15209                  * need to peek ahead at the next (unparsed) character in the
15210                  * input to determine if the three actually do form such a
15211                  * fold.  Just looking at that character is not generally
15212                  * sufficient, as it could be, for example, an escape sequence
15213                  * that evaluates to something else, and it needs to be folded.
15214                  *
15215                  * khw originally thought to just go through the parse loop one
15216                  * extra time, but that doesn't work easily as that iteration
15217                  * could cause things to think that the parse is over and to
15218                  * goto loopdone.  The character could be a '$' for example, or
15219                  * the character beyond could be a quantifier, and other
15220                  * glitches as well.
15221                  *
15222                  * The solution used here for peeking ahead is to look at that
15223                  * next character.  If it isn't ASCII punctuation, then it will
15224                  * be something that would continue on in an EXACTish node if
15225                  * there were space.  We append the fold of it to s, having
15226                  * reserved enough room in s0 for the purpose.  If we can't
15227                  * reasonably peek ahead, we instead assume the worst case:
15228                  * that it is something that would form the completion of a
15229                  * multi-char fold.
15230                  *
15231                  * If we can't split between s and ender, we work backwards
15232                  * character-by-character down to s0.  At each current point
15233                  * see if we are at the beginning of a multi-char fold.  If so,
15234                  * that means we would be splitting the fold across nodes, and
15235                  * so we back up one and try again.
15236                  *
15237                  * If we're not at the beginning, we still could be at the
15238                  * final two characters of a (rare) three character fold.  We
15239                  * check if the sequence starting at the character before the
15240                  * current position (and including the current and next
15241                  * characters) is a three character fold.  If not, the node can
15242                  * be split here.  If it is, we have to backup two characters
15243                  * and try again.
15244                  *
15245                  * Otherwise, the node can be split at the current position.
15246                  *
15247                  * The same logic is used for UTF-8 patterns and not */
15248                 if (UTF) {
15249                     Size_t added_len;
15250 
15251                     /* Append the fold of ender */
15252                     (void) _to_uni_fold_flags(
15253                         ender,
15254                         (U8 *) e,
15255                         &added_len,
15256                         FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
15257                                         ? FOLD_FLAGS_NOMIX_ASCII
15258                                         : 0));
15259                     e += added_len;
15260 
15261                     /* 's' and the character folded to by ender may be the
15262                      * first two of a three-character fold, in which case the
15263                      * node should not be split here.  That may mean examining
15264                      * the so-far unparsed character starting at 'p'.  But if
15265                      * ender folded to more than one character, we already have
15266                      * three characters to look at.  Also, we first check if
15267                      * the sequence consisting of s and the next character form
15268                      * the first two of some three character fold.  If not,
15269                      * there's no need to peek ahead. */
15270                     if (   added_len <= UTF8SKIP(e - added_len)
15271                         && UNLIKELY(is_THREE_CHAR_FOLD_HEAD_utf8_safe(s, e)))
15272                     {
15273                         /* Here, the two do form the beginning of a potential
15274                          * three character fold.  The unexamined character may
15275                          * or may not complete it.  Peek at it.  It might be
15276                          * something that ends the node or an escape sequence,
15277                          * in which case we don't know without a lot of work
15278                          * what it evaluates to, so we have to assume the worst
15279                          * case: that it does complete the fold, and so we
15280                          * can't split here.  All such instances  will have
15281                          * that character be an ASCII punctuation character,
15282                          * like a backslash.  So, for that case, backup one and
15283                          * drop down to try at that position */
15284                         if (isPUNCT(*p)) {
15285                             s = (char *) utf8_hop_back((U8 *) s, -1,
15286                                        (U8 *) s_start);
15287                             backed_up = TRUE;
15288                         }
15289                         else {
15290                             /* Here, since it's not punctuation, it must be a
15291                              * real character, and we can append its fold to
15292                              * 'e' (having deliberately reserved enough space
15293                              * for this eventuality) and drop down to check if
15294                              * the three actually do form a folded sequence */
15295                             (void) _to_utf8_fold_flags(
15296                                 (U8 *) p, (U8 *) RExC_end,
15297                                 (U8 *) e,
15298                                 &added_len,
15299                                 FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
15300                                                 ? FOLD_FLAGS_NOMIX_ASCII
15301                                                 : 0));
15302                             e += added_len;
15303                         }
15304                     }
15305 
15306                     /* Here, we either have three characters available in
15307                      * sequence starting at 's', or we have two characters and
15308                      * know that the following one can't possibly be part of a
15309                      * three character fold.  We go through the node backwards
15310                      * until we find a place where we can split it without
15311                      * breaking apart a multi-character fold.  At any given
15312                      * point we have to worry about if such a fold begins at
15313                      * the current 's', and also if a three-character fold
15314                      * begins at s-1, (containing s and s+1).  Splitting in
15315                      * either case would break apart a fold */
15316                     do {
15317                         char *prev_s = (char *) utf8_hop_back((U8 *) s, -1,
15318                                                             (U8 *) s_start);
15319 
15320                         /* If is a multi-char fold, can't split here.  Backup
15321                          * one char and try again */
15322                         if (UNLIKELY(is_MULTI_CHAR_FOLD_utf8_safe(s, e))) {
15323                             s = prev_s;
15324                             backed_up = TRUE;
15325                             continue;
15326                         }
15327 
15328                         /* If the two characters beginning at 's' are part of a
15329                          * three character fold starting at the character
15330                          * before s, we can't split either before or after s.
15331                          * Backup two chars and try again */
15332                         if (   LIKELY(s > s_start)
15333                             && UNLIKELY(is_THREE_CHAR_FOLD_utf8_safe(prev_s, e)))
15334                         {
15335                             s = prev_s;
15336                             s = (char *) utf8_hop_back((U8 *) s, -1, (U8 *) s_start);
15337                             backed_up = TRUE;
15338                             continue;
15339                         }
15340 
15341                         /* Here there's no multi-char fold between s and the
15342                          * next character following it.  We can split */
15343                         splittable = TRUE;
15344                         break;
15345 
15346                     } while (s > s_start); /* End of loops backing up through the node */
15347 
15348                     /* Here we either couldn't find a place to split the node,
15349                      * or else we broke out of the loop setting 'splittable' to
15350                      * true.  In the latter case, the place to split is between
15351                      * the first and second characters in the sequence starting
15352                      * at 's' */
15353                     if (splittable) {
15354                         s += UTF8SKIP(s);
15355                     }
15356                 }
15357                 else {  /* Pattern not UTF-8 */
15358                     if (   ender != LATIN_SMALL_LETTER_SHARP_S
15359                         || ASCII_FOLD_RESTRICTED)
15360                     {
15361                         assert( toLOWER_L1(ender) < 256 );
15362                         *e++ = (char)(toLOWER_L1(ender)); /* should e and the cast be U8? */
15363                     }
15364                     else {
15365                         *e++ = 's';
15366                         *e++ = 's';
15367                     }
15368 
15369                     if (   e - s  <= 1
15370                         && UNLIKELY(is_THREE_CHAR_FOLD_HEAD_latin1_safe(s, e)))
15371                     {
15372                         if (isPUNCT(*p)) {
15373                             s--;
15374                             backed_up = TRUE;
15375                         }
15376                         else {
15377                             if (   UCHARAT(p) != LATIN_SMALL_LETTER_SHARP_S
15378                                 || ASCII_FOLD_RESTRICTED)
15379                             {
15380                                 assert( toLOWER_L1(ender) < 256 );
15381                                 *e++ = (char)(toLOWER_L1(ender)); /* should e and the cast be U8? */
15382                             }
15383                             else {
15384                                 *e++ = 's';
15385                                 *e++ = 's';
15386                             }
15387                         }
15388                     }
15389 
15390                     do {
15391                         if (UNLIKELY(is_MULTI_CHAR_FOLD_latin1_safe(s, e))) {
15392                             s--;
15393                             backed_up = TRUE;
15394                             continue;
15395                         }
15396 
15397                         if (   LIKELY(s > s_start)
15398                             && UNLIKELY(is_THREE_CHAR_FOLD_latin1_safe(s - 1, e)))
15399                         {
15400                             s -= 2;
15401                             backed_up = TRUE;
15402                             continue;
15403                         }
15404 
15405                         splittable = TRUE;
15406                         break;
15407 
15408                     } while (s > s_start);
15409 
15410                     if (splittable) {
15411                         s++;
15412                     }
15413                 }
15414 
15415                 /* Here, we are done backing up.  If we didn't backup at all
15416                  * (the likely case), just proceed */
15417                 if (backed_up) {
15418 
15419                    /* If we did find a place to split, reparse the entire node
15420                     * stopping where we have calculated. */
15421                     if (splittable) {
15422 
15423                        /* If we created a temporary folded string under /l, we
15424                         * have to map that back to the original */
15425                         if (need_to_fold_loc) {
15426                             upper_fill = loc_correspondence[s - s_start];
15427                             if (upper_fill == 0) {
15428                                 FAIL2("panic: loc_correspondence[%d] is 0",
15429                                       (int) (s - s_start));
15430                             }
15431                             Safefree(locfold_buf);
15432                             Safefree(loc_correspondence);
15433                         }
15434                         else {
15435                             upper_fill = s - s0;
15436                         }
15437                         goto reparse;
15438                     }
15439 
15440                     /* Here the node consists entirely of non-final multi-char
15441                      * folds.  (Likely it is all 'f's or all 's's.)  There's no
15442                      * decent place to split it, so give up and just take the
15443                      * whole thing */
15444                     len = old_s - s0;
15445                 }
15446 
15447                 if (need_to_fold_loc) {
15448                     Safefree(locfold_buf);
15449                     Safefree(loc_correspondence);
15450                 }
15451             }   /* End of verifying node ends with an appropriate char */
15452 
15453             /* We need to start the next node at the character that didn't fit
15454              * in this one */
15455             p = oldp;
15456 
15457           loopdone:   /* Jumped to when encounters something that shouldn't be
15458                          in the node */
15459 
15460             /* Free up any over-allocated space; cast is to silence bogus
15461              * warning in MS VC */
15462             change_engine_size(pRExC_state,
15463                         - (Ptrdiff_t) (current_string_nodes - STR_SZ(len)));
15464 
15465             /* I (khw) don't know if you can get here with zero length, but the
15466              * old code handled this situation by creating a zero-length EXACT
15467              * node.  Might as well be NOTHING instead */
15468             if (len == 0) {
15469                 OP(REGNODE_p(ret)) = NOTHING;
15470             }
15471             else {
15472 
15473                 /* If the node type is EXACT here, check to see if it
15474                  * should be EXACTL, or EXACT_REQ8. */
15475                 if (node_type == EXACT) {
15476                     if (LOC) {
15477                         node_type = EXACTL;
15478                     }
15479                     else if (requires_utf8_target) {
15480                         node_type = EXACT_REQ8;
15481                     }
15482                 }
15483                 else if (node_type == LEXACT) {
15484                     if (requires_utf8_target) {
15485                         node_type = LEXACT_REQ8;
15486                     }
15487                 }
15488                 else if (FOLD) {
15489                     if (    UNLIKELY(has_micro_sign || has_ss)
15490                         && (node_type == EXACTFU || (   node_type == EXACTF
15491                                                      && maybe_exactfu)))
15492                     {   /* These two conditions are problematic in non-UTF-8
15493                            EXACTFU nodes. */
15494                         assert(! UTF);
15495                         node_type = EXACTFUP;
15496                     }
15497                     else if (node_type == EXACTFL) {
15498 
15499                         /* 'maybe_exactfu' is deliberately set above to
15500                          * indicate this node type, where all code points in it
15501                          * are above 255 */
15502                         if (maybe_exactfu) {
15503                             node_type = EXACTFLU8;
15504                         }
15505                         else if (UNLIKELY(
15506                              _invlist_contains_cp(PL_HasMultiCharFold, ender)))
15507                         {
15508                             /* A character that folds to more than one will
15509                              * match multiple characters, so can't be SIMPLE.
15510                              * We don't have to worry about this with EXACTFLU8
15511                              * nodes just above, as they have already been
15512                              * folded (since the fold doesn't vary at run
15513                              * time).  Here, if the final character in the node
15514                              * folds to multiple, it can't be simple.  (This
15515                              * only has an effect if the node has only a single
15516                              * character, hence the final one, as elsewhere we
15517                              * turn off simple for nodes whose length > 1 */
15518                             maybe_SIMPLE = 0;
15519                         }
15520                     }
15521                     else if (node_type == EXACTF) {  /* Means is /di */
15522 
15523                         /* This intermediate variable is needed solely because
15524                          * the asserts in the macro where used exceed Win32's
15525                          * literal string capacity */
15526                         char first_char = * STRING(REGNODE_p(ret));
15527 
15528                         /* If 'maybe_exactfu' is clear, then we need to stay
15529                          * /di.  If it is set, it means there are no code
15530                          * points that match differently depending on UTF8ness
15531                          * of the target string, so it can become an EXACTFU
15532                          * node */
15533                         if (! maybe_exactfu) {
15534                             RExC_seen_d_op = TRUE;
15535                         }
15536                         else if (   isALPHA_FOLD_EQ(first_char, 's')
15537                                  || isALPHA_FOLD_EQ(ender, 's'))
15538                         {
15539                             /* But, if the node begins or ends in an 's' we
15540                              * have to defer changing it into an EXACTFU, as
15541                              * the node could later get joined with another one
15542                              * that ends or begins with 's' creating an 'ss'
15543                              * sequence which would then wrongly match the
15544                              * sharp s without the target being UTF-8.  We
15545                              * create a special node that we resolve later when
15546                              * we join nodes together */
15547 
15548                             node_type = EXACTFU_S_EDGE;
15549                         }
15550                         else {
15551                             node_type = EXACTFU;
15552                         }
15553                     }
15554 
15555                     if (requires_utf8_target && node_type == EXACTFU) {
15556                         node_type = EXACTFU_REQ8;
15557                     }
15558                 }
15559 
15560                 OP(REGNODE_p(ret)) = node_type;
15561                 setSTR_LEN(REGNODE_p(ret), len);
15562                 RExC_emit += STR_SZ(len);
15563 
15564                 /* If the node isn't a single character, it can't be SIMPLE */
15565                 if (len > (Size_t) ((UTF) ? UTF8SKIP(STRING(REGNODE_p(ret))) : 1)) {
15566                     maybe_SIMPLE = 0;
15567                 }
15568 
15569                 *flagp |= HASWIDTH | maybe_SIMPLE;
15570             }
15571 
15572             Set_Node_Length(REGNODE_p(ret), p - parse_start - 1);
15573             RExC_parse = p;
15574 
15575             {
15576                 /* len is STRLEN which is unsigned, need to copy to signed */
15577                 IV iv = len;
15578                 if (iv < 0)
15579                     vFAIL("Internal disaster");
15580             }
15581 
15582         } /* End of label 'defchar:' */
15583         break;
15584     } /* End of giant switch on input character */
15585 
15586     /* Position parse to next real character */
15587     skip_to_be_ignored_text(pRExC_state, &RExC_parse,
15588                                             FALSE /* Don't force to /x */ );
15589     if (   *RExC_parse == '{'
15590         && OP(REGNODE_p(ret)) != SBOL && ! regcurly(RExC_parse, RExC_end, NULL))
15591     {
15592         if (RExC_strict) {
15593             RExC_parse++;
15594             vFAIL("Unescaped left brace in regex is illegal here");
15595         }
15596         ckWARNreg(RExC_parse + 1, "Unescaped left brace in regex is"
15597                                   " passed through");
15598     }
15599 
15600     return(ret);
15601 }
15602 
15603 
15604 STATIC void
S_populate_ANYOF_from_invlist(pTHX_ regnode * node,SV ** invlist_ptr)15605 S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
15606 {
15607     /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'.  It
15608      * sets up the bitmap and any flags, removing those code points from the
15609      * inversion list, setting it to NULL should it become completely empty */
15610 
15611 
15612     PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
15613     assert(PL_regkind[OP(node)] == ANYOF);
15614 
15615     /* There is no bitmap for this node type */
15616     if (inRANGE(OP(node), ANYOFH, ANYOFRb)) {
15617         return;
15618     }
15619 
15620     ANYOF_BITMAP_ZERO(node);
15621     if (*invlist_ptr) {
15622 
15623         /* This gets set if we actually need to modify things */
15624         bool change_invlist = FALSE;
15625 
15626         UV start, end;
15627 
15628         /* Start looking through *invlist_ptr */
15629         invlist_iterinit(*invlist_ptr);
15630         while (invlist_iternext(*invlist_ptr, &start, &end)) {
15631             UV high;
15632             int i;
15633 
15634             if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
15635                 ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
15636             }
15637 
15638             /* Quit if are above what we should change */
15639             if (start >= NUM_ANYOF_CODE_POINTS) {
15640                 break;
15641             }
15642 
15643             change_invlist = TRUE;
15644 
15645             /* Set all the bits in the range, up to the max that we are doing */
15646             high = (end < NUM_ANYOF_CODE_POINTS - 1)
15647                    ? end
15648                    : NUM_ANYOF_CODE_POINTS - 1;
15649             for (i = start; i <= (int) high; i++) {
15650                 ANYOF_BITMAP_SET(node, i);
15651             }
15652         }
15653         invlist_iterfinish(*invlist_ptr);
15654 
15655         /* Done with loop; remove any code points that are in the bitmap from
15656          * *invlist_ptr; similarly for code points above the bitmap if we have
15657          * a flag to match all of them anyways */
15658         if (change_invlist) {
15659             _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
15660         }
15661         if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
15662             _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
15663         }
15664 
15665         /* If have completely emptied it, remove it completely */
15666         if (_invlist_len(*invlist_ptr) == 0) {
15667             SvREFCNT_dec_NN(*invlist_ptr);
15668             *invlist_ptr = NULL;
15669         }
15670     }
15671 }
15672 
15673 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
15674    Character classes ([:foo:]) can also be negated ([:^foo:]).
15675    Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
15676    Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
15677    but trigger failures because they are currently unimplemented. */
15678 
15679 #define POSIXCC_DONE(c)   ((c) == ':')
15680 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
15681 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
15682 #define MAYBE_POSIXCC(c) (POSIXCC(c) || (c) == '^' || (c) == ';')
15683 
15684 #define WARNING_PREFIX              "Assuming NOT a POSIX class since "
15685 #define NO_BLANKS_POSIX_WARNING     "no blanks are allowed in one"
15686 #define SEMI_COLON_POSIX_WARNING    "a semi-colon was found instead of a colon"
15687 
15688 #define NOT_MEANT_TO_BE_A_POSIX_CLASS (OOB_NAMEDCLASS - 1)
15689 
15690 /* 'posix_warnings' and 'warn_text' are names of variables in the following
15691  * routine. q.v. */
15692 #define ADD_POSIX_WARNING(p, text)  STMT_START {                            \
15693         if (posix_warnings) {                                               \
15694             if (! RExC_warn_text ) RExC_warn_text =                         \
15695                                          (AV *) sv_2mortal((SV *) newAV()); \
15696             av_push(RExC_warn_text, Perl_newSVpvf(aTHX_                     \
15697                                              WARNING_PREFIX                 \
15698                                              text                           \
15699                                              REPORT_LOCATION,               \
15700                                              REPORT_LOCATION_ARGS(p)));     \
15701         }                                                                   \
15702     } STMT_END
15703 #define CLEAR_POSIX_WARNINGS()                                              \
15704     STMT_START {                                                            \
15705         if (posix_warnings && RExC_warn_text)                               \
15706             av_clear(RExC_warn_text);                                       \
15707     } STMT_END
15708 
15709 #define CLEAR_POSIX_WARNINGS_AND_RETURN(ret)                                \
15710     STMT_START {                                                            \
15711         CLEAR_POSIX_WARNINGS();                                             \
15712         return ret;                                                         \
15713     } STMT_END
15714 
15715 STATIC int
S_handle_possible_posix(pTHX_ RExC_state_t * pRExC_state,const char * const s,char ** updated_parse_ptr,AV ** posix_warnings,const bool check_only)15716 S_handle_possible_posix(pTHX_ RExC_state_t *pRExC_state,
15717 
15718     const char * const s,      /* Where the putative posix class begins.
15719                                   Normally, this is one past the '['.  This
15720                                   parameter exists so it can be somewhere
15721                                   besides RExC_parse. */
15722     char ** updated_parse_ptr, /* Where to set the updated parse pointer, or
15723                                   NULL */
15724     AV ** posix_warnings,      /* Where to place any generated warnings, or
15725                                   NULL */
15726     const bool check_only      /* Don't die if error */
15727 )
15728 {
15729     /* This parses what the caller thinks may be one of the three POSIX
15730      * constructs:
15731      *  1) a character class, like [:blank:]
15732      *  2) a collating symbol, like [. .]
15733      *  3) an equivalence class, like [= =]
15734      * In the latter two cases, it croaks if it finds a syntactically legal
15735      * one, as these are not handled by Perl.
15736      *
15737      * The main purpose is to look for a POSIX character class.  It returns:
15738      *  a) the class number
15739      *      if it is a completely syntactically and semantically legal class.
15740      *      'updated_parse_ptr', if not NULL, is set to point to just after the
15741      *      closing ']' of the class
15742      *  b) OOB_NAMEDCLASS
15743      *      if it appears that one of the three POSIX constructs was meant, but
15744      *      its specification was somehow defective.  'updated_parse_ptr', if
15745      *      not NULL, is set to point to the character just after the end
15746      *      character of the class.  See below for handling of warnings.
15747      *  c) NOT_MEANT_TO_BE_A_POSIX_CLASS
15748      *      if it  doesn't appear that a POSIX construct was intended.
15749      *      'updated_parse_ptr' is not changed.  No warnings nor errors are
15750      *      raised.
15751      *
15752      * In b) there may be errors or warnings generated.  If 'check_only' is
15753      * TRUE, then any errors are discarded.  Warnings are returned to the
15754      * caller via an AV* created into '*posix_warnings' if it is not NULL.  If
15755      * instead it is NULL, warnings are suppressed.
15756      *
15757      * The reason for this function, and its complexity is that a bracketed
15758      * character class can contain just about anything.  But it's easy to
15759      * mistype the very specific posix class syntax but yielding a valid
15760      * regular bracketed class, so it silently gets compiled into something
15761      * quite unintended.
15762      *
15763      * The solution adopted here maintains backward compatibility except that
15764      * it adds a warning if it looks like a posix class was intended but
15765      * improperly specified.  The warning is not raised unless what is input
15766      * very closely resembles one of the 14 legal posix classes.  To do this,
15767      * it uses fuzzy parsing.  It calculates how many single-character edits it
15768      * would take to transform what was input into a legal posix class.  Only
15769      * if that number is quite small does it think that the intention was a
15770      * posix class.  Obviously these are heuristics, and there will be cases
15771      * where it errs on one side or another, and they can be tweaked as
15772      * experience informs.
15773      *
15774      * The syntax for a legal posix class is:
15775      *
15776      * qr/(?xa: \[ : \^? [[:lower:]]{4,6} : \] )/
15777      *
15778      * What this routine considers syntactically to be an intended posix class
15779      * is this (the comments indicate some restrictions that the pattern
15780      * doesn't show):
15781      *
15782      *  qr/(?x: \[?                         # The left bracket, possibly
15783      *                                      # omitted
15784      *          \h*                         # possibly followed by blanks
15785      *          (?: \^ \h* )?               # possibly a misplaced caret
15786      *          [:;]?                       # The opening class character,
15787      *                                      # possibly omitted.  A typo
15788      *                                      # semi-colon can also be used.
15789      *          \h*
15790      *          \^?                         # possibly a correctly placed
15791      *                                      # caret, but not if there was also
15792      *                                      # a misplaced one
15793      *          \h*
15794      *          .{3,15}                     # The class name.  If there are
15795      *                                      # deviations from the legal syntax,
15796      *                                      # its edit distance must be close
15797      *                                      # to a real class name in order
15798      *                                      # for it to be considered to be
15799      *                                      # an intended posix class.
15800      *          \h*
15801      *          [[:punct:]]?                # The closing class character,
15802      *                                      # possibly omitted.  If not a colon
15803      *                                      # nor semi colon, the class name
15804      *                                      # must be even closer to a valid
15805      *                                      # one
15806      *          \h*
15807      *          \]?                         # The right bracket, possibly
15808      *                                      # omitted.
15809      *     )/
15810      *
15811      * In the above, \h must be ASCII-only.
15812      *
15813      * These are heuristics, and can be tweaked as field experience dictates.
15814      * There will be cases when someone didn't intend to specify a posix class
15815      * that this warns as being so.  The goal is to minimize these, while
15816      * maximizing the catching of things intended to be a posix class that
15817      * aren't parsed as such.
15818      */
15819 
15820     const char* p             = s;
15821     const char * const e      = RExC_end;
15822     unsigned complement       = 0;      /* If to complement the class */
15823     bool found_problem        = FALSE;  /* Assume OK until proven otherwise */
15824     bool has_opening_bracket  = FALSE;
15825     bool has_opening_colon    = FALSE;
15826     int class_number          = OOB_NAMEDCLASS; /* Out-of-bounds until find
15827                                                    valid class */
15828     const char * possible_end = NULL;   /* used for a 2nd parse pass */
15829     const char* name_start;             /* ptr to class name first char */
15830 
15831     /* If the number of single-character typos the input name is away from a
15832      * legal name is no more than this number, it is considered to have meant
15833      * the legal name */
15834     int max_distance          = 2;
15835 
15836     /* to store the name.  The size determines the maximum length before we
15837      * decide that no posix class was intended.  Should be at least
15838      * sizeof("alphanumeric") */
15839     UV input_text[15];
15840     STATIC_ASSERT_DECL(C_ARRAY_LENGTH(input_text) >= sizeof "alphanumeric");
15841 
15842     PERL_ARGS_ASSERT_HANDLE_POSSIBLE_POSIX;
15843 
15844     CLEAR_POSIX_WARNINGS();
15845 
15846     if (p >= e) {
15847         return NOT_MEANT_TO_BE_A_POSIX_CLASS;
15848     }
15849 
15850     if (*(p - 1) != '[') {
15851         ADD_POSIX_WARNING(p, "it doesn't start with a '['");
15852         found_problem = TRUE;
15853     }
15854     else {
15855         has_opening_bracket = TRUE;
15856     }
15857 
15858     /* They could be confused and think you can put spaces between the
15859      * components */
15860     if (isBLANK(*p)) {
15861         found_problem = TRUE;
15862 
15863         do {
15864             p++;
15865         } while (p < e && isBLANK(*p));
15866 
15867         ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
15868     }
15869 
15870     /* For [. .] and [= =].  These are quite different internally from [: :],
15871      * so they are handled separately.  */
15872     if (POSIXCC_NOTYET(*p) && p < e - 3) /* 1 for the close, and 1 for the ']'
15873                                             and 1 for at least one char in it
15874                                           */
15875     {
15876         const char open_char  = *p;
15877         const char * temp_ptr = p + 1;
15878 
15879         /* These two constructs are not handled by perl, and if we find a
15880          * syntactically valid one, we croak.  khw, who wrote this code, finds
15881          * this explanation of them very unclear:
15882          * http://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html
15883          * And searching the rest of the internet wasn't very helpful either.
15884          * It looks like just about any byte can be in these constructs,
15885          * depending on the locale.  But unless the pattern is being compiled
15886          * under /l, which is very rare, Perl runs under the C or POSIX locale.
15887          * In that case, it looks like [= =] isn't allowed at all, and that
15888          * [. .] could be any single code point, but for longer strings the
15889          * constituent characters would have to be the ASCII alphabetics plus
15890          * the minus-hyphen.  Any sensible locale definition would limit itself
15891          * to these.  And any portable one definitely should.  Trying to parse
15892          * the general case is a nightmare (see [perl #127604]).  So, this code
15893          * looks only for interiors of these constructs that match:
15894          *      qr/.|[-\w]{2,}/
15895          * Using \w relaxes the apparent rules a little, without adding much
15896          * danger of mistaking something else for one of these constructs.
15897          *
15898          * [. .] in some implementations described on the internet is usable to
15899          * escape a character that otherwise is special in bracketed character
15900          * classes.  For example [.].] means a literal right bracket instead of
15901          * the ending of the class
15902          *
15903          * [= =] can legitimately contain a [. .] construct, but we don't
15904          * handle this case, as that [. .] construct will later get parsed
15905          * itself and croak then.  And [= =] is checked for even when not under
15906          * /l, as Perl has long done so.
15907          *
15908          * The code below relies on there being a trailing NUL, so it doesn't
15909          * have to keep checking if the parse ptr < e.
15910          */
15911         if (temp_ptr[1] == open_char) {
15912             temp_ptr++;
15913         }
15914         else while (    temp_ptr < e
15915                     && (isWORDCHAR(*temp_ptr) || *temp_ptr == '-'))
15916         {
15917             temp_ptr++;
15918         }
15919 
15920         if (*temp_ptr == open_char) {
15921             temp_ptr++;
15922             if (*temp_ptr == ']') {
15923                 temp_ptr++;
15924                 if (! found_problem && ! check_only) {
15925                     RExC_parse = (char *) temp_ptr;
15926                     vFAIL3("POSIX syntax [%c %c] is reserved for future "
15927                             "extensions", open_char, open_char);
15928                 }
15929 
15930                 /* Here, the syntax wasn't completely valid, or else the call
15931                  * is to check-only */
15932                 if (updated_parse_ptr) {
15933                     *updated_parse_ptr = (char *) temp_ptr;
15934                 }
15935 
15936                 CLEAR_POSIX_WARNINGS_AND_RETURN(OOB_NAMEDCLASS);
15937             }
15938         }
15939 
15940         /* If we find something that started out to look like one of these
15941          * constructs, but isn't, we continue below so that it can be checked
15942          * for being a class name with a typo of '.' or '=' instead of a colon.
15943          * */
15944     }
15945 
15946     /* Here, we think there is a possibility that a [: :] class was meant, and
15947      * we have the first real character.  It could be they think the '^' comes
15948      * first */
15949     if (*p == '^') {
15950         found_problem = TRUE;
15951         ADD_POSIX_WARNING(p + 1, "the '^' must come after the colon");
15952         complement = 1;
15953         p++;
15954 
15955         if (isBLANK(*p)) {
15956             found_problem = TRUE;
15957 
15958             do {
15959                 p++;
15960             } while (p < e && isBLANK(*p));
15961 
15962             ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
15963         }
15964     }
15965 
15966     /* But the first character should be a colon, which they could have easily
15967      * mistyped on a qwerty keyboard as a semi-colon (and which may be hard to
15968      * distinguish from a colon, so treat that as a colon).  */
15969     if (*p == ':') {
15970         p++;
15971         has_opening_colon = TRUE;
15972     }
15973     else if (*p == ';') {
15974         found_problem = TRUE;
15975         p++;
15976         ADD_POSIX_WARNING(p, SEMI_COLON_POSIX_WARNING);
15977         has_opening_colon = TRUE;
15978     }
15979     else {
15980         found_problem = TRUE;
15981         ADD_POSIX_WARNING(p, "there must be a starting ':'");
15982 
15983         /* Consider an initial punctuation (not one of the recognized ones) to
15984          * be a left terminator */
15985         if (*p != '^' && *p != ']' && isPUNCT(*p)) {
15986             p++;
15987         }
15988     }
15989 
15990     /* They may think that you can put spaces between the components */
15991     if (isBLANK(*p)) {
15992         found_problem = TRUE;
15993 
15994         do {
15995             p++;
15996         } while (p < e && isBLANK(*p));
15997 
15998         ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
15999     }
16000 
16001     if (*p == '^') {
16002 
16003         /* We consider something like [^:^alnum:]] to not have been intended to
16004          * be a posix class, but XXX maybe we should */
16005         if (complement) {
16006             CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
16007         }
16008 
16009         complement = 1;
16010         p++;
16011     }
16012 
16013     /* Again, they may think that you can put spaces between the components */
16014     if (isBLANK(*p)) {
16015         found_problem = TRUE;
16016 
16017         do {
16018             p++;
16019         } while (p < e && isBLANK(*p));
16020 
16021         ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
16022     }
16023 
16024     if (*p == ']') {
16025 
16026         /* XXX This ']' may be a typo, and something else was meant.  But
16027          * treating it as such creates enough complications, that that
16028          * possibility isn't currently considered here.  So we assume that the
16029          * ']' is what is intended, and if we've already found an initial '[',
16030          * this leaves this construct looking like [:] or [:^], which almost
16031          * certainly weren't intended to be posix classes */
16032         if (has_opening_bracket) {
16033             CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
16034         }
16035 
16036         /* But this function can be called when we parse the colon for
16037          * something like qr/[alpha:]]/, so we back up to look for the
16038          * beginning */
16039         p--;
16040 
16041         if (*p == ';') {
16042             found_problem = TRUE;
16043             ADD_POSIX_WARNING(p, SEMI_COLON_POSIX_WARNING);
16044         }
16045         else if (*p != ':') {
16046 
16047             /* XXX We are currently very restrictive here, so this code doesn't
16048              * consider the possibility that, say, /[alpha.]]/ was intended to
16049              * be a posix class. */
16050             CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
16051         }
16052 
16053         /* Here we have something like 'foo:]'.  There was no initial colon,
16054          * and we back up over 'foo.  XXX Unlike the going forward case, we
16055          * don't handle typos of non-word chars in the middle */
16056         has_opening_colon = FALSE;
16057         p--;
16058 
16059         while (p > RExC_start && isWORDCHAR(*p)) {
16060             p--;
16061         }
16062         p++;
16063 
16064         /* Here, we have positioned ourselves to where we think the first
16065          * character in the potential class is */
16066     }
16067 
16068     /* Now the interior really starts.  There are certain key characters that
16069      * can end the interior, or these could just be typos.  To catch both
16070      * cases, we may have to do two passes.  In the first pass, we keep on
16071      * going unless we come to a sequence that matches
16072      *      qr/ [[:punct:]] [[:blank:]]* \] /xa
16073      * This means it takes a sequence to end the pass, so two typos in a row if
16074      * that wasn't what was intended.  If the class is perfectly formed, just
16075      * this one pass is needed.  We also stop if there are too many characters
16076      * being accumulated, but this number is deliberately set higher than any
16077      * real class.  It is set high enough so that someone who thinks that
16078      * 'alphanumeric' is a correct name would get warned that it wasn't.
16079      * While doing the pass, we keep track of where the key characters were in
16080      * it.  If we don't find an end to the class, and one of the key characters
16081      * was found, we redo the pass, but stop when we get to that character.
16082      * Thus the key character was considered a typo in the first pass, but a
16083      * terminator in the second.  If two key characters are found, we stop at
16084      * the second one in the first pass.  Again this can miss two typos, but
16085      * catches a single one
16086      *
16087      * In the first pass, 'possible_end' starts as NULL, and then gets set to
16088      * point to the first key character.  For the second pass, it starts as -1.
16089      * */
16090 
16091     name_start = p;
16092   parse_name:
16093     {
16094         bool has_blank               = FALSE;
16095         bool has_upper               = FALSE;
16096         bool has_terminating_colon   = FALSE;
16097         bool has_terminating_bracket = FALSE;
16098         bool has_semi_colon          = FALSE;
16099         unsigned int name_len        = 0;
16100         int punct_count              = 0;
16101 
16102         while (p < e) {
16103 
16104             /* Squeeze out blanks when looking up the class name below */
16105             if (isBLANK(*p) ) {
16106                 has_blank = TRUE;
16107                 found_problem = TRUE;
16108                 p++;
16109                 continue;
16110             }
16111 
16112             /* The name will end with a punctuation */
16113             if (isPUNCT(*p)) {
16114                 const char * peek = p + 1;
16115 
16116                 /* Treat any non-']' punctuation followed by a ']' (possibly
16117                  * with intervening blanks) as trying to terminate the class.
16118                  * ']]' is very likely to mean a class was intended (but
16119                  * missing the colon), but the warning message that gets
16120                  * generated shows the error position better if we exit the
16121                  * loop at the bottom (eventually), so skip it here. */
16122                 if (*p != ']') {
16123                     if (peek < e && isBLANK(*peek)) {
16124                         has_blank = TRUE;
16125                         found_problem = TRUE;
16126                         do {
16127                             peek++;
16128                         } while (peek < e && isBLANK(*peek));
16129                     }
16130 
16131                     if (peek < e && *peek == ']') {
16132                         has_terminating_bracket = TRUE;
16133                         if (*p == ':') {
16134                             has_terminating_colon = TRUE;
16135                         }
16136                         else if (*p == ';') {
16137                             has_semi_colon = TRUE;
16138                             has_terminating_colon = TRUE;
16139                         }
16140                         else {
16141                             found_problem = TRUE;
16142                         }
16143                         p = peek + 1;
16144                         goto try_posix;
16145                     }
16146                 }
16147 
16148                 /* Here we have punctuation we thought didn't end the class.
16149                  * Keep track of the position of the key characters that are
16150                  * more likely to have been class-enders */
16151                 if (*p == ']' || *p == '[' || *p == ':' || *p == ';') {
16152 
16153                     /* Allow just one such possible class-ender not actually
16154                      * ending the class. */
16155                     if (possible_end) {
16156                         break;
16157                     }
16158                     possible_end = p;
16159                 }
16160 
16161                 /* If we have too many punctuation characters, no use in
16162                  * keeping going */
16163                 if (++punct_count > max_distance) {
16164                     break;
16165                 }
16166 
16167                 /* Treat the punctuation as a typo. */
16168                 input_text[name_len++] = *p;
16169                 p++;
16170             }
16171             else if (isUPPER(*p)) { /* Use lowercase for lookup */
16172                 input_text[name_len++] = toLOWER(*p);
16173                 has_upper = TRUE;
16174                 found_problem = TRUE;
16175                 p++;
16176             } else if (! UTF || UTF8_IS_INVARIANT(*p)) {
16177                 input_text[name_len++] = *p;
16178                 p++;
16179             }
16180             else {
16181                 input_text[name_len++] = utf8_to_uvchr_buf((U8 *) p, e, NULL);
16182                 p+= UTF8SKIP(p);
16183             }
16184 
16185             /* The declaration of 'input_text' is how long we allow a potential
16186              * class name to be, before saying they didn't mean a class name at
16187              * all */
16188             if (name_len >= C_ARRAY_LENGTH(input_text)) {
16189                 break;
16190             }
16191         }
16192 
16193         /* We get to here when the possible class name hasn't been properly
16194          * terminated before:
16195          *   1) we ran off the end of the pattern; or
16196          *   2) found two characters, each of which might have been intended to
16197          *      be the name's terminator
16198          *   3) found so many punctuation characters in the purported name,
16199          *      that the edit distance to a valid one is exceeded
16200          *   4) we decided it was more characters than anyone could have
16201          *      intended to be one. */
16202 
16203         found_problem = TRUE;
16204 
16205         /* In the final two cases, we know that looking up what we've
16206          * accumulated won't lead to a match, even a fuzzy one. */
16207         if (   name_len >= C_ARRAY_LENGTH(input_text)
16208             || punct_count > max_distance)
16209         {
16210             /* If there was an intermediate key character that could have been
16211              * an intended end, redo the parse, but stop there */
16212             if (possible_end && possible_end != (char *) -1) {
16213                 possible_end = (char *) -1; /* Special signal value to say
16214                                                we've done a first pass */
16215                 p = name_start;
16216                 goto parse_name;
16217             }
16218 
16219             /* Otherwise, it can't have meant to have been a class */
16220             CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
16221         }
16222 
16223         /* If we ran off the end, and the final character was a punctuation
16224          * one, back up one, to look at that final one just below.  Later, we
16225          * will restore the parse pointer if appropriate */
16226         if (name_len && p == e && isPUNCT(*(p-1))) {
16227             p--;
16228             name_len--;
16229         }
16230 
16231         if (p < e && isPUNCT(*p)) {
16232             if (*p == ']') {
16233                 has_terminating_bracket = TRUE;
16234 
16235                 /* If this is a 2nd ']', and the first one is just below this
16236                  * one, consider that to be the real terminator.  This gives a
16237                  * uniform and better positioning for the warning message  */
16238                 if (   possible_end
16239                     && possible_end != (char *) -1
16240                     && *possible_end == ']'
16241                     && name_len && input_text[name_len - 1] == ']')
16242                 {
16243                     name_len--;
16244                     p = possible_end;
16245 
16246                     /* And this is actually equivalent to having done the 2nd
16247                      * pass now, so set it to not try again */
16248                     possible_end = (char *) -1;
16249                 }
16250             }
16251             else {
16252                 if (*p == ':') {
16253                     has_terminating_colon = TRUE;
16254                 }
16255                 else if (*p == ';') {
16256                     has_semi_colon = TRUE;
16257                     has_terminating_colon = TRUE;
16258                 }
16259                 p++;
16260             }
16261         }
16262 
16263     try_posix:
16264 
16265         /* Here, we have a class name to look up.  We can short circuit the
16266          * stuff below for short names that can't possibly be meant to be a
16267          * class name.  (We can do this on the first pass, as any second pass
16268          * will yield an even shorter name) */
16269         if (name_len < 3) {
16270             CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
16271         }
16272 
16273         /* Find which class it is.  Initially switch on the length of the name.
16274          * */
16275         switch (name_len) {
16276             case 4:
16277                 if (memEQs(name_start, 4, "word")) {
16278                     /* this is not POSIX, this is the Perl \w */
16279                     class_number = ANYOF_WORDCHAR;
16280                 }
16281                 break;
16282             case 5:
16283                 /* Names all of length 5: alnum alpha ascii blank cntrl digit
16284                  *                        graph lower print punct space upper
16285                  * Offset 4 gives the best switch position.  */
16286                 switch (name_start[4]) {
16287                     case 'a':
16288                         if (memBEGINs(name_start, 5, "alph")) /* alpha */
16289                             class_number = ANYOF_ALPHA;
16290                         break;
16291                     case 'e':
16292                         if (memBEGINs(name_start, 5, "spac")) /* space */
16293                             class_number = ANYOF_SPACE;
16294                         break;
16295                     case 'h':
16296                         if (memBEGINs(name_start, 5, "grap")) /* graph */
16297                             class_number = ANYOF_GRAPH;
16298                         break;
16299                     case 'i':
16300                         if (memBEGINs(name_start, 5, "asci")) /* ascii */
16301                             class_number = ANYOF_ASCII;
16302                         break;
16303                     case 'k':
16304                         if (memBEGINs(name_start, 5, "blan")) /* blank */
16305                             class_number = ANYOF_BLANK;
16306                         break;
16307                     case 'l':
16308                         if (memBEGINs(name_start, 5, "cntr")) /* cntrl */
16309                             class_number = ANYOF_CNTRL;
16310                         break;
16311                     case 'm':
16312                         if (memBEGINs(name_start, 5, "alnu")) /* alnum */
16313                             class_number = ANYOF_ALPHANUMERIC;
16314                         break;
16315                     case 'r':
16316                         if (memBEGINs(name_start, 5, "lowe")) /* lower */
16317                             class_number = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
16318                         else if (memBEGINs(name_start, 5, "uppe")) /* upper */
16319                             class_number = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
16320                         break;
16321                     case 't':
16322                         if (memBEGINs(name_start, 5, "digi")) /* digit */
16323                             class_number = ANYOF_DIGIT;
16324                         else if (memBEGINs(name_start, 5, "prin")) /* print */
16325                             class_number = ANYOF_PRINT;
16326                         else if (memBEGINs(name_start, 5, "punc")) /* punct */
16327                             class_number = ANYOF_PUNCT;
16328                         break;
16329                 }
16330                 break;
16331             case 6:
16332                 if (memEQs(name_start, 6, "xdigit"))
16333                     class_number = ANYOF_XDIGIT;
16334                 break;
16335         }
16336 
16337         /* If the name exactly matches a posix class name the class number will
16338          * here be set to it, and the input almost certainly was meant to be a
16339          * posix class, so we can skip further checking.  If instead the syntax
16340          * is exactly correct, but the name isn't one of the legal ones, we
16341          * will return that as an error below.  But if neither of these apply,
16342          * it could be that no posix class was intended at all, or that one
16343          * was, but there was a typo.  We tease these apart by doing fuzzy
16344          * matching on the name */
16345         if (class_number == OOB_NAMEDCLASS && found_problem) {
16346             const UV posix_names[][6] = {
16347                                                 { 'a', 'l', 'n', 'u', 'm' },
16348                                                 { 'a', 'l', 'p', 'h', 'a' },
16349                                                 { 'a', 's', 'c', 'i', 'i' },
16350                                                 { 'b', 'l', 'a', 'n', 'k' },
16351                                                 { 'c', 'n', 't', 'r', 'l' },
16352                                                 { 'd', 'i', 'g', 'i', 't' },
16353                                                 { 'g', 'r', 'a', 'p', 'h' },
16354                                                 { 'l', 'o', 'w', 'e', 'r' },
16355                                                 { 'p', 'r', 'i', 'n', 't' },
16356                                                 { 'p', 'u', 'n', 'c', 't' },
16357                                                 { 's', 'p', 'a', 'c', 'e' },
16358                                                 { 'u', 'p', 'p', 'e', 'r' },
16359                                                 { 'w', 'o', 'r', 'd' },
16360                                                 { 'x', 'd', 'i', 'g', 'i', 't' }
16361                                             };
16362             /* The names of the above all have added NULs to make them the same
16363              * size, so we need to also have the real lengths */
16364             const UV posix_name_lengths[] = {
16365                                                 sizeof("alnum") - 1,
16366                                                 sizeof("alpha") - 1,
16367                                                 sizeof("ascii") - 1,
16368                                                 sizeof("blank") - 1,
16369                                                 sizeof("cntrl") - 1,
16370                                                 sizeof("digit") - 1,
16371                                                 sizeof("graph") - 1,
16372                                                 sizeof("lower") - 1,
16373                                                 sizeof("print") - 1,
16374                                                 sizeof("punct") - 1,
16375                                                 sizeof("space") - 1,
16376                                                 sizeof("upper") - 1,
16377                                                 sizeof("word")  - 1,
16378                                                 sizeof("xdigit")- 1
16379                                             };
16380             unsigned int i;
16381             int temp_max = max_distance;    /* Use a temporary, so if we
16382                                                reparse, we haven't changed the
16383                                                outer one */
16384 
16385             /* Use a smaller max edit distance if we are missing one of the
16386              * delimiters */
16387             if (   has_opening_bracket + has_opening_colon < 2
16388                 || has_terminating_bracket + has_terminating_colon < 2)
16389             {
16390                 temp_max--;
16391             }
16392 
16393             /* See if the input name is close to a legal one */
16394             for (i = 0; i < C_ARRAY_LENGTH(posix_names); i++) {
16395 
16396                 /* Short circuit call if the lengths are too far apart to be
16397                  * able to match */
16398                 if (abs( (int) (name_len - posix_name_lengths[i]))
16399                     > temp_max)
16400                 {
16401                     continue;
16402                 }
16403 
16404                 if (edit_distance(input_text,
16405                                   posix_names[i],
16406                                   name_len,
16407                                   posix_name_lengths[i],
16408                                   temp_max
16409                                  )
16410                     > -1)
16411                 { /* If it is close, it probably was intended to be a class */
16412                     goto probably_meant_to_be;
16413                 }
16414             }
16415 
16416             /* Here the input name is not close enough to a valid class name
16417              * for us to consider it to be intended to be a posix class.  If
16418              * we haven't already done so, and the parse found a character that
16419              * could have been terminators for the name, but which we absorbed
16420              * as typos during the first pass, repeat the parse, signalling it
16421              * to stop at that character */
16422             if (possible_end && possible_end != (char *) -1) {
16423                 possible_end = (char *) -1;
16424                 p = name_start;
16425                 goto parse_name;
16426             }
16427 
16428             /* Here neither pass found a close-enough class name */
16429             CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
16430         }
16431 
16432     probably_meant_to_be:
16433 
16434         /* Here we think that a posix specification was intended.  Update any
16435          * parse pointer */
16436         if (updated_parse_ptr) {
16437             *updated_parse_ptr = (char *) p;
16438         }
16439 
16440         /* If a posix class name was intended but incorrectly specified, we
16441          * output or return the warnings */
16442         if (found_problem) {
16443 
16444             /* We set flags for these issues in the parse loop above instead of
16445              * adding them to the list of warnings, because we can parse it
16446              * twice, and we only want one warning instance */
16447             if (has_upper) {
16448                 ADD_POSIX_WARNING(p, "the name must be all lowercase letters");
16449             }
16450             if (has_blank) {
16451                 ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
16452             }
16453             if (has_semi_colon) {
16454                 ADD_POSIX_WARNING(p, SEMI_COLON_POSIX_WARNING);
16455             }
16456             else if (! has_terminating_colon) {
16457                 ADD_POSIX_WARNING(p, "there is no terminating ':'");
16458             }
16459             if (! has_terminating_bracket) {
16460                 ADD_POSIX_WARNING(p, "there is no terminating ']'");
16461             }
16462 
16463             if (   posix_warnings
16464                 && RExC_warn_text
16465                 && av_count(RExC_warn_text) > 0)
16466             {
16467                 *posix_warnings = RExC_warn_text;
16468             }
16469         }
16470         else if (class_number != OOB_NAMEDCLASS) {
16471             /* If it is a known class, return the class.  The class number
16472              * #defines are structured so each complement is +1 to the normal
16473              * one */
16474             CLEAR_POSIX_WARNINGS_AND_RETURN(class_number + complement);
16475         }
16476         else if (! check_only) {
16477 
16478             /* Here, it is an unrecognized class.  This is an error (unless the
16479             * call is to check only, which we've already handled above) */
16480             const char * const complement_string = (complement)
16481                                                    ? "^"
16482                                                    : "";
16483             RExC_parse = (char *) p;
16484             vFAIL3utf8f("POSIX class [:%s%" UTF8f ":] unknown",
16485                         complement_string,
16486                         UTF8fARG(UTF, RExC_parse - name_start - 2, name_start));
16487         }
16488     }
16489 
16490     return OOB_NAMEDCLASS;
16491 }
16492 #undef ADD_POSIX_WARNING
16493 
16494 STATIC unsigned  int
S_regex_set_precedence(const U8 my_operator)16495 S_regex_set_precedence(const U8 my_operator) {
16496 
16497     /* Returns the precedence in the (?[...]) construct of the input operator,
16498      * specified by its character representation.  The precedence follows
16499      * general Perl rules, but it extends this so that ')' and ']' have (low)
16500      * precedence even though they aren't really operators */
16501 
16502     switch (my_operator) {
16503         case '!':
16504             return 5;
16505         case '&':
16506             return 4;
16507         case '^':
16508         case '|':
16509         case '+':
16510         case '-':
16511             return 3;
16512         case ')':
16513             return 2;
16514         case ']':
16515             return 1;
16516     }
16517 
16518     NOT_REACHED; /* NOTREACHED */
16519     return 0;   /* Silence compiler warning */
16520 }
16521 
16522 STATIC regnode_offset
S_handle_regex_sets(pTHX_ RExC_state_t * pRExC_state,SV ** return_invlist,I32 * flagp,U32 depth,char * const oregcomp_parse)16523 S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
16524                     I32 *flagp, U32 depth,
16525                     char * const oregcomp_parse)
16526 {
16527     /* Handle the (?[...]) construct to do set operations */
16528 
16529     U8 curchar;                     /* Current character being parsed */
16530     UV start, end;	            /* End points of code point ranges */
16531     SV* final = NULL;               /* The end result inversion list */
16532     SV* result_string;              /* 'final' stringified */
16533     AV* stack;                      /* stack of operators and operands not yet
16534                                        resolved */
16535     AV* fence_stack = NULL;         /* A stack containing the positions in
16536                                        'stack' of where the undealt-with left
16537                                        parens would be if they were actually
16538                                        put there */
16539     /* The 'volatile' is a workaround for an optimiser bug
16540      * in Solaris Studio 12.3. See RT #127455 */
16541     volatile IV fence = 0;          /* Position of where most recent undealt-
16542                                        with left paren in stack is; -1 if none.
16543                                      */
16544     STRLEN len;                     /* Temporary */
16545     regnode_offset node;            /* Temporary, and final regnode returned by
16546                                        this function */
16547     const bool save_fold = FOLD;    /* Temporary */
16548     char *save_end, *save_parse;    /* Temporaries */
16549     const bool in_locale = LOC;     /* we turn off /l during processing */
16550 
16551     DECLARE_AND_GET_RE_DEBUG_FLAGS;
16552 
16553     PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
16554     PERL_UNUSED_ARG(oregcomp_parse); /* Only for Set_Node_Length */
16555 
16556     DEBUG_PARSE("xcls");
16557 
16558     if (in_locale) {
16559         set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET);
16560     }
16561 
16562     /* The use of this operator implies /u.  This is required so that the
16563      * compile time values are valid in all runtime cases */
16564     REQUIRE_UNI_RULES(flagp, 0);
16565 
16566     ckWARNexperimental(RExC_parse,
16567                        WARN_EXPERIMENTAL__REGEX_SETS,
16568                        "The regex_sets feature is experimental");
16569 
16570     /* Everything in this construct is a metacharacter.  Operands begin with
16571      * either a '\' (for an escape sequence), or a '[' for a bracketed
16572      * character class.  Any other character should be an operator, or
16573      * parenthesis for grouping.  Both types of operands are handled by calling
16574      * regclass() to parse them.  It is called with a parameter to indicate to
16575      * return the computed inversion list.  The parsing here is implemented via
16576      * a stack.  Each entry on the stack is a single character representing one
16577      * of the operators; or else a pointer to an operand inversion list. */
16578 
16579 #define IS_OPERATOR(a) SvIOK(a)
16580 #define IS_OPERAND(a)  (! IS_OPERATOR(a))
16581 
16582     /* The stack is kept in Łukasiewicz order.  (That's pronounced similar
16583      * to luke-a-shave-itch (or -itz), but people who didn't want to bother
16584      * with pronouncing it called it Reverse Polish instead, but now that YOU
16585      * know how to pronounce it you can use the correct term, thus giving due
16586      * credit to the person who invented it, and impressing your geek friends.
16587      * Wikipedia says that the pronounciation of "Ł" has been changing so that
16588      * it is now more like an English initial W (as in wonk) than an L.)
16589      *
16590      * This means that, for example, 'a | b & c' is stored on the stack as
16591      *
16592      * c  [4]
16593      * b  [3]
16594      * &  [2]
16595      * a  [1]
16596      * |  [0]
16597      *
16598      * where the numbers in brackets give the stack [array] element number.
16599      * In this implementation, parentheses are not stored on the stack.
16600      * Instead a '(' creates a "fence" so that the part of the stack below the
16601      * fence is invisible except to the corresponding ')' (this allows us to
16602      * replace testing for parens, by using instead subtraction of the fence
16603      * position).  As new operands are processed they are pushed onto the stack
16604      * (except as noted in the next paragraph).  New operators of higher
16605      * precedence than the current final one are inserted on the stack before
16606      * the lhs operand (so that when the rhs is pushed next, everything will be
16607      * in the correct positions shown above.  When an operator of equal or
16608      * lower precedence is encountered in parsing, all the stacked operations
16609      * of equal or higher precedence are evaluated, leaving the result as the
16610      * top entry on the stack.  This makes higher precedence operations
16611      * evaluate before lower precedence ones, and causes operations of equal
16612      * precedence to left associate.
16613      *
16614      * The only unary operator '!' is immediately pushed onto the stack when
16615      * encountered.  When an operand is encountered, if the top of the stack is
16616      * a '!", the complement is immediately performed, and the '!' popped.  The
16617      * resulting value is treated as a new operand, and the logic in the
16618      * previous paragraph is executed.  Thus in the expression
16619      *      [a] + ! [b]
16620      * the stack looks like
16621      *
16622      * !
16623      * a
16624      * +
16625      *
16626      * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
16627      * becomes
16628      *
16629      * !b
16630      * a
16631      * +
16632      *
16633      * A ')' is treated as an operator with lower precedence than all the
16634      * aforementioned ones, which causes all operations on the stack above the
16635      * corresponding '(' to be evaluated down to a single resultant operand.
16636      * Then the fence for the '(' is removed, and the operand goes through the
16637      * algorithm above, without the fence.
16638      *
16639      * A separate stack is kept of the fence positions, so that the position of
16640      * the latest so-far unbalanced '(' is at the top of it.
16641      *
16642      * The ']' ending the construct is treated as the lowest operator of all,
16643      * so that everything gets evaluated down to a single operand, which is the
16644      * result */
16645 
16646     sv_2mortal((SV *)(stack = newAV()));
16647     sv_2mortal((SV *)(fence_stack = newAV()));
16648 
16649     while (RExC_parse < RExC_end) {
16650         I32 top_index;              /* Index of top-most element in 'stack' */
16651         SV** top_ptr;               /* Pointer to top 'stack' element */
16652         SV* current = NULL;         /* To contain the current inversion list
16653                                        operand */
16654         SV* only_to_avoid_leaks;
16655 
16656         skip_to_be_ignored_text(pRExC_state, &RExC_parse,
16657                                 TRUE /* Force /x */ );
16658         if (RExC_parse >= RExC_end) {   /* Fail */
16659             break;
16660         }
16661 
16662         curchar = UCHARAT(RExC_parse);
16663 
16664 redo_curchar:
16665 
16666 #ifdef ENABLE_REGEX_SETS_DEBUGGING
16667                     /* Enable with -Accflags=-DENABLE_REGEX_SETS_DEBUGGING */
16668         DEBUG_U(dump_regex_sets_structures(pRExC_state,
16669                                            stack, fence, fence_stack));
16670 #endif
16671 
16672         top_index = av_tindex_skip_len_mg(stack);
16673 
16674         switch (curchar) {
16675             SV** stacked_ptr;       /* Ptr to something already on 'stack' */
16676             char stacked_operator;  /* The topmost operator on the 'stack'. */
16677             SV* lhs;                /* Operand to the left of the operator */
16678             SV* rhs;                /* Operand to the right of the operator */
16679             SV* fence_ptr;          /* Pointer to top element of the fence
16680                                        stack */
16681             case '(':
16682 
16683                 if (   RExC_parse < RExC_end - 2
16684                     && UCHARAT(RExC_parse + 1) == '?'
16685                     && UCHARAT(RExC_parse + 2) == '^')
16686                 {
16687                     const regnode_offset orig_emit = RExC_emit;
16688                     SV * resultant_invlist;
16689 
16690                     /* If is a '(?^', could be an embedded '(?^flags:(?[...])'.
16691                      * This happens when we have some thing like
16692                      *
16693                      *   my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
16694                      *   ...
16695                      *   qr/(?[ \p{Digit} & $thai_or_lao ])/;
16696                      *
16697                      * Here we would be handling the interpolated
16698                      * '$thai_or_lao'.  We handle this by a recursive call to
16699                      * reg which returns the inversion list the
16700                      * interpolated expression evaluates to.  Actually, the
16701                      * return is a special regnode containing a pointer to that
16702                      * inversion list.  If the return isn't that regnode alone,
16703                      * we know that this wasn't such an interpolation, which is
16704                      * an error: we need to get a single inversion list back
16705                      * from the recursion */
16706 
16707                     RExC_parse++;
16708                     RExC_sets_depth++;
16709 
16710                     node = reg(pRExC_state, 2, flagp, depth+1);
16711                     RETURN_FAIL_ON_RESTART(*flagp, flagp);
16712 
16713                     if (   OP(REGNODE_p(node)) != REGEX_SET
16714                            /* If more than a single node returned, the nested
16715                             * parens evaluated to more than just a (?[...]),
16716                             * which isn't legal */
16717                         || RExC_emit != orig_emit
16718                                       + NODE_STEP_REGNODE
16719                                       + regarglen[REGEX_SET])
16720                     {
16721                         vFAIL("Expecting interpolated extended charclass");
16722                     }
16723                     resultant_invlist = (SV *) ARGp(REGNODE_p(node));
16724                     current = invlist_clone(resultant_invlist, NULL);
16725                     SvREFCNT_dec(resultant_invlist);
16726 
16727                     RExC_sets_depth--;
16728                     RExC_emit = orig_emit;
16729                     goto handle_operand;
16730                 }
16731 
16732                 /* A regular '('.  Look behind for illegal syntax */
16733                 if (top_index - fence >= 0) {
16734                     /* If the top entry on the stack is an operator, it had
16735                      * better be a '!', otherwise the entry below the top
16736                      * operand should be an operator */
16737                     if (   ! (top_ptr = av_fetch(stack, top_index, FALSE))
16738                         || (IS_OPERATOR(*top_ptr) && SvUV(*top_ptr) != '!')
16739                         || (   IS_OPERAND(*top_ptr)
16740                             && (   top_index - fence < 1
16741                                 || ! (stacked_ptr = av_fetch(stack,
16742                                                              top_index - 1,
16743                                                              FALSE))
16744                                 || ! IS_OPERATOR(*stacked_ptr))))
16745                     {
16746                         RExC_parse++;
16747                         vFAIL("Unexpected '(' with no preceding operator");
16748                     }
16749                 }
16750 
16751                 /* Stack the position of this undealt-with left paren */
16752                 av_push(fence_stack, newSViv(fence));
16753                 fence = top_index + 1;
16754                 break;
16755 
16756             case '\\':
16757                 /* regclass() can only return RESTART_PARSE and NEED_UTF8 if
16758                  * multi-char folds are allowed.  */
16759                 if (!regclass(pRExC_state, flagp, depth+1,
16760                               TRUE, /* means parse just the next thing */
16761                               FALSE, /* don't allow multi-char folds */
16762                               FALSE, /* don't silence non-portable warnings.  */
16763                               TRUE,  /* strict */
16764                               FALSE, /* Require return to be an ANYOF */
16765                               &current))
16766                 {
16767                     RETURN_FAIL_ON_RESTART(*flagp, flagp);
16768                     goto regclass_failed;
16769                 }
16770 
16771                 assert(current);
16772 
16773                 /* regclass() will return with parsing just the \ sequence,
16774                  * leaving the parse pointer at the next thing to parse */
16775                 RExC_parse--;
16776                 goto handle_operand;
16777 
16778             case '[':   /* Is a bracketed character class */
16779             {
16780                 /* See if this is a [:posix:] class. */
16781                 bool is_posix_class = (OOB_NAMEDCLASS
16782                             < handle_possible_posix(pRExC_state,
16783                                                 RExC_parse + 1,
16784                                                 NULL,
16785                                                 NULL,
16786                                                 TRUE /* checking only */));
16787                 /* If it is a posix class, leave the parse pointer at the '['
16788                  * to fool regclass() into thinking it is part of a
16789                  * '[[:posix:]]'. */
16790                 if (! is_posix_class) {
16791                     RExC_parse++;
16792                 }
16793 
16794                 /* regclass() can only return RESTART_PARSE and NEED_UTF8 if
16795                  * multi-char folds are allowed.  */
16796                 if (!regclass(pRExC_state, flagp, depth+1,
16797                                 is_posix_class, /* parse the whole char
16798                                                     class only if not a
16799                                                     posix class */
16800                                 FALSE, /* don't allow multi-char folds */
16801                                 TRUE, /* silence non-portable warnings. */
16802                                 TRUE, /* strict */
16803                                 FALSE, /* Require return to be an ANYOF */
16804                                 &current))
16805                 {
16806                     RETURN_FAIL_ON_RESTART(*flagp, flagp);
16807                     goto regclass_failed;
16808                 }
16809 
16810                 assert(current);
16811 
16812                 /* function call leaves parse pointing to the ']', except if we
16813                  * faked it */
16814                 if (is_posix_class) {
16815                     RExC_parse--;
16816                 }
16817 
16818                 goto handle_operand;
16819             }
16820 
16821             case ']':
16822                 if (top_index >= 1) {
16823                     goto join_operators;
16824                 }
16825 
16826                 /* Only a single operand on the stack: are done */
16827                 goto done;
16828 
16829             case ')':
16830                 if (av_tindex_skip_len_mg(fence_stack) < 0) {
16831                     if (UCHARAT(RExC_parse - 1) == ']')  {
16832                         break;
16833                     }
16834                     RExC_parse++;
16835                     vFAIL("Unexpected ')'");
16836                 }
16837 
16838                 /* If nothing after the fence, is missing an operand */
16839                 if (top_index - fence < 0) {
16840                     RExC_parse++;
16841                     goto bad_syntax;
16842                 }
16843                 /* If at least two things on the stack, treat this as an
16844                   * operator */
16845                 if (top_index - fence >= 1) {
16846                     goto join_operators;
16847                 }
16848 
16849                 /* Here only a single thing on the fenced stack, and there is a
16850                  * fence.  Get rid of it */
16851                 fence_ptr = av_pop(fence_stack);
16852                 assert(fence_ptr);
16853                 fence = SvIV(fence_ptr);
16854                 SvREFCNT_dec_NN(fence_ptr);
16855                 fence_ptr = NULL;
16856 
16857                 if (fence < 0) {
16858                     fence = 0;
16859                 }
16860 
16861                 /* Having gotten rid of the fence, we pop the operand at the
16862                  * stack top and process it as a newly encountered operand */
16863                 current = av_pop(stack);
16864                 if (IS_OPERAND(current)) {
16865                     goto handle_operand;
16866                 }
16867 
16868                 RExC_parse++;
16869                 goto bad_syntax;
16870 
16871             case '&':
16872             case '|':
16873             case '+':
16874             case '-':
16875             case '^':
16876 
16877                 /* These binary operators should have a left operand already
16878                  * parsed */
16879                 if (   top_index - fence < 0
16880                     || top_index - fence == 1
16881                     || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
16882                     || ! IS_OPERAND(*top_ptr))
16883                 {
16884                     goto unexpected_binary;
16885                 }
16886 
16887                 /* If only the one operand is on the part of the stack visible
16888                  * to us, we just place this operator in the proper position */
16889                 if (top_index - fence < 2) {
16890 
16891                     /* Place the operator before the operand */
16892 
16893                     SV* lhs = av_pop(stack);
16894                     av_push(stack, newSVuv(curchar));
16895                     av_push(stack, lhs);
16896                     break;
16897                 }
16898 
16899                 /* But if there is something else on the stack, we need to
16900                  * process it before this new operator if and only if the
16901                  * stacked operation has equal or higher precedence than the
16902                  * new one */
16903 
16904              join_operators:
16905 
16906                 /* The operator on the stack is supposed to be below both its
16907                  * operands */
16908                 if (   ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
16909                     || IS_OPERAND(*stacked_ptr))
16910                 {
16911                     /* But if not, it's legal and indicates we are completely
16912                      * done if and only if we're currently processing a ']',
16913                      * which should be the final thing in the expression */
16914                     if (curchar == ']') {
16915                         goto done;
16916                     }
16917 
16918                   unexpected_binary:
16919                     RExC_parse++;
16920                     vFAIL2("Unexpected binary operator '%c' with no "
16921                            "preceding operand", curchar);
16922                 }
16923                 stacked_operator = (char) SvUV(*stacked_ptr);
16924 
16925                 if (regex_set_precedence(curchar)
16926                     > regex_set_precedence(stacked_operator))
16927                 {
16928                     /* Here, the new operator has higher precedence than the
16929                      * stacked one.  This means we need to add the new one to
16930                      * the stack to await its rhs operand (and maybe more
16931                      * stuff).  We put it before the lhs operand, leaving
16932                      * untouched the stacked operator and everything below it
16933                      * */
16934                     lhs = av_pop(stack);
16935                     assert(IS_OPERAND(lhs));
16936 
16937                     av_push(stack, newSVuv(curchar));
16938                     av_push(stack, lhs);
16939                     break;
16940                 }
16941 
16942                 /* Here, the new operator has equal or lower precedence than
16943                  * what's already there.  This means the operation already
16944                  * there should be performed now, before the new one. */
16945 
16946                 rhs = av_pop(stack);
16947                 if (! IS_OPERAND(rhs)) {
16948 
16949                     /* This can happen when a ! is not followed by an operand,
16950                      * like in /(?[\t &!])/ */
16951                     goto bad_syntax;
16952                 }
16953 
16954                 lhs = av_pop(stack);
16955 
16956                 if (! IS_OPERAND(lhs)) {
16957 
16958                     /* This can happen when there is an empty (), like in
16959                      * /(?[[0]+()+])/ */
16960                     goto bad_syntax;
16961                 }
16962 
16963                 switch (stacked_operator) {
16964                     case '&':
16965                         _invlist_intersection(lhs, rhs, &rhs);
16966                         break;
16967 
16968                     case '|':
16969                     case '+':
16970                         _invlist_union(lhs, rhs, &rhs);
16971                         break;
16972 
16973                     case '-':
16974                         _invlist_subtract(lhs, rhs, &rhs);
16975                         break;
16976 
16977                     case '^':   /* The union minus the intersection */
16978                     {
16979                         SV* i = NULL;
16980                         SV* u = NULL;
16981 
16982                         _invlist_union(lhs, rhs, &u);
16983                         _invlist_intersection(lhs, rhs, &i);
16984                         _invlist_subtract(u, i, &rhs);
16985                         SvREFCNT_dec_NN(i);
16986                         SvREFCNT_dec_NN(u);
16987                         break;
16988                     }
16989                 }
16990                 SvREFCNT_dec(lhs);
16991 
16992                 /* Here, the higher precedence operation has been done, and the
16993                  * result is in 'rhs'.  We overwrite the stacked operator with
16994                  * the result.  Then we redo this code to either push the new
16995                  * operator onto the stack or perform any higher precedence
16996                  * stacked operation */
16997                 only_to_avoid_leaks = av_pop(stack);
16998                 SvREFCNT_dec(only_to_avoid_leaks);
16999                 av_push(stack, rhs);
17000                 goto redo_curchar;
17001 
17002             case '!':   /* Highest priority, right associative */
17003 
17004                 /* If what's already at the top of the stack is another '!",
17005                  * they just cancel each other out */
17006                 if (   (top_ptr = av_fetch(stack, top_index, FALSE))
17007                     && (IS_OPERATOR(*top_ptr) && SvUV(*top_ptr) == '!'))
17008                 {
17009                     only_to_avoid_leaks = av_pop(stack);
17010                     SvREFCNT_dec(only_to_avoid_leaks);
17011                 }
17012                 else { /* Otherwise, since it's right associative, just push
17013                           onto the stack */
17014                     av_push(stack, newSVuv(curchar));
17015                 }
17016                 break;
17017 
17018             default:
17019                 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
17020                 if (RExC_parse >= RExC_end) {
17021                     break;
17022                 }
17023                 vFAIL("Unexpected character");
17024 
17025           handle_operand:
17026 
17027             /* Here 'current' is the operand.  If something is already on the
17028              * stack, we have to check if it is a !.  But first, the code above
17029              * may have altered the stack in the time since we earlier set
17030              * 'top_index'.  */
17031 
17032             top_index = av_tindex_skip_len_mg(stack);
17033             if (top_index - fence >= 0) {
17034                 /* If the top entry on the stack is an operator, it had better
17035                  * be a '!', otherwise the entry below the top operand should
17036                  * be an operator */
17037                 top_ptr = av_fetch(stack, top_index, FALSE);
17038                 assert(top_ptr);
17039                 if (IS_OPERATOR(*top_ptr)) {
17040 
17041                     /* The only permissible operator at the top of the stack is
17042                      * '!', which is applied immediately to this operand. */
17043                     curchar = (char) SvUV(*top_ptr);
17044                     if (curchar != '!') {
17045                         SvREFCNT_dec(current);
17046                         vFAIL2("Unexpected binary operator '%c' with no "
17047                                 "preceding operand", curchar);
17048                     }
17049 
17050                     _invlist_invert(current);
17051 
17052                     only_to_avoid_leaks = av_pop(stack);
17053                     SvREFCNT_dec(only_to_avoid_leaks);
17054 
17055                     /* And we redo with the inverted operand.  This allows
17056                      * handling multiple ! in a row */
17057                     goto handle_operand;
17058                 }
17059                           /* Single operand is ok only for the non-binary ')'
17060                            * operator */
17061                 else if ((top_index - fence == 0 && curchar != ')')
17062                          || (top_index - fence > 0
17063                              && (! (stacked_ptr = av_fetch(stack,
17064                                                            top_index - 1,
17065                                                            FALSE))
17066                                  || IS_OPERAND(*stacked_ptr))))
17067                 {
17068                     SvREFCNT_dec(current);
17069                     vFAIL("Operand with no preceding operator");
17070                 }
17071             }
17072 
17073             /* Here there was nothing on the stack or the top element was
17074              * another operand.  Just add this new one */
17075             av_push(stack, current);
17076 
17077         } /* End of switch on next parse token */
17078 
17079         RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
17080     } /* End of loop parsing through the construct */
17081 
17082     vFAIL("Syntax error in (?[...])");
17083 
17084   done:
17085 
17086     if (RExC_parse >= RExC_end || RExC_parse[1] != ')') {
17087         if (RExC_parse < RExC_end) {
17088             RExC_parse++;
17089         }
17090 
17091         vFAIL("Unexpected ']' with no following ')' in (?[...");
17092     }
17093 
17094     if (av_tindex_skip_len_mg(fence_stack) >= 0) {
17095         vFAIL("Unmatched (");
17096     }
17097 
17098     if (av_tindex_skip_len_mg(stack) < 0   /* Was empty */
17099         || ((final = av_pop(stack)) == NULL)
17100         || ! IS_OPERAND(final)
17101         || ! is_invlist(final)
17102         || av_tindex_skip_len_mg(stack) >= 0)  /* More left on stack */
17103     {
17104       bad_syntax:
17105         SvREFCNT_dec(final);
17106         vFAIL("Incomplete expression within '(?[ ])'");
17107     }
17108 
17109     /* Here, 'final' is the resultant inversion list from evaluating the
17110      * expression.  Return it if so requested */
17111     if (return_invlist) {
17112         *return_invlist = final;
17113         return END;
17114     }
17115 
17116     if (RExC_sets_depth) {  /* If within a recursive call, return in a special
17117                                regnode */
17118         RExC_parse++;
17119         node = regpnode(pRExC_state, REGEX_SET, final);
17120     }
17121     else {
17122 
17123         /* Otherwise generate a resultant node, based on 'final'.  regclass()
17124          * is expecting a string of ranges and individual code points */
17125         invlist_iterinit(final);
17126         result_string = newSVpvs("");
17127         while (invlist_iternext(final, &start, &end)) {
17128             if (start == end) {
17129                 Perl_sv_catpvf(aTHX_ result_string, "\\x{%" UVXf "}", start);
17130             }
17131             else {
17132                 Perl_sv_catpvf(aTHX_ result_string, "\\x{%" UVXf "}-\\x{%"
17133                                                         UVXf "}", start, end);
17134             }
17135         }
17136 
17137         /* About to generate an ANYOF (or similar) node from the inversion list
17138          * we have calculated */
17139         save_parse = RExC_parse;
17140         RExC_parse = SvPV(result_string, len);
17141         save_end = RExC_end;
17142         RExC_end = RExC_parse + len;
17143         TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE;
17144 
17145         /* We turn off folding around the call, as the class we have
17146          * constructed already has all folding taken into consideration, and we
17147          * don't want regclass() to add to that */
17148         RExC_flags &= ~RXf_PMf_FOLD;
17149         /* regclass() can only return RESTART_PARSE and NEED_UTF8 if multi-char
17150          * folds are allowed.  */
17151         node = regclass(pRExC_state, flagp, depth+1,
17152                         FALSE, /* means parse the whole char class */
17153                         FALSE, /* don't allow multi-char folds */
17154                         TRUE, /* silence non-portable warnings.  The above may
17155                                  very well have generated non-portable code
17156                                  points, but they're valid on this machine */
17157                         FALSE, /* similarly, no need for strict */
17158 
17159                         /* We can optimize into something besides an ANYOF,
17160                          * except under /l, which needs to be ANYOF because of
17161                          * runtime checks for locale sanity, etc */
17162                     ! in_locale,
17163                         NULL
17164                     );
17165 
17166         RESTORE_WARNINGS;
17167         RExC_parse = save_parse + 1;
17168         RExC_end = save_end;
17169         SvREFCNT_dec_NN(final);
17170         SvREFCNT_dec_NN(result_string);
17171 
17172         if (save_fold) {
17173             RExC_flags |= RXf_PMf_FOLD;
17174         }
17175 
17176         if (!node) {
17177             RETURN_FAIL_ON_RESTART(*flagp, flagp);
17178             goto regclass_failed;
17179         }
17180 
17181         /* Fix up the node type if we are in locale.  (We have pretended we are
17182          * under /u for the purposes of regclass(), as this construct will only
17183          * work under UTF-8 locales.  But now we change the opcode to be ANYOFL
17184          * (so as to cause any warnings about bad locales to be output in
17185          * regexec.c), and add the flag that indicates to check if not in a
17186          * UTF-8 locale.  The reason we above forbid optimization into
17187          * something other than an ANYOF node is simply to minimize the number
17188          * of code changes in regexec.c.  Otherwise we would have to create new
17189          * EXACTish node types and deal with them.  This decision could be
17190          * revisited should this construct become popular.
17191          *
17192          * (One might think we could look at the resulting ANYOF node and
17193          * suppress the flag if everything is above 255, as those would be
17194          * UTF-8 only, but this isn't true, as the components that led to that
17195          * result could have been locale-affected, and just happen to cancel
17196          * each other out under UTF-8 locales.) */
17197         if (in_locale) {
17198             set_regex_charset(&RExC_flags, REGEX_LOCALE_CHARSET);
17199 
17200             assert(OP(REGNODE_p(node)) == ANYOF);
17201 
17202             OP(REGNODE_p(node)) = ANYOFL;
17203             ANYOF_FLAGS(REGNODE_p(node))
17204                     |= ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
17205         }
17206     }
17207 
17208     nextchar(pRExC_state);
17209     Set_Node_Length(REGNODE_p(node), RExC_parse - oregcomp_parse + 1); /* MJD */
17210     return node;
17211 
17212   regclass_failed:
17213     FAIL2("panic: regclass returned failure to handle_sets, " "flags=%#" UVxf,
17214                                                                 (UV) *flagp);
17215 }
17216 
17217 #ifdef ENABLE_REGEX_SETS_DEBUGGING
17218 
17219 STATIC void
S_dump_regex_sets_structures(pTHX_ RExC_state_t * pRExC_state,AV * stack,const IV fence,AV * fence_stack)17220 S_dump_regex_sets_structures(pTHX_ RExC_state_t *pRExC_state,
17221                              AV * stack, const IV fence, AV * fence_stack)
17222 {   /* Dumps the stacks in handle_regex_sets() */
17223 
17224     const SSize_t stack_top = av_tindex_skip_len_mg(stack);
17225     const SSize_t fence_stack_top = av_tindex_skip_len_mg(fence_stack);
17226     SSize_t i;
17227 
17228     PERL_ARGS_ASSERT_DUMP_REGEX_SETS_STRUCTURES;
17229 
17230     PerlIO_printf(Perl_debug_log, "\nParse position is:%s\n", RExC_parse);
17231 
17232     if (stack_top < 0) {
17233         PerlIO_printf(Perl_debug_log, "Nothing on stack\n");
17234     }
17235     else {
17236         PerlIO_printf(Perl_debug_log, "Stack: (fence=%d)\n", (int) fence);
17237         for (i = stack_top; i >= 0; i--) {
17238             SV ** element_ptr = av_fetch(stack, i, FALSE);
17239             if (! element_ptr) {
17240             }
17241 
17242             if (IS_OPERATOR(*element_ptr)) {
17243                 PerlIO_printf(Perl_debug_log, "[%d]: %c\n",
17244                                             (int) i, (int) SvIV(*element_ptr));
17245             }
17246             else {
17247                 PerlIO_printf(Perl_debug_log, "[%d] ", (int) i);
17248                 sv_dump(*element_ptr);
17249             }
17250         }
17251     }
17252 
17253     if (fence_stack_top < 0) {
17254         PerlIO_printf(Perl_debug_log, "Nothing on fence_stack\n");
17255     }
17256     else {
17257         PerlIO_printf(Perl_debug_log, "Fence_stack: \n");
17258         for (i = fence_stack_top; i >= 0; i--) {
17259             SV ** element_ptr = av_fetch(fence_stack, i, FALSE);
17260             if (! element_ptr) {
17261             }
17262 
17263             PerlIO_printf(Perl_debug_log, "[%d]: %d\n",
17264                                             (int) i, (int) SvIV(*element_ptr));
17265         }
17266     }
17267 }
17268 
17269 #endif
17270 
17271 #undef IS_OPERATOR
17272 #undef IS_OPERAND
17273 
17274 STATIC void
S_add_above_Latin1_folds(pTHX_ RExC_state_t * pRExC_state,const U8 cp,SV ** invlist)17275 S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
17276 {
17277     /* This adds the Latin1/above-Latin1 folding rules.
17278      *
17279      * This should be called only for a Latin1-range code points, cp, which is
17280      * known to be involved in a simple fold with other code points above
17281      * Latin1.  It would give false results if /aa has been specified.
17282      * Multi-char folds are outside the scope of this, and must be handled
17283      * specially. */
17284 
17285     PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
17286 
17287     assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
17288 
17289     /* The rules that are valid for all Unicode versions are hard-coded in */
17290     switch (cp) {
17291         case 'k':
17292         case 'K':
17293           *invlist =
17294              add_cp_to_invlist(*invlist, KELVIN_SIGN);
17295             break;
17296         case 's':
17297         case 'S':
17298           *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
17299             break;
17300         case MICRO_SIGN:
17301           *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
17302           *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
17303             break;
17304         case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
17305         case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
17306           *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
17307             break;
17308         case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
17309           *invlist = add_cp_to_invlist(*invlist,
17310                                         LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
17311             break;
17312 
17313         default:    /* Other code points are checked against the data for the
17314                        current Unicode version */
17315           {
17316             Size_t folds_count;
17317             U32 first_fold;
17318             const U32 * remaining_folds;
17319             UV folded_cp;
17320 
17321             if (isASCII(cp)) {
17322                 folded_cp = toFOLD(cp);
17323             }
17324             else {
17325                 U8 dummy_fold[UTF8_MAXBYTES_CASE+1];
17326                 Size_t dummy_len;
17327                 folded_cp = _to_fold_latin1(cp, dummy_fold, &dummy_len, 0);
17328             }
17329 
17330             if (folded_cp > 255) {
17331                 *invlist = add_cp_to_invlist(*invlist, folded_cp);
17332             }
17333 
17334             folds_count = _inverse_folds(folded_cp, &first_fold,
17335                                                     &remaining_folds);
17336             if (folds_count == 0) {
17337 
17338                 /* Use deprecated warning to increase the chances of this being
17339                  * output */
17340                 ckWARN2reg_d(RExC_parse,
17341                         "Perl folding rules are not up-to-date for 0x%02X;"
17342                         " please use the perlbug utility to report;", cp);
17343             }
17344             else {
17345                 unsigned int i;
17346 
17347                 if (first_fold > 255) {
17348                     *invlist = add_cp_to_invlist(*invlist, first_fold);
17349                 }
17350                 for (i = 0; i < folds_count - 1; i++) {
17351                     if (remaining_folds[i] > 255) {
17352                         *invlist = add_cp_to_invlist(*invlist,
17353                                                     remaining_folds[i]);
17354                     }
17355                 }
17356             }
17357             break;
17358          }
17359     }
17360 }
17361 
17362 STATIC void
S_output_posix_warnings(pTHX_ RExC_state_t * pRExC_state,AV * posix_warnings)17363 S_output_posix_warnings(pTHX_ RExC_state_t *pRExC_state, AV* posix_warnings)
17364 {
17365     /* Output the elements of the array given by '*posix_warnings' as REGEXP
17366      * warnings. */
17367 
17368     SV * msg;
17369     const bool first_is_fatal = ckDEAD(packWARN(WARN_REGEXP));
17370 
17371     PERL_ARGS_ASSERT_OUTPUT_POSIX_WARNINGS;
17372 
17373     if (! TO_OUTPUT_WARNINGS(RExC_parse)) {
17374         CLEAR_POSIX_WARNINGS();
17375         return;
17376     }
17377 
17378     while ((msg = av_shift(posix_warnings)) != &PL_sv_undef) {
17379         if (first_is_fatal) {           /* Avoid leaking this */
17380             av_undef(posix_warnings);   /* This isn't necessary if the
17381                                             array is mortal, but is a
17382                                             fail-safe */
17383             (void) sv_2mortal(msg);
17384             PREPARE_TO_DIE;
17385         }
17386         Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s", SvPVX(msg));
17387         SvREFCNT_dec_NN(msg);
17388     }
17389 
17390     UPDATE_WARNINGS_LOC(RExC_parse);
17391 }
17392 
17393 PERL_STATIC_INLINE Size_t
S_find_first_differing_byte_pos(const U8 * s1,const U8 * s2,const Size_t max)17394 S_find_first_differing_byte_pos(const U8 * s1, const U8 * s2, const Size_t max)
17395 {
17396     const U8 * const start = s1;
17397     const U8 * const send = start + max;
17398 
17399     PERL_ARGS_ASSERT_FIND_FIRST_DIFFERING_BYTE_POS;
17400 
17401     while (s1 < send && *s1  == *s2) {
17402         s1++; s2++;
17403     }
17404 
17405     return s1 - start;
17406 }
17407 
17408 
17409 STATIC AV *
S_add_multi_match(pTHX_ AV * multi_char_matches,SV * multi_string,const STRLEN cp_count)17410 S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
17411 {
17412     /* This adds the string scalar <multi_string> to the array
17413      * <multi_char_matches>.  <multi_string> is known to have exactly
17414      * <cp_count> code points in it.  This is used when constructing a
17415      * bracketed character class and we find something that needs to match more
17416      * than a single character.
17417      *
17418      * <multi_char_matches> is actually an array of arrays.  Each top-level
17419      * element is an array that contains all the strings known so far that are
17420      * the same length.  And that length (in number of code points) is the same
17421      * as the index of the top-level array.  Hence, the [2] element is an
17422      * array, each element thereof is a string containing TWO code points;
17423      * while element [3] is for strings of THREE characters, and so on.  Since
17424      * this is for multi-char strings there can never be a [0] nor [1] element.
17425      *
17426      * When we rewrite the character class below, we will do so such that the
17427      * longest strings are written first, so that it prefers the longest
17428      * matching strings first.  This is done even if it turns out that any
17429      * quantifier is non-greedy, out of this programmer's (khw) laziness.  Tom
17430      * Christiansen has agreed that this is ok.  This makes the test for the
17431      * ligature 'ffi' come before the test for 'ff', for example */
17432 
17433     AV* this_array;
17434     AV** this_array_ptr;
17435 
17436     PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
17437 
17438     if (! multi_char_matches) {
17439         multi_char_matches = newAV();
17440     }
17441 
17442     if (av_exists(multi_char_matches, cp_count)) {
17443         this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
17444         this_array = *this_array_ptr;
17445     }
17446     else {
17447         this_array = newAV();
17448         av_store(multi_char_matches, cp_count,
17449                  (SV*) this_array);
17450     }
17451     av_push(this_array, multi_string);
17452 
17453     return multi_char_matches;
17454 }
17455 
17456 /* The names of properties whose definitions are not known at compile time are
17457  * stored in this SV, after a constant heading.  So if the length has been
17458  * changed since initialization, then there is a run-time definition. */
17459 #define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION                            \
17460                                         (SvCUR(listsv) != initial_listsv_len)
17461 
17462 /* There is a restricted set of white space characters that are legal when
17463  * ignoring white space in a bracketed character class.  This generates the
17464  * code to skip them.
17465  *
17466  * There is a line below that uses the same white space criteria but is outside
17467  * this macro.  Both here and there must use the same definition */
17468 #define SKIP_BRACKETED_WHITE_SPACE(do_skip, p, stop_p)                  \
17469     STMT_START {                                                        \
17470         if (do_skip) {                                                  \
17471             while (p < stop_p && isBLANK_A(UCHARAT(p)))                 \
17472             {                                                           \
17473                 p++;                                                    \
17474             }                                                           \
17475         }                                                               \
17476     } STMT_END
17477 
17478 STATIC regnode_offset
S_regclass(pTHX_ RExC_state_t * pRExC_state,I32 * flagp,U32 depth,const bool stop_at_1,bool allow_mutiple_chars,const bool silence_non_portable,const bool strict,bool optimizable,SV ** ret_invlist)17479 S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
17480                  const bool stop_at_1,  /* Just parse the next thing, don't
17481                                            look for a full character class */
17482                  bool allow_mutiple_chars,
17483                  const bool silence_non_portable,   /* Don't output warnings
17484                                                        about too large
17485                                                        characters */
17486                  const bool strict,
17487                  bool optimizable,                  /* ? Allow a non-ANYOF return
17488                                                        node */
17489                  SV** ret_invlist  /* Return an inversion list, not a node */
17490           )
17491 {
17492     /* parse a bracketed class specification.  Most of these will produce an
17493      * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
17494      * EXACTFish node; [[:ascii:]], a POSIXA node; etc.  It is more complex
17495      * under /i with multi-character folds: it will be rewritten following the
17496      * paradigm of this example, where the <multi-fold>s are characters which
17497      * fold to multiple character sequences:
17498      *      /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
17499      * gets effectively rewritten as:
17500      *      /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
17501      * reg() gets called (recursively) on the rewritten version, and this
17502      * function will return what it constructs.  (Actually the <multi-fold>s
17503      * aren't physically removed from the [abcdefghi], it's just that they are
17504      * ignored in the recursion by means of a flag:
17505      * <RExC_in_multi_char_class>.)
17506      *
17507      * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
17508      * characters, with the corresponding bit set if that character is in the
17509      * list.  For characters above this, an inversion list is used.  There
17510      * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
17511      * determinable at compile time
17512      *
17513      * On success, returns the offset at which any next node should be placed
17514      * into the regex engine program being compiled.
17515      *
17516      * Returns 0 otherwise, setting flagp to RESTART_PARSE if the parse needs
17517      * to be restarted, or'd with NEED_UTF8 if the pattern needs to be upgraded to
17518      * UTF-8
17519      */
17520 
17521     UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
17522     IV range = 0;
17523     UV value = OOB_UNICODE, save_value = OOB_UNICODE;
17524     regnode_offset ret = -1;    /* Initialized to an illegal value */
17525     STRLEN numlen;
17526     int namedclass = OOB_NAMEDCLASS;
17527     char *rangebegin = NULL;
17528     SV *listsv = NULL;      /* List of \p{user-defined} whose definitions
17529                                aren't available at the time this was called */
17530     STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
17531                                       than just initialized.  */
17532     SV* properties = NULL;    /* Code points that match \p{} \P{} */
17533     SV* posixes = NULL;     /* Code points that match classes like [:word:],
17534                                extended beyond the Latin1 range.  These have to
17535                                be kept separate from other code points for much
17536                                of this function because their handling  is
17537                                different under /i, and for most classes under
17538                                /d as well */
17539     SV* nposixes = NULL;    /* Similarly for [:^word:].  These are kept
17540                                separate for a while from the non-complemented
17541                                versions because of complications with /d
17542                                matching */
17543     SV* simple_posixes = NULL; /* But under some conditions, the classes can be
17544                                   treated more simply than the general case,
17545                                   leading to less compilation and execution
17546                                   work */
17547     UV element_count = 0;   /* Number of distinct elements in the class.
17548                                Optimizations may be possible if this is tiny */
17549     AV * multi_char_matches = NULL; /* Code points that fold to more than one
17550                                        character; used under /i */
17551     UV n;
17552     char * stop_ptr = RExC_end;    /* where to stop parsing */
17553 
17554     /* ignore unescaped whitespace? */
17555     const bool skip_white = cBOOL(   ret_invlist
17556                                   || (RExC_flags & RXf_PMf_EXTENDED_MORE));
17557 
17558     /* inversion list of code points this node matches only when the target
17559      * string is in UTF-8.  These are all non-ASCII, < 256.  (Because is under
17560      * /d) */
17561     SV* upper_latin1_only_utf8_matches = NULL;
17562 
17563     /* Inversion list of code points this node matches regardless of things
17564      * like locale, folding, utf8ness of the target string */
17565     SV* cp_list = NULL;
17566 
17567     /* Like cp_list, but code points on this list need to be checked for things
17568      * that fold to/from them under /i */
17569     SV* cp_foldable_list = NULL;
17570 
17571     /* Like cp_list, but code points on this list are valid only when the
17572      * runtime locale is UTF-8 */
17573     SV* only_utf8_locale_list = NULL;
17574 
17575     /* In a range, if one of the endpoints is non-character-set portable,
17576      * meaning that it hard-codes a code point that may mean a different
17577      * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
17578      * mnemonic '\t' which each mean the same character no matter which
17579      * character set the platform is on. */
17580     unsigned int non_portable_endpoint = 0;
17581 
17582     /* Is the range unicode? which means on a platform that isn't 1-1 native
17583      * to Unicode (i.e. non-ASCII), each code point in it should be considered
17584      * to be a Unicode value.  */
17585     bool unicode_range = FALSE;
17586     bool invert = FALSE;    /* Is this class to be complemented */
17587 
17588     bool warn_super = ALWAYS_WARN_SUPER;
17589 
17590     const char * orig_parse = RExC_parse;
17591 
17592     /* This variable is used to mark where the end in the input is of something
17593      * that looks like a POSIX construct but isn't.  During the parse, when
17594      * something looks like it could be such a construct is encountered, it is
17595      * checked for being one, but not if we've already checked this area of the
17596      * input.  Only after this position is reached do we check again */
17597     char *not_posix_region_end = RExC_parse - 1;
17598 
17599     AV* posix_warnings = NULL;
17600     const bool do_posix_warnings = ckWARN(WARN_REGEXP);
17601     U8 op = ANYOF;    /* The returned node-type, initialized to the expected
17602                          type. */
17603     U8 anyof_flags = 0;   /* flag bits if the node is an ANYOF-type */
17604     U32 posixl = 0;       /* bit field of posix classes matched under /l */
17605 
17606 
17607 /* Flags as to what things aren't knowable until runtime.  (Note that these are
17608  * mutually exclusive.) */
17609 #define HAS_USER_DEFINED_PROPERTY 0x01   /* /u any user-defined properties that
17610                                             haven't been defined as of yet */
17611 #define HAS_D_RUNTIME_DEPENDENCY  0x02   /* /d if the target being matched is
17612                                             UTF-8 or not */
17613 #define HAS_L_RUNTIME_DEPENDENCY   0x04 /* /l what the posix classes match and
17614                                             what gets folded */
17615     U32 has_runtime_dependency = 0;     /* OR of the above flags */
17616 
17617     DECLARE_AND_GET_RE_DEBUG_FLAGS;
17618 
17619     PERL_ARGS_ASSERT_REGCLASS;
17620 #ifndef DEBUGGING
17621     PERL_UNUSED_ARG(depth);
17622 #endif
17623 
17624     assert(! (ret_invlist && allow_mutiple_chars));
17625 
17626     /* If wants an inversion list returned, we can't optimize to something
17627      * else. */
17628     if (ret_invlist) {
17629         optimizable = FALSE;
17630     }
17631 
17632     DEBUG_PARSE("clas");
17633 
17634 #if UNICODE_MAJOR_VERSION < 3 /* no multifolds in early Unicode */      \
17635     || (UNICODE_MAJOR_VERSION == 3 && UNICODE_DOT_VERSION == 0          \
17636                                    && UNICODE_DOT_DOT_VERSION == 0)
17637     allow_mutiple_chars = FALSE;
17638 #endif
17639 
17640     /* We include the /i status at the beginning of this so that we can
17641      * know it at runtime */
17642     listsv = sv_2mortal(Perl_newSVpvf(aTHX_ "#%d\n", cBOOL(FOLD)));
17643     initial_listsv_len = SvCUR(listsv);
17644     SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated.  */
17645 
17646     SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);
17647 
17648     assert(RExC_parse <= RExC_end);
17649 
17650     if (UCHARAT(RExC_parse) == '^') {	/* Complement the class */
17651         RExC_parse++;
17652         invert = TRUE;
17653         allow_mutiple_chars = FALSE;
17654         MARK_NAUGHTY(1);
17655         SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);
17656     }
17657 
17658     /* Check that they didn't say [:posix:] instead of [[:posix:]] */
17659     if (! ret_invlist && MAYBE_POSIXCC(UCHARAT(RExC_parse))) {
17660         int maybe_class = handle_possible_posix(pRExC_state,
17661                                                 RExC_parse,
17662                                                 &not_posix_region_end,
17663                                                 NULL,
17664                                                 TRUE /* checking only */);
17665         if (maybe_class >= OOB_NAMEDCLASS && do_posix_warnings) {
17666             ckWARN4reg(not_posix_region_end,
17667                     "POSIX syntax [%c %c] belongs inside character classes%s",
17668                     *RExC_parse, *RExC_parse,
17669                     (maybe_class == OOB_NAMEDCLASS)
17670                     ? ((POSIXCC_NOTYET(*RExC_parse))
17671                         ? " (but this one isn't implemented)"
17672                         : " (but this one isn't fully valid)")
17673                     : ""
17674                     );
17675         }
17676     }
17677 
17678     /* If the caller wants us to just parse a single element, accomplish this
17679      * by faking the loop ending condition */
17680     if (stop_at_1 && RExC_end > RExC_parse) {
17681         stop_ptr = RExC_parse + 1;
17682     }
17683 
17684     /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
17685     if (UCHARAT(RExC_parse) == ']')
17686         goto charclassloop;
17687 
17688     while (1) {
17689 
17690         if (   posix_warnings
17691             && av_tindex_skip_len_mg(posix_warnings) >= 0
17692             && RExC_parse > not_posix_region_end)
17693         {
17694             /* Warnings about posix class issues are considered tentative until
17695              * we are far enough along in the parse that we can no longer
17696              * change our mind, at which point we output them.  This is done
17697              * each time through the loop so that a later class won't zap them
17698              * before they have been dealt with. */
17699             output_posix_warnings(pRExC_state, posix_warnings);
17700         }
17701 
17702         SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);
17703 
17704         if  (RExC_parse >= stop_ptr) {
17705             break;
17706         }
17707 
17708         if  (UCHARAT(RExC_parse) == ']') {
17709             break;
17710         }
17711 
17712       charclassloop:
17713 
17714         namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
17715         save_value = value;
17716         save_prevvalue = prevvalue;
17717 
17718         if (!range) {
17719             rangebegin = RExC_parse;
17720             element_count++;
17721             non_portable_endpoint = 0;
17722         }
17723         if (UTF && ! UTF8_IS_INVARIANT(* RExC_parse)) {
17724             value = utf8n_to_uvchr((U8*)RExC_parse,
17725                                    RExC_end - RExC_parse,
17726                                    &numlen, UTF8_ALLOW_DEFAULT);
17727             RExC_parse += numlen;
17728         }
17729         else
17730             value = UCHARAT(RExC_parse++);
17731 
17732         if (value == '[') {
17733             char * posix_class_end;
17734             namedclass = handle_possible_posix(pRExC_state,
17735                                                RExC_parse,
17736                                                &posix_class_end,
17737                                                do_posix_warnings ? &posix_warnings : NULL,
17738                                                FALSE    /* die if error */);
17739             if (namedclass > OOB_NAMEDCLASS) {
17740 
17741                 /* If there was an earlier attempt to parse this particular
17742                  * posix class, and it failed, it was a false alarm, as this
17743                  * successful one proves */
17744                 if (   posix_warnings
17745                     && av_tindex_skip_len_mg(posix_warnings) >= 0
17746                     && not_posix_region_end >= RExC_parse
17747                     && not_posix_region_end <= posix_class_end)
17748                 {
17749                     av_undef(posix_warnings);
17750                 }
17751 
17752                 RExC_parse = posix_class_end;
17753             }
17754             else if (namedclass == OOB_NAMEDCLASS) {
17755                 not_posix_region_end = posix_class_end;
17756             }
17757             else {
17758                 namedclass = OOB_NAMEDCLASS;
17759             }
17760         }
17761         else if (   RExC_parse - 1 > not_posix_region_end
17762                  && MAYBE_POSIXCC(value))
17763         {
17764             (void) handle_possible_posix(
17765                         pRExC_state,
17766                         RExC_parse - 1,  /* -1 because parse has already been
17767                                             advanced */
17768                         &not_posix_region_end,
17769                         do_posix_warnings ? &posix_warnings : NULL,
17770                         TRUE /* checking only */);
17771         }
17772         else if (  strict && ! skip_white
17773                  && (   _generic_isCC(value, _CC_VERTSPACE)
17774                      || is_VERTWS_cp_high(value)))
17775         {
17776             vFAIL("Literal vertical space in [] is illegal except under /x");
17777         }
17778         else if (value == '\\') {
17779             /* Is a backslash; get the code point of the char after it */
17780 
17781             if (RExC_parse >= RExC_end) {
17782                 vFAIL("Unmatched [");
17783             }
17784 
17785             if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
17786                 value = utf8n_to_uvchr((U8*)RExC_parse,
17787                                    RExC_end - RExC_parse,
17788                                    &numlen, UTF8_ALLOW_DEFAULT);
17789                 RExC_parse += numlen;
17790             }
17791             else
17792                 value = UCHARAT(RExC_parse++);
17793 
17794             /* Some compilers cannot handle switching on 64-bit integer
17795              * values, therefore value cannot be an UV.  Yes, this will
17796              * be a problem later if we want switch on Unicode.
17797              * A similar issue a little bit later when switching on
17798              * namedclass. --jhi */
17799 
17800             /* If the \ is escaping white space when white space is being
17801              * skipped, it means that that white space is wanted literally, and
17802              * is already in 'value'.  Otherwise, need to translate the escape
17803              * into what it signifies. */
17804             if (! skip_white || ! isBLANK_A(value)) switch ((I32)value) {
17805                 const char * message;
17806                 U32 packed_warn;
17807                 U8 grok_c_char;
17808 
17809             case 'w':	namedclass = ANYOF_WORDCHAR;	break;
17810             case 'W':	namedclass = ANYOF_NWORDCHAR;	break;
17811             case 's':	namedclass = ANYOF_SPACE;	break;
17812             case 'S':	namedclass = ANYOF_NSPACE;	break;
17813             case 'd':	namedclass = ANYOF_DIGIT;	break;
17814             case 'D':	namedclass = ANYOF_NDIGIT;	break;
17815             case 'v':	namedclass = ANYOF_VERTWS;	break;
17816             case 'V':	namedclass = ANYOF_NVERTWS;	break;
17817             case 'h':	namedclass = ANYOF_HORIZWS;	break;
17818             case 'H':	namedclass = ANYOF_NHORIZWS;	break;
17819             case 'N':  /* Handle \N{NAME} in class */
17820                 {
17821                     const char * const backslash_N_beg = RExC_parse - 2;
17822                     int cp_count;
17823 
17824                     if (! grok_bslash_N(pRExC_state,
17825                                         NULL,      /* No regnode */
17826                                         &value,    /* Yes single value */
17827                                         &cp_count, /* Multiple code pt count */
17828                                         flagp,
17829                                         strict,
17830                                         depth)
17831                     ) {
17832 
17833                         if (*flagp & NEED_UTF8)
17834                             FAIL("panic: grok_bslash_N set NEED_UTF8");
17835 
17836                         RETURN_FAIL_ON_RESTART_FLAGP(flagp);
17837 
17838                         if (cp_count < 0) {
17839                             vFAIL("\\N in a character class must be a named character: \\N{...}");
17840                         }
17841                         else if (cp_count == 0) {
17842                             ckWARNreg(RExC_parse,
17843                               "Ignoring zero length \\N{} in character class");
17844                         }
17845                         else { /* cp_count > 1 */
17846                             assert(cp_count > 1);
17847                             if (! RExC_in_multi_char_class) {
17848                                 if ( ! allow_mutiple_chars
17849                                     || invert
17850                                     || range
17851                                     || *RExC_parse == '-')
17852                                 {
17853                                     if (strict) {
17854                                         RExC_parse--;
17855                                         vFAIL("\\N{} here is restricted to one character");
17856                                     }
17857                                     ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
17858                                     break; /* <value> contains the first code
17859                                               point. Drop out of the switch to
17860                                               process it */
17861                                 }
17862                                 else {
17863                                     SV * multi_char_N = newSVpvn(backslash_N_beg,
17864                                                  RExC_parse - backslash_N_beg);
17865                                     multi_char_matches
17866                                         = add_multi_match(multi_char_matches,
17867                                                           multi_char_N,
17868                                                           cp_count);
17869                                 }
17870                             }
17871                         } /* End of cp_count != 1 */
17872 
17873                         /* This element should not be processed further in this
17874                          * class */
17875                         element_count--;
17876                         value = save_value;
17877                         prevvalue = save_prevvalue;
17878                         continue;   /* Back to top of loop to get next char */
17879                     }
17880 
17881                     /* Here, is a single code point, and <value> contains it */
17882                     unicode_range = TRUE;   /* \N{} are Unicode */
17883                 }
17884                 break;
17885             case 'p':
17886             case 'P':
17887                 {
17888                 char *e;
17889 
17890                 if (RExC_pm_flags & PMf_WILDCARD) {
17891                     RExC_parse++;
17892                     /* diag_listed_as: Use of %s is not allowed in Unicode
17893                        property wildcard subpatterns in regex; marked by <--
17894                        HERE in m/%s/ */
17895                     vFAIL3("Use of '\\%c%c' is not allowed in Unicode property"
17896                            " wildcard subpatterns", (char) value, *(RExC_parse - 1));
17897                 }
17898 
17899                 /* \p means they want Unicode semantics */
17900                 REQUIRE_UNI_RULES(flagp, 0);
17901 
17902                 if (RExC_parse >= RExC_end)
17903                     vFAIL2("Empty \\%c", (U8)value);
17904                 if (*RExC_parse == '{') {
17905                     const U8 c = (U8)value;
17906                     e = (char *) memchr(RExC_parse, '}', RExC_end - RExC_parse);
17907                     if (!e) {
17908                         RExC_parse++;
17909                         vFAIL2("Missing right brace on \\%c{}", c);
17910                     }
17911 
17912                     RExC_parse++;
17913 
17914                     /* White space is allowed adjacent to the braces and after
17915                      * any '^', even when not under /x */
17916                     while (isSPACE(*RExC_parse)) {
17917                          RExC_parse++;
17918                     }
17919 
17920                     if (UCHARAT(RExC_parse) == '^') {
17921 
17922                         /* toggle.  (The rhs xor gets the single bit that
17923                          * differs between P and p; the other xor inverts just
17924                          * that bit) */
17925                         value ^= 'P' ^ 'p';
17926 
17927                         RExC_parse++;
17928                         while (isSPACE(*RExC_parse)) {
17929                             RExC_parse++;
17930                         }
17931                     }
17932 
17933                     if (e == RExC_parse)
17934                         vFAIL2("Empty \\%c{}", c);
17935 
17936                     n = e - RExC_parse;
17937                     while (isSPACE(*(RExC_parse + n - 1)))
17938                         n--;
17939 
17940                 }   /* The \p isn't immediately followed by a '{' */
17941                 else if (! isALPHA(*RExC_parse)) {
17942                     RExC_parse += (UTF)
17943                                   ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
17944                                   : 1;
17945                     vFAIL2("Character following \\%c must be '{' or a "
17946                            "single-character Unicode property name",
17947                            (U8) value);
17948                 }
17949                 else {
17950                     e = RExC_parse;
17951                     n = 1;
17952                 }
17953                 {
17954                     char* name = RExC_parse;
17955 
17956                     /* Any message returned about expanding the definition */
17957                     SV* msg = newSVpvs_flags("", SVs_TEMP);
17958 
17959                     /* If set TRUE, the property is user-defined as opposed to
17960                      * official Unicode */
17961                     bool user_defined = FALSE;
17962                     AV * strings = NULL;
17963 
17964                     SV * prop_definition = parse_uniprop_string(
17965                                             name, n, UTF, FOLD,
17966                                             FALSE, /* This is compile-time */
17967 
17968                                             /* We can't defer this defn when
17969                                              * the full result is required in
17970                                              * this call */
17971                                             ! cBOOL(ret_invlist),
17972 
17973                                             &strings,
17974                                             &user_defined,
17975                                             msg,
17976                                             0 /* Base level */
17977                                            );
17978                     if (SvCUR(msg)) {   /* Assumes any error causes a msg */
17979                         assert(prop_definition == NULL);
17980                         RExC_parse = e + 1;
17981                         if (SvUTF8(msg)) {  /* msg being UTF-8 makes the whole
17982                                                thing so, or else the display is
17983                                                mojibake */
17984                             RExC_utf8 = TRUE;
17985                         }
17986                         /* diag_listed_as: Can't find Unicode property definition "%s" in regex; marked by <-- HERE in m/%s/ */
17987                         vFAIL2utf8f("%" UTF8f, UTF8fARG(SvUTF8(msg),
17988                                     SvCUR(msg), SvPVX(msg)));
17989                     }
17990 
17991                     assert(prop_definition || strings);
17992 
17993                     if (strings) {
17994                         if (ret_invlist) {
17995                             if (! prop_definition) {
17996                                 RExC_parse = e + 1;
17997                                 vFAIL("Unicode string properties are not implemented in (?[...])");
17998                             }
17999                             else {
18000                                 ckWARNreg(e + 1,
18001                                     "Using just the single character results"
18002                                     " returned by \\p{} in (?[...])");
18003                             }
18004                         }
18005                         else if (! RExC_in_multi_char_class) {
18006                             if (invert ^ (value == 'P')) {
18007                                 RExC_parse = e + 1;
18008                                 vFAIL("Inverting a character class which contains"
18009                                     " a multi-character sequence is illegal");
18010                             }
18011 
18012                             /* For each multi-character string ... */
18013                             while (av_count(strings) > 0) {
18014                                 /* ... Each entry is itself an array of code
18015                                 * points. */
18016                                 AV * this_string = (AV *) av_shift( strings);
18017                                 STRLEN cp_count = av_count(this_string);
18018                                 SV * final = newSV(cp_count * 4);
18019                                 SvPVCLEAR(final);
18020 
18021                                 /* Create another string of sequences of \x{...} */
18022                                 while (av_count(this_string) > 0) {
18023                                     SV * character = av_shift(this_string);
18024                                     UV cp = SvUV(character);
18025 
18026                                     if (cp > 255) {
18027                                         REQUIRE_UTF8(flagp);
18028                                     }
18029                                     Perl_sv_catpvf(aTHX_ final, "\\x{%" UVXf "}",
18030                                                                         cp);
18031                                     SvREFCNT_dec_NN(character);
18032                                 }
18033                                 SvREFCNT_dec_NN(this_string);
18034 
18035                                 /* And add that to the list of such things */
18036                                 multi_char_matches
18037                                             = add_multi_match(multi_char_matches,
18038                                                             final,
18039                                                             cp_count);
18040                             }
18041                         }
18042                         SvREFCNT_dec_NN(strings);
18043                     }
18044 
18045                     if (! prop_definition) {    /* If we got only a string,
18046                                                    this iteration didn't really
18047                                                    find a character */
18048                         element_count--;
18049                     }
18050                     else if (! is_invlist(prop_definition)) {
18051 
18052                         /* Here, the definition isn't known, so we have gotten
18053                          * returned a string that will be evaluated if and when
18054                          * encountered at runtime.  We add it to the list of
18055                          * such properties, along with whether it should be
18056                          * complemented or not */
18057                         if (value == 'P') {
18058                             sv_catpvs(listsv, "!");
18059                         }
18060                         else {
18061                             sv_catpvs(listsv, "+");
18062                         }
18063                         sv_catsv(listsv, prop_definition);
18064 
18065                         has_runtime_dependency |= HAS_USER_DEFINED_PROPERTY;
18066 
18067                         /* We don't know yet what this matches, so have to flag
18068                          * it */
18069                         anyof_flags |= ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP;
18070                     }
18071                     else {
18072                         assert (prop_definition && is_invlist(prop_definition));
18073 
18074                         /* Here we do have the complete property definition
18075                          *
18076                          * Temporary workaround for [perl #133136].  For this
18077                          * precise input that is in the .t that is failing,
18078                          * load utf8.pm, which is what the test wants, so that
18079                          * that .t passes */
18080                         if (     memEQs(RExC_start, e + 1 - RExC_start,
18081                                         "foo\\p{Alnum}")
18082                             && ! hv_common(GvHVn(PL_incgv),
18083                                            NULL,
18084                                            "utf8.pm", sizeof("utf8.pm") - 1,
18085                                            0, HV_FETCH_ISEXISTS, NULL, 0))
18086                         {
18087                             require_pv("utf8.pm");
18088                         }
18089 
18090                         if (! user_defined &&
18091                             /* We warn on matching an above-Unicode code point
18092                              * if the match would return true, except don't
18093                              * warn for \p{All}, which has exactly one element
18094                              * = 0 */
18095                             (_invlist_contains_cp(prop_definition, 0x110000)
18096                                 && (! (_invlist_len(prop_definition) == 1
18097                                        && *invlist_array(prop_definition) == 0))))
18098                         {
18099                             warn_super = TRUE;
18100                         }
18101 
18102                         /* Invert if asking for the complement */
18103                         if (value == 'P') {
18104                             _invlist_union_complement_2nd(properties,
18105                                                           prop_definition,
18106                                                           &properties);
18107                         }
18108                         else {
18109                             _invlist_union(properties, prop_definition, &properties);
18110                         }
18111                     }
18112                 }
18113 
18114                 RExC_parse = e + 1;
18115                 namedclass = ANYOF_UNIPROP;  /* no official name, but it's
18116                                                 named */
18117                 }
18118                 break;
18119             case 'n':	value = '\n';			break;
18120             case 'r':	value = '\r';			break;
18121             case 't':	value = '\t';			break;
18122             case 'f':	value = '\f';			break;
18123             case 'b':	value = '\b';			break;
18124             case 'e':	value = ESC_NATIVE;             break;
18125             case 'a':	value = '\a';                   break;
18126             case 'o':
18127                 RExC_parse--;	/* function expects to be pointed at the 'o' */
18128                 if (! grok_bslash_o(&RExC_parse,
18129                                             RExC_end,
18130                                             &value,
18131                                             &message,
18132                                             &packed_warn,
18133                                             strict,
18134                                             cBOOL(range), /* MAX_UV allowed for range
18135                                                       upper limit */
18136                                             UTF))
18137                 {
18138                     vFAIL(message);
18139                 }
18140                 else if (message && TO_OUTPUT_WARNINGS(RExC_parse)) {
18141                     warn_non_literal_string(RExC_parse, packed_warn, message);
18142                 }
18143 
18144                 if (value < 256) {
18145                     non_portable_endpoint++;
18146                 }
18147                 break;
18148             case 'x':
18149                 RExC_parse--;	/* function expects to be pointed at the 'x' */
18150                 if (!  grok_bslash_x(&RExC_parse,
18151                                             RExC_end,
18152                                             &value,
18153                                             &message,
18154                                             &packed_warn,
18155                                             strict,
18156                                             cBOOL(range), /* MAX_UV allowed for range
18157                                                       upper limit */
18158                                             UTF))
18159                 {
18160                     vFAIL(message);
18161                 }
18162                 else if (message && TO_OUTPUT_WARNINGS(RExC_parse)) {
18163                     warn_non_literal_string(RExC_parse, packed_warn, message);
18164                 }
18165 
18166                 if (value < 256) {
18167                     non_portable_endpoint++;
18168                 }
18169                 break;
18170             case 'c':
18171                 if (! grok_bslash_c(*RExC_parse, &grok_c_char, &message,
18172                                                                 &packed_warn))
18173                 {
18174                     /* going to die anyway; point to exact spot of
18175                         * failure */
18176                     RExC_parse += (UTF)
18177                                   ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
18178                                   : 1;
18179                     vFAIL(message);
18180                 }
18181 
18182                 value = grok_c_char;
18183                 RExC_parse++;
18184                 if (message && TO_OUTPUT_WARNINGS(RExC_parse)) {
18185                     warn_non_literal_string(RExC_parse, packed_warn, message);
18186                 }
18187 
18188                 non_portable_endpoint++;
18189                 break;
18190             case '0': case '1': case '2': case '3': case '4':
18191             case '5': case '6': case '7':
18192                 {
18193                     /* Take 1-3 octal digits */
18194                     I32 flags = PERL_SCAN_SILENT_ILLDIGIT
18195                               | PERL_SCAN_NOTIFY_ILLDIGIT;
18196                     numlen = (strict) ? 4 : 3;
18197                     value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
18198                     RExC_parse += numlen;
18199                     if (numlen != 3) {
18200                         if (strict) {
18201                             RExC_parse += (UTF)
18202                                           ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
18203                                           : 1;
18204                             vFAIL("Need exactly 3 octal digits");
18205                         }
18206                         else if (  (flags & PERL_SCAN_NOTIFY_ILLDIGIT)
18207                                  && RExC_parse < RExC_end
18208                                  && isDIGIT(*RExC_parse)
18209                                  && ckWARN(WARN_REGEXP))
18210                         {
18211                             reg_warn_non_literal_string(
18212                                  RExC_parse + 1,
18213                                  form_alien_digit_msg(8, numlen, RExC_parse,
18214                                                         RExC_end, UTF, FALSE));
18215                         }
18216                     }
18217                     if (value < 256) {
18218                         non_portable_endpoint++;
18219                     }
18220                     break;
18221                 }
18222             default:
18223                 /* Allow \_ to not give an error */
18224                 if (isWORDCHAR(value) && value != '_') {
18225                     if (strict) {
18226                         vFAIL2("Unrecognized escape \\%c in character class",
18227                                (int)value);
18228                     }
18229                     else {
18230                         ckWARN2reg(RExC_parse,
18231                             "Unrecognized escape \\%c in character class passed through",
18232                             (int)value);
18233                     }
18234                 }
18235                 break;
18236             }   /* End of switch on char following backslash */
18237         } /* end of handling backslash escape sequences */
18238 
18239         /* Here, we have the current token in 'value' */
18240 
18241         if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
18242             U8 classnum;
18243 
18244             /* a bad range like a-\d, a-[:digit:].  The '-' is taken as a
18245              * literal, as is the character that began the false range, i.e.
18246              * the 'a' in the examples */
18247             if (range) {
18248                 const int w = (RExC_parse >= rangebegin)
18249                                 ? RExC_parse - rangebegin
18250                                 : 0;
18251                 if (strict) {
18252                     vFAIL2utf8f(
18253                         "False [] range \"%" UTF8f "\"",
18254                         UTF8fARG(UTF, w, rangebegin));
18255                 }
18256                 else {
18257                     ckWARN2reg(RExC_parse,
18258                         "False [] range \"%" UTF8f "\"",
18259                         UTF8fARG(UTF, w, rangebegin));
18260                     cp_list = add_cp_to_invlist(cp_list, '-');
18261                     cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
18262                                                             prevvalue);
18263                 }
18264 
18265                 range = 0; /* this was not a true range */
18266                 element_count += 2; /* So counts for three values */
18267             }
18268 
18269             classnum = namedclass_to_classnum(namedclass);
18270 
18271             if (LOC && namedclass < ANYOF_POSIXL_MAX
18272 #ifndef HAS_ISASCII
18273                 && classnum != _CC_ASCII
18274 #endif
18275             ) {
18276                 SV* scratch_list = NULL;
18277 
18278                 /* What the Posix classes (like \w, [:space:]) match isn't
18279                  * generally knowable under locale until actual match time.  A
18280                  * special node is used for these which has extra space for a
18281                  * bitmap, with a bit reserved for each named class that is to
18282                  * be matched against.  (This isn't needed for \p{} and
18283                  * pseudo-classes, as they are not affected by locale, and
18284                  * hence are dealt with separately.)  However, if a named class
18285                  * and its complement are both present, then it matches
18286                  * everything, and there is no runtime dependency.  Odd numbers
18287                  * are the complements of the next lower number, so xor works.
18288                  * (Note that something like [\w\D] should match everything,
18289                  * because \d should be a proper subset of \w.  But rather than
18290                  * trust that the locale is well behaved, we leave this to
18291                  * runtime to sort out) */
18292                 if (POSIXL_TEST(posixl, namedclass ^ 1)) {
18293                     cp_list = _add_range_to_invlist(cp_list, 0, UV_MAX);
18294                     POSIXL_ZERO(posixl);
18295                     has_runtime_dependency &= ~HAS_L_RUNTIME_DEPENDENCY;
18296                     anyof_flags &= ~ANYOF_MATCHES_POSIXL;
18297                     continue;   /* We could ignore the rest of the class, but
18298                                    best to parse it for any errors */
18299                 }
18300                 else { /* Here, isn't the complement of any already parsed
18301                           class */
18302                     POSIXL_SET(posixl, namedclass);
18303                     has_runtime_dependency |= HAS_L_RUNTIME_DEPENDENCY;
18304                     anyof_flags |= ANYOF_MATCHES_POSIXL;
18305 
18306                     /* The above-Latin1 characters are not subject to locale
18307                      * rules.  Just add them to the unconditionally-matched
18308                      * list */
18309 
18310                     /* Get the list of the above-Latin1 code points this
18311                      * matches */
18312                     _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
18313                                             PL_XPosix_ptrs[classnum],
18314 
18315                                             /* Odd numbers are complements,
18316                                              * like NDIGIT, NASCII, ... */
18317                                             namedclass % 2 != 0,
18318                                             &scratch_list);
18319                     /* Checking if 'cp_list' is NULL first saves an extra
18320                      * clone.  Its reference count will be decremented at the
18321                      * next union, etc, or if this is the only instance, at the
18322                      * end of the routine */
18323                     if (! cp_list) {
18324                         cp_list = scratch_list;
18325                     }
18326                     else {
18327                         _invlist_union(cp_list, scratch_list, &cp_list);
18328                         SvREFCNT_dec_NN(scratch_list);
18329                     }
18330                     continue;   /* Go get next character */
18331                 }
18332             }
18333             else {
18334 
18335                 /* Here, is not /l, or is a POSIX class for which /l doesn't
18336                  * matter (or is a Unicode property, which is skipped here). */
18337                 if (namedclass >= ANYOF_POSIXL_MAX) {  /* If a special class */
18338                     if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
18339 
18340                         /* Here, should be \h, \H, \v, or \V.  None of /d, /i
18341                          * nor /l make a difference in what these match,
18342                          * therefore we just add what they match to cp_list. */
18343                         if (classnum != _CC_VERTSPACE) {
18344                             assert(   namedclass == ANYOF_HORIZWS
18345                                    || namedclass == ANYOF_NHORIZWS);
18346 
18347                             /* It turns out that \h is just a synonym for
18348                              * XPosixBlank */
18349                             classnum = _CC_BLANK;
18350                         }
18351 
18352                         _invlist_union_maybe_complement_2nd(
18353                                 cp_list,
18354                                 PL_XPosix_ptrs[classnum],
18355                                 namedclass % 2 != 0,    /* Complement if odd
18356                                                           (NHORIZWS, NVERTWS)
18357                                                         */
18358                                 &cp_list);
18359                     }
18360                 }
18361                 else if (   AT_LEAST_UNI_SEMANTICS
18362                          || classnum == _CC_ASCII
18363                          || (DEPENDS_SEMANTICS && (   classnum == _CC_DIGIT
18364                                                    || classnum == _CC_XDIGIT)))
18365                 {
18366                     /* We usually have to worry about /d affecting what POSIX
18367                      * classes match, with special code needed because we won't
18368                      * know until runtime what all matches.  But there is no
18369                      * extra work needed under /u and /a; and [:ascii:] is
18370                      * unaffected by /d; and :digit: and :xdigit: don't have
18371                      * runtime differences under /d.  So we can special case
18372                      * these, and avoid some extra work below, and at runtime.
18373                      * */
18374                     _invlist_union_maybe_complement_2nd(
18375                                                      simple_posixes,
18376                                                       ((AT_LEAST_ASCII_RESTRICTED)
18377                                                        ? PL_Posix_ptrs[classnum]
18378                                                        : PL_XPosix_ptrs[classnum]),
18379                                                      namedclass % 2 != 0,
18380                                                      &simple_posixes);
18381                 }
18382                 else {  /* Garden variety class.  If is NUPPER, NALPHA, ...
18383                            complement and use nposixes */
18384                     SV** posixes_ptr = namedclass % 2 == 0
18385                                        ? &posixes
18386                                        : &nposixes;
18387                     _invlist_union_maybe_complement_2nd(
18388                                                      *posixes_ptr,
18389                                                      PL_XPosix_ptrs[classnum],
18390                                                      namedclass % 2 != 0,
18391                                                      posixes_ptr);
18392                 }
18393             }
18394         } /* end of namedclass \blah */
18395 
18396         SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);
18397 
18398         /* If 'range' is set, 'value' is the ending of a range--check its
18399          * validity.  (If value isn't a single code point in the case of a
18400          * range, we should have figured that out above in the code that
18401          * catches false ranges).  Later, we will handle each individual code
18402          * point in the range.  If 'range' isn't set, this could be the
18403          * beginning of a range, so check for that by looking ahead to see if
18404          * the next real character to be processed is the range indicator--the
18405          * minus sign */
18406 
18407         if (range) {
18408 #ifdef EBCDIC
18409             /* For unicode ranges, we have to test that the Unicode as opposed
18410              * to the native values are not decreasing.  (Above 255, there is
18411              * no difference between native and Unicode) */
18412             if (unicode_range && prevvalue < 255 && value < 255) {
18413                 if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
18414                     goto backwards_range;
18415                 }
18416             }
18417             else
18418 #endif
18419             if (prevvalue > value) /* b-a */ {
18420                 int w;
18421 #ifdef EBCDIC
18422               backwards_range:
18423 #endif
18424                 w = RExC_parse - rangebegin;
18425                 vFAIL2utf8f(
18426                     "Invalid [] range \"%" UTF8f "\"",
18427                     UTF8fARG(UTF, w, rangebegin));
18428                 NOT_REACHED; /* NOTREACHED */
18429             }
18430         }
18431         else {
18432             prevvalue = value; /* save the beginning of the potential range */
18433             if (! stop_at_1     /* Can't be a range if parsing just one thing */
18434                 && *RExC_parse == '-')
18435             {
18436                 char* next_char_ptr = RExC_parse + 1;
18437 
18438                 /* Get the next real char after the '-' */
18439                 SKIP_BRACKETED_WHITE_SPACE(skip_white, next_char_ptr, RExC_end);
18440 
18441                 /* If the '-' is at the end of the class (just before the ']',
18442                  * it is a literal minus; otherwise it is a range */
18443                 if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
18444                     RExC_parse = next_char_ptr;
18445 
18446                     /* a bad range like \w-, [:word:]- ? */
18447                     if (namedclass > OOB_NAMEDCLASS) {
18448                         if (strict || ckWARN(WARN_REGEXP)) {
18449                             const int w = RExC_parse >= rangebegin
18450                                           ?  RExC_parse - rangebegin
18451                                           : 0;
18452                             if (strict) {
18453                                 vFAIL4("False [] range \"%*.*s\"",
18454                                     w, w, rangebegin);
18455                             }
18456                             else {
18457                                 vWARN4(RExC_parse,
18458                                     "False [] range \"%*.*s\"",
18459                                     w, w, rangebegin);
18460                             }
18461                         }
18462                         cp_list = add_cp_to_invlist(cp_list, '-');
18463                         element_count++;
18464                     } else
18465                         range = 1;	/* yeah, it's a range! */
18466                     continue;	/* but do it the next time */
18467                 }
18468             }
18469         }
18470 
18471         if (namedclass > OOB_NAMEDCLASS) {
18472             continue;
18473         }
18474 
18475         /* Here, we have a single value this time through the loop, and
18476          * <prevvalue> is the beginning of the range, if any; or <value> if
18477          * not. */
18478 
18479         /* non-Latin1 code point implies unicode semantics. */
18480         if (value > 255) {
18481             if (value > MAX_LEGAL_CP && (   value != UV_MAX
18482                                          || prevvalue > MAX_LEGAL_CP))
18483             {
18484                 vFAIL(form_cp_too_large_msg(16, NULL, 0, value));
18485             }
18486             REQUIRE_UNI_RULES(flagp, 0);
18487             if (  ! silence_non_portable
18488                 &&  UNICODE_IS_PERL_EXTENDED(value)
18489                 &&  TO_OUTPUT_WARNINGS(RExC_parse))
18490             {
18491                 ckWARN2_non_literal_string(RExC_parse,
18492                                            packWARN(WARN_PORTABLE),
18493                                            PL_extended_cp_format,
18494                                            value);
18495             }
18496         }
18497 
18498         /* Ready to process either the single value, or the completed range.
18499          * For single-valued non-inverted ranges, we consider the possibility
18500          * of multi-char folds.  (We made a conscious decision to not do this
18501          * for the other cases because it can often lead to non-intuitive
18502          * results.  For example, you have the peculiar case that:
18503          *  "s s" =~ /^[^\xDF]+$/i => Y
18504          *  "ss"  =~ /^[^\xDF]+$/i => N
18505          *
18506          * See [perl #89750] */
18507         if (FOLD && allow_mutiple_chars && value == prevvalue) {
18508             if (    value == LATIN_SMALL_LETTER_SHARP_S
18509                 || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
18510                                                         value)))
18511             {
18512                 /* Here <value> is indeed a multi-char fold.  Get what it is */
18513 
18514                 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
18515                 STRLEN foldlen;
18516 
18517                 UV folded = _to_uni_fold_flags(
18518                                 value,
18519                                 foldbuf,
18520                                 &foldlen,
18521                                 FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
18522                                                    ? FOLD_FLAGS_NOMIX_ASCII
18523                                                    : 0)
18524                                 );
18525 
18526                 /* Here, <folded> should be the first character of the
18527                  * multi-char fold of <value>, with <foldbuf> containing the
18528                  * whole thing.  But, if this fold is not allowed (because of
18529                  * the flags), <fold> will be the same as <value>, and should
18530                  * be processed like any other character, so skip the special
18531                  * handling */
18532                 if (folded != value) {
18533 
18534                     /* Skip if we are recursed, currently parsing the class
18535                      * again.  Otherwise add this character to the list of
18536                      * multi-char folds. */
18537                     if (! RExC_in_multi_char_class) {
18538                         STRLEN cp_count = utf8_length(foldbuf,
18539                                                       foldbuf + foldlen);
18540                         SV* multi_fold = sv_2mortal(newSVpvs(""));
18541 
18542                         Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%" UVXf "}", value);
18543 
18544                         multi_char_matches
18545                                         = add_multi_match(multi_char_matches,
18546                                                           multi_fold,
18547                                                           cp_count);
18548 
18549                     }
18550 
18551                     /* This element should not be processed further in this
18552                      * class */
18553                     element_count--;
18554                     value = save_value;
18555                     prevvalue = save_prevvalue;
18556                     continue;
18557                 }
18558             }
18559         }
18560 
18561         if (strict && ckWARN(WARN_REGEXP)) {
18562             if (range) {
18563 
18564                 /* If the range starts above 255, everything is portable and
18565                  * likely to be so for any forseeable character set, so don't
18566                  * warn. */
18567                 if (unicode_range && non_portable_endpoint && prevvalue < 256) {
18568                     vWARN(RExC_parse, "Both or neither range ends should be Unicode");
18569                 }
18570                 else if (prevvalue != value) {
18571 
18572                     /* Under strict, ranges that stop and/or end in an ASCII
18573                      * printable should have each end point be a portable value
18574                      * for it (preferably like 'A', but we don't warn if it is
18575                      * a (portable) Unicode name or code point), and the range
18576                      * must be all digits or all letters of the same case.
18577                      * Otherwise, the range is non-portable and unclear as to
18578                      * what it contains */
18579                     if (             (isPRINT_A(prevvalue) || isPRINT_A(value))
18580                         && (          non_portable_endpoint
18581                             || ! (   (isDIGIT_A(prevvalue) && isDIGIT_A(value))
18582                                   || (isLOWER_A(prevvalue) && isLOWER_A(value))
18583                                   || (isUPPER_A(prevvalue) && isUPPER_A(value))
18584                     ))) {
18585                         vWARN(RExC_parse, "Ranges of ASCII printables should"
18586                                           " be some subset of \"0-9\","
18587                                           " \"A-Z\", or \"a-z\"");
18588                     }
18589                     else if (prevvalue >= FIRST_NON_ASCII_DECIMAL_DIGIT) {
18590                         SSize_t index_start;
18591                         SSize_t index_final;
18592 
18593                         /* But the nature of Unicode and languages mean we
18594                          * can't do the same checks for above-ASCII ranges,
18595                          * except in the case of digit ones.  These should
18596                          * contain only digits from the same group of 10.  The
18597                          * ASCII case is handled just above.  Hence here, the
18598                          * range could be a range of digits.  First some
18599                          * unlikely special cases.  Grandfather in that a range
18600                          * ending in 19DA (NEW TAI LUE THAM DIGIT ONE) is bad
18601                          * if its starting value is one of the 10 digits prior
18602                          * to it.  This is because it is an alternate way of
18603                          * writing 19D1, and some people may expect it to be in
18604                          * that group.  But it is bad, because it won't give
18605                          * the expected results.  In Unicode 5.2 it was
18606                          * considered to be in that group (of 11, hence), but
18607                          * this was fixed in the next version */
18608 
18609                         if (UNLIKELY(value == 0x19DA && prevvalue >= 0x19D0)) {
18610                             goto warn_bad_digit_range;
18611                         }
18612                         else if (UNLIKELY(   prevvalue >= 0x1D7CE
18613                                           &&     value <= 0x1D7FF))
18614                         {
18615                             /* This is the only other case currently in Unicode
18616                              * where the algorithm below fails.  The code
18617                              * points just above are the end points of a single
18618                              * range containing only decimal digits.  It is 5
18619                              * different series of 0-9.  All other ranges of
18620                              * digits currently in Unicode are just a single
18621                              * series.  (And mktables will notify us if a later
18622                              * Unicode version breaks this.)
18623                              *
18624                              * If the range being checked is at most 9 long,
18625                              * and the digit values represented are in
18626                              * numerical order, they are from the same series.
18627                              * */
18628                             if (         value - prevvalue > 9
18629                                 ||    (((    value - 0x1D7CE) % 10)
18630                                      <= (prevvalue - 0x1D7CE) % 10))
18631                             {
18632                                 goto warn_bad_digit_range;
18633                             }
18634                         }
18635                         else {
18636 
18637                             /* For all other ranges of digits in Unicode, the
18638                              * algorithm is just to check if both end points
18639                              * are in the same series, which is the same range.
18640                              * */
18641                             index_start = _invlist_search(
18642                                                     PL_XPosix_ptrs[_CC_DIGIT],
18643                                                     prevvalue);
18644 
18645                             /* Warn if the range starts and ends with a digit,
18646                              * and they are not in the same group of 10. */
18647                             if (   index_start >= 0
18648                                 && ELEMENT_RANGE_MATCHES_INVLIST(index_start)
18649                                 && (index_final =
18650                                     _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
18651                                                     value)) != index_start
18652                                 && index_final >= 0
18653                                 && ELEMENT_RANGE_MATCHES_INVLIST(index_final))
18654                             {
18655                               warn_bad_digit_range:
18656                                 vWARN(RExC_parse, "Ranges of digits should be"
18657                                                   " from the same group of"
18658                                                   " 10");
18659                             }
18660                         }
18661                     }
18662                 }
18663             }
18664             if ((! range || prevvalue == value) && non_portable_endpoint) {
18665                 if (isPRINT_A(value)) {
18666                     char literal[3];
18667                     unsigned d = 0;
18668                     if (isBACKSLASHED_PUNCT(value)) {
18669                         literal[d++] = '\\';
18670                     }
18671                     literal[d++] = (char) value;
18672                     literal[d++] = '\0';
18673 
18674                     vWARN4(RExC_parse,
18675                            "\"%.*s\" is more clearly written simply as \"%s\"",
18676                            (int) (RExC_parse - rangebegin),
18677                            rangebegin,
18678                            literal
18679                         );
18680                 }
18681                 else if (isMNEMONIC_CNTRL(value)) {
18682                     vWARN4(RExC_parse,
18683                            "\"%.*s\" is more clearly written simply as \"%s\"",
18684                            (int) (RExC_parse - rangebegin),
18685                            rangebegin,
18686                            cntrl_to_mnemonic((U8) value)
18687                         );
18688                 }
18689             }
18690         }
18691 
18692         /* Deal with this element of the class */
18693 
18694 #ifndef EBCDIC
18695         cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
18696                                                     prevvalue, value);
18697 #else
18698         /* On non-ASCII platforms, for ranges that span all of 0..255, and ones
18699          * that don't require special handling, we can just add the range like
18700          * we do for ASCII platforms */
18701         if ((UNLIKELY(prevvalue == 0) && value >= 255)
18702             || ! (prevvalue < 256
18703                     && (unicode_range
18704                         || (! non_portable_endpoint
18705                             && ((isLOWER_A(prevvalue) && isLOWER_A(value))
18706                                 || (isUPPER_A(prevvalue)
18707                                     && isUPPER_A(value)))))))
18708         {
18709             cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
18710                                                         prevvalue, value);
18711         }
18712         else {
18713             /* Here, requires special handling.  This can be because it is a
18714              * range whose code points are considered to be Unicode, and so
18715              * must be individually translated into native, or because its a
18716              * subrange of 'A-Z' or 'a-z' which each aren't contiguous in
18717              * EBCDIC, but we have defined them to include only the "expected"
18718              * upper or lower case ASCII alphabetics.  Subranges above 255 are
18719              * the same in native and Unicode, so can be added as a range */
18720             U8 start = NATIVE_TO_LATIN1(prevvalue);
18721             unsigned j;
18722             U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
18723             for (j = start; j <= end; j++) {
18724                 cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
18725             }
18726             if (value > 255) {
18727                 cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
18728                                                             256, value);
18729             }
18730         }
18731 #endif
18732 
18733         range = 0; /* this range (if it was one) is done now */
18734     } /* End of loop through all the text within the brackets */
18735 
18736     if (   posix_warnings && av_tindex_skip_len_mg(posix_warnings) >= 0) {
18737         output_posix_warnings(pRExC_state, posix_warnings);
18738     }
18739 
18740     /* If anything in the class expands to more than one character, we have to
18741      * deal with them by building up a substitute parse string, and recursively
18742      * calling reg() on it, instead of proceeding */
18743     if (multi_char_matches) {
18744         SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
18745         I32 cp_count;
18746         STRLEN len;
18747         char *save_end = RExC_end;
18748         char *save_parse = RExC_parse;
18749         char *save_start = RExC_start;
18750         Size_t constructed_prefix_len = 0; /* This gives the length of the
18751                                               constructed portion of the
18752                                               substitute parse. */
18753         bool first_time = TRUE;     /* First multi-char occurrence doesn't get
18754                                        a "|" */
18755         I32 reg_flags;
18756 
18757         assert(! invert);
18758         /* Only one level of recursion allowed */
18759         assert(RExC_copy_start_in_constructed == RExC_precomp);
18760 
18761 #if 0   /* Have decided not to deal with multi-char folds in inverted classes,
18762            because too confusing */
18763         if (invert) {
18764             sv_catpvs(substitute_parse, "(?:");
18765         }
18766 #endif
18767 
18768         /* Look at the longest strings first */
18769         for (cp_count = av_tindex_skip_len_mg(multi_char_matches);
18770                         cp_count > 0;
18771                         cp_count--)
18772         {
18773 
18774             if (av_exists(multi_char_matches, cp_count)) {
18775                 AV** this_array_ptr;
18776                 SV* this_sequence;
18777 
18778                 this_array_ptr = (AV**) av_fetch(multi_char_matches,
18779                                                  cp_count, FALSE);
18780                 while ((this_sequence = av_pop(*this_array_ptr)) !=
18781                                                                 &PL_sv_undef)
18782                 {
18783                     if (! first_time) {
18784                         sv_catpvs(substitute_parse, "|");
18785                     }
18786                     first_time = FALSE;
18787 
18788                     sv_catpv(substitute_parse, SvPVX(this_sequence));
18789                 }
18790             }
18791         }
18792 
18793         /* If the character class contains anything else besides these
18794          * multi-character strings, have to include it in recursive parsing */
18795         if (element_count) {
18796             bool has_l_bracket = orig_parse > RExC_start && *(orig_parse - 1) == '[';
18797 
18798             sv_catpvs(substitute_parse, "|");
18799             if (has_l_bracket) {    /* Add an [ if the original had one */
18800                 sv_catpvs(substitute_parse, "[");
18801             }
18802             constructed_prefix_len = SvCUR(substitute_parse);
18803             sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
18804 
18805             /* Put in a closing ']' to match any opening one, but not if going
18806              * off the end, as otherwise we are adding something that really
18807              * isn't there */
18808             if (has_l_bracket && RExC_parse < RExC_end) {
18809                 sv_catpvs(substitute_parse, "]");
18810             }
18811         }
18812 
18813         sv_catpvs(substitute_parse, ")");
18814 #if 0
18815         if (invert) {
18816             /* This is a way to get the parse to skip forward a whole named
18817              * sequence instead of matching the 2nd character when it fails the
18818              * first */
18819             sv_catpvs(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
18820         }
18821 #endif
18822 
18823         /* Set up the data structure so that any errors will be properly
18824          * reported.  See the comments at the definition of
18825          * REPORT_LOCATION_ARGS for details */
18826         RExC_copy_start_in_input = (char *) orig_parse;
18827         RExC_start = RExC_parse = SvPV(substitute_parse, len);
18828         RExC_copy_start_in_constructed = RExC_start + constructed_prefix_len;
18829         RExC_end = RExC_parse + len;
18830         RExC_in_multi_char_class = 1;
18831 
18832         ret = reg(pRExC_state, 1, &reg_flags, depth+1);
18833 
18834         *flagp |= reg_flags & (HASWIDTH|SIMPLE|POSTPONED|RESTART_PARSE|NEED_UTF8);
18835 
18836         /* And restore so can parse the rest of the pattern */
18837         RExC_parse = save_parse;
18838         RExC_start = RExC_copy_start_in_constructed = RExC_copy_start_in_input = save_start;
18839         RExC_end = save_end;
18840         RExC_in_multi_char_class = 0;
18841         SvREFCNT_dec_NN(multi_char_matches);
18842         SvREFCNT_dec(properties);
18843         SvREFCNT_dec(cp_list);
18844         SvREFCNT_dec(simple_posixes);
18845         SvREFCNT_dec(posixes);
18846         SvREFCNT_dec(nposixes);
18847         SvREFCNT_dec(cp_foldable_list);
18848         return ret;
18849     }
18850 
18851     /* If folding, we calculate all characters that could fold to or from the
18852      * ones already on the list */
18853     if (cp_foldable_list) {
18854         if (FOLD) {
18855             UV start, end;	/* End points of code point ranges */
18856 
18857             SV* fold_intersection = NULL;
18858             SV** use_list;
18859 
18860             /* Our calculated list will be for Unicode rules.  For locale
18861              * matching, we have to keep a separate list that is consulted at
18862              * runtime only when the locale indicates Unicode rules (and we
18863              * don't include potential matches in the ASCII/Latin1 range, as
18864              * any code point could fold to any other, based on the run-time
18865              * locale).   For non-locale, we just use the general list */
18866             if (LOC) {
18867                 use_list = &only_utf8_locale_list;
18868             }
18869             else {
18870                 use_list = &cp_list;
18871             }
18872 
18873             /* Only the characters in this class that participate in folds need
18874              * be checked.  Get the intersection of this class and all the
18875              * possible characters that are foldable.  This can quickly narrow
18876              * down a large class */
18877             _invlist_intersection(PL_in_some_fold, cp_foldable_list,
18878                                   &fold_intersection);
18879 
18880             /* Now look at the foldable characters in this class individually */
18881             invlist_iterinit(fold_intersection);
18882             while (invlist_iternext(fold_intersection, &start, &end)) {
18883                 UV j;
18884                 UV folded;
18885 
18886                 /* Look at every character in the range */
18887                 for (j = start; j <= end; j++) {
18888                     U8 foldbuf[UTF8_MAXBYTES_CASE+1];
18889                     STRLEN foldlen;
18890                     unsigned int k;
18891                     Size_t folds_count;
18892                     U32 first_fold;
18893                     const U32 * remaining_folds;
18894 
18895                     if (j < 256) {
18896 
18897                         /* Under /l, we don't know what code points below 256
18898                          * fold to, except we do know the MICRO SIGN folds to
18899                          * an above-255 character if the locale is UTF-8, so we
18900                          * add it to the special list (in *use_list)  Otherwise
18901                          * we know now what things can match, though some folds
18902                          * are valid under /d only if the target is UTF-8.
18903                          * Those go in a separate list */
18904                         if (      IS_IN_SOME_FOLD_L1(j)
18905                             && ! (LOC && j != MICRO_SIGN))
18906                         {
18907 
18908                             /* ASCII is always matched; non-ASCII is matched
18909                              * only under Unicode rules (which could happen
18910                              * under /l if the locale is a UTF-8 one */
18911                             if (isASCII(j) || ! DEPENDS_SEMANTICS) {
18912                                 *use_list = add_cp_to_invlist(*use_list,
18913                                                             PL_fold_latin1[j]);
18914                             }
18915                             else if (j != PL_fold_latin1[j]) {
18916                                 upper_latin1_only_utf8_matches
18917                                         = add_cp_to_invlist(
18918                                                 upper_latin1_only_utf8_matches,
18919                                                 PL_fold_latin1[j]);
18920                             }
18921                         }
18922 
18923                         if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
18924                             && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
18925                         {
18926                             add_above_Latin1_folds(pRExC_state,
18927                                                    (U8) j,
18928                                                    use_list);
18929                         }
18930                         continue;
18931                     }
18932 
18933                     /* Here is an above Latin1 character.  We don't have the
18934                      * rules hard-coded for it.  First, get its fold.  This is
18935                      * the simple fold, as the multi-character folds have been
18936                      * handled earlier and separated out */
18937                     folded = _to_uni_fold_flags(j, foldbuf, &foldlen,
18938                                                         (ASCII_FOLD_RESTRICTED)
18939                                                         ? FOLD_FLAGS_NOMIX_ASCII
18940                                                         : 0);
18941 
18942                     /* Single character fold of above Latin1.  Add everything
18943                      * in its fold closure to the list that this node should
18944                      * match. */
18945                     folds_count = _inverse_folds(folded, &first_fold,
18946                                                     &remaining_folds);
18947                     for (k = 0; k <= folds_count; k++) {
18948                         UV c = (k == 0)     /* First time through use itself */
18949                                 ? folded
18950                                 : (k == 1)  /* 2nd time use, the first fold */
18951                                    ? first_fold
18952 
18953                                      /* Then the remaining ones */
18954                                    : remaining_folds[k-2];
18955 
18956                         /* /aa doesn't allow folds between ASCII and non- */
18957                         if ((   ASCII_FOLD_RESTRICTED
18958                             && (isASCII(c) != isASCII(j))))
18959                         {
18960                             continue;
18961                         }
18962 
18963                         /* Folds under /l which cross the 255/256 boundary are
18964                          * added to a separate list.  (These are valid only
18965                          * when the locale is UTF-8.) */
18966                         if (c < 256 && LOC) {
18967                             *use_list = add_cp_to_invlist(*use_list, c);
18968                             continue;
18969                         }
18970 
18971                         if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
18972                         {
18973                             cp_list = add_cp_to_invlist(cp_list, c);
18974                         }
18975                         else {
18976                             /* Similarly folds involving non-ascii Latin1
18977                              * characters under /d are added to their list */
18978                             upper_latin1_only_utf8_matches
18979                                     = add_cp_to_invlist(
18980                                                 upper_latin1_only_utf8_matches,
18981                                                 c);
18982                         }
18983                     }
18984                 }
18985             }
18986             SvREFCNT_dec_NN(fold_intersection);
18987         }
18988 
18989         /* Now that we have finished adding all the folds, there is no reason
18990          * to keep the foldable list separate */
18991         _invlist_union(cp_list, cp_foldable_list, &cp_list);
18992         SvREFCNT_dec_NN(cp_foldable_list);
18993     }
18994 
18995     /* And combine the result (if any) with any inversion lists from posix
18996      * classes.  The lists are kept separate up to now because we don't want to
18997      * fold the classes */
18998     if (simple_posixes) {   /* These are the classes known to be unaffected by
18999                                /a, /aa, and /d */
19000         if (cp_list) {
19001             _invlist_union(cp_list, simple_posixes, &cp_list);
19002             SvREFCNT_dec_NN(simple_posixes);
19003         }
19004         else {
19005             cp_list = simple_posixes;
19006         }
19007     }
19008     if (posixes || nposixes) {
19009         if (! DEPENDS_SEMANTICS) {
19010 
19011             /* For everything but /d, we can just add the current 'posixes' and
19012              * 'nposixes' to the main list */
19013             if (posixes) {
19014                 if (cp_list) {
19015                     _invlist_union(cp_list, posixes, &cp_list);
19016                     SvREFCNT_dec_NN(posixes);
19017                 }
19018                 else {
19019                     cp_list = posixes;
19020                 }
19021             }
19022             if (nposixes) {
19023                 if (cp_list) {
19024                     _invlist_union(cp_list, nposixes, &cp_list);
19025                     SvREFCNT_dec_NN(nposixes);
19026                 }
19027                 else {
19028                     cp_list = nposixes;
19029                 }
19030             }
19031         }
19032         else {
19033             /* Under /d, things like \w match upper Latin1 characters only if
19034              * the target string is in UTF-8.  But things like \W match all the
19035              * upper Latin1 characters if the target string is not in UTF-8.
19036              *
19037              * Handle the case with something like \W separately */
19038             if (nposixes) {
19039                 SV* only_non_utf8_list = invlist_clone(PL_UpperLatin1, NULL);
19040 
19041                 /* A complemented posix class matches all upper Latin1
19042                  * characters if not in UTF-8.  And it matches just certain
19043                  * ones when in UTF-8.  That means those certain ones are
19044                  * matched regardless, so can just be added to the
19045                  * unconditional list */
19046                 if (cp_list) {
19047                     _invlist_union(cp_list, nposixes, &cp_list);
19048                     SvREFCNT_dec_NN(nposixes);
19049                     nposixes = NULL;
19050                 }
19051                 else {
19052                     cp_list = nposixes;
19053                 }
19054 
19055                 /* Likewise for 'posixes' */
19056                 _invlist_union(posixes, cp_list, &cp_list);
19057                 SvREFCNT_dec(posixes);
19058 
19059                 /* Likewise for anything else in the range that matched only
19060                  * under UTF-8 */
19061                 if (upper_latin1_only_utf8_matches) {
19062                     _invlist_union(cp_list,
19063                                    upper_latin1_only_utf8_matches,
19064                                    &cp_list);
19065                     SvREFCNT_dec_NN(upper_latin1_only_utf8_matches);
19066                     upper_latin1_only_utf8_matches = NULL;
19067                 }
19068 
19069                 /* If we don't match all the upper Latin1 characters regardless
19070                  * of UTF-8ness, we have to set a flag to match the rest when
19071                  * not in UTF-8 */
19072                 _invlist_subtract(only_non_utf8_list, cp_list,
19073                                   &only_non_utf8_list);
19074                 if (_invlist_len(only_non_utf8_list) != 0) {
19075                     anyof_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
19076                 }
19077                 SvREFCNT_dec_NN(only_non_utf8_list);
19078             }
19079             else {
19080                 /* Here there were no complemented posix classes.  That means
19081                  * the upper Latin1 characters in 'posixes' match only when the
19082                  * target string is in UTF-8.  So we have to add them to the
19083                  * list of those types of code points, while adding the
19084                  * remainder to the unconditional list.
19085                  *
19086                  * First calculate what they are */
19087                 SV* nonascii_but_latin1_properties = NULL;
19088                 _invlist_intersection(posixes, PL_UpperLatin1,
19089                                       &nonascii_but_latin1_properties);
19090 
19091                 /* And add them to the final list of such characters. */
19092                 _invlist_union(upper_latin1_only_utf8_matches,
19093                                nonascii_but_latin1_properties,
19094                                &upper_latin1_only_utf8_matches);
19095 
19096                 /* Remove them from what now becomes the unconditional list */
19097                 _invlist_subtract(posixes, nonascii_but_latin1_properties,
19098                                   &posixes);
19099 
19100                 /* And add those unconditional ones to the final list */
19101                 if (cp_list) {
19102                     _invlist_union(cp_list, posixes, &cp_list);
19103                     SvREFCNT_dec_NN(posixes);
19104                     posixes = NULL;
19105                 }
19106                 else {
19107                     cp_list = posixes;
19108                 }
19109 
19110                 SvREFCNT_dec(nonascii_but_latin1_properties);
19111 
19112                 /* Get rid of any characters from the conditional list that we
19113                  * now know are matched unconditionally, which may make that
19114                  * list empty */
19115                 _invlist_subtract(upper_latin1_only_utf8_matches,
19116                                   cp_list,
19117                                   &upper_latin1_only_utf8_matches);
19118                 if (_invlist_len(upper_latin1_only_utf8_matches) == 0) {
19119                     SvREFCNT_dec_NN(upper_latin1_only_utf8_matches);
19120                     upper_latin1_only_utf8_matches = NULL;
19121                 }
19122             }
19123         }
19124     }
19125 
19126     /* And combine the result (if any) with any inversion list from properties.
19127      * The lists are kept separate up to now so that we can distinguish the two
19128      * in regards to matching above-Unicode.  A run-time warning is generated
19129      * if a Unicode property is matched against a non-Unicode code point. But,
19130      * we allow user-defined properties to match anything, without any warning,
19131      * and we also suppress the warning if there is a portion of the character
19132      * class that isn't a Unicode property, and which matches above Unicode, \W
19133      * or [\x{110000}] for example.
19134      * (Note that in this case, unlike the Posix one above, there is no
19135      * <upper_latin1_only_utf8_matches>, because having a Unicode property
19136      * forces Unicode semantics */
19137     if (properties) {
19138         if (cp_list) {
19139 
19140             /* If it matters to the final outcome, see if a non-property
19141              * component of the class matches above Unicode.  If so, the
19142              * warning gets suppressed.  This is true even if just a single
19143              * such code point is specified, as, though not strictly correct if
19144              * another such code point is matched against, the fact that they
19145              * are using above-Unicode code points indicates they should know
19146              * the issues involved */
19147             if (warn_super) {
19148                 warn_super = ! (invert
19149                                ^ (UNICODE_IS_SUPER(invlist_highest(cp_list))));
19150             }
19151 
19152             _invlist_union(properties, cp_list, &cp_list);
19153             SvREFCNT_dec_NN(properties);
19154         }
19155         else {
19156             cp_list = properties;
19157         }
19158 
19159         if (warn_super) {
19160             anyof_flags
19161              |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
19162 
19163             /* Because an ANYOF node is the only one that warns, this node
19164              * can't be optimized into something else */
19165             optimizable = FALSE;
19166         }
19167     }
19168 
19169     /* Here, we have calculated what code points should be in the character
19170      * class.
19171      *
19172      * Now we can see about various optimizations.  Fold calculation (which we
19173      * did above) needs to take place before inversion.  Otherwise /[^k]/i
19174      * would invert to include K, which under /i would match k, which it
19175      * shouldn't.  Therefore we can't invert folded locale now, as it won't be
19176      * folded until runtime */
19177 
19178     /* If we didn't do folding, it's because some information isn't available
19179      * until runtime; set the run-time fold flag for these  We know to set the
19180      * flag if we have a non-NULL list for UTF-8 locales, or the class matches
19181      * at least one 0-255 range code point */
19182     if (LOC && FOLD) {
19183 
19184         /* Some things on the list might be unconditionally included because of
19185          * other components.  Remove them, and clean up the list if it goes to
19186          * 0 elements */
19187         if (only_utf8_locale_list && cp_list) {
19188             _invlist_subtract(only_utf8_locale_list, cp_list,
19189                               &only_utf8_locale_list);
19190 
19191             if (_invlist_len(only_utf8_locale_list) == 0) {
19192                 SvREFCNT_dec_NN(only_utf8_locale_list);
19193                 only_utf8_locale_list = NULL;
19194             }
19195         }
19196         if (    only_utf8_locale_list
19197             || (cp_list && (   _invlist_contains_cp(cp_list, LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE)
19198                             || _invlist_contains_cp(cp_list, LATIN_SMALL_LETTER_DOTLESS_I))))
19199         {
19200             has_runtime_dependency |= HAS_L_RUNTIME_DEPENDENCY;
19201             anyof_flags
19202                  |= ANYOFL_FOLD
19203                  |  ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
19204         }
19205         else if (cp_list && invlist_lowest(cp_list) < 256) {
19206             /* If nothing is below 256, has no locale dependency; otherwise it
19207              * does */
19208             anyof_flags |= ANYOFL_FOLD;
19209             has_runtime_dependency |= HAS_L_RUNTIME_DEPENDENCY;
19210         }
19211     }
19212     else if (   DEPENDS_SEMANTICS
19213              && (    upper_latin1_only_utf8_matches
19214                  || (anyof_flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER)))
19215     {
19216         RExC_seen_d_op = TRUE;
19217         has_runtime_dependency |= HAS_D_RUNTIME_DEPENDENCY;
19218     }
19219 
19220     /* Optimize inverted patterns (e.g. [^a-z]) when everything is known at
19221      * compile time. */
19222     if (     cp_list
19223         &&   invert
19224         && ! has_runtime_dependency)
19225     {
19226         _invlist_invert(cp_list);
19227 
19228         /* Clear the invert flag since have just done it here */
19229         invert = FALSE;
19230     }
19231 
19232     /* All possible optimizations below still have these characteristics.
19233      * (Multi-char folds aren't SIMPLE, but they don't get this far in this
19234      * routine) */
19235     *flagp |= HASWIDTH|SIMPLE;
19236 
19237     if (ret_invlist) {
19238         *ret_invlist = cp_list;
19239 
19240         return (cp_list) ? RExC_emit : 0;
19241     }
19242 
19243     if (anyof_flags & ANYOF_LOCALE_FLAGS) {
19244         RExC_contains_locale = 1;
19245     }
19246 
19247     if (optimizable) {
19248 
19249         /* Some character classes are equivalent to other nodes.  Such nodes
19250          * take up less room, and some nodes require fewer operations to
19251          * execute, than ANYOF nodes.  EXACTish nodes may be joinable with
19252          * adjacent nodes to improve efficiency. */
19253         op = optimize_regclass(pRExC_state, cp_list,
19254                                             only_utf8_locale_list,
19255                                             upper_latin1_only_utf8_matches,
19256                                             has_runtime_dependency,
19257                                             posixl,
19258                                             &anyof_flags, &invert, &ret, flagp);
19259         RETURN_FAIL_ON_RESTART_FLAGP(flagp);
19260 
19261         /* If optimized to something else and emitted, clean up and return */
19262         if (ret >= 0) {
19263             Set_Node_Offset_Length(REGNODE_p(ret), orig_parse - RExC_start,
19264                                                    RExC_parse - orig_parse);;
19265             SvREFCNT_dec(cp_list);;
19266             SvREFCNT_dec(only_utf8_locale_list);
19267             SvREFCNT_dec(upper_latin1_only_utf8_matches);
19268             return ret;
19269         }
19270 
19271         /* If no optimization was found, an END was returned and we will now
19272          * emit an ANYOF */
19273         if (op == END) {
19274             op = ANYOF;
19275         }
19276     }
19277 
19278     /* Here are going to emit an ANYOF; set the particular type */
19279     if (op == ANYOF) {
19280         if (has_runtime_dependency & HAS_D_RUNTIME_DEPENDENCY) {
19281             op = ANYOFD;
19282         }
19283         else if (posixl) {
19284             op = ANYOFPOSIXL;
19285         }
19286         else if (LOC) {
19287             op = ANYOFL;
19288         }
19289     }
19290 
19291     ret = regnode_guts(pRExC_state, op, regarglen[op], "anyof");
19292     FILL_NODE(ret, op);        /* We set the argument later */
19293     RExC_emit += 1 + regarglen[op];
19294     ANYOF_FLAGS(REGNODE_p(ret)) = anyof_flags;
19295 
19296     /* Here, <cp_list> contains all the code points we can determine at
19297      * compile time that match under all conditions.  Go through it, and
19298      * for things that belong in the bitmap, put them there, and delete from
19299      * <cp_list>.  While we are at it, see if everything above 255 is in the
19300      * list, and if so, set a flag to speed up execution */
19301 
19302     populate_ANYOF_from_invlist(REGNODE_p(ret), &cp_list);
19303 
19304     if (posixl) {
19305         ANYOF_POSIXL_SET_TO_BITMAP(REGNODE_p(ret), posixl);
19306     }
19307 
19308     if (invert) {
19309         ANYOF_FLAGS(REGNODE_p(ret)) |= ANYOF_INVERT;
19310     }
19311 
19312     /* Here, the bitmap has been populated with all the Latin1 code points that
19313      * always match.  Can now add to the overall list those that match only
19314      * when the target string is UTF-8 (<upper_latin1_only_utf8_matches>).
19315      * */
19316     if (upper_latin1_only_utf8_matches) {
19317         if (cp_list) {
19318             _invlist_union(cp_list,
19319                            upper_latin1_only_utf8_matches,
19320                            &cp_list);
19321             SvREFCNT_dec_NN(upper_latin1_only_utf8_matches);
19322         }
19323         else {
19324             cp_list = upper_latin1_only_utf8_matches;
19325         }
19326         ANYOF_FLAGS(REGNODE_p(ret)) |= ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP;
19327     }
19328 
19329     set_ANYOF_arg(pRExC_state, REGNODE_p(ret), cp_list,
19330                   (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
19331                    ? listsv
19332                    : NULL,
19333                   only_utf8_locale_list);
19334 
19335     SvREFCNT_dec(cp_list);;
19336     SvREFCNT_dec(only_utf8_locale_list);
19337     return ret;
19338 }
19339 
19340 STATIC U8
S_optimize_regclass(pTHX_ RExC_state_t * pRExC_state,SV * cp_list,SV * only_utf8_locale_list,SV * upper_latin1_only_utf8_matches,const U32 has_runtime_dependency,const U32 posixl,U8 * anyof_flags,bool * invert,regnode_offset * ret,I32 * flagp)19341 S_optimize_regclass(pTHX_
19342                     RExC_state_t *pRExC_state,
19343                     SV * cp_list,
19344                     SV* only_utf8_locale_list,
19345                     SV* upper_latin1_only_utf8_matches,
19346                     const U32 has_runtime_dependency,
19347                     const U32 posixl,
19348                     U8  * anyof_flags,
19349                     bool * invert,
19350                     regnode_offset * ret,
19351                     I32 *flagp
19352                   )
19353 {
19354     /* This function exists just to make S_regclass() smaller.  It extracts out
19355      * the code that looks for potential optimizations away from a full generic
19356      * ANYOF node.  The parameter names are the same as the corresponding
19357      * variables in S_regclass.
19358      *
19359      * It returns the new op (the impossible END one if no optimization found)
19360      * and sets *ret to any created regnode.  If the new op is sufficiently
19361      * like plain ANYOF, it leaves *ret unchanged for allocation in S_regclass.
19362      *
19363      * Certain of the parameters may be updated as a result of the changes
19364      * herein */
19365 
19366     U8 op = END;    /* The returned node-type, initialized to an impossible
19367                       one. */
19368     UV value = 0;
19369     PERL_UINT_FAST8_T i;
19370     UV partial_cp_count = 0;
19371     UV start[MAX_FOLD_FROMS+1] = { 0 }; /* +1 for the folded-to char */
19372     UV   end[MAX_FOLD_FROMS+1] = { 0 };
19373     bool single_range = FALSE;
19374     UV lowest_cp = 0, highest_cp = 0;
19375 
19376     PERL_ARGS_ASSERT_OPTIMIZE_REGCLASS;
19377 
19378     if (cp_list) { /* Count the code points in enough ranges that we would see
19379                       all the ones possible in any fold in this version of
19380                       Unicode */
19381 
19382         invlist_iterinit(cp_list);
19383         for (i = 0; i <= MAX_FOLD_FROMS; i++) {
19384             if (! invlist_iternext(cp_list, &start[i], &end[i])) {
19385                 break;
19386             }
19387             partial_cp_count += end[i] - start[i] + 1;
19388         }
19389 
19390         if (i == 1) {
19391             single_range = TRUE;
19392         }
19393         invlist_iterfinish(cp_list);
19394 
19395         /* If we know at compile time that this matches every possible code
19396          * point, any run-time dependencies don't matter */
19397         if (start[0] == 0 && end[0] == UV_MAX) {
19398             if (*invert) {
19399                 goto return_OPFAIL;
19400             }
19401             else {
19402                 goto return_SANY;
19403             }
19404         }
19405 
19406         /* Use a clearer mnemonic for below */
19407         lowest_cp = start[0];
19408 
19409         highest_cp = invlist_highest(cp_list);
19410     }
19411 
19412     /* Similarly, for /l posix classes, if both a class and its complement
19413      * match, any run-time dependencies don't matter */
19414     if (posixl) {
19415         int namedclass;
19416         for (namedclass = 0; namedclass < ANYOF_POSIXL_MAX; namedclass += 2) {
19417             if (   POSIXL_TEST(posixl, namedclass)      /* class */
19418                 && POSIXL_TEST(posixl, namedclass + 1)) /* its complement */
19419             {
19420                 if (*invert) {
19421                     goto return_OPFAIL;
19422                 }
19423                 else {
19424                     goto return_SANY;
19425                 }
19426                 return op;
19427             }
19428         }
19429 
19430         /* For well-behaved locales, some classes are subsets of others, so
19431          * complementing the subset and including the non-complemented superset
19432          * should match everything, like [\D[:alnum:]], and
19433          * [[:^alpha:][:alnum:]], but some implementations of locales are
19434          * buggy, and khw thinks its a bad idea to have optimization change
19435          * behavior, even if it avoids an OS bug in a given case */
19436 
19437 #define isSINGLE_BIT_SET(n) isPOWER_OF_2(n)
19438 
19439         /* If is a single posix /l class, can optimize to just that op.  Such a
19440          * node will not match anything in the Latin1 range, as that is not
19441          * determinable until runtime, but will match whatever the class does
19442          * outside that range.  (Note that some classes won't match anything
19443          * outside the range, like [:ascii:]) */
19444         if (   isSINGLE_BIT_SET(posixl)
19445             && (partial_cp_count == 0 || lowest_cp > 255))
19446         {
19447             U8 classnum;
19448             SV * class_above_latin1 = NULL;
19449             bool already_inverted;
19450             bool are_equivalent;
19451 
19452 
19453             namedclass = single_1bit_pos32(posixl);
19454             classnum = namedclass_to_classnum(namedclass);
19455 
19456             /* The named classes are such that the inverted number is one
19457              * larger than the non-inverted one */
19458             already_inverted = namedclass - classnum_to_namedclass(classnum);
19459 
19460             /* Create an inversion list of the official property, inverted if
19461              * the constructed node list is inverted, and restricted to only
19462              * the above latin1 code points, which are the only ones known at
19463              * compile time */
19464             _invlist_intersection_maybe_complement_2nd(
19465                                                 PL_AboveLatin1,
19466                                                 PL_XPosix_ptrs[classnum],
19467                                                 already_inverted,
19468                                                 &class_above_latin1);
19469             are_equivalent = _invlistEQ(class_above_latin1, cp_list, FALSE);
19470             SvREFCNT_dec_NN(class_above_latin1);
19471 
19472             if (are_equivalent) {
19473 
19474                 /* Resolve the run-time inversion flag with this possibly
19475                  * inverted class */
19476                 *invert = *invert ^ already_inverted;
19477 
19478                 op = POSIXL + *invert * (NPOSIXL - POSIXL);
19479                 *ret = reg_node(pRExC_state, op);
19480                 FLAGS(REGNODE_p(*ret)) = classnum;
19481                 return op;
19482             }
19483         }
19484     }
19485 
19486     /* khw can't think of any other possible transformation involving these. */
19487     if (has_runtime_dependency & HAS_USER_DEFINED_PROPERTY) {
19488         return END;
19489     }
19490 
19491     if (! has_runtime_dependency) {
19492 
19493         /* If the list is empty, nothing matches.  This happens, for example,
19494          * when a Unicode property that doesn't match anything is the only
19495          * element in the character class (perluniprops.pod notes such
19496          * properties). */
19497         if (partial_cp_count == 0) {
19498             if (*invert) {
19499                 goto return_SANY;
19500             }
19501             else {
19502                 goto return_OPFAIL;
19503             }
19504         }
19505 
19506         /* If matches everything but \n */
19507         if (   start[0] == 0 && end[0] == '\n' - 1
19508             && start[1] == '\n' + 1 && end[1] == UV_MAX)
19509         {
19510             assert (! *invert);
19511             op = REG_ANY;
19512             *ret = reg_node(pRExC_state, op);
19513             MARK_NAUGHTY(1);
19514             return op;
19515         }
19516     }
19517 
19518     /* Next see if can optimize classes that contain just a few code points
19519      * into an EXACTish node.  The reason to do this is to let the optimizer
19520      * join this node with adjacent EXACTish ones, and ANYOF nodes require
19521      * runtime conversion to code point from UTF-8, which we'd like to avoid.
19522      *
19523      * An EXACTFish node can be generated even if not under /i, and vice versa.
19524      * But care must be taken.  An EXACTFish node has to be such that it only
19525      * matches precisely the code points in the class, but we want to generate
19526      * the least restrictive one that does that, to increase the odds of being
19527      * able to join with an adjacent node.  For example, if the class contains
19528      * [kK], we have to make it an EXACTFAA node to prevent the KELVIN SIGN
19529      * from matching.  Whether we are under /i or not is irrelevant in this
19530      * case.  Less obvious is the pattern qr/[\x{02BC}]n/i.  U+02BC is MODIFIER
19531      * LETTER APOSTROPHE. That is supposed to match the single character U+0149
19532      * LATIN SMALL LETTER N PRECEDED BY APOSTROPHE.  And so even though there
19533      * is no simple fold that includes \X{02BC}, there is a multi-char fold
19534      * that does, and so the node generated for it must be an EXACTFish one.
19535      * On the other hand qr/:/i should generate a plain EXACT node since the
19536      * colon participates in no fold whatsoever, and having it be EXACT tells
19537      * the optimizer the target string cannot match unless it has a colon in
19538      * it. */
19539     if (   ! posixl
19540         && ! *invert
19541 
19542             /* Only try if there are no more code points in the class than in
19543              * the max possible fold */
19544         &&   inRANGE(partial_cp_count, 1, MAX_FOLD_FROMS + 1))
19545     {
19546         /* We can always make a single code point class into an EXACTish node.
19547          * */
19548         if (partial_cp_count == 1 && ! upper_latin1_only_utf8_matches) {
19549             if (LOC) {
19550 
19551                 /* Here is /l:  Use EXACTL, except if there is a fold not known
19552                  * until runtime so shows as only a single code point here.
19553                  * For code points above 255, we know which can cause problems
19554                  * by having a potential fold to the Latin1 range. */
19555                 if (  ! FOLD
19556                     || (     lowest_cp > 255
19557                         && ! is_PROBLEMATIC_LOCALE_FOLD_cp(lowest_cp)))
19558                 {
19559                     op = EXACTL;
19560                 }
19561                 else {
19562                     op = EXACTFL;
19563                 }
19564             }
19565             else if (! FOLD) { /* Not /l and not /i */
19566                 op = (lowest_cp < 256) ? EXACT : EXACT_REQ8;
19567             }
19568             else if (lowest_cp < 256) { /* /i, not /l, and the code point is
19569                                           small */
19570 
19571                 /* Under /i, it gets a little tricky.  A code point that
19572                  * doesn't participate in a fold should be an EXACT node.  We
19573                  * know this one isn't the result of a simple fold, or there'd
19574                  * be more than one code point in the list, but it could be
19575                  * part of a multi-character fold.  In that case we better not
19576                  * create an EXACT node, as we would wrongly be telling the
19577                  * optimizer that this code point must be in the target string,
19578                  * and that is wrong.  This is because if the sequence around
19579                  * this code point forms a multi-char fold, what needs to be in
19580                  * the string could be the code point that folds to the
19581                  * sequence.
19582                  *
19583                  * This handles the case of below-255 code points, as we have
19584                  * an easy look up for those.  The next clause handles the
19585                  * above-256 one */
19586                 op = IS_IN_SOME_FOLD_L1(lowest_cp)
19587                      ? EXACTFU
19588                      : EXACT;
19589             }
19590             else {  /* /i, larger code point.  Since we are under /i, and have
19591                        just this code point, we know that it can't fold to
19592                        something else, so PL_InMultiCharFold applies to it */
19593                 op = (_invlist_contains_cp(PL_InMultiCharFold, lowest_cp))
19594                          ? EXACTFU_REQ8
19595                          : EXACT_REQ8;
19596                 }
19597 
19598                 value = lowest_cp;
19599         }
19600         else if (  ! (has_runtime_dependency & ~HAS_D_RUNTIME_DEPENDENCY)
19601                  && _invlist_contains_cp(PL_in_some_fold, lowest_cp))
19602         {
19603             /* Here, the only runtime dependency, if any, is from /d, and the
19604              * class matches more than one code point, and the lowest code
19605              * point participates in some fold.  It might be that the other
19606              * code points are /i equivalent to this one, and hence they would
19607              * be representable by an EXACTFish node.  Above, we eliminated
19608              * classes that contain too many code points to be EXACTFish, with
19609              * the test for MAX_FOLD_FROMS
19610              *
19611              * First, special case the ASCII fold pairs, like 'B' and 'b'.  We
19612              * do this because we have EXACTFAA at our disposal for the ASCII
19613              * range */
19614             if (partial_cp_count == 2 && isASCII(lowest_cp)) {
19615 
19616                 /* The only ASCII characters that participate in folds are
19617                  * alphabetics */
19618                 assert(isALPHA(lowest_cp));
19619                 if (   end[0] == start[0]   /* First range is a single
19620                                                character, so 2nd exists */
19621                     && isALPHA_FOLD_EQ(start[0], start[1]))
19622                 {
19623                     /* Here, is part of an ASCII fold pair */
19624 
19625                     if (   ASCII_FOLD_RESTRICTED
19626                         || HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(lowest_cp))
19627                     {
19628                         /* If the second clause just above was true, it means
19629                          * we can't be under /i, or else the list would have
19630                          * included more than this fold pair.  Therefore we
19631                          * have to exclude the possibility of whatever else it
19632                          * is that folds to these, by using EXACTFAA */
19633                         op = EXACTFAA;
19634                     }
19635                     else if (HAS_NONLATIN1_FOLD_CLOSURE(lowest_cp)) {
19636 
19637                         /* Here, there's no simple fold that lowest_cp is part
19638                          * of, but there is a multi-character one.  If we are
19639                          * not under /i, we want to exclude that possibility;
19640                          * if under /i, we want to include it */
19641                         op = (FOLD) ? EXACTFU : EXACTFAA;
19642                     }
19643                     else {
19644 
19645                         /* Here, the only possible fold lowest_cp particpates in
19646                          * is with start[1].  /i or not isn't relevant */
19647                         op = EXACTFU;
19648                     }
19649 
19650                     value = toFOLD(lowest_cp);
19651                 }
19652             }
19653             else if (  ! upper_latin1_only_utf8_matches
19654                      || (   _invlist_len(upper_latin1_only_utf8_matches) == 2
19655                          && PL_fold_latin1[
19656                            invlist_highest(upper_latin1_only_utf8_matches)]
19657                          == lowest_cp))
19658             {
19659                 /* Here, the smallest character is non-ascii or there are more
19660                  * than 2 code points matched by this node.  Also, we either
19661                  * don't have /d UTF-8 dependent matches, or if we do, they
19662                  * look like they could be a single character that is the fold
19663                  * of the lowest one is in the always-match list.  This test
19664                  * quickly excludes most of the false positives when there are
19665                  * /d UTF-8 depdendent matches.  These are like LATIN CAPITAL
19666                  * LETTER A WITH GRAVE matching LATIN SMALL LETTER A WITH GRAVE
19667                  * iff the target string is UTF-8.  (We don't have to worry
19668                  * above about exceeding the array bounds of PL_fold_latin1[]
19669                  * because any code point in 'upper_latin1_only_utf8_matches'
19670                  * is below 256.)
19671                  *
19672                  * EXACTFAA would apply only to pairs (hence exactly 2 code
19673                  * points) in the ASCII range, so we can't use it here to
19674                  * artificially restrict the fold domain, so we check if the
19675                  * class does or does not match some EXACTFish node.  Further,
19676                  * if we aren't under /i, and and the folded-to character is
19677                  * part of a multi-character fold, we can't do this
19678                  * optimization, as the sequence around it could be that
19679                  * multi-character fold, and we don't here know the context, so
19680                  * we have to assume it is that multi-char fold, to prevent
19681                  * potential bugs.
19682                  *
19683                  * To do the general case, we first find the fold of the lowest
19684                  * code point (which may be higher than that lowest unfolded
19685                  * one), then find everything that folds to it.  (The data
19686                  * structure we have only maps from the folded code points, so
19687                  * we have to do the earlier step.) */
19688 
19689                 Size_t foldlen;
19690                 U8 foldbuf[UTF8_MAXBYTES_CASE];
19691                 UV folded = _to_uni_fold_flags(lowest_cp, foldbuf, &foldlen, 0);
19692                 U32 first_fold;
19693                 const U32 * remaining_folds;
19694                 Size_t folds_to_this_cp_count = _inverse_folds(
19695                                                             folded,
19696                                                             &first_fold,
19697                                                             &remaining_folds);
19698                 Size_t folds_count = folds_to_this_cp_count + 1;
19699                 SV * fold_list = _new_invlist(folds_count);
19700                 unsigned int i;
19701 
19702                 /* If there are UTF-8 dependent matches, create a temporary
19703                  * list of what this node matches, including them. */
19704                 SV * all_cp_list = NULL;
19705                 SV ** use_this_list = &cp_list;
19706 
19707                 if (upper_latin1_only_utf8_matches) {
19708                     all_cp_list = _new_invlist(0);
19709                     use_this_list = &all_cp_list;
19710                     _invlist_union(cp_list,
19711                                    upper_latin1_only_utf8_matches,
19712                                    use_this_list);
19713                 }
19714 
19715                 /* Having gotten everything that participates in the fold
19716                  * containing the lowest code point, we turn that into an
19717                  * inversion list, making sure everything is included. */
19718                 fold_list = add_cp_to_invlist(fold_list, lowest_cp);
19719                 fold_list = add_cp_to_invlist(fold_list, folded);
19720                 if (folds_to_this_cp_count > 0) {
19721                     fold_list = add_cp_to_invlist(fold_list, first_fold);
19722                     for (i = 0; i + 1 < folds_to_this_cp_count; i++) {
19723                         fold_list = add_cp_to_invlist(fold_list,
19724                                                     remaining_folds[i]);
19725                     }
19726                 }
19727 
19728                 /* If the fold list is identical to what's in this ANYOF node,
19729                  * the node can be represented by an EXACTFish one instead */
19730                 if (_invlistEQ(*use_this_list, fold_list,
19731                                0 /* Don't complement */ )
19732                 ) {
19733 
19734                     /* But, we have to be careful, as mentioned above.  Just
19735                      * the right sequence of characters could match this if it
19736                      * is part of a multi-character fold.  That IS what we want
19737                      * if we are under /i.  But it ISN'T what we want if not
19738                      * under /i, as it could match when it shouldn't.  So, when
19739                      * we aren't under /i and this character participates in a
19740                      * multi-char fold, we don't optimize into an EXACTFish
19741                      * node.  So, for each case below we have to check if we
19742                      * are folding, and if not, if it is not part of a
19743                      * multi-char fold.  */
19744                     if (lowest_cp > 255) {    /* Highish code point */
19745                         if (FOLD || ! _invlist_contains_cp(
19746                                                    PL_InMultiCharFold, folded))
19747                         {
19748                             op = (LOC)
19749                                  ? EXACTFLU8
19750                                  : (ASCII_FOLD_RESTRICTED)
19751                                    ? EXACTFAA
19752                                    : EXACTFU_REQ8;
19753                             value = folded;
19754                         }
19755                     }   /* Below, the lowest code point < 256 */
19756                     else if (    FOLD
19757                              &&  folded == 's'
19758                              &&  DEPENDS_SEMANTICS)
19759                     {   /* An EXACTF node containing a single character 's',
19760                            can be an EXACTFU if it doesn't get joined with an
19761                            adjacent 's' */
19762                         op = EXACTFU_S_EDGE;
19763                         value = folded;
19764                     }
19765                     else if (     FOLD
19766                              || ! HAS_NONLATIN1_FOLD_CLOSURE(lowest_cp))
19767                     {
19768                         if (upper_latin1_only_utf8_matches) {
19769                             op = EXACTF;
19770 
19771                             /* We can't use the fold, as that only matches
19772                              * under UTF-8 */
19773                             value = lowest_cp;
19774                         }
19775                         else if (     UNLIKELY(lowest_cp == MICRO_SIGN)
19776                                  && ! UTF)
19777                         {   /* EXACTFUP is a special node for this character */
19778                             op = (ASCII_FOLD_RESTRICTED)
19779                                  ? EXACTFAA
19780                                  : EXACTFUP;
19781                             value = MICRO_SIGN;
19782                         }
19783                         else if (     ASCII_FOLD_RESTRICTED
19784                                  && ! isASCII(lowest_cp))
19785                         {   /* For ASCII under /iaa, we can use EXACTFU below
19786                              */
19787                             op = EXACTFAA;
19788                             value = folded;
19789                         }
19790                         else {
19791                             op = EXACTFU;
19792                             value = folded;
19793                         }
19794                     }
19795                 }
19796 
19797                 SvREFCNT_dec_NN(fold_list);
19798                 SvREFCNT_dec(all_cp_list);
19799             }
19800         }
19801 
19802         if (op != END) {
19803             U8 len;
19804 
19805             /* Here, we have calculated what EXACTish node to use.  Have to
19806              * convert to UTF-8 if not already there */
19807             if (value > 255) {
19808                 if (! UTF) {
19809                     SvREFCNT_dec(cp_list);;
19810                     REQUIRE_UTF8(flagp);
19811                 }
19812 
19813                 /* This is a kludge to the special casing issues with this
19814                  * ligature under /aa.  FB05 should fold to FB06, but the call
19815                  * above to _to_uni_fold_flags() didn't find this, as it didn't
19816                  * use the /aa restriction in order to not miss other folds
19817                  * that would be affected.  This is the only instance likely to
19818                  * ever be a problem in all of Unicode.  So special case it. */
19819                 if (   value == LATIN_SMALL_LIGATURE_LONG_S_T
19820                     && ASCII_FOLD_RESTRICTED)
19821                 {
19822                     value = LATIN_SMALL_LIGATURE_ST;
19823                 }
19824             }
19825 
19826             len = (UTF) ? UVCHR_SKIP(value) : 1;
19827 
19828             *ret = regnode_guts(pRExC_state, op, len, "exact");
19829             FILL_NODE(*ret, op);
19830             RExC_emit += 1 + STR_SZ(len);
19831             setSTR_LEN(REGNODE_p(*ret), len);
19832             if (len == 1) {
19833                 *STRINGs(REGNODE_p(*ret)) = (U8) value;
19834             }
19835             else {
19836                 uvchr_to_utf8((U8 *) STRINGs(REGNODE_p(*ret)), value);
19837             }
19838             return op;
19839         }
19840     }
19841 
19842     if (! has_runtime_dependency) {
19843 
19844         /* See if this can be turned into an ANYOFM node.  Think about the bit
19845          * patterns in two different bytes.  In some positions, the bits in
19846          * each will be 1; and in other positions both will be 0; and in some
19847          * positions the bit will be 1 in one byte, and 0 in the other.  Let
19848          * 'n' be the number of positions where the bits differ.  We create a
19849          * mask which has exactly 'n' 0 bits, each in a position where the two
19850          * bytes differ.  Now take the set of all bytes that when ANDed with
19851          * the mask yield the same result.  That set has 2**n elements, and is
19852          * representable by just two 8 bit numbers: the result and the mask.
19853          * Importantly, matching the set can be vectorized by creating a word
19854          * full of the result bytes, and a word full of the mask bytes,
19855          * yielding a significant speed up.  Here, see if this node matches
19856          * such a set.  As a concrete example consider [01], and the byte
19857          * representing '0' which is 0x30 on ASCII machines.  It has the bits
19858          * 0011 0000.  Take the mask 1111 1110.  If we AND 0x31 and 0x30 with
19859          * that mask we get 0x30.  Any other bytes ANDed yield something else.
19860          * So [01], which is a common usage, is optimizable into ANYOFM, and
19861          * can benefit from the speed up.  We can only do this on UTF-8
19862          * invariant bytes, because they have the same bit patterns under UTF-8
19863          * as not. */
19864         PERL_UINT_FAST8_T inverted = 0;
19865 
19866         /* Highest possible UTF-8 invariant is 7F on ASCII platforms; FF on
19867          * EBCDIC */
19868         const PERL_UINT_FAST8_T max_permissible
19869                                     = nBIT_UMAX(7 + ONE_IF_EBCDIC_ZERO_IF_NOT);
19870 
19871         /* If doesn't fit the criteria for ANYOFM, invert and try again.  If
19872          * that works we will instead later generate an NANYOFM, and invert
19873          * back when through */
19874         if (highest_cp > max_permissible) {
19875             _invlist_invert(cp_list);
19876             inverted = 1;
19877         }
19878 
19879         if (invlist_highest(cp_list) <= max_permissible) {
19880             UV this_start, this_end;
19881             UV lowest_cp = UV_MAX;  /* init'ed to suppress compiler warn */
19882             U8 bits_differing = 0;
19883             Size_t full_cp_count = 0;
19884             bool first_time = TRUE;
19885 
19886             /* Go through the bytes and find the bit positions that differ */
19887             invlist_iterinit(cp_list);
19888             while (invlist_iternext(cp_list, &this_start, &this_end)) {
19889                 unsigned int i = this_start;
19890 
19891                 if (first_time) {
19892                     if (! UVCHR_IS_INVARIANT(i)) {
19893                         goto done_anyofm;
19894                     }
19895 
19896                     first_time = FALSE;
19897                     lowest_cp = this_start;
19898 
19899                     /* We have set up the code point to compare with.  Don't
19900                      * compare it with itself */
19901                     i++;
19902                 }
19903 
19904                 /* Find the bit positions that differ from the lowest code
19905                  * point in the node.  Keep track of all such positions by
19906                  * OR'ing */
19907                 for (; i <= this_end; i++) {
19908                     if (! UVCHR_IS_INVARIANT(i)) {
19909                         goto done_anyofm;
19910                     }
19911 
19912                     bits_differing  |= i ^ lowest_cp;
19913                 }
19914 
19915                 full_cp_count += this_end - this_start + 1;
19916             }
19917 
19918             /* At the end of the loop, we count how many bits differ from the
19919              * bits in lowest code point, call the count 'd'.  If the set we
19920              * found contains 2**d elements, it is the closure of all code
19921              * points that differ only in those bit positions.  To convince
19922              * yourself of that, first note that the number in the closure must
19923              * be a power of 2, which we test for.  The only way we could have
19924              * that count and it be some differing set, is if we got some code
19925              * points that don't differ from the lowest code point in any
19926              * position, but do differ from each other in some other position.
19927              * That means one code point has a 1 in that position, and another
19928              * has a 0.  But that would mean that one of them differs from the
19929              * lowest code point in that position, which possibility we've
19930              * already excluded.  */
19931             if (  (inverted || full_cp_count > 1)
19932                 && full_cp_count == 1U << PL_bitcount[bits_differing])
19933             {
19934                 U8 ANYOFM_mask;
19935 
19936                 op = ANYOFM + inverted;;
19937 
19938                 /* We need to make the bits that differ be 0's */
19939                 ANYOFM_mask = ~ bits_differing; /* This goes into FLAGS */
19940 
19941                 /* The argument is the lowest code point */
19942                 *ret = reganode(pRExC_state, op, lowest_cp);
19943                 FLAGS(REGNODE_p(*ret)) = ANYOFM_mask;
19944             }
19945 
19946           done_anyofm:
19947             invlist_iterfinish(cp_list);
19948         }
19949 
19950         if (inverted) {
19951             _invlist_invert(cp_list);
19952         }
19953 
19954         if (op != END) {
19955             return op;
19956         }
19957 
19958         /* XXX We could create an ANYOFR_LOW node here if we saved above if all
19959          * were invariants, it wasn't inverted, and there is a single range.
19960          * This would be faster than some of the posix nodes we create below
19961          * like /\d/a, but would be twice the size.  Without having actually
19962          * measured the gain, khw doesn't think the tradeoff is really worth it
19963          * */
19964     }
19965 
19966     if (! (*anyof_flags & ANYOF_LOCALE_FLAGS)) {
19967         PERL_UINT_FAST8_T type;
19968         SV * intersection = NULL;
19969         SV* d_invlist = NULL;
19970 
19971         /* See if this matches any of the POSIX classes.  The POSIXA and POSIXD
19972          * ones are about the same speed as ANYOF ops, but take less room; the
19973          * ones that have above-Latin1 code point matches are somewhat faster
19974          * than ANYOF. */
19975 
19976         for (type = POSIXA; type >= POSIXD; type--) {
19977             int posix_class;
19978 
19979             if (type == POSIXL) {   /* But not /l posix classes */
19980                 continue;
19981             }
19982 
19983             for (posix_class = 0;
19984                  posix_class <= _HIGHEST_REGCOMP_DOT_H_SYNC;
19985                  posix_class++)
19986             {
19987                 SV** our_code_points = &cp_list;
19988                 SV** official_code_points;
19989                 int try_inverted;
19990 
19991                 if (type == POSIXA) {
19992                     official_code_points = &PL_Posix_ptrs[posix_class];
19993                 }
19994                 else {
19995                     official_code_points = &PL_XPosix_ptrs[posix_class];
19996                 }
19997 
19998                 /* Skip non-existent classes of this type.  e.g. \v only has an
19999                  * entry in PL_XPosix_ptrs */
20000                 if (! *official_code_points) {
20001                     continue;
20002                 }
20003 
20004                 /* Try both the regular class, and its inversion */
20005                 for (try_inverted = 0; try_inverted < 2; try_inverted++) {
20006                     bool this_inverted = *invert ^ try_inverted;
20007 
20008                     if (type != POSIXD) {
20009 
20010                         /* This class that isn't /d can't match if we have /d
20011                          * dependencies */
20012                         if (has_runtime_dependency
20013                                                 & HAS_D_RUNTIME_DEPENDENCY)
20014                         {
20015                             continue;
20016                         }
20017                     }
20018                     else /* is /d */ if (! this_inverted) {
20019 
20020                         /* /d classes don't match anything non-ASCII below 256
20021                          * unconditionally (which cp_list contains) */
20022                         _invlist_intersection(cp_list, PL_UpperLatin1,
20023                                                        &intersection);
20024                         if (_invlist_len(intersection) != 0) {
20025                             continue;
20026                         }
20027 
20028                         SvREFCNT_dec(d_invlist);
20029                         d_invlist = invlist_clone(cp_list, NULL);
20030 
20031                         /* But under UTF-8 it turns into using /u rules.  Add
20032                          * the things it matches under these conditions so that
20033                          * we check below that these are identical to what the
20034                          * tested class should match */
20035                         if (upper_latin1_only_utf8_matches) {
20036                             _invlist_union(
20037                                         d_invlist,
20038                                         upper_latin1_only_utf8_matches,
20039                                         &d_invlist);
20040                         }
20041                         our_code_points = &d_invlist;
20042                     }
20043                     else {  /* POSIXD, inverted.  If this doesn't have this
20044                                flag set, it isn't /d. */
20045                         if (! (*anyof_flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
20046                         {
20047                             continue;
20048                         }
20049                         our_code_points = &cp_list;
20050                     }
20051 
20052                     /* Here, have weeded out some things.  We want to see if
20053                      * the list of characters this node contains
20054                      * ('*our_code_points') precisely matches those of the
20055                      * class we are currently checking against
20056                      * ('*official_code_points'). */
20057                     if (_invlistEQ(*our_code_points,
20058                                    *official_code_points,
20059                                    try_inverted))
20060                     {
20061                         /* Here, they precisely match.  Optimize this ANYOF
20062                          * node into its equivalent POSIX one of the correct
20063                          * type, possibly inverted */
20064                         op = (try_inverted)
20065                             ? type + NPOSIXA - POSIXA
20066                             : type;
20067                         *ret = reg_node(pRExC_state, op);
20068                         FLAGS(REGNODE_p(*ret)) = posix_class;
20069                         SvREFCNT_dec(d_invlist);
20070                         SvREFCNT_dec(intersection);
20071                         return op;
20072                     }
20073                 }
20074             }
20075         }
20076         SvREFCNT_dec(d_invlist);
20077         SvREFCNT_dec(intersection);
20078     }
20079 
20080     /* If it is a single contiguous range, ANYOFR is an efficient regnode, both
20081      * in size and speed.  Currently, a 20 bit range base (smallest code point
20082      * in the range), and a 12 bit maximum delta are packed into a 32 bit word.
20083      * This allows for using it on all of the Unicode code points except for
20084      * the highest plane, which is only for private use code points.  khw
20085      * doubts that a bigger delta is likely in real world applications */
20086     if (     single_range
20087         && ! has_runtime_dependency
20088         &&   *anyof_flags == 0
20089         &&   start[0] < (1 << ANYOFR_BASE_BITS)
20090         &&   end[0] - start[0]
20091                 < ((1U << (sizeof(((struct regnode_1 *)NULL)->arg1)
20092                                * CHARBITS - ANYOFR_BASE_BITS))))
20093 
20094     {
20095         U8 low_utf8[UTF8_MAXBYTES+1];
20096         U8 high_utf8[UTF8_MAXBYTES+1];
20097 
20098         op = ANYOFR;
20099         *ret = reganode(pRExC_state, op,
20100                         (start[0] | (end[0] - start[0]) << ANYOFR_BASE_BITS));
20101 
20102         /* Place the lowest UTF-8 start byte in the flags field, so as to allow
20103          * efficient ruling out at run time of many possible inputs.  */
20104         (void) uvchr_to_utf8(low_utf8, start[0]);
20105         (void) uvchr_to_utf8(high_utf8, end[0]);
20106 
20107         /* If all code points share the same first byte, this can be an
20108          * ANYOFRb.  Otherwise store the lowest UTF-8 start byte which can
20109          * quickly rule out many inputs at run-time without having to compute
20110          * the code point from UTF-8.  For EBCDIC, we use I8, as not doing that
20111          * transformation would not rule out nearly so many things */
20112         if (low_utf8[0] == high_utf8[0]) {
20113             op = ANYOFRb;
20114             OP(REGNODE_p(*ret)) = op;
20115             ANYOF_FLAGS(REGNODE_p(*ret)) = low_utf8[0];
20116         }
20117         else {
20118             ANYOF_FLAGS(REGNODE_p(*ret)) = NATIVE_UTF8_TO_I8(low_utf8[0]);
20119         }
20120 
20121         return op;
20122     }
20123 
20124     /* If didn't find an optimization and there is no need for a bitmap,
20125      * optimize to indicate that */
20126     if (     lowest_cp >= NUM_ANYOF_CODE_POINTS
20127         && ! LOC
20128         && ! upper_latin1_only_utf8_matches
20129         &&   *anyof_flags == 0)
20130     {
20131         U8 low_utf8[UTF8_MAXBYTES+1];
20132         UV highest_cp = invlist_highest(cp_list);
20133 
20134         /* Currently the maximum allowed code point by the system is IV_MAX.
20135          * Higher ones are reserved for future internal use.  This particular
20136          * regnode can be used for higher ones, but we can't calculate the code
20137          * point of those.  IV_MAX suffices though, as it will be a large first
20138          * byte */
20139         Size_t low_len = uvchr_to_utf8(low_utf8, MIN(lowest_cp, IV_MAX))
20140                        - low_utf8;
20141 
20142         /* We store the lowest possible first byte of the UTF-8 representation,
20143          * using the flags field.  This allows for quick ruling out of some
20144          * inputs without having to convert from UTF-8 to code point.  For
20145          * EBCDIC, we use I8, as not doing that transformation would not rule
20146          * out nearly so many things */
20147         *anyof_flags = NATIVE_UTF8_TO_I8(low_utf8[0]);
20148 
20149         op = ANYOFH;
20150 
20151         /* If the first UTF-8 start byte for the highest code point in the
20152          * range is suitably small, we may be able to get an upper bound as
20153          * well */
20154         if (highest_cp <= IV_MAX) {
20155             U8 high_utf8[UTF8_MAXBYTES+1];
20156             Size_t high_len = uvchr_to_utf8(high_utf8, highest_cp) - high_utf8;
20157 
20158             /* If the lowest and highest are the same, we can get an exact
20159              * first byte instead of a just minimum or even a sequence of exact
20160              * leading bytes.  We signal these with different regnodes */
20161             if (low_utf8[0] == high_utf8[0]) {
20162                 Size_t len = find_first_differing_byte_pos(low_utf8,
20163                                                            high_utf8,
20164                                                    MIN(low_len, high_len));
20165 
20166                 if (len == 1) {
20167 
20168                     /* No need to convert to I8 for EBCDIC as this is an exact
20169                      * match */
20170                     *anyof_flags = low_utf8[0];
20171                     op = ANYOFHb;
20172                 }
20173                 else {
20174                     op = ANYOFHs;
20175                     *ret = regnode_guts(pRExC_state, op,
20176                                        regarglen[op] + STR_SZ(len),
20177                                        "anyofhs");
20178                     FILL_NODE(*ret, op);
20179                     ((struct regnode_anyofhs *) REGNODE_p(*ret))->str_len
20180                                                                     = len;
20181                     Copy(low_utf8,  /* Add the common bytes */
20182                     ((struct regnode_anyofhs *) REGNODE_p(*ret))->string,
20183                        len, U8);
20184                     RExC_emit += NODE_SZ_STR(REGNODE_p(*ret));
20185                     set_ANYOF_arg(pRExC_state, REGNODE_p(*ret), cp_list,
20186                                               NULL, only_utf8_locale_list);
20187                     return op;
20188                 }
20189             }
20190             else if (NATIVE_UTF8_TO_I8(high_utf8[0]) <= MAX_ANYOF_HRx_BYTE) {
20191 
20192                 /* Here, the high byte is not the same as the low, but is small
20193                  * enough that its reasonable to have a loose upper bound,
20194                  * which is packed in with the strict lower bound.  See
20195                  * comments at the definition of MAX_ANYOF_HRx_BYTE.  On EBCDIC
20196                  * platforms, I8 is used.  On ASCII platforms I8 is the same
20197                  * thing as UTF-8 */
20198 
20199                 U8 bits = 0;
20200                 U8 max_range_diff = MAX_ANYOF_HRx_BYTE - *anyof_flags;
20201                 U8 range_diff = NATIVE_UTF8_TO_I8(high_utf8[0])
20202                             - *anyof_flags;
20203 
20204                 if (range_diff <= max_range_diff / 8) {
20205                     bits = 3;
20206                 }
20207                 else if (range_diff <= max_range_diff / 4) {
20208                     bits = 2;
20209                 }
20210                 else if (range_diff <= max_range_diff / 2) {
20211                     bits = 1;
20212                 }
20213                 *anyof_flags = (*anyof_flags - 0xC0) << 2 | bits;
20214                 op = ANYOFHr;
20215             }
20216         }
20217     }
20218 
20219     return op;
20220 
20221   return_OPFAIL:
20222     op = OPFAIL;
20223     *ret = reganode(pRExC_state, op, 0);
20224     return op;
20225 
20226   return_SANY:
20227     op = SANY;
20228     *ret = reg_node(pRExC_state, op);
20229     MARK_NAUGHTY(1);
20230     return op;
20231 }
20232 
20233 #undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
20234 
20235 STATIC void
S_set_ANYOF_arg(pTHX_ RExC_state_t * const pRExC_state,regnode * const node,SV * const cp_list,SV * const runtime_defns,SV * const only_utf8_locale_list)20236 S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
20237                 regnode* const node,
20238                 SV* const cp_list,
20239                 SV* const runtime_defns,
20240                 SV* const only_utf8_locale_list)
20241 {
20242     /* Sets the arg field of an ANYOF-type node 'node', using information about
20243      * the node passed-in.  If there is nothing outside the node's bitmap, the
20244      * arg is set to ANYOF_ONLY_HAS_BITMAP.  Otherwise, it sets the argument to
20245      * the count returned by add_data(), having allocated and stored an array,
20246      * av, as follows:
20247      *
20248      *  av[0] stores the inversion list defining this class as far as known at
20249      *        this time, or PL_sv_undef if nothing definite is now known.
20250      *  av[1] stores the inversion list of code points that match only if the
20251      *        current locale is UTF-8, or if none, PL_sv_undef if there is an
20252      *        av[2], or no entry otherwise.
20253      *  av[2] stores the list of user-defined properties whose subroutine
20254      *        definitions aren't known at this time, or no entry if none. */
20255 
20256     UV n;
20257 
20258     PERL_ARGS_ASSERT_SET_ANYOF_ARG;
20259 
20260     if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
20261         assert(! (ANYOF_FLAGS(node)
20262                 & ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP));
20263         ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
20264     }
20265     else {
20266         AV * const av = newAV();
20267         SV *rv;
20268 
20269         if (cp_list) {
20270             av_store(av, INVLIST_INDEX, SvREFCNT_inc_NN(cp_list));
20271         }
20272 
20273         /* (Note that if any of this changes, the size calculations in
20274          * S_optimize_regclass() might need to be updated.) */
20275 
20276         if (only_utf8_locale_list) {
20277             av_store(av, ONLY_LOCALE_MATCHES_INDEX,
20278                                      SvREFCNT_inc_NN(only_utf8_locale_list));
20279         }
20280 
20281         if (runtime_defns) {
20282             av_store(av, DEFERRED_USER_DEFINED_INDEX,
20283                          SvREFCNT_inc_NN(runtime_defns));
20284         }
20285 
20286         rv = newRV_noinc(MUTABLE_SV(av));
20287         n = add_data(pRExC_state, STR_WITH_LEN("s"));
20288         RExC_rxi->data->data[n] = (void*)rv;
20289         ARG_SET(node, n);
20290     }
20291 }
20292 
20293 SV *
20294 
20295 #if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
Perl_get_regclass_nonbitmap_data(pTHX_ const regexp * prog,const regnode * node,bool doinit,SV ** listsvp,SV ** only_utf8_locale_ptr,SV ** output_invlist)20296 Perl_get_regclass_nonbitmap_data(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV** only_utf8_locale_ptr, SV** output_invlist)
20297 #else
20298 Perl_get_re_gclass_nonbitmap_data(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV** only_utf8_locale_ptr, SV** output_invlist)
20299 #endif
20300 
20301 {
20302     /* For internal core use only.
20303      * Returns the inversion list for the input 'node' in the regex 'prog'.
20304      * If <doinit> is 'true', will attempt to create the inversion list if not
20305      *    already done.
20306      * If <listsvp> is non-null, will return the printable contents of the
20307      *    property definition.  This can be used to get debugging information
20308      *    even before the inversion list exists, by calling this function with
20309      *    'doinit' set to false, in which case the components that will be used
20310      *    to eventually create the inversion list are returned  (in a printable
20311      *    form).
20312      * If <only_utf8_locale_ptr> is not NULL, it is where this routine is to
20313      *    store an inversion list of code points that should match only if the
20314      *    execution-time locale is a UTF-8 one.
20315      * If <output_invlist> is not NULL, it is where this routine is to store an
20316      *    inversion list of the code points that would be instead returned in
20317      *    <listsvp> if this were NULL.  Thus, what gets output in <listsvp>
20318      *    when this parameter is used, is just the non-code point data that
20319      *    will go into creating the inversion list.  This currently should be just
20320      *    user-defined properties whose definitions were not known at compile
20321      *    time.  Using this parameter allows for easier manipulation of the
20322      *    inversion list's data by the caller.  It is illegal to call this
20323      *    function with this parameter set, but not <listsvp>
20324      *
20325      * Tied intimately to how S_set_ANYOF_arg sets up the data structure.  Note
20326      * that, in spite of this function's name, the inversion list it returns
20327      * may include the bitmap data as well */
20328 
20329     SV *si  = NULL;         /* Input initialization string */
20330     SV* invlist = NULL;
20331 
20332     RXi_GET_DECL(prog, progi);
20333     const struct reg_data * const data = prog ? progi->data : NULL;
20334 
20335 #if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
20336     PERL_ARGS_ASSERT_GET_REGCLASS_NONBITMAP_DATA;
20337 #else
20338     PERL_ARGS_ASSERT_GET_RE_GCLASS_NONBITMAP_DATA;
20339 #endif
20340     assert(! output_invlist || listsvp);
20341 
20342     if (data && data->count) {
20343         const U32 n = ARG(node);
20344 
20345         if (data->what[n] == 's') {
20346             SV * const rv = MUTABLE_SV(data->data[n]);
20347             AV * const av = MUTABLE_AV(SvRV(rv));
20348             SV **const ary = AvARRAY(av);
20349 
20350             invlist = ary[INVLIST_INDEX];
20351 
20352             if (av_tindex_skip_len_mg(av) >= ONLY_LOCALE_MATCHES_INDEX) {
20353                 *only_utf8_locale_ptr = ary[ONLY_LOCALE_MATCHES_INDEX];
20354             }
20355 
20356             if (av_tindex_skip_len_mg(av) >= DEFERRED_USER_DEFINED_INDEX) {
20357                 si = ary[DEFERRED_USER_DEFINED_INDEX];
20358             }
20359 
20360             if (doinit && (si || invlist)) {
20361                 if (si) {
20362                     bool user_defined;
20363                     SV * msg = newSVpvs_flags("", SVs_TEMP);
20364 
20365                     SV * prop_definition = handle_user_defined_property(
20366                             "", 0, FALSE,   /* There is no \p{}, \P{} */
20367                             SvPVX_const(si)[1] - '0',   /* /i or not has been
20368                                                            stored here for just
20369                                                            this occasion */
20370                             TRUE,           /* run time */
20371                             FALSE,          /* This call must find the defn */
20372                             si,             /* The property definition  */
20373                             &user_defined,
20374                             msg,
20375                             0               /* base level call */
20376                            );
20377 
20378                     if (SvCUR(msg)) {
20379                         assert(prop_definition == NULL);
20380 
20381                         Perl_croak(aTHX_ "%" UTF8f,
20382                                 UTF8fARG(SvUTF8(msg), SvCUR(msg), SvPVX(msg)));
20383                     }
20384 
20385                     if (invlist) {
20386                         _invlist_union(invlist, prop_definition, &invlist);
20387                         SvREFCNT_dec_NN(prop_definition);
20388                     }
20389                     else {
20390                         invlist = prop_definition;
20391                     }
20392 
20393                     STATIC_ASSERT_STMT(ONLY_LOCALE_MATCHES_INDEX == 1 + INVLIST_INDEX);
20394                     STATIC_ASSERT_STMT(DEFERRED_USER_DEFINED_INDEX == 1 + ONLY_LOCALE_MATCHES_INDEX);
20395 
20396                     ary[INVLIST_INDEX] = invlist;
20397                     av_fill(av, (ary[ONLY_LOCALE_MATCHES_INDEX])
20398                                  ? ONLY_LOCALE_MATCHES_INDEX
20399                                  : INVLIST_INDEX);
20400                     si = NULL;
20401                 }
20402             }
20403         }
20404     }
20405 
20406     /* If requested, return a printable version of what this ANYOF node matches
20407      * */
20408     if (listsvp) {
20409         SV* matches_string = NULL;
20410 
20411         /* This function can be called at compile-time, before everything gets
20412          * resolved, in which case we return the currently best available
20413          * information, which is the string that will eventually be used to do
20414          * that resolving, 'si' */
20415         if (si) {
20416             /* Here, we only have 'si' (and possibly some passed-in data in
20417              * 'invlist', which is handled below)  If the caller only wants
20418              * 'si', use that.  */
20419             if (! output_invlist) {
20420                 matches_string = newSVsv(si);
20421             }
20422             else {
20423                 /* But if the caller wants an inversion list of the node, we
20424                  * need to parse 'si' and place as much as possible in the
20425                  * desired output inversion list, making 'matches_string' only
20426                  * contain the currently unresolvable things */
20427                 const char *si_string = SvPVX(si);
20428                 STRLEN remaining = SvCUR(si);
20429                 UV prev_cp = 0;
20430                 U8 count = 0;
20431 
20432                 /* Ignore everything before and including the first new-line */
20433                 si_string = (const char *) memchr(si_string, '\n', SvCUR(si));
20434                 assert (si_string != NULL);
20435                 si_string++;
20436                 remaining = SvPVX(si) + SvCUR(si) - si_string;
20437 
20438                 while (remaining > 0) {
20439 
20440                     /* The data consists of just strings defining user-defined
20441                      * property names, but in prior incarnations, and perhaps
20442                      * somehow from pluggable regex engines, it could still
20443                      * hold hex code point definitions, all of which should be
20444                      * legal (or it wouldn't have gotten this far).  Each
20445                      * component of a range would be separated by a tab, and
20446                      * each range by a new-line.  If these are found, instead
20447                      * add them to the inversion list */
20448                     I32 grok_flags =  PERL_SCAN_SILENT_ILLDIGIT
20449                                      |PERL_SCAN_SILENT_NON_PORTABLE;
20450                     STRLEN len = remaining;
20451                     UV cp = grok_hex(si_string, &len, &grok_flags, NULL);
20452 
20453                     /* If the hex decode routine found something, it should go
20454                      * up to the next \n */
20455                     if (   *(si_string + len) == '\n') {
20456                         if (count) {    /* 2nd code point on line */
20457                             *output_invlist = _add_range_to_invlist(*output_invlist, prev_cp, cp);
20458                         }
20459                         else {
20460                             *output_invlist = add_cp_to_invlist(*output_invlist, cp);
20461                         }
20462                         count = 0;
20463                         goto prepare_for_next_iteration;
20464                     }
20465 
20466                     /* If the hex decode was instead for the lower range limit,
20467                      * save it, and go parse the upper range limit */
20468                     if (*(si_string + len) == '\t') {
20469                         assert(count == 0);
20470 
20471                         prev_cp = cp;
20472                         count = 1;
20473                       prepare_for_next_iteration:
20474                         si_string += len + 1;
20475                         remaining -= len + 1;
20476                         continue;
20477                     }
20478 
20479                     /* Here, didn't find a legal hex number.  Just add the text
20480                      * from here up to the next \n, omitting any trailing
20481                      * markers. */
20482 
20483                     remaining -= len;
20484                     len = strcspn(si_string,
20485                                         DEFERRED_COULD_BE_OFFICIAL_MARKERs "\n");
20486                     remaining -= len;
20487                     if (matches_string) {
20488                         sv_catpvn(matches_string, si_string, len);
20489                     }
20490                     else {
20491                         matches_string = newSVpvn(si_string, len);
20492                     }
20493                     sv_catpvs(matches_string, " ");
20494 
20495                     si_string += len;
20496                     if (   remaining
20497                         && UCHARAT(si_string)
20498                                             == DEFERRED_COULD_BE_OFFICIAL_MARKERc)
20499                     {
20500                         si_string++;
20501                         remaining--;
20502                     }
20503                     if (remaining && UCHARAT(si_string) == '\n') {
20504                         si_string++;
20505                         remaining--;
20506                     }
20507                 } /* end of loop through the text */
20508 
20509                 assert(matches_string);
20510                 if (SvCUR(matches_string)) {  /* Get rid of trailing blank */
20511                     SvCUR_set(matches_string, SvCUR(matches_string) - 1);
20512                 }
20513             } /* end of has an 'si' */
20514         }
20515 
20516         /* Add the stuff that's already known */
20517         if (invlist) {
20518 
20519             /* Again, if the caller doesn't want the output inversion list, put
20520              * everything in 'matches-string' */
20521             if (! output_invlist) {
20522                 if ( ! matches_string) {
20523                     matches_string = newSVpvs("\n");
20524                 }
20525                 sv_catsv(matches_string, invlist_contents(invlist,
20526                                                   TRUE /* traditional style */
20527                                                   ));
20528             }
20529             else if (! *output_invlist) {
20530                 *output_invlist = invlist_clone(invlist, NULL);
20531             }
20532             else {
20533                 _invlist_union(*output_invlist, invlist, output_invlist);
20534             }
20535         }
20536 
20537         *listsvp = matches_string;
20538     }
20539 
20540     return invlist;
20541 }
20542 
20543 /* reg_skipcomment()
20544 
20545    Absorbs an /x style # comment from the input stream,
20546    returning a pointer to the first character beyond the comment, or if the
20547    comment terminates the pattern without anything following it, this returns
20548    one past the final character of the pattern (in other words, RExC_end) and
20549    sets the REG_RUN_ON_COMMENT_SEEN flag.
20550 
20551    Note it's the callers responsibility to ensure that we are
20552    actually in /x mode
20553 
20554 */
20555 
20556 PERL_STATIC_INLINE char*
S_reg_skipcomment(RExC_state_t * pRExC_state,char * p)20557 S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
20558 {
20559     PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
20560 
20561     assert(*p == '#');
20562 
20563     while (p < RExC_end) {
20564         if (*(++p) == '\n') {
20565             return p+1;
20566         }
20567     }
20568 
20569     /* we ran off the end of the pattern without ending the comment, so we have
20570      * to add an \n when wrapping */
20571     RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
20572     return p;
20573 }
20574 
20575 STATIC void
S_skip_to_be_ignored_text(pTHX_ RExC_state_t * pRExC_state,char ** p,const bool force_to_xmod)20576 S_skip_to_be_ignored_text(pTHX_ RExC_state_t *pRExC_state,
20577                                 char ** p,
20578                                 const bool force_to_xmod
20579                          )
20580 {
20581     /* If the text at the current parse position '*p' is a '(?#...)' comment,
20582      * or if we are under /x or 'force_to_xmod' is TRUE, and the text at '*p'
20583      * is /x whitespace, advance '*p' so that on exit it points to the first
20584      * byte past all such white space and comments */
20585 
20586     const bool use_xmod = force_to_xmod || (RExC_flags & RXf_PMf_EXTENDED);
20587 
20588     PERL_ARGS_ASSERT_SKIP_TO_BE_IGNORED_TEXT;
20589 
20590     assert( ! UTF || UTF8_IS_INVARIANT(**p) || UTF8_IS_START(**p));
20591 
20592     for (;;) {
20593         if (RExC_end - (*p) >= 3
20594             && *(*p)     == '('
20595             && *(*p + 1) == '?'
20596             && *(*p + 2) == '#')
20597         {
20598             while (*(*p) != ')') {
20599                 if ((*p) == RExC_end)
20600                     FAIL("Sequence (?#... not terminated");
20601                 (*p)++;
20602             }
20603             (*p)++;
20604             continue;
20605         }
20606 
20607         if (use_xmod) {
20608             const char * save_p = *p;
20609             while ((*p) < RExC_end) {
20610                 STRLEN len;
20611                 if ((len = is_PATWS_safe((*p), RExC_end, UTF))) {
20612                     (*p) += len;
20613                 }
20614                 else if (*(*p) == '#') {
20615                     (*p) = reg_skipcomment(pRExC_state, (*p));
20616                 }
20617                 else {
20618                     break;
20619                 }
20620             }
20621             if (*p != save_p) {
20622                 continue;
20623             }
20624         }
20625 
20626         break;
20627     }
20628 
20629     return;
20630 }
20631 
20632 /* nextchar()
20633 
20634    Advances the parse position by one byte, unless that byte is the beginning
20635    of a '(?#...)' style comment, or is /x whitespace and /x is in effect.  In
20636    those two cases, the parse position is advanced beyond all such comments and
20637    white space.
20638 
20639    This is the UTF, (?#...), and /x friendly way of saying RExC_parse++.
20640 */
20641 
20642 STATIC void
S_nextchar(pTHX_ RExC_state_t * pRExC_state)20643 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
20644 {
20645     PERL_ARGS_ASSERT_NEXTCHAR;
20646 
20647     if (RExC_parse < RExC_end) {
20648         assert(   ! UTF
20649                || UTF8_IS_INVARIANT(*RExC_parse)
20650                || UTF8_IS_START(*RExC_parse));
20651 
20652         RExC_parse += (UTF)
20653                       ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
20654                       : 1;
20655 
20656         skip_to_be_ignored_text(pRExC_state, &RExC_parse,
20657                                 FALSE /* Don't force /x */ );
20658     }
20659 }
20660 
20661 STATIC void
S_change_engine_size(pTHX_ RExC_state_t * pRExC_state,const Ptrdiff_t size)20662 S_change_engine_size(pTHX_ RExC_state_t *pRExC_state, const Ptrdiff_t size)
20663 {
20664     /* 'size' is the delta number of smallest regnode equivalents to add or
20665      * subtract from the current memory allocated to the regex engine being
20666      * constructed. */
20667 
20668     PERL_ARGS_ASSERT_CHANGE_ENGINE_SIZE;
20669 
20670     RExC_size += size;
20671 
20672     Renewc(RExC_rxi,
20673            sizeof(regexp_internal) + (RExC_size + 1) * sizeof(regnode),
20674                                                 /* +1 for REG_MAGIC */
20675            char,
20676            regexp_internal);
20677     if ( RExC_rxi == NULL )
20678         FAIL("Regexp out of space");
20679     RXi_SET(RExC_rx, RExC_rxi);
20680 
20681     RExC_emit_start = RExC_rxi->program;
20682     if (size > 0) {
20683         Zero(REGNODE_p(RExC_emit), size, regnode);
20684     }
20685 
20686 #ifdef RE_TRACK_PATTERN_OFFSETS
20687     Renew(RExC_offsets, 2*RExC_size+1, U32);
20688     if (size > 0) {
20689         Zero(RExC_offsets + 2*(RExC_size - size) + 1, 2 * size, U32);
20690     }
20691     RExC_offsets[0] = RExC_size;
20692 #endif
20693 }
20694 
20695 STATIC regnode_offset
S_regnode_guts(pTHX_ RExC_state_t * pRExC_state,const U8 op,const STRLEN extra_size,const char * const name)20696 S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
20697 {
20698     /* Allocate a regnode for 'op', with 'extra_size' extra (smallest) regnode
20699      * equivalents space.  It aligns and increments RExC_size
20700      *
20701      * It returns the regnode's offset into the regex engine program */
20702 
20703     const regnode_offset ret = RExC_emit;
20704 
20705     DECLARE_AND_GET_RE_DEBUG_FLAGS;
20706 
20707     PERL_ARGS_ASSERT_REGNODE_GUTS;
20708 
20709     SIZE_ALIGN(RExC_size);
20710     change_engine_size(pRExC_state, (Ptrdiff_t) 1 + extra_size);
20711     NODE_ALIGN_FILL(REGNODE_p(ret));
20712 #ifndef RE_TRACK_PATTERN_OFFSETS
20713     PERL_UNUSED_ARG(name);
20714     PERL_UNUSED_ARG(op);
20715 #else
20716     assert(extra_size >= regarglen[op] || PL_regkind[op] == ANYOF);
20717 
20718     if (RExC_offsets) {         /* MJD */
20719         MJD_OFFSET_DEBUG(
20720               ("%s:%d: (op %s) %s %" UVuf " (len %" UVuf ") (max %" UVuf ").\n",
20721               name, __LINE__,
20722               PL_reg_name[op],
20723               (UV)(RExC_emit) > RExC_offsets[0]
20724                 ? "Overwriting end of array!\n" : "OK",
20725               (UV)(RExC_emit),
20726               (UV)(RExC_parse - RExC_start),
20727               (UV)RExC_offsets[0]));
20728         Set_Node_Offset(REGNODE_p(RExC_emit), RExC_parse + (op == END));
20729     }
20730 #endif
20731     return(ret);
20732 }
20733 
20734 /*
20735 - reg_node - emit a node
20736 */
20737 STATIC regnode_offset /* Location. */
S_reg_node(pTHX_ RExC_state_t * pRExC_state,U8 op)20738 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
20739 {
20740     const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
20741     regnode_offset ptr = ret;
20742 
20743     PERL_ARGS_ASSERT_REG_NODE;
20744 
20745     assert(regarglen[op] == 0);
20746 
20747     FILL_ADVANCE_NODE(ptr, op);
20748     RExC_emit = ptr;
20749     return(ret);
20750 }
20751 
20752 /*
20753 - reganode - emit a node with an argument
20754 */
20755 STATIC regnode_offset /* Location. */
S_reganode(pTHX_ RExC_state_t * pRExC_state,U8 op,U32 arg)20756 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
20757 {
20758     const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
20759     regnode_offset ptr = ret;
20760 
20761     PERL_ARGS_ASSERT_REGANODE;
20762 
20763     /* ANYOF are special cased to allow non-length 1 args */
20764     assert(regarglen[op] == 1);
20765 
20766     FILL_ADVANCE_NODE_ARG(ptr, op, arg);
20767     RExC_emit = ptr;
20768     return(ret);
20769 }
20770 
20771 /*
20772 - regpnode - emit a temporary node with a SV* argument
20773 */
20774 STATIC regnode_offset /* Location. */
S_regpnode(pTHX_ RExC_state_t * pRExC_state,U8 op,SV * arg)20775 S_regpnode(pTHX_ RExC_state_t *pRExC_state, U8 op, SV * arg)
20776 {
20777     const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "regpnode");
20778     regnode_offset ptr = ret;
20779 
20780     PERL_ARGS_ASSERT_REGPNODE;
20781 
20782     FILL_ADVANCE_NODE_ARGp(ptr, op, arg);
20783     RExC_emit = ptr;
20784     return(ret);
20785 }
20786 
20787 STATIC regnode_offset
S_reg2Lanode(pTHX_ RExC_state_t * pRExC_state,const U8 op,const U32 arg1,const I32 arg2)20788 S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
20789 {
20790     /* emit a node with U32 and I32 arguments */
20791 
20792     const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
20793     regnode_offset ptr = ret;
20794 
20795     PERL_ARGS_ASSERT_REG2LANODE;
20796 
20797     assert(regarglen[op] == 2);
20798 
20799     FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
20800     RExC_emit = ptr;
20801     return(ret);
20802 }
20803 
20804 /*
20805 - reginsert - insert an operator in front of already-emitted operand
20806 *
20807 * That means that on exit 'operand' is the offset of the newly inserted
20808 * operator, and the original operand has been relocated.
20809 *
20810 * IMPORTANT NOTE - it is the *callers* responsibility to correctly
20811 * set up NEXT_OFF() of the inserted node if needed. Something like this:
20812 *
20813 *   reginsert(pRExC, OPFAIL, orig_emit, depth+1);
20814 *   NEXT_OFF(orig_emit) = regarglen[OPFAIL] + NODE_STEP_REGNODE;
20815 *
20816 * ALSO NOTE - FLAGS(newly-inserted-operator) will be set to 0 as well.
20817 */
20818 STATIC void
S_reginsert(pTHX_ RExC_state_t * pRExC_state,const U8 op,const regnode_offset operand,const U32 depth)20819 S_reginsert(pTHX_ RExC_state_t *pRExC_state, const U8 op,
20820                   const regnode_offset operand, const U32 depth)
20821 {
20822     regnode *src;
20823     regnode *dst;
20824     regnode *place;
20825     const int offset = regarglen[(U8)op];
20826     const int size = NODE_STEP_REGNODE + offset;
20827     DECLARE_AND_GET_RE_DEBUG_FLAGS;
20828 
20829     PERL_ARGS_ASSERT_REGINSERT;
20830     PERL_UNUSED_CONTEXT;
20831     PERL_UNUSED_ARG(depth);
20832 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
20833     DEBUG_PARSE_FMT("inst"," - %s", PL_reg_name[op]);
20834     assert(!RExC_study_started); /* I believe we should never use reginsert once we have started
20835                                     studying. If this is wrong then we need to adjust RExC_recurse
20836                                     below like we do with RExC_open_parens/RExC_close_parens. */
20837     change_engine_size(pRExC_state, (Ptrdiff_t) size);
20838     src = REGNODE_p(RExC_emit);
20839     RExC_emit += size;
20840     dst = REGNODE_p(RExC_emit);
20841 
20842     /* If we are in a "count the parentheses" pass, the numbers are unreliable,
20843      * and [perl #133871] shows this can lead to problems, so skip this
20844      * realignment of parens until a later pass when they are reliable */
20845     if (! IN_PARENS_PASS && RExC_open_parens) {
20846         int paren;
20847         /*DEBUG_PARSE_FMT("inst"," - %" IVdf, (IV)RExC_npar);*/
20848         /* remember that RExC_npar is rex->nparens + 1,
20849          * iow it is 1 more than the number of parens seen in
20850          * the pattern so far. */
20851         for ( paren=0 ; paren < RExC_npar ; paren++ ) {
20852             /* note, RExC_open_parens[0] is the start of the
20853              * regex, it can't move. RExC_close_parens[0] is the end
20854              * of the regex, it *can* move. */
20855             if ( paren && RExC_open_parens[paren] >= operand ) {
20856                 /*DEBUG_PARSE_FMT("open"," - %d", size);*/
20857                 RExC_open_parens[paren] += size;
20858             } else {
20859                 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
20860             }
20861             if ( RExC_close_parens[paren] >= operand ) {
20862                 /*DEBUG_PARSE_FMT("close"," - %d", size);*/
20863                 RExC_close_parens[paren] += size;
20864             } else {
20865                 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
20866             }
20867         }
20868     }
20869     if (RExC_end_op)
20870         RExC_end_op += size;
20871 
20872     while (src > REGNODE_p(operand)) {
20873         StructCopy(--src, --dst, regnode);
20874 #ifdef RE_TRACK_PATTERN_OFFSETS
20875         if (RExC_offsets) {     /* MJD 20010112 */
20876             MJD_OFFSET_DEBUG(
20877                  ("%s(%d): (op %s) %s copy %" UVuf " -> %" UVuf " (max %" UVuf ").\n",
20878                   "reginsert",
20879                   __LINE__,
20880                   PL_reg_name[op],
20881                   (UV)(REGNODE_OFFSET(dst)) > RExC_offsets[0]
20882                     ? "Overwriting end of array!\n" : "OK",
20883                   (UV)REGNODE_OFFSET(src),
20884                   (UV)REGNODE_OFFSET(dst),
20885                   (UV)RExC_offsets[0]));
20886             Set_Node_Offset_To_R(REGNODE_OFFSET(dst), Node_Offset(src));
20887             Set_Node_Length_To_R(REGNODE_OFFSET(dst), Node_Length(src));
20888         }
20889 #endif
20890     }
20891 
20892     place = REGNODE_p(operand);	/* Op node, where operand used to be. */
20893 #ifdef RE_TRACK_PATTERN_OFFSETS
20894     if (RExC_offsets) {         /* MJD */
20895         MJD_OFFSET_DEBUG(
20896               ("%s(%d): (op %s) %s %" UVuf " <- %" UVuf " (max %" UVuf ").\n",
20897               "reginsert",
20898               __LINE__,
20899               PL_reg_name[op],
20900               (UV)REGNODE_OFFSET(place) > RExC_offsets[0]
20901               ? "Overwriting end of array!\n" : "OK",
20902               (UV)REGNODE_OFFSET(place),
20903               (UV)(RExC_parse - RExC_start),
20904               (UV)RExC_offsets[0]));
20905         Set_Node_Offset(place, RExC_parse);
20906         Set_Node_Length(place, 1);
20907     }
20908 #endif
20909     src = NEXTOPER(place);
20910     FLAGS(place) = 0;
20911     FILL_NODE(operand, op);
20912 
20913     /* Zero out any arguments in the new node */
20914     Zero(src, offset, regnode);
20915 }
20916 
20917 /*
20918 - regtail - set the next-pointer at the end of a node chain of p to val.  If
20919             that value won't fit in the space available, instead returns FALSE.
20920             (Except asserts if we can't fit in the largest space the regex
20921             engine is designed for.)
20922 - SEE ALSO: regtail_study
20923 */
20924 STATIC bool
S_regtail(pTHX_ RExC_state_t * pRExC_state,const regnode_offset p,const regnode_offset val,const U32 depth)20925 S_regtail(pTHX_ RExC_state_t * pRExC_state,
20926                 const regnode_offset p,
20927                 const regnode_offset val,
20928                 const U32 depth)
20929 {
20930     regnode_offset scan;
20931     DECLARE_AND_GET_RE_DEBUG_FLAGS;
20932 
20933     PERL_ARGS_ASSERT_REGTAIL;
20934 #ifndef DEBUGGING
20935     PERL_UNUSED_ARG(depth);
20936 #endif
20937 
20938     /* The final node in the chain is the first one with a nonzero next pointer
20939      * */
20940     scan = (regnode_offset) p;
20941     for (;;) {
20942         regnode * const temp = regnext(REGNODE_p(scan));
20943         DEBUG_PARSE_r({
20944             DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
20945             regprop(RExC_rx, RExC_mysv, REGNODE_p(scan), NULL, pRExC_state);
20946             Perl_re_printf( aTHX_  "~ %s (%zu) %s %s\n",
20947                 SvPV_nolen_const(RExC_mysv), scan,
20948                     (temp == NULL ? "->" : ""),
20949                     (temp == NULL ? PL_reg_name[OP(REGNODE_p(val))] : "")
20950             );
20951         });
20952         if (temp == NULL)
20953             break;
20954         scan = REGNODE_OFFSET(temp);
20955     }
20956 
20957     /* Populate this node's next pointer */
20958     assert(val >= scan);
20959     if (reg_off_by_arg[OP(REGNODE_p(scan))]) {
20960         assert((UV) (val - scan) <= U32_MAX);
20961         ARG_SET(REGNODE_p(scan), val - scan);
20962     }
20963     else {
20964         if (val - scan > U16_MAX) {
20965             /* Populate this with something that won't loop and will likely
20966              * lead to a crash if the caller ignores the failure return, and
20967              * execution continues */
20968             NEXT_OFF(REGNODE_p(scan)) = U16_MAX;
20969             return FALSE;
20970         }
20971         NEXT_OFF(REGNODE_p(scan)) = val - scan;
20972     }
20973 
20974     return TRUE;
20975 }
20976 
20977 #ifdef DEBUGGING
20978 /*
20979 - regtail_study - set the next-pointer at the end of a node chain of p to val.
20980 - Look for optimizable sequences at the same time.
20981 - currently only looks for EXACT chains.
20982 
20983 This is experimental code. The idea is to use this routine to perform
20984 in place optimizations on branches and groups as they are constructed,
20985 with the long term intention of removing optimization from study_chunk so
20986 that it is purely analytical.
20987 
20988 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
20989 to control which is which.
20990 
20991 This used to return a value that was ignored.  It was a problem that it is
20992 #ifdef'd to be another function that didn't return a value.  khw has changed it
20993 so both currently return a pass/fail return.
20994 
20995 */
20996 /* TODO: All four parms should be const */
20997 
20998 STATIC bool
S_regtail_study(pTHX_ RExC_state_t * pRExC_state,regnode_offset p,const regnode_offset val,U32 depth)20999 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode_offset p,
21000                       const regnode_offset val, U32 depth)
21001 {
21002     regnode_offset scan;
21003     U8 exact = PSEUDO;
21004 #ifdef EXPERIMENTAL_INPLACESCAN
21005     I32 min = 0;
21006 #endif
21007     DECLARE_AND_GET_RE_DEBUG_FLAGS;
21008 
21009     PERL_ARGS_ASSERT_REGTAIL_STUDY;
21010 
21011 
21012     /* Find last node. */
21013 
21014     scan = p;
21015     for (;;) {
21016         regnode * const temp = regnext(REGNODE_p(scan));
21017 #ifdef EXPERIMENTAL_INPLACESCAN
21018         if (PL_regkind[OP(REGNODE_p(scan))] == EXACT) {
21019             bool unfolded_multi_char;	/* Unexamined in this routine */
21020             if (join_exact(pRExC_state, scan, &min,
21021                            &unfolded_multi_char, 1, REGNODE_p(val), depth+1))
21022                 return TRUE; /* Was return EXACT */
21023         }
21024 #endif
21025         if ( exact ) {
21026             if (PL_regkind[OP(REGNODE_p(scan))] == EXACT) {
21027                 if (exact == PSEUDO )
21028                     exact= OP(REGNODE_p(scan));
21029                 else if (exact != OP(REGNODE_p(scan)) )
21030                     exact= 0;
21031             }
21032             else if (OP(REGNODE_p(scan)) != NOTHING) {
21033                 exact= 0;
21034             }
21035         }
21036         DEBUG_PARSE_r({
21037             DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
21038             regprop(RExC_rx, RExC_mysv, REGNODE_p(scan), NULL, pRExC_state);
21039             Perl_re_printf( aTHX_  "~ %s (%zu) -> %s\n",
21040                 SvPV_nolen_const(RExC_mysv),
21041                 scan,
21042                 PL_reg_name[exact]);
21043         });
21044         if (temp == NULL)
21045             break;
21046         scan = REGNODE_OFFSET(temp);
21047     }
21048     DEBUG_PARSE_r({
21049         DEBUG_PARSE_MSG("");
21050         regprop(RExC_rx, RExC_mysv, REGNODE_p(val), NULL, pRExC_state);
21051         Perl_re_printf( aTHX_
21052                       "~ attach to %s (%" IVdf ") offset to %" IVdf "\n",
21053                       SvPV_nolen_const(RExC_mysv),
21054                       (IV)val,
21055                       (IV)(val - scan)
21056         );
21057     });
21058     if (reg_off_by_arg[OP(REGNODE_p(scan))]) {
21059         assert((UV) (val - scan) <= U32_MAX);
21060         ARG_SET(REGNODE_p(scan), val - scan);
21061     }
21062     else {
21063         if (val - scan > U16_MAX) {
21064             /* Populate this with something that won't loop and will likely
21065              * lead to a crash if the caller ignores the failure return, and
21066              * execution continues */
21067             NEXT_OFF(REGNODE_p(scan)) = U16_MAX;
21068             return FALSE;
21069         }
21070         NEXT_OFF(REGNODE_p(scan)) = val - scan;
21071     }
21072 
21073     return TRUE; /* Was 'return exact' */
21074 }
21075 #endif
21076 
21077 STATIC SV*
S_get_ANYOFM_contents(pTHX_ const regnode * n)21078 S_get_ANYOFM_contents(pTHX_ const regnode * n) {
21079 
21080     /* Returns an inversion list of all the code points matched by the
21081      * ANYOFM/NANYOFM node 'n' */
21082 
21083     SV * cp_list = _new_invlist(-1);
21084     const U8 lowest = (U8) ARG(n);
21085     unsigned int i;
21086     U8 count = 0;
21087     U8 needed = 1U << PL_bitcount[ (U8) ~ FLAGS(n)];
21088 
21089     PERL_ARGS_ASSERT_GET_ANYOFM_CONTENTS;
21090 
21091     /* Starting with the lowest code point, any code point that ANDed with the
21092      * mask yields the lowest code point is in the set */
21093     for (i = lowest; i <= 0xFF; i++) {
21094         if ((i & FLAGS(n)) == ARG(n)) {
21095             cp_list = add_cp_to_invlist(cp_list, i);
21096             count++;
21097 
21098             /* We know how many code points (a power of two) that are in the
21099              * set.  No use looking once we've got that number */
21100             if (count >= needed) break;
21101         }
21102     }
21103 
21104     if (OP(n) == NANYOFM) {
21105         _invlist_invert(cp_list);
21106     }
21107     return cp_list;
21108 }
21109 
21110 /*
21111  - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
21112  */
21113 #ifdef DEBUGGING
21114 
21115 static void
S_regdump_intflags(pTHX_ const char * lead,const U32 flags)21116 S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
21117 {
21118     int bit;
21119     int set=0;
21120 
21121     ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
21122 
21123     for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
21124         if (flags & (1<<bit)) {
21125             if (!set++ && lead)
21126                 Perl_re_printf( aTHX_  "%s", lead);
21127             Perl_re_printf( aTHX_  "%s ", PL_reg_intflags_name[bit]);
21128         }
21129     }
21130     if (lead)  {
21131         if (set)
21132             Perl_re_printf( aTHX_  "\n");
21133         else
21134             Perl_re_printf( aTHX_  "%s[none-set]\n", lead);
21135     }
21136 }
21137 
21138 static void
S_regdump_extflags(pTHX_ const char * lead,const U32 flags)21139 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
21140 {
21141     int bit;
21142     int set=0;
21143     regex_charset cs;
21144 
21145     ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
21146 
21147     for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
21148         if (flags & (1<<bit)) {
21149             if ((1<<bit) & RXf_PMf_CHARSET) {	/* Output separately, below */
21150                 continue;
21151             }
21152             if (!set++ && lead)
21153                 Perl_re_printf( aTHX_  "%s", lead);
21154             Perl_re_printf( aTHX_  "%s ", PL_reg_extflags_name[bit]);
21155         }
21156     }
21157     if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
21158             if (!set++ && lead) {
21159                 Perl_re_printf( aTHX_  "%s", lead);
21160             }
21161             switch (cs) {
21162                 case REGEX_UNICODE_CHARSET:
21163                     Perl_re_printf( aTHX_  "UNICODE");
21164                     break;
21165                 case REGEX_LOCALE_CHARSET:
21166                     Perl_re_printf( aTHX_  "LOCALE");
21167                     break;
21168                 case REGEX_ASCII_RESTRICTED_CHARSET:
21169                     Perl_re_printf( aTHX_  "ASCII-RESTRICTED");
21170                     break;
21171                 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
21172                     Perl_re_printf( aTHX_  "ASCII-MORE_RESTRICTED");
21173                     break;
21174                 default:
21175                     Perl_re_printf( aTHX_  "UNKNOWN CHARACTER SET");
21176                     break;
21177             }
21178     }
21179     if (lead)  {
21180         if (set)
21181             Perl_re_printf( aTHX_  "\n");
21182         else
21183             Perl_re_printf( aTHX_  "%s[none-set]\n", lead);
21184     }
21185 }
21186 #endif
21187 
21188 void
Perl_regdump(pTHX_ const regexp * r)21189 Perl_regdump(pTHX_ const regexp *r)
21190 {
21191 #ifdef DEBUGGING
21192     int i;
21193     SV * const sv = sv_newmortal();
21194     SV *dsv= sv_newmortal();
21195     RXi_GET_DECL(r, ri);
21196     DECLARE_AND_GET_RE_DEBUG_FLAGS;
21197 
21198     PERL_ARGS_ASSERT_REGDUMP;
21199 
21200     (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
21201 
21202     /* Header fields of interest. */
21203     for (i = 0; i < 2; i++) {
21204         if (r->substrs->data[i].substr) {
21205             RE_PV_QUOTED_DECL(s, 0, dsv,
21206                             SvPVX_const(r->substrs->data[i].substr),
21207                             RE_SV_DUMPLEN(r->substrs->data[i].substr),
21208                             PL_dump_re_max_len);
21209             Perl_re_printf( aTHX_
21210                           "%s %s%s at %" IVdf "..%" UVuf " ",
21211                           i ? "floating" : "anchored",
21212                           s,
21213                           RE_SV_TAIL(r->substrs->data[i].substr),
21214                           (IV)r->substrs->data[i].min_offset,
21215                           (UV)r->substrs->data[i].max_offset);
21216         }
21217         else if (r->substrs->data[i].utf8_substr) {
21218             RE_PV_QUOTED_DECL(s, 1, dsv,
21219                             SvPVX_const(r->substrs->data[i].utf8_substr),
21220                             RE_SV_DUMPLEN(r->substrs->data[i].utf8_substr),
21221                             30);
21222             Perl_re_printf( aTHX_
21223                           "%s utf8 %s%s at %" IVdf "..%" UVuf " ",
21224                           i ? "floating" : "anchored",
21225                           s,
21226                           RE_SV_TAIL(r->substrs->data[i].utf8_substr),
21227                           (IV)r->substrs->data[i].min_offset,
21228                           (UV)r->substrs->data[i].max_offset);
21229         }
21230     }
21231 
21232     if (r->check_substr || r->check_utf8)
21233         Perl_re_printf( aTHX_
21234                       (const char *)
21235                       (   r->check_substr == r->substrs->data[1].substr
21236                        && r->check_utf8   == r->substrs->data[1].utf8_substr
21237                        ? "(checking floating" : "(checking anchored"));
21238     if (r->intflags & PREGf_NOSCAN)
21239         Perl_re_printf( aTHX_  " noscan");
21240     if (r->extflags & RXf_CHECK_ALL)
21241         Perl_re_printf( aTHX_  " isall");
21242     if (r->check_substr || r->check_utf8)
21243         Perl_re_printf( aTHX_  ") ");
21244 
21245     if (ri->regstclass) {
21246         regprop(r, sv, ri->regstclass, NULL, NULL);
21247         Perl_re_printf( aTHX_  "stclass %s ", SvPVX_const(sv));
21248     }
21249     if (r->intflags & PREGf_ANCH) {
21250         Perl_re_printf( aTHX_  "anchored");
21251         if (r->intflags & PREGf_ANCH_MBOL)
21252             Perl_re_printf( aTHX_  "(MBOL)");
21253         if (r->intflags & PREGf_ANCH_SBOL)
21254             Perl_re_printf( aTHX_  "(SBOL)");
21255         if (r->intflags & PREGf_ANCH_GPOS)
21256             Perl_re_printf( aTHX_  "(GPOS)");
21257         Perl_re_printf( aTHX_ " ");
21258     }
21259     if (r->intflags & PREGf_GPOS_SEEN)
21260         Perl_re_printf( aTHX_  "GPOS:%" UVuf " ", (UV)r->gofs);
21261     if (r->intflags & PREGf_SKIP)
21262         Perl_re_printf( aTHX_  "plus ");
21263     if (r->intflags & PREGf_IMPLICIT)
21264         Perl_re_printf( aTHX_  "implicit ");
21265     Perl_re_printf( aTHX_  "minlen %" IVdf " ", (IV)r->minlen);
21266     if (r->extflags & RXf_EVAL_SEEN)
21267         Perl_re_printf( aTHX_  "with eval ");
21268     Perl_re_printf( aTHX_  "\n");
21269     DEBUG_FLAGS_r({
21270         regdump_extflags("r->extflags: ", r->extflags);
21271         regdump_intflags("r->intflags: ", r->intflags);
21272     });
21273 #else
21274     PERL_ARGS_ASSERT_REGDUMP;
21275     PERL_UNUSED_CONTEXT;
21276     PERL_UNUSED_ARG(r);
21277 #endif	/* DEBUGGING */
21278 }
21279 
21280 /* Should be synchronized with ANYOF_ #defines in regcomp.h */
21281 #ifdef DEBUGGING
21282 
21283 #  if   _CC_WORDCHAR != 0 || _CC_DIGIT != 1        || _CC_ALPHA != 2    \
21284      || _CC_LOWER != 3    || _CC_UPPER != 4        || _CC_PUNCT != 5    \
21285      || _CC_PRINT != 6    || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8    \
21286      || _CC_CASED != 9    || _CC_SPACE != 10       || _CC_BLANK != 11   \
21287      || _CC_XDIGIT != 12  || _CC_CNTRL != 13       || _CC_ASCII != 14   \
21288      || _CC_VERTSPACE != 15
21289 #   error Need to adjust order of anyofs[]
21290 #  endif
21291 static const char * const anyofs[] = {
21292     "\\w",
21293     "\\W",
21294     "\\d",
21295     "\\D",
21296     "[:alpha:]",
21297     "[:^alpha:]",
21298     "[:lower:]",
21299     "[:^lower:]",
21300     "[:upper:]",
21301     "[:^upper:]",
21302     "[:punct:]",
21303     "[:^punct:]",
21304     "[:print:]",
21305     "[:^print:]",
21306     "[:alnum:]",
21307     "[:^alnum:]",
21308     "[:graph:]",
21309     "[:^graph:]",
21310     "[:cased:]",
21311     "[:^cased:]",
21312     "\\s",
21313     "\\S",
21314     "[:blank:]",
21315     "[:^blank:]",
21316     "[:xdigit:]",
21317     "[:^xdigit:]",
21318     "[:cntrl:]",
21319     "[:^cntrl:]",
21320     "[:ascii:]",
21321     "[:^ascii:]",
21322     "\\v",
21323     "\\V"
21324 };
21325 #endif
21326 
21327 /*
21328 - regprop - printable representation of opcode, with run time support
21329 */
21330 
21331 void
Perl_regprop(pTHX_ const regexp * prog,SV * sv,const regnode * o,const regmatch_info * reginfo,const RExC_state_t * pRExC_state)21332 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
21333 {
21334 #ifdef DEBUGGING
21335     int k;
21336     RXi_GET_DECL(prog, progi);
21337     DECLARE_AND_GET_RE_DEBUG_FLAGS;
21338 
21339     PERL_ARGS_ASSERT_REGPROP;
21340 
21341     SvPVCLEAR(sv);
21342 
21343     if (OP(o) > REGNODE_MAX) {          /* regnode.type is unsigned */
21344         if (pRExC_state) {  /* This gives more info, if we have it */
21345             FAIL3("panic: corrupted regexp opcode %d > %d",
21346                   (int)OP(o), (int)REGNODE_MAX);
21347         }
21348         else {
21349             Perl_croak(aTHX_ "panic: corrupted regexp opcode %d > %d",
21350                              (int)OP(o), (int)REGNODE_MAX);
21351         }
21352     }
21353     sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
21354 
21355     k = PL_regkind[OP(o)];
21356 
21357     if (k == EXACT) {
21358         sv_catpvs(sv, " ");
21359         /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
21360          * is a crude hack but it may be the best for now since
21361          * we have no flag "this EXACTish node was UTF-8"
21362          * --jhi */
21363         pv_pretty(sv, STRING(o), STR_LEN(o), PL_dump_re_max_len,
21364                   PL_colors[0], PL_colors[1],
21365                   PERL_PV_ESCAPE_UNI_DETECT |
21366                   PERL_PV_ESCAPE_NONASCII   |
21367                   PERL_PV_PRETTY_ELLIPSES   |
21368                   PERL_PV_PRETTY_LTGT       |
21369                   PERL_PV_PRETTY_NOCLEAR
21370                   );
21371     } else if (k == TRIE) {
21372         /* print the details of the trie in dumpuntil instead, as
21373          * progi->data isn't available here */
21374         const char op = OP(o);
21375         const U32 n = ARG(o);
21376         const reg_ac_data * const ac = IS_TRIE_AC(op) ?
21377                (reg_ac_data *)progi->data->data[n] :
21378                NULL;
21379         const reg_trie_data * const trie
21380             = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
21381 
21382         Perl_sv_catpvf(aTHX_ sv, "-%s", PL_reg_name[o->flags]);
21383         DEBUG_TRIE_COMPILE_r({
21384           if (trie->jump)
21385             sv_catpvs(sv, "(JUMP)");
21386           Perl_sv_catpvf(aTHX_ sv,
21387             "<S:%" UVuf "/%" IVdf " W:%" UVuf " L:%" UVuf "/%" UVuf " C:%" UVuf "/%" UVuf ">",
21388             (UV)trie->startstate,
21389             (IV)trie->statecount-1, /* -1 because of the unused 0 element */
21390             (UV)trie->wordcount,
21391             (UV)trie->minlen,
21392             (UV)trie->maxlen,
21393             (UV)TRIE_CHARCOUNT(trie),
21394             (UV)trie->uniquecharcount
21395           );
21396         });
21397         if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
21398             sv_catpvs(sv, "[");
21399             (void) put_charclass_bitmap_innards(sv,
21400                                                 ((IS_ANYOF_TRIE(op))
21401                                                  ? ANYOF_BITMAP(o)
21402                                                  : TRIE_BITMAP(trie)),
21403                                                 NULL,
21404                                                 NULL,
21405                                                 NULL,
21406                                                 0,
21407                                                 FALSE
21408                                                );
21409             sv_catpvs(sv, "]");
21410         }
21411     } else if (k == CURLY) {
21412         U32 lo = ARG1(o), hi = ARG2(o);
21413         if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
21414             Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
21415         Perl_sv_catpvf(aTHX_ sv, "{%u,", (unsigned) lo);
21416         if (hi == REG_INFTY)
21417             sv_catpvs(sv, "INFTY");
21418         else
21419             Perl_sv_catpvf(aTHX_ sv, "%u", (unsigned) hi);
21420         sv_catpvs(sv, "}");
21421     }
21422     else if (k == WHILEM && o->flags)			/* Ordinal/of */
21423         Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
21424     else if (k == REF || k == OPEN || k == CLOSE
21425              || k == GROUPP || OP(o)==ACCEPT)
21426     {
21427         AV *name_list= NULL;
21428         U32 parno= OP(o) == ACCEPT ? (U32)ARG2L(o) : ARG(o);
21429         Perl_sv_catpvf(aTHX_ sv, "%" UVuf, (UV)parno);        /* Parenth number */
21430         if ( RXp_PAREN_NAMES(prog) ) {
21431             name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
21432         } else if ( pRExC_state ) {
21433             name_list= RExC_paren_name_list;
21434         }
21435         if (name_list) {
21436             if ( k != REF || (OP(o) < REFN)) {
21437                 SV **name= av_fetch(name_list, parno, 0 );
21438                 if (name)
21439                     Perl_sv_catpvf(aTHX_ sv, " '%" SVf "'", SVfARG(*name));
21440             }
21441             else {
21442                 SV *sv_dat= MUTABLE_SV(progi->data->data[ parno ]);
21443                 I32 *nums=(I32*)SvPVX(sv_dat);
21444                 SV **name= av_fetch(name_list, nums[0], 0 );
21445                 I32 n;
21446                 if (name) {
21447                     for ( n=0; n<SvIVX(sv_dat); n++ ) {
21448                         Perl_sv_catpvf(aTHX_ sv, "%s%" IVdf,
21449                                     (n ? "," : ""), (IV)nums[n]);
21450                     }
21451                     Perl_sv_catpvf(aTHX_ sv, " '%" SVf "'", SVfARG(*name));
21452                 }
21453             }
21454         }
21455         if ( k == REF && reginfo) {
21456             U32 n = ARG(o);  /* which paren pair */
21457             I32 ln = prog->offs[n].start;
21458             if (prog->lastparen < n || ln == -1 || prog->offs[n].end == -1)
21459                 Perl_sv_catpvf(aTHX_ sv, ": FAIL");
21460             else if (ln == prog->offs[n].end)
21461                 Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
21462             else {
21463                 const char *s = reginfo->strbeg + ln;
21464                 Perl_sv_catpvf(aTHX_ sv, ": ");
21465                 Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
21466                     PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
21467             }
21468         }
21469     } else if (k == GOSUB) {
21470         AV *name_list= NULL;
21471         if ( RXp_PAREN_NAMES(prog) ) {
21472             name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
21473         } else if ( pRExC_state ) {
21474             name_list= RExC_paren_name_list;
21475         }
21476 
21477         /* Paren and offset */
21478         Perl_sv_catpvf(aTHX_ sv, "%d[%+d:%d]", (int)ARG(o),(int)ARG2L(o),
21479                 (int)((o + (int)ARG2L(o)) - progi->program) );
21480         if (name_list) {
21481             SV **name= av_fetch(name_list, ARG(o), 0 );
21482             if (name)
21483                 Perl_sv_catpvf(aTHX_ sv, " '%" SVf "'", SVfARG(*name));
21484         }
21485     }
21486     else if (k == LOGICAL)
21487         /* 2: embedded, otherwise 1 */
21488         Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
21489     else if (k == ANYOF || k == ANYOFR) {
21490         U8 flags;
21491         char * bitmap;
21492         U32 arg;
21493         bool do_sep = FALSE;    /* Do we need to separate various components of
21494                                    the output? */
21495         /* Set if there is still an unresolved user-defined property */
21496         SV *unresolved                = NULL;
21497 
21498         /* Things that are ignored except when the runtime locale is UTF-8 */
21499         SV *only_utf8_locale_invlist = NULL;
21500 
21501         /* Code points that don't fit in the bitmap */
21502         SV *nonbitmap_invlist = NULL;
21503 
21504         /* And things that aren't in the bitmap, but are small enough to be */
21505         SV* bitmap_range_not_in_bitmap = NULL;
21506 
21507         bool inverted;
21508 
21509         if (inRANGE(OP(o), ANYOFH, ANYOFRb)) {
21510             flags = 0;
21511             bitmap = NULL;
21512             arg = 0;
21513         }
21514         else {
21515             flags = ANYOF_FLAGS(o);
21516             bitmap = ANYOF_BITMAP(o);
21517             arg = ARG(o);
21518         }
21519 
21520         if (OP(o) == ANYOFL || OP(o) == ANYOFPOSIXL) {
21521             if (ANYOFL_UTF8_LOCALE_REQD(flags)) {
21522                 sv_catpvs(sv, "{utf8-locale-reqd}");
21523             }
21524             if (flags & ANYOFL_FOLD) {
21525                 sv_catpvs(sv, "{i}");
21526             }
21527         }
21528 
21529         inverted = flags & ANYOF_INVERT;
21530 
21531         /* If there is stuff outside the bitmap, get it */
21532         if (arg != ANYOF_ONLY_HAS_BITMAP) {
21533             if (inRANGE(OP(o), ANYOFR, ANYOFRb)) {
21534                 nonbitmap_invlist = _add_range_to_invlist(nonbitmap_invlist,
21535                                             ANYOFRbase(o),
21536                                             ANYOFRbase(o) + ANYOFRdelta(o));
21537             }
21538             else {
21539 #if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
21540                 (void) get_regclass_nonbitmap_data(prog, o, FALSE,
21541                                                 &unresolved,
21542                                                 &only_utf8_locale_invlist,
21543                                                 &nonbitmap_invlist);
21544 #else
21545                 (void) get_re_gclass_nonbitmap_data(prog, o, FALSE,
21546                                                 &unresolved,
21547                                                 &only_utf8_locale_invlist,
21548                                                 &nonbitmap_invlist);
21549 #endif
21550             }
21551 
21552             /* The non-bitmap data may contain stuff that could fit in the
21553              * bitmap.  This could come from a user-defined property being
21554              * finally resolved when this call was done; or much more likely
21555              * because there are matches that require UTF-8 to be valid, and so
21556              * aren't in the bitmap (or ANYOFR).  This is teased apart later */
21557             _invlist_intersection(nonbitmap_invlist,
21558                                   PL_InBitmap,
21559                                   &bitmap_range_not_in_bitmap);
21560             /* Leave just the things that don't fit into the bitmap */
21561             _invlist_subtract(nonbitmap_invlist,
21562                               PL_InBitmap,
21563                               &nonbitmap_invlist);
21564         }
21565 
21566         /* Obey this flag to add all above-the-bitmap code points */
21567         if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
21568             nonbitmap_invlist = _add_range_to_invlist(nonbitmap_invlist,
21569                                                       NUM_ANYOF_CODE_POINTS,
21570                                                       UV_MAX);
21571         }
21572 
21573         /* Ready to start outputting.  First, the initial left bracket */
21574         Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
21575 
21576         /* ANYOFH by definition doesn't have anything that will fit inside the
21577          * bitmap;  ANYOFR may or may not. */
21578         if (  ! inRANGE(OP(o), ANYOFH, ANYOFHr)
21579             && (   ! inRANGE(OP(o), ANYOFR, ANYOFRb)
21580                 ||   ANYOFRbase(o) < NUM_ANYOF_CODE_POINTS))
21581         {
21582             /* Then all the things that could fit in the bitmap */
21583             do_sep = put_charclass_bitmap_innards(sv,
21584                                                   bitmap,
21585                                                   bitmap_range_not_in_bitmap,
21586                                                   only_utf8_locale_invlist,
21587                                                   o,
21588                                                   flags,
21589 
21590                                                   /* Can't try inverting for a
21591                                                    * better display if there
21592                                                    * are things that haven't
21593                                                    * been resolved */
21594                                                   unresolved != NULL
21595                                             || inRANGE(OP(o), ANYOFR, ANYOFRb));
21596             SvREFCNT_dec(bitmap_range_not_in_bitmap);
21597 
21598             /* If there are user-defined properties which haven't been defined
21599              * yet, output them.  If the result is not to be inverted, it is
21600              * clearest to output them in a separate [] from the bitmap range
21601              * stuff.  If the result is to be complemented, we have to show
21602              * everything in one [], as the inversion applies to the whole
21603              * thing.  Use {braces} to separate them from anything in the
21604              * bitmap and anything above the bitmap. */
21605             if (unresolved) {
21606                 if (inverted) {
21607                     if (! do_sep) { /* If didn't output anything in the bitmap
21608                                      */
21609                         sv_catpvs(sv, "^");
21610                     }
21611                     sv_catpvs(sv, "{");
21612                 }
21613                 else if (do_sep) {
21614                     Perl_sv_catpvf(aTHX_ sv,"%s][%s", PL_colors[1],
21615                                                       PL_colors[0]);
21616                 }
21617                 sv_catsv(sv, unresolved);
21618                 if (inverted) {
21619                     sv_catpvs(sv, "}");
21620                 }
21621                 do_sep = ! inverted;
21622             }
21623         }
21624 
21625         /* And, finally, add the above-the-bitmap stuff */
21626         if (nonbitmap_invlist && _invlist_len(nonbitmap_invlist)) {
21627             SV* contents;
21628 
21629             /* See if truncation size is overridden */
21630             const STRLEN dump_len = (PL_dump_re_max_len > 256)
21631                                     ? PL_dump_re_max_len
21632                                     : 256;
21633 
21634             /* This is output in a separate [] */
21635             if (do_sep) {
21636                 Perl_sv_catpvf(aTHX_ sv,"%s][%s", PL_colors[1], PL_colors[0]);
21637             }
21638 
21639             /* And, for easy of understanding, it is shown in the
21640              * uncomplemented form if possible.  The one exception being if
21641              * there are unresolved items, where the inversion has to be
21642              * delayed until runtime */
21643             if (inverted && ! unresolved) {
21644                 _invlist_invert(nonbitmap_invlist);
21645                 _invlist_subtract(nonbitmap_invlist, PL_InBitmap, &nonbitmap_invlist);
21646             }
21647 
21648             contents = invlist_contents(nonbitmap_invlist,
21649                                         FALSE /* output suitable for catsv */
21650                                        );
21651 
21652             /* If the output is shorter than the permissible maximum, just do it. */
21653             if (SvCUR(contents) <= dump_len) {
21654                 sv_catsv(sv, contents);
21655             }
21656             else {
21657                 const char * contents_string = SvPVX(contents);
21658                 STRLEN i = dump_len;
21659 
21660                 /* Otherwise, start at the permissible max and work back to the
21661                  * first break possibility */
21662                 while (i > 0 && contents_string[i] != ' ') {
21663                     i--;
21664                 }
21665                 if (i == 0) {       /* Fail-safe.  Use the max if we couldn't
21666                                        find a legal break */
21667                     i = dump_len;
21668                 }
21669 
21670                 sv_catpvn(sv, contents_string, i);
21671                 sv_catpvs(sv, "...");
21672             }
21673 
21674             SvREFCNT_dec_NN(contents);
21675             SvREFCNT_dec_NN(nonbitmap_invlist);
21676         }
21677 
21678         /* And finally the matching, closing ']' */
21679         Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
21680 
21681         if (OP(o) == ANYOFHs) {
21682             Perl_sv_catpvf(aTHX_ sv, " (Leading UTF-8 bytes=%s", _byte_dump_string((U8 *) ((struct regnode_anyofhs *) o)->string, FLAGS(o), 1));
21683         }
21684         else if (inRANGE(OP(o), ANYOFH, ANYOFRb)) {
21685             U8 lowest = (OP(o) != ANYOFHr)
21686                          ? FLAGS(o)
21687                          : LOWEST_ANYOF_HRx_BYTE(FLAGS(o));
21688             U8 highest = (OP(o) == ANYOFHr)
21689                          ? HIGHEST_ANYOF_HRx_BYTE(FLAGS(o))
21690                          : (OP(o) == ANYOFH || OP(o) == ANYOFR)
21691                            ? 0xFF
21692                            : lowest;
21693 #ifndef EBCDIC
21694             if (OP(o) != ANYOFR || ! isASCII(ANYOFRbase(o) + ANYOFRdelta(o)))
21695 #endif
21696             {
21697                 Perl_sv_catpvf(aTHX_ sv, " (First UTF-8 byte=%02X", lowest);
21698                 if (lowest != highest) {
21699                     Perl_sv_catpvf(aTHX_ sv, "-%02X", highest);
21700                 }
21701                 Perl_sv_catpvf(aTHX_ sv, ")");
21702             }
21703         }
21704 
21705         SvREFCNT_dec(unresolved);
21706     }
21707     else if (k == ANYOFM) {
21708         SV * cp_list = get_ANYOFM_contents(o);
21709 
21710         Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
21711         if (OP(o) == NANYOFM) {
21712             _invlist_invert(cp_list);
21713         }
21714 
21715         put_charclass_bitmap_innards(sv, NULL, cp_list, NULL, NULL, 0, TRUE);
21716         Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
21717 
21718         SvREFCNT_dec(cp_list);
21719     }
21720     else if (k == POSIXD || k == NPOSIXD) {
21721         U8 index = FLAGS(o) * 2;
21722         if (index < C_ARRAY_LENGTH(anyofs)) {
21723             if (*anyofs[index] != '[')  {
21724                 sv_catpvs(sv, "[");
21725             }
21726             sv_catpv(sv, anyofs[index]);
21727             if (*anyofs[index] != '[')  {
21728                 sv_catpvs(sv, "]");
21729             }
21730         }
21731         else {
21732             Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
21733         }
21734     }
21735     else if (k == BOUND || k == NBOUND) {
21736         /* Must be synced with order of 'bound_type' in regcomp.h */
21737         const char * const bounds[] = {
21738             "",      /* Traditional */
21739             "{gcb}",
21740             "{lb}",
21741             "{sb}",
21742             "{wb}"
21743         };
21744         assert(FLAGS(o) < C_ARRAY_LENGTH(bounds));
21745         sv_catpv(sv, bounds[FLAGS(o)]);
21746     }
21747     else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH)) {
21748         Perl_sv_catpvf(aTHX_ sv, "[%d", -(o->flags));
21749         if (o->next_off) {
21750             Perl_sv_catpvf(aTHX_ sv, "..-%d", o->flags - o->next_off);
21751         }
21752         Perl_sv_catpvf(aTHX_ sv, "]");
21753     }
21754     else if (OP(o) == SBOL)
21755         Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
21756 
21757     /* add on the verb argument if there is one */
21758     if ( ( k == VERB || OP(o) == ACCEPT || OP(o) == OPFAIL ) && o->flags) {
21759         if ( ARG(o) )
21760             Perl_sv_catpvf(aTHX_ sv, ":%" SVf,
21761                        SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
21762         else
21763             sv_catpvs(sv, ":NULL");
21764     }
21765 #else
21766     PERL_UNUSED_CONTEXT;
21767     PERL_UNUSED_ARG(sv);
21768     PERL_UNUSED_ARG(o);
21769     PERL_UNUSED_ARG(prog);
21770     PERL_UNUSED_ARG(reginfo);
21771     PERL_UNUSED_ARG(pRExC_state);
21772 #endif	/* DEBUGGING */
21773 }
21774 
21775 
21776 
21777 SV *
Perl_re_intuit_string(pTHX_ REGEXP * const r)21778 Perl_re_intuit_string(pTHX_ REGEXP * const r)
21779 {				/* Assume that RE_INTUIT is set */
21780     /* Returns an SV containing a string that must appear in the target for it
21781      * to match, or NULL if nothing is known that must match.
21782      *
21783      * CAUTION: the SV can be freed during execution of the regex engine */
21784 
21785     struct regexp *const prog = ReANY(r);
21786     DECLARE_AND_GET_RE_DEBUG_FLAGS;
21787 
21788     PERL_ARGS_ASSERT_RE_INTUIT_STRING;
21789     PERL_UNUSED_CONTEXT;
21790 
21791     DEBUG_COMPILE_r(
21792         {
21793             if (prog->maxlen > 0) {
21794                 const char * const s = SvPV_nolen_const(RX_UTF8(r)
21795                       ? prog->check_utf8 : prog->check_substr);
21796 
21797                 if (!PL_colorset) reginitcolors();
21798                 Perl_re_printf( aTHX_
21799                       "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
21800                       PL_colors[4],
21801                       RX_UTF8(r) ? "utf8 " : "",
21802                       PL_colors[5], PL_colors[0],
21803                       s,
21804                       PL_colors[1],
21805                       (strlen(s) > PL_dump_re_max_len ? "..." : ""));
21806             }
21807         } );
21808 
21809     /* use UTF8 check substring if regexp pattern itself is in UTF8 */
21810     return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
21811 }
21812 
21813 /*
21814    pregfree()
21815 
21816    handles refcounting and freeing the perl core regexp structure. When
21817    it is necessary to actually free the structure the first thing it
21818    does is call the 'free' method of the regexp_engine associated to
21819    the regexp, allowing the handling of the void *pprivate; member
21820    first. (This routine is not overridable by extensions, which is why
21821    the extensions free is called first.)
21822 
21823    See regdupe and regdupe_internal if you change anything here.
21824 */
21825 #ifndef PERL_IN_XSUB_RE
21826 void
Perl_pregfree(pTHX_ REGEXP * r)21827 Perl_pregfree(pTHX_ REGEXP *r)
21828 {
21829     SvREFCNT_dec(r);
21830 }
21831 
21832 void
Perl_pregfree2(pTHX_ REGEXP * rx)21833 Perl_pregfree2(pTHX_ REGEXP *rx)
21834 {
21835     struct regexp *const r = ReANY(rx);
21836     DECLARE_AND_GET_RE_DEBUG_FLAGS;
21837 
21838     PERL_ARGS_ASSERT_PREGFREE2;
21839 
21840     if (! r)
21841         return;
21842 
21843     if (r->mother_re) {
21844         ReREFCNT_dec(r->mother_re);
21845     } else {
21846         CALLREGFREE_PVT(rx); /* free the private data */
21847         SvREFCNT_dec(RXp_PAREN_NAMES(r));
21848     }
21849     if (r->substrs) {
21850         int i;
21851         for (i = 0; i < 2; i++) {
21852             SvREFCNT_dec(r->substrs->data[i].substr);
21853             SvREFCNT_dec(r->substrs->data[i].utf8_substr);
21854         }
21855         Safefree(r->substrs);
21856     }
21857     RX_MATCH_COPY_FREE(rx);
21858 #ifdef PERL_ANY_COW
21859     SvREFCNT_dec(r->saved_copy);
21860 #endif
21861     Safefree(r->offs);
21862     SvREFCNT_dec(r->qr_anoncv);
21863     if (r->recurse_locinput)
21864         Safefree(r->recurse_locinput);
21865 }
21866 
21867 
21868 /*  reg_temp_copy()
21869 
21870     Copy ssv to dsv, both of which should of type SVt_REGEXP or SVt_PVLV,
21871     except that dsv will be created if NULL.
21872 
21873     This function is used in two main ways. First to implement
21874         $r = qr/....; $s = $$r;
21875 
21876     Secondly, it is used as a hacky workaround to the structural issue of
21877     match results
21878     being stored in the regexp structure which is in turn stored in
21879     PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
21880     could be PL_curpm in multiple contexts, and could require multiple
21881     result sets being associated with the pattern simultaneously, such
21882     as when doing a recursive match with (??{$qr})
21883 
21884     The solution is to make a lightweight copy of the regexp structure
21885     when a qr// is returned from the code executed by (??{$qr}) this
21886     lightweight copy doesn't actually own any of its data except for
21887     the starp/end and the actual regexp structure itself.
21888 
21889 */
21890 
21891 
21892 REGEXP *
Perl_reg_temp_copy(pTHX_ REGEXP * dsv,REGEXP * ssv)21893 Perl_reg_temp_copy(pTHX_ REGEXP *dsv, REGEXP *ssv)
21894 {
21895     struct regexp *drx;
21896     struct regexp *const srx = ReANY(ssv);
21897     const bool islv = dsv && SvTYPE(dsv) == SVt_PVLV;
21898 
21899     PERL_ARGS_ASSERT_REG_TEMP_COPY;
21900 
21901     if (!dsv)
21902         dsv = (REGEXP*) newSV_type(SVt_REGEXP);
21903     else {
21904         assert(SvTYPE(dsv) == SVt_REGEXP || (SvTYPE(dsv) == SVt_PVLV));
21905 
21906         /* our only valid caller, sv_setsv_flags(), should have done
21907          * a SV_CHECK_THINKFIRST_COW_DROP() by now */
21908         assert(!SvOOK(dsv));
21909         assert(!SvIsCOW(dsv));
21910         assert(!SvROK(dsv));
21911 
21912         if (SvPVX_const(dsv)) {
21913             if (SvLEN(dsv))
21914                 Safefree(SvPVX(dsv));
21915             SvPVX(dsv) = NULL;
21916         }
21917         SvLEN_set(dsv, 0);
21918         SvCUR_set(dsv, 0);
21919         SvOK_off((SV *)dsv);
21920 
21921         if (islv) {
21922             /* For PVLVs, the head (sv_any) points to an XPVLV, while
21923              * the LV's xpvlenu_rx will point to a regexp body, which
21924              * we allocate here */
21925             REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
21926             assert(!SvPVX(dsv));
21927             /* We "steal" the body from the newly allocated SV temp, changing
21928              * the pointer in its HEAD to NULL. We then change its type to
21929              * SVt_NULL so that when we immediately release its only reference,
21930              * no memory deallocation happens.
21931              *
21932              * The body will eventually be freed (from the PVLV) either in
21933              * Perl_sv_force_normal_flags() (if the PVLV is "downgraded" and
21934              * the regexp body needs to be removed)
21935              * or in Perl_sv_clear() (if the PVLV still holds the pointer until
21936              * the PVLV itself is deallocated). */
21937             ((XPV*)SvANY(dsv))->xpv_len_u.xpvlenu_rx = temp->sv_any;
21938             temp->sv_any = NULL;
21939             SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
21940             SvREFCNT_dec_NN(temp);
21941             /* SvCUR still resides in the xpvlv struct, so the regexp copy-
21942                ing below will not set it. */
21943             SvCUR_set(dsv, SvCUR(ssv));
21944         }
21945     }
21946     /* This ensures that SvTHINKFIRST(sv) is true, and hence that
21947        sv_force_normal(sv) is called.  */
21948     SvFAKE_on(dsv);
21949     drx = ReANY(dsv);
21950 
21951     SvFLAGS(dsv) |= SvFLAGS(ssv) & (SVf_POK|SVp_POK|SVf_UTF8);
21952     SvPV_set(dsv, RX_WRAPPED(ssv));
21953     /* We share the same string buffer as the original regexp, on which we
21954        hold a reference count, incremented when mother_re is set below.
21955        The string pointer is copied here, being part of the regexp struct.
21956      */
21957     memcpy(&(drx->xpv_cur), &(srx->xpv_cur),
21958            sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
21959     if (!islv)
21960         SvLEN_set(dsv, 0);
21961     if (srx->offs) {
21962         const I32 npar = srx->nparens+1;
21963         Newx(drx->offs, npar, regexp_paren_pair);
21964         Copy(srx->offs, drx->offs, npar, regexp_paren_pair);
21965     }
21966     if (srx->substrs) {
21967         int i;
21968         Newx(drx->substrs, 1, struct reg_substr_data);
21969         StructCopy(srx->substrs, drx->substrs, struct reg_substr_data);
21970 
21971         for (i = 0; i < 2; i++) {
21972             SvREFCNT_inc_void(drx->substrs->data[i].substr);
21973             SvREFCNT_inc_void(drx->substrs->data[i].utf8_substr);
21974         }
21975 
21976         /* check_substr and check_utf8, if non-NULL, point to either their
21977            anchored or float namesakes, and don't hold a second reference.  */
21978     }
21979     RX_MATCH_COPIED_off(dsv);
21980 #ifdef PERL_ANY_COW
21981     drx->saved_copy = NULL;
21982 #endif
21983     drx->mother_re = ReREFCNT_inc(srx->mother_re ? srx->mother_re : ssv);
21984     SvREFCNT_inc_void(drx->qr_anoncv);
21985     if (srx->recurse_locinput)
21986         Newx(drx->recurse_locinput, srx->nparens + 1, char *);
21987 
21988     return dsv;
21989 }
21990 #endif
21991 
21992 
21993 /* regfree_internal()
21994 
21995    Free the private data in a regexp. This is overloadable by
21996    extensions. Perl takes care of the regexp structure in pregfree(),
21997    this covers the *pprivate pointer which technically perl doesn't
21998    know about, however of course we have to handle the
21999    regexp_internal structure when no extension is in use.
22000 
22001    Note this is called before freeing anything in the regexp
22002    structure.
22003  */
22004 
22005 void
Perl_regfree_internal(pTHX_ REGEXP * const rx)22006 Perl_regfree_internal(pTHX_ REGEXP * const rx)
22007 {
22008     struct regexp *const r = ReANY(rx);
22009     RXi_GET_DECL(r, ri);
22010     DECLARE_AND_GET_RE_DEBUG_FLAGS;
22011 
22012     PERL_ARGS_ASSERT_REGFREE_INTERNAL;
22013 
22014     if (! ri) {
22015         return;
22016     }
22017 
22018     DEBUG_COMPILE_r({
22019         if (!PL_colorset)
22020             reginitcolors();
22021         {
22022             SV *dsv= sv_newmortal();
22023             RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
22024                 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), PL_dump_re_max_len);
22025             Perl_re_printf( aTHX_ "%sFreeing REx:%s %s\n",
22026                 PL_colors[4], PL_colors[5], s);
22027         }
22028     });
22029 
22030 #ifdef RE_TRACK_PATTERN_OFFSETS
22031     if (ri->u.offsets)
22032         Safefree(ri->u.offsets);             /* 20010421 MJD */
22033 #endif
22034     if (ri->code_blocks)
22035         S_free_codeblocks(aTHX_ ri->code_blocks);
22036 
22037     if (ri->data) {
22038         int n = ri->data->count;
22039 
22040         while (--n >= 0) {
22041           /* If you add a ->what type here, update the comment in regcomp.h */
22042             switch (ri->data->what[n]) {
22043             case 'a':
22044             case 'r':
22045             case 's':
22046             case 'S':
22047             case 'u':
22048                 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
22049                 break;
22050             case 'f':
22051                 Safefree(ri->data->data[n]);
22052                 break;
22053             case 'l':
22054             case 'L':
22055                 break;
22056             case 'T':
22057                 { /* Aho Corasick add-on structure for a trie node.
22058                      Used in stclass optimization only */
22059                     U32 refcount;
22060                     reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
22061                     OP_REFCNT_LOCK;
22062                     refcount = --aho->refcount;
22063                     OP_REFCNT_UNLOCK;
22064                     if ( !refcount ) {
22065                         PerlMemShared_free(aho->states);
22066                         PerlMemShared_free(aho->fail);
22067                          /* do this last!!!! */
22068                         PerlMemShared_free(ri->data->data[n]);
22069                         /* we should only ever get called once, so
22070                          * assert as much, and also guard the free
22071                          * which /might/ happen twice. At the least
22072                          * it will make code anlyzers happy and it
22073                          * doesn't cost much. - Yves */
22074                         assert(ri->regstclass);
22075                         if (ri->regstclass) {
22076                             PerlMemShared_free(ri->regstclass);
22077                             ri->regstclass = 0;
22078                         }
22079                     }
22080                 }
22081                 break;
22082             case 't':
22083                 {
22084                     /* trie structure. */
22085                     U32 refcount;
22086                     reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
22087                     OP_REFCNT_LOCK;
22088                     refcount = --trie->refcount;
22089                     OP_REFCNT_UNLOCK;
22090                     if ( !refcount ) {
22091                         PerlMemShared_free(trie->charmap);
22092                         PerlMemShared_free(trie->states);
22093                         PerlMemShared_free(trie->trans);
22094                         if (trie->bitmap)
22095                             PerlMemShared_free(trie->bitmap);
22096                         if (trie->jump)
22097                             PerlMemShared_free(trie->jump);
22098                         PerlMemShared_free(trie->wordinfo);
22099                         /* do this last!!!! */
22100                         PerlMemShared_free(ri->data->data[n]);
22101                     }
22102                 }
22103                 break;
22104             default:
22105                 Perl_croak(aTHX_ "panic: regfree data code '%c'",
22106                                                     ri->data->what[n]);
22107             }
22108         }
22109         Safefree(ri->data->what);
22110         Safefree(ri->data);
22111     }
22112 
22113     Safefree(ri);
22114 }
22115 
22116 #define av_dup_inc(s, t)	MUTABLE_AV(sv_dup_inc((const SV *)s, t))
22117 #define hv_dup_inc(s, t)	MUTABLE_HV(sv_dup_inc((const SV *)s, t))
22118 #define SAVEPVN(p, n)	((p) ? savepvn(p, n) : NULL)
22119 
22120 /*
22121 =for apidoc re_dup_guts
22122 Duplicate a regexp.
22123 
22124 This routine is expected to clone a given regexp structure. It is only
22125 compiled under USE_ITHREADS.
22126 
22127 After all of the core data stored in struct regexp is duplicated
22128 the C<regexp_engine.dupe> method is used to copy any private data
22129 stored in the *pprivate pointer. This allows extensions to handle
22130 any duplication they need to do.
22131 
22132 =cut
22133 
22134    See pregfree() and regfree_internal() if you change anything here.
22135 */
22136 #if defined(USE_ITHREADS)
22137 #ifndef PERL_IN_XSUB_RE
22138 void
Perl_re_dup_guts(pTHX_ const REGEXP * sstr,REGEXP * dstr,CLONE_PARAMS * param)22139 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
22140 {
22141     I32 npar;
22142     const struct regexp *r = ReANY(sstr);
22143     struct regexp *ret = ReANY(dstr);
22144 
22145     PERL_ARGS_ASSERT_RE_DUP_GUTS;
22146 
22147     npar = r->nparens+1;
22148     Newx(ret->offs, npar, regexp_paren_pair);
22149     Copy(r->offs, ret->offs, npar, regexp_paren_pair);
22150 
22151     if (ret->substrs) {
22152         /* Do it this way to avoid reading from *r after the StructCopy().
22153            That way, if any of the sv_dup_inc()s dislodge *r from the L1
22154            cache, it doesn't matter.  */
22155         int i;
22156         const bool anchored = r->check_substr
22157             ? r->check_substr == r->substrs->data[0].substr
22158             : r->check_utf8   == r->substrs->data[0].utf8_substr;
22159         Newx(ret->substrs, 1, struct reg_substr_data);
22160         StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
22161 
22162         for (i = 0; i < 2; i++) {
22163             ret->substrs->data[i].substr =
22164                         sv_dup_inc(ret->substrs->data[i].substr, param);
22165             ret->substrs->data[i].utf8_substr =
22166                         sv_dup_inc(ret->substrs->data[i].utf8_substr, param);
22167         }
22168 
22169         /* check_substr and check_utf8, if non-NULL, point to either their
22170            anchored or float namesakes, and don't hold a second reference.  */
22171 
22172         if (ret->check_substr) {
22173             if (anchored) {
22174                 assert(r->check_utf8 == r->substrs->data[0].utf8_substr);
22175 
22176                 ret->check_substr = ret->substrs->data[0].substr;
22177                 ret->check_utf8   = ret->substrs->data[0].utf8_substr;
22178             } else {
22179                 assert(r->check_substr == r->substrs->data[1].substr);
22180                 assert(r->check_utf8   == r->substrs->data[1].utf8_substr);
22181 
22182                 ret->check_substr = ret->substrs->data[1].substr;
22183                 ret->check_utf8   = ret->substrs->data[1].utf8_substr;
22184             }
22185         } else if (ret->check_utf8) {
22186             if (anchored) {
22187                 ret->check_utf8 = ret->substrs->data[0].utf8_substr;
22188             } else {
22189                 ret->check_utf8 = ret->substrs->data[1].utf8_substr;
22190             }
22191         }
22192     }
22193 
22194     RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
22195     ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
22196     if (r->recurse_locinput)
22197         Newx(ret->recurse_locinput, r->nparens + 1, char *);
22198 
22199     if (ret->pprivate)
22200         RXi_SET(ret, CALLREGDUPE_PVT(dstr, param));
22201 
22202     if (RX_MATCH_COPIED(dstr))
22203         ret->subbeg  = SAVEPVN(ret->subbeg, ret->sublen);
22204     else
22205         ret->subbeg = NULL;
22206 #ifdef PERL_ANY_COW
22207     ret->saved_copy = NULL;
22208 #endif
22209 
22210     /* Whether mother_re be set or no, we need to copy the string.  We
22211        cannot refrain from copying it when the storage points directly to
22212        our mother regexp, because that's
22213                1: a buffer in a different thread
22214                2: something we no longer hold a reference on
22215                so we need to copy it locally.  */
22216     RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED_const(sstr), SvCUR(sstr)+1);
22217     /* set malloced length to a non-zero value so it will be freed
22218      * (otherwise in combination with SVf_FAKE it looks like an alien
22219      * buffer). It doesn't have to be the actual malloced size, since it
22220      * should never be grown */
22221     SvLEN_set(dstr, SvCUR(sstr)+1);
22222     ret->mother_re   = NULL;
22223 }
22224 #endif /* PERL_IN_XSUB_RE */
22225 
22226 /*
22227    regdupe_internal()
22228 
22229    This is the internal complement to regdupe() which is used to copy
22230    the structure pointed to by the *pprivate pointer in the regexp.
22231    This is the core version of the extension overridable cloning hook.
22232    The regexp structure being duplicated will be copied by perl prior
22233    to this and will be provided as the regexp *r argument, however
22234    with the /old/ structures pprivate pointer value. Thus this routine
22235    may override any copying normally done by perl.
22236 
22237    It returns a pointer to the new regexp_internal structure.
22238 */
22239 
22240 void *
Perl_regdupe_internal(pTHX_ REGEXP * const rx,CLONE_PARAMS * param)22241 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
22242 {
22243     struct regexp *const r = ReANY(rx);
22244     regexp_internal *reti;
22245     int len;
22246     RXi_GET_DECL(r, ri);
22247 
22248     PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
22249 
22250     len = ProgLen(ri);
22251 
22252     Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
22253           char, regexp_internal);
22254     Copy(ri->program, reti->program, len+1, regnode);
22255 
22256 
22257     if (ri->code_blocks) {
22258         int n;
22259         Newx(reti->code_blocks, 1, struct reg_code_blocks);
22260         Newx(reti->code_blocks->cb, ri->code_blocks->count,
22261                     struct reg_code_block);
22262         Copy(ri->code_blocks->cb, reti->code_blocks->cb,
22263              ri->code_blocks->count, struct reg_code_block);
22264         for (n = 0; n < ri->code_blocks->count; n++)
22265              reti->code_blocks->cb[n].src_regex = (REGEXP*)
22266                     sv_dup_inc((SV*)(ri->code_blocks->cb[n].src_regex), param);
22267         reti->code_blocks->count = ri->code_blocks->count;
22268         reti->code_blocks->refcnt = 1;
22269     }
22270     else
22271         reti->code_blocks = NULL;
22272 
22273     reti->regstclass = NULL;
22274 
22275     if (ri->data) {
22276         struct reg_data *d;
22277         const int count = ri->data->count;
22278         int i;
22279 
22280         Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
22281                 char, struct reg_data);
22282         Newx(d->what, count, U8);
22283 
22284         d->count = count;
22285         for (i = 0; i < count; i++) {
22286             d->what[i] = ri->data->what[i];
22287             switch (d->what[i]) {
22288                 /* see also regcomp.h and regfree_internal() */
22289             case 'a': /* actually an AV, but the dup function is identical.
22290                          values seem to be "plain sv's" generally. */
22291             case 'r': /* a compiled regex (but still just another SV) */
22292             case 's': /* an RV (currently only used for an RV to an AV by the ANYOF code)
22293                          this use case should go away, the code could have used
22294                          'a' instead - see S_set_ANYOF_arg() for array contents. */
22295             case 'S': /* actually an SV, but the dup function is identical.  */
22296             case 'u': /* actually an HV, but the dup function is identical.
22297                          values are "plain sv's" */
22298                 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
22299                 break;
22300             case 'f':
22301                 /* Synthetic Start Class - "Fake" charclass we generate to optimize
22302                  * patterns which could start with several different things. Pre-TRIE
22303                  * this was more important than it is now, however this still helps
22304                  * in some places, for instance /x?a+/ might produce a SSC equivalent
22305                  * to [xa]. This is used by Perl_re_intuit_start() and S_find_byclass()
22306                  * in regexec.c
22307                  */
22308                 /* This is cheating. */
22309                 Newx(d->data[i], 1, regnode_ssc);
22310                 StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
22311                 reti->regstclass = (regnode*)d->data[i];
22312                 break;
22313             case 'T':
22314                 /* AHO-CORASICK fail table */
22315                 /* Trie stclasses are readonly and can thus be shared
22316                  * without duplication. We free the stclass in pregfree
22317                  * when the corresponding reg_ac_data struct is freed.
22318                  */
22319                 reti->regstclass= ri->regstclass;
22320                 /* FALLTHROUGH */
22321             case 't':
22322                 /* TRIE transition table */
22323                 OP_REFCNT_LOCK;
22324                 ((reg_trie_data*)ri->data->data[i])->refcount++;
22325                 OP_REFCNT_UNLOCK;
22326                 /* FALLTHROUGH */
22327             case 'l': /* (?{...}) or (??{ ... }) code (cb->block) */
22328             case 'L': /* same when RExC_pm_flags & PMf_HAS_CV and code
22329                          is not from another regexp */
22330                 d->data[i] = ri->data->data[i];
22331                 break;
22332             default:
22333                 Perl_croak(aTHX_ "panic: re_dup_guts unknown data code '%c'",
22334                                                            ri->data->what[i]);
22335             }
22336         }
22337 
22338         reti->data = d;
22339     }
22340     else
22341         reti->data = NULL;
22342 
22343     reti->name_list_idx = ri->name_list_idx;
22344 
22345 #ifdef RE_TRACK_PATTERN_OFFSETS
22346     if (ri->u.offsets) {
22347         Newx(reti->u.offsets, 2*len+1, U32);
22348         Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
22349     }
22350 #else
22351     SetProgLen(reti, len);
22352 #endif
22353 
22354     return (void*)reti;
22355 }
22356 
22357 #endif    /* USE_ITHREADS */
22358 
22359 #ifndef PERL_IN_XSUB_RE
22360 
22361 /*
22362  - regnext - dig the "next" pointer out of a node
22363  */
22364 regnode *
Perl_regnext(pTHX_ regnode * p)22365 Perl_regnext(pTHX_ regnode *p)
22366 {
22367     I32 offset;
22368 
22369     if (!p)
22370         return(NULL);
22371 
22372     if (OP(p) > REGNODE_MAX) {		/* regnode.type is unsigned */
22373         Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
22374                                                 (int)OP(p), (int)REGNODE_MAX);
22375     }
22376 
22377     offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
22378     if (offset == 0)
22379         return(NULL);
22380 
22381     return(p+offset);
22382 }
22383 
22384 #endif
22385 
22386 STATIC void
S_re_croak(pTHX_ bool utf8,const char * pat,...)22387 S_re_croak(pTHX_ bool utf8, const char* pat,...)
22388 {
22389     va_list args;
22390     STRLEN len = strlen(pat);
22391     char buf[512];
22392     SV *msv;
22393     const char *message;
22394 
22395     PERL_ARGS_ASSERT_RE_CROAK;
22396 
22397     if (len > 510)
22398         len = 510;
22399     Copy(pat, buf, len , char);
22400     buf[len] = '\n';
22401     buf[len + 1] = '\0';
22402     va_start(args, pat);
22403     msv = vmess(buf, &args);
22404     va_end(args);
22405     message = SvPV_const(msv, len);
22406     if (len > 512)
22407         len = 512;
22408     Copy(message, buf, len , char);
22409     /* len-1 to avoid \n */
22410     Perl_croak(aTHX_ "%" UTF8f, UTF8fARG(utf8, len-1, buf));
22411 }
22412 
22413 /* XXX Here's a total kludge.  But we need to re-enter for swash routines. */
22414 
22415 #ifndef PERL_IN_XSUB_RE
22416 void
Perl_save_re_context(pTHX)22417 Perl_save_re_context(pTHX)
22418 {
22419     I32 nparens = -1;
22420     I32 i;
22421 
22422     /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
22423 
22424     if (PL_curpm) {
22425         const REGEXP * const rx = PM_GETRE(PL_curpm);
22426         if (rx)
22427             nparens = RX_NPARENS(rx);
22428     }
22429 
22430     /* RT #124109. This is a complete hack; in the SWASHNEW case we know
22431      * that PL_curpm will be null, but that utf8.pm and the modules it
22432      * loads will only use $1..$3.
22433      * The t/porting/re_context.t test file checks this assumption.
22434      */
22435     if (nparens == -1)
22436         nparens = 3;
22437 
22438     for (i = 1; i <= nparens; i++) {
22439         char digits[TYPE_CHARS(long)];
22440         const STRLEN len = my_snprintf(digits, sizeof(digits),
22441                                        "%lu", (long)i);
22442         GV *const *const gvp
22443             = (GV**)hv_fetch(PL_defstash, digits, len, 0);
22444 
22445         if (gvp) {
22446             GV * const gv = *gvp;
22447             if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
22448                 save_scalar(gv);
22449         }
22450     }
22451 }
22452 #endif
22453 
22454 #ifdef DEBUGGING
22455 
22456 STATIC void
S_put_code_point(pTHX_ SV * sv,UV c)22457 S_put_code_point(pTHX_ SV *sv, UV c)
22458 {
22459     PERL_ARGS_ASSERT_PUT_CODE_POINT;
22460 
22461     if (c > 255) {
22462         Perl_sv_catpvf(aTHX_ sv, "\\x{%04" UVXf "}", c);
22463     }
22464     else if (isPRINT(c)) {
22465         const char string = (char) c;
22466 
22467         /* We use {phrase} as metanotation in the class, so also escape literal
22468          * braces */
22469         if (isBACKSLASHED_PUNCT(c) || c == '{' || c == '}')
22470             sv_catpvs(sv, "\\");
22471         sv_catpvn(sv, &string, 1);
22472     }
22473     else if (isMNEMONIC_CNTRL(c)) {
22474         Perl_sv_catpvf(aTHX_ sv, "%s", cntrl_to_mnemonic((U8) c));
22475     }
22476     else {
22477         Perl_sv_catpvf(aTHX_ sv, "\\x%02X", (U8) c);
22478     }
22479 }
22480 
22481 STATIC void
S_put_range(pTHX_ SV * sv,UV start,const UV end,const bool allow_literals)22482 S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
22483 {
22484     /* Appends to 'sv' a displayable version of the range of code points from
22485      * 'start' to 'end'.  Mnemonics (like '\r') are used for the few controls
22486      * that have them, when they occur at the beginning or end of the range.
22487      * It uses hex to output the remaining code points, unless 'allow_literals'
22488      * is true, in which case the printable ASCII ones are output as-is (though
22489      * some of these will be escaped by put_code_point()).
22490      *
22491      * NOTE:  This is designed only for printing ranges of code points that fit
22492      *        inside an ANYOF bitmap.  Higher code points are simply suppressed
22493      */
22494 
22495     const unsigned int min_range_count = 3;
22496 
22497     assert(start <= end);
22498 
22499     PERL_ARGS_ASSERT_PUT_RANGE;
22500 
22501     while (start <= end) {
22502         UV this_end;
22503         const char * format;
22504 
22505         if (    end - start < min_range_count
22506             && (end - start <= 2 || (isPRINT_A(start) && isPRINT_A(end))))
22507         {
22508             /* Output a range of 1 or 2 chars individually, or longer ranges
22509              * when printable */
22510             for (; start <= end; start++) {
22511                 put_code_point(sv, start);
22512             }
22513             break;
22514         }
22515 
22516         /* If permitted by the input options, and there is a possibility that
22517          * this range contains a printable literal, look to see if there is
22518          * one. */
22519         if (allow_literals && start <= MAX_PRINT_A) {
22520 
22521             /* If the character at the beginning of the range isn't an ASCII
22522              * printable, effectively split the range into two parts:
22523              *  1) the portion before the first such printable,
22524              *  2) the rest
22525              * and output them separately. */
22526             if (! isPRINT_A(start)) {
22527                 UV temp_end = start + 1;
22528 
22529                 /* There is no point looking beyond the final possible
22530                  * printable, in MAX_PRINT_A */
22531                 UV max = MIN(end, MAX_PRINT_A);
22532 
22533                 while (temp_end <= max && ! isPRINT_A(temp_end)) {
22534                     temp_end++;
22535                 }
22536 
22537                 /* Here, temp_end points to one beyond the first printable if
22538                  * found, or to one beyond 'max' if not.  If none found, make
22539                  * sure that we use the entire range */
22540                 if (temp_end > MAX_PRINT_A) {
22541                     temp_end = end + 1;
22542                 }
22543 
22544                 /* Output the first part of the split range: the part that
22545                  * doesn't have printables, with the parameter set to not look
22546                  * for literals (otherwise we would infinitely recurse) */
22547                 put_range(sv, start, temp_end - 1, FALSE);
22548 
22549                 /* The 2nd part of the range (if any) starts here. */
22550                 start = temp_end;
22551 
22552                 /* We do a continue, instead of dropping down, because even if
22553                  * the 2nd part is non-empty, it could be so short that we want
22554                  * to output it as individual characters, as tested for at the
22555                  * top of this loop.  */
22556                 continue;
22557             }
22558 
22559             /* Here, 'start' is a printable ASCII.  If it is an alphanumeric,
22560              * output a sub-range of just the digits or letters, then process
22561              * the remaining portion as usual. */
22562             if (isALPHANUMERIC_A(start)) {
22563                 UV mask = (isDIGIT_A(start))
22564                            ? _CC_DIGIT
22565                              : isUPPER_A(start)
22566                                ? _CC_UPPER
22567                                : _CC_LOWER;
22568                 UV temp_end = start + 1;
22569 
22570                 /* Find the end of the sub-range that includes just the
22571                  * characters in the same class as the first character in it */
22572                 while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
22573                     temp_end++;
22574                 }
22575                 temp_end--;
22576 
22577                 /* For short ranges, don't duplicate the code above to output
22578                  * them; just call recursively */
22579                 if (temp_end - start < min_range_count) {
22580                     put_range(sv, start, temp_end, FALSE);
22581                 }
22582                 else {  /* Output as a range */
22583                     put_code_point(sv, start);
22584                     sv_catpvs(sv, "-");
22585                     put_code_point(sv, temp_end);
22586                 }
22587                 start = temp_end + 1;
22588                 continue;
22589             }
22590 
22591             /* We output any other printables as individual characters */
22592             if (isPUNCT_A(start) || isSPACE_A(start)) {
22593                 while (start <= end && (isPUNCT_A(start)
22594                                         || isSPACE_A(start)))
22595                 {
22596                     put_code_point(sv, start);
22597                     start++;
22598                 }
22599                 continue;
22600             }
22601         } /* End of looking for literals */
22602 
22603         /* Here is not to output as a literal.  Some control characters have
22604          * mnemonic names.  Split off any of those at the beginning and end of
22605          * the range to print mnemonically.  It isn't possible for many of
22606          * these to be in a row, so this won't overwhelm with output */
22607         if (   start <= end
22608             && (isMNEMONIC_CNTRL(start) || isMNEMONIC_CNTRL(end)))
22609         {
22610             while (isMNEMONIC_CNTRL(start) && start <= end) {
22611                 put_code_point(sv, start);
22612                 start++;
22613             }
22614 
22615             /* If this didn't take care of the whole range ... */
22616             if (start <= end) {
22617 
22618                 /* Look backwards from the end to find the final non-mnemonic
22619                  * */
22620                 UV temp_end = end;
22621                 while (isMNEMONIC_CNTRL(temp_end)) {
22622                     temp_end--;
22623                 }
22624 
22625                 /* And separately output the interior range that doesn't start
22626                  * or end with mnemonics */
22627                 put_range(sv, start, temp_end, FALSE);
22628 
22629                 /* Then output the mnemonic trailing controls */
22630                 start = temp_end + 1;
22631                 while (start <= end) {
22632                     put_code_point(sv, start);
22633                     start++;
22634                 }
22635                 break;
22636             }
22637         }
22638 
22639         /* As a final resort, output the range or subrange as hex. */
22640 
22641         if (start >= NUM_ANYOF_CODE_POINTS) {
22642             this_end = end;
22643         }
22644         else {  /* Have to split range at the bitmap boundary */
22645             this_end = (end < NUM_ANYOF_CODE_POINTS)
22646                         ? end
22647                         : NUM_ANYOF_CODE_POINTS - 1;
22648         }
22649 #if NUM_ANYOF_CODE_POINTS > 256
22650         format = (this_end < 256)
22651                  ? "\\x%02" UVXf "-\\x%02" UVXf
22652                  : "\\x{%04" UVXf "}-\\x{%04" UVXf "}";
22653 #else
22654         format = "\\x%02" UVXf "-\\x%02" UVXf;
22655 #endif
22656         GCC_DIAG_IGNORE_STMT(-Wformat-nonliteral);
22657         Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
22658         GCC_DIAG_RESTORE_STMT;
22659         break;
22660     }
22661 }
22662 
22663 STATIC void
S_put_charclass_bitmap_innards_invlist(pTHX_ SV * sv,SV * invlist)22664 S_put_charclass_bitmap_innards_invlist(pTHX_ SV *sv, SV* invlist)
22665 {
22666     /* Concatenate onto the PV in 'sv' a displayable form of the inversion list
22667      * 'invlist' */
22668 
22669     UV start, end;
22670     bool allow_literals = TRUE;
22671 
22672     PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS_INVLIST;
22673 
22674     /* Generally, it is more readable if printable characters are output as
22675      * literals, but if a range (nearly) spans all of them, it's best to output
22676      * it as a single range.  This code will use a single range if all but 2
22677      * ASCII printables are in it */
22678     invlist_iterinit(invlist);
22679     while (invlist_iternext(invlist, &start, &end)) {
22680 
22681         /* If the range starts beyond the final printable, it doesn't have any
22682          * in it */
22683         if (start > MAX_PRINT_A) {
22684             break;
22685         }
22686 
22687         /* In both ASCII and EBCDIC, a SPACE is the lowest printable.  To span
22688          * all but two, the range must start and end no later than 2 from
22689          * either end */
22690         if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
22691             if (end > MAX_PRINT_A) {
22692                 end = MAX_PRINT_A;
22693             }
22694             if (start < ' ') {
22695                 start = ' ';
22696             }
22697             if (end - start >= MAX_PRINT_A - ' ' - 2) {
22698                 allow_literals = FALSE;
22699             }
22700             break;
22701         }
22702     }
22703     invlist_iterfinish(invlist);
22704 
22705     /* Here we have figured things out.  Output each range */
22706     invlist_iterinit(invlist);
22707     while (invlist_iternext(invlist, &start, &end)) {
22708         if (start >= NUM_ANYOF_CODE_POINTS) {
22709             break;
22710         }
22711         put_range(sv, start, end, allow_literals);
22712     }
22713     invlist_iterfinish(invlist);
22714 
22715     return;
22716 }
22717 
22718 STATIC SV*
S_put_charclass_bitmap_innards_common(pTHX_ SV * invlist,SV * posixes,SV * only_utf8,SV * not_utf8,SV * only_utf8_locale,const bool invert)22719 S_put_charclass_bitmap_innards_common(pTHX_
22720         SV* invlist,            /* The bitmap */
22721         SV* posixes,            /* Under /l, things like [:word:], \S */
22722         SV* only_utf8,          /* Under /d, matches iff the target is UTF-8 */
22723         SV* not_utf8,           /* /d, matches iff the target isn't UTF-8 */
22724         SV* only_utf8_locale,   /* Under /l, matches if the locale is UTF-8 */
22725         const bool invert       /* Is the result to be inverted? */
22726 )
22727 {
22728     /* Create and return an SV containing a displayable version of the bitmap
22729      * and associated information determined by the input parameters.  If the
22730      * output would have been only the inversion indicator '^', NULL is instead
22731      * returned. */
22732 
22733     SV * output;
22734 
22735     PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS_COMMON;
22736 
22737     if (invert) {
22738         output = newSVpvs("^");
22739     }
22740     else {
22741         output = newSVpvs("");
22742     }
22743 
22744     /* First, the code points in the bitmap that are unconditionally there */
22745     put_charclass_bitmap_innards_invlist(output, invlist);
22746 
22747     /* Traditionally, these have been placed after the main code points */
22748     if (posixes) {
22749         sv_catsv(output, posixes);
22750     }
22751 
22752     if (only_utf8 && _invlist_len(only_utf8)) {
22753         Perl_sv_catpvf(aTHX_ output, "%s{utf8}%s", PL_colors[1], PL_colors[0]);
22754         put_charclass_bitmap_innards_invlist(output, only_utf8);
22755     }
22756 
22757     if (not_utf8 && _invlist_len(not_utf8)) {
22758         Perl_sv_catpvf(aTHX_ output, "%s{not utf8}%s", PL_colors[1], PL_colors[0]);
22759         put_charclass_bitmap_innards_invlist(output, not_utf8);
22760     }
22761 
22762     if (only_utf8_locale && _invlist_len(only_utf8_locale)) {
22763         Perl_sv_catpvf(aTHX_ output, "%s{utf8 locale}%s", PL_colors[1], PL_colors[0]);
22764         put_charclass_bitmap_innards_invlist(output, only_utf8_locale);
22765 
22766         /* This is the only list in this routine that can legally contain code
22767          * points outside the bitmap range.  The call just above to
22768          * 'put_charclass_bitmap_innards_invlist' will simply suppress them, so
22769          * output them here.  There's about a half-dozen possible, and none in
22770          * contiguous ranges longer than 2 */
22771         if (invlist_highest(only_utf8_locale) >= NUM_ANYOF_CODE_POINTS) {
22772             UV start, end;
22773             SV* above_bitmap = NULL;
22774 
22775             _invlist_subtract(only_utf8_locale, PL_InBitmap, &above_bitmap);
22776 
22777             invlist_iterinit(above_bitmap);
22778             while (invlist_iternext(above_bitmap, &start, &end)) {
22779                 UV i;
22780 
22781                 for (i = start; i <= end; i++) {
22782                     put_code_point(output, i);
22783                 }
22784             }
22785             invlist_iterfinish(above_bitmap);
22786             SvREFCNT_dec_NN(above_bitmap);
22787         }
22788     }
22789 
22790     if (invert && SvCUR(output) == 1) {
22791         return NULL;
22792     }
22793 
22794     return output;
22795 }
22796 
22797 STATIC bool
S_put_charclass_bitmap_innards(pTHX_ SV * sv,char * bitmap,SV * nonbitmap_invlist,SV * only_utf8_locale_invlist,const regnode * const node,const U8 flags,const bool force_as_is_display)22798 S_put_charclass_bitmap_innards(pTHX_ SV *sv,
22799                                      char *bitmap,
22800                                      SV *nonbitmap_invlist,
22801                                      SV *only_utf8_locale_invlist,
22802                                      const regnode * const node,
22803                                      const U8 flags,
22804                                      const bool force_as_is_display)
22805 {
22806     /* Appends to 'sv' a displayable version of the innards of the bracketed
22807      * character class defined by the other arguments:
22808      *  'bitmap' points to the bitmap, or NULL if to ignore that.
22809      *  'nonbitmap_invlist' is an inversion list of the code points that are in
22810      *      the bitmap range, but for some reason aren't in the bitmap; NULL if
22811      *      none.  The reasons for this could be that they require some
22812      *      condition such as the target string being or not being in UTF-8
22813      *      (under /d), or because they came from a user-defined property that
22814      *      was not resolved at the time of the regex compilation (under /u)
22815      *  'only_utf8_locale_invlist' is an inversion list of the code points that
22816      *      are valid only if the runtime locale is a UTF-8 one; NULL if none
22817      *  'node' is the regex pattern ANYOF node.  It is needed only when the
22818      *      above two parameters are not null, and is passed so that this
22819      *      routine can tease apart the various reasons for them.
22820      *  'flags' is the flags field of 'node'
22821      *  'force_as_is_display' is TRUE if this routine should definitely NOT try
22822      *      to invert things to see if that leads to a cleaner display.  If
22823      *      FALSE, this routine is free to use its judgment about doing this.
22824      *
22825      * It returns TRUE if there was actually something output.  (It may be that
22826      * the bitmap, etc is empty.)
22827      *
22828      * When called for outputting the bitmap of a non-ANYOF node, just pass the
22829      * bitmap, with the succeeding parameters set to NULL, and the final one to
22830      * FALSE.
22831      */
22832 
22833     /* In general, it tries to display the 'cleanest' representation of the
22834      * innards, choosing whether to display them inverted or not, regardless of
22835      * whether the class itself is to be inverted.  However,  there are some
22836      * cases where it can't try inverting, as what actually matches isn't known
22837      * until runtime, and hence the inversion isn't either. */
22838 
22839     bool inverting_allowed = ! force_as_is_display;
22840 
22841     int i;
22842     STRLEN orig_sv_cur = SvCUR(sv);
22843 
22844     SV* invlist;            /* Inversion list we accumulate of code points that
22845                                are unconditionally matched */
22846     SV* only_utf8 = NULL;   /* Under /d, list of matches iff the target is
22847                                UTF-8 */
22848     SV* not_utf8 =  NULL;   /* /d, list of matches iff the target isn't UTF-8
22849                              */
22850     SV* posixes = NULL;     /* Under /l, string of things like [:word:], \D */
22851     SV* only_utf8_locale = NULL;    /* Under /l, list of matches if the locale
22852                                        is UTF-8 */
22853 
22854     SV* as_is_display;      /* The output string when we take the inputs
22855                                literally */
22856     SV* inverted_display;   /* The output string when we invert the inputs */
22857 
22858     bool invert = cBOOL(flags & ANYOF_INVERT);  /* Is the input to be inverted
22859                                                    to match? */
22860     /* We are biased in favor of displaying things without them being inverted,
22861      * as that is generally easier to understand */
22862     const int bias = 5;
22863 
22864     PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
22865 
22866     /* Start off with whatever code points are passed in.  (We clone, so we
22867      * don't change the caller's list) */
22868     if (nonbitmap_invlist) {
22869         assert(invlist_highest(nonbitmap_invlist) < NUM_ANYOF_CODE_POINTS);
22870         invlist = invlist_clone(nonbitmap_invlist, NULL);
22871     }
22872     else {  /* Worst case size is every other code point is matched */
22873         invlist = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
22874     }
22875 
22876     if (flags) {
22877         if (OP(node) == ANYOFD) {
22878 
22879             /* This flag indicates that the code points below 0x100 in the
22880              * nonbitmap list are precisely the ones that match only when the
22881              * target is UTF-8 (they should all be non-ASCII). */
22882             if (flags & ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)
22883             {
22884                 _invlist_intersection(invlist, PL_UpperLatin1, &only_utf8);
22885                 _invlist_subtract(invlist, only_utf8, &invlist);
22886             }
22887 
22888             /* And this flag for matching all non-ASCII 0xFF and below */
22889             if (flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER)
22890             {
22891                 not_utf8 = invlist_clone(PL_UpperLatin1, NULL);
22892             }
22893         }
22894         else if (OP(node) == ANYOFL || OP(node) == ANYOFPOSIXL) {
22895 
22896             /* If either of these flags are set, what matches isn't
22897              * determinable except during execution, so don't know enough here
22898              * to invert */
22899             if (flags & (ANYOFL_FOLD|ANYOF_MATCHES_POSIXL)) {
22900                 inverting_allowed = FALSE;
22901             }
22902 
22903             /* What the posix classes match also varies at runtime, so these
22904              * will be output symbolically. */
22905             if (ANYOF_POSIXL_TEST_ANY_SET(node)) {
22906                 int i;
22907 
22908                 posixes = newSVpvs("");
22909                 for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
22910                     if (ANYOF_POSIXL_TEST(node, i)) {
22911                         sv_catpv(posixes, anyofs[i]);
22912                     }
22913                 }
22914             }
22915         }
22916     }
22917 
22918     /* Accumulate the bit map into the unconditional match list */
22919     if (bitmap) {
22920         for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
22921             if (BITMAP_TEST(bitmap, i)) {
22922                 int start = i++;
22923                 for (;
22924                      i < NUM_ANYOF_CODE_POINTS && BITMAP_TEST(bitmap, i);
22925                      i++)
22926                 { /* empty */ }
22927                 invlist = _add_range_to_invlist(invlist, start, i-1);
22928             }
22929         }
22930     }
22931 
22932     /* Make sure that the conditional match lists don't have anything in them
22933      * that match unconditionally; otherwise the output is quite confusing.
22934      * This could happen if the code that populates these misses some
22935      * duplication. */
22936     if (only_utf8) {
22937         _invlist_subtract(only_utf8, invlist, &only_utf8);
22938     }
22939     if (not_utf8) {
22940         _invlist_subtract(not_utf8, invlist, &not_utf8);
22941     }
22942 
22943     if (only_utf8_locale_invlist) {
22944 
22945         /* Since this list is passed in, we have to make a copy before
22946          * modifying it */
22947         only_utf8_locale = invlist_clone(only_utf8_locale_invlist, NULL);
22948 
22949         _invlist_subtract(only_utf8_locale, invlist, &only_utf8_locale);
22950 
22951         /* And, it can get really weird for us to try outputting an inverted
22952          * form of this list when it has things above the bitmap, so don't even
22953          * try */
22954         if (invlist_highest(only_utf8_locale) >= NUM_ANYOF_CODE_POINTS) {
22955             inverting_allowed = FALSE;
22956         }
22957     }
22958 
22959     /* Calculate what the output would be if we take the input as-is */
22960     as_is_display = put_charclass_bitmap_innards_common(invlist,
22961                                                     posixes,
22962                                                     only_utf8,
22963                                                     not_utf8,
22964                                                     only_utf8_locale,
22965                                                     invert);
22966 
22967     /* If have to take the output as-is, just do that */
22968     if (! inverting_allowed) {
22969         if (as_is_display) {
22970             sv_catsv(sv, as_is_display);
22971             SvREFCNT_dec_NN(as_is_display);
22972         }
22973     }
22974     else { /* But otherwise, create the output again on the inverted input, and
22975               use whichever version is shorter */
22976 
22977         int inverted_bias, as_is_bias;
22978 
22979         /* We will apply our bias to whichever of the results doesn't have
22980          * the '^' */
22981         if (invert) {
22982             invert = FALSE;
22983             as_is_bias = bias;
22984             inverted_bias = 0;
22985         }
22986         else {
22987             invert = TRUE;
22988             as_is_bias = 0;
22989             inverted_bias = bias;
22990         }
22991 
22992         /* Now invert each of the lists that contribute to the output,
22993          * excluding from the result things outside the possible range */
22994 
22995         /* For the unconditional inversion list, we have to add in all the
22996          * conditional code points, so that when inverted, they will be gone
22997          * from it */
22998         _invlist_union(only_utf8, invlist, &invlist);
22999         _invlist_union(not_utf8, invlist, &invlist);
23000         _invlist_union(only_utf8_locale, invlist, &invlist);
23001         _invlist_invert(invlist);
23002         _invlist_intersection(invlist, PL_InBitmap, &invlist);
23003 
23004         if (only_utf8) {
23005             _invlist_invert(only_utf8);
23006             _invlist_intersection(only_utf8, PL_UpperLatin1, &only_utf8);
23007         }
23008         else if (not_utf8) {
23009 
23010             /* If a code point matches iff the target string is not in UTF-8,
23011              * then complementing the result has it not match iff not in UTF-8,
23012              * which is the same thing as matching iff it is UTF-8. */
23013             only_utf8 = not_utf8;
23014             not_utf8 = NULL;
23015         }
23016 
23017         if (only_utf8_locale) {
23018             _invlist_invert(only_utf8_locale);
23019             _invlist_intersection(only_utf8_locale,
23020                                   PL_InBitmap,
23021                                   &only_utf8_locale);
23022         }
23023 
23024         inverted_display = put_charclass_bitmap_innards_common(
23025                                             invlist,
23026                                             posixes,
23027                                             only_utf8,
23028                                             not_utf8,
23029                                             only_utf8_locale, invert);
23030 
23031         /* Use the shortest representation, taking into account our bias
23032          * against showing it inverted */
23033         if (   inverted_display
23034             && (   ! as_is_display
23035                 || (  SvCUR(inverted_display) + inverted_bias
23036                     < SvCUR(as_is_display)    + as_is_bias)))
23037         {
23038             sv_catsv(sv, inverted_display);
23039         }
23040         else if (as_is_display) {
23041             sv_catsv(sv, as_is_display);
23042         }
23043 
23044         SvREFCNT_dec(as_is_display);
23045         SvREFCNT_dec(inverted_display);
23046     }
23047 
23048     SvREFCNT_dec_NN(invlist);
23049     SvREFCNT_dec(only_utf8);
23050     SvREFCNT_dec(not_utf8);
23051     SvREFCNT_dec(posixes);
23052     SvREFCNT_dec(only_utf8_locale);
23053 
23054     return SvCUR(sv) > orig_sv_cur;
23055 }
23056 
23057 #define CLEAR_OPTSTART                                                       \
23058     if (optstart) STMT_START {                                               \
23059         DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_                                           \
23060                               " (%" IVdf " nodes)\n", (IV)(node - optstart))); \
23061         optstart=NULL;                                                       \
23062     } STMT_END
23063 
23064 #define DUMPUNTIL(b,e)                                                       \
23065                     CLEAR_OPTSTART;                                          \
23066                     node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
23067 
23068 STATIC const regnode *
S_dumpuntil(pTHX_ const regexp * r,const regnode * start,const regnode * node,const regnode * last,const regnode * plast,SV * sv,I32 indent,U32 depth)23069 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
23070             const regnode *last, const regnode *plast,
23071             SV* sv, I32 indent, U32 depth)
23072 {
23073     U8 op = PSEUDO;	/* Arbitrary non-END op. */
23074     const regnode *next;
23075     const regnode *optstart= NULL;
23076 
23077     RXi_GET_DECL(r, ri);
23078     DECLARE_AND_GET_RE_DEBUG_FLAGS;
23079 
23080     PERL_ARGS_ASSERT_DUMPUNTIL;
23081 
23082 #ifdef DEBUG_DUMPUNTIL
23083     Perl_re_printf( aTHX_  "--- %d : %d - %d - %d\n", indent, node-start,
23084         last ? last-start : 0, plast ? plast-start : 0);
23085 #endif
23086 
23087     if (plast && plast < last)
23088         last= plast;
23089 
23090     while (PL_regkind[op] != END && (!last || node < last)) {
23091         assert(node);
23092         /* While that wasn't END last time... */
23093         NODE_ALIGN(node);
23094         op = OP(node);
23095         if (op == CLOSE || op == SRCLOSE || op == WHILEM)
23096             indent--;
23097         next = regnext((regnode *)node);
23098 
23099         /* Where, what. */
23100         if (OP(node) == OPTIMIZED) {
23101             if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
23102                 optstart = node;
23103             else
23104                 goto after_print;
23105         } else
23106             CLEAR_OPTSTART;
23107 
23108         regprop(r, sv, node, NULL, NULL);
23109         Perl_re_printf( aTHX_  "%4" IVdf ":%*s%s", (IV)(node - start),
23110                       (int)(2*indent + 1), "", SvPVX_const(sv));
23111 
23112         if (OP(node) != OPTIMIZED) {
23113             if (next == NULL)		/* Next ptr. */
23114                 Perl_re_printf( aTHX_  " (0)");
23115             else if (PL_regkind[(U8)op] == BRANCH
23116                      && PL_regkind[OP(next)] != BRANCH )
23117                 Perl_re_printf( aTHX_  " (FAIL)");
23118             else
23119                 Perl_re_printf( aTHX_  " (%" IVdf ")", (IV)(next - start));
23120             Perl_re_printf( aTHX_ "\n");
23121         }
23122 
23123       after_print:
23124         if (PL_regkind[(U8)op] == BRANCHJ) {
23125             assert(next);
23126             {
23127                 const regnode *nnode = (OP(next) == LONGJMP
23128                                        ? regnext((regnode *)next)
23129                                        : next);
23130                 if (last && nnode > last)
23131                     nnode = last;
23132                 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
23133             }
23134         }
23135         else if (PL_regkind[(U8)op] == BRANCH) {
23136             assert(next);
23137             DUMPUNTIL(NEXTOPER(node), next);
23138         }
23139         else if ( PL_regkind[(U8)op]  == TRIE ) {
23140             const regnode *this_trie = node;
23141             const char op = OP(node);
23142             const U32 n = ARG(node);
23143             const reg_ac_data * const ac = op>=AHOCORASICK ?
23144                (reg_ac_data *)ri->data->data[n] :
23145                NULL;
23146             const reg_trie_data * const trie =
23147                 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
23148 #ifdef DEBUGGING
23149             AV *const trie_words
23150                            = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
23151 #endif
23152             const regnode *nextbranch= NULL;
23153             I32 word_idx;
23154             SvPVCLEAR(sv);
23155             for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
23156                 SV ** const elem_ptr = av_fetch(trie_words, word_idx, 0);
23157 
23158                 Perl_re_indentf( aTHX_  "%s ",
23159                     indent+3,
23160                     elem_ptr
23161                     ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
23162                                 SvCUR(*elem_ptr), PL_dump_re_max_len,
23163                                 PL_colors[0], PL_colors[1],
23164                                 (SvUTF8(*elem_ptr)
23165                                  ? PERL_PV_ESCAPE_UNI
23166                                  : 0)
23167                                 | PERL_PV_PRETTY_ELLIPSES
23168                                 | PERL_PV_PRETTY_LTGT
23169                             )
23170                     : "???"
23171                 );
23172                 if (trie->jump) {
23173                     U16 dist= trie->jump[word_idx+1];
23174                     Perl_re_printf( aTHX_  "(%" UVuf ")\n",
23175                                (UV)((dist ? this_trie + dist : next) - start));
23176                     if (dist) {
23177                         if (!nextbranch)
23178                             nextbranch= this_trie + trie->jump[0];
23179                         DUMPUNTIL(this_trie + dist, nextbranch);
23180                     }
23181                     if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
23182                         nextbranch= regnext((regnode *)nextbranch);
23183                 } else {
23184                     Perl_re_printf( aTHX_  "\n");
23185                 }
23186             }
23187             if (last && next > last)
23188                 node= last;
23189             else
23190                 node= next;
23191         }
23192         else if ( op == CURLY ) {   /* "next" might be very big: optimizer */
23193             DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
23194                     NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
23195         }
23196         else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
23197             assert(next);
23198             DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
23199         }
23200         else if ( op == PLUS || op == STAR) {
23201             DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
23202         }
23203         else if (PL_regkind[(U8)op] == EXACT || op == ANYOFHs) {
23204             /* Literal string, where present. */
23205             node += NODE_SZ_STR(node) - 1;
23206             node = NEXTOPER(node);
23207         }
23208         else {
23209             node = NEXTOPER(node);
23210             node += regarglen[(U8)op];
23211         }
23212         if (op == CURLYX || op == OPEN || op == SROPEN)
23213             indent++;
23214     }
23215     CLEAR_OPTSTART;
23216 #ifdef DEBUG_DUMPUNTIL
23217     Perl_re_printf( aTHX_  "--- %d\n", (int)indent);
23218 #endif
23219     return node;
23220 }
23221 
23222 #endif	/* DEBUGGING */
23223 
23224 #ifndef PERL_IN_XSUB_RE
23225 
23226 #  include "uni_keywords.h"
23227 
23228 void
Perl_init_uniprops(pTHX)23229 Perl_init_uniprops(pTHX)
23230 {
23231 
23232 #  ifdef DEBUGGING
23233     char * dump_len_string;
23234 
23235     dump_len_string = PerlEnv_getenv("PERL_DUMP_RE_MAX_LEN");
23236     if (   ! dump_len_string
23237         || ! grok_atoUV(dump_len_string, (UV *)&PL_dump_re_max_len, NULL))
23238     {
23239         PL_dump_re_max_len = 60;    /* A reasonable default */
23240     }
23241 #  endif
23242 
23243     PL_user_def_props = newHV();
23244 
23245 #  ifdef USE_ITHREADS
23246 
23247     HvSHAREKEYS_off(PL_user_def_props);
23248     PL_user_def_props_aTHX = aTHX;
23249 
23250 #  endif
23251 
23252     /* Set up the inversion list interpreter-level variables */
23253 
23254     PL_XPosix_ptrs[_CC_ASCII] = _new_invlist_C_array(uni_prop_ptrs[UNI_ASCII]);
23255     PL_XPosix_ptrs[_CC_ALPHANUMERIC] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXALNUM]);
23256     PL_XPosix_ptrs[_CC_ALPHA] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXALPHA]);
23257     PL_XPosix_ptrs[_CC_BLANK] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXBLANK]);
23258     PL_XPosix_ptrs[_CC_CASED] =  _new_invlist_C_array(uni_prop_ptrs[UNI_CASED]);
23259     PL_XPosix_ptrs[_CC_CNTRL] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXCNTRL]);
23260     PL_XPosix_ptrs[_CC_DIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXDIGIT]);
23261     PL_XPosix_ptrs[_CC_GRAPH] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXGRAPH]);
23262     PL_XPosix_ptrs[_CC_LOWER] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXLOWER]);
23263     PL_XPosix_ptrs[_CC_PRINT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXPRINT]);
23264     PL_XPosix_ptrs[_CC_PUNCT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXPUNCT]);
23265     PL_XPosix_ptrs[_CC_SPACE] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXSPACE]);
23266     PL_XPosix_ptrs[_CC_UPPER] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXUPPER]);
23267     PL_XPosix_ptrs[_CC_VERTSPACE] = _new_invlist_C_array(uni_prop_ptrs[UNI_VERTSPACE]);
23268     PL_XPosix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXWORD]);
23269     PL_XPosix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXXDIGIT]);
23270 
23271     PL_Posix_ptrs[_CC_ASCII] = _new_invlist_C_array(uni_prop_ptrs[UNI_ASCII]);
23272     PL_Posix_ptrs[_CC_ALPHANUMERIC] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXALNUM]);
23273     PL_Posix_ptrs[_CC_ALPHA] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXALPHA]);
23274     PL_Posix_ptrs[_CC_BLANK] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXBLANK]);
23275     PL_Posix_ptrs[_CC_CASED] = PL_Posix_ptrs[_CC_ALPHA];
23276     PL_Posix_ptrs[_CC_CNTRL] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXCNTRL]);
23277     PL_Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXDIGIT]);
23278     PL_Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXGRAPH]);
23279     PL_Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXLOWER]);
23280     PL_Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXPRINT]);
23281     PL_Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXPUNCT]);
23282     PL_Posix_ptrs[_CC_SPACE] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXSPACE]);
23283     PL_Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXUPPER]);
23284     PL_Posix_ptrs[_CC_VERTSPACE] = NULL;
23285     PL_Posix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXWORD]);
23286     PL_Posix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXXDIGIT]);
23287 
23288     PL_GCB_invlist = _new_invlist_C_array(_Perl_GCB_invlist);
23289     PL_SB_invlist = _new_invlist_C_array(_Perl_SB_invlist);
23290     PL_WB_invlist = _new_invlist_C_array(_Perl_WB_invlist);
23291     PL_LB_invlist = _new_invlist_C_array(_Perl_LB_invlist);
23292     PL_SCX_invlist = _new_invlist_C_array(_Perl_SCX_invlist);
23293 
23294     PL_InBitmap = _new_invlist_C_array(InBitmap_invlist);
23295     PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
23296     PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
23297     PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
23298 
23299     PL_Assigned_invlist = _new_invlist_C_array(uni_prop_ptrs[UNI_ASSIGNED]);
23300 
23301     PL_utf8_perl_idstart = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_IDSTART]);
23302     PL_utf8_perl_idcont = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_IDCONT]);
23303 
23304     PL_utf8_charname_begin = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_CHARNAME_BEGIN]);
23305     PL_utf8_charname_continue = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_CHARNAME_CONTINUE]);
23306 
23307     PL_in_some_fold = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_ANY_FOLDS]);
23308     PL_HasMultiCharFold = _new_invlist_C_array(uni_prop_ptrs[
23309                                             UNI__PERL_FOLDS_TO_MULTI_CHAR]);
23310     PL_InMultiCharFold = _new_invlist_C_array(uni_prop_ptrs[
23311                                             UNI__PERL_IS_IN_MULTI_CHAR_FOLD]);
23312     PL_utf8_toupper = _new_invlist_C_array(Uppercase_Mapping_invlist);
23313     PL_utf8_tolower = _new_invlist_C_array(Lowercase_Mapping_invlist);
23314     PL_utf8_totitle = _new_invlist_C_array(Titlecase_Mapping_invlist);
23315     PL_utf8_tofold = _new_invlist_C_array(Case_Folding_invlist);
23316     PL_utf8_tosimplefold = _new_invlist_C_array(Simple_Case_Folding_invlist);
23317     PL_utf8_foldclosures = _new_invlist_C_array(_Perl_IVCF_invlist);
23318     PL_utf8_mark = _new_invlist_C_array(uni_prop_ptrs[UNI_M]);
23319     PL_CCC_non0_non230 = _new_invlist_C_array(_Perl_CCC_non0_non230_invlist);
23320     PL_Private_Use = _new_invlist_C_array(uni_prop_ptrs[UNI_CO]);
23321 
23322 #  ifdef UNI_XIDC
23323     /* The below are used only by deprecated functions.  They could be removed */
23324     PL_utf8_xidcont  = _new_invlist_C_array(uni_prop_ptrs[UNI_XIDC]);
23325     PL_utf8_idcont   = _new_invlist_C_array(uni_prop_ptrs[UNI_IDC]);
23326     PL_utf8_xidstart = _new_invlist_C_array(uni_prop_ptrs[UNI_XIDS]);
23327 #  endif
23328 }
23329 
23330 /* These four functions are compiled only in regcomp.c, where they have access
23331  * to the data they return.  They are a way for re_comp.c to get access to that
23332  * data without having to compile the whole data structures. */
23333 
23334 I16
Perl_do_uniprop_match(const char * const key,const U16 key_len)23335 Perl_do_uniprop_match(const char * const key, const U16 key_len)
23336 {
23337     PERL_ARGS_ASSERT_DO_UNIPROP_MATCH;
23338 
23339     return match_uniprop((U8 *) key, key_len);
23340 }
23341 
23342 SV *
Perl_get_prop_definition(pTHX_ const int table_index)23343 Perl_get_prop_definition(pTHX_ const int table_index)
23344 {
23345     PERL_ARGS_ASSERT_GET_PROP_DEFINITION;
23346 
23347     /* Create and return the inversion list */
23348     return _new_invlist_C_array(uni_prop_ptrs[table_index]);
23349 }
23350 
23351 const char * const *
Perl_get_prop_values(const int table_index)23352 Perl_get_prop_values(const int table_index)
23353 {
23354     PERL_ARGS_ASSERT_GET_PROP_VALUES;
23355 
23356     return UNI_prop_value_ptrs[table_index];
23357 }
23358 
23359 const char *
Perl_get_deprecated_property_msg(const Size_t warning_offset)23360 Perl_get_deprecated_property_msg(const Size_t warning_offset)
23361 {
23362     PERL_ARGS_ASSERT_GET_DEPRECATED_PROPERTY_MSG;
23363 
23364     return deprecated_property_msgs[warning_offset];
23365 }
23366 
23367 #  if 0
23368 
23369 This code was mainly added for backcompat to give a warning for non-portable
23370 code points in user-defined properties.  But experiments showed that the
23371 warning in earlier perls were only omitted on overflow, which should be an
23372 error, so there really isnt a backcompat issue, and actually adding the
23373 warning when none was present before might cause breakage, for little gain.  So
23374 khw left this code in, but not enabled.  Tests were never added.
23375 
23376 embed.fnc entry:
23377 Ei	|const char *|get_extended_utf8_msg|const UV cp
23378 
23379 PERL_STATIC_INLINE const char *
23380 S_get_extended_utf8_msg(pTHX_ const UV cp)
23381 {
23382     U8 dummy[UTF8_MAXBYTES + 1];
23383     HV *msgs;
23384     SV **msg;
23385 
23386     uvchr_to_utf8_flags_msgs(dummy, cp, UNICODE_WARN_PERL_EXTENDED,
23387                              &msgs);
23388 
23389     msg = hv_fetchs(msgs, "text", 0);
23390     assert(msg);
23391 
23392     (void) sv_2mortal((SV *) msgs);
23393 
23394     return SvPVX(*msg);
23395 }
23396 
23397 #  endif
23398 #endif /* end of ! PERL_IN_XSUB_RE */
23399 
23400 STATIC REGEXP *
S_compile_wildcard(pTHX_ const char * subpattern,const STRLEN len,const bool ignore_case)23401 S_compile_wildcard(pTHX_ const char * subpattern, const STRLEN len,
23402                          const bool ignore_case)
23403 {
23404     /* Pretends that the input subpattern is qr/subpattern/aam, compiling it
23405      * possibly with /i if the 'ignore_case' parameter is true.  Use /aa
23406      * because nothing outside of ASCII will match.  Use /m because the input
23407      * string may be a bunch of lines strung together.
23408      *
23409      * Also sets up the debugging info */
23410 
23411     U32 flags = PMf_MULTILINE|PMf_WILDCARD;
23412     U32 rx_flags;
23413     SV * subpattern_sv = sv_2mortal(newSVpvn(subpattern, len));
23414     REGEXP * subpattern_re;
23415     DECLARE_AND_GET_RE_DEBUG_FLAGS;
23416 
23417     PERL_ARGS_ASSERT_COMPILE_WILDCARD;
23418 
23419     if (ignore_case) {
23420         flags |= PMf_FOLD;
23421     }
23422     set_regex_charset(&flags, REGEX_ASCII_MORE_RESTRICTED_CHARSET);
23423 
23424     /* Like in op.c, we copy the compile time pm flags to the rx ones */
23425     rx_flags = flags & RXf_PMf_COMPILETIME;
23426 
23427 #ifndef PERL_IN_XSUB_RE
23428     /* Use the core engine if this file is regcomp.c.  That means no
23429      * 'use re "Debug ..." is in effect, so the core engine is sufficient */
23430     subpattern_re = Perl_re_op_compile(aTHX_ &subpattern_sv, 1, NULL,
23431                                              &PL_core_reg_engine,
23432                                              NULL, NULL,
23433                                              rx_flags, flags);
23434 #else
23435     if (isDEBUG_WILDCARD) {
23436         /* Use the special debugging engine if this file is re_comp.c and wants
23437          * to output the wildcard matching.  This uses whatever
23438          * 'use re "Debug ..." is in effect */
23439         subpattern_re = Perl_re_op_compile(aTHX_ &subpattern_sv, 1, NULL,
23440                                                  &my_reg_engine,
23441                                                  NULL, NULL,
23442                                                  rx_flags, flags);
23443     }
23444     else {
23445         /* Use the special wildcard engine if this file is re_comp.c and
23446          * doesn't want to output the wildcard matching.  This uses whatever
23447          * 'use re "Debug ..." is in effect for compilation, but this engine
23448          * structure has been set up so that it uses the core engine for
23449          * execution, so no execution debugging as a result of re.pm will be
23450          * displayed. */
23451         subpattern_re = Perl_re_op_compile(aTHX_ &subpattern_sv, 1, NULL,
23452                                                  &wild_reg_engine,
23453                                                  NULL, NULL,
23454                                                  rx_flags, flags);
23455         /* XXX The above has the effect that any user-supplied regex engine
23456          * won't be called for matching wildcards.  That might be good, or bad.
23457          * It could be changed in several ways.  The reason it is done the
23458          * current way is to avoid having to save and restore
23459          * ^{^RE_DEBUG_FLAGS} around the execution.  save_scalar() perhaps
23460          * could be used.  Another suggestion is to keep the authoritative
23461          * value of the debug flags in a thread-local variable and add set/get
23462          * magic to ${^RE_DEBUG_FLAGS} to keep the C level variable up to date.
23463          * Still another is to pass a flag, say in the engine's intflags that
23464          * would be checked each time before doing the debug output */
23465     }
23466 #endif
23467 
23468     assert(subpattern_re);  /* Should have died if didn't compile successfully */
23469     return subpattern_re;
23470 }
23471 
23472 STATIC I32
S_execute_wildcard(pTHX_ REGEXP * const prog,char * stringarg,char * strend,char * strbeg,SSize_t minend,SV * screamer,U32 nosave)23473 S_execute_wildcard(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
23474          char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
23475 {
23476     I32 result;
23477     DECLARE_AND_GET_RE_DEBUG_FLAGS;
23478 
23479     PERL_ARGS_ASSERT_EXECUTE_WILDCARD;
23480 
23481     ENTER;
23482 
23483     /* The compilation has set things up so that if the program doesn't want to
23484      * see the wildcard matching procedure, it will get the core execution
23485      * engine, which is subject only to -Dr.  So we have to turn that off
23486      * around this procedure */
23487     if (! isDEBUG_WILDCARD) {
23488         /* Note! Casts away 'volatile' */
23489         SAVEI32(PL_debug);
23490         PL_debug &= ~ DEBUG_r_FLAG;
23491     }
23492 
23493     result = CALLREGEXEC(prog, stringarg, strend, strbeg, minend, screamer,
23494                          NULL, nosave);
23495     LEAVE;
23496 
23497     return result;
23498 }
23499 
23500 SV *
S_handle_user_defined_property(pTHX_ const char * name,const STRLEN name_len,const bool is_utf8,const bool to_fold,const bool runtime,const bool deferrable,SV * contents,bool * user_defined_ptr,SV * msg,const STRLEN level)23501 S_handle_user_defined_property(pTHX_
23502 
23503     /* Parses the contents of a user-defined property definition; returning the
23504      * expanded definition if possible.  If so, the return is an inversion
23505      * list.
23506      *
23507      * If there are subroutines that are part of the expansion and which aren't
23508      * known at the time of the call to this function, this returns what
23509      * parse_uniprop_string() returned for the first one encountered.
23510      *
23511      * If an error was found, NULL is returned, and 'msg' gets a suitable
23512      * message appended to it.  (Appending allows the back trace of how we got
23513      * to the faulty definition to be displayed through nested calls of
23514      * user-defined subs.)
23515      *
23516      * The caller IS responsible for freeing any returned SV.
23517      *
23518      * The syntax of the contents is pretty much described in perlunicode.pod,
23519      * but we also allow comments on each line */
23520 
23521     const char * name,          /* Name of property */
23522     const STRLEN name_len,      /* The name's length in bytes */
23523     const bool is_utf8,         /* ? Is 'name' encoded in UTF-8 */
23524     const bool to_fold,         /* ? Is this under /i */
23525     const bool runtime,         /* ? Are we in compile- or run-time */
23526     const bool deferrable,      /* Is it ok for this property's full definition
23527                                    to be deferred until later? */
23528     SV* contents,               /* The property's definition */
23529     bool *user_defined_ptr,     /* This will be set TRUE as we wouldn't be
23530                                    getting called unless this is thought to be
23531                                    a user-defined property */
23532     SV * msg,                   /* Any error or warning msg(s) are appended to
23533                                    this */
23534     const STRLEN level)         /* Recursion level of this call */
23535 {
23536     STRLEN len;
23537     const char * string         = SvPV_const(contents, len);
23538     const char * const e        = string + len;
23539     const bool is_contents_utf8 = cBOOL(SvUTF8(contents));
23540     const STRLEN msgs_length_on_entry = SvCUR(msg);
23541 
23542     const char * s0 = string;   /* Points to first byte in the current line
23543                                    being parsed in 'string' */
23544     const char overflow_msg[] = "Code point too large in \"";
23545     SV* running_definition = NULL;
23546 
23547     PERL_ARGS_ASSERT_HANDLE_USER_DEFINED_PROPERTY;
23548 
23549     *user_defined_ptr = TRUE;
23550 
23551     /* Look at each line */
23552     while (s0 < e) {
23553         const char * s;     /* Current byte */
23554         char op = '+';      /* Default operation is 'union' */
23555         IV   min = 0;       /* range begin code point */
23556         IV   max = -1;      /* and range end */
23557         SV* this_definition;
23558 
23559         /* Skip comment lines */
23560         if (*s0 == '#') {
23561             s0 = strchr(s0, '\n');
23562             if (s0 == NULL) {
23563                 break;
23564             }
23565             s0++;
23566             continue;
23567         }
23568 
23569         /* For backcompat, allow an empty first line */
23570         if (*s0 == '\n') {
23571             s0++;
23572             continue;
23573         }
23574 
23575         /* First character in the line may optionally be the operation */
23576         if (   *s0 == '+'
23577             || *s0 == '!'
23578             || *s0 == '-'
23579             || *s0 == '&')
23580         {
23581             op = *s0++;
23582         }
23583 
23584         /* If the line is one or two hex digits separated by blank space, its
23585          * a range; otherwise it is either another user-defined property or an
23586          * error */
23587 
23588         s = s0;
23589 
23590         if (! isXDIGIT(*s)) {
23591             goto check_if_property;
23592         }
23593 
23594         do { /* Each new hex digit will add 4 bits. */
23595             if (min > ( (IV) MAX_LEGAL_CP >> 4)) {
23596                 s = strchr(s, '\n');
23597                 if (s == NULL) {
23598                     s = e;
23599                 }
23600                 if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
23601                 sv_catpv(msg, overflow_msg);
23602                 Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
23603                                      UTF8fARG(is_contents_utf8, s - s0, s0));
23604                 sv_catpvs(msg, "\"");
23605                 goto return_failure;
23606             }
23607 
23608             /* Accumulate this digit into the value */
23609             min = (min << 4) + READ_XDIGIT(s);
23610         } while (isXDIGIT(*s));
23611 
23612         while (isBLANK(*s)) { s++; }
23613 
23614         /* We allow comments at the end of the line */
23615         if (*s == '#') {
23616             s = strchr(s, '\n');
23617             if (s == NULL) {
23618                 s = e;
23619             }
23620             s++;
23621         }
23622         else if (s < e && *s != '\n') {
23623             if (! isXDIGIT(*s)) {
23624                 goto check_if_property;
23625             }
23626 
23627             /* Look for the high point of the range */
23628             max = 0;
23629             do {
23630                 if (max > ( (IV) MAX_LEGAL_CP >> 4)) {
23631                     s = strchr(s, '\n');
23632                     if (s == NULL) {
23633                         s = e;
23634                     }
23635                     if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
23636                     sv_catpv(msg, overflow_msg);
23637                     Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
23638                                       UTF8fARG(is_contents_utf8, s - s0, s0));
23639                     sv_catpvs(msg, "\"");
23640                     goto return_failure;
23641                 }
23642 
23643                 max = (max << 4) + READ_XDIGIT(s);
23644             } while (isXDIGIT(*s));
23645 
23646             while (isBLANK(*s)) { s++; }
23647 
23648             if (*s == '#') {
23649                 s = strchr(s, '\n');
23650                 if (s == NULL) {
23651                     s = e;
23652                 }
23653             }
23654             else if (s < e && *s != '\n') {
23655                 goto check_if_property;
23656             }
23657         }
23658 
23659         if (max == -1) {    /* The line only had one entry */
23660             max = min;
23661         }
23662         else if (max < min) {
23663             if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
23664             sv_catpvs(msg, "Illegal range in \"");
23665             Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
23666                                 UTF8fARG(is_contents_utf8, s - s0, s0));
23667             sv_catpvs(msg, "\"");
23668             goto return_failure;
23669         }
23670 
23671 #  if 0   /* See explanation at definition above of get_extended_utf8_msg() */
23672 
23673         if (   UNICODE_IS_PERL_EXTENDED(min)
23674             || UNICODE_IS_PERL_EXTENDED(max))
23675         {
23676             if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
23677 
23678             /* If both code points are non-portable, warn only on the lower
23679              * one. */
23680             sv_catpv(msg, get_extended_utf8_msg(
23681                                             (UNICODE_IS_PERL_EXTENDED(min))
23682                                             ? min : max));
23683             sv_catpvs(msg, " in \"");
23684             Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
23685                                  UTF8fARG(is_contents_utf8, s - s0, s0));
23686             sv_catpvs(msg, "\"");
23687         }
23688 
23689 #  endif
23690 
23691         /* Here, this line contains a legal range */
23692         this_definition = sv_2mortal(_new_invlist(2));
23693         this_definition = _add_range_to_invlist(this_definition, min, max);
23694         goto calculate;
23695 
23696       check_if_property:
23697 
23698         /* Here it isn't a legal range line.  See if it is a legal property
23699          * line.  First find the end of the meat of the line */
23700         s = strpbrk(s, "#\n");
23701         if (s == NULL) {
23702             s = e;
23703         }
23704 
23705         /* Ignore trailing blanks in keeping with the requirements of
23706          * parse_uniprop_string() */
23707         s--;
23708         while (s > s0 && isBLANK_A(*s)) {
23709             s--;
23710         }
23711         s++;
23712 
23713         this_definition = parse_uniprop_string(s0, s - s0,
23714                                                is_utf8, to_fold, runtime,
23715                                                deferrable,
23716                                                NULL,
23717                                                user_defined_ptr, msg,
23718                                                (name_len == 0)
23719                                                 ? level /* Don't increase level
23720                                                            if input is empty */
23721                                                 : level + 1
23722                                               );
23723         if (this_definition == NULL) {
23724             goto return_failure;    /* 'msg' should have had the reason
23725                                        appended to it by the above call */
23726         }
23727 
23728         if (! is_invlist(this_definition)) {    /* Unknown at this time */
23729             return newSVsv(this_definition);
23730         }
23731 
23732         if (*s != '\n') {
23733             s = strchr(s, '\n');
23734             if (s == NULL) {
23735                 s = e;
23736             }
23737         }
23738 
23739       calculate:
23740 
23741         switch (op) {
23742             case '+':
23743                 _invlist_union(running_definition, this_definition,
23744                                                         &running_definition);
23745                 break;
23746             case '-':
23747                 _invlist_subtract(running_definition, this_definition,
23748                                                         &running_definition);
23749                 break;
23750             case '&':
23751                 _invlist_intersection(running_definition, this_definition,
23752                                                         &running_definition);
23753                 break;
23754             case '!':
23755                 _invlist_union_complement_2nd(running_definition,
23756                                         this_definition, &running_definition);
23757                 break;
23758             default:
23759                 Perl_croak(aTHX_ "panic: %s: %d: Unexpected operation %d",
23760                                  __FILE__, __LINE__, op);
23761                 break;
23762         }
23763 
23764         /* Position past the '\n' */
23765         s0 = s + 1;
23766     }   /* End of loop through the lines of 'contents' */
23767 
23768     /* Here, we processed all the lines in 'contents' without error.  If we
23769      * didn't add any warnings, simply return success */
23770     if (msgs_length_on_entry == SvCUR(msg)) {
23771 
23772         /* If the expansion was empty, the answer isn't nothing: its an empty
23773          * inversion list */
23774         if (running_definition == NULL) {
23775             running_definition = _new_invlist(1);
23776         }
23777 
23778         return running_definition;
23779     }
23780 
23781     /* Otherwise, add some explanatory text, but we will return success */
23782     goto return_msg;
23783 
23784   return_failure:
23785     running_definition = NULL;
23786 
23787   return_msg:
23788 
23789     if (name_len > 0) {
23790         sv_catpvs(msg, " in expansion of ");
23791         Perl_sv_catpvf(aTHX_ msg, "%" UTF8f, UTF8fARG(is_utf8, name_len, name));
23792     }
23793 
23794     return running_definition;
23795 }
23796 
23797 /* As explained below, certain operations need to take place in the first
23798  * thread created.  These macros switch contexts */
23799 #  ifdef USE_ITHREADS
23800 #    define DECLARATION_FOR_GLOBAL_CONTEXT                                  \
23801                                         PerlInterpreter * save_aTHX = aTHX;
23802 #    define SWITCH_TO_GLOBAL_CONTEXT                                        \
23803                            PERL_SET_CONTEXT((aTHX = PL_user_def_props_aTHX))
23804 #    define RESTORE_CONTEXT  PERL_SET_CONTEXT((aTHX = save_aTHX));
23805 #    define CUR_CONTEXT      aTHX
23806 #    define ORIGINAL_CONTEXT save_aTHX
23807 #  else
23808 #    define DECLARATION_FOR_GLOBAL_CONTEXT    dNOOP
23809 #    define SWITCH_TO_GLOBAL_CONTEXT          NOOP
23810 #    define RESTORE_CONTEXT                   NOOP
23811 #    define CUR_CONTEXT                       NULL
23812 #    define ORIGINAL_CONTEXT                  NULL
23813 #  endif
23814 
23815 STATIC void
S_delete_recursion_entry(pTHX_ void * key)23816 S_delete_recursion_entry(pTHX_ void *key)
23817 {
23818     /* Deletes the entry used to detect recursion when expanding user-defined
23819      * properties.  This is a function so it can be set up to be called even if
23820      * the program unexpectedly quits */
23821 
23822     SV ** current_entry;
23823     const STRLEN key_len = strlen((const char *) key);
23824     DECLARATION_FOR_GLOBAL_CONTEXT;
23825 
23826     SWITCH_TO_GLOBAL_CONTEXT;
23827 
23828     /* If the entry is one of these types, it is a permanent entry, and not the
23829      * one used to detect recursions.  This function should delete only the
23830      * recursion entry */
23831     current_entry = hv_fetch(PL_user_def_props, (const char *) key, key_len, 0);
23832     if (     current_entry
23833         && ! is_invlist(*current_entry)
23834         && ! SvPOK(*current_entry))
23835     {
23836         (void) hv_delete(PL_user_def_props, (const char *) key, key_len,
23837                                                                     G_DISCARD);
23838     }
23839 
23840     RESTORE_CONTEXT;
23841 }
23842 
23843 STATIC SV *
S_get_fq_name(pTHX_ const char * const name,const Size_t name_len,const bool is_utf8,const bool has_colon_colon)23844 S_get_fq_name(pTHX_
23845               const char * const name,    /* The first non-blank in the \p{}, \P{} */
23846               const Size_t name_len,      /* Its length in bytes, not including any trailing space */
23847               const bool is_utf8,         /* ? Is 'name' encoded in UTF-8 */
23848               const bool has_colon_colon
23849              )
23850 {
23851     /* Returns a mortal SV containing the fully qualified version of the input
23852      * name */
23853 
23854     SV * fq_name;
23855 
23856     fq_name = newSVpvs_flags("", SVs_TEMP);
23857 
23858     /* Use the current package if it wasn't included in our input */
23859     if (! has_colon_colon) {
23860         const HV * pkg = (IN_PERL_COMPILETIME)
23861                          ? PL_curstash
23862                          : CopSTASH(PL_curcop);
23863         const char* pkgname = HvNAME(pkg);
23864 
23865         Perl_sv_catpvf(aTHX_ fq_name, "%" UTF8f,
23866                       UTF8fARG(is_utf8, strlen(pkgname), pkgname));
23867         sv_catpvs(fq_name, "::");
23868     }
23869 
23870     Perl_sv_catpvf(aTHX_ fq_name, "%" UTF8f,
23871                          UTF8fARG(is_utf8, name_len, name));
23872     return fq_name;
23873 }
23874 
23875 STATIC SV *
S_parse_uniprop_string(pTHX_ const char * const name,Size_t name_len,const bool is_utf8,const bool to_fold,const bool runtime,const bool deferrable,AV ** strings,bool * user_defined_ptr,SV * msg,const STRLEN level)23876 S_parse_uniprop_string(pTHX_
23877 
23878     /* Parse the interior of a \p{}, \P{}.  Returns its definition if knowable
23879      * now.  If so, the return is an inversion list.
23880      *
23881      * If the property is user-defined, it is a subroutine, which in turn
23882      * may call other subroutines.  This function will call the whole nest of
23883      * them to get the definition they return; if some aren't known at the time
23884      * of the call to this function, the fully qualified name of the highest
23885      * level sub is returned.  It is an error to call this function at runtime
23886      * without every sub defined.
23887      *
23888      * If an error was found, NULL is returned, and 'msg' gets a suitable
23889      * message appended to it.  (Appending allows the back trace of how we got
23890      * to the faulty definition to be displayed through nested calls of
23891      * user-defined subs.)
23892      *
23893      * The caller should NOT try to free any returned inversion list.
23894      *
23895      * Other parameters will be set on return as described below */
23896 
23897     const char * const name,    /* The first non-blank in the \p{}, \P{} */
23898     Size_t name_len,            /* Its length in bytes, not including any
23899                                    trailing space */
23900     const bool is_utf8,         /* ? Is 'name' encoded in UTF-8 */
23901     const bool to_fold,         /* ? Is this under /i */
23902     const bool runtime,         /* TRUE if this is being called at run time */
23903     const bool deferrable,      /* TRUE if it's ok for the definition to not be
23904                                    known at this call */
23905     AV ** strings,              /* To return string property values, like named
23906                                    sequences */
23907     bool *user_defined_ptr,     /* Upon return from this function it will be
23908                                    set to TRUE if any component is a
23909                                    user-defined property */
23910     SV * msg,                   /* Any error or warning msg(s) are appended to
23911                                    this */
23912     const STRLEN level)         /* Recursion level of this call */
23913 {
23914     char* lookup_name;          /* normalized name for lookup in our tables */
23915     unsigned lookup_len;        /* Its length */
23916     enum { Not_Strict = 0,      /* Some properties have stricter name */
23917            Strict,              /* normalization rules, which we decide */
23918            As_Is                /* upon based on parsing */
23919          } stricter = Not_Strict;
23920 
23921     /* nv= or numeric_value=, or possibly one of the cjk numeric properties
23922      * (though it requires extra effort to download them from Unicode and
23923      * compile perl to know about them) */
23924     bool is_nv_type = FALSE;
23925 
23926     unsigned int i, j = 0;
23927     int equals_pos = -1;    /* Where the '=' is found, or negative if none */
23928     int slash_pos  = -1;    /* Where the '/' is found, or negative if none */
23929     int table_index = 0;    /* The entry number for this property in the table
23930                                of all Unicode property names */
23931     bool starts_with_Is = FALSE;  /* ? Does the name start with 'Is' */
23932     Size_t lookup_offset = 0;   /* Used to ignore the first few characters of
23933                                    the normalized name in certain situations */
23934     Size_t non_pkg_begin = 0;   /* Offset of first byte in 'name' that isn't
23935                                    part of a package name */
23936     Size_t lun_non_pkg_begin = 0;   /* Similarly for 'lookup_name' */
23937     bool could_be_user_defined = TRUE;  /* ? Could this be a user-defined
23938                                              property rather than a Unicode
23939                                              one. */
23940     SV * prop_definition = NULL;  /* The returned definition of 'name' or NULL
23941                                      if an error.  If it is an inversion list,
23942                                      it is the definition.  Otherwise it is a
23943                                      string containing the fully qualified sub
23944                                      name of 'name' */
23945     SV * fq_name = NULL;        /* For user-defined properties, the fully
23946                                    qualified name */
23947     bool invert_return = FALSE; /* ? Do we need to complement the result before
23948                                      returning it */
23949     bool stripped_utf8_pkg = FALSE; /* Set TRUE if the input includes an
23950                                        explicit utf8:: package that we strip
23951                                        off  */
23952     /* The expansion of properties that could be either user-defined or
23953      * official unicode ones is deferred until runtime, including a marker for
23954      * those that might be in the latter category.  This boolean indicates if
23955      * we've seen that marker.  If not, what we're parsing can't be such an
23956      * official Unicode property whose expansion was deferred */
23957     bool could_be_deferred_official = FALSE;
23958 
23959     PERL_ARGS_ASSERT_PARSE_UNIPROP_STRING;
23960 
23961     /* The input will be normalized into 'lookup_name' */
23962     Newx(lookup_name, name_len, char);
23963     SAVEFREEPV(lookup_name);
23964 
23965     /* Parse the input. */
23966     for (i = 0; i < name_len; i++) {
23967         char cur = name[i];
23968 
23969         /* Most of the characters in the input will be of this ilk, being parts
23970          * of a name */
23971         if (isIDCONT_A(cur)) {
23972 
23973             /* Case differences are ignored.  Our lookup routine assumes
23974              * everything is lowercase, so normalize to that */
23975             if (isUPPER_A(cur)) {
23976                 lookup_name[j++] = toLOWER_A(cur);
23977                 continue;
23978             }
23979 
23980             if (cur == '_') { /* Don't include these in the normalized name */
23981                 continue;
23982             }
23983 
23984             lookup_name[j++] = cur;
23985 
23986             /* The first character in a user-defined name must be of this type.
23987              * */
23988             if (i - non_pkg_begin == 0 && ! isIDFIRST_A(cur)) {
23989                 could_be_user_defined = FALSE;
23990             }
23991 
23992             continue;
23993         }
23994 
23995         /* Here, the character is not something typically in a name,  But these
23996          * two types of characters (and the '_' above) can be freely ignored in
23997          * most situations.  Later it may turn out we shouldn't have ignored
23998          * them, and we have to reparse, but we don't have enough information
23999          * yet to make that decision */
24000         if (cur == '-' || isSPACE_A(cur)) {
24001             could_be_user_defined = FALSE;
24002             continue;
24003         }
24004 
24005         /* An equals sign or single colon mark the end of the first part of
24006          * the property name */
24007         if (    cur == '='
24008             || (cur == ':' && (i >= name_len - 1 || name[i+1] != ':')))
24009         {
24010             lookup_name[j++] = '='; /* Treat the colon as an '=' */
24011             equals_pos = j; /* Note where it occurred in the input */
24012             could_be_user_defined = FALSE;
24013             break;
24014         }
24015 
24016         /* If this looks like it is a marker we inserted at compile time,
24017          * set a flag and otherwise ignore it.  If it isn't in the final
24018          * position, keep it as it would have been user input. */
24019         if (     UNLIKELY(cur == DEFERRED_COULD_BE_OFFICIAL_MARKERc)
24020             && ! deferrable
24021             &&   could_be_user_defined
24022             &&   i == name_len - 1)
24023         {
24024             name_len--;
24025             could_be_deferred_official = TRUE;
24026             continue;
24027         }
24028 
24029         /* Otherwise, this character is part of the name. */
24030         lookup_name[j++] = cur;
24031 
24032         /* Here it isn't a single colon, so if it is a colon, it must be a
24033          * double colon */
24034         if (cur == ':') {
24035 
24036             /* A double colon should be a package qualifier.  We note its
24037              * position and continue.  Note that one could have
24038              *      pkg1::pkg2::...::foo
24039              * so that the position at the end of the loop will be just after
24040              * the final qualifier */
24041 
24042             i++;
24043             non_pkg_begin = i + 1;
24044             lookup_name[j++] = ':';
24045             lun_non_pkg_begin = j;
24046         }
24047         else { /* Only word chars (and '::') can be in a user-defined name */
24048             could_be_user_defined = FALSE;
24049         }
24050     } /* End of parsing through the lhs of the property name (or all of it if
24051          no rhs) */
24052 
24053 #  define STRLENs(s)  (sizeof("" s "") - 1)
24054 
24055     /* If there is a single package name 'utf8::', it is ambiguous.  It could
24056      * be for a user-defined property, or it could be a Unicode property, as
24057      * all of them are considered to be for that package.  For the purposes of
24058      * parsing the rest of the property, strip it off */
24059     if (non_pkg_begin == STRLENs("utf8::") && memBEGINPs(name, name_len, "utf8::")) {
24060         lookup_name +=  STRLENs("utf8::");
24061         j -=  STRLENs("utf8::");
24062         equals_pos -=  STRLENs("utf8::");
24063         stripped_utf8_pkg = TRUE;
24064     }
24065 
24066     /* Here, we are either done with the whole property name, if it was simple;
24067      * or are positioned just after the '=' if it is compound. */
24068 
24069     if (equals_pos >= 0) {
24070         assert(stricter == Not_Strict); /* We shouldn't have set this yet */
24071 
24072         /* Space immediately after the '=' is ignored */
24073         i++;
24074         for (; i < name_len; i++) {
24075             if (! isSPACE_A(name[i])) {
24076                 break;
24077             }
24078         }
24079 
24080         /* Most punctuation after the equals indicates a subpattern, like
24081          * \p{foo=/bar/} */
24082         if (   isPUNCT_A(name[i])
24083             &&  name[i] != '-'
24084             &&  name[i] != '+'
24085             &&  name[i] != '_'
24086             &&  name[i] != '{'
24087                 /* A backslash means the real delimitter is the next character,
24088                  * but it must be punctuation */
24089             && (name[i] != '\\' || (i < name_len && isPUNCT_A(name[i+1]))))
24090         {
24091             bool special_property = memEQs(lookup_name, j - 1, "name")
24092                                  || memEQs(lookup_name, j - 1, "na");
24093             if (! special_property) {
24094                 /* Find the property.  The table includes the equals sign, so
24095                  * we use 'j' as-is */
24096                 table_index = do_uniprop_match(lookup_name, j);
24097             }
24098             if (special_property || table_index) {
24099                 REGEXP * subpattern_re;
24100                 char open = name[i++];
24101                 char close;
24102                 const char * pos_in_brackets;
24103                 const char * const * prop_values;
24104                 bool escaped = 0;
24105 
24106                 /* Backslash => delimitter is the character following.  We
24107                  * already checked that it is punctuation */
24108                 if (open == '\\') {
24109                     open = name[i++];
24110                     escaped = 1;
24111                 }
24112 
24113                 /* This data structure is constructed so that the matching
24114                  * closing bracket is 3 past its matching opening.  The second
24115                  * set of closing is so that if the opening is something like
24116                  * ']', the closing will be that as well.  Something similar is
24117                  * done in toke.c */
24118                 pos_in_brackets = memCHRs("([<)]>)]>", open);
24119                 close = (pos_in_brackets) ? pos_in_brackets[3] : open;
24120 
24121                 if (    i >= name_len
24122                     ||  name[name_len-1] != close
24123                     || (escaped && name[name_len-2] != '\\')
24124                         /* Also make sure that there are enough characters.
24125                          * e.g., '\\\' would show up incorrectly as legal even
24126                          * though it is too short */
24127                     || (SSize_t) (name_len - i - 1 - escaped) < 0)
24128                 {
24129                     sv_catpvs(msg, "Unicode property wildcard not terminated");
24130                     goto append_name_to_msg;
24131                 }
24132 
24133                 Perl_ck_warner_d(aTHX_
24134                     packWARN(WARN_EXPERIMENTAL__UNIPROP_WILDCARDS),
24135                     "The Unicode property wildcards feature is experimental");
24136 
24137                 if (special_property) {
24138                     const char * error_msg;
24139                     const char * revised_name = name + i;
24140                     Size_t revised_name_len = name_len - (i + 1 + escaped);
24141 
24142                     /* Currently, the only 'special_property' is name, which we
24143                      * lookup in _charnames.pm */
24144 
24145                     if (! load_charnames(newSVpvs("placeholder"),
24146                                          revised_name, revised_name_len,
24147                                          &error_msg))
24148                     {
24149                         sv_catpv(msg, error_msg);
24150                         goto append_name_to_msg;
24151                     }
24152 
24153                     /* Farm this out to a function just to make the current
24154                      * function less unwieldy */
24155                     if (handle_names_wildcard(revised_name, revised_name_len,
24156                                               &prop_definition,
24157                                               strings))
24158                     {
24159                         return prop_definition;
24160                     }
24161 
24162                     goto failed;
24163                 }
24164 
24165                 prop_values = get_prop_values(table_index);
24166 
24167                 /* Now create and compile the wildcard subpattern.  Use /i
24168                  * because the property values are supposed to match with case
24169                  * ignored. */
24170                 subpattern_re = compile_wildcard(name + i,
24171                                                  name_len - i - 1 - escaped,
24172                                                  TRUE /* /i */
24173                                                 );
24174 
24175                 /* For each legal property value, see if the supplied pattern
24176                  * matches it. */
24177                 while (*prop_values) {
24178                     const char * const entry = *prop_values;
24179                     const Size_t len = strlen(entry);
24180                     SV* entry_sv = newSVpvn_flags(entry, len, SVs_TEMP);
24181 
24182                     if (execute_wildcard(subpattern_re,
24183                                  (char *) entry,
24184                                  (char *) entry + len,
24185                                  (char *) entry, 0,
24186                                  entry_sv,
24187                                  0))
24188                     { /* Here, matched.  Add to the returned list */
24189                         Size_t total_len = j + len;
24190                         SV * sub_invlist = NULL;
24191                         char * this_string;
24192 
24193                         /* We know this is a legal \p{property=value}.  Call
24194                          * the function to return the list of code points that
24195                          * match it */
24196                         Newxz(this_string, total_len + 1, char);
24197                         Copy(lookup_name, this_string, j, char);
24198                         my_strlcat(this_string, entry, total_len + 1);
24199                         SAVEFREEPV(this_string);
24200                         sub_invlist = parse_uniprop_string(this_string,
24201                                                            total_len,
24202                                                            is_utf8,
24203                                                            to_fold,
24204                                                            runtime,
24205                                                            deferrable,
24206                                                            NULL,
24207                                                            user_defined_ptr,
24208                                                            msg,
24209                                                            level + 1);
24210                         _invlist_union(prop_definition, sub_invlist,
24211                                        &prop_definition);
24212                     }
24213 
24214                     prop_values++;  /* Next iteration, look at next propvalue */
24215                 } /* End of looking through property values; (the data
24216                      structure is terminated by a NULL ptr) */
24217 
24218                 SvREFCNT_dec_NN(subpattern_re);
24219 
24220                 if (prop_definition) {
24221                     return prop_definition;
24222                 }
24223 
24224                 sv_catpvs(msg, "No Unicode property value wildcard matches:");
24225                 goto append_name_to_msg;
24226             }
24227 
24228             /* Here's how khw thinks we should proceed to handle the properties
24229              * not yet done:    Bidi Mirroring Glyph        can map to ""
24230                                 Bidi Paired Bracket         can map to ""
24231                                 Case Folding  (both full and simple)
24232                                             Shouldn't /i be good enough for Full
24233                                 Decomposition Mapping
24234                                 Equivalent Unified Ideograph    can map to ""
24235                                 Lowercase Mapping  (both full and simple)
24236                                 NFKC Case Fold                  can map to ""
24237                                 Titlecase Mapping  (both full and simple)
24238                                 Uppercase Mapping  (both full and simple)
24239              * Handle these the same way Name is done, using say, _wild.pm, but
24240              * having both loose and full, like in charclass_invlists.h.
24241              * Perhaps move block and script to that as they are somewhat large
24242              * in charclass_invlists.h.
24243              * For properties where the default is the code point itself, such
24244              * as any of the case changing mappings, the string would otherwise
24245              * consist of all Unicode code points in UTF-8 strung together.
24246              * This would be impractical.  So instead, examine their compiled
24247              * pattern, looking at the ssc.  If none, reject the pattern as an
24248              * error.  Otherwise run the pattern against every code point in
24249              * the ssc.  The ssc is kind of like tr18's 3.9 Possible Match Sets
24250              * And it might be good to create an API to return the ssc.
24251              * Or handle them like the algorithmic names are done
24252              */
24253         } /* End of is a wildcard subppattern */
24254 
24255         /* \p{name=...} is handled specially.  Instead of using the normal
24256          * mechanism involving charclass_invlists.h, it uses _charnames.pm
24257          * which has the necessary (huge) data accessible to it, and which
24258          * doesn't get loaded unless necessary.  The legal syntax for names is
24259          * somewhat different than other properties due both to the vagaries of
24260          * a few outlier official names, and the fact that only a few ASCII
24261          * characters are permitted in them */
24262         if (   memEQs(lookup_name, j - 1, "name")
24263             || memEQs(lookup_name, j - 1, "na"))
24264         {
24265             dSP;
24266             HV * table;
24267             SV * character;
24268             const char * error_msg;
24269             CV* lookup_loose;
24270             SV * character_name;
24271             STRLEN character_len;
24272             UV cp;
24273 
24274             stricter = As_Is;
24275 
24276             /* Since the RHS (after skipping initial space) is passed unchanged
24277              * to charnames, and there are different criteria for what are
24278              * legal characters in the name, just parse it here.  A character
24279              * name must begin with an ASCII alphabetic */
24280             if (! isALPHA(name[i])) {
24281                 goto failed;
24282             }
24283             lookup_name[j++] = name[i];
24284 
24285             for (++i; i < name_len; i++) {
24286                 /* Official names can only be in the ASCII range, and only
24287                  * certain characters */
24288                 if (! isASCII(name[i]) || ! isCHARNAME_CONT(name[i])) {
24289                     goto failed;
24290                 }
24291                 lookup_name[j++] = name[i];
24292             }
24293 
24294             /* Finished parsing, save the name into an SV */
24295             character_name = newSVpvn(lookup_name + equals_pos, j - equals_pos);
24296 
24297             /* Make sure _charnames is loaded.  (The parameters give context
24298              * for any errors generated */
24299             table = load_charnames(character_name, name, name_len, &error_msg);
24300             if (table == NULL) {
24301                 sv_catpv(msg, error_msg);
24302                 goto append_name_to_msg;
24303             }
24304 
24305             lookup_loose = get_cvs("_charnames::_loose_regcomp_lookup", 0);
24306             if (! lookup_loose) {
24307                 Perl_croak(aTHX_
24308                        "panic: Can't find '_charnames::_loose_regcomp_lookup");
24309             }
24310 
24311             PUSHSTACKi(PERLSI_REGCOMP);
24312             ENTER ;
24313             SAVETMPS;
24314             save_re_context();
24315 
24316             PUSHMARK(SP) ;
24317             XPUSHs(character_name);
24318             PUTBACK;
24319             call_sv(MUTABLE_SV(lookup_loose), G_SCALAR);
24320 
24321             SPAGAIN ;
24322 
24323             character = POPs;
24324             SvREFCNT_inc_simple_void_NN(character);
24325 
24326             PUTBACK ;
24327             FREETMPS ;
24328             LEAVE ;
24329             POPSTACK;
24330 
24331             if (! SvOK(character)) {
24332                 goto failed;
24333             }
24334 
24335             cp = valid_utf8_to_uvchr((U8 *) SvPVX(character), &character_len);
24336             if (character_len == SvCUR(character)) {
24337                 prop_definition = add_cp_to_invlist(NULL, cp);
24338             }
24339             else {
24340                 AV * this_string;
24341 
24342                 /* First of the remaining characters in the string. */
24343                 char * remaining = SvPVX(character) + character_len;
24344 
24345                 if (strings == NULL) {
24346                     goto failed;    /* XXX Perhaps a specific msg instead, like
24347                                        'not available here' */
24348                 }
24349 
24350                 if (*strings == NULL) {
24351                     *strings = newAV();
24352                 }
24353 
24354                 this_string = newAV();
24355                 av_push(this_string, newSVuv(cp));
24356 
24357                 do {
24358                     cp = valid_utf8_to_uvchr((U8 *) remaining, &character_len);
24359                     av_push(this_string, newSVuv(cp));
24360                     remaining += character_len;
24361                 } while (remaining < SvEND(character));
24362 
24363                 av_push(*strings, (SV *) this_string);
24364             }
24365 
24366             return prop_definition;
24367         }
24368 
24369         /* Certain properties whose values are numeric need special handling.
24370          * They may optionally be prefixed by 'is'.  Ignore that prefix for the
24371          * purposes of checking if this is one of those properties */
24372         if (memBEGINPs(lookup_name, j, "is")) {
24373             lookup_offset = 2;
24374         }
24375 
24376         /* Then check if it is one of these specially-handled properties.  The
24377          * possibilities are hard-coded because easier this way, and the list
24378          * is unlikely to change.
24379          *
24380          * All numeric value type properties are of this ilk, and are also
24381          * special in a different way later on.  So find those first.  There
24382          * are several numeric value type properties in the Unihan DB (which is
24383          * unlikely to be compiled with perl, but we handle it here in case it
24384          * does get compiled).  They all end with 'numeric'.  The interiors
24385          * aren't checked for the precise property.  This would stop working if
24386          * a cjk property were to be created that ended with 'numeric' and
24387          * wasn't a numeric type */
24388         is_nv_type = memEQs(lookup_name + lookup_offset,
24389                        j - 1 - lookup_offset, "numericvalue")
24390                   || memEQs(lookup_name + lookup_offset,
24391                       j - 1 - lookup_offset, "nv")
24392                   || (   memENDPs(lookup_name + lookup_offset,
24393                             j - 1 - lookup_offset, "numeric")
24394                       && (   memBEGINPs(lookup_name + lookup_offset,
24395                                       j - 1 - lookup_offset, "cjk")
24396                           || memBEGINPs(lookup_name + lookup_offset,
24397                                       j - 1 - lookup_offset, "k")));
24398         if (   is_nv_type
24399             || memEQs(lookup_name + lookup_offset,
24400                       j - 1 - lookup_offset, "canonicalcombiningclass")
24401             || memEQs(lookup_name + lookup_offset,
24402                       j - 1 - lookup_offset, "ccc")
24403             || memEQs(lookup_name + lookup_offset,
24404                       j - 1 - lookup_offset, "age")
24405             || memEQs(lookup_name + lookup_offset,
24406                       j - 1 - lookup_offset, "in")
24407             || memEQs(lookup_name + lookup_offset,
24408                       j - 1 - lookup_offset, "presentin"))
24409         {
24410             unsigned int k;
24411 
24412             /* Since the stuff after the '=' is a number, we can't throw away
24413              * '-' willy-nilly, as those could be a minus sign.  Other stricter
24414              * rules also apply.  However, these properties all can have the
24415              * rhs not be a number, in which case they contain at least one
24416              * alphabetic.  In those cases, the stricter rules don't apply.
24417              * But the numeric type properties can have the alphas [Ee] to
24418              * signify an exponent, and it is still a number with stricter
24419              * rules.  So look for an alpha that signifies not-strict */
24420             stricter = Strict;
24421             for (k = i; k < name_len; k++) {
24422                 if (   isALPHA_A(name[k])
24423                     && (! is_nv_type || ! isALPHA_FOLD_EQ(name[k], 'E')))
24424                 {
24425                     stricter = Not_Strict;
24426                     break;
24427                 }
24428             }
24429         }
24430 
24431         if (stricter) {
24432 
24433             /* A number may have a leading '+' or '-'.  The latter is retained
24434              * */
24435             if (name[i] == '+') {
24436                 i++;
24437             }
24438             else if (name[i] == '-') {
24439                 lookup_name[j++] = '-';
24440                 i++;
24441             }
24442 
24443             /* Skip leading zeros including single underscores separating the
24444              * zeros, or between the final leading zero and the first other
24445              * digit */
24446             for (; i < name_len - 1; i++) {
24447                 if (    name[i] != '0'
24448                     && (name[i] != '_' || ! isDIGIT_A(name[i+1])))
24449                 {
24450                     break;
24451                 }
24452             }
24453         }
24454     }
24455     else {  /* No '=' */
24456 
24457        /* Only a few properties without an '=' should be parsed with stricter
24458         * rules.  The list is unlikely to change. */
24459         if (   memBEGINPs(lookup_name, j, "perl")
24460             && memNEs(lookup_name + 4, j - 4, "space")
24461             && memNEs(lookup_name + 4, j - 4, "word"))
24462         {
24463             stricter = Strict;
24464 
24465             /* We set the inputs back to 0 and the code below will reparse,
24466              * using strict */
24467             i = j = 0;
24468         }
24469     }
24470 
24471     /* Here, we have either finished the property, or are positioned to parse
24472      * the remainder, and we know if stricter rules apply.  Finish out, if not
24473      * already done */
24474     for (; i < name_len; i++) {
24475         char cur = name[i];
24476 
24477         /* In all instances, case differences are ignored, and we normalize to
24478          * lowercase */
24479         if (isUPPER_A(cur)) {
24480             lookup_name[j++] = toLOWER(cur);
24481             continue;
24482         }
24483 
24484         /* An underscore is skipped, but not under strict rules unless it
24485          * separates two digits */
24486         if (cur == '_') {
24487             if (    stricter
24488                 && (     i == 0 || (int) i == equals_pos || i == name_len- 1
24489                     || ! isDIGIT_A(name[i-1]) || ! isDIGIT_A(name[i+1])))
24490             {
24491                 lookup_name[j++] = '_';
24492             }
24493             continue;
24494         }
24495 
24496         /* Hyphens are skipped except under strict */
24497         if (cur == '-' && ! stricter) {
24498             continue;
24499         }
24500 
24501         /* XXX Bug in documentation.  It says white space skipped adjacent to
24502          * non-word char.  Maybe we should, but shouldn't skip it next to a dot
24503          * in a number */
24504         if (isSPACE_A(cur) && ! stricter) {
24505             continue;
24506         }
24507 
24508         lookup_name[j++] = cur;
24509 
24510         /* Unless this is a non-trailing slash, we are done with it */
24511         if (i >= name_len - 1 || cur != '/') {
24512             continue;
24513         }
24514 
24515         slash_pos = j;
24516 
24517         /* A slash in the 'numeric value' property indicates that what follows
24518          * is a denominator.  It can have a leading '+' and '0's that should be
24519          * skipped.  But we have never allowed a negative denominator, so treat
24520          * a minus like every other character.  (No need to rule out a second
24521          * '/', as that won't match anything anyway */
24522         if (is_nv_type) {
24523             i++;
24524             if (i < name_len && name[i] == '+') {
24525                 i++;
24526             }
24527 
24528             /* Skip leading zeros including underscores separating digits */
24529             for (; i < name_len - 1; i++) {
24530                 if (   name[i] != '0'
24531                     && (name[i] != '_' || ! isDIGIT_A(name[i+1])))
24532                 {
24533                     break;
24534                 }
24535             }
24536 
24537             /* Store the first real character in the denominator */
24538             if (i < name_len) {
24539                 lookup_name[j++] = name[i];
24540             }
24541         }
24542     }
24543 
24544     /* Here are completely done parsing the input 'name', and 'lookup_name'
24545      * contains a copy, normalized.
24546      *
24547      * This special case is grandfathered in: 'L_' and 'GC=L_' are accepted and
24548      * different from without the underscores.  */
24549     if (  (   UNLIKELY(memEQs(lookup_name, j, "l"))
24550            || UNLIKELY(memEQs(lookup_name, j, "gc=l")))
24551         && UNLIKELY(name[name_len-1] == '_'))
24552     {
24553         lookup_name[j++] = '&';
24554     }
24555 
24556     /* If the original input began with 'In' or 'Is', it could be a subroutine
24557      * call to a user-defined property instead of a Unicode property name. */
24558     if (    name_len - non_pkg_begin > 2
24559         &&  name[non_pkg_begin+0] == 'I'
24560         && (name[non_pkg_begin+1] == 'n' || name[non_pkg_begin+1] == 's'))
24561     {
24562         /* Names that start with In have different characterstics than those
24563          * that start with Is */
24564         if (name[non_pkg_begin+1] == 's') {
24565             starts_with_Is = TRUE;
24566         }
24567     }
24568     else {
24569         could_be_user_defined = FALSE;
24570     }
24571 
24572     if (could_be_user_defined) {
24573         CV* user_sub;
24574 
24575         /* If the user defined property returns the empty string, it could
24576          * easily be because the pattern is being compiled before the data it
24577          * actually needs to compile is available.  This could be argued to be
24578          * a bug in the perl code, but this is a change of behavior for Perl,
24579          * so we handle it.  This means that intentionally returning nothing
24580          * will not be resolved until runtime */
24581         bool empty_return = FALSE;
24582 
24583         /* Here, the name could be for a user defined property, which are
24584          * implemented as subs. */
24585         user_sub = get_cvn_flags(name, name_len, 0);
24586         if (! user_sub) {
24587 
24588             /* Here, the property name could be a user-defined one, but there
24589              * is no subroutine to handle it (as of now).   Defer handling it
24590              * until runtime.  Otherwise, a block defined by Unicode in a later
24591              * release would get the synonym InFoo added for it, and existing
24592              * code that used that name would suddenly break if it referred to
24593              * the property before the sub was declared.  See [perl #134146] */
24594             if (deferrable) {
24595                 goto definition_deferred;
24596             }
24597 
24598             /* Here, we are at runtime, and didn't find the user property.  It
24599              * could be an official property, but only if no package was
24600              * specified, or just the utf8:: package. */
24601             if (could_be_deferred_official) {
24602                 lookup_name += lun_non_pkg_begin;
24603                 j -= lun_non_pkg_begin;
24604             }
24605             else if (! stripped_utf8_pkg) {
24606                 goto unknown_user_defined;
24607             }
24608 
24609             /* Drop down to look up in the official properties */
24610         }
24611         else {
24612             const char insecure[] = "Insecure user-defined property";
24613 
24614             /* Here, there is a sub by the correct name.  Normally we call it
24615              * to get the property definition */
24616             dSP;
24617             SV * user_sub_sv = MUTABLE_SV(user_sub);
24618             SV * error;     /* Any error returned by calling 'user_sub' */
24619             SV * key;       /* The key into the hash of user defined sub names
24620                              */
24621             SV * placeholder;
24622             SV ** saved_user_prop_ptr;      /* Hash entry for this property */
24623 
24624             /* How many times to retry when another thread is in the middle of
24625              * expanding the same definition we want */
24626             PERL_INT_FAST8_T retry_countdown = 10;
24627 
24628             DECLARATION_FOR_GLOBAL_CONTEXT;
24629 
24630             /* If we get here, we know this property is user-defined */
24631             *user_defined_ptr = TRUE;
24632 
24633             /* We refuse to call a potentially tainted subroutine; returning an
24634              * error instead */
24635             if (TAINT_get) {
24636                 if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
24637                 sv_catpvn(msg, insecure, sizeof(insecure) - 1);
24638                 goto append_name_to_msg;
24639             }
24640 
24641             /* In principal, we only call each subroutine property definition
24642              * once during the life of the program.  This guarantees that the
24643              * property definition never changes.  The results of the single
24644              * sub call are stored in a hash, which is used instead for future
24645              * references to this property.  The property definition is thus
24646              * immutable.  But, to allow the user to have a /i-dependent
24647              * definition, we call the sub once for non-/i, and once for /i,
24648              * should the need arise, passing the /i status as a parameter.
24649              *
24650              * We start by constructing the hash key name, consisting of the
24651              * fully qualified subroutine name, preceded by the /i status, so
24652              * that there is a key for /i and a different key for non-/i */
24653             key = newSVpvn(((to_fold) ? "1" : "0"), 1);
24654             fq_name = S_get_fq_name(aTHX_ name, name_len, is_utf8,
24655                                           non_pkg_begin != 0);
24656             sv_catsv(key, fq_name);
24657             sv_2mortal(key);
24658 
24659             /* We only call the sub once throughout the life of the program
24660              * (with the /i, non-/i exception noted above).  That means the
24661              * hash must be global and accessible to all threads.  It is
24662              * created at program start-up, before any threads are created, so
24663              * is accessible to all children.  But this creates some
24664              * complications.
24665              *
24666              * 1) The keys can't be shared, or else problems arise; sharing is
24667              *    turned off at hash creation time
24668              * 2) All SVs in it are there for the remainder of the life of the
24669              *    program, and must be created in the same interpreter context
24670              *    as the hash, or else they will be freed from the wrong pool
24671              *    at global destruction time.  This is handled by switching to
24672              *    the hash's context to create each SV going into it, and then
24673              *    immediately switching back
24674              * 3) All accesses to the hash must be controlled by a mutex, to
24675              *    prevent two threads from getting an unstable state should
24676              *    they simultaneously be accessing it.  The code below is
24677              *    crafted so that the mutex is locked whenever there is an
24678              *    access and unlocked only when the next stable state is
24679              *    achieved.
24680              *
24681              * The hash stores either the definition of the property if it was
24682              * valid, or, if invalid, the error message that was raised.  We
24683              * use the type of SV to distinguish.
24684              *
24685              * There's also the need to guard against the definition expansion
24686              * from infinitely recursing.  This is handled by storing the aTHX
24687              * of the expanding thread during the expansion.  Again the SV type
24688              * is used to distinguish this from the other two cases.  If we
24689              * come to here and the hash entry for this property is our aTHX,
24690              * it means we have recursed, and the code assumes that we would
24691              * infinitely recurse, so instead stops and raises an error.
24692              * (Any recursion has always been treated as infinite recursion in
24693              * this feature.)
24694              *
24695              * If instead, the entry is for a different aTHX, it means that
24696              * that thread has gotten here first, and hasn't finished expanding
24697              * the definition yet.  We just have to wait until it is done.  We
24698              * sleep and retry a few times, returning an error if the other
24699              * thread doesn't complete. */
24700 
24701           re_fetch:
24702             USER_PROP_MUTEX_LOCK;
24703 
24704             /* If we have an entry for this key, the subroutine has already
24705              * been called once with this /i status. */
24706             saved_user_prop_ptr = hv_fetch(PL_user_def_props,
24707                                                    SvPVX(key), SvCUR(key), 0);
24708             if (saved_user_prop_ptr) {
24709 
24710                 /* If the saved result is an inversion list, it is the valid
24711                  * definition of this property */
24712                 if (is_invlist(*saved_user_prop_ptr)) {
24713                     prop_definition = *saved_user_prop_ptr;
24714 
24715                     /* The SV in the hash won't be removed until global
24716                      * destruction, so it is stable and we can unlock */
24717                     USER_PROP_MUTEX_UNLOCK;
24718 
24719                     /* The caller shouldn't try to free this SV */
24720                     return prop_definition;
24721                 }
24722 
24723                 /* Otherwise, if it is a string, it is the error message
24724                  * that was returned when we first tried to evaluate this
24725                  * property.  Fail, and append the message */
24726                 if (SvPOK(*saved_user_prop_ptr)) {
24727                     if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
24728                     sv_catsv(msg, *saved_user_prop_ptr);
24729 
24730                     /* The SV in the hash won't be removed until global
24731                      * destruction, so it is stable and we can unlock */
24732                     USER_PROP_MUTEX_UNLOCK;
24733 
24734                     return NULL;
24735                 }
24736 
24737                 assert(SvIOK(*saved_user_prop_ptr));
24738 
24739                 /* Here, we have an unstable entry in the hash.  Either another
24740                  * thread is in the middle of expanding the property's
24741                  * definition, or we are ourselves recursing.  We use the aTHX
24742                  * in it to distinguish */
24743                 if (SvIV(*saved_user_prop_ptr) != PTR2IV(CUR_CONTEXT)) {
24744 
24745                     /* Here, it's another thread doing the expanding.  We've
24746                      * looked as much as we are going to at the contents of the
24747                      * hash entry.  It's safe to unlock. */
24748                     USER_PROP_MUTEX_UNLOCK;
24749 
24750                     /* Retry a few times */
24751                     if (retry_countdown-- > 0) {
24752                         PerlProc_sleep(1);
24753                         goto re_fetch;
24754                     }
24755 
24756                     if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
24757                     sv_catpvs(msg, "Timeout waiting for another thread to "
24758                                    "define");
24759                     goto append_name_to_msg;
24760                 }
24761 
24762                 /* Here, we are recursing; don't dig any deeper */
24763                 USER_PROP_MUTEX_UNLOCK;
24764 
24765                 if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
24766                 sv_catpvs(msg,
24767                           "Infinite recursion in user-defined property");
24768                 goto append_name_to_msg;
24769             }
24770 
24771             /* Here, this thread has exclusive control, and there is no entry
24772              * for this property in the hash.  So we have the go ahead to
24773              * expand the definition ourselves. */
24774 
24775             PUSHSTACKi(PERLSI_REGCOMP);
24776             ENTER;
24777 
24778             /* Create a temporary placeholder in the hash to detect recursion
24779              * */
24780             SWITCH_TO_GLOBAL_CONTEXT;
24781             placeholder= newSVuv(PTR2IV(ORIGINAL_CONTEXT));
24782             (void) hv_store_ent(PL_user_def_props, key, placeholder, 0);
24783             RESTORE_CONTEXT;
24784 
24785             /* Now that we have a placeholder, we can let other threads
24786              * continue */
24787             USER_PROP_MUTEX_UNLOCK;
24788 
24789             /* Make sure the placeholder always gets destroyed */
24790             SAVEDESTRUCTOR_X(S_delete_recursion_entry, SvPVX(key));
24791 
24792             PUSHMARK(SP);
24793             SAVETMPS;
24794 
24795             /* Call the user's function, with the /i status as a parameter.
24796              * Note that we have gone to a lot of trouble to keep this call
24797              * from being within the locked mutex region. */
24798             XPUSHs(boolSV(to_fold));
24799             PUTBACK;
24800 
24801             /* The following block was taken from swash_init().  Presumably
24802              * they apply to here as well, though we no longer use a swash --
24803              * khw */
24804             SAVEHINTS();
24805             save_re_context();
24806             /* We might get here via a subroutine signature which uses a utf8
24807              * parameter name, at which point PL_subname will have been set
24808              * but not yet used. */
24809             save_item(PL_subname);
24810 
24811             /* G_SCALAR guarantees a single return value */
24812             (void) call_sv(user_sub_sv, G_EVAL|G_SCALAR);
24813 
24814             SPAGAIN;
24815 
24816             error = ERRSV;
24817             if (TAINT_get || SvTRUE(error)) {
24818                 if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
24819                 if (SvTRUE(error)) {
24820                     sv_catpvs(msg, "Error \"");
24821                     sv_catsv(msg, error);
24822                     sv_catpvs(msg, "\"");
24823                 }
24824                 if (TAINT_get) {
24825                     if (SvTRUE(error)) sv_catpvs(msg, "; ");
24826                     sv_catpvn(msg, insecure, sizeof(insecure) - 1);
24827                 }
24828 
24829                 if (name_len > 0) {
24830                     sv_catpvs(msg, " in expansion of ");
24831                     Perl_sv_catpvf(aTHX_ msg, "%" UTF8f, UTF8fARG(is_utf8,
24832                                                                   name_len,
24833                                                                   name));
24834                 }
24835 
24836                 (void) POPs;
24837                 prop_definition = NULL;
24838             }
24839             else {
24840                 SV * contents = POPs;
24841 
24842                 /* The contents is supposed to be the expansion of the property
24843                  * definition.  If the definition is deferrable, and we got an
24844                  * empty string back, set a flag to later defer it (after clean
24845                  * up below). */
24846                 if (      deferrable
24847                     && (! SvPOK(contents) || SvCUR(contents) == 0))
24848                 {
24849                         empty_return = TRUE;
24850                 }
24851                 else { /* Otherwise, call a function to check for valid syntax,
24852                           and handle it */
24853 
24854                     prop_definition = handle_user_defined_property(
24855                                                     name, name_len,
24856                                                     is_utf8, to_fold, runtime,
24857                                                     deferrable,
24858                                                     contents, user_defined_ptr,
24859                                                     msg,
24860                                                     level);
24861                 }
24862             }
24863 
24864             /* Here, we have the results of the expansion.  Delete the
24865              * placeholder, and if the definition is now known, replace it with
24866              * that definition.  We need exclusive access to the hash, and we
24867              * can't let anyone else in, between when we delete the placeholder
24868              * and add the permanent entry */
24869             USER_PROP_MUTEX_LOCK;
24870 
24871             S_delete_recursion_entry(aTHX_ SvPVX(key));
24872 
24873             if (    ! empty_return
24874                 && (! prop_definition || is_invlist(prop_definition)))
24875             {
24876                 /* If we got success we use the inversion list defining the
24877                  * property; otherwise use the error message */
24878                 SWITCH_TO_GLOBAL_CONTEXT;
24879                 (void) hv_store_ent(PL_user_def_props,
24880                                     key,
24881                                     ((prop_definition)
24882                                      ? newSVsv(prop_definition)
24883                                      : newSVsv(msg)),
24884                                     0);
24885                 RESTORE_CONTEXT;
24886             }
24887 
24888             /* All done, and the hash now has a permanent entry for this
24889              * property.  Give up exclusive control */
24890             USER_PROP_MUTEX_UNLOCK;
24891 
24892             FREETMPS;
24893             LEAVE;
24894             POPSTACK;
24895 
24896             if (empty_return) {
24897                 goto definition_deferred;
24898             }
24899 
24900             if (prop_definition) {
24901 
24902                 /* If the definition is for something not known at this time,
24903                  * we toss it, and go return the main property name, as that's
24904                  * the one the user will be aware of */
24905                 if (! is_invlist(prop_definition)) {
24906                     SvREFCNT_dec_NN(prop_definition);
24907                     goto definition_deferred;
24908                 }
24909 
24910                 sv_2mortal(prop_definition);
24911             }
24912 
24913             /* And return */
24914             return prop_definition;
24915 
24916         }   /* End of calling the subroutine for the user-defined property */
24917     }       /* End of it could be a user-defined property */
24918 
24919     /* Here it wasn't a user-defined property that is known at this time.  See
24920      * if it is a Unicode property */
24921 
24922     lookup_len = j;     /* This is a more mnemonic name than 'j' */
24923 
24924     /* Get the index into our pointer table of the inversion list corresponding
24925      * to the property */
24926     table_index = do_uniprop_match(lookup_name, lookup_len);
24927 
24928     /* If it didn't find the property ... */
24929     if (table_index == 0) {
24930 
24931         /* Try again stripping off any initial 'Is'.  This is because we
24932          * promise that an initial Is is optional.  The same isn't true of
24933          * names that start with 'In'.  Those can match only blocks, and the
24934          * lookup table already has those accounted for.  The lookup table also
24935          * has already accounted for Perl extensions (without and = sign)
24936          * starting with 'i's'. */
24937         if (starts_with_Is && equals_pos >= 0) {
24938             lookup_name += 2;
24939             lookup_len -= 2;
24940             equals_pos -= 2;
24941             slash_pos -= 2;
24942 
24943             table_index = do_uniprop_match(lookup_name, lookup_len);
24944         }
24945 
24946         if (table_index == 0) {
24947             char * canonical;
24948 
24949             /* Here, we didn't find it.  If not a numeric type property, and
24950              * can't be a user-defined one, it isn't a legal property */
24951             if (! is_nv_type) {
24952                 if (! could_be_user_defined) {
24953                     goto failed;
24954                 }
24955 
24956                 /* Here, the property name is legal as a user-defined one.   At
24957                  * compile time, it might just be that the subroutine for that
24958                  * property hasn't been encountered yet, but at runtime, it's
24959                  * an error to try to use an undefined one */
24960                 if (! deferrable) {
24961                     goto unknown_user_defined;;
24962                 }
24963 
24964                 goto definition_deferred;
24965             } /* End of isn't a numeric type property */
24966 
24967             /* The numeric type properties need more work to decide.  What we
24968              * do is make sure we have the number in canonical form and look
24969              * that up. */
24970 
24971             if (slash_pos < 0) {    /* No slash */
24972 
24973                 /* When it isn't a rational, take the input, convert it to a
24974                  * NV, then create a canonical string representation of that
24975                  * NV. */
24976 
24977                 NV value;
24978                 SSize_t value_len = lookup_len - equals_pos;
24979 
24980                 /* Get the value */
24981                 if (   value_len <= 0
24982                     || my_atof3(lookup_name + equals_pos, &value,
24983                                 value_len)
24984                           != lookup_name + lookup_len)
24985                 {
24986                     goto failed;
24987                 }
24988 
24989                 /* If the value is an integer, the canonical value is integral
24990                  * */
24991                 if (Perl_ceil(value) == value) {
24992                     canonical = Perl_form(aTHX_ "%.*s%.0" NVff,
24993                                             equals_pos, lookup_name, value);
24994                 }
24995                 else {  /* Otherwise, it is %e with a known precision */
24996                     char * exp_ptr;
24997 
24998                     canonical = Perl_form(aTHX_ "%.*s%.*" NVef,
24999                                                 equals_pos, lookup_name,
25000                                                 PL_E_FORMAT_PRECISION, value);
25001 
25002                     /* The exponent generated is expecting two digits, whereas
25003                      * %e on some systems will generate three.  Remove leading
25004                      * zeros in excess of 2 from the exponent.  We start
25005                      * looking for them after the '=' */
25006                     exp_ptr = strchr(canonical + equals_pos, 'e');
25007                     if (exp_ptr) {
25008                         char * cur_ptr = exp_ptr + 2; /* past the 'e[+-]' */
25009                         SSize_t excess_exponent_len = strlen(cur_ptr) - 2;
25010 
25011                         assert(*(cur_ptr - 1) == '-' || *(cur_ptr - 1) == '+');
25012 
25013                         if (excess_exponent_len > 0) {
25014                             SSize_t leading_zeros = strspn(cur_ptr, "0");
25015                             SSize_t excess_leading_zeros
25016                                     = MIN(leading_zeros, excess_exponent_len);
25017                             if (excess_leading_zeros > 0) {
25018                                 Move(cur_ptr + excess_leading_zeros,
25019                                      cur_ptr,
25020                                      strlen(cur_ptr) - excess_leading_zeros
25021                                        + 1,  /* Copy the NUL as well */
25022                                      char);
25023                             }
25024                         }
25025                     }
25026                 }
25027             }
25028             else {  /* Has a slash.  Create a rational in canonical form  */
25029                 UV numerator, denominator, gcd, trial;
25030                 const char * end_ptr;
25031                 const char * sign = "";
25032 
25033                 /* We can't just find the numerator, denominator, and do the
25034                  * division, then use the method above, because that is
25035                  * inexact.  And the input could be a rational that is within
25036                  * epsilon (given our precision) of a valid rational, and would
25037                  * then incorrectly compare valid.
25038                  *
25039                  * We're only interested in the part after the '=' */
25040                 const char * this_lookup_name = lookup_name + equals_pos;
25041                 lookup_len -= equals_pos;
25042                 slash_pos -= equals_pos;
25043 
25044                 /* Handle any leading minus */
25045                 if (this_lookup_name[0] == '-') {
25046                     sign = "-";
25047                     this_lookup_name++;
25048                     lookup_len--;
25049                     slash_pos--;
25050                 }
25051 
25052                 /* Convert the numerator to numeric */
25053                 end_ptr = this_lookup_name + slash_pos;
25054                 if (! grok_atoUV(this_lookup_name, &numerator, &end_ptr)) {
25055                     goto failed;
25056                 }
25057 
25058                 /* It better have included all characters before the slash */
25059                 if (*end_ptr != '/') {
25060                     goto failed;
25061                 }
25062 
25063                 /* Set to look at just the denominator */
25064                 this_lookup_name += slash_pos;
25065                 lookup_len -= slash_pos;
25066                 end_ptr = this_lookup_name + lookup_len;
25067 
25068                 /* Convert the denominator to numeric */
25069                 if (! grok_atoUV(this_lookup_name, &denominator, &end_ptr)) {
25070                     goto failed;
25071                 }
25072 
25073                 /* It better be the rest of the characters, and don't divide by
25074                  * 0 */
25075                 if (   end_ptr != this_lookup_name + lookup_len
25076                     || denominator == 0)
25077                 {
25078                     goto failed;
25079                 }
25080 
25081                 /* Get the greatest common denominator using
25082                    http://en.wikipedia.org/wiki/Euclidean_algorithm */
25083                 gcd = numerator;
25084                 trial = denominator;
25085                 while (trial != 0) {
25086                     UV temp = trial;
25087                     trial = gcd % trial;
25088                     gcd = temp;
25089                 }
25090 
25091                 /* If already in lowest possible terms, we have already tried
25092                  * looking this up */
25093                 if (gcd == 1) {
25094                     goto failed;
25095                 }
25096 
25097                 /* Reduce the rational, which should put it in canonical form
25098                  * */
25099                 numerator /= gcd;
25100                 denominator /= gcd;
25101 
25102                 canonical = Perl_form(aTHX_ "%.*s%s%" UVuf "/%" UVuf,
25103                         equals_pos, lookup_name, sign, numerator, denominator);
25104             }
25105 
25106             /* Here, we have the number in canonical form.  Try that */
25107             table_index = do_uniprop_match(canonical, strlen(canonical));
25108             if (table_index == 0) {
25109                 goto failed;
25110             }
25111         }   /* End of still didn't find the property in our table */
25112     }       /* End of       didn't find the property in our table */
25113 
25114     /* Here, we have a non-zero return, which is an index into a table of ptrs.
25115      * A negative return signifies that the real index is the absolute value,
25116      * but the result needs to be inverted */
25117     if (table_index < 0) {
25118         invert_return = TRUE;
25119         table_index = -table_index;
25120     }
25121 
25122     /* Out-of band indices indicate a deprecated property.  The proper index is
25123      * modulo it with the table size.  And dividing by the table size yields
25124      * an offset into a table constructed by regen/mk_invlists.pl to contain
25125      * the corresponding warning message */
25126     if (table_index > MAX_UNI_KEYWORD_INDEX) {
25127         Size_t warning_offset = table_index / MAX_UNI_KEYWORD_INDEX;
25128         table_index %= MAX_UNI_KEYWORD_INDEX;
25129         Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED),
25130                 "Use of '%.*s' in \\p{} or \\P{} is deprecated because: %s",
25131                 (int) name_len, name,
25132                 get_deprecated_property_msg(warning_offset));
25133     }
25134 
25135     /* In a few properties, a different property is used under /i.  These are
25136      * unlikely to change, so are hard-coded here. */
25137     if (to_fold) {
25138         if (   table_index == UNI_XPOSIXUPPER
25139             || table_index == UNI_XPOSIXLOWER
25140             || table_index == UNI_TITLE)
25141         {
25142             table_index = UNI_CASED;
25143         }
25144         else if (   table_index == UNI_UPPERCASELETTER
25145                  || table_index == UNI_LOWERCASELETTER
25146 #  ifdef UNI_TITLECASELETTER   /* Missing from early Unicodes */
25147                  || table_index == UNI_TITLECASELETTER
25148 #  endif
25149         ) {
25150             table_index = UNI_CASEDLETTER;
25151         }
25152         else if (  table_index == UNI_POSIXUPPER
25153                 || table_index == UNI_POSIXLOWER)
25154         {
25155             table_index = UNI_POSIXALPHA;
25156         }
25157     }
25158 
25159     /* Create and return the inversion list */
25160     prop_definition = get_prop_definition(table_index);
25161     sv_2mortal(prop_definition);
25162 
25163     /* See if there is a private use override to add to this definition */
25164     {
25165         COPHH * hinthash = (IN_PERL_COMPILETIME)
25166                            ? CopHINTHASH_get(&PL_compiling)
25167                            : CopHINTHASH_get(PL_curcop);
25168         SV * pu_overrides = cophh_fetch_pv(hinthash, "private_use", 0, 0);
25169 
25170         if (UNLIKELY(pu_overrides && SvPOK(pu_overrides))) {
25171 
25172             /* See if there is an element in the hints hash for this table */
25173             SV * pu_lookup = Perl_newSVpvf(aTHX_ "%d=", table_index);
25174             const char * pos = strstr(SvPVX(pu_overrides), SvPVX(pu_lookup));
25175 
25176             if (pos) {
25177                 bool dummy;
25178                 SV * pu_definition;
25179                 SV * pu_invlist;
25180                 SV * expanded_prop_definition =
25181                             sv_2mortal(invlist_clone(prop_definition, NULL));
25182 
25183                 /* If so, it's definition is the string from here to the next
25184                  * \a character.  And its format is the same as a user-defined
25185                  * property */
25186                 pos += SvCUR(pu_lookup);
25187                 pu_definition = newSVpvn(pos, strchr(pos, '\a') - pos);
25188                 pu_invlist = handle_user_defined_property(lookup_name,
25189                                                           lookup_len,
25190                                                           0, /* Not UTF-8 */
25191                                                           0, /* Not folded */
25192                                                           runtime,
25193                                                           deferrable,
25194                                                           pu_definition,
25195                                                           &dummy,
25196                                                           msg,
25197                                                           level);
25198                 if (TAINT_get) {
25199                     if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
25200                     sv_catpvs(msg, "Insecure private-use override");
25201                     goto append_name_to_msg;
25202                 }
25203 
25204                 /* For now, as a safety measure, make sure that it doesn't
25205                  * override non-private use code points */
25206                 _invlist_intersection(pu_invlist, PL_Private_Use, &pu_invlist);
25207 
25208                 /* Add it to the list to be returned */
25209                 _invlist_union(prop_definition, pu_invlist,
25210                                &expanded_prop_definition);
25211                 prop_definition = expanded_prop_definition;
25212                 Perl_ck_warner_d(aTHX_ packWARN(WARN_EXPERIMENTAL__PRIVATE_USE), "The private_use feature is experimental");
25213             }
25214         }
25215     }
25216 
25217     if (invert_return) {
25218         _invlist_invert(prop_definition);
25219     }
25220     return prop_definition;
25221 
25222   unknown_user_defined:
25223     if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
25224     sv_catpvs(msg, "Unknown user-defined property name");
25225     goto append_name_to_msg;
25226 
25227   failed:
25228     if (non_pkg_begin != 0) {
25229         if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
25230         sv_catpvs(msg, "Illegal user-defined property name");
25231     }
25232     else {
25233         if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
25234         sv_catpvs(msg, "Can't find Unicode property definition");
25235     }
25236     /* FALLTHROUGH */
25237 
25238   append_name_to_msg:
25239     {
25240         const char * prefix = (runtime && level == 0) ?  " \\p{" : " \"";
25241         const char * suffix = (runtime && level == 0) ?  "}" : "\"";
25242 
25243         sv_catpv(msg, prefix);
25244         Perl_sv_catpvf(aTHX_ msg, "%" UTF8f, UTF8fARG(is_utf8, name_len, name));
25245         sv_catpv(msg, suffix);
25246     }
25247 
25248     return NULL;
25249 
25250   definition_deferred:
25251 
25252     {
25253         bool is_qualified = non_pkg_begin != 0;  /* If has "::" */
25254 
25255         /* Here it could yet to be defined, so defer evaluation of this until
25256          * its needed at runtime.  We need the fully qualified property name to
25257          * avoid ambiguity */
25258         if (! fq_name) {
25259             fq_name = S_get_fq_name(aTHX_ name, name_len, is_utf8,
25260                                                                 is_qualified);
25261         }
25262 
25263         /* If it didn't come with a package, or the package is utf8::, this
25264          * actually could be an official Unicode property whose inclusion we
25265          * are deferring until runtime to make sure that it isn't overridden by
25266          * a user-defined property of the same name (which we haven't
25267          * encountered yet).  Add a marker to indicate this possibility, for
25268          * use at such time when we first need the definition during pattern
25269          * matching execution */
25270         if (! is_qualified || memBEGINPs(name, non_pkg_begin, "utf8::")) {
25271             sv_catpvs(fq_name, DEFERRED_COULD_BE_OFFICIAL_MARKERs);
25272         }
25273 
25274         /* We also need a trailing newline */
25275         sv_catpvs(fq_name, "\n");
25276 
25277         *user_defined_ptr = TRUE;
25278         return fq_name;
25279     }
25280 }
25281 
25282 STATIC bool
S_handle_names_wildcard(pTHX_ const char * wname,const STRLEN wname_len,SV ** prop_definition,AV ** strings)25283 S_handle_names_wildcard(pTHX_ const char * wname, /* wildcard name to match */
25284                               const STRLEN wname_len, /* Its length */
25285                               SV ** prop_definition,
25286                               AV ** strings)
25287 {
25288     /* Deal with Name property wildcard subpatterns; returns TRUE if there were
25289      * any matches, adding them to prop_definition */
25290 
25291     dSP;
25292 
25293     CV * get_names_info;        /* entry to charnames.pm to get info we need */
25294     SV * names_string;          /* Contains all character names, except algo */
25295     SV * algorithmic_names;     /* Contains info about algorithmically
25296                                    generated character names */
25297     REGEXP * subpattern_re;     /* The user's pattern to match with */
25298     struct regexp * prog;       /* The compiled pattern */
25299     char * all_names_start;     /* lib/unicore/Name.pl string of every
25300                                    (non-algorithmic) character name */
25301     char * cur_pos;             /* We match, effectively using /gc; this is
25302                                    where we are now */
25303     bool found_matches = FALSE; /* Did any name match so far? */
25304     SV * empty;                 /* For matching zero length names */
25305     SV * must_sv;               /* Contains the substring, if any, that must be
25306                                    in a name for the subpattern to match */
25307     const char * must;          /* The PV of 'must' */
25308     STRLEN must_len;            /* And its length */
25309     SV * syllable_name = NULL;  /* For Hangul syllables */
25310     const char hangul_prefix[] = "HANGUL SYLLABLE ";
25311     const STRLEN hangul_prefix_len = sizeof(hangul_prefix) - 1;
25312 
25313     /* By inspection, there are a maximum of 7 bytes in the suffix of a hangul
25314      * syllable name, and these are immutable and guaranteed by the Unicode
25315      * standard to never be extended */
25316     const STRLEN syl_max_len = hangul_prefix_len + 7;
25317 
25318     IV i;
25319 
25320     PERL_ARGS_ASSERT_HANDLE_NAMES_WILDCARD;
25321 
25322     /* Make sure _charnames is loaded.  (The parameters give context
25323      * for any errors generated */
25324     get_names_info = get_cv("_charnames::_get_names_info", 0);
25325     if (! get_names_info) {
25326         Perl_croak(aTHX_ "panic: Can't find '_charnames::_get_names_info");
25327     }
25328 
25329     /* Get the charnames data */
25330     PUSHSTACKi(PERLSI_REGCOMP);
25331     ENTER ;
25332     SAVETMPS;
25333     save_re_context();
25334 
25335     PUSHMARK(SP) ;
25336     PUTBACK;
25337 
25338     /* Special _charnames entry point that returns the info this routine
25339      * requires */
25340     call_sv(MUTABLE_SV(get_names_info), G_LIST);
25341 
25342     SPAGAIN ;
25343 
25344     /* Data structure for names which end in their very own code points */
25345     algorithmic_names = POPs;
25346     SvREFCNT_inc_simple_void_NN(algorithmic_names);
25347 
25348     /* The lib/unicore/Name.pl string */
25349     names_string = POPs;
25350     SvREFCNT_inc_simple_void_NN(names_string);
25351 
25352     PUTBACK ;
25353     FREETMPS ;
25354     LEAVE ;
25355     POPSTACK;
25356 
25357     if (   ! SvROK(names_string)
25358         || ! SvROK(algorithmic_names))
25359     {   /* Perhaps should panic instead XXX */
25360         SvREFCNT_dec(names_string);
25361         SvREFCNT_dec(algorithmic_names);
25362         return FALSE;
25363     }
25364 
25365     names_string = sv_2mortal(SvRV(names_string));
25366     all_names_start = SvPVX(names_string);
25367     cur_pos = all_names_start;
25368 
25369     algorithmic_names= sv_2mortal(SvRV(algorithmic_names));
25370 
25371     /* Compile the subpattern consisting of the name being looked for */
25372     subpattern_re = compile_wildcard(wname, wname_len, FALSE /* /-i */ );
25373 
25374     must_sv = re_intuit_string(subpattern_re);
25375     if (must_sv) {
25376         /* regexec.c can free the re_intuit_string() return. GH #17734 */
25377         must_sv = sv_2mortal(newSVsv(must_sv));
25378         must = SvPV(must_sv, must_len);
25379     }
25380     else {
25381         must = "";
25382         must_len = 0;
25383     }
25384 
25385     /* (Note: 'must' could contain a NUL.  And yet we use strspn() below on it.
25386      * This works because the NUL causes the function to return early, thus
25387      * showing that there are characters in it other than the acceptable ones,
25388      * which is our desired result.) */
25389 
25390     prog = ReANY(subpattern_re);
25391 
25392     /* If only nothing is matched, skip to where empty names are looked for */
25393     if (prog->maxlen == 0) {
25394         goto check_empty;
25395     }
25396 
25397     /* And match against the string of all names /gc.  Don't even try if it
25398      * must match a character not found in any name. */
25399     if (strspn(must, "\n -0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ()") == must_len)
25400     {
25401         while (execute_wildcard(subpattern_re,
25402                                 cur_pos,
25403                                 SvEND(names_string),
25404                                 all_names_start, 0,
25405                                 names_string,
25406                                 0))
25407         { /* Here, matched. */
25408 
25409             /* Note the string entries look like
25410              *      00001\nSTART OF HEADING\n\n
25411              * so we could match anywhere in that string.  We have to rule out
25412              * matching a code point line */
25413             char * this_name_start = all_names_start
25414                                                 + RX_OFFS(subpattern_re)->start;
25415             char * this_name_end   = all_names_start
25416                                                 + RX_OFFS(subpattern_re)->end;
25417             char * cp_start;
25418             char * cp_end;
25419             UV cp = 0;      /* Silences some compilers */
25420             AV * this_string = NULL;
25421             bool is_multi = FALSE;
25422 
25423             /* If matched nothing, advance to next possible match */
25424             if (this_name_start == this_name_end) {
25425                 cur_pos = (char *) memchr(this_name_end + 1, '\n',
25426                                           SvEND(names_string) - this_name_end);
25427                 if (cur_pos == NULL) {
25428                     break;
25429                 }
25430             }
25431             else {
25432                 /* Position the next match to start beyond the current returned
25433                  * entry */
25434                 cur_pos = (char *) memchr(this_name_end, '\n',
25435                                           SvEND(names_string) - this_name_end);
25436             }
25437 
25438             /* Back up to the \n just before the beginning of the character. */
25439             cp_end = (char *) my_memrchr(all_names_start,
25440                                          '\n',
25441                                          this_name_start - all_names_start);
25442 
25443             /* If we didn't find a \n, it means it matched somewhere in the
25444              * initial '00000' in the string, so isn't a real match */
25445             if (cp_end == NULL) {
25446                 continue;
25447             }
25448 
25449             this_name_start = cp_end + 1;   /* The name starts just after */
25450             cp_end--;                       /* the \n, and the code point */
25451                                             /* ends just before it */
25452 
25453             /* All code points are 5 digits long */
25454             cp_start = cp_end - 4;
25455 
25456             /* This shouldn't happen, as we found a \n, and the first \n is
25457              * further along than what we subtracted */
25458             assert(cp_start >= all_names_start);
25459 
25460             if (cp_start == all_names_start) {
25461                 *prop_definition = add_cp_to_invlist(*prop_definition, 0);
25462                 continue;
25463             }
25464 
25465             /* If the character is a blank, we either have a named sequence, or
25466              * something is wrong */
25467             if (*(cp_start - 1) == ' ') {
25468                 cp_start = (char *) my_memrchr(all_names_start,
25469                                                '\n',
25470                                                cp_start - all_names_start);
25471                 cp_start++;
25472             }
25473 
25474             assert(cp_start != NULL && cp_start >= all_names_start + 2);
25475 
25476             /* Except for the first line in the string, the sequence before the
25477              * code point is \n\n.  If that isn't the case here, we didn't
25478              * match the name of a character.  (We could have matched a named
25479              * sequence, not currently handled */
25480             if (*(cp_start - 1) != '\n' || *(cp_start - 2) != '\n') {
25481                 continue;
25482             }
25483 
25484             /* We matched!  Add this to the list */
25485             found_matches = TRUE;
25486 
25487             /* Loop through all the code points in the sequence */
25488             while (cp_start < cp_end) {
25489 
25490                 /* Calculate this code point from its 5 digits */
25491                 cp = (XDIGIT_VALUE(cp_start[0]) << 16)
25492                    + (XDIGIT_VALUE(cp_start[1]) << 12)
25493                    + (XDIGIT_VALUE(cp_start[2]) << 8)
25494                    + (XDIGIT_VALUE(cp_start[3]) << 4)
25495                    +  XDIGIT_VALUE(cp_start[4]);
25496 
25497                 cp_start += 6;  /* Go past any blank */
25498 
25499                 if (cp_start < cp_end || is_multi) {
25500                     if (this_string == NULL) {
25501                         this_string = newAV();
25502                     }
25503 
25504                     is_multi = TRUE;
25505                     av_push(this_string, newSVuv(cp));
25506                 }
25507             }
25508 
25509             if (is_multi) { /* Was more than one code point */
25510                 if (*strings == NULL) {
25511                     *strings = newAV();
25512                 }
25513 
25514                 av_push(*strings, (SV *) this_string);
25515             }
25516             else {  /* Only a single code point */
25517                 *prop_definition = add_cp_to_invlist(*prop_definition, cp);
25518             }
25519         } /* End of loop through the non-algorithmic names string */
25520     }
25521 
25522     /* There are also character names not in 'names_string'.  These are
25523      * algorithmically generatable.  Try this pattern on each possible one.
25524      * (khw originally planned to leave this out given the large number of
25525      * matches attempted; but the speed turned out to be quite acceptable
25526      *
25527      * There are plenty of opportunities to optimize to skip many of the tests.
25528      * beyond the rudimentary ones already here */
25529 
25530     /* First see if the subpattern matches any of the algorithmic generatable
25531      * Hangul syllable names.
25532      *
25533      * We know none of these syllable names will match if the input pattern
25534      * requires more bytes than any syllable has, or if the input pattern only
25535      * matches an empty name, or if the pattern has something it must match and
25536      * one of the characters in that isn't in any Hangul syllable. */
25537     if (    prog->minlen <= (SSize_t) syl_max_len
25538         &&  prog->maxlen > 0
25539         && (strspn(must, "\n ABCDEGHIJKLMNOPRSTUWY") == must_len))
25540     {
25541         /* These constants, names, values, and algorithm are adapted from the
25542          * Unicode standard, version 5.1, section 3.12, and should never
25543          * change. */
25544         const char * JamoL[] = {
25545             "G", "GG", "N", "D", "DD", "R", "M", "B", "BB",
25546             "S", "SS", "", "J", "JJ", "C", "K", "T", "P", "H"
25547         };
25548         const int LCount = C_ARRAY_LENGTH(JamoL);
25549 
25550         const char * JamoV[] = {
25551             "A", "AE", "YA", "YAE", "EO", "E", "YEO", "YE", "O", "WA",
25552             "WAE", "OE", "YO", "U", "WEO", "WE", "WI", "YU", "EU", "YI",
25553             "I"
25554         };
25555         const int VCount = C_ARRAY_LENGTH(JamoV);
25556 
25557         const char * JamoT[] = {
25558             "", "G", "GG", "GS", "N", "NJ", "NH", "D", "L",
25559             "LG", "LM", "LB", "LS", "LT", "LP", "LH", "M", "B",
25560             "BS", "S", "SS", "NG", "J", "C", "K", "T", "P", "H"
25561         };
25562         const int TCount = C_ARRAY_LENGTH(JamoT);
25563 
25564         int L, V, T;
25565 
25566         /* This is the initial Hangul syllable code point; each time through the
25567          * inner loop, it maps to the next higher code point.  For more info,
25568          * see the Hangul syllable section of the Unicode standard. */
25569         int cp = 0xAC00;
25570 
25571         syllable_name = sv_2mortal(newSV(syl_max_len));
25572         sv_setpvn(syllable_name, hangul_prefix, hangul_prefix_len);
25573 
25574         for (L = 0; L < LCount; L++) {
25575             for (V = 0; V < VCount; V++) {
25576                 for (T = 0; T < TCount; T++) {
25577 
25578                     /* Truncate back to the prefix, which is unvarying */
25579                     SvCUR_set(syllable_name, hangul_prefix_len);
25580 
25581                     sv_catpv(syllable_name, JamoL[L]);
25582                     sv_catpv(syllable_name, JamoV[V]);
25583                     sv_catpv(syllable_name, JamoT[T]);
25584 
25585                     if (execute_wildcard(subpattern_re,
25586                                 SvPVX(syllable_name),
25587                                 SvEND(syllable_name),
25588                                 SvPVX(syllable_name), 0,
25589                                 syllable_name,
25590                                 0))
25591                     {
25592                         *prop_definition = add_cp_to_invlist(*prop_definition,
25593                                                              cp);
25594                         found_matches = TRUE;
25595                     }
25596 
25597                     cp++;
25598                 }
25599             }
25600         }
25601     }
25602 
25603     /* The rest of the algorithmically generatable names are of the form
25604      * "PREFIX-code_point".  The prefixes and the code point limits of each
25605      * were returned to us in the array 'algorithmic_names' from data in
25606      * lib/unicore/Name.pm.  'code_point' in the name is expressed in hex. */
25607     for (i = 0; i <= av_top_index((AV *) algorithmic_names); i++) {
25608         IV j;
25609 
25610         /* Each element of the array is a hash, giving the details for the
25611          * series of names it covers.  There is the base name of the characters
25612          * in the series, and the low and high code points in the series.  And,
25613          * for optimization purposes a string containing all the legal
25614          * characters that could possibly be in a name in this series. */
25615         HV * this_series = (HV *) SvRV(* av_fetch((AV *) algorithmic_names, i, 0));
25616         SV * prefix = * hv_fetchs(this_series, "name", 0);
25617         IV low = SvIV(* hv_fetchs(this_series, "low", 0));
25618         IV high = SvIV(* hv_fetchs(this_series, "high", 0));
25619         char * legal = SvPVX(* hv_fetchs(this_series, "legal", 0));
25620 
25621         /* Pre-allocate an SV with enough space */
25622         SV * algo_name = sv_2mortal(Perl_newSVpvf(aTHX_ "%s-0000",
25623                                                         SvPVX(prefix)));
25624         if (high >= 0x10000) {
25625             sv_catpvs(algo_name, "0");
25626         }
25627 
25628         /* This series can be skipped entirely if the pattern requires
25629          * something longer than any name in the series, or can only match an
25630          * empty name, or contains a character not found in any name in the
25631          * series */
25632         if (    prog->minlen <= (SSize_t) SvCUR(algo_name)
25633             &&  prog->maxlen > 0
25634             && (strspn(must, legal) == must_len))
25635         {
25636             for (j = low; j <= high; j++) { /* For each code point in the series */
25637 
25638                 /* Get its name, and see if it matches the subpattern */
25639                 Perl_sv_setpvf(aTHX_ algo_name, "%s-%X", SvPVX(prefix),
25640                                      (unsigned) j);
25641 
25642                 if (execute_wildcard(subpattern_re,
25643                                     SvPVX(algo_name),
25644                                     SvEND(algo_name),
25645                                     SvPVX(algo_name), 0,
25646                                     algo_name,
25647                                     0))
25648                 {
25649                     *prop_definition = add_cp_to_invlist(*prop_definition, j);
25650                     found_matches = TRUE;
25651                 }
25652             }
25653         }
25654     }
25655 
25656   check_empty:
25657     /* Finally, see if the subpattern matches an empty string */
25658     empty = newSVpvs("");
25659     if (execute_wildcard(subpattern_re,
25660                          SvPVX(empty),
25661                          SvEND(empty),
25662                          SvPVX(empty), 0,
25663                          empty,
25664                          0))
25665     {
25666         /* Many code points have empty names.  Currently these are the \p{GC=C}
25667          * ones, minus CC and CF */
25668 
25669         SV * empty_names_ref = get_prop_definition(UNI_C);
25670         SV * empty_names = invlist_clone(empty_names_ref, NULL);
25671 
25672         SV * subtract = get_prop_definition(UNI_CC);
25673 
25674         _invlist_subtract(empty_names, subtract, &empty_names);
25675         SvREFCNT_dec_NN(empty_names_ref);
25676         SvREFCNT_dec_NN(subtract);
25677 
25678         subtract = get_prop_definition(UNI_CF);
25679         _invlist_subtract(empty_names, subtract, &empty_names);
25680         SvREFCNT_dec_NN(subtract);
25681 
25682         _invlist_union(*prop_definition, empty_names, prop_definition);
25683         found_matches = TRUE;
25684         SvREFCNT_dec_NN(empty_names);
25685     }
25686     SvREFCNT_dec_NN(empty);
25687 
25688 #if 0
25689     /* If we ever were to accept aliases for, say private use names, we would
25690      * need to do something fancier to find empty names.  The code below works
25691      * (at the time it was written), and is slower than the above */
25692     const char empties_pat[] = "^.";
25693     if (strNE(name, empties_pat)) {
25694         SV * empty = newSVpvs("");
25695         if (execute_wildcard(subpattern_re,
25696                     SvPVX(empty),
25697                     SvEND(empty),
25698                     SvPVX(empty), 0,
25699                     empty,
25700                     0))
25701         {
25702             SV * empties = NULL;
25703 
25704             (void) handle_names_wildcard(empties_pat, strlen(empties_pat), &empties);
25705 
25706             _invlist_union_complement_2nd(*prop_definition, empties, prop_definition);
25707             SvREFCNT_dec_NN(empties);
25708 
25709             found_matches = TRUE;
25710         }
25711         SvREFCNT_dec_NN(empty);
25712     }
25713 #endif
25714 
25715     SvREFCNT_dec_NN(subpattern_re);
25716     return found_matches;
25717 }
25718 
25719 /*
25720  * ex: set ts=8 sts=4 sw=4 et:
25721  */
25722