1 /**********************************************************************
2 
3   time.c -
4 
5   $Author: usa $
6   created at: Tue Dec 28 14:31:59 JST 1993
7 
8   Copyright (C) 1993-2007 Yukihiro Matsumoto
9 
10 **********************************************************************/
11 
12 #define _DEFAULT_SOURCE
13 #define _BSD_SOURCE
14 #include "ruby/encoding.h"
15 #include "internal.h"
16 #include <sys/types.h>
17 #include <time.h>
18 #include <errno.h>
19 
20 #ifdef HAVE_UNISTD_H
21 #include <unistd.h>
22 #endif
23 
24 #include <float.h>
25 #include <math.h>
26 
27 #ifdef HAVE_STRINGS_H
28 #include <strings.h>
29 #endif
30 
31 #if defined(HAVE_SYS_TIME_H)
32 #include <sys/time.h>
33 #endif
34 
35 #include "timev.h"
36 #include "id.h"
37 
38 static ID id_divmod, id_submicro, id_nano_num, id_nano_den, id_offset, id_zone;
39 static ID id_quo, id_div;
40 static ID id_nanosecond, id_microsecond, id_millisecond, id_nsec, id_usec;
41 static ID id_local_to_utc, id_utc_to_local, id_find_timezone;
42 static ID id_year, id_mon, id_mday, id_hour, id_min, id_sec, id_isdst, id_name;
43 
44 #ifndef TM_IS_TIME
45 #define TM_IS_TIME 1
46 #endif
47 
48 #define NDIV(x,y) (-(-((x)+1)/(y))-1)
49 #define NMOD(x,y) ((y)-(-((x)+1)%(y))-1)
50 #define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
51 #define MOD(n,d) ((n)<0 ? NMOD((n),(d)) : (n)%(d))
52 #define VTM_WDAY_INITVAL (7)
53 #define VTM_ISDST_INITVAL (3)
54 
55 static int
eq(VALUE x,VALUE y)56 eq(VALUE x, VALUE y)
57 {
58     if (FIXNUM_P(x) && FIXNUM_P(y)) {
59         return x == y;
60     }
61     return RTEST(rb_funcall(x, idEq, 1, y));
62 }
63 
64 static int
cmp(VALUE x,VALUE y)65 cmp(VALUE x, VALUE y)
66 {
67     if (FIXNUM_P(x) && FIXNUM_P(y)) {
68         if ((long)x < (long)y)
69             return -1;
70         if ((long)x > (long)y)
71             return 1;
72         return 0;
73     }
74     if (RB_TYPE_P(x, T_BIGNUM)) return FIX2INT(rb_big_cmp(x, y));
75     return rb_cmpint(rb_funcall(x, idCmp, 1, y), x, y);
76 }
77 
78 #define ne(x,y) (!eq((x),(y)))
79 #define lt(x,y) (cmp((x),(y)) < 0)
80 #define gt(x,y) (cmp((x),(y)) > 0)
81 #define le(x,y) (cmp((x),(y)) <= 0)
82 #define ge(x,y) (cmp((x),(y)) >= 0)
83 
84 static VALUE
addv(VALUE x,VALUE y)85 addv(VALUE x, VALUE y)
86 {
87     if (FIXNUM_P(x) && FIXNUM_P(y)) {
88         return LONG2NUM(FIX2LONG(x) + FIX2LONG(y));
89     }
90     if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_plus(x, y);
91     return rb_funcall(x, '+', 1, y);
92 }
93 
94 static VALUE
subv(VALUE x,VALUE y)95 subv(VALUE x, VALUE y)
96 {
97     if (FIXNUM_P(x) && FIXNUM_P(y)) {
98         return LONG2NUM(FIX2LONG(x) - FIX2LONG(y));
99     }
100     if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_minus(x, y);
101     return rb_funcall(x, '-', 1, y);
102 }
103 
104 static VALUE
mulv(VALUE x,VALUE y)105 mulv(VALUE x, VALUE y)
106 {
107     if (FIXNUM_P(x) && FIXNUM_P(y)) {
108 	return rb_fix_mul_fix(x, y);
109     }
110     if (RB_TYPE_P(x, T_BIGNUM))
111         return rb_big_mul(x, y);
112     return rb_funcall(x, '*', 1, y);
113 }
114 
115 static VALUE
divv(VALUE x,VALUE y)116 divv(VALUE x, VALUE y)
117 {
118     if (FIXNUM_P(x) && FIXNUM_P(y)) {
119 	return rb_fix_div_fix(x, y);
120     }
121     if (RB_TYPE_P(x, T_BIGNUM))
122         return rb_big_div(x, y);
123     return rb_funcall(x, id_div, 1, y);
124 }
125 
126 static VALUE
modv(VALUE x,VALUE y)127 modv(VALUE x, VALUE y)
128 {
129     if (FIXNUM_P(y)) {
130 	if (FIX2LONG(y) == 0) rb_num_zerodiv();
131 	if (FIXNUM_P(x)) return rb_fix_mod_fix(x, y);
132     }
133     if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_modulo(x, y);
134     return rb_funcall(x, '%', 1, y);
135 }
136 
137 #define neg(x) (subv(INT2FIX(0), (x)))
138 
139 static VALUE
quov(VALUE x,VALUE y)140 quov(VALUE x, VALUE y)
141 {
142     VALUE ret;
143     if (FIXNUM_P(x) && FIXNUM_P(y)) {
144         long a, b, c;
145         a = FIX2LONG(x);
146         b = FIX2LONG(y);
147         if (b == 0) rb_num_zerodiv();
148         if (a == FIXNUM_MIN && b == -1) return LONG2NUM(-a);
149         c = a / b;
150         if (c * b == a) {
151             return LONG2FIX(c);
152         }
153     }
154     ret = rb_numeric_quo(x, y);
155     if (RB_TYPE_P(ret, T_RATIONAL) &&
156         RRATIONAL(ret)->den == INT2FIX(1)) {
157         ret = RRATIONAL(ret)->num;
158     }
159     return ret;
160 }
161 
162 #define mulquov(x,y,z) (((y) == (z)) ? (x) : quov(mulv((x),(y)),(z)))
163 
164 static void
divmodv(VALUE n,VALUE d,VALUE * q,VALUE * r)165 divmodv(VALUE n, VALUE d, VALUE *q, VALUE *r)
166 {
167     VALUE tmp, ary;
168     if (FIXNUM_P(d)) {
169 	if (FIX2LONG(d) == 0) rb_num_zerodiv();
170 	if (FIXNUM_P(n)) {
171 	    rb_fix_divmod_fix(n, d, q, r);
172 	    return;
173 	}
174     }
175     tmp = rb_funcall(n, id_divmod, 1, d);
176     ary = rb_check_array_type(tmp);
177     if (NIL_P(ary)) {
178 	rb_raise(rb_eTypeError, "unexpected divmod result: into %"PRIsVALUE,
179 		 rb_obj_class(tmp));
180     }
181     *q = rb_ary_entry(ary, 0);
182     *r = rb_ary_entry(ary, 1);
183 }
184 
185 #if SIZEOF_LONG == 8
186 # define INT64toNUM(x) LONG2NUM(x)
187 #elif defined(HAVE_LONG_LONG) && SIZEOF_LONG_LONG == 8
188 # define INT64toNUM(x) LL2NUM(x)
189 #endif
190 
191 #if defined(HAVE_UINT64_T) && SIZEOF_LONG*2 <= SIZEOF_UINT64_T
192     typedef uint64_t uwideint_t;
193     typedef int64_t wideint_t;
194     typedef uint64_t WIDEVALUE;
195     typedef int64_t SIGNED_WIDEVALUE;
196 #   define WIDEVALUE_IS_WIDER 1
197 #   define UWIDEINT_MAX UINT64_MAX
198 #   define WIDEINT_MAX INT64_MAX
199 #   define WIDEINT_MIN INT64_MIN
200 #   define FIXWINT_P(tv) ((tv) & 1)
201 #   define FIXWVtoINT64(tv) RSHIFT((SIGNED_WIDEVALUE)(tv), 1)
202 #   define INT64toFIXWV(wi) ((WIDEVALUE)((SIGNED_WIDEVALUE)(wi) << 1 | FIXNUM_FLAG))
203 #   define FIXWV_MAX (((int64_t)1 << 62) - 1)
204 #   define FIXWV_MIN (-((int64_t)1 << 62))
205 #   define FIXWVABLE(wi) (POSFIXWVABLE(wi) && NEGFIXWVABLE(wi))
206 #   define WINT2FIXWV(i) WIDEVAL_WRAP(INT64toFIXWV(i))
207 #   define FIXWV2WINT(w) FIXWVtoINT64(WIDEVAL_GET(w))
208 #else
209     typedef unsigned long uwideint_t;
210     typedef long wideint_t;
211     typedef VALUE WIDEVALUE;
212     typedef SIGNED_VALUE SIGNED_WIDEVALUE;
213 #   define WIDEVALUE_IS_WIDER 0
214 #   define UWIDEINT_MAX ULONG_MAX
215 #   define WIDEINT_MAX LONG_MAX
216 #   define WIDEINT_MIN LONG_MIN
217 #   define FIXWINT_P(v) FIXNUM_P(v)
218 #   define FIXWV_MAX FIXNUM_MAX
219 #   define FIXWV_MIN FIXNUM_MIN
220 #   define FIXWVABLE(i) FIXABLE(i)
221 #   define WINT2FIXWV(i) WIDEVAL_WRAP(LONG2FIX(i))
222 #   define FIXWV2WINT(w) FIX2LONG(WIDEVAL_GET(w))
223 #endif
224 
225 #define POSFIXWVABLE(wi) ((wi) < FIXWV_MAX+1)
226 #define NEGFIXWVABLE(wi) ((wi) >= FIXWV_MIN)
227 #define FIXWV_P(w) FIXWINT_P(WIDEVAL_GET(w))
228 #define MUL_OVERFLOW_FIXWV_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, FIXWV_MIN, FIXWV_MAX)
229 
230 /* #define STRUCT_WIDEVAL */
231 #ifdef STRUCT_WIDEVAL
232     /* for type checking */
233     typedef struct {
234         WIDEVALUE value;
235     } wideval_t;
WIDEVAL_WRAP(WIDEVALUE v)236     static inline wideval_t WIDEVAL_WRAP(WIDEVALUE v) { wideval_t w = { v }; return w; }
237 #   define WIDEVAL_GET(w) ((w).value)
238 #else
239     typedef WIDEVALUE wideval_t;
240 #   define WIDEVAL_WRAP(v) (v)
241 #   define WIDEVAL_GET(w) (w)
242 #endif
243 
244 #if WIDEVALUE_IS_WIDER
245     static inline wideval_t
wint2wv(wideint_t wi)246     wint2wv(wideint_t wi)
247     {
248         if (FIXWVABLE(wi))
249             return WINT2FIXWV(wi);
250         else
251             return WIDEVAL_WRAP(INT64toNUM(wi));
252     }
253 #   define WINT2WV(wi) wint2wv(wi)
254 #else
255 #   define WINT2WV(wi) WIDEVAL_WRAP(LONG2NUM(wi))
256 #endif
257 
258 static inline VALUE
w2v(wideval_t w)259 w2v(wideval_t w)
260 {
261 #if WIDEVALUE_IS_WIDER
262     if (FIXWV_P(w))
263         return INT64toNUM(FIXWV2WINT(w));
264     return (VALUE)WIDEVAL_GET(w);
265 #else
266     return WIDEVAL_GET(w);
267 #endif
268 }
269 
270 #if WIDEVALUE_IS_WIDER
271 static wideval_t
v2w_bignum(VALUE v)272 v2w_bignum(VALUE v)
273 {
274     int sign;
275     uwideint_t u;
276     sign = rb_integer_pack(v, &u, 1, sizeof(u), 0,
277         INTEGER_PACK_NATIVE_BYTE_ORDER);
278     if (sign == 0)
279         return WINT2FIXWV(0);
280     else if (sign == -1) {
281         if (u <= -FIXWV_MIN)
282             return WINT2FIXWV(-(wideint_t)u);
283     }
284     else if (sign == +1) {
285         if (u <= FIXWV_MAX)
286             return WINT2FIXWV((wideint_t)u);
287     }
288     return WIDEVAL_WRAP(v);
289 }
290 #endif
291 
292 static inline wideval_t
v2w(VALUE v)293 v2w(VALUE v)
294 {
295     if (RB_TYPE_P(v, T_RATIONAL)) {
296         if (RRATIONAL(v)->den != LONG2FIX(1))
297             return v;
298         v = RRATIONAL(v)->num;
299     }
300 #if WIDEVALUE_IS_WIDER
301     if (FIXNUM_P(v)) {
302         return WIDEVAL_WRAP((WIDEVALUE)(SIGNED_WIDEVALUE)(long)v);
303     }
304     else if (RB_TYPE_P(v, T_BIGNUM) &&
305         rb_absint_size(v, NULL) <= sizeof(WIDEVALUE)) {
306         return v2w_bignum(v);
307     }
308 #endif
309     return WIDEVAL_WRAP(v);
310 }
311 
312 static int
weq(wideval_t wx,wideval_t wy)313 weq(wideval_t wx, wideval_t wy)
314 {
315 #if WIDEVALUE_IS_WIDER
316     if (FIXWV_P(wx) && FIXWV_P(wy)) {
317         return WIDEVAL_GET(wx) == WIDEVAL_GET(wy);
318     }
319     return RTEST(rb_funcall(w2v(wx), idEq, 1, w2v(wy)));
320 #else
321     return eq(WIDEVAL_GET(wx), WIDEVAL_GET(wy));
322 #endif
323 }
324 
325 static int
wcmp(wideval_t wx,wideval_t wy)326 wcmp(wideval_t wx, wideval_t wy)
327 {
328     VALUE x, y;
329 #if WIDEVALUE_IS_WIDER
330     if (FIXWV_P(wx) && FIXWV_P(wy)) {
331         wideint_t a, b;
332         a = FIXWV2WINT(wx);
333         b = FIXWV2WINT(wy);
334         if (a < b)
335             return -1;
336         if (a > b)
337             return 1;
338         return 0;
339     }
340 #endif
341     x = w2v(wx);
342     y = w2v(wy);
343     return cmp(x, y);
344 }
345 
346 #define wne(x,y) (!weq((x),(y)))
347 #define wlt(x,y) (wcmp((x),(y)) < 0)
348 #define wgt(x,y) (wcmp((x),(y)) > 0)
349 #define wle(x,y) (wcmp((x),(y)) <= 0)
350 #define wge(x,y) (wcmp((x),(y)) >= 0)
351 
352 static wideval_t
wadd(wideval_t wx,wideval_t wy)353 wadd(wideval_t wx, wideval_t wy)
354 {
355 #if WIDEVALUE_IS_WIDER
356     if (FIXWV_P(wx) && FIXWV_P(wy)) {
357         wideint_t r = FIXWV2WINT(wx) + FIXWV2WINT(wy);
358         return WINT2WV(r);
359     }
360 #endif
361     return v2w(addv(w2v(wx), w2v(wy)));
362 }
363 
364 static wideval_t
wsub(wideval_t wx,wideval_t wy)365 wsub(wideval_t wx, wideval_t wy)
366 {
367 #if WIDEVALUE_IS_WIDER
368     if (FIXWV_P(wx) && FIXWV_P(wy)) {
369         wideint_t r = FIXWV2WINT(wx) - FIXWV2WINT(wy);
370         return WINT2WV(r);
371     }
372 #endif
373     return v2w(subv(w2v(wx), w2v(wy)));
374 }
375 
376 static wideval_t
wmul(wideval_t wx,wideval_t wy)377 wmul(wideval_t wx, wideval_t wy)
378 {
379 #if WIDEVALUE_IS_WIDER
380     if (FIXWV_P(wx) && FIXWV_P(wy)) {
381 	if (!MUL_OVERFLOW_FIXWV_P(FIXWV2WINT(wx), FIXWV2WINT(wy)))
382 	    return WINT2WV(FIXWV2WINT(wx) * FIXWV2WINT(wy));
383     }
384 #endif
385     return v2w(mulv(w2v(wx), w2v(wy)));
386 }
387 
388 static wideval_t
wquo(wideval_t wx,wideval_t wy)389 wquo(wideval_t wx, wideval_t wy)
390 {
391 #if WIDEVALUE_IS_WIDER
392     if (FIXWV_P(wx) && FIXWV_P(wy)) {
393         wideint_t a, b, c;
394         a = FIXWV2WINT(wx);
395         b = FIXWV2WINT(wy);
396         if (b == 0) rb_num_zerodiv();
397         c = a / b;
398         if (c * b == a) {
399             return WINT2WV(c);
400         }
401     }
402 #endif
403     return v2w(quov(w2v(wx), w2v(wy)));
404 }
405 
406 #define wmulquo(x,y,z) ((WIDEVAL_GET(y) == WIDEVAL_GET(z)) ? (x) : wquo(wmul((x),(y)),(z)))
407 #define wmulquoll(x,y,z) (((y) == (z)) ? (x) : wquo(wmul((x),WINT2WV(y)),WINT2WV(z)))
408 
409 #if WIDEVALUE_IS_WIDER
410 static int
wdivmod0(wideval_t wn,wideval_t wd,wideval_t * wq,wideval_t * wr)411 wdivmod0(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
412 {
413     if (FIXWV_P(wn) && FIXWV_P(wd)) {
414         wideint_t n, d, q, r;
415         d = FIXWV2WINT(wd);
416         if (d == 0) rb_num_zerodiv();
417         if (d == 1) {
418             *wq = wn;
419             *wr = WINT2FIXWV(0);
420             return 1;
421         }
422         if (d == -1) {
423             wideint_t xneg = -FIXWV2WINT(wn);
424             *wq = WINT2WV(xneg);
425             *wr = WINT2FIXWV(0);
426             return 1;
427         }
428         n = FIXWV2WINT(wn);
429         if (n == 0) {
430             *wq = WINT2FIXWV(0);
431             *wr = WINT2FIXWV(0);
432             return 1;
433         }
434         q = n / d;
435         r = n % d;
436         if (d > 0 ? r < 0 : r > 0) {
437             q -= 1;
438             r += d;
439         }
440         *wq = WINT2FIXWV(q);
441         *wr = WINT2FIXWV(r);
442         return 1;
443     }
444     return 0;
445 }
446 #endif
447 
448 static void
wdivmod(wideval_t wn,wideval_t wd,wideval_t * wq,wideval_t * wr)449 wdivmod(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
450 {
451     VALUE vq, vr;
452 #if WIDEVALUE_IS_WIDER
453     if (wdivmod0(wn, wd, wq, wr)) return;
454 #endif
455     divmodv(w2v(wn), w2v(wd), &vq, &vr);
456     *wq = v2w(vq);
457     *wr = v2w(vr);
458 }
459 
460 static void
wmuldivmod(wideval_t wx,wideval_t wy,wideval_t wz,wideval_t * wq,wideval_t * wr)461 wmuldivmod(wideval_t wx, wideval_t wy, wideval_t wz, wideval_t *wq, wideval_t *wr)
462 {
463     if (WIDEVAL_GET(wy) == WIDEVAL_GET(wz)) {
464         *wq = wx;
465         *wr = WINT2FIXWV(0);
466         return;
467     }
468     wdivmod(wmul(wx,wy), wz, wq, wr);
469 }
470 
471 static wideval_t
wdiv(wideval_t wx,wideval_t wy)472 wdiv(wideval_t wx, wideval_t wy)
473 {
474 #if WIDEVALUE_IS_WIDER
475     wideval_t q, dmy;
476     if (wdivmod0(wx, wy, &q, &dmy)) return q;
477 #endif
478     return v2w(divv(w2v(wx), w2v(wy)));
479 }
480 
481 static wideval_t
wmod(wideval_t wx,wideval_t wy)482 wmod(wideval_t wx, wideval_t wy)
483 {
484 #if WIDEVALUE_IS_WIDER
485     wideval_t r, dmy;
486     if (wdivmod0(wx, wy, &dmy, &r)) return r;
487 #endif
488     return v2w(modv(w2v(wx), w2v(wy)));
489 }
490 
491 static VALUE
num_exact(VALUE v)492 num_exact(VALUE v)
493 {
494     VALUE tmp;
495 
496     if (NIL_P(v)) {
497 	rb_raise(rb_eTypeError, "can't convert nil into an exact number");
498     }
499     else if (RB_INTEGER_TYPE_P(v)) {
500         return v;
501     }
502     else if (RB_TYPE_P(v, T_RATIONAL)) {
503 	goto rational;
504     }
505     else if (RB_TYPE_P(v, T_STRING)) {
506         goto typeerror;
507     }
508     else {
509         if ((tmp = rb_check_funcall(v, idTo_r, 0, NULL)) != Qundef) {
510             /* test to_int method availability to reject non-Numeric
511              * objects such as String, Time, etc which have to_r method. */
512             if (!rb_respond_to(v, idTo_int)) goto typeerror;
513         }
514         else if (!NIL_P(tmp = rb_check_to_int(v))) {
515             return tmp;
516         }
517         else {
518             goto typeerror;
519         }
520     }
521 
522     if (RB_INTEGER_TYPE_P(tmp)) {
523         v = tmp;
524     }
525     else if (RB_TYPE_P(tmp, T_RATIONAL)) {
526         v = tmp;
527       rational:
528         if (RRATIONAL(v)->den == INT2FIX(1))
529             v = RRATIONAL(v)->num;
530     }
531     else {
532       typeerror:
533 	rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into an exact number",
534 		 rb_obj_class(v));
535     }
536     return v;
537 }
538 
539 /* time_t */
540 
541 static wideval_t
rb_time_magnify(wideval_t w)542 rb_time_magnify(wideval_t w)
543 {
544     return wmul(w, WINT2FIXWV(TIME_SCALE));
545 }
546 
547 static wideval_t
rb_time_unmagnify(wideval_t w)548 rb_time_unmagnify(wideval_t w)
549 {
550     return wquo(w, WINT2FIXWV(TIME_SCALE));
551 }
552 
553 static VALUE
rb_time_unmagnify_to_float(wideval_t w)554 rb_time_unmagnify_to_float(wideval_t w)
555 {
556     VALUE v;
557 #if WIDEVALUE_IS_WIDER
558     if (FIXWV_P(w)) {
559         wideint_t a, b, c;
560         a = FIXWV2WINT(w);
561         b = TIME_SCALE;
562         c = a / b;
563         if (c * b == a) {
564             return DBL2NUM((double)c);
565         }
566         v = DBL2NUM((double)FIXWV2WINT(w));
567         return quov(v, DBL2NUM(TIME_SCALE));
568     }
569 #endif
570     v = w2v(w);
571     if (RB_TYPE_P(v, T_RATIONAL))
572         return rb_Float(quov(v, INT2FIX(TIME_SCALE)));
573     else
574         return quov(v, DBL2NUM(TIME_SCALE));
575 }
576 
577 static void
split_second(wideval_t timew,wideval_t * timew_p,VALUE * subsecx_p)578 split_second(wideval_t timew, wideval_t *timew_p, VALUE *subsecx_p)
579 {
580     wideval_t q, r;
581     wdivmod(timew, WINT2FIXWV(TIME_SCALE), &q, &r);
582     *timew_p = q;
583     *subsecx_p = w2v(r);
584 }
585 
586 static wideval_t
timet2wv(time_t t)587 timet2wv(time_t t)
588 {
589 #if WIDEVALUE_IS_WIDER
590     if (TIMET_MIN == 0) {
591         uwideint_t wi = (uwideint_t)t;
592         if (wi <= FIXWV_MAX) {
593             return WINT2FIXWV(wi);
594         }
595     }
596     else {
597         wideint_t wi = (wideint_t)t;
598         if (FIXWV_MIN <= wi && wi <= FIXWV_MAX) {
599             return WINT2FIXWV(wi);
600         }
601     }
602 #endif
603     return v2w(TIMET2NUM(t));
604 }
605 #define TIMET2WV(t) timet2wv(t)
606 
607 static time_t
wv2timet(wideval_t w)608 wv2timet(wideval_t w)
609 {
610 #if WIDEVALUE_IS_WIDER
611     if (FIXWV_P(w)) {
612         wideint_t wi = FIXWV2WINT(w);
613         if (TIMET_MIN == 0) {
614             if (wi < 0)
615                 rb_raise(rb_eRangeError, "negative value to convert into `time_t'");
616             if (TIMET_MAX < (uwideint_t)wi)
617                 rb_raise(rb_eRangeError, "too big to convert into `time_t'");
618         }
619         else {
620             if (wi < TIMET_MIN || TIMET_MAX < wi)
621                 rb_raise(rb_eRangeError, "too big to convert into `time_t'");
622         }
623         return (time_t)wi;
624     }
625 #endif
626     return NUM2TIMET(w2v(w));
627 }
628 #define WV2TIMET(t) wv2timet(t)
629 
630 VALUE rb_cTime;
631 static VALUE rb_cTimeTM;
632 
633 static int obj2int(VALUE obj);
634 static uint32_t obj2ubits(VALUE obj, size_t bits);
635 static VALUE obj2vint(VALUE obj);
636 static uint32_t month_arg(VALUE arg);
637 static VALUE validate_utc_offset(VALUE utc_offset);
638 static VALUE validate_zone_name(VALUE zone_name);
639 static void validate_vtm(struct vtm *vtm);
640 static uint32_t obj2subsecx(VALUE obj, VALUE *subsecx);
641 
642 static VALUE time_gmtime(VALUE);
643 static VALUE time_localtime(VALUE);
644 static VALUE time_fixoff(VALUE);
645 static VALUE time_zonelocal(VALUE time, VALUE off);
646 
647 static time_t timegm_noleapsecond(struct tm *tm);
648 static int tmcmp(struct tm *a, struct tm *b);
649 static int vtmcmp(struct vtm *a, struct vtm *b);
650 static const char *find_time_t(struct tm *tptr, int utc_p, time_t *tp);
651 
652 static struct vtm *localtimew(wideval_t timew, struct vtm *result);
653 
654 static int leap_year_p(long y);
655 #define leap_year_v_p(y) leap_year_p(NUM2LONG(modv((y), INT2FIX(400))))
656 
657 static VALUE tm_from_time(VALUE klass, VALUE time);
658 
659 bool ruby_tz_uptodate_p;
660 
661 static struct tm *
rb_localtime_r(const time_t * t,struct tm * result)662 rb_localtime_r(const time_t *t, struct tm *result)
663 {
664 #if defined __APPLE__ && defined __LP64__
665     if (*t != (time_t)(int)*t) return NULL;
666 #endif
667     if (!ruby_tz_uptodate_p) {
668 	ruby_tz_uptodate_p = 1;
669 	tzset();
670     }
671 #ifdef HAVE_GMTIME_R
672     result = localtime_r(t, result);
673 #else
674     {
675 	struct tm *tmp = localtime(t);
676 	if (tmp) *result = *tmp;
677     }
678 #endif
679 #if defined(HAVE_MKTIME) && defined(LOCALTIME_OVERFLOW_PROBLEM)
680     if (result) {
681         long gmtoff1 = 0;
682         long gmtoff2 = 0;
683         struct tm tmp = *result;
684         time_t t2;
685         t2 = mktime(&tmp);
686 #  if defined(HAVE_STRUCT_TM_TM_GMTOFF)
687         gmtoff1 = result->tm_gmtoff;
688         gmtoff2 = tmp.tm_gmtoff;
689 #  endif
690         if (*t + gmtoff1 != t2 + gmtoff2)
691             result = NULL;
692     }
693 #endif
694     return result;
695 }
696 #define LOCALTIME(tm, result) rb_localtime_r((tm), &(result))
697 
698 #ifndef HAVE_STRUCT_TM_TM_GMTOFF
699 static struct tm *
rb_gmtime_r(const time_t * t,struct tm * result)700 rb_gmtime_r(const time_t *t, struct tm *result)
701 {
702 #ifdef HAVE_GMTIME_R
703     result = gmtime_r(t, result);
704 #else
705     struct tm *tmp = gmtime(t);
706     if (tmp) *result = *tmp;
707 #endif
708 #if defined(HAVE_TIMEGM) && defined(LOCALTIME_OVERFLOW_PROBLEM)
709     if (result && *t != timegm(result)) {
710 	return NULL;
711     }
712 #endif
713     return result;
714 }
715 #   define GMTIME(tm, result) rb_gmtime_r((tm), &(result))
716 #endif
717 
718 static const int common_year_yday_offset[] = {
719     -1,
720     -1 + 31,
721     -1 + 31 + 28,
722     -1 + 31 + 28 + 31,
723     -1 + 31 + 28 + 31 + 30,
724     -1 + 31 + 28 + 31 + 30 + 31,
725     -1 + 31 + 28 + 31 + 30 + 31 + 30,
726     -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31,
727     -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
728     -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
729     -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
730     -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
731       /* 1    2    3    4    5    6    7    8    9    10   11 */
732 };
733 static const int leap_year_yday_offset[] = {
734     -1,
735     -1 + 31,
736     -1 + 31 + 29,
737     -1 + 31 + 29 + 31,
738     -1 + 31 + 29 + 31 + 30,
739     -1 + 31 + 29 + 31 + 30 + 31,
740     -1 + 31 + 29 + 31 + 30 + 31 + 30,
741     -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31,
742     -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31,
743     -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
744     -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
745     -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
746       /* 1    2    3    4    5    6    7    8    9    10   11 */
747 };
748 
749 static const int common_year_days_in_month[] = {
750     31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
751 };
752 static const int leap_year_days_in_month[] = {
753     31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
754 };
755 
756 #define M28(m) \
757     (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
758     (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
759     (m),(m),(m),(m),(m),(m),(m),(m)
760 #define M29(m) \
761     (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
762     (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
763     (m),(m),(m),(m),(m),(m),(m),(m),(m)
764 #define M30(m) \
765     (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
766     (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
767     (m),(m),(m),(m),(m),(m),(m),(m),(m),(m)
768 #define M31(m) \
769     (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
770     (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
771     (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), (m)
772 
773 static const uint8_t common_year_mon_of_yday[] = {
774     M31(1), M28(2), M31(3), M30(4), M31(5), M30(6),
775     M31(7), M31(8), M30(9), M31(10), M30(11), M31(12)
776 };
777 static const uint8_t leap_year_mon_of_yday[] = {
778     M31(1), M29(2), M31(3), M30(4), M31(5), M30(6),
779     M31(7), M31(8), M30(9), M31(10), M30(11), M31(12)
780 };
781 
782 #undef M28
783 #undef M29
784 #undef M30
785 #undef M31
786 
787 #define D28 \
788     1,2,3,4,5,6,7,8,9, \
789     10,11,12,13,14,15,16,17,18,19, \
790     20,21,22,23,24,25,26,27,28
791 #define D29 \
792     1,2,3,4,5,6,7,8,9, \
793     10,11,12,13,14,15,16,17,18,19, \
794     20,21,22,23,24,25,26,27,28,29
795 #define D30 \
796     1,2,3,4,5,6,7,8,9, \
797     10,11,12,13,14,15,16,17,18,19, \
798     20,21,22,23,24,25,26,27,28,29,30
799 #define D31 \
800     1,2,3,4,5,6,7,8,9, \
801     10,11,12,13,14,15,16,17,18,19, \
802     20,21,22,23,24,25,26,27,28,29,30,31
803 
804 static const uint8_t common_year_mday_of_yday[] = {
805   /*  1    2    3    4    5    6    7    8    9   10   11   12 */
806     D31, D28, D31, D30, D31, D30, D31, D31, D30, D31, D30, D31
807 };
808 static const uint8_t leap_year_mday_of_yday[] = {
809     D31, D29, D31, D30, D31, D30, D31, D31, D30, D31, D30, D31
810 };
811 
812 #undef D28
813 #undef D29
814 #undef D30
815 #undef D31
816 
817 static int
calc_tm_yday(long tm_year,int tm_mon,int tm_mday)818 calc_tm_yday(long tm_year, int tm_mon, int tm_mday)
819 {
820     int tm_year_mod400 = (int)MOD(tm_year, 400);
821     int tm_yday = tm_mday;
822 
823     if (leap_year_p(tm_year_mod400 + 1900))
824 	tm_yday += leap_year_yday_offset[tm_mon];
825     else
826 	tm_yday += common_year_yday_offset[tm_mon];
827 
828     return tm_yday;
829 }
830 
831 static wideval_t
timegmw_noleapsecond(struct vtm * vtm)832 timegmw_noleapsecond(struct vtm *vtm)
833 {
834     VALUE year1900;
835     VALUE q400, r400;
836     int year_mod400;
837     int yday;
838     long days_in400;
839     VALUE vdays, ret;
840     wideval_t wret;
841 
842     year1900 = subv(vtm->year, INT2FIX(1900));
843 
844     divmodv(year1900, INT2FIX(400), &q400, &r400);
845     year_mod400 = NUM2INT(r400);
846 
847     yday = calc_tm_yday(year_mod400, vtm->mon-1, vtm->mday);
848 
849     /*
850      *  `Seconds Since the Epoch' in SUSv3:
851      *  tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
852      *  (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
853      *  ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
854      */
855     ret = LONG2NUM(vtm->sec
856                  + vtm->min*60
857                  + vtm->hour*3600);
858     days_in400 = yday
859                - 70*365
860                + DIV(year_mod400 - 69, 4)
861                - DIV(year_mod400 - 1, 100)
862                + (year_mod400 + 299) / 400;
863     vdays = LONG2NUM(days_in400);
864     vdays = addv(vdays, mulv(q400, INT2FIX(97)));
865     vdays = addv(vdays, mulv(year1900, INT2FIX(365)));
866     wret = wadd(rb_time_magnify(v2w(ret)), wmul(rb_time_magnify(v2w(vdays)), WINT2FIXWV(86400)));
867     wret = wadd(wret, v2w(vtm->subsecx));
868 
869     return wret;
870 }
871 
872 static VALUE
zone_str(const char * zone)873 zone_str(const char *zone)
874 {
875     const char *p;
876     int ascii_only = 1;
877     VALUE str;
878     size_t len;
879 
880     if (zone == NULL) {
881         return rb_fstring_lit("(NO-TIMEZONE-ABBREVIATION)");
882     }
883 
884     for (p = zone; *p; p++)
885         if (!ISASCII(*p)) {
886             ascii_only = 0;
887             break;
888         }
889     len = p - zone + strlen(p);
890     if (ascii_only) {
891         str = rb_usascii_str_new(zone, len);
892     }
893     else {
894         str = rb_enc_str_new(zone, len, rb_locale_encoding());
895     }
896     return rb_fstring(str);
897 }
898 
899 static void
gmtimew_noleapsecond(wideval_t timew,struct vtm * vtm)900 gmtimew_noleapsecond(wideval_t timew, struct vtm *vtm)
901 {
902     VALUE v;
903     int n, x, y;
904     int wday;
905     VALUE timev;
906     wideval_t timew2, w, w2;
907     VALUE subsecx;
908 
909     vtm->isdst = 0;
910 
911     split_second(timew, &timew2, &subsecx);
912     vtm->subsecx = subsecx;
913 
914     wdivmod(timew2, WINT2FIXWV(86400), &w2, &w);
915     timev = w2v(w2);
916     v = w2v(w);
917 
918     wday = NUM2INT(modv(timev, INT2FIX(7)));
919     vtm->wday = (wday + 4) % 7;
920 
921     n = NUM2INT(v);
922     vtm->sec = n % 60; n = n / 60;
923     vtm->min = n % 60; n = n / 60;
924     vtm->hour = n;
925 
926     /* 97 leap days in the 400 year cycle */
927     divmodv(timev, INT2FIX(400*365 + 97), &timev, &v);
928     vtm->year = mulv(timev, INT2FIX(400));
929 
930     /* n is the days in the 400 year cycle.
931      * the start of the cycle is 1970-01-01. */
932 
933     n = NUM2INT(v);
934     y = 1970;
935 
936     /* 30 years including 7 leap days (1972, 1976, ... 1996),
937      * 31 days in January 2000 and
938      * 29 days in February 2000
939      * from 1970-01-01 to 2000-02-29 */
940     if (30*365+7+31+29-1 <= n) {
941         /* 2000-02-29 or after */
942         if (n < 31*365+8) {
943             /* 2000-02-29 to 2000-12-31 */
944             y += 30;
945             n -= 30*365+7;
946             goto found;
947         }
948         else {
949             /* 2001-01-01 or after */
950             n -= 1;
951         }
952     }
953 
954     x = n / (365*100 + 24);
955     n = n % (365*100 + 24);
956     y += x * 100;
957     if (30*365+7+31+29-1 <= n) {
958         if (n < 31*365+7) {
959             y += 30;
960             n -= 30*365+7;
961             goto found;
962         }
963         else
964             n += 1;
965     }
966 
967     x = n / (365*4 + 1);
968     n = n % (365*4 + 1);
969     y += x * 4;
970     if (365*2+31+29-1 <= n) {
971         if (n < 365*2+366) {
972             y += 2;
973             n -= 365*2;
974             goto found;
975         }
976         else
977             n -= 1;
978     }
979 
980     x = n / 365;
981     n = n % 365;
982     y += x;
983 
984   found:
985     vtm->yday = n+1;
986     vtm->year = addv(vtm->year, INT2NUM(y));
987 
988     if (leap_year_p(y)) {
989         vtm->mon = leap_year_mon_of_yday[n];
990         vtm->mday = leap_year_mday_of_yday[n];
991     }
992     else {
993         vtm->mon = common_year_mon_of_yday[n];
994         vtm->mday = common_year_mday_of_yday[n];
995     }
996 
997     vtm->utc_offset = INT2FIX(0);
998     vtm->zone = rb_fstring_lit("UTC");
999 }
1000 
1001 static struct tm *
gmtime_with_leapsecond(const time_t * timep,struct tm * result)1002 gmtime_with_leapsecond(const time_t *timep, struct tm *result)
1003 {
1004 #if defined(HAVE_STRUCT_TM_TM_GMTOFF)
1005     /* 4.4BSD counts leap seconds only with localtime, not with gmtime. */
1006     struct tm *t;
1007     int sign;
1008     int gmtoff_sec, gmtoff_min, gmtoff_hour, gmtoff_day;
1009     long gmtoff;
1010     t = LOCALTIME(timep, *result);
1011     if (t == NULL)
1012         return NULL;
1013 
1014     /* subtract gmtoff */
1015     if (t->tm_gmtoff < 0) {
1016         sign = 1;
1017         gmtoff = -t->tm_gmtoff;
1018     }
1019     else {
1020         sign = -1;
1021         gmtoff = t->tm_gmtoff;
1022     }
1023     gmtoff_sec = (int)(gmtoff % 60);
1024     gmtoff = gmtoff / 60;
1025     gmtoff_min = (int)(gmtoff % 60);
1026     gmtoff = gmtoff / 60;
1027     gmtoff_hour = (int)gmtoff;	/* <= 12 */
1028 
1029     gmtoff_sec *= sign;
1030     gmtoff_min *= sign;
1031     gmtoff_hour *= sign;
1032 
1033     gmtoff_day = 0;
1034 
1035     if (gmtoff_sec) {
1036         /* If gmtoff_sec == 0, don't change result->tm_sec.
1037          * It may be 60 which is a leap second. */
1038         result->tm_sec += gmtoff_sec;
1039         if (result->tm_sec < 0) {
1040             result->tm_sec += 60;
1041             gmtoff_min -= 1;
1042         }
1043         if (60 <= result->tm_sec) {
1044             result->tm_sec -= 60;
1045             gmtoff_min += 1;
1046         }
1047     }
1048     if (gmtoff_min) {
1049         result->tm_min += gmtoff_min;
1050         if (result->tm_min < 0) {
1051             result->tm_min += 60;
1052             gmtoff_hour -= 1;
1053         }
1054         if (60 <= result->tm_min) {
1055             result->tm_min -= 60;
1056             gmtoff_hour += 1;
1057         }
1058     }
1059     if (gmtoff_hour) {
1060         result->tm_hour += gmtoff_hour;
1061         if (result->tm_hour < 0) {
1062             result->tm_hour += 24;
1063             gmtoff_day = -1;
1064         }
1065         if (24 <= result->tm_hour) {
1066             result->tm_hour -= 24;
1067             gmtoff_day = 1;
1068         }
1069     }
1070 
1071     if (gmtoff_day) {
1072         if (gmtoff_day < 0) {
1073             if (result->tm_yday == 0) {
1074                 result->tm_mday = 31;
1075                 result->tm_mon = 11; /* December */
1076                 result->tm_year--;
1077                 result->tm_yday = leap_year_p(result->tm_year + 1900) ? 365 : 364;
1078             }
1079             else if (result->tm_mday == 1) {
1080                 const int *days_in_month = leap_year_p(result->tm_year + 1900) ?
1081                                            leap_year_days_in_month :
1082                                            common_year_days_in_month;
1083                 result->tm_mon--;
1084                 result->tm_mday = days_in_month[result->tm_mon];
1085                 result->tm_yday--;
1086             }
1087             else {
1088                 result->tm_mday--;
1089                 result->tm_yday--;
1090             }
1091             result->tm_wday = (result->tm_wday + 6) % 7;
1092         }
1093         else {
1094             int leap = leap_year_p(result->tm_year + 1900);
1095             if (result->tm_yday == (leap ? 365 : 364)) {
1096                 result->tm_year++;
1097                 result->tm_mon = 0; /* January */
1098                 result->tm_mday = 1;
1099                 result->tm_yday = 0;
1100             }
1101             else if (result->tm_mday == (leap ? leap_year_days_in_month :
1102                                                 common_year_days_in_month)[result->tm_mon]) {
1103                 result->tm_mon++;
1104                 result->tm_mday = 1;
1105                 result->tm_yday++;
1106             }
1107             else {
1108                 result->tm_mday++;
1109                 result->tm_yday++;
1110             }
1111             result->tm_wday = (result->tm_wday + 1) % 7;
1112         }
1113     }
1114     result->tm_isdst = 0;
1115     result->tm_gmtoff = 0;
1116 #if defined(HAVE_TM_ZONE)
1117     result->tm_zone = (char *)"UTC";
1118 #endif
1119     return result;
1120 #else
1121     return GMTIME(timep, *result);
1122 #endif
1123 }
1124 
1125 static long this_year = 0;
1126 static time_t known_leap_seconds_limit;
1127 static int number_of_leap_seconds_known;
1128 
1129 static void
init_leap_second_info(void)1130 init_leap_second_info(void)
1131 {
1132     /*
1133      * leap seconds are determined by IERS.
1134      * It is announced 6 months before the leap second.
1135      * So no one knows leap seconds in the future after the next year.
1136      */
1137     if (this_year == 0) {
1138         time_t now;
1139         struct tm *tm, result;
1140         struct vtm vtm;
1141         wideval_t timew;
1142         now = time(NULL);
1143         gmtime(&now);
1144         tm = gmtime_with_leapsecond(&now, &result);
1145         if (!tm) return;
1146         this_year = tm->tm_year;
1147 
1148         if (TIMET_MAX - now < (time_t)(366*86400))
1149             known_leap_seconds_limit = TIMET_MAX;
1150         else
1151             known_leap_seconds_limit = now + (time_t)(366*86400);
1152 
1153         if (!gmtime_with_leapsecond(&known_leap_seconds_limit, &result))
1154             return;
1155 
1156         vtm.year = LONG2NUM(result.tm_year + 1900);
1157         vtm.mon = result.tm_mon + 1;
1158         vtm.mday = result.tm_mday;
1159         vtm.hour = result.tm_hour;
1160         vtm.min = result.tm_min;
1161         vtm.sec = result.tm_sec;
1162         vtm.subsecx = INT2FIX(0);
1163         vtm.utc_offset = INT2FIX(0);
1164 
1165         timew = timegmw_noleapsecond(&vtm);
1166 
1167         number_of_leap_seconds_known = NUM2INT(w2v(wsub(TIMET2WV(known_leap_seconds_limit), rb_time_unmagnify(timew))));
1168     }
1169 }
1170 
1171 /* Use this if you want to re-run init_leap_second_info() */
1172 void
ruby_reset_leap_second_info(void)1173 ruby_reset_leap_second_info(void)
1174 {
1175     this_year = 0;
1176 }
1177 
1178 static wideval_t
timegmw(struct vtm * vtm)1179 timegmw(struct vtm *vtm)
1180 {
1181     wideval_t timew;
1182     struct tm tm;
1183     time_t t;
1184     const char *errmsg;
1185 
1186     /* The first leap second is 1972-06-30 23:59:60 UTC.
1187      * No leap seconds before. */
1188     if (gt(INT2FIX(1972), vtm->year))
1189         return timegmw_noleapsecond(vtm);
1190 
1191     init_leap_second_info();
1192 
1193     timew = timegmw_noleapsecond(vtm);
1194 
1195 
1196     if (number_of_leap_seconds_known == 0) {
1197         /* When init_leap_second_info() is executed, the timezone doesn't have
1198          * leap second information. Disable leap second for calculating gmtime.
1199          */
1200         return timew;
1201     }
1202     else if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
1203         return wadd(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
1204     }
1205 
1206     tm.tm_year = rb_long2int(NUM2LONG(vtm->year) - 1900);
1207     tm.tm_mon = vtm->mon - 1;
1208     tm.tm_mday = vtm->mday;
1209     tm.tm_hour = vtm->hour;
1210     tm.tm_min = vtm->min;
1211     tm.tm_sec = vtm->sec;
1212     tm.tm_isdst = 0;
1213 
1214     errmsg = find_time_t(&tm, 1, &t);
1215     if (errmsg)
1216         rb_raise(rb_eArgError, "%s", errmsg);
1217     return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
1218 }
1219 
1220 static struct vtm *
gmtimew(wideval_t timew,struct vtm * result)1221 gmtimew(wideval_t timew, struct vtm *result)
1222 {
1223     time_t t;
1224     struct tm tm;
1225     VALUE subsecx;
1226     wideval_t timew2;
1227 
1228     if (wlt(timew, WINT2FIXWV(0))) {
1229         gmtimew_noleapsecond(timew, result);
1230         return result;
1231     }
1232 
1233     init_leap_second_info();
1234 
1235     if (number_of_leap_seconds_known == 0) {
1236         /* When init_leap_second_info() is executed, the timezone doesn't have
1237          * leap second information. Disable leap second for calculating gmtime.
1238          */
1239         gmtimew_noleapsecond(timew, result);
1240         return result;
1241     }
1242     else if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
1243         timew = wsub(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
1244         gmtimew_noleapsecond(timew, result);
1245         return result;
1246     }
1247 
1248     split_second(timew, &timew2, &subsecx);
1249 
1250     t = WV2TIMET(timew2);
1251     if (!gmtime_with_leapsecond(&t, &tm))
1252         return NULL;
1253 
1254     result->year = LONG2NUM((long)tm.tm_year + 1900);
1255     result->mon = tm.tm_mon + 1;
1256     result->mday = tm.tm_mday;
1257     result->hour = tm.tm_hour;
1258     result->min = tm.tm_min;
1259     result->sec = tm.tm_sec;
1260     result->subsecx = subsecx;
1261     result->utc_offset = INT2FIX(0);
1262     result->wday = tm.tm_wday;
1263     result->yday = tm.tm_yday+1;
1264     result->isdst = tm.tm_isdst;
1265 #if 0
1266     result->zone = rb_fstring_lit("UTC");
1267 #endif
1268 
1269     return result;
1270 }
1271 
1272 #define GMTIMEW(w, v) \
1273     (gmtimew(w, v) ? (void)0 : rb_raise(rb_eArgError, "gmtime error"))
1274 
1275 static struct tm *localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, VALUE *zone);
1276 
1277 /*
1278  * The idea is borrowed from Perl:
1279  * http://web.archive.org/web/20080211114141/http://use.perl.org/articles/08/02/07/197204.shtml
1280  *
1281  * compat_common_month_table is generated by the following program.
1282  * This table finds the last month which starts at the same day of a week.
1283  * The year 2037 is not used because:
1284  * http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=522949
1285  *
1286  *  #!/usr/bin/ruby
1287  *
1288  *  require 'date'
1289  *
1290  *  h = {}
1291  *  2036.downto(2010) {|y|
1292  *    1.upto(12) {|m|
1293  *      next if m == 2 && y % 4 == 0
1294  *      d = Date.new(y,m,1)
1295  *      h[m] ||= {}
1296  *      h[m][d.wday] ||= y
1297  *    }
1298  *  }
1299  *
1300  *  1.upto(12) {|m|
1301  *    print "{"
1302  *    0.upto(6) {|w|
1303  *      y = h[m][w]
1304  *      print " #{y},"
1305  *    }
1306  *    puts "},"
1307  *  }
1308  *
1309  */
1310 static const int compat_common_month_table[12][7] = {
1311   /* Sun   Mon   Tue   Wed   Thu   Fri   Sat */
1312   { 2034, 2035, 2036, 2031, 2032, 2027, 2033 }, /* January */
1313   { 2026, 2027, 2033, 2034, 2035, 2030, 2031 }, /* February */
1314   { 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* March */
1315   { 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* April */
1316   { 2033, 2034, 2035, 2030, 2036, 2026, 2032 }, /* May */
1317   { 2036, 2026, 2032, 2033, 2034, 2035, 2030 }, /* June */
1318   { 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* July */
1319   { 2032, 2033, 2034, 2035, 2030, 2036, 2026 }, /* August */
1320   { 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* September */
1321   { 2034, 2035, 2030, 2036, 2026, 2032, 2033 }, /* October */
1322   { 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* November */
1323   { 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* December */
1324 };
1325 
1326 /*
1327  * compat_leap_month_table is generated by following program.
1328  *
1329  *  #!/usr/bin/ruby
1330  *
1331  *  require 'date'
1332  *
1333  *  h = {}
1334  *  2037.downto(2010) {|y|
1335  *    1.upto(12) {|m|
1336  *      next unless m == 2 && y % 4 == 0
1337  *      d = Date.new(y,m,1)
1338  *      h[m] ||= {}
1339  *      h[m][d.wday] ||= y
1340  *    }
1341  *  }
1342  *
1343  *  2.upto(2) {|m|
1344  *    0.upto(6) {|w|
1345  *      y = h[m][w]
1346  *      print " #{y},"
1347  *    }
1348  *    puts
1349  *  }
1350  */
1351 static const int compat_leap_month_table[7] = {
1352 /* Sun   Mon   Tue   Wed   Thu   Fri   Sat */
1353   2032, 2016, 2028, 2012, 2024, 2036, 2020, /* February */
1354 };
1355 
1356 static int
calc_wday(int year_mod400,int month,int day)1357 calc_wday(int year_mod400, int month, int day)
1358 {
1359     int a, y, m;
1360     int wday;
1361 
1362     a = (14 - month) / 12;
1363     y = year_mod400 + 4800 - a;
1364     m = month + 12 * a - 3;
1365     wday = day + (153*m+2)/5 + 365*y + y/4 - y/100 + y/400 + 2;
1366     wday = wday % 7;
1367     return wday;
1368 }
1369 
1370 static VALUE
guess_local_offset(struct vtm * vtm_utc,int * isdst_ret,VALUE * zone_ret)1371 guess_local_offset(struct vtm *vtm_utc, int *isdst_ret, VALUE *zone_ret)
1372 {
1373     struct tm tm;
1374     long gmtoff;
1375     VALUE zone;
1376     time_t t;
1377     struct vtm vtm2;
1378     VALUE timev;
1379     int year_mod400, wday;
1380 
1381     /* Daylight Saving Time was introduced in 1916.
1382      * So we don't need to care about DST before that. */
1383     if (lt(vtm_utc->year, INT2FIX(1916))) {
1384         VALUE off = INT2FIX(0);
1385         int isdst = 0;
1386         zone = rb_fstring_lit("UTC");
1387 
1388 # if defined(NEGATIVE_TIME_T)
1389 #  if SIZEOF_TIME_T <= 4
1390     /* 1901-12-13 20:45:52 UTC : The oldest time in 32-bit signed time_t. */
1391 #   define THE_TIME_OLD_ENOUGH ((time_t)0x80000000)
1392 #  else
1393     /* Since the Royal Greenwich Observatory was commissioned in 1675,
1394        no timezone defined using GMT at 1600. */
1395 #   define THE_TIME_OLD_ENOUGH ((time_t)(1600-1970)*366*24*60*60)
1396 #  endif
1397         if (localtime_with_gmtoff_zone((t = THE_TIME_OLD_ENOUGH, &t), &tm, &gmtoff, &zone)) {
1398             off = LONG2FIX(gmtoff);
1399             isdst = tm.tm_isdst;
1400         }
1401         else
1402 # endif
1403         /* 1970-01-01 00:00:00 UTC : The Unix epoch - the oldest time in portable time_t. */
1404         if (localtime_with_gmtoff_zone((t = 0, &t), &tm, &gmtoff, &zone)) {
1405             off = LONG2FIX(gmtoff);
1406             isdst = tm.tm_isdst;
1407         }
1408 
1409         if (isdst_ret)
1410             *isdst_ret = isdst;
1411         if (zone_ret)
1412             *zone_ret = zone;
1413         return off;
1414     }
1415 
1416     /* It is difficult to guess the future. */
1417 
1418     vtm2 = *vtm_utc;
1419 
1420     /* guess using a year before 2038. */
1421     year_mod400 = NUM2INT(modv(vtm_utc->year, INT2FIX(400)));
1422     wday = calc_wday(year_mod400, vtm_utc->mon, 1);
1423     if (vtm_utc->mon == 2 && leap_year_p(year_mod400))
1424         vtm2.year = INT2FIX(compat_leap_month_table[wday]);
1425     else
1426         vtm2.year = INT2FIX(compat_common_month_table[vtm_utc->mon-1][wday]);
1427 
1428     timev = w2v(rb_time_unmagnify(timegmw(&vtm2)));
1429     t = NUM2TIMET(timev);
1430     zone = rb_fstring_lit("UTC");
1431     if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
1432         if (isdst_ret)
1433             *isdst_ret = tm.tm_isdst;
1434         if (zone_ret)
1435             *zone_ret = zone;
1436         return LONG2FIX(gmtoff);
1437     }
1438 
1439     {
1440         /* Use the current time offset as a last resort. */
1441         static time_t now = 0;
1442         static long now_gmtoff = 0;
1443         static int now_isdst = 0;
1444         static VALUE now_zone;
1445         if (now == 0) {
1446             VALUE zone;
1447             now = time(NULL);
1448             localtime_with_gmtoff_zone(&now, &tm, &now_gmtoff, &zone);
1449             now_isdst = tm.tm_isdst;
1450             zone = rb_fstring(zone);
1451             rb_gc_register_mark_object(zone);
1452             now_zone = zone;
1453         }
1454         if (isdst_ret)
1455             *isdst_ret = now_isdst;
1456         if (zone_ret)
1457             *zone_ret = now_zone;
1458         return LONG2FIX(now_gmtoff);
1459     }
1460 }
1461 
1462 static VALUE
small_vtm_sub(struct vtm * vtm1,struct vtm * vtm2)1463 small_vtm_sub(struct vtm *vtm1, struct vtm *vtm2)
1464 {
1465     int off;
1466 
1467     off = vtm1->sec - vtm2->sec;
1468     off += (vtm1->min - vtm2->min) * 60;
1469     off += (vtm1->hour - vtm2->hour) * 3600;
1470     if (ne(vtm1->year, vtm2->year))
1471         off += lt(vtm1->year, vtm2->year) ? -24*3600 : 24*3600;
1472     else if (vtm1->mon != vtm2->mon)
1473         off += vtm1->mon < vtm2->mon ? -24*3600 : 24*3600;
1474     else if (vtm1->mday != vtm2->mday)
1475         off += vtm1->mday < vtm2->mday ? -24*3600 : 24*3600;
1476 
1477     return INT2FIX(off);
1478 }
1479 
1480 static wideval_t
timelocalw(struct vtm * vtm)1481 timelocalw(struct vtm *vtm)
1482 {
1483     time_t t;
1484     struct tm tm;
1485     VALUE v;
1486     wideval_t timew1, timew2;
1487     struct vtm vtm1, vtm2;
1488     int n;
1489 
1490     if (FIXNUM_P(vtm->year)) {
1491         long l = FIX2LONG(vtm->year) - 1900;
1492         if (l < INT_MIN || INT_MAX < l)
1493             goto no_localtime;
1494         tm.tm_year = (int)l;
1495     }
1496     else {
1497         v = subv(vtm->year, INT2FIX(1900));
1498         if (lt(v, INT2NUM(INT_MIN)) || lt(INT2NUM(INT_MAX), v))
1499             goto no_localtime;
1500         tm.tm_year = NUM2INT(v);
1501     }
1502 
1503     tm.tm_mon = vtm->mon-1;
1504     tm.tm_mday = vtm->mday;
1505     tm.tm_hour = vtm->hour;
1506     tm.tm_min = vtm->min;
1507     tm.tm_sec = vtm->sec;
1508     tm.tm_isdst = vtm->isdst == VTM_ISDST_INITVAL ? -1 : vtm->isdst;
1509 
1510     if (find_time_t(&tm, 0, &t))
1511         goto no_localtime;
1512     return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
1513 
1514   no_localtime:
1515     timew1 = timegmw(vtm);
1516 
1517     if (!localtimew(timew1, &vtm1))
1518         rb_raise(rb_eArgError, "localtimew error");
1519 
1520     n = vtmcmp(vtm, &vtm1);
1521     if (n == 0) {
1522         timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(12*3600)));
1523         if (!localtimew(timew1, &vtm1))
1524             rb_raise(rb_eArgError, "localtimew error");
1525         n = 1;
1526     }
1527 
1528     if (n < 0) {
1529         timew2 = timew1;
1530         vtm2 = vtm1;
1531         timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
1532         if (!localtimew(timew1, &vtm1))
1533             rb_raise(rb_eArgError, "localtimew error");
1534     }
1535     else {
1536         timew2 = wadd(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
1537         if (!localtimew(timew2, &vtm2))
1538             rb_raise(rb_eArgError, "localtimew error");
1539     }
1540     timew1 = wadd(timew1, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm1))));
1541     timew2 = wadd(timew2, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm2))));
1542 
1543     if (weq(timew1, timew2))
1544         return timew1;
1545 
1546     if (!localtimew(timew1, &vtm1))
1547         rb_raise(rb_eArgError, "localtimew error");
1548     if (vtm->hour != vtm1.hour || vtm->min != vtm1.min || vtm->sec != vtm1.sec)
1549         return timew2;
1550 
1551     if (!localtimew(timew2, &vtm2))
1552         rb_raise(rb_eArgError, "localtimew error");
1553     if (vtm->hour != vtm2.hour || vtm->min != vtm2.min || vtm->sec != vtm2.sec)
1554         return timew1;
1555 
1556     if (vtm->isdst)
1557         return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew2 : timew1;
1558     else
1559         return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew1 : timew2;
1560 }
1561 
1562 static struct tm *
localtime_with_gmtoff_zone(const time_t * t,struct tm * result,long * gmtoff,VALUE * zone)1563 localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, VALUE *zone)
1564 {
1565     struct tm tm;
1566 
1567     if (LOCALTIME(t, tm)) {
1568 #if defined(HAVE_STRUCT_TM_TM_GMTOFF)
1569 	*gmtoff = tm.tm_gmtoff;
1570 #else
1571 	struct tm *u, *l;
1572 	long off;
1573 	struct tm tmbuf;
1574 	l = &tm;
1575 	u = GMTIME(t, tmbuf);
1576 	if (!u)
1577 	    return NULL;
1578 	if (l->tm_year != u->tm_year)
1579 	    off = l->tm_year < u->tm_year ? -1 : 1;
1580 	else if (l->tm_mon != u->tm_mon)
1581 	    off = l->tm_mon < u->tm_mon ? -1 : 1;
1582 	else if (l->tm_mday != u->tm_mday)
1583 	    off = l->tm_mday < u->tm_mday ? -1 : 1;
1584 	else
1585 	    off = 0;
1586 	off = off * 24 + l->tm_hour - u->tm_hour;
1587 	off = off * 60 + l->tm_min - u->tm_min;
1588 	off = off * 60 + l->tm_sec - u->tm_sec;
1589 	*gmtoff = off;
1590 #endif
1591 
1592         if (zone) {
1593 #if defined(HAVE_TM_ZONE)
1594             *zone = zone_str(tm.tm_zone);
1595 #elif defined(HAVE_TZNAME) && defined(HAVE_DAYLIGHT)
1596 # if RUBY_MSVCRT_VERSION >= 140
1597 #  define tzname _tzname
1598 #  define daylight _daylight
1599 # endif
1600             /* this needs tzset or localtime, instead of localtime_r */
1601             *zone = zone_str(tzname[daylight && tm.tm_isdst]);
1602 #else
1603             {
1604                 char buf[64];
1605                 strftime(buf, sizeof(buf), "%Z", &tm);
1606                 *zone = zone_str(buf);
1607             }
1608 #endif
1609         }
1610 
1611         *result = tm;
1612 	return result;
1613     }
1614     return NULL;
1615 }
1616 
1617 static int
timew_out_of_timet_range(wideval_t timew)1618 timew_out_of_timet_range(wideval_t timew)
1619 {
1620     VALUE timexv;
1621 #if WIDEVALUE_IS_WIDER && SIZEOF_TIME_T < SIZEOF_INT64_T
1622     if (FIXWV_P(timew)) {
1623         wideint_t t = FIXWV2WINT(timew);
1624         if (t < TIME_SCALE * (wideint_t)TIMET_MIN ||
1625             TIME_SCALE * (1 + (wideint_t)TIMET_MAX) <= t)
1626             return 1;
1627         return 0;
1628     }
1629 #endif
1630 #if SIZEOF_TIME_T == SIZEOF_INT64_T
1631     if (FIXWV_P(timew)) {
1632         wideint_t t = FIXWV2WINT(timew);
1633         if (~(time_t)0 <= 0) {
1634             return 0;
1635         }
1636         else {
1637             if (t < 0)
1638                 return 1;
1639             return 0;
1640         }
1641     }
1642 #endif
1643     timexv = w2v(timew);
1644     if (lt(timexv, mulv(INT2FIX(TIME_SCALE), TIMET2NUM(TIMET_MIN))) ||
1645         le(mulv(INT2FIX(TIME_SCALE), addv(TIMET2NUM(TIMET_MAX), INT2FIX(1))), timexv))
1646         return 1;
1647     return 0;
1648 }
1649 
1650 static struct vtm *
localtimew(wideval_t timew,struct vtm * result)1651 localtimew(wideval_t timew, struct vtm *result)
1652 {
1653     VALUE subsecx, offset;
1654     VALUE zone;
1655     int isdst;
1656 
1657     if (!timew_out_of_timet_range(timew)) {
1658         time_t t;
1659         struct tm tm;
1660 	long gmtoff;
1661         wideval_t timew2;
1662 
1663         split_second(timew, &timew2, &subsecx);
1664 
1665         t = WV2TIMET(timew2);
1666 
1667         if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
1668             result->year = LONG2NUM((long)tm.tm_year + 1900);
1669             result->mon = tm.tm_mon + 1;
1670             result->mday = tm.tm_mday;
1671             result->hour = tm.tm_hour;
1672             result->min = tm.tm_min;
1673             result->sec = tm.tm_sec;
1674             result->subsecx = subsecx;
1675             result->wday = tm.tm_wday;
1676             result->yday = tm.tm_yday+1;
1677             result->isdst = tm.tm_isdst;
1678             result->utc_offset = LONG2NUM(gmtoff);
1679             result->zone = zone;
1680             return result;
1681         }
1682     }
1683 
1684     if (!gmtimew(timew, result))
1685         return NULL;
1686 
1687     offset = guess_local_offset(result, &isdst, &zone);
1688 
1689     if (!gmtimew(wadd(timew, rb_time_magnify(v2w(offset))), result))
1690         return NULL;
1691 
1692     result->utc_offset = offset;
1693     result->isdst = isdst;
1694     result->zone = zone;
1695 
1696     return result;
1697 }
1698 
1699 #define TIME_TZMODE_LOCALTIME 0
1700 #define TIME_TZMODE_UTC 1
1701 #define TIME_TZMODE_FIXOFF 2
1702 #define TIME_TZMODE_UNINITIALIZED 3
1703 
1704 PACKED_STRUCT_UNALIGNED(struct time_object {
1705     wideval_t timew; /* time_t value * TIME_SCALE.  possibly Rational. */
1706     struct vtm vtm;
1707     unsigned int tzmode:3; /* 0:localtime 1:utc 2:fixoff 3:uninitialized */
1708     unsigned int tm_got:1;
1709 });
1710 
1711 #define GetTimeval(obj, tobj) ((tobj) = get_timeval(obj))
1712 #define GetNewTimeval(obj, tobj) ((tobj) = get_new_timeval(obj))
1713 
1714 #define IsTimeval(obj) rb_typeddata_is_kind_of((obj), &time_data_type)
1715 #define TIME_INIT_P(tobj) ((tobj)->tzmode != TIME_TZMODE_UNINITIALIZED)
1716 
1717 #define TZMODE_UTC_P(tobj) ((tobj)->tzmode == TIME_TZMODE_UTC)
1718 #define TZMODE_SET_UTC(tobj) ((tobj)->tzmode = TIME_TZMODE_UTC)
1719 
1720 #define TZMODE_LOCALTIME_P(tobj) ((tobj)->tzmode == TIME_TZMODE_LOCALTIME)
1721 #define TZMODE_SET_LOCALTIME(tobj) ((tobj)->tzmode = TIME_TZMODE_LOCALTIME)
1722 
1723 #define TZMODE_FIXOFF_P(tobj) ((tobj)->tzmode == TIME_TZMODE_FIXOFF)
1724 #define TZMODE_SET_FIXOFF(tobj, off) \
1725     ((tobj)->tzmode = TIME_TZMODE_FIXOFF, \
1726      (tobj)->vtm.utc_offset = (off))
1727 
1728 #define TZMODE_COPY(tobj1, tobj2) \
1729     ((tobj1)->tzmode = (tobj2)->tzmode, \
1730      (tobj1)->vtm.utc_offset = (tobj2)->vtm.utc_offset, \
1731      (tobj1)->vtm.zone = (tobj2)->vtm.zone)
1732 
1733 static VALUE time_get_tm(VALUE, struct time_object *);
1734 #define MAKE_TM(time, tobj) \
1735   do { \
1736     if ((tobj)->tm_got == 0) { \
1737 	time_get_tm((time), (tobj)); \
1738     } \
1739   } while (0)
1740 
1741 static void
time_mark(void * ptr)1742 time_mark(void *ptr)
1743 {
1744     struct time_object *tobj = ptr;
1745     if (!FIXWV_P(tobj->timew))
1746         rb_gc_mark(w2v(tobj->timew));
1747     rb_gc_mark(tobj->vtm.year);
1748     rb_gc_mark(tobj->vtm.subsecx);
1749     rb_gc_mark(tobj->vtm.utc_offset);
1750     rb_gc_mark(tobj->vtm.zone);
1751 }
1752 
1753 static size_t
time_memsize(const void * tobj)1754 time_memsize(const void *tobj)
1755 {
1756     return sizeof(struct time_object);
1757 }
1758 
1759 static const rb_data_type_t time_data_type = {
1760     "time",
1761     {time_mark, RUBY_TYPED_DEFAULT_FREE, time_memsize,},
1762     0, 0, RUBY_TYPED_FREE_IMMEDIATELY
1763 };
1764 
1765 static VALUE
time_s_alloc(VALUE klass)1766 time_s_alloc(VALUE klass)
1767 {
1768     VALUE obj;
1769     struct time_object *tobj;
1770 
1771     obj = TypedData_Make_Struct(klass, struct time_object, &time_data_type, tobj);
1772     tobj->tzmode = TIME_TZMODE_UNINITIALIZED;
1773     tobj->tm_got=0;
1774     tobj->timew = WINT2FIXWV(0);
1775     tobj->vtm.zone = Qnil;
1776 
1777     return obj;
1778 }
1779 
1780 static struct time_object *
get_timeval(VALUE obj)1781 get_timeval(VALUE obj)
1782 {
1783     struct time_object *tobj;
1784     TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj);
1785     if (!TIME_INIT_P(tobj)) {
1786 	rb_raise(rb_eTypeError, "uninitialized %"PRIsVALUE, rb_obj_class(obj));
1787     }
1788     return tobj;
1789 }
1790 
1791 static struct time_object *
get_new_timeval(VALUE obj)1792 get_new_timeval(VALUE obj)
1793 {
1794     struct time_object *tobj;
1795     TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj);
1796     if (TIME_INIT_P(tobj)) {
1797 	rb_raise(rb_eTypeError, "already initialized %"PRIsVALUE, rb_obj_class(obj));
1798     }
1799     return tobj;
1800 }
1801 
1802 static void
time_modify(VALUE time)1803 time_modify(VALUE time)
1804 {
1805     rb_check_frozen(time);
1806     rb_check_trusted(time);
1807 }
1808 
1809 static wideval_t
timespec2timew(struct timespec * ts)1810 timespec2timew(struct timespec *ts)
1811 {
1812     wideval_t timew;
1813 
1814     timew = rb_time_magnify(TIMET2WV(ts->tv_sec));
1815     if (ts->tv_nsec)
1816         timew = wadd(timew, wmulquoll(WINT2WV(ts->tv_nsec), TIME_SCALE, 1000000000));
1817     return timew;
1818 }
1819 
1820 static struct timespec
timew2timespec(wideval_t timew)1821 timew2timespec(wideval_t timew)
1822 {
1823     VALUE subsecx;
1824     struct timespec ts;
1825     wideval_t timew2;
1826 
1827     if (timew_out_of_timet_range(timew))
1828         rb_raise(rb_eArgError, "time out of system range");
1829     split_second(timew, &timew2, &subsecx);
1830     ts.tv_sec = WV2TIMET(timew2);
1831     ts.tv_nsec = NUM2LONG(mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE)));
1832     return ts;
1833 }
1834 
1835 static struct timespec *
timew2timespec_exact(wideval_t timew,struct timespec * ts)1836 timew2timespec_exact(wideval_t timew, struct timespec *ts)
1837 {
1838     VALUE subsecx;
1839     wideval_t timew2;
1840     VALUE nsecv;
1841 
1842     if (timew_out_of_timet_range(timew))
1843         return NULL;
1844     split_second(timew, &timew2, &subsecx);
1845     ts->tv_sec = WV2TIMET(timew2);
1846     nsecv = mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
1847     if (!FIXNUM_P(nsecv))
1848         return NULL;
1849     ts->tv_nsec = NUM2LONG(nsecv);
1850     return ts;
1851 }
1852 
1853 void
rb_timespec_now(struct timespec * ts)1854 rb_timespec_now(struct timespec *ts)
1855 {
1856 #ifdef HAVE_CLOCK_GETTIME
1857     if (clock_gettime(CLOCK_REALTIME, ts) == -1) {
1858 	rb_sys_fail("clock_gettime");
1859     }
1860 #else
1861     {
1862         struct timeval tv;
1863         if (gettimeofday(&tv, 0) < 0) {
1864             rb_sys_fail("gettimeofday");
1865         }
1866         ts->tv_sec = tv.tv_sec;
1867         ts->tv_nsec = tv.tv_usec * 1000;
1868     }
1869 #endif
1870 }
1871 
1872 static VALUE
time_init_0(VALUE time)1873 time_init_0(VALUE time)
1874 {
1875     struct time_object *tobj;
1876     struct timespec ts;
1877 
1878     time_modify(time);
1879     GetNewTimeval(time, tobj);
1880     tobj->tzmode = TIME_TZMODE_LOCALTIME;
1881     tobj->tm_got=0;
1882     tobj->timew = WINT2FIXWV(0);
1883     rb_timespec_now(&ts);
1884     tobj->timew = timespec2timew(&ts);
1885 
1886     return time;
1887 }
1888 
1889 static VALUE
time_set_utc_offset(VALUE time,VALUE off)1890 time_set_utc_offset(VALUE time, VALUE off)
1891 {
1892     struct time_object *tobj;
1893     off = num_exact(off);
1894 
1895     time_modify(time);
1896     GetTimeval(time, tobj);
1897 
1898     tobj->tm_got = 0;
1899     tobj->vtm.zone = Qnil;
1900     TZMODE_SET_FIXOFF(tobj, off);
1901 
1902     return time;
1903 }
1904 
1905 static void
vtm_add_offset(struct vtm * vtm,VALUE off)1906 vtm_add_offset(struct vtm *vtm, VALUE off)
1907 {
1908     int sign;
1909     VALUE subsec, v;
1910     int sec, min, hour;
1911     int day;
1912 
1913     vtm->utc_offset = subv(vtm->utc_offset, off);
1914 
1915     if (lt(off, INT2FIX(0))) {
1916         sign = -1;
1917         off = neg(off);
1918     }
1919     else {
1920         sign = 1;
1921     }
1922     divmodv(off, INT2FIX(1), &off, &subsec);
1923     divmodv(off, INT2FIX(60), &off, &v);
1924     sec = NUM2INT(v);
1925     divmodv(off, INT2FIX(60), &off, &v);
1926     min = NUM2INT(v);
1927     divmodv(off, INT2FIX(24), &off, &v);
1928     hour = NUM2INT(v);
1929 
1930     if (sign < 0) {
1931         subsec = neg(subsec);
1932         sec = -sec;
1933         min = -min;
1934         hour = -hour;
1935     }
1936 
1937     day = 0;
1938 
1939     if (!rb_equal(subsec, INT2FIX(0))) {
1940         vtm->subsecx = addv(vtm->subsecx, w2v(rb_time_magnify(v2w(subsec))));
1941         if (lt(vtm->subsecx, INT2FIX(0))) {
1942             vtm->subsecx = addv(vtm->subsecx, INT2FIX(TIME_SCALE));
1943             sec -= 1;
1944         }
1945         if (le(INT2FIX(TIME_SCALE), vtm->subsecx)) {
1946             vtm->subsecx = subv(vtm->subsecx, INT2FIX(TIME_SCALE));
1947             sec += 1;
1948         }
1949         goto not_zero_sec;
1950     }
1951     if (sec) {
1952       not_zero_sec:
1953         /* If sec + subsec == 0, don't change vtm->sec.
1954          * It may be 60 which is a leap second. */
1955         sec += vtm->sec;
1956         if (sec < 0) {
1957             sec += 60;
1958             min -= 1;
1959         }
1960         if (60 <= sec) {
1961             sec -= 60;
1962             min += 1;
1963         }
1964         vtm->sec = sec;
1965     }
1966     if (min) {
1967         min += vtm->min;
1968         if (min < 0) {
1969             min += 60;
1970             hour -= 1;
1971         }
1972         if (60 <= min) {
1973             min -= 60;
1974             hour += 1;
1975         }
1976         vtm->min = min;
1977     }
1978     if (hour) {
1979         hour += vtm->hour;
1980         if (hour < 0) {
1981             hour += 24;
1982             day = -1;
1983         }
1984         if (24 <= hour) {
1985             hour -= 24;
1986             day = 1;
1987         }
1988         vtm->hour = hour;
1989     }
1990 
1991     if (day) {
1992         if (day < 0) {
1993             if (vtm->mon == 1 && vtm->mday == 1) {
1994                 vtm->mday = 31;
1995                 vtm->mon = 12; /* December */
1996                 vtm->year = subv(vtm->year, INT2FIX(1));
1997                 vtm->yday = leap_year_v_p(vtm->year) ? 366 : 365;
1998             }
1999             else if (vtm->mday == 1) {
2000                 const int *days_in_month = leap_year_v_p(vtm->year) ?
2001                                            leap_year_days_in_month :
2002                                            common_year_days_in_month;
2003                 vtm->mon--;
2004                 vtm->mday = days_in_month[vtm->mon-1];
2005                 vtm->yday--;
2006             }
2007             else {
2008                 vtm->mday--;
2009                 vtm->yday--;
2010             }
2011             vtm->wday = (vtm->wday + 6) % 7;
2012         }
2013         else {
2014             int leap = leap_year_v_p(vtm->year);
2015             if (vtm->mon == 12 && vtm->mday == 31) {
2016                 vtm->year = addv(vtm->year, INT2FIX(1));
2017                 vtm->mon = 1; /* January */
2018                 vtm->mday = 1;
2019                 vtm->yday = 1;
2020             }
2021             else if (vtm->mday == (leap ? leap_year_days_in_month :
2022                                           common_year_days_in_month)[vtm->mon-1]) {
2023                 vtm->mon++;
2024                 vtm->mday = 1;
2025                 vtm->yday++;
2026             }
2027             else {
2028                 vtm->mday++;
2029                 vtm->yday++;
2030             }
2031             vtm->wday = (vtm->wday + 1) % 7;
2032         }
2033     }
2034 }
2035 
2036 static int
maybe_tzobj_p(VALUE obj)2037 maybe_tzobj_p(VALUE obj)
2038 {
2039     if (NIL_P(obj)) return FALSE;
2040     if (RB_INTEGER_TYPE_P(obj)) return FALSE;
2041     if (RB_TYPE_P(obj, T_STRING)) return FALSE;
2042     return TRUE;
2043 }
2044 
2045 NORETURN(static void invalid_utc_offset(void));
2046 static void
invalid_utc_offset(void)2047 invalid_utc_offset(void)
2048 {
2049     rb_raise(rb_eArgError, "\"+HH:MM\" or \"-HH:MM\" expected for utc_offset");
2050 }
2051 
2052 static VALUE
utc_offset_arg(VALUE arg)2053 utc_offset_arg(VALUE arg)
2054 {
2055     VALUE tmp;
2056     if (!NIL_P(tmp = rb_check_string_type(arg))) {
2057         int n = 0;
2058         char *s = RSTRING_PTR(tmp);
2059         if (!rb_enc_str_asciicompat_p(tmp)) {
2060 	  invalid_utc_offset:
2061             return Qnil;
2062 	}
2063 	switch (RSTRING_LEN(tmp)) {
2064 	  case 9:
2065 	    if (s[6] != ':') goto invalid_utc_offset;
2066 	    if (!ISDIGIT(s[7]) || !ISDIGIT(s[8])) goto invalid_utc_offset;
2067 	    n += (s[7] * 10 + s[8] - '0' * 11);
2068 	  case 6:
2069 	    if (s[0] != '+' && s[0] != '-') goto invalid_utc_offset;
2070 	    if (!ISDIGIT(s[1]) || !ISDIGIT(s[2])) goto invalid_utc_offset;
2071 	    if (s[3] != ':') goto invalid_utc_offset;
2072 	    if (!ISDIGIT(s[4]) || !ISDIGIT(s[5])) goto invalid_utc_offset;
2073 	    if (s[4] > '5') goto invalid_utc_offset;
2074 	    break;
2075 	  default:
2076 	    goto invalid_utc_offset;
2077 	}
2078         n += (s[1] * 10 + s[2] - '0' * 11) * 3600;
2079         n += (s[4] * 10 + s[5] - '0' * 11) * 60;
2080         if (s[0] == '-')
2081             n = -n;
2082         return INT2FIX(n);
2083     }
2084     else {
2085         return num_exact(arg);
2086     }
2087 }
2088 
2089 static void
zone_set_offset(VALUE zone,struct time_object * tobj,wideval_t tlocal,wideval_t tutc)2090 zone_set_offset(VALUE zone, struct time_object *tobj,
2091                 wideval_t tlocal, wideval_t tutc)
2092 {
2093     /* tlocal and tutc must be unmagnified and in seconds */
2094     wideval_t w = wsub(tlocal, tutc);
2095     VALUE off = w2v(w);
2096     validate_utc_offset(off);
2097     tobj->vtm.utc_offset = off;
2098     tobj->vtm.zone = zone;
2099     tobj->tzmode = TIME_TZMODE_LOCALTIME;
2100 }
2101 
2102 static wideval_t
extract_time(VALUE time)2103 extract_time(VALUE time)
2104 {
2105     wideval_t t;
2106     const ID id_to_i = idTo_i;
2107 
2108 #define EXTRACT_TIME() do { \
2109         t = v2w(rb_Integer(AREF(to_i))); \
2110     } while (0)
2111 
2112     if (rb_typeddata_is_kind_of(time, &time_data_type)) {
2113         struct time_object *tobj = DATA_PTR(time);
2114 
2115         time_gmtime(time); /* ensure tm got */
2116         t = rb_time_unmagnify(tobj->timew);
2117     }
2118     else if (RB_TYPE_P(time, T_STRUCT)) {
2119 #define AREF(x) rb_struct_aref(time, ID2SYM(id_##x))
2120         EXTRACT_TIME();
2121 #undef AREF
2122     }
2123     else {
2124 #define AREF(x) rb_funcallv(time, id_##x, 0, 0)
2125         EXTRACT_TIME();
2126 #undef AREF
2127     }
2128 #undef EXTRACT_TIME
2129 
2130     return t;
2131 }
2132 
2133 static wideval_t
extract_vtm(VALUE time,struct vtm * vtm,VALUE subsecx)2134 extract_vtm(VALUE time, struct vtm *vtm, VALUE subsecx)
2135 {
2136     wideval_t t;
2137     const ID id_to_i = idTo_i;
2138 
2139 #define EXTRACT_VTM() do { \
2140         VALUE subsecx; \
2141         vtm->year = obj2vint(AREF(year)); \
2142         vtm->mon = month_arg(AREF(mon)); \
2143         vtm->mday = obj2ubits(AREF(mday), 5); \
2144         vtm->hour = obj2ubits(AREF(hour), 5); \
2145         vtm->min = obj2ubits(AREF(min), 6); \
2146         vtm->sec = obj2subsecx(AREF(sec), &subsecx); \
2147         vtm->isdst = RTEST(AREF(isdst));             \
2148         vtm->utc_offset = Qnil; \
2149         t = v2w(rb_Integer(AREF(to_i))); \
2150     } while (0)
2151 
2152     if (rb_typeddata_is_kind_of(time, &time_data_type)) {
2153         struct time_object *tobj = DATA_PTR(time);
2154 
2155         time_get_tm(time, tobj);
2156         *vtm = tobj->vtm;
2157         t = rb_time_unmagnify(tobj->timew);
2158         if (TZMODE_FIXOFF_P(tobj) && vtm->utc_offset != INT2FIX(0))
2159             t = wadd(t, vtm->utc_offset);
2160     }
2161     else if (RB_TYPE_P(time, T_STRUCT)) {
2162 #define AREF(x) rb_struct_aref(time, ID2SYM(id_##x))
2163         EXTRACT_VTM();
2164 #undef AREF
2165     }
2166     else if (rb_integer_type_p(time)) {
2167         t = v2w(time);
2168         GMTIMEW(rb_time_magnify(t), vtm);
2169     }
2170     else {
2171 #define AREF(x) rb_funcallv(time, id_##x, 0, 0)
2172         EXTRACT_VTM();
2173 #undef AREF
2174     }
2175 #undef EXTRACT_VTM
2176     vtm->subsecx = subsecx;
2177     validate_vtm(vtm);
2178     return t;
2179 }
2180 
2181 static int
zone_timelocal(VALUE zone,VALUE time)2182 zone_timelocal(VALUE zone, VALUE time)
2183 {
2184     VALUE utc, tm;
2185     struct time_object *tobj = DATA_PTR(time);
2186     wideval_t t, s;
2187 
2188     t = rb_time_unmagnify(tobj->timew);
2189     tm = tm_from_time(rb_cTimeTM, time);
2190     utc = rb_check_funcall(zone, id_local_to_utc, 1, &tm);
2191     if (utc == Qundef) return 0;
2192 
2193     s = extract_time(utc);
2194     zone_set_offset(zone, tobj, t, s);
2195     s = rb_time_magnify(s);
2196     if (tobj->vtm.subsecx != INT2FIX(0)) {
2197         s = wadd(s, v2w(tobj->vtm.subsecx));
2198     }
2199     tobj->timew = s;
2200     return 1;
2201 }
2202 
2203 static int
zone_localtime(VALUE zone,VALUE time)2204 zone_localtime(VALUE zone, VALUE time)
2205 {
2206     VALUE local, tm, subsecx;
2207     struct time_object *tobj = DATA_PTR(time);
2208     wideval_t t, s;
2209 
2210     split_second(tobj->timew, &t, &subsecx);
2211     tm = tm_from_time(rb_cTimeTM, time);
2212 
2213     local = rb_check_funcall(zone, id_utc_to_local, 1, &tm);
2214     if (local == Qundef) return 0;
2215 
2216     s = extract_vtm(local, &tobj->vtm, subsecx);
2217     tobj->tm_got = 1;
2218     zone_set_offset(zone, tobj, s, t);
2219     return 1;
2220 }
2221 
2222 static VALUE
find_timezone(VALUE time,VALUE zone)2223 find_timezone(VALUE time, VALUE zone)
2224 {
2225     VALUE klass = CLASS_OF(time);
2226 
2227     return rb_check_funcall_default(klass, id_find_timezone, 1, &zone, Qnil);
2228 }
2229 
2230 static VALUE
time_init_1(int argc,VALUE * argv,VALUE time)2231 time_init_1(int argc, VALUE *argv, VALUE time)
2232 {
2233     struct vtm vtm;
2234     VALUE zone = Qnil;
2235     VALUE v[7];
2236     struct time_object *tobj;
2237 
2238     vtm.wday = VTM_WDAY_INITVAL;
2239     vtm.yday = 0;
2240     vtm.zone = rb_fstring_lit("");
2241 
2242     /*                             year  mon   mday  hour  min   sec   off */
2243     rb_scan_args(argc, argv, "16", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6]);
2244 
2245     vtm.year = obj2vint(v[0]);
2246 
2247     vtm.mon = NIL_P(v[1]) ? 1 : month_arg(v[1]);
2248 
2249     vtm.mday = NIL_P(v[2]) ? 1 : obj2ubits(v[2], 5);
2250 
2251     vtm.hour = NIL_P(v[3]) ? 0 : obj2ubits(v[3], 5);
2252 
2253     vtm.min  = NIL_P(v[4]) ? 0 : obj2ubits(v[4], 6);
2254 
2255     if (NIL_P(v[5])) {
2256         vtm.sec = 0;
2257         vtm.subsecx = INT2FIX(0);
2258     }
2259     else {
2260         VALUE subsecx;
2261         vtm.sec = obj2subsecx(v[5], &subsecx);
2262         vtm.subsecx = subsecx;
2263     }
2264 
2265     vtm.isdst = VTM_ISDST_INITVAL;
2266     vtm.utc_offset = Qnil;
2267     if (!NIL_P(v[6])) {
2268         VALUE arg = v[6];
2269         if (arg == ID2SYM(rb_intern("dst")))
2270             vtm.isdst = 1;
2271         else if (arg == ID2SYM(rb_intern("std")))
2272             vtm.isdst = 0;
2273         else if (maybe_tzobj_p(arg))
2274             zone = arg;
2275         else if (NIL_P(vtm.utc_offset = utc_offset_arg(arg)))
2276             if (NIL_P(zone = find_timezone(time, arg)))
2277                 invalid_utc_offset();
2278     }
2279 
2280     validate_vtm(&vtm);
2281 
2282     time_modify(time);
2283     GetNewTimeval(time, tobj);
2284 
2285     if (!NIL_P(zone)) {
2286         tobj->timew = timegmw(&vtm);
2287         tobj->vtm = vtm;
2288         tobj->tm_got = 1;
2289         TZMODE_SET_LOCALTIME(tobj);
2290         if (zone_timelocal(zone, time)) {
2291             return time;
2292         }
2293         else if (NIL_P(vtm.utc_offset = utc_offset_arg(zone))) {
2294             if (NIL_P(zone = find_timezone(time, zone)) || !zone_timelocal(zone, time))
2295                 invalid_utc_offset();
2296         }
2297     }
2298 
2299     tobj->tzmode = TIME_TZMODE_LOCALTIME;
2300     tobj->tm_got=0;
2301     tobj->timew = WINT2FIXWV(0);
2302 
2303     if (!NIL_P(vtm.utc_offset)) {
2304         VALUE off = vtm.utc_offset;
2305         vtm_add_offset(&vtm, neg(off));
2306         vtm.utc_offset = Qnil;
2307         tobj->timew = timegmw(&vtm);
2308         return time_set_utc_offset(time, off);
2309     }
2310     else {
2311         tobj->timew = timelocalw(&vtm);
2312         return time_localtime(time);
2313     }
2314 }
2315 
2316 
2317 /*
2318  *  call-seq:
2319  *     Time.new -> time
2320  *     Time.new(year, month=nil, day=nil, hour=nil, min=nil, sec=nil, tz=nil) -> time
2321  *
2322  *  Returns a Time object.
2323  *
2324  *  It is initialized to the current system time if no argument is given.
2325  *
2326  *  *Note:* The new object will use the resolution available on your
2327  *  system clock, and may include fractional seconds.
2328  *
2329  *  If one or more arguments are specified, the time is initialized to the
2330  *  specified time.
2331  *
2332  *  +sec+ may have fraction if it is a rational.
2333  *
2334  *  +tz+ specifies the timezone.
2335  *  It can be an offset from UTC, given either as a string such as "+09:00"
2336  *  or as a number of seconds such as 32400.
2337  *  Or it can be a timezone object,
2338  *  see {Timezone argument}[#class-Time-label-Timezone+argument] for details.
2339  *
2340  *     a = Time.new      #=> 2007-11-19 07:50:02 -0600
2341  *     b = Time.new      #=> 2007-11-19 07:50:02 -0600
2342  *     a == b            #=> false
2343  *     "%.6f" % a.to_f   #=> "1195480202.282373"
2344  *     "%.6f" % b.to_f   #=> "1195480202.283415"
2345  *
2346  *     Time.new(2008,6,21, 13,30,0, "+09:00") #=> 2008-06-21 13:30:00 +0900
2347  *
2348  *     # A trip for RubyConf 2007
2349  *     t1 = Time.new(2007,11,1,15,25,0, "+09:00") # JST (Narita)
2350  *     t2 = Time.new(2007,11,1,12, 5,0, "-05:00") # CDT (Minneapolis)
2351  *     t3 = Time.new(2007,11,1,13,25,0, "-05:00") # CDT (Minneapolis)
2352  *     t4 = Time.new(2007,11,1,16,53,0, "-04:00") # EDT (Charlotte)
2353  *     t5 = Time.new(2007,11,5, 9,24,0, "-05:00") # EST (Charlotte)
2354  *     t6 = Time.new(2007,11,5,11,21,0, "-05:00") # EST (Detroit)
2355  *     t7 = Time.new(2007,11,5,13,45,0, "-05:00") # EST (Detroit)
2356  *     t8 = Time.new(2007,11,6,17,10,0, "+09:00") # JST (Narita)
2357  *     (t2-t1)/3600.0                             #=> 10.666666666666666
2358  *     (t4-t3)/3600.0                             #=> 2.466666666666667
2359  *     (t6-t5)/3600.0                             #=> 1.95
2360  *     (t8-t7)/3600.0                             #=> 13.416666666666666
2361  *
2362  */
2363 
2364 static VALUE
time_init(int argc,VALUE * argv,VALUE time)2365 time_init(int argc, VALUE *argv, VALUE time)
2366 {
2367     if (argc == 0)
2368         return time_init_0(time);
2369     else
2370         return time_init_1(argc, argv, time);
2371 }
2372 
2373 static void
time_overflow_p(time_t * secp,long * nsecp)2374 time_overflow_p(time_t *secp, long *nsecp)
2375 {
2376     time_t sec = *secp;
2377     long nsec = *nsecp;
2378     long sec2;
2379 
2380     if (nsec >= 1000000000) {	/* nsec positive overflow */
2381         sec2 = nsec / 1000000000;
2382 	if (TIMET_MAX - sec2 < sec) {
2383 	    rb_raise(rb_eRangeError, "out of Time range");
2384 	}
2385 	nsec -= sec2 * 1000000000;
2386 	sec += sec2;
2387     }
2388     else if (nsec < 0) {		/* nsec negative overflow */
2389 	sec2 = NDIV(nsec,1000000000); /* negative div */
2390 	if (sec < TIMET_MIN - sec2) {
2391 	    rb_raise(rb_eRangeError, "out of Time range");
2392 	}
2393 	nsec -= sec2 * 1000000000;
2394 	sec += sec2;
2395     }
2396 #ifndef NEGATIVE_TIME_T
2397     if (sec < 0)
2398 	rb_raise(rb_eArgError, "time must be positive");
2399 #endif
2400     *secp = sec;
2401     *nsecp = nsec;
2402 }
2403 
2404 static wideval_t
nsec2timew(time_t sec,long nsec)2405 nsec2timew(time_t sec, long nsec)
2406 {
2407     struct timespec ts;
2408     time_overflow_p(&sec, &nsec);
2409     ts.tv_sec = sec;
2410     ts.tv_nsec = nsec;
2411     return timespec2timew(&ts);
2412 }
2413 
2414 static VALUE
time_new_timew(VALUE klass,wideval_t timew)2415 time_new_timew(VALUE klass, wideval_t timew)
2416 {
2417     VALUE time = time_s_alloc(klass);
2418     struct time_object *tobj;
2419 
2420     tobj = DATA_PTR(time);	/* skip type check */
2421     tobj->tzmode = TIME_TZMODE_LOCALTIME;
2422     tobj->timew = timew;
2423 
2424     return time;
2425 }
2426 
2427 VALUE
rb_time_new(time_t sec,long usec)2428 rb_time_new(time_t sec, long usec)
2429 {
2430     wideval_t timew;
2431 
2432     if (usec >= 1000000) {
2433 	long sec2 = usec / 1000000;
2434 	if (sec > TIMET_MAX - sec2) {
2435 	    rb_raise(rb_eRangeError, "out of Time range");
2436 	}
2437 	usec -= sec2 * 1000000;
2438 	sec += sec2;
2439     }
2440     else if (usec < 0) {
2441 	long sec2 = NDIV(usec,1000000); /* negative div */
2442 	if (sec < TIMET_MIN - sec2) {
2443 	    rb_raise(rb_eRangeError, "out of Time range");
2444 	}
2445 	usec -= sec2 * 1000000;
2446 	sec += sec2;
2447     }
2448 
2449     timew = nsec2timew(sec, usec * 1000);
2450     return time_new_timew(rb_cTime, timew);
2451 }
2452 
2453 /* returns localtime time object */
2454 VALUE
rb_time_nano_new(time_t sec,long nsec)2455 rb_time_nano_new(time_t sec, long nsec)
2456 {
2457     return time_new_timew(rb_cTime, nsec2timew(sec, nsec));
2458 }
2459 
2460 /**
2461  * Returns a time object with UTC/localtime/fixed offset
2462  *
2463  * offset is -86400 < fixoff < 86400 or INT_MAX (localtime) or INT_MAX-1 (utc)
2464  */
2465 VALUE
rb_time_timespec_new(const struct timespec * ts,int offset)2466 rb_time_timespec_new(const struct timespec *ts, int offset)
2467 {
2468     struct time_object *tobj;
2469     VALUE time = time_new_timew(rb_cTime, nsec2timew(ts->tv_sec, ts->tv_nsec));
2470 
2471     if (-86400 < offset && offset <  86400) { /* fixoff */
2472 	GetTimeval(time, tobj);
2473 	TZMODE_SET_FIXOFF(tobj, INT2FIX(offset));
2474     }
2475     else if (offset == INT_MAX) { /* localtime */
2476     }
2477     else if (offset == INT_MAX-1) { /* UTC */
2478 	GetTimeval(time, tobj);
2479 	TZMODE_SET_UTC(tobj);
2480     }
2481     else {
2482 	rb_raise(rb_eArgError, "utc_offset out of range");
2483     }
2484 
2485     return time;
2486 }
2487 
2488 VALUE
rb_time_num_new(VALUE timev,VALUE off)2489 rb_time_num_new(VALUE timev, VALUE off)
2490 {
2491     VALUE time = time_new_timew(rb_cTime, rb_time_magnify(v2w(timev)));
2492 
2493     if (!NIL_P(off)) {
2494         VALUE zone = off;
2495 
2496         if (maybe_tzobj_p(zone)) {
2497             time_gmtime(time);
2498             if (zone_timelocal(zone, time)) return time;
2499         }
2500         if (NIL_P(off = utc_offset_arg(off))) {
2501             if (NIL_P(zone = find_timezone(time, zone))) invalid_utc_offset();
2502             time_gmtime(time);
2503             if (!zone_timelocal(zone, time)) invalid_utc_offset();
2504             return time;
2505         }
2506         validate_utc_offset(off);
2507         time_set_utc_offset(time, off);
2508         return time;
2509     }
2510 
2511     return time;
2512 }
2513 
2514 static struct timespec
time_timespec(VALUE num,int interval)2515 time_timespec(VALUE num, int interval)
2516 {
2517     struct timespec t;
2518     const char *const tstr = interval ? "time interval" : "time";
2519     VALUE i, f, ary;
2520 
2521 #ifndef NEGATIVE_TIME_T
2522 # define arg_range_check(v) \
2523     (((v) < 0) ? \
2524      rb_raise(rb_eArgError, "%s must not be negative", tstr) : \
2525      (void)0)
2526 #else
2527 # define arg_range_check(v) \
2528     ((interval && (v) < 0) ? \
2529      rb_raise(rb_eArgError, "time interval must not be negative") : \
2530      (void)0)
2531 #endif
2532 
2533     if (FIXNUM_P(num)) {
2534 	t.tv_sec = NUM2TIMET(num);
2535         arg_range_check(t.tv_sec);
2536 	t.tv_nsec = 0;
2537     }
2538     else if (RB_FLOAT_TYPE_P(num)) {
2539         double x = RFLOAT_VALUE(num);
2540         arg_range_check(x);
2541         {
2542 	    double f, d;
2543 
2544             d = modf(x, &f);
2545 	    if (d >= 0) {
2546 		t.tv_nsec = (int)(d*1e9+0.5);
2547 		if (t.tv_nsec >= 1000000000) {
2548 		    t.tv_nsec -= 1000000000;
2549 		    f += 1;
2550 		}
2551 	    }
2552 	    else if ((t.tv_nsec = (int)(-d*1e9+0.5)) > 0) {
2553 		t.tv_nsec = 1000000000 - t.tv_nsec;
2554 		f -= 1;
2555 	    }
2556 	    t.tv_sec = (time_t)f;
2557 	    if (f != t.tv_sec) {
2558                 rb_raise(rb_eRangeError, "%f out of Time range", x);
2559 	    }
2560 	}
2561     }
2562     else if (RB_TYPE_P(num, T_BIGNUM)) {
2563 	t.tv_sec = NUM2TIMET(num);
2564         arg_range_check(t.tv_sec);
2565 	t.tv_nsec = 0;
2566     }
2567     else {
2568 	i = INT2FIX(1);
2569 	ary = rb_check_funcall(num, id_divmod, 1, &i);
2570 	if (ary != Qundef && !NIL_P(ary = rb_check_array_type(ary))) {
2571             i = rb_ary_entry(ary, 0);
2572             f = rb_ary_entry(ary, 1);
2573             t.tv_sec = NUM2TIMET(i);
2574             arg_range_check(t.tv_sec);
2575             f = rb_funcall(f, '*', 1, INT2FIX(1000000000));
2576             t.tv_nsec = NUM2LONG(f);
2577         }
2578         else {
2579 	    rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into %s",
2580 		     rb_obj_class(num), tstr);
2581         }
2582     }
2583     return t;
2584 #undef arg_range_check
2585 }
2586 
2587 static struct timeval
time_timeval(VALUE num,int interval)2588 time_timeval(VALUE num, int interval)
2589 {
2590     struct timespec ts;
2591     struct timeval tv;
2592 
2593     ts = time_timespec(num, interval);
2594     tv.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
2595     tv.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
2596 
2597     return tv;
2598 }
2599 
2600 struct timeval
rb_time_interval(VALUE num)2601 rb_time_interval(VALUE num)
2602 {
2603     return time_timeval(num, TRUE);
2604 }
2605 
2606 struct timeval
rb_time_timeval(VALUE time)2607 rb_time_timeval(VALUE time)
2608 {
2609     struct time_object *tobj;
2610     struct timeval t;
2611     struct timespec ts;
2612 
2613     if (IsTimeval(time)) {
2614 	GetTimeval(time, tobj);
2615         ts = timew2timespec(tobj->timew);
2616         t.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
2617         t.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
2618 	return t;
2619     }
2620     return time_timeval(time, FALSE);
2621 }
2622 
2623 struct timespec
rb_time_timespec(VALUE time)2624 rb_time_timespec(VALUE time)
2625 {
2626     struct time_object *tobj;
2627     struct timespec t;
2628 
2629     if (IsTimeval(time)) {
2630 	GetTimeval(time, tobj);
2631         t = timew2timespec(tobj->timew);
2632 	return t;
2633     }
2634     return time_timespec(time, FALSE);
2635 }
2636 
2637 /*
2638  *  call-seq:
2639  *     Time.now -> time
2640  *
2641  *  Creates a new Time object for the current time.
2642  *  This is same as Time.new without arguments.
2643  *
2644  *     Time.now            #=> 2009-06-24 12:39:54 +0900
2645  */
2646 
2647 static VALUE
time_s_now(VALUE klass)2648 time_s_now(VALUE klass)
2649 {
2650     return rb_class_new_instance(0, NULL, klass);
2651 }
2652 
2653 static int
get_scale(VALUE unit)2654 get_scale(VALUE unit)
2655 {
2656     if (unit == ID2SYM(id_nanosecond) || unit == ID2SYM(id_nsec)) {
2657         return 1000000000;
2658     }
2659     else if (unit == ID2SYM(id_microsecond) || unit == ID2SYM(id_usec)) {
2660         return 1000000;
2661     }
2662     else if (unit == ID2SYM(id_millisecond)) {
2663         return 1000;
2664     }
2665     else {
2666         rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit);
2667     }
2668 }
2669 
2670 /*
2671  *  call-seq:
2672  *     Time.at(time) -> time
2673  *     Time.at(seconds_with_frac) -> time
2674  *     Time.at(seconds, microseconds_with_frac) -> time
2675  *     Time.at(seconds, milliseconds, :millisecond) -> time
2676  *     Time.at(seconds, microseconds, :usec) -> time
2677  *     Time.at(seconds, microseconds, :microsecond) -> time
2678  *     Time.at(seconds, nanoseconds, :nsec) -> time
2679  *     Time.at(seconds, nanoseconds, :nanosecond) -> time
2680  *     Time.at(time, in: tz) -> time
2681  *     Time.at(seconds_with_frac, in: tz) -> time
2682  *     Time.at(seconds, microseconds_with_frac, in: tz) -> time
2683  *     Time.at(seconds, milliseconds, :millisecond, in: tz) -> time
2684  *     Time.at(seconds, microseconds, :usec, in: tz) -> time
2685  *     Time.at(seconds, microseconds, :microsecond, in: tz) -> time
2686  *     Time.at(seconds, nanoseconds, :nsec, in: tz) -> time
2687  *     Time.at(seconds, nanoseconds, :nanosecond, in: tz) -> time
2688  *
2689  *  Creates a new Time object with the value given by +time+,
2690  *  the given number of +seconds_with_frac+, or
2691  *  +seconds+ and +microseconds_with_frac+ since the Epoch.
2692  *  +seconds_with_frac+ and +microseconds_with_frac+
2693  *  can be an Integer, Float, Rational, or other Numeric.
2694  *  non-portable feature allows the offset to be negative on some systems.
2695  *
2696  *  If +in+ argument is given, the result is in that timezone or UTC offset, or
2697  *  if a numeric argument is given, the result is in local time.
2698  *
2699  *     Time.at(0)                                #=> 1969-12-31 18:00:00 -0600
2700  *     Time.at(Time.at(0))                       #=> 1969-12-31 18:00:00 -0600
2701  *     Time.at(946702800)                        #=> 1999-12-31 23:00:00 -0600
2702  *     Time.at(-284061600)                       #=> 1960-12-31 00:00:00 -0600
2703  *     Time.at(946684800.2).usec                 #=> 200000
2704  *     Time.at(946684800, 123456.789).nsec       #=> 123456789
2705  *     Time.at(946684800, 123456789, :nsec).nsec #=> 123456789
2706  */
2707 
2708 static VALUE
time_s_at(int argc,VALUE * argv,VALUE klass)2709 time_s_at(int argc, VALUE *argv, VALUE klass)
2710 {
2711     VALUE time, t, unit = Qundef, zone = Qundef, opts;
2712     wideval_t timew;
2713 
2714     argc = rb_scan_args(argc, argv, "12:", &time, &t, &unit, &opts);
2715     if (!NIL_P(opts)) {
2716         ID ids[1];
2717         VALUE vals[numberof(ids)];
2718 
2719         CONST_ID(ids[0], "in");
2720         rb_get_kwargs(opts, ids, 0, 1, vals);
2721         zone = vals[0];
2722     }
2723     if (argc >= 2) {
2724         int scale = argc == 3 ? get_scale(unit) : 1000000;
2725         time = num_exact(time);
2726         t = num_exact(t);
2727         timew = wadd(rb_time_magnify(v2w(time)), wmulquoll(v2w(t), TIME_SCALE, scale));
2728         t = time_new_timew(klass, timew);
2729     }
2730     else if (IsTimeval(time)) {
2731 	struct time_object *tobj, *tobj2;
2732         GetTimeval(time, tobj);
2733         t = time_new_timew(klass, tobj->timew);
2734 	GetTimeval(t, tobj2);
2735         TZMODE_COPY(tobj2, tobj);
2736     }
2737     else {
2738         timew = rb_time_magnify(v2w(num_exact(time)));
2739         t = time_new_timew(klass, timew);
2740     }
2741     if (zone != Qundef) {
2742         time_zonelocal(t, zone);
2743     }
2744 
2745     return t;
2746 }
2747 
2748 static const char months[][4] = {
2749     "jan", "feb", "mar", "apr", "may", "jun",
2750     "jul", "aug", "sep", "oct", "nov", "dec",
2751 };
2752 
2753 static int
obj2int(VALUE obj)2754 obj2int(VALUE obj)
2755 {
2756     if (RB_TYPE_P(obj, T_STRING)) {
2757 	obj = rb_str_to_inum(obj, 10, FALSE);
2758     }
2759 
2760     return NUM2INT(obj);
2761 }
2762 
2763 static uint32_t
obj2ubits(VALUE obj,size_t bits)2764 obj2ubits(VALUE obj, size_t bits)
2765 {
2766     static const uint32_t u32max = (uint32_t)-1;
2767     const uint32_t usable_mask = ~(u32max << bits);
2768     uint32_t rv;
2769     int tmp = obj2int(obj);
2770 
2771     if (tmp < 0)
2772 	rb_raise(rb_eArgError, "argument out of range");
2773     rv = tmp;
2774     if ((rv & usable_mask) != rv)
2775 	rb_raise(rb_eArgError, "argument out of range");
2776     return rv;
2777 }
2778 
2779 static VALUE
obj2vint(VALUE obj)2780 obj2vint(VALUE obj)
2781 {
2782     if (RB_TYPE_P(obj, T_STRING)) {
2783 	obj = rb_str_to_inum(obj, 10, FALSE);
2784     }
2785     else {
2786         obj = rb_to_int(obj);
2787     }
2788 
2789     return obj;
2790 }
2791 
2792 static uint32_t
obj2subsecx(VALUE obj,VALUE * subsecx)2793 obj2subsecx(VALUE obj, VALUE *subsecx)
2794 {
2795     VALUE subsec;
2796 
2797     if (RB_TYPE_P(obj, T_STRING)) {
2798 	obj = rb_str_to_inum(obj, 10, FALSE);
2799         *subsecx = INT2FIX(0);
2800     }
2801     else {
2802         divmodv(num_exact(obj), INT2FIX(1), &obj, &subsec);
2803         *subsecx = w2v(rb_time_magnify(v2w(subsec)));
2804     }
2805     return obj2ubits(obj, 6); /* vtm->sec */
2806 }
2807 
2808 static VALUE
usec2subsecx(VALUE obj)2809 usec2subsecx(VALUE obj)
2810 {
2811     if (RB_TYPE_P(obj, T_STRING)) {
2812 	obj = rb_str_to_inum(obj, 10, FALSE);
2813     }
2814 
2815     return mulquov(num_exact(obj), INT2FIX(TIME_SCALE), INT2FIX(1000000));
2816 }
2817 
2818 static uint32_t
month_arg(VALUE arg)2819 month_arg(VALUE arg)
2820 {
2821     int i, mon;
2822 
2823     VALUE s = rb_check_string_type(arg);
2824     if (!NIL_P(s) && RSTRING_LEN(s) > 0) {
2825         mon = 0;
2826         for (i=0; i<12; i++) {
2827             if (RSTRING_LEN(s) == 3 &&
2828                 STRNCASECMP(months[i], RSTRING_PTR(s), 3) == 0) {
2829                 mon = i+1;
2830                 break;
2831             }
2832         }
2833         if (mon == 0) {
2834             char c = RSTRING_PTR(s)[0];
2835 
2836             if ('0' <= c && c <= '9') {
2837                 mon = obj2ubits(s, 4);
2838             }
2839         }
2840     }
2841     else {
2842         mon = obj2ubits(arg, 4);
2843     }
2844     return mon;
2845 }
2846 
2847 static VALUE
validate_utc_offset(VALUE utc_offset)2848 validate_utc_offset(VALUE utc_offset)
2849 {
2850     if (le(utc_offset, INT2FIX(-86400)) || ge(utc_offset, INT2FIX(86400)))
2851 	rb_raise(rb_eArgError, "utc_offset out of range");
2852     return utc_offset;
2853 }
2854 
2855 static VALUE
validate_zone_name(VALUE zone_name)2856 validate_zone_name(VALUE zone_name)
2857 {
2858     StringValueCStr(zone_name);
2859     return zone_name;
2860 }
2861 
2862 static void
validate_vtm(struct vtm * vtm)2863 validate_vtm(struct vtm *vtm)
2864 {
2865 #define validate_vtm_range(mem, b, e) \
2866     ((vtm->mem < b || vtm->mem > e) ? \
2867      rb_raise(rb_eArgError, #mem" out of range") : (void)0)
2868     validate_vtm_range(mon, 1, 12);
2869     validate_vtm_range(mday, 1, 31);
2870     validate_vtm_range(hour, 0, 24);
2871     validate_vtm_range(min, 0, (vtm->hour == 24 ? 0 : 59));
2872     validate_vtm_range(sec, 0, (vtm->hour == 24 ? 0 : 60));
2873     if (lt(vtm->subsecx, INT2FIX(0)) || ge(vtm->subsecx, INT2FIX(TIME_SCALE)))
2874 	rb_raise(rb_eArgError, "subsecx out of range");
2875     if (!NIL_P(vtm->utc_offset)) validate_utc_offset(vtm->utc_offset);
2876 #undef validate_vtm_range
2877 }
2878 
2879 static void
time_arg(int argc,const VALUE * argv,struct vtm * vtm)2880 time_arg(int argc, const VALUE *argv, struct vtm *vtm)
2881 {
2882     VALUE v[8];
2883     VALUE subsecx = INT2FIX(0);
2884 
2885     vtm->year = INT2FIX(0);
2886     vtm->mon = 0;
2887     vtm->mday = 0;
2888     vtm->hour = 0;
2889     vtm->min = 0;
2890     vtm->sec = 0;
2891     vtm->subsecx = INT2FIX(0);
2892     vtm->utc_offset = Qnil;
2893     vtm->wday = 0;
2894     vtm->yday = 0;
2895     vtm->isdst = 0;
2896     vtm->zone = rb_fstring_lit("");
2897 
2898     if (argc == 10) {
2899 	v[0] = argv[5];
2900 	v[1] = argv[4];
2901 	v[2] = argv[3];
2902 	v[3] = argv[2];
2903 	v[4] = argv[1];
2904 	v[5] = argv[0];
2905 	v[6] = Qnil;
2906 	vtm->isdst = RTEST(argv[8]) ? 1 : 0;
2907     }
2908     else {
2909 	rb_scan_args(argc, argv, "17", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6],&v[7]);
2910 	/* v[6] may be usec or zone (parsedate) */
2911 	/* v[7] is wday (parsedate; ignored) */
2912 	vtm->wday = VTM_WDAY_INITVAL;
2913 	vtm->isdst = VTM_ISDST_INITVAL;
2914     }
2915 
2916     vtm->year = obj2vint(v[0]);
2917 
2918     if (NIL_P(v[1])) {
2919         vtm->mon = 1;
2920     }
2921     else {
2922         vtm->mon = month_arg(v[1]);
2923     }
2924 
2925     if (NIL_P(v[2])) {
2926 	vtm->mday = 1;
2927     }
2928     else {
2929 	vtm->mday = obj2ubits(v[2], 5);
2930     }
2931 
2932     /* normalize month-mday */
2933     switch (vtm->mon) {
2934       case 2:
2935         {
2936             /* this drops higher bits but it's not a problem to calc leap year */
2937             unsigned int mday2 = leap_year_v_p(vtm->year) ? 29 : 28;
2938             if (vtm->mday > mday2) {
2939                 vtm->mday -= mday2;
2940                 vtm->mon++;
2941             }
2942         }
2943         break;
2944       case 4:
2945       case 6:
2946       case 9:
2947       case 11:
2948         if (vtm->mday == 31) {
2949             vtm->mon++;
2950             vtm->mday = 1;
2951         }
2952         break;
2953     }
2954 
2955     vtm->hour = NIL_P(v[3])?0:obj2ubits(v[3], 5);
2956 
2957     vtm->min  = NIL_P(v[4])?0:obj2ubits(v[4], 6);
2958 
2959     if (!NIL_P(v[6]) && argc == 7) {
2960         vtm->sec = NIL_P(v[5])?0:obj2ubits(v[5],6);
2961         subsecx  = usec2subsecx(v[6]);
2962     }
2963     else {
2964 	/* when argc == 8, v[6] is timezone, but ignored */
2965         if (NIL_P(v[5])) {
2966             vtm->sec = 0;
2967         }
2968         else {
2969             vtm->sec = obj2subsecx(v[5], &subsecx);
2970         }
2971     }
2972     vtm->subsecx = subsecx;
2973 
2974     validate_vtm(vtm);
2975     RB_GC_GUARD(subsecx);
2976 }
2977 
2978 static int
leap_year_p(long y)2979 leap_year_p(long y)
2980 {
2981     return ((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0);
2982 }
2983 
2984 static time_t
timegm_noleapsecond(struct tm * tm)2985 timegm_noleapsecond(struct tm *tm)
2986 {
2987     long tm_year = tm->tm_year;
2988     int tm_yday = calc_tm_yday(tm->tm_year, tm->tm_mon, tm->tm_mday);
2989 
2990     /*
2991      *  `Seconds Since the Epoch' in SUSv3:
2992      *  tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
2993      *  (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
2994      *  ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
2995      */
2996     return tm->tm_sec + tm->tm_min*60 + tm->tm_hour*3600 +
2997 	   (time_t)(tm_yday +
2998 		    (tm_year-70)*365 +
2999 		    DIV(tm_year-69,4) -
3000 		    DIV(tm_year-1,100) +
3001 		    DIV(tm_year+299,400))*86400;
3002 }
3003 
3004 #if 0
3005 #define DEBUG_FIND_TIME_NUMGUESS
3006 #define DEBUG_GUESSRANGE
3007 #endif
3008 
3009 #ifdef DEBUG_GUESSRANGE
3010 #define DEBUG_REPORT_GUESSRANGE fprintf(stderr, "find time guess range: %ld - %ld : %"PRI_TIMET_PREFIX"u\n", guess_lo, guess_hi, (unsigned_time_t)(guess_hi-guess_lo))
3011 #else
3012 #define DEBUG_REPORT_GUESSRANGE
3013 #endif
3014 
3015 #ifdef DEBUG_FIND_TIME_NUMGUESS
3016 #define DEBUG_FIND_TIME_NUMGUESS_INC find_time_numguess++,
3017 static unsigned long long find_time_numguess;
3018 
find_time_numguess_getter(void)3019 static VALUE find_time_numguess_getter(void)
3020 {
3021     return ULL2NUM(find_time_numguess);
3022 }
3023 #else
3024 #define DEBUG_FIND_TIME_NUMGUESS_INC
3025 #endif
3026 
3027 static const char *
find_time_t(struct tm * tptr,int utc_p,time_t * tp)3028 find_time_t(struct tm *tptr, int utc_p, time_t *tp)
3029 {
3030     time_t guess, guess0, guess_lo, guess_hi;
3031     struct tm *tm, tm0, tm_lo, tm_hi;
3032     int d;
3033     int find_dst;
3034     struct tm result;
3035     int status;
3036     int tptr_tm_yday;
3037 
3038 #define GUESS(p) (DEBUG_FIND_TIME_NUMGUESS_INC (utc_p ? gmtime_with_leapsecond((p), &result) : LOCALTIME((p), result)))
3039 
3040     guess_lo = TIMET_MIN;
3041     guess_hi = TIMET_MAX;
3042 
3043     find_dst = 0 < tptr->tm_isdst;
3044 
3045 #if defined(HAVE_MKTIME)
3046     tm0 = *tptr;
3047     if (!utc_p && (guess = mktime(&tm0)) != -1) {
3048         tm = GUESS(&guess);
3049         if (tm && tmcmp(tptr, tm) == 0) {
3050             goto found;
3051         }
3052     }
3053 #endif
3054 
3055     tm0 = *tptr;
3056     if (tm0.tm_mon < 0) {
3057 	tm0.tm_mon = 0;
3058 	tm0.tm_mday = 1;
3059 	tm0.tm_hour = 0;
3060 	tm0.tm_min = 0;
3061 	tm0.tm_sec = 0;
3062     }
3063     else if (11 < tm0.tm_mon) {
3064 	tm0.tm_mon = 11;
3065 	tm0.tm_mday = 31;
3066 	tm0.tm_hour = 23;
3067 	tm0.tm_min = 59;
3068 	tm0.tm_sec = 60;
3069     }
3070     else if (tm0.tm_mday < 1) {
3071 	tm0.tm_mday = 1;
3072 	tm0.tm_hour = 0;
3073 	tm0.tm_min = 0;
3074 	tm0.tm_sec = 0;
3075     }
3076     else if ((d = (leap_year_p(1900 + tm0.tm_year) ?
3077                    leap_year_days_in_month :
3078 		   common_year_days_in_month)[tm0.tm_mon]) < tm0.tm_mday) {
3079 	tm0.tm_mday = d;
3080 	tm0.tm_hour = 23;
3081 	tm0.tm_min = 59;
3082 	tm0.tm_sec = 60;
3083     }
3084     else if (tm0.tm_hour < 0) {
3085 	tm0.tm_hour = 0;
3086 	tm0.tm_min = 0;
3087 	tm0.tm_sec = 0;
3088     }
3089     else if (23 < tm0.tm_hour) {
3090 	tm0.tm_hour = 23;
3091 	tm0.tm_min = 59;
3092 	tm0.tm_sec = 60;
3093     }
3094     else if (tm0.tm_min < 0) {
3095 	tm0.tm_min = 0;
3096 	tm0.tm_sec = 0;
3097     }
3098     else if (59 < tm0.tm_min) {
3099 	tm0.tm_min = 59;
3100 	tm0.tm_sec = 60;
3101     }
3102     else if (tm0.tm_sec < 0) {
3103 	tm0.tm_sec = 0;
3104     }
3105     else if (60 < tm0.tm_sec) {
3106 	tm0.tm_sec = 60;
3107     }
3108 
3109     DEBUG_REPORT_GUESSRANGE;
3110     guess0 = guess = timegm_noleapsecond(&tm0);
3111     tm = GUESS(&guess);
3112     if (tm) {
3113 	d = tmcmp(tptr, tm);
3114 	if (d == 0) { goto found; }
3115 	if (d < 0) {
3116 	    guess_hi = guess;
3117 	    guess -= 24 * 60 * 60;
3118 	}
3119 	else {
3120 	    guess_lo = guess;
3121 	    guess += 24 * 60 * 60;
3122 	}
3123         DEBUG_REPORT_GUESSRANGE;
3124 	if (guess_lo < guess && guess < guess_hi && (tm = GUESS(&guess)) != NULL) {
3125 	    d = tmcmp(tptr, tm);
3126 	    if (d == 0) { goto found; }
3127 	    if (d < 0)
3128 		guess_hi = guess;
3129 	    else
3130 		guess_lo = guess;
3131             DEBUG_REPORT_GUESSRANGE;
3132 	}
3133     }
3134 
3135     tm = GUESS(&guess_lo);
3136     if (!tm) goto error;
3137     d = tmcmp(tptr, tm);
3138     if (d < 0) goto out_of_range;
3139     if (d == 0) { guess = guess_lo; goto found; }
3140     tm_lo = *tm;
3141 
3142     tm = GUESS(&guess_hi);
3143     if (!tm) goto error;
3144     d = tmcmp(tptr, tm);
3145     if (d > 0) goto out_of_range;
3146     if (d == 0) { guess = guess_hi; goto found; }
3147     tm_hi = *tm;
3148 
3149     DEBUG_REPORT_GUESSRANGE;
3150 
3151     status = 1;
3152 
3153     while (guess_lo + 1 < guess_hi) {
3154         if (status == 0) {
3155           binsearch:
3156             guess = guess_lo / 2 + guess_hi / 2;
3157             if (guess <= guess_lo)
3158                 guess = guess_lo + 1;
3159             else if (guess >= guess_hi)
3160                 guess = guess_hi - 1;
3161             status = 1;
3162         }
3163         else {
3164             if (status == 1) {
3165                 time_t guess0_hi = timegm_noleapsecond(&tm_hi);
3166                 guess = guess_hi - (guess0_hi - guess0);
3167                 if (guess == guess_hi) /* hh:mm:60 tends to cause this condition. */
3168                     guess--;
3169                 status = 2;
3170             }
3171             else if (status == 2) {
3172                 time_t guess0_lo = timegm_noleapsecond(&tm_lo);
3173                 guess = guess_lo + (guess0 - guess0_lo);
3174                 if (guess == guess_lo)
3175                     guess++;
3176                 status = 0;
3177             }
3178             if (guess <= guess_lo || guess_hi <= guess) {
3179                 /* Precious guess is invalid. try binary search. */
3180 #ifdef DEBUG_GUESSRANGE
3181                 if (guess <= guess_lo) fprintf(stderr, "too small guess: %ld <= %ld\n", guess, guess_lo);
3182                 if (guess_hi <= guess) fprintf(stderr, "too big guess: %ld <= %ld\n", guess_hi, guess);
3183 #endif
3184                 goto binsearch;
3185             }
3186         }
3187 
3188 	tm = GUESS(&guess);
3189 	if (!tm) goto error;
3190 
3191 	d = tmcmp(tptr, tm);
3192 
3193         if (d < 0) {
3194             guess_hi = guess;
3195             tm_hi = *tm;
3196             DEBUG_REPORT_GUESSRANGE;
3197         }
3198         else if (d > 0) {
3199             guess_lo = guess;
3200             tm_lo = *tm;
3201             DEBUG_REPORT_GUESSRANGE;
3202         }
3203         else {
3204           found:
3205 	    if (!utc_p) {
3206 		/* If localtime is nonmonotonic, another result may exist. */
3207 		time_t guess2;
3208 		if (find_dst) {
3209 		    guess2 = guess - 2 * 60 * 60;
3210 		    tm = LOCALTIME(&guess2, result);
3211 		    if (tm) {
3212 			if (tptr->tm_hour != (tm->tm_hour + 2) % 24 ||
3213 			    tptr->tm_min != tm->tm_min ||
3214 			    tptr->tm_sec != tm->tm_sec) {
3215 			    guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
3216 				      (tm->tm_min - tptr->tm_min) * 60 +
3217 				      (tm->tm_sec - tptr->tm_sec);
3218 			    if (tptr->tm_mday != tm->tm_mday)
3219 				guess2 += 24 * 60 * 60;
3220 			    if (guess != guess2) {
3221 				tm = LOCALTIME(&guess2, result);
3222 				if (tm && tmcmp(tptr, tm) == 0) {
3223 				    if (guess < guess2)
3224 					*tp = guess;
3225 				    else
3226 					*tp = guess2;
3227                                     return NULL;
3228 				}
3229 			    }
3230 			}
3231 		    }
3232 		}
3233 		else {
3234 		    guess2 = guess + 2 * 60 * 60;
3235 		    tm = LOCALTIME(&guess2, result);
3236 		    if (tm) {
3237 			if ((tptr->tm_hour + 2) % 24 != tm->tm_hour ||
3238 			    tptr->tm_min != tm->tm_min ||
3239 			    tptr->tm_sec != tm->tm_sec) {
3240 			    guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
3241 				      (tm->tm_min - tptr->tm_min) * 60 +
3242 				      (tm->tm_sec - tptr->tm_sec);
3243 			    if (tptr->tm_mday != tm->tm_mday)
3244 				guess2 -= 24 * 60 * 60;
3245 			    if (guess != guess2) {
3246 				tm = LOCALTIME(&guess2, result);
3247 				if (tm && tmcmp(tptr, tm) == 0) {
3248 				    if (guess < guess2)
3249 					*tp = guess2;
3250 				    else
3251 					*tp = guess;
3252                                     return NULL;
3253 				}
3254 			    }
3255 			}
3256 		    }
3257 		}
3258 	    }
3259             *tp = guess;
3260             return NULL;
3261 	}
3262     }
3263 
3264     /* Given argument has no corresponding time_t. Let's extrapolate. */
3265     /*
3266      *  `Seconds Since the Epoch' in SUSv3:
3267      *  tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
3268      *  (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
3269      *  ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
3270      */
3271 
3272     tptr_tm_yday = calc_tm_yday(tptr->tm_year, tptr->tm_mon, tptr->tm_mday);
3273 
3274     *tp = guess_lo +
3275           ((tptr->tm_year - tm_lo.tm_year) * 365 +
3276            DIV((tptr->tm_year-69), 4) -
3277            DIV((tptr->tm_year-1), 100) +
3278            DIV((tptr->tm_year+299), 400) -
3279            DIV((tm_lo.tm_year-69), 4) +
3280            DIV((tm_lo.tm_year-1), 100) -
3281            DIV((tm_lo.tm_year+299), 400) +
3282            tptr_tm_yday -
3283            tm_lo.tm_yday) * 86400 +
3284           (tptr->tm_hour - tm_lo.tm_hour) * 3600 +
3285           (tptr->tm_min - tm_lo.tm_min) * 60 +
3286           (tptr->tm_sec - (tm_lo.tm_sec == 60 ? 59 : tm_lo.tm_sec));
3287 
3288     return NULL;
3289 
3290   out_of_range:
3291     return "time out of range";
3292 
3293   error:
3294     return "gmtime/localtime error";
3295 }
3296 
3297 static int
vtmcmp(struct vtm * a,struct vtm * b)3298 vtmcmp(struct vtm *a, struct vtm *b)
3299 {
3300     if (ne(a->year, b->year))
3301 	return lt(a->year, b->year) ? -1 : 1;
3302     else if (a->mon != b->mon)
3303 	return a->mon < b->mon ? -1 : 1;
3304     else if (a->mday != b->mday)
3305 	return a->mday < b->mday ? -1 : 1;
3306     else if (a->hour != b->hour)
3307 	return a->hour < b->hour ? -1 : 1;
3308     else if (a->min != b->min)
3309 	return a->min < b->min ? -1 : 1;
3310     else if (a->sec != b->sec)
3311 	return a->sec < b->sec ? -1 : 1;
3312     else if (ne(a->subsecx, b->subsecx))
3313 	return lt(a->subsecx, b->subsecx) ? -1 : 1;
3314     else
3315         return 0;
3316 }
3317 
3318 static int
tmcmp(struct tm * a,struct tm * b)3319 tmcmp(struct tm *a, struct tm *b)
3320 {
3321     if (a->tm_year != b->tm_year)
3322 	return a->tm_year < b->tm_year ? -1 : 1;
3323     else if (a->tm_mon != b->tm_mon)
3324 	return a->tm_mon < b->tm_mon ? -1 : 1;
3325     else if (a->tm_mday != b->tm_mday)
3326 	return a->tm_mday < b->tm_mday ? -1 : 1;
3327     else if (a->tm_hour != b->tm_hour)
3328 	return a->tm_hour < b->tm_hour ? -1 : 1;
3329     else if (a->tm_min != b->tm_min)
3330 	return a->tm_min < b->tm_min ? -1 : 1;
3331     else if (a->tm_sec != b->tm_sec)
3332 	return a->tm_sec < b->tm_sec ? -1 : 1;
3333     else
3334         return 0;
3335 }
3336 
3337 /*
3338  *  call-seq:
3339  *    Time.utc(year) -> time
3340  *    Time.utc(year, month) -> time
3341  *    Time.utc(year, month, day) -> time
3342  *    Time.utc(year, month, day, hour) -> time
3343  *    Time.utc(year, month, day, hour, min) -> time
3344  *    Time.utc(year, month, day, hour, min, sec_with_frac) -> time
3345  *    Time.utc(year, month, day, hour, min, sec, usec_with_frac) -> time
3346  *    Time.utc(sec, min, hour, day, month, year, dummy, dummy, dummy, dummy) -> time
3347  *    Time.gm(year) -> time
3348  *    Time.gm(year, month) -> time
3349  *    Time.gm(year, month, day) -> time
3350  *    Time.gm(year, month, day, hour) -> time
3351  *    Time.gm(year, month, day, hour, min) -> time
3352  *    Time.gm(year, month, day, hour, min, sec_with_frac) -> time
3353  *    Time.gm(year, month, day, hour, min, sec, usec_with_frac) -> time
3354  *    Time.gm(sec, min, hour, day, month, year, dummy, dummy, dummy, dummy) -> time
3355  *
3356  *  Creates a Time object based on given values, interpreted as UTC (GMT). The
3357  *  year must be specified. Other values default to the minimum value
3358  *  for that field (and may be +nil+ or omitted). Months may
3359  *  be specified by numbers from 1 to 12, or by the three-letter English
3360  *  month names. Hours are specified on a 24-hour clock (0..23). Raises
3361  *  an ArgumentError if any values are out of range. Will
3362  *  also accept ten arguments in the order output by Time#to_a.
3363  *
3364  *  +sec_with_frac+ and +usec_with_frac+ can have a fractional part.
3365  *
3366  *     Time.utc(2000,"jan",1,20,15,1)  #=> 2000-01-01 20:15:01 UTC
3367  *     Time.gm(2000,"jan",1,20,15,1)   #=> 2000-01-01 20:15:01 UTC
3368  */
3369 static VALUE
time_s_mkutc(int argc,VALUE * argv,VALUE klass)3370 time_s_mkutc(int argc, VALUE *argv, VALUE klass)
3371 {
3372     struct vtm vtm;
3373 
3374     time_arg(argc, argv, &vtm);
3375     return time_gmtime(time_new_timew(klass, timegmw(&vtm)));
3376 }
3377 
3378 /*
3379  *  call-seq:
3380  *   Time.local(year) -> time
3381  *   Time.local(year, month) -> time
3382  *   Time.local(year, month, day) -> time
3383  *   Time.local(year, month, day, hour) -> time
3384  *   Time.local(year, month, day, hour, min) -> time
3385  *   Time.local(year, month, day, hour, min, sec_with_frac) -> time
3386  *   Time.local(year, month, day, hour, min, sec, usec_with_frac) -> time
3387  *   Time.local(sec, min, hour, day, month, year, dummy, dummy, isdst, dummy) -> time
3388  *   Time.mktime(year) -> time
3389  *   Time.mktime(year, month) -> time
3390  *   Time.mktime(year, month, day) -> time
3391  *   Time.mktime(year, month, day, hour) -> time
3392  *   Time.mktime(year, month, day, hour, min) -> time
3393  *   Time.mktime(year, month, day, hour, min, sec_with_frac) -> time
3394  *   Time.mktime(year, month, day, hour, min, sec, usec_with_frac) -> time
3395  *   Time.mktime(sec, min, hour, day, month, year, dummy, dummy, isdst, dummy) -> time
3396  *
3397  *  Same as Time::gm, but interprets the values in the
3398  *  local time zone.
3399  *
3400  *     Time.local(2000,"jan",1,20,15,1)   #=> 2000-01-01 20:15:01 -0600
3401  */
3402 
3403 static VALUE
time_s_mktime(int argc,VALUE * argv,VALUE klass)3404 time_s_mktime(int argc, VALUE *argv, VALUE klass)
3405 {
3406     struct vtm vtm;
3407 
3408     time_arg(argc, argv, &vtm);
3409     return time_localtime(time_new_timew(klass, timelocalw(&vtm)));
3410 }
3411 
3412 /*
3413  *  call-seq:
3414  *     time.to_i   -> int
3415  *     time.tv_sec -> int
3416  *
3417  *  Returns the value of _time_ as an integer number of seconds
3418  *  since the Epoch.
3419  *
3420  *     t = Time.now
3421  *     "%10.5f" % t.to_f   #=> "1270968656.89607"
3422  *     t.to_i              #=> 1270968656
3423  */
3424 
3425 static VALUE
time_to_i(VALUE time)3426 time_to_i(VALUE time)
3427 {
3428     struct time_object *tobj;
3429 
3430     GetTimeval(time, tobj);
3431     return w2v(wdiv(tobj->timew, WINT2FIXWV(TIME_SCALE)));
3432 }
3433 
3434 /*
3435  *  call-seq:
3436  *     time.to_f -> float
3437  *
3438  *  Returns the value of _time_ as a floating point number of
3439  *  seconds since the Epoch.
3440  *
3441  *     t = Time.now
3442  *     "%10.5f" % t.to_f   #=> "1270968744.77658"
3443  *     t.to_i              #=> 1270968744
3444  *
3445  *  Note that IEEE 754 double is not accurate enough to represent
3446  *  the exact number of nanoseconds since the Epoch.
3447  */
3448 
3449 static VALUE
time_to_f(VALUE time)3450 time_to_f(VALUE time)
3451 {
3452     struct time_object *tobj;
3453 
3454     GetTimeval(time, tobj);
3455     return rb_Float(rb_time_unmagnify_to_float(tobj->timew));
3456 }
3457 
3458 /*
3459  *  call-seq:
3460  *     time.to_r -> a_rational
3461  *
3462  *  Returns the value of _time_ as a rational number of seconds
3463  *  since the Epoch.
3464  *
3465  *     t = Time.now
3466  *     t.to_r            #=> (1270968792716287611/1000000000)
3467  *
3468  *  This methods is intended to be used to get an accurate value
3469  *  representing the nanoseconds since the Epoch. You can use this method
3470  *  to convert _time_ to another Epoch.
3471  */
3472 
3473 static VALUE
time_to_r(VALUE time)3474 time_to_r(VALUE time)
3475 {
3476     struct time_object *tobj;
3477     VALUE v;
3478 
3479     GetTimeval(time, tobj);
3480     v = w2v(rb_time_unmagnify(tobj->timew));
3481     if (!RB_TYPE_P(v, T_RATIONAL)) {
3482         v = rb_Rational1(v);
3483     }
3484     return v;
3485 }
3486 
3487 /*
3488  *  call-seq:
3489  *     time.usec    -> int
3490  *     time.tv_usec -> int
3491  *
3492  *  Returns the number of microseconds for _time_.
3493  *
3494  *     t = Time.now        #=> 2007-11-19 08:03:26 -0600
3495  *     "%10.6f" % t.to_f   #=> "1195481006.775195"
3496  *     t.usec              #=> 775195
3497  */
3498 
3499 static VALUE
time_usec(VALUE time)3500 time_usec(VALUE time)
3501 {
3502     struct time_object *tobj;
3503     wideval_t w, q, r;
3504 
3505     GetTimeval(time, tobj);
3506 
3507     w = wmod(tobj->timew, WINT2WV(TIME_SCALE));
3508     wmuldivmod(w, WINT2FIXWV(1000000), WINT2FIXWV(TIME_SCALE), &q, &r);
3509     return rb_to_int(w2v(q));
3510 }
3511 
3512 /*
3513  *  call-seq:
3514  *     time.nsec    -> int
3515  *     time.tv_nsec -> int
3516  *
3517  *  Returns the number of nanoseconds for _time_.
3518  *
3519  *     t = Time.now        #=> 2007-11-17 15:18:03 +0900
3520  *     "%10.9f" % t.to_f   #=> "1195280283.536151409"
3521  *     t.nsec              #=> 536151406
3522  *
3523  *  The lowest digits of #to_f and #nsec are different because
3524  *  IEEE 754 double is not accurate enough to represent
3525  *  the exact number of nanoseconds since the Epoch.
3526  *
3527  *  The more accurate value is returned by #nsec.
3528  */
3529 
3530 static VALUE
time_nsec(VALUE time)3531 time_nsec(VALUE time)
3532 {
3533     struct time_object *tobj;
3534 
3535     GetTimeval(time, tobj);
3536     return rb_to_int(w2v(wmulquoll(wmod(tobj->timew, WINT2WV(TIME_SCALE)), 1000000000, TIME_SCALE)));
3537 }
3538 
3539 /*
3540  *  call-seq:
3541  *     time.subsec    -> number
3542  *
3543  *  Returns the fraction for _time_.
3544  *
3545  *  The return value can be a rational number.
3546  *
3547  *     t = Time.now        #=> 2009-03-26 22:33:12 +0900
3548  *     "%10.9f" % t.to_f   #=> "1238074392.940563917"
3549  *     t.subsec            #=> (94056401/100000000)
3550  *
3551  *  The lowest digits of #to_f and #subsec are different because
3552  *  IEEE 754 double is not accurate enough to represent
3553  *  the rational number.
3554  *
3555  *  The more accurate value is returned by #subsec.
3556  */
3557 
3558 static VALUE
time_subsec(VALUE time)3559 time_subsec(VALUE time)
3560 {
3561     struct time_object *tobj;
3562 
3563     GetTimeval(time, tobj);
3564     return quov(w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE))), INT2FIX(TIME_SCALE));
3565 }
3566 
3567 /*
3568  *  call-seq:
3569  *     time <=> other_time -> -1, 0, +1, or nil
3570  *
3571  *  Comparison---Compares +time+ with +other_time+.
3572  *
3573  *  -1, 0, +1 or nil depending on whether +time+ is less  than, equal to, or
3574  *  greater than +other_time+.
3575  *
3576  *  +nil+ is returned if the two values are incomparable.
3577  *
3578  *     t = Time.now       #=> 2007-11-19 08:12:12 -0600
3579  *     t2 = t + 2592000   #=> 2007-12-19 08:12:12 -0600
3580  *     t <=> t2           #=> -1
3581  *     t2 <=> t           #=> 1
3582  *
3583  *     t = Time.now       #=> 2007-11-19 08:13:38 -0600
3584  *     t2 = t + 0.1       #=> 2007-11-19 08:13:38 -0600
3585  *     t.nsec             #=> 98222999
3586  *     t2.nsec            #=> 198222999
3587  *     t <=> t2           #=> -1
3588  *     t2 <=> t           #=> 1
3589  *     t <=> t            #=> 0
3590  */
3591 
3592 static VALUE
time_cmp(VALUE time1,VALUE time2)3593 time_cmp(VALUE time1, VALUE time2)
3594 {
3595     struct time_object *tobj1, *tobj2;
3596     int n;
3597 
3598     GetTimeval(time1, tobj1);
3599     if (IsTimeval(time2)) {
3600 	GetTimeval(time2, tobj2);
3601 	n = wcmp(tobj1->timew, tobj2->timew);
3602     }
3603     else {
3604 	return rb_invcmp(time1, time2);
3605     }
3606     if (n == 0) return INT2FIX(0);
3607     if (n > 0) return INT2FIX(1);
3608     return INT2FIX(-1);
3609 }
3610 
3611 /*
3612  * call-seq:
3613  *  time.eql?(other_time)
3614  *
3615  * Returns +true+ if _time_ and +other_time+ are
3616  * both Time objects with the same seconds and fractional seconds.
3617  */
3618 
3619 static VALUE
time_eql(VALUE time1,VALUE time2)3620 time_eql(VALUE time1, VALUE time2)
3621 {
3622     struct time_object *tobj1, *tobj2;
3623 
3624     GetTimeval(time1, tobj1);
3625     if (IsTimeval(time2)) {
3626 	GetTimeval(time2, tobj2);
3627         return rb_equal(w2v(tobj1->timew), w2v(tobj2->timew));
3628     }
3629     return Qfalse;
3630 }
3631 
3632 /*
3633  *  call-seq:
3634  *     time.utc? -> true or false
3635  *     time.gmt? -> true or false
3636  *
3637  *  Returns +true+ if _time_ represents a time in UTC (GMT).
3638  *
3639  *     t = Time.now                        #=> 2007-11-19 08:15:23 -0600
3640  *     t.utc?                              #=> false
3641  *     t = Time.gm(2000,"jan",1,20,15,1)   #=> 2000-01-01 20:15:01 UTC
3642  *     t.utc?                              #=> true
3643  *
3644  *     t = Time.now                        #=> 2007-11-19 08:16:03 -0600
3645  *     t.gmt?                              #=> false
3646  *     t = Time.gm(2000,1,1,20,15,1)       #=> 2000-01-01 20:15:01 UTC
3647  *     t.gmt?                              #=> true
3648  */
3649 
3650 static VALUE
time_utc_p(VALUE time)3651 time_utc_p(VALUE time)
3652 {
3653     struct time_object *tobj;
3654 
3655     GetTimeval(time, tobj);
3656     if (TZMODE_UTC_P(tobj)) return Qtrue;
3657     return Qfalse;
3658 }
3659 
3660 /*
3661  * call-seq:
3662  *   time.hash   -> integer
3663  *
3664  * Returns a hash code for this Time object.
3665  *
3666  * See also Object#hash.
3667  */
3668 
3669 static VALUE
time_hash(VALUE time)3670 time_hash(VALUE time)
3671 {
3672     struct time_object *tobj;
3673 
3674     GetTimeval(time, tobj);
3675     return rb_hash(w2v(tobj->timew));
3676 }
3677 
3678 /* :nodoc: */
3679 static VALUE
time_init_copy(VALUE copy,VALUE time)3680 time_init_copy(VALUE copy, VALUE time)
3681 {
3682     struct time_object *tobj, *tcopy;
3683 
3684     if (!OBJ_INIT_COPY(copy, time)) return copy;
3685     GetTimeval(time, tobj);
3686     GetNewTimeval(copy, tcopy);
3687     MEMCPY(tcopy, tobj, struct time_object, 1);
3688 
3689     return copy;
3690 }
3691 
3692 static VALUE
time_dup(VALUE time)3693 time_dup(VALUE time)
3694 {
3695     VALUE dup = time_s_alloc(rb_obj_class(time));
3696     time_init_copy(dup, time);
3697     return dup;
3698 }
3699 
3700 static VALUE
time_localtime(VALUE time)3701 time_localtime(VALUE time)
3702 {
3703     struct time_object *tobj;
3704     struct vtm vtm;
3705     VALUE zone;
3706 
3707     GetTimeval(time, tobj);
3708     if (TZMODE_LOCALTIME_P(tobj)) {
3709 	if (tobj->tm_got)
3710 	    return time;
3711     }
3712     else {
3713 	time_modify(time);
3714     }
3715 
3716     zone = tobj->vtm.zone;
3717     if (maybe_tzobj_p(zone) && zone_localtime(zone, time)) {
3718         return time;
3719     }
3720 
3721     if (!localtimew(tobj->timew, &vtm))
3722 	rb_raise(rb_eArgError, "localtime error");
3723     tobj->vtm = vtm;
3724 
3725     tobj->tm_got = 1;
3726     TZMODE_SET_LOCALTIME(tobj);
3727     return time;
3728 }
3729 
3730 static VALUE
time_zonelocal(VALUE time,VALUE off)3731 time_zonelocal(VALUE time, VALUE off)
3732 {
3733     VALUE zone = off;
3734     if (zone_localtime(zone, time)) return time;
3735 
3736     if (NIL_P(off = utc_offset_arg(off))) {
3737         if (NIL_P(zone = find_timezone(time, zone))) invalid_utc_offset();
3738         if (!zone_localtime(zone, time)) invalid_utc_offset();
3739         return time;
3740     }
3741     validate_utc_offset(off);
3742 
3743     time_set_utc_offset(time, off);
3744     return time_fixoff(time);
3745 }
3746 
3747 /*
3748  *  call-seq:
3749  *     time.localtime -> time
3750  *     time.localtime(utc_offset) -> time
3751  *
3752  *  Converts _time_ to local time (using the local time zone in
3753  *  effect at the creation time of _time_) modifying the receiver.
3754  *
3755  *  If +utc_offset+ is given, it is used instead of the local time.
3756  *
3757  *     t = Time.utc(2000, "jan", 1, 20, 15, 1) #=> 2000-01-01 20:15:01 UTC
3758  *     t.utc?                                  #=> true
3759  *
3760  *     t.localtime                             #=> 2000-01-01 14:15:01 -0600
3761  *     t.utc?                                  #=> false
3762  *
3763  *     t.localtime("+09:00")                   #=> 2000-01-02 05:15:01 +0900
3764  *     t.utc?                                  #=> false
3765  *
3766  *  If +utc_offset+ is not given and _time_ is local time, just returns
3767  *  the receiver.
3768  */
3769 
3770 static VALUE
time_localtime_m(int argc,VALUE * argv,VALUE time)3771 time_localtime_m(int argc, VALUE *argv, VALUE time)
3772 {
3773     VALUE off;
3774 
3775     if (rb_check_arity(argc, 0, 1) && !NIL_P(off = argv[0])) {
3776         return time_zonelocal(time, off);
3777     }
3778 
3779     return time_localtime(time);
3780 }
3781 
3782 /*
3783  *  call-seq:
3784  *     time.gmtime    -> time
3785  *     time.utc       -> time
3786  *
3787  *  Converts _time_ to UTC (GMT), modifying the receiver.
3788  *
3789  *     t = Time.now   #=> 2007-11-19 08:18:31 -0600
3790  *     t.gmt?         #=> false
3791  *     t.gmtime       #=> 2007-11-19 14:18:31 UTC
3792  *     t.gmt?         #=> true
3793  *
3794  *     t = Time.now   #=> 2007-11-19 08:18:51 -0600
3795  *     t.utc?         #=> false
3796  *     t.utc          #=> 2007-11-19 14:18:51 UTC
3797  *     t.utc?         #=> true
3798  */
3799 
3800 static VALUE
time_gmtime(VALUE time)3801 time_gmtime(VALUE time)
3802 {
3803     struct time_object *tobj;
3804     struct vtm vtm;
3805 
3806     GetTimeval(time, tobj);
3807     if (TZMODE_UTC_P(tobj)) {
3808 	if (tobj->tm_got)
3809 	    return time;
3810     }
3811     else {
3812 	time_modify(time);
3813     }
3814 
3815     vtm.zone = rb_fstring_lit("UTC");
3816     GMTIMEW(tobj->timew, &vtm);
3817     tobj->vtm = vtm;
3818 
3819     tobj->tm_got = 1;
3820     TZMODE_SET_UTC(tobj);
3821     return time;
3822 }
3823 
3824 static VALUE
time_fixoff(VALUE time)3825 time_fixoff(VALUE time)
3826 {
3827     struct time_object *tobj;
3828     struct vtm vtm;
3829     VALUE off, zone;
3830 
3831     GetTimeval(time, tobj);
3832     if (TZMODE_FIXOFF_P(tobj)) {
3833        if (tobj->tm_got)
3834            return time;
3835     }
3836     else {
3837        time_modify(time);
3838     }
3839 
3840     if (TZMODE_FIXOFF_P(tobj))
3841         off = tobj->vtm.utc_offset;
3842     else
3843         off = INT2FIX(0);
3844 
3845     GMTIMEW(tobj->timew, &vtm);
3846 
3847     zone = tobj->vtm.zone;
3848     tobj->vtm = vtm;
3849     tobj->vtm.zone = zone;
3850     vtm_add_offset(&tobj->vtm, off);
3851 
3852     tobj->tm_got = 1;
3853     TZMODE_SET_FIXOFF(tobj, off);
3854     return time;
3855 }
3856 
3857 /*
3858  *  call-seq:
3859  *     time.getlocal -> new_time
3860  *     time.getlocal(utc_offset) -> new_time
3861  *     time.getlocal(timezone) -> new_time
3862  *
3863  *  Returns a new Time object representing _time_ in
3864  *  local time (using the local time zone in effect for this process).
3865  *
3866  *  If +utc_offset+ is given, it is used instead of the local time.
3867  *  +utc_offset+ can be given as a human-readable string (eg. <code>"+09:00"</code>)
3868  *  or as a number of seconds (eg. <code>32400</code>).
3869  *
3870  *     t = Time.utc(2000,1,1,20,15,1)  #=> 2000-01-01 20:15:01 UTC
3871  *     t.utc?                          #=> true
3872  *
3873  *     l = t.getlocal                  #=> 2000-01-01 14:15:01 -0600
3874  *     l.utc?                          #=> false
3875  *     t == l                          #=> true
3876  *
3877  *     j = t.getlocal("+09:00")        #=> 2000-01-02 05:15:01 +0900
3878  *     j.utc?                          #=> false
3879  *     t == j                          #=> true
3880  *
3881  *     k = t.getlocal(9*60*60)         #=> 2000-01-02 05:15:01 +0900
3882  *     k.utc?                          #=> false
3883  *     t == k                          #=> true
3884  */
3885 
3886 static VALUE
time_getlocaltime(int argc,VALUE * argv,VALUE time)3887 time_getlocaltime(int argc, VALUE *argv, VALUE time)
3888 {
3889     VALUE off;
3890 
3891     if (rb_check_arity(argc, 0, 1) && !NIL_P(off = argv[0])) {
3892         VALUE zone = off;
3893         if (maybe_tzobj_p(zone)) {
3894             VALUE t = time_dup(time);
3895             if (zone_localtime(off, t)) return t;
3896         }
3897 
3898         if (NIL_P(off = utc_offset_arg(off))) {
3899             if (NIL_P(zone = find_timezone(time, zone))) invalid_utc_offset();
3900             time = time_dup(time);
3901             if (!zone_localtime(zone, time)) invalid_utc_offset();
3902             return time;
3903         }
3904         validate_utc_offset(off);
3905 
3906         time = time_dup(time);
3907         time_set_utc_offset(time, off);
3908         return time_fixoff(time);
3909     }
3910 
3911     return time_localtime(time_dup(time));
3912 }
3913 
3914 /*
3915  *  call-seq:
3916  *     time.getgm  -> new_time
3917  *     time.getutc -> new_time
3918  *
3919  *  Returns a new Time object representing _time_ in UTC.
3920  *
3921  *     t = Time.local(2000,1,1,20,15,1)   #=> 2000-01-01 20:15:01 -0600
3922  *     t.gmt?                             #=> false
3923  *     y = t.getgm                        #=> 2000-01-02 02:15:01 UTC
3924  *     y.gmt?                             #=> true
3925  *     t == y                             #=> true
3926  */
3927 
3928 static VALUE
time_getgmtime(VALUE time)3929 time_getgmtime(VALUE time)
3930 {
3931     return time_gmtime(time_dup(time));
3932 }
3933 
3934 static VALUE
time_get_tm(VALUE time,struct time_object * tobj)3935 time_get_tm(VALUE time, struct time_object *tobj)
3936 {
3937     if (TZMODE_UTC_P(tobj)) return time_gmtime(time);
3938     if (TZMODE_FIXOFF_P(tobj)) return time_fixoff(time);
3939     return time_localtime(time);
3940 }
3941 
3942 static VALUE strftime_cstr(const char *fmt, size_t len, VALUE time, rb_encoding *enc);
3943 #define strftimev(fmt, time, enc) strftime_cstr((fmt), rb_strlen_lit(fmt), (time), (enc))
3944 
3945 /*
3946  *  call-seq:
3947  *     time.asctime -> string
3948  *     time.ctime   -> string
3949  *
3950  *  Returns a canonical string representation of _time_.
3951  *
3952  *     Time.now.asctime   #=> "Wed Apr  9 08:56:03 2003"
3953  *     Time.now.ctime     #=> "Wed Apr  9 08:56:03 2003"
3954  */
3955 
3956 static VALUE
time_asctime(VALUE time)3957 time_asctime(VALUE time)
3958 {
3959     return strftimev("%a %b %e %T %Y", time, rb_usascii_encoding());
3960 }
3961 
3962 /*
3963  *  call-seq:
3964  *     time.inspect -> string
3965  *     time.to_s    -> string
3966  *
3967  *  Returns a string representing _time_. Equivalent to calling
3968  *  #strftime with the appropriate format string.
3969  *
3970  *     t = Time.now
3971  *     t.to_s                              #=> "2012-11-10 18:16:12 +0100"
3972  *     t.strftime "%Y-%m-%d %H:%M:%S %z"   #=> "2012-11-10 18:16:12 +0100"
3973  *
3974  *     t.utc.to_s                          #=> "2012-11-10 17:16:12 UTC"
3975  *     t.strftime "%Y-%m-%d %H:%M:%S UTC"  #=> "2012-11-10 17:16:12 UTC"
3976  */
3977 
3978 static VALUE
time_to_s(VALUE time)3979 time_to_s(VALUE time)
3980 {
3981     struct time_object *tobj;
3982 
3983     GetTimeval(time, tobj);
3984     if (TZMODE_UTC_P(tobj))
3985         return strftimev("%Y-%m-%d %H:%M:%S UTC", time, rb_usascii_encoding());
3986     else
3987         return strftimev("%Y-%m-%d %H:%M:%S %z", time, rb_usascii_encoding());
3988 }
3989 
3990 static VALUE
time_add0(VALUE klass,const struct time_object * tobj,VALUE torig,VALUE offset,int sign)3991 time_add0(VALUE klass, const struct time_object *tobj, VALUE torig, VALUE offset, int sign)
3992 {
3993     VALUE result;
3994     struct time_object *result_tobj;
3995 
3996     offset = num_exact(offset);
3997     if (sign < 0)
3998         result = time_new_timew(klass, wsub(tobj->timew, rb_time_magnify(v2w(offset))));
3999     else
4000         result = time_new_timew(klass, wadd(tobj->timew, rb_time_magnify(v2w(offset))));
4001     GetTimeval(result, result_tobj);
4002     TZMODE_COPY(result_tobj, tobj);
4003 
4004     return result;
4005 }
4006 
4007 static VALUE
time_add(const struct time_object * tobj,VALUE torig,VALUE offset,int sign)4008 time_add(const struct time_object *tobj, VALUE torig, VALUE offset, int sign)
4009 {
4010     return time_add0(rb_cTime, tobj, torig, offset, sign);
4011 }
4012 
4013 /*
4014  *  call-seq:
4015  *     time + numeric -> time
4016  *
4017  *  Addition --- Adds some number of seconds (possibly fractional) to
4018  *  _time_ and returns that value as a new Time object.
4019  *
4020  *     t = Time.now         #=> 2007-11-19 08:22:21 -0600
4021  *     t + (60 * 60 * 24)   #=> 2007-11-20 08:22:21 -0600
4022  */
4023 
4024 static VALUE
time_plus(VALUE time1,VALUE time2)4025 time_plus(VALUE time1, VALUE time2)
4026 {
4027     struct time_object *tobj;
4028     GetTimeval(time1, tobj);
4029 
4030     if (IsTimeval(time2)) {
4031 	rb_raise(rb_eTypeError, "time + time?");
4032     }
4033     return time_add(tobj, time1, time2, 1);
4034 }
4035 
4036 /*
4037  *  call-seq:
4038  *     time - other_time -> float
4039  *     time - numeric    -> time
4040  *
4041  *  Difference --- Returns a difference in seconds as a Float
4042  *  between _time_ and +other_time+, or subtracts the given number
4043  *  of seconds in +numeric+ from _time_.
4044  *
4045  *     t = Time.now       #=> 2007-11-19 08:23:10 -0600
4046  *     t2 = t + 2592000   #=> 2007-12-19 08:23:10 -0600
4047  *     t2 - t             #=> 2592000.0
4048  *     t2 - 2592000       #=> 2007-11-19 08:23:10 -0600
4049  */
4050 
4051 static VALUE
time_minus(VALUE time1,VALUE time2)4052 time_minus(VALUE time1, VALUE time2)
4053 {
4054     struct time_object *tobj;
4055 
4056     GetTimeval(time1, tobj);
4057     if (IsTimeval(time2)) {
4058 	struct time_object *tobj2;
4059 
4060 	GetTimeval(time2, tobj2);
4061         return rb_Float(rb_time_unmagnify_to_float(wsub(tobj->timew, tobj2->timew)));
4062     }
4063     return time_add(tobj, time1, time2, -1);
4064 }
4065 
4066 /*
4067  * call-seq:
4068  *   time.succ   -> new_time
4069  *
4070  * Returns a new Time object, one second later than _time_.
4071  * Time#succ is obsolete since 1.9.2 for time is not a discrete value.
4072  *
4073  *     t = Time.now       #=> 2007-11-19 08:23:57 -0600
4074  *     t.succ             #=> 2007-11-19 08:23:58 -0600
4075  *
4076  * Use instead <code>time + 1</code>
4077  *
4078  *     t + 1              #=> 2007-11-19 08:23:58 -0600
4079  */
4080 
4081 VALUE
rb_time_succ(VALUE time)4082 rb_time_succ(VALUE time)
4083 {
4084     struct time_object *tobj;
4085     struct time_object *tobj2;
4086 
4087     rb_warn("Time#succ is obsolete; use time + 1");
4088     GetTimeval(time, tobj);
4089     time = time_new_timew(rb_cTime, wadd(tobj->timew, WINT2FIXWV(TIME_SCALE)));
4090     GetTimeval(time, tobj2);
4091     TZMODE_COPY(tobj2, tobj);
4092     if (TZMODE_LOCALTIME_P(tobj2) && maybe_tzobj_p(tobj2->vtm.zone)) {
4093         zone_localtime(tobj2->vtm.zone, time);
4094     }
4095     return time;
4096 }
4097 
4098 #define time_succ rb_time_succ
4099 
4100 /*
4101  * call-seq:
4102  *   time.round([ndigits])   -> new_time
4103  *
4104  * Rounds sub seconds to a given precision in decimal digits (0 digits by default).
4105  * It returns a new Time object.
4106  * +ndigits+ should be zero or a positive integer.
4107  *
4108  *     require 'time'
4109  *
4110  *     t = Time.utc(2010,3,30, 5,43,"25.123456789".to_r)
4111  *     t.iso8601(10)           #=> "2010-03-30T05:43:25.1234567890Z"
4112  *     t.round.iso8601(10)     #=> "2010-03-30T05:43:25.0000000000Z"
4113  *     t.round(0).iso8601(10)  #=> "2010-03-30T05:43:25.0000000000Z"
4114  *     t.round(1).iso8601(10)  #=> "2010-03-30T05:43:25.1000000000Z"
4115  *     t.round(2).iso8601(10)  #=> "2010-03-30T05:43:25.1200000000Z"
4116  *     t.round(3).iso8601(10)  #=> "2010-03-30T05:43:25.1230000000Z"
4117  *     t.round(4).iso8601(10)  #=> "2010-03-30T05:43:25.1235000000Z"
4118  *     t.round(5).iso8601(10)  #=> "2010-03-30T05:43:25.1234600000Z"
4119  *     t.round(6).iso8601(10)  #=> "2010-03-30T05:43:25.1234570000Z"
4120  *     t.round(7).iso8601(10)  #=> "2010-03-30T05:43:25.1234568000Z"
4121  *     t.round(8).iso8601(10)  #=> "2010-03-30T05:43:25.1234567900Z"
4122  *     t.round(9).iso8601(10)  #=> "2010-03-30T05:43:25.1234567890Z"
4123  *     t.round(10).iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z"
4124  *
4125  *     t = Time.utc(1999,12,31, 23,59,59)
4126  *     (t + 0.4).round.iso8601(3)    #=> "1999-12-31T23:59:59.000Z"
4127  *     (t + 0.49).round.iso8601(3)   #=> "1999-12-31T23:59:59.000Z"
4128  *     (t + 0.5).round.iso8601(3)    #=> "2000-01-01T00:00:00.000Z"
4129  *     (t + 1.4).round.iso8601(3)    #=> "2000-01-01T00:00:00.000Z"
4130  *     (t + 1.49).round.iso8601(3)   #=> "2000-01-01T00:00:00.000Z"
4131  *     (t + 1.5).round.iso8601(3)    #=> "2000-01-01T00:00:01.000Z"
4132  *
4133  *     t = Time.utc(1999,12,31, 23,59,59)
4134  *     (t + 0.123456789).round(4).iso8601(6)  #=> "1999-12-31T23:59:59.123500Z"
4135  */
4136 
4137 static VALUE
time_round(int argc,VALUE * argv,VALUE time)4138 time_round(int argc, VALUE *argv, VALUE time)
4139 {
4140     VALUE ndigits, v, a, b, den;
4141     long nd;
4142     struct time_object *tobj;
4143 
4144     if (!rb_check_arity(argc, 0, 1) || NIL_P(ndigits = argv[0]))
4145         ndigits = INT2FIX(0);
4146     else
4147         ndigits = rb_to_int(ndigits);
4148 
4149     nd = NUM2LONG(ndigits);
4150     if (nd < 0)
4151 	rb_raise(rb_eArgError, "negative ndigits given");
4152 
4153     GetTimeval(time, tobj);
4154     v = w2v(rb_time_unmagnify(tobj->timew));
4155 
4156     a = INT2FIX(1);
4157     b = INT2FIX(10);
4158     while (0 < nd) {
4159         if (nd & 1)
4160             a = mulv(a, b);
4161         b = mulv(b, b);
4162         nd = nd >> 1;
4163     }
4164     den = quov(INT2FIX(1), a);
4165     v = modv(v, den);
4166     if (lt(v, quov(den, INT2FIX(2))))
4167         return time_add(tobj, time, v, -1);
4168     else
4169         return time_add(tobj, time, subv(den, v), 1);
4170 }
4171 
4172 /*
4173  *  call-seq:
4174  *     time.sec -> integer
4175  *
4176  *  Returns the second of the minute (0..60) for _time_.
4177  *
4178  *  *Note:* Seconds range from zero to 60 to allow the system to inject
4179  *  leap seconds. See http://en.wikipedia.org/wiki/Leap_second for further
4180  *  details.
4181  *
4182  *     t = Time.now   #=> 2007-11-19 08:25:02 -0600
4183  *     t.sec          #=> 2
4184  */
4185 
4186 static VALUE
time_sec(VALUE time)4187 time_sec(VALUE time)
4188 {
4189     struct time_object *tobj;
4190 
4191     GetTimeval(time, tobj);
4192     MAKE_TM(time, tobj);
4193     return INT2FIX(tobj->vtm.sec);
4194 }
4195 
4196 /*
4197  *  call-seq:
4198  *     time.min -> integer
4199  *
4200  *  Returns the minute of the hour (0..59) for _time_.
4201  *
4202  *     t = Time.now   #=> 2007-11-19 08:25:51 -0600
4203  *     t.min          #=> 25
4204  */
4205 
4206 static VALUE
time_min(VALUE time)4207 time_min(VALUE time)
4208 {
4209     struct time_object *tobj;
4210 
4211     GetTimeval(time, tobj);
4212     MAKE_TM(time, tobj);
4213     return INT2FIX(tobj->vtm.min);
4214 }
4215 
4216 /*
4217  *  call-seq:
4218  *     time.hour -> integer
4219  *
4220  *  Returns the hour of the day (0..23) for _time_.
4221  *
4222  *     t = Time.now   #=> 2007-11-19 08:26:20 -0600
4223  *     t.hour         #=> 8
4224  */
4225 
4226 static VALUE
time_hour(VALUE time)4227 time_hour(VALUE time)
4228 {
4229     struct time_object *tobj;
4230 
4231     GetTimeval(time, tobj);
4232     MAKE_TM(time, tobj);
4233     return INT2FIX(tobj->vtm.hour);
4234 }
4235 
4236 /*
4237  *  call-seq:
4238  *     time.day  -> integer
4239  *     time.mday -> integer
4240  *
4241  *  Returns the day of the month (1..n) for _time_.
4242  *
4243  *     t = Time.now   #=> 2007-11-19 08:27:03 -0600
4244  *     t.day          #=> 19
4245  *     t.mday         #=> 19
4246  */
4247 
4248 static VALUE
time_mday(VALUE time)4249 time_mday(VALUE time)
4250 {
4251     struct time_object *tobj;
4252 
4253     GetTimeval(time, tobj);
4254     MAKE_TM(time, tobj);
4255     return INT2FIX(tobj->vtm.mday);
4256 }
4257 
4258 /*
4259  *  call-seq:
4260  *     time.mon   -> integer
4261  *     time.month -> integer
4262  *
4263  *  Returns the month of the year (1..12) for _time_.
4264  *
4265  *     t = Time.now   #=> 2007-11-19 08:27:30 -0600
4266  *     t.mon          #=> 11
4267  *     t.month        #=> 11
4268  */
4269 
4270 static VALUE
time_mon(VALUE time)4271 time_mon(VALUE time)
4272 {
4273     struct time_object *tobj;
4274 
4275     GetTimeval(time, tobj);
4276     MAKE_TM(time, tobj);
4277     return INT2FIX(tobj->vtm.mon);
4278 }
4279 
4280 /*
4281  *  call-seq:
4282  *     time.year -> integer
4283  *
4284  *  Returns the year for _time_ (including the century).
4285  *
4286  *     t = Time.now   #=> 2007-11-19 08:27:51 -0600
4287  *     t.year         #=> 2007
4288  */
4289 
4290 static VALUE
time_year(VALUE time)4291 time_year(VALUE time)
4292 {
4293     struct time_object *tobj;
4294 
4295     GetTimeval(time, tobj);
4296     MAKE_TM(time, tobj);
4297     return tobj->vtm.year;
4298 }
4299 
4300 /*
4301  *  call-seq:
4302  *     time.wday -> integer
4303  *
4304  *  Returns an integer representing the day of the week, 0..6, with
4305  *  Sunday == 0.
4306  *
4307  *     t = Time.now   #=> 2007-11-20 02:35:35 -0600
4308  *     t.wday         #=> 2
4309  *     t.sunday?      #=> false
4310  *     t.monday?      #=> false
4311  *     t.tuesday?     #=> true
4312  *     t.wednesday?   #=> false
4313  *     t.thursday?    #=> false
4314  *     t.friday?      #=> false
4315  *     t.saturday?    #=> false
4316  */
4317 
4318 static VALUE
time_wday(VALUE time)4319 time_wday(VALUE time)
4320 {
4321     struct time_object *tobj;
4322 
4323     GetTimeval(time, tobj);
4324     MAKE_TM(time, tobj);
4325     if (tobj->vtm.wday == VTM_WDAY_INITVAL) {
4326         VALUE zone = tobj->vtm.zone;
4327         if (!NIL_P(zone)) zone_localtime(zone, time);
4328     }
4329     return INT2FIX((int)tobj->vtm.wday);
4330 }
4331 
4332 #define wday_p(n) {\
4333     return (time_wday(time) == INT2FIX(n)) ? Qtrue : Qfalse; \
4334 }
4335 
4336 /*
4337  *  call-seq:
4338  *     time.sunday? -> true or false
4339  *
4340  *  Returns +true+ if _time_ represents Sunday.
4341  *
4342  *     t = Time.local(1990, 4, 1)       #=> 1990-04-01 00:00:00 -0600
4343  *     t.sunday?                        #=> true
4344  */
4345 
4346 static VALUE
time_sunday(VALUE time)4347 time_sunday(VALUE time)
4348 {
4349     wday_p(0);
4350 }
4351 
4352 /*
4353  *  call-seq:
4354  *     time.monday? -> true or false
4355  *
4356  *  Returns +true+ if _time_ represents Monday.
4357  *
4358  *     t = Time.local(2003, 8, 4)       #=> 2003-08-04 00:00:00 -0500
4359  *     t.monday?                        #=> true
4360  */
4361 
4362 static VALUE
time_monday(VALUE time)4363 time_monday(VALUE time)
4364 {
4365     wday_p(1);
4366 }
4367 
4368 /*
4369  *  call-seq:
4370  *     time.tuesday? -> true or false
4371  *
4372  *  Returns +true+ if _time_ represents Tuesday.
4373  *
4374  *     t = Time.local(1991, 2, 19)      #=> 1991-02-19 00:00:00 -0600
4375  *     t.tuesday?                       #=> true
4376  */
4377 
4378 static VALUE
time_tuesday(VALUE time)4379 time_tuesday(VALUE time)
4380 {
4381     wday_p(2);
4382 }
4383 
4384 /*
4385  *  call-seq:
4386  *     time.wednesday? -> true or false
4387  *
4388  *  Returns +true+ if _time_ represents Wednesday.
4389  *
4390  *     t = Time.local(1993, 2, 24)      #=> 1993-02-24 00:00:00 -0600
4391  *     t.wednesday?                     #=> true
4392  */
4393 
4394 static VALUE
time_wednesday(VALUE time)4395 time_wednesday(VALUE time)
4396 {
4397     wday_p(3);
4398 }
4399 
4400 /*
4401  *  call-seq:
4402  *     time.thursday? -> true or false
4403  *
4404  *  Returns +true+ if _time_ represents Thursday.
4405  *
4406  *     t = Time.local(1995, 12, 21)     #=> 1995-12-21 00:00:00 -0600
4407  *     t.thursday?                      #=> true
4408  */
4409 
4410 static VALUE
time_thursday(VALUE time)4411 time_thursday(VALUE time)
4412 {
4413     wday_p(4);
4414 }
4415 
4416 /*
4417  *  call-seq:
4418  *     time.friday? -> true or false
4419  *
4420  *  Returns +true+ if _time_ represents Friday.
4421  *
4422  *     t = Time.local(1987, 12, 18)     #=> 1987-12-18 00:00:00 -0600
4423  *     t.friday?                        #=> true
4424  */
4425 
4426 static VALUE
time_friday(VALUE time)4427 time_friday(VALUE time)
4428 {
4429     wday_p(5);
4430 }
4431 
4432 /*
4433  *  call-seq:
4434  *     time.saturday? -> true or false
4435  *
4436  *  Returns +true+ if _time_ represents Saturday.
4437  *
4438  *     t = Time.local(2006, 6, 10)      #=> 2006-06-10 00:00:00 -0500
4439  *     t.saturday?                      #=> true
4440  */
4441 
4442 static VALUE
time_saturday(VALUE time)4443 time_saturday(VALUE time)
4444 {
4445     wday_p(6);
4446 }
4447 
4448 /*
4449  *  call-seq:
4450  *     time.yday -> integer
4451  *
4452  *  Returns an integer representing the day of the year, 1..366.
4453  *
4454  *     t = Time.now   #=> 2007-11-19 08:32:31 -0600
4455  *     t.yday         #=> 323
4456  */
4457 
4458 static VALUE
time_yday(VALUE time)4459 time_yday(VALUE time)
4460 {
4461     struct time_object *tobj;
4462 
4463     GetTimeval(time, tobj);
4464     MAKE_TM(time, tobj);
4465     if (tobj->vtm.yday == 0) {
4466         VALUE zone = tobj->vtm.zone;
4467         if (!NIL_P(zone)) zone_localtime(zone, time);
4468     }
4469     return INT2FIX(tobj->vtm.yday);
4470 }
4471 
4472 /*
4473  *  call-seq:
4474  *     time.isdst -> true or false
4475  *     time.dst?  -> true or false
4476  *
4477  *  Returns +true+ if _time_ occurs during Daylight
4478  *  Saving Time in its time zone.
4479  *
4480  *   # CST6CDT:
4481  *     Time.local(2000, 1, 1).zone    #=> "CST"
4482  *     Time.local(2000, 1, 1).isdst   #=> false
4483  *     Time.local(2000, 1, 1).dst?    #=> false
4484  *     Time.local(2000, 7, 1).zone    #=> "CDT"
4485  *     Time.local(2000, 7, 1).isdst   #=> true
4486  *     Time.local(2000, 7, 1).dst?    #=> true
4487  *
4488  *   # Asia/Tokyo:
4489  *     Time.local(2000, 1, 1).zone    #=> "JST"
4490  *     Time.local(2000, 1, 1).isdst   #=> false
4491  *     Time.local(2000, 1, 1).dst?    #=> false
4492  *     Time.local(2000, 7, 1).zone    #=> "JST"
4493  *     Time.local(2000, 7, 1).isdst   #=> false
4494  *     Time.local(2000, 7, 1).dst?    #=> false
4495  */
4496 
4497 static VALUE
time_isdst(VALUE time)4498 time_isdst(VALUE time)
4499 {
4500     struct time_object *tobj;
4501 
4502     GetTimeval(time, tobj);
4503     MAKE_TM(time, tobj);
4504     return tobj->vtm.isdst ? Qtrue : Qfalse;
4505 }
4506 
4507 /*
4508  *  call-seq:
4509  *     time.zone -> string or timezone
4510  *
4511  *  Returns the name of the time zone used for _time_. As of Ruby
4512  *  1.8, returns ``UTC'' rather than ``GMT'' for UTC times.
4513  *
4514  *     t = Time.gm(2000, "jan", 1, 20, 15, 1)
4515  *     t.zone   #=> "UTC"
4516  *     t = Time.local(2000, "jan", 1, 20, 15, 1)
4517  *     t.zone   #=> "CST"
4518  */
4519 
4520 static VALUE
time_zone(VALUE time)4521 time_zone(VALUE time)
4522 {
4523     struct time_object *tobj;
4524     VALUE zone;
4525 
4526     GetTimeval(time, tobj);
4527     MAKE_TM(time, tobj);
4528 
4529     if (TZMODE_UTC_P(tobj)) {
4530 	return rb_usascii_str_new_cstr("UTC");
4531     }
4532     zone = tobj->vtm.zone;
4533     if (NIL_P(zone))
4534         return Qnil;
4535 
4536     if (RB_TYPE_P(zone, T_STRING))
4537         zone = rb_str_dup(zone);
4538     return zone;
4539 }
4540 
4541 /*
4542  *  call-seq:
4543  *     time.gmt_offset -> integer
4544  *     time.gmtoff     -> integer
4545  *     time.utc_offset -> integer
4546  *
4547  *  Returns the offset in seconds between the timezone of _time_
4548  *  and UTC.
4549  *
4550  *     t = Time.gm(2000,1,1,20,15,1)   #=> 2000-01-01 20:15:01 UTC
4551  *     t.gmt_offset                    #=> 0
4552  *     l = t.getlocal                  #=> 2000-01-01 14:15:01 -0600
4553  *     l.gmt_offset                    #=> -21600
4554  */
4555 
4556 VALUE
rb_time_utc_offset(VALUE time)4557 rb_time_utc_offset(VALUE time)
4558 {
4559     struct time_object *tobj;
4560 
4561     GetTimeval(time, tobj);
4562 
4563     if (TZMODE_UTC_P(tobj)) {
4564 	return INT2FIX(0);
4565     }
4566     else {
4567 	MAKE_TM(time, tobj);
4568 	return tobj->vtm.utc_offset;
4569     }
4570 }
4571 
4572 /*
4573  *  call-seq:
4574  *     time.to_a -> array
4575  *
4576  *  Returns a ten-element _array_ of values for _time_:
4577  *
4578  *     [sec, min, hour, day, month, year, wday, yday, isdst, zone]
4579  *
4580  *  See the individual methods for an explanation of the
4581  *  valid ranges of each value. The ten elements can be passed directly
4582  *  to Time::utc or Time::local to create a
4583  *  new Time object.
4584  *
4585  *     t = Time.now     #=> 2007-11-19 08:36:01 -0600
4586  *     now = t.to_a     #=> [1, 36, 8, 19, 11, 2007, 1, 323, false, "CST"]
4587  */
4588 
4589 static VALUE
time_to_a(VALUE time)4590 time_to_a(VALUE time)
4591 {
4592     struct time_object *tobj;
4593 
4594     GetTimeval(time, tobj);
4595     MAKE_TM(time, tobj);
4596     return rb_ary_new3(10,
4597 		    INT2FIX(tobj->vtm.sec),
4598 		    INT2FIX(tobj->vtm.min),
4599 		    INT2FIX(tobj->vtm.hour),
4600 		    INT2FIX(tobj->vtm.mday),
4601 		    INT2FIX(tobj->vtm.mon),
4602 		    tobj->vtm.year,
4603 		    INT2FIX(tobj->vtm.wday),
4604 		    INT2FIX(tobj->vtm.yday),
4605 		    tobj->vtm.isdst?Qtrue:Qfalse,
4606 		    time_zone(time));
4607 }
4608 
4609 static VALUE
rb_strftime_alloc(const char * format,size_t format_len,rb_encoding * enc,VALUE time,struct vtm * vtm,wideval_t timew,int gmt)4610 rb_strftime_alloc(const char *format, size_t format_len, rb_encoding *enc,
4611                   VALUE time, struct vtm *vtm, wideval_t timew, int gmt)
4612 {
4613     VALUE timev = Qnil;
4614     struct timespec ts;
4615 
4616     if (!timew2timespec_exact(timew, &ts))
4617 	timev = w2v(rb_time_unmagnify(timew));
4618 
4619     if (NIL_P(timev)) {
4620         return rb_strftime_timespec(format, format_len, enc, time, vtm, &ts, gmt);
4621     }
4622     else {
4623         return rb_strftime(format, format_len, enc, time, vtm, timev, gmt);
4624     }
4625 }
4626 
4627 static VALUE
strftime_cstr(const char * fmt,size_t len,VALUE time,rb_encoding * enc)4628 strftime_cstr(const char *fmt, size_t len, VALUE time, rb_encoding *enc)
4629 {
4630     struct time_object *tobj;
4631     VALUE str;
4632 
4633     GetTimeval(time, tobj);
4634     MAKE_TM(time, tobj);
4635     str = rb_strftime_alloc(fmt, len, enc, time, &tobj->vtm, tobj->timew, TZMODE_UTC_P(tobj));
4636     if (!str) rb_raise(rb_eArgError, "invalid format: %s", fmt);
4637     return str;
4638 }
4639 
4640 /*
4641  *  call-seq:
4642  *     time.strftime( string ) -> string
4643  *
4644  *  Formats _time_ according to the directives in the given format string.
4645  *
4646  *  The directives begin with a percent (%) character.
4647  *  Any text not listed as a directive will be passed through to the
4648  *  output string.
4649  *
4650  *  The directive consists of a percent (%) character,
4651  *  zero or more flags, optional minimum field width,
4652  *  optional modifier and a conversion specifier
4653  *  as follows:
4654  *
4655  *    %<flags><width><modifier><conversion>
4656  *
4657  *  Flags:
4658  *    -  don't pad a numerical output
4659  *    _  use spaces for padding
4660  *    0  use zeros for padding
4661  *    ^  upcase the result string
4662  *    #  change case
4663  *    :  use colons for %z
4664  *
4665  *  The minimum field width specifies the minimum width.
4666  *
4667  *  The modifiers are "E" and "O".
4668  *  They are ignored.
4669  *
4670  *  Format directives:
4671  *
4672  *    Date (Year, Month, Day):
4673  *      %Y - Year with century if provided, will pad result at least 4 digits.
4674  *              -0001, 0000, 1995, 2009, 14292, etc.
4675  *      %C - year / 100 (rounded down such as 20 in 2009)
4676  *      %y - year % 100 (00..99)
4677  *
4678  *      %m - Month of the year, zero-padded (01..12)
4679  *              %_m  blank-padded ( 1..12)
4680  *              %-m  no-padded (1..12)
4681  *      %B - The full month name (``January'')
4682  *              %^B  uppercased (``JANUARY'')
4683  *      %b - The abbreviated month name (``Jan'')
4684  *              %^b  uppercased (``JAN'')
4685  *      %h - Equivalent to %b
4686  *
4687  *      %d - Day of the month, zero-padded (01..31)
4688  *              %-d  no-padded (1..31)
4689  *      %e - Day of the month, blank-padded ( 1..31)
4690  *
4691  *      %j - Day of the year (001..366)
4692  *
4693  *    Time (Hour, Minute, Second, Subsecond):
4694  *      %H - Hour of the day, 24-hour clock, zero-padded (00..23)
4695  *      %k - Hour of the day, 24-hour clock, blank-padded ( 0..23)
4696  *      %I - Hour of the day, 12-hour clock, zero-padded (01..12)
4697  *      %l - Hour of the day, 12-hour clock, blank-padded ( 1..12)
4698  *      %P - Meridian indicator, lowercase (``am'' or ``pm'')
4699  *      %p - Meridian indicator, uppercase (``AM'' or ``PM'')
4700  *
4701  *      %M - Minute of the hour (00..59)
4702  *
4703  *      %S - Second of the minute (00..60)
4704  *
4705  *      %L - Millisecond of the second (000..999)
4706  *           The digits under millisecond are truncated to not produce 1000.
4707  *      %N - Fractional seconds digits, default is 9 digits (nanosecond)
4708  *              %3N  millisecond (3 digits)
4709  *              %6N  microsecond (6 digits)
4710  *              %9N  nanosecond (9 digits)
4711  *              %12N picosecond (12 digits)
4712  *              %15N femtosecond (15 digits)
4713  *              %18N attosecond (18 digits)
4714  *              %21N zeptosecond (21 digits)
4715  *              %24N yoctosecond (24 digits)
4716  *           The digits under the specified length are truncated to avoid
4717  *           carry up.
4718  *
4719  *    Time zone:
4720  *      %z - Time zone as hour and minute offset from UTC (e.g. +0900)
4721  *              %:z - hour and minute offset from UTC with a colon (e.g. +09:00)
4722  *              %::z - hour, minute and second offset from UTC (e.g. +09:00:00)
4723  *      %Z - Abbreviated time zone name or similar information.  (OS dependent)
4724  *
4725  *    Weekday:
4726  *      %A - The full weekday name (``Sunday'')
4727  *              %^A  uppercased (``SUNDAY'')
4728  *      %a - The abbreviated name (``Sun'')
4729  *              %^a  uppercased (``SUN'')
4730  *      %u - Day of the week (Monday is 1, 1..7)
4731  *      %w - Day of the week (Sunday is 0, 0..6)
4732  *
4733  *    ISO 8601 week-based year and week number:
4734  *    The first week of YYYY starts with a Monday and includes YYYY-01-04.
4735  *    The days in the year before the first week are in the last week of
4736  *    the previous year.
4737  *      %G - The week-based year
4738  *      %g - The last 2 digits of the week-based year (00..99)
4739  *      %V - Week number of the week-based year (01..53)
4740  *
4741  *    Week number:
4742  *    The first week of YYYY that starts with a Sunday or Monday (according to %U
4743  *    or %W). The days in the year before the first week are in week 0.
4744  *      %U - Week number of the year. The week starts with Sunday. (00..53)
4745  *      %W - Week number of the year. The week starts with Monday. (00..53)
4746  *
4747  *    Seconds since the Epoch:
4748  *      %s - Number of seconds since 1970-01-01 00:00:00 UTC.
4749  *
4750  *    Literal string:
4751  *      %n - Newline character (\n)
4752  *      %t - Tab character (\t)
4753  *      %% - Literal ``%'' character
4754  *
4755  *    Combination:
4756  *      %c - date and time (%a %b %e %T %Y)
4757  *      %D - Date (%m/%d/%y)
4758  *      %F - The ISO 8601 date format (%Y-%m-%d)
4759  *      %v - VMS date (%e-%^b-%4Y)
4760  *      %x - Same as %D
4761  *      %X - Same as %T
4762  *      %r - 12-hour time (%I:%M:%S %p)
4763  *      %R - 24-hour time (%H:%M)
4764  *      %T - 24-hour time (%H:%M:%S)
4765  *
4766  *  This method is similar to strftime() function defined in ISO C and POSIX.
4767  *
4768  *  While all directives are locale independent since Ruby 1.9, %Z is platform
4769  *  dependent.
4770  *  So, the result may differ even if the same format string is used in other
4771  *  systems such as C.
4772  *
4773  *  %z is recommended over %Z.
4774  *  %Z doesn't identify the timezone.
4775  *  For example, "CST" is used at America/Chicago (-06:00),
4776  *  America/Havana (-05:00), Asia/Harbin (+08:00), Australia/Darwin (+09:30)
4777  *  and Australia/Adelaide (+10:30).
4778  *  Also, %Z is highly dependent on the operating system.
4779  *  For example, it may generate a non ASCII string on Japanese Windows,
4780  *  i.e. the result can be different to "JST".
4781  *  So the numeric time zone offset, %z, is recommended.
4782  *
4783  *  Examples:
4784  *
4785  *    t = Time.new(2007,11,19,8,37,48,"-06:00") #=> 2007-11-19 08:37:48 -0600
4786  *    t.strftime("Printed on %m/%d/%Y")         #=> "Printed on 11/19/2007"
4787  *    t.strftime("at %I:%M %p")                 #=> "at 08:37 AM"
4788  *
4789  *  Various ISO 8601 formats:
4790  *    %Y%m%d           => 20071119                  Calendar date (basic)
4791  *    %F               => 2007-11-19                Calendar date (extended)
4792  *    %Y-%m            => 2007-11                   Calendar date, reduced accuracy, specific month
4793  *    %Y               => 2007                      Calendar date, reduced accuracy, specific year
4794  *    %C               => 20                        Calendar date, reduced accuracy, specific century
4795  *    %Y%j             => 2007323                   Ordinal date (basic)
4796  *    %Y-%j            => 2007-323                  Ordinal date (extended)
4797  *    %GW%V%u          => 2007W471                  Week date (basic)
4798  *    %G-W%V-%u        => 2007-W47-1                Week date (extended)
4799  *    %GW%V            => 2007W47                   Week date, reduced accuracy, specific week (basic)
4800  *    %G-W%V           => 2007-W47                  Week date, reduced accuracy, specific week (extended)
4801  *    %H%M%S           => 083748                    Local time (basic)
4802  *    %T               => 08:37:48                  Local time (extended)
4803  *    %H%M             => 0837                      Local time, reduced accuracy, specific minute (basic)
4804  *    %H:%M            => 08:37                     Local time, reduced accuracy, specific minute (extended)
4805  *    %H               => 08                        Local time, reduced accuracy, specific hour
4806  *    %H%M%S,%L        => 083748,000                Local time with decimal fraction, comma as decimal sign (basic)
4807  *    %T,%L            => 08:37:48,000              Local time with decimal fraction, comma as decimal sign (extended)
4808  *    %H%M%S.%L        => 083748.000                Local time with decimal fraction, full stop as decimal sign (basic)
4809  *    %T.%L            => 08:37:48.000              Local time with decimal fraction, full stop as decimal sign (extended)
4810  *    %H%M%S%z         => 083748-0600               Local time and the difference from UTC (basic)
4811  *    %T%:z            => 08:37:48-06:00            Local time and the difference from UTC (extended)
4812  *    %Y%m%dT%H%M%S%z  => 20071119T083748-0600      Date and time of day for calendar date (basic)
4813  *    %FT%T%:z         => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended)
4814  *    %Y%jT%H%M%S%z    => 2007323T083748-0600       Date and time of day for ordinal date (basic)
4815  *    %Y-%jT%T%:z      => 2007-323T08:37:48-06:00   Date and time of day for ordinal date (extended)
4816  *    %GW%V%uT%H%M%S%z => 2007W471T083748-0600      Date and time of day for week date (basic)
4817  *    %G-W%V-%uT%T%:z  => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended)
4818  *    %Y%m%dT%H%M      => 20071119T0837             Calendar date and local time (basic)
4819  *    %FT%R            => 2007-11-19T08:37          Calendar date and local time (extended)
4820  *    %Y%jT%H%MZ       => 2007323T0837Z             Ordinal date and UTC of day (basic)
4821  *    %Y-%jT%RZ        => 2007-323T08:37Z           Ordinal date and UTC of day (extended)
4822  *    %GW%V%uT%H%M%z   => 2007W471T0837-0600        Week date and local time and difference from UTC (basic)
4823  *    %G-W%V-%uT%R%:z  => 2007-W47-1T08:37-06:00    Week date and local time and difference from UTC (extended)
4824  *
4825  */
4826 
4827 static VALUE
time_strftime(VALUE time,VALUE format)4828 time_strftime(VALUE time, VALUE format)
4829 {
4830     struct time_object *tobj;
4831     const char *fmt;
4832     long len;
4833     rb_encoding *enc;
4834     VALUE tmp;
4835 
4836     GetTimeval(time, tobj);
4837     MAKE_TM(time, tobj);
4838     StringValue(format);
4839     if (!rb_enc_str_asciicompat_p(format)) {
4840 	rb_raise(rb_eArgError, "format should have ASCII compatible encoding");
4841     }
4842     tmp = rb_str_tmp_frozen_acquire(format);
4843     fmt = RSTRING_PTR(tmp);
4844     len = RSTRING_LEN(tmp);
4845     enc = rb_enc_get(format);
4846     if (len == 0) {
4847 	rb_warning("strftime called with empty format string");
4848 	return rb_enc_str_new(0, 0, enc);
4849     }
4850     else {
4851         VALUE str = rb_strftime_alloc(fmt, len, enc, time, &tobj->vtm, tobj->timew,
4852 				      TZMODE_UTC_P(tobj));
4853 	rb_str_tmp_frozen_release(format, tmp);
4854 	if (!str) rb_raise(rb_eArgError, "invalid format: %"PRIsVALUE, format);
4855 	return str;
4856     }
4857 }
4858 
4859 /* :nodoc: */
4860 static VALUE
time_mdump(VALUE time)4861 time_mdump(VALUE time)
4862 {
4863     struct time_object *tobj;
4864     unsigned long p, s;
4865     char buf[8];
4866     int i;
4867     VALUE str;
4868 
4869     struct vtm vtm;
4870     long year;
4871     long usec, nsec;
4872     VALUE subsecx, nano, subnano, v, zone;
4873 
4874     GetTimeval(time, tobj);
4875 
4876     gmtimew(tobj->timew, &vtm);
4877 
4878     if (FIXNUM_P(vtm.year)) {
4879         year = FIX2LONG(vtm.year);
4880         if (year < 1900 || 1900+0xffff < year)
4881             rb_raise(rb_eArgError, "year too %s to marshal: %ld UTC",
4882                      (year < 1900 ? "small" : "big"), year);
4883     }
4884     else {
4885         rb_raise(rb_eArgError, "year too %s to marshal: %"PRIsVALUE" UTC",
4886                  (le(vtm.year, INT2FIX(1900)) ? "small" : "big"), vtm.year);
4887     }
4888 
4889     subsecx = vtm.subsecx;
4890 
4891     nano = mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
4892     divmodv(nano, INT2FIX(1), &v, &subnano);
4893     nsec = FIX2LONG(v);
4894     usec = nsec / 1000;
4895     nsec = nsec % 1000;
4896 
4897     nano = addv(LONG2FIX(nsec), subnano);
4898 
4899     p = 0x1UL            << 31 | /*  1 */
4900 	TZMODE_UTC_P(tobj) << 30 | /*  1 */
4901 	(year-1900)      << 14 | /* 16 */
4902 	(vtm.mon-1)      << 10 | /*  4 */
4903 	vtm.mday         <<  5 | /*  5 */
4904 	vtm.hour;                /*  5 */
4905     s = (unsigned long)vtm.min << 26 | /*  6 */
4906 	vtm.sec          << 20 | /*  6 */
4907 	usec;    /* 20 */
4908 
4909     for (i=0; i<4; i++) {
4910 	buf[i] = (unsigned char)p;
4911 	p = RSHIFT(p, 8);
4912     }
4913     for (i=4; i<8; i++) {
4914 	buf[i] = (unsigned char)s;
4915 	s = RSHIFT(s, 8);
4916     }
4917 
4918     str = rb_str_new(buf, 8);
4919     rb_copy_generic_ivar(str, time);
4920     if (!rb_equal(nano, INT2FIX(0))) {
4921         if (RB_TYPE_P(nano, T_RATIONAL)) {
4922             rb_ivar_set(str, id_nano_num, RRATIONAL(nano)->num);
4923             rb_ivar_set(str, id_nano_den, RRATIONAL(nano)->den);
4924         }
4925         else {
4926             rb_ivar_set(str, id_nano_num, nano);
4927             rb_ivar_set(str, id_nano_den, INT2FIX(1));
4928         }
4929     }
4930     if (nsec) { /* submicro is only for Ruby 1.9.1 compatibility */
4931         /*
4932          * submicro is formatted in fixed-point packed BCD (without sign).
4933          * It represent digits under microsecond.
4934          * For nanosecond resolution, 3 digits (2 bytes) are used.
4935          * However it can be longer.
4936          * Extra digits are ignored for loading.
4937          */
4938         char buf[2];
4939         int len = (int)sizeof(buf);
4940         buf[1] = (char)((nsec % 10) << 4);
4941         nsec /= 10;
4942         buf[0] = (char)(nsec % 10);
4943         nsec /= 10;
4944         buf[0] |= (char)((nsec % 10) << 4);
4945         if (buf[1] == 0)
4946             len = 1;
4947         rb_ivar_set(str, id_submicro, rb_str_new(buf, len));
4948     }
4949     if (!TZMODE_UTC_P(tobj)) {
4950 	VALUE off = rb_time_utc_offset(time), div, mod;
4951 	divmodv(off, INT2FIX(1), &div, &mod);
4952 	if (rb_equal(mod, INT2FIX(0)))
4953 	    off = rb_Integer(div);
4954 	rb_ivar_set(str, id_offset, off);
4955     }
4956     zone = tobj->vtm.zone;
4957     if (maybe_tzobj_p(zone)) {
4958         zone = rb_funcallv(zone, id_name, 0, 0);
4959     }
4960     rb_ivar_set(str, id_zone, zone);
4961     return str;
4962 }
4963 
4964 /* :nodoc: */
4965 static VALUE
time_dump(int argc,VALUE * argv,VALUE time)4966 time_dump(int argc, VALUE *argv, VALUE time)
4967 {
4968     VALUE str;
4969 
4970     rb_check_arity(argc, 0, 1);
4971     str = time_mdump(time);
4972 
4973     return str;
4974 }
4975 
4976 static VALUE
mload_findzone(VALUE arg)4977 mload_findzone(VALUE arg)
4978 {
4979     VALUE *argp = (VALUE *)arg;
4980     VALUE time = argp[0], zone = argp[1];
4981     return find_timezone(time, zone);
4982 }
4983 
4984 static VALUE
mload_zone(VALUE time,VALUE zone)4985 mload_zone(VALUE time, VALUE zone)
4986 {
4987     VALUE z, args[2];
4988     args[0] = time;
4989     args[1] = zone;
4990     z = rb_rescue(mload_findzone, (VALUE)args, (VALUE (*)(ANYARGS))NULL, Qnil);
4991     if (NIL_P(z)) return rb_fstring(zone);
4992     if (RB_TYPE_P(z, T_STRING)) return rb_fstring(z);
4993     return z;
4994 }
4995 
4996 /* :nodoc: */
4997 static VALUE
time_mload(VALUE time,VALUE str)4998 time_mload(VALUE time, VALUE str)
4999 {
5000     struct time_object *tobj;
5001     unsigned long p, s;
5002     time_t sec;
5003     long usec;
5004     unsigned char *buf;
5005     struct vtm vtm;
5006     int i, gmt;
5007     long nsec;
5008     VALUE submicro, nano_num, nano_den, offset, zone;
5009     wideval_t timew;
5010 
5011     time_modify(time);
5012 
5013 #define get_attr(attr, iffound) \
5014     attr = rb_attr_delete(str, id_##attr); \
5015     if (!NIL_P(attr)) { \
5016 	iffound; \
5017     }
5018 
5019     get_attr(nano_num, {});
5020     get_attr(nano_den, {});
5021     get_attr(submicro, {});
5022     get_attr(offset, (offset = rb_rescue(validate_utc_offset, offset, NULL, Qnil)));
5023     get_attr(zone, (zone = rb_rescue(validate_zone_name, zone, NULL, Qnil)));
5024 
5025 #undef get_attr
5026 
5027     rb_copy_generic_ivar(time, str);
5028 
5029     StringValue(str);
5030     buf = (unsigned char *)RSTRING_PTR(str);
5031     if (RSTRING_LEN(str) != 8) {
5032 	rb_raise(rb_eTypeError, "marshaled time format differ");
5033     }
5034 
5035     p = s = 0;
5036     for (i=0; i<4; i++) {
5037 	p |= (unsigned long)buf[i]<<(8*i);
5038     }
5039     for (i=4; i<8; i++) {
5040 	s |= (unsigned long)buf[i]<<(8*(i-4));
5041     }
5042 
5043     if ((p & (1UL<<31)) == 0) {
5044         gmt = 0;
5045 	offset = Qnil;
5046 	sec = p;
5047 	usec = s;
5048         nsec = usec * 1000;
5049         timew = wadd(rb_time_magnify(TIMET2WV(sec)), wmulquoll(WINT2FIXWV(usec), TIME_SCALE, 1000000));
5050     }
5051     else {
5052 	p &= ~(1UL<<31);
5053 	gmt        = (int)((p >> 30) & 0x1);
5054 
5055 	vtm.year = INT2FIX(((int)(p >> 14) & 0xffff) + 1900);
5056 	vtm.mon  = ((int)(p >> 10) & 0xf) + 1;
5057 	vtm.mday = (int)(p >>  5) & 0x1f;
5058 	vtm.hour = (int) p        & 0x1f;
5059 	vtm.min  = (int)(s >> 26) & 0x3f;
5060 	vtm.sec  = (int)(s >> 20) & 0x3f;
5061         vtm.utc_offset = INT2FIX(0);
5062 	vtm.yday = vtm.wday = 0;
5063 	vtm.isdst = 0;
5064 	vtm.zone = rb_fstring_lit("");
5065 
5066 	usec = (long)(s & 0xfffff);
5067         nsec = usec * 1000;
5068 
5069 
5070         vtm.subsecx = mulquov(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000));
5071         if (nano_num != Qnil) {
5072             VALUE nano = quov(num_exact(nano_num), num_exact(nano_den));
5073             vtm.subsecx = addv(vtm.subsecx, mulquov(nano, INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
5074         }
5075         else if (submicro != Qnil) { /* for Ruby 1.9.1 compatibility */
5076             unsigned char *ptr;
5077             long len;
5078             int digit;
5079             ptr = (unsigned char*)StringValuePtr(submicro);
5080             len = RSTRING_LEN(submicro);
5081             nsec = 0;
5082             if (0 < len) {
5083                 if (10 <= (digit = ptr[0] >> 4)) goto end_submicro;
5084                 nsec += digit * 100;
5085                 if (10 <= (digit = ptr[0] & 0xf)) goto end_submicro;
5086                 nsec += digit * 10;
5087             }
5088             if (1 < len) {
5089                 if (10 <= (digit = ptr[1] >> 4)) goto end_submicro;
5090                 nsec += digit;
5091             }
5092             vtm.subsecx = addv(vtm.subsecx, mulquov(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
5093 end_submicro: ;
5094         }
5095         timew = timegmw(&vtm);
5096     }
5097 
5098     GetNewTimeval(time, tobj);
5099     tobj->tzmode = TIME_TZMODE_LOCALTIME;
5100     tobj->tm_got = 0;
5101     tobj->timew = timew;
5102     if (gmt) {
5103 	TZMODE_SET_UTC(tobj);
5104     }
5105     else if (!NIL_P(offset)) {
5106 	time_set_utc_offset(time, offset);
5107 	time_fixoff(time);
5108     }
5109     if (!NIL_P(zone)) {
5110         zone = mload_zone(time, zone);
5111 	tobj->vtm.zone = zone;
5112     }
5113 
5114     return time;
5115 }
5116 
5117 /* :nodoc: */
5118 static VALUE
time_load(VALUE klass,VALUE str)5119 time_load(VALUE klass, VALUE str)
5120 {
5121     VALUE time = time_s_alloc(klass);
5122 
5123     time_mload(time, str);
5124     return time;
5125 }
5126 
5127 /* :nodoc:*/
5128 /* Document-class: Time::tm
5129  *
5130  * A container class for timezone conversion.
5131  */
5132 
5133 /*
5134  * call-seq:
5135  *
5136  *   Time::tm.from_time(t) -> tm
5137  *
5138  * Creates new Time::tm object from a Time object.
5139  */
5140 
5141 static VALUE
tm_from_time(VALUE klass,VALUE time)5142 tm_from_time(VALUE klass, VALUE time)
5143 {
5144     struct time_object *tobj;
5145     struct vtm vtm, *v;
5146 #if TM_IS_TIME
5147     VALUE tm;
5148     struct time_object *ttm;
5149 
5150     GetTimeval(time, tobj);
5151     tm = time_s_alloc(klass);
5152     ttm = DATA_PTR(tm);
5153     v = &vtm;
5154     GMTIMEW(ttm->timew = tobj->timew, v);
5155     ttm->timew = wsub(ttm->timew, v->subsecx);
5156     v->subsecx = INT2FIX(0);
5157     v->zone = Qnil;
5158     ttm->vtm = *v;
5159     ttm->tm_got = 1;
5160     TZMODE_SET_UTC(ttm);
5161     return tm;
5162 #else
5163     VALUE args[8];
5164     int i = 0;
5165 
5166     GetTimeval(time, tobj);
5167     if (tobj->tm_got && TZMODE_UTC_P(tobj))
5168         v = &tobj->vtm;
5169     else
5170         GMTIMEW(tobj->timew, v = &vtm);
5171     args[i++] = v->year;
5172     args[i++] = INT2FIX(v->mon);
5173     args[i++] = INT2FIX(v->mday);
5174     args[i++] = INT2FIX(v->hour);
5175     args[i++] = INT2FIX(v->min);
5176     args[i++] = INT2FIX(v->sec);
5177     switch (v->isdst) {
5178       case 0: args[i++] = Qfalse; break;
5179       case 1: args[i++] = Qtrue; break;
5180       default: args[i++] = Qnil; break;
5181     }
5182     args[i++] = w2v(rb_time_unmagnify(tobj->timew));
5183     return rb_class_new_instance(i, args, klass);
5184 #endif
5185 }
5186 
5187 /*
5188  * call-seq:
5189  *
5190  *   Time::tm.new(year, month=nil, day=nil, hour=nil, min=nil, sec=nil, tz=nil) -> tm
5191  *
5192  * Creates new Time::tm object.
5193  */
5194 
5195 static VALUE
tm_initialize(int argc,VALUE * argv,VALUE tm)5196 tm_initialize(int argc, VALUE *argv, VALUE tm)
5197 {
5198     struct vtm vtm;
5199     wideval_t t;
5200 
5201     if (rb_check_arity(argc, 1, 7) > 6) argc = 6;
5202     time_arg(argc, argv, &vtm);
5203     t = timegmw(&vtm);
5204     {
5205 #if TM_IS_TIME
5206         struct time_object *tobj = DATA_PTR(tm);
5207         tobj->tzmode = TIME_TZMODE_UTC;
5208         tobj->timew = t;
5209         tobj->vtm = vtm;
5210 #else
5211         int i = 0;
5212         RSTRUCT_SET(tm, i++, INT2FIX(vtm.sec));
5213         RSTRUCT_SET(tm, i++, INT2FIX(vtm.min));
5214         RSTRUCT_SET(tm, i++, INT2FIX(vtm.hour));
5215         RSTRUCT_SET(tm, i++, INT2FIX(vtm.mday));
5216         RSTRUCT_SET(tm, i++, INT2FIX(vtm.mon));
5217         RSTRUCT_SET(tm, i++, vtm.year);
5218         RSTRUCT_SET(tm, i++, w2v(rb_time_unmagnify(t)));
5219 #endif
5220     }
5221     return tm;
5222 }
5223 
5224 /* call-seq:
5225  *
5226  *   tm.to_time -> time
5227  *
5228  * Returns a new Time object.
5229  */
5230 
5231 static VALUE
tm_to_time(VALUE tm)5232 tm_to_time(VALUE tm)
5233 {
5234 #if TM_IS_TIME
5235     struct time_object *torig = get_timeval(tm);
5236     VALUE dup = time_s_alloc(rb_cTime);
5237     struct time_object *tobj = DATA_PTR(dup);
5238     *tobj = *torig;
5239     return dup;
5240 #else
5241     VALUE t[6];
5242     const VALUE *p = RSTRUCT_CONST_PTR(tm);
5243     int i;
5244 
5245     for (i = 0; i < numberof(t); ++i) {
5246         t[i] = p[numberof(t) - 1 - i];
5247     }
5248     return time_s_mkutc(numberof(t), t, rb_cTime);
5249 #endif
5250 }
5251 
5252 #if !TM_IS_TIME
5253 static VALUE
tm_zero(VALUE tm)5254 tm_zero(VALUE tm)
5255 {
5256     return INT2FIX(0);
5257 }
5258 
5259 #define tm_subsec tm_zero
5260 #define tm_utc_offset tm_zero
5261 
5262 static VALUE
tm_isdst(VALUE tm)5263 tm_isdst(VALUE tm)
5264 {
5265     return Qfalse;
5266 }
5267 
5268 static VALUE
tm_to_s(VALUE tm)5269 tm_to_s(VALUE tm)
5270 {
5271     const VALUE *p = RSTRUCT_CONST_PTR(tm);
5272 
5273     return rb_sprintf("%.4"PRIsVALUE"-%.2"PRIsVALUE"-%.2"PRIsVALUE" "
5274                       "%.2"PRIsVALUE":%.2"PRIsVALUE":%.2"PRIsVALUE" "
5275                       "UTC",
5276                       p[5], p[4], p[3], p[2], p[1], p[0]);
5277 }
5278 #else
5279 static VALUE
tm_plus(VALUE tm,VALUE offset)5280 tm_plus(VALUE tm, VALUE offset)
5281 {
5282     return time_add0(rb_obj_class(tm), get_timeval(tm), tm, offset, +1);
5283 }
5284 
5285 static VALUE
tm_minus(VALUE tm,VALUE offset)5286 tm_minus(VALUE tm, VALUE offset)
5287 {
5288     return time_add0(rb_obj_class(tm), get_timeval(tm), tm, offset, -1);
5289 }
5290 #endif
5291 
5292 static VALUE
Init_tm(VALUE outer,const char * name)5293 Init_tm(VALUE outer, const char *name)
5294 {
5295     /* :stopdoc:*/
5296     VALUE tm;
5297 #if TM_IS_TIME
5298     tm = rb_define_class_under(outer, name, rb_cObject);
5299     rb_define_alloc_func(tm, time_s_alloc);
5300     rb_define_method(tm, "sec", time_sec, 0);
5301     rb_define_method(tm, "min", time_min, 0);
5302     rb_define_method(tm, "hour", time_hour, 0);
5303     rb_define_method(tm, "mday", time_mday, 0);
5304     rb_define_method(tm, "day", time_mday, 0);
5305     rb_define_method(tm, "mon", time_mon, 0);
5306     rb_define_method(tm, "month", time_mon, 0);
5307     rb_define_method(tm, "year", time_year, 0);
5308     rb_define_method(tm, "isdst", time_isdst, 0);
5309     rb_define_method(tm, "dst?", time_isdst, 0);
5310     rb_define_method(tm, "zone", time_zone, 0);
5311     rb_define_method(tm, "gmtoff", rb_time_utc_offset, 0);
5312     rb_define_method(tm, "gmt_offset", rb_time_utc_offset, 0);
5313     rb_define_method(tm, "utc_offset", rb_time_utc_offset, 0);
5314     rb_define_method(tm, "utc?", time_utc_p, 0);
5315     rb_define_method(tm, "gmt?", time_utc_p, 0);
5316     rb_define_method(tm, "to_s", time_to_s, 0);
5317     rb_define_method(tm, "inspect", time_to_s, 0);
5318     rb_define_method(tm, "to_a", time_to_a, 0);
5319     rb_define_method(tm, "tv_sec", time_to_i, 0);
5320     rb_define_method(tm, "tv_usec", time_usec, 0);
5321     rb_define_method(tm, "usec", time_usec, 0);
5322     rb_define_method(tm, "tv_nsec", time_nsec, 0);
5323     rb_define_method(tm, "nsec", time_nsec, 0);
5324     rb_define_method(tm, "subsec", time_subsec, 0);
5325     rb_define_method(tm, "to_i", time_to_i, 0);
5326     rb_define_method(tm, "to_f", time_to_f, 0);
5327     rb_define_method(tm, "to_r", time_to_r, 0);
5328     rb_define_method(tm, "+", tm_plus, 1);
5329     rb_define_method(tm, "-", tm_minus, 1);
5330 #else
5331     tm = rb_struct_define_under(outer,  "tm",
5332                                         "sec", "min", "hour",
5333                                         "mday", "mon", "year",
5334                                         "to_i", NULL);
5335     rb_define_method(tm, "subsec", tm_subsec, 0);
5336     rb_define_method(tm, "utc_offset", tm_utc_offset, 0);
5337     rb_define_method(tm, "to_s", tm_to_s, 0);
5338     rb_define_method(tm, "inspect", tm_to_s, 0);
5339     rb_define_method(tm, "isdst", tm_isdst, 0);
5340     rb_define_method(tm, "dst?", tm_isdst, 0);
5341 #endif
5342     rb_define_method(tm, "initialize", tm_initialize, -1);
5343     rb_define_method(tm, "utc", tm_to_time, 0);
5344     rb_alias(tm, rb_intern("to_time"), rb_intern("utc"));
5345     rb_define_singleton_method(tm, "from_time", tm_from_time, 1);
5346     /* :startdoc:*/
5347 
5348     return tm;
5349 }
5350 
5351 VALUE
rb_time_zone_abbreviation(VALUE zone,VALUE time)5352 rb_time_zone_abbreviation(VALUE zone, VALUE time)
5353 {
5354     VALUE tm, abbr, strftime_args[2];
5355 
5356     abbr = rb_check_string_type(zone);
5357     if (!NIL_P(abbr)) return abbr;
5358 
5359     tm = tm_from_time(rb_cTimeTM, time);
5360     abbr = rb_check_funcall(zone, rb_intern("abbr"), 1, &tm);
5361     if (abbr != Qundef) {
5362         goto found;
5363     }
5364 #ifdef SUPPORT_TZINFO_ZONE_ABBREVIATION
5365     abbr = rb_check_funcall(zone, rb_intern("period_for_utc"), 1, &tm);
5366     if (abbr != Qundef) {
5367         abbr = rb_funcallv(abbr, rb_intern("abbreviation"), 0, 0);
5368         goto found;
5369     }
5370 #endif
5371     strftime_args[0] = rb_fstring_lit("%Z");
5372     strftime_args[1] = tm;
5373     abbr = rb_check_funcall(zone, rb_intern("strftime"), 2, strftime_args);
5374     if (abbr != Qundef) {
5375         goto found;
5376     }
5377     abbr = rb_check_funcall_default(zone, rb_intern("name"), 0, 0, Qnil);
5378   found:
5379     return rb_obj_as_string(abbr);
5380 }
5381 
5382 /*
5383  *  Time is an abstraction of dates and times. Time is stored internally as
5384  *  the number of seconds with fraction since the _Epoch_, January 1, 1970
5385  *  00:00 UTC. Also see the library module Date. The Time class treats GMT
5386  *  (Greenwich Mean Time) and UTC (Coordinated Universal Time) as equivalent.
5387  *  GMT is the older way of referring to these baseline times but persists in
5388  *  the names of calls on POSIX systems.
5389  *
5390  *  All times may have fraction. Be aware of this fact when comparing times
5391  *  with each other -- times that are apparently equal when displayed may be
5392  *  different when compared.
5393  *
5394  *  Since Ruby 1.9.2, Time implementation uses a signed 63 bit integer,
5395  *  Bignum or Rational.
5396  *  The integer is a number of nanoseconds since the _Epoch_ which can
5397  *  represent 1823-11-12 to 2116-02-20.
5398  *  When Bignum or Rational is used (before 1823, after 2116, under
5399  *  nanosecond), Time works slower as when integer is used.
5400  *
5401  *  = Examples
5402  *
5403  *  All of these examples were done using the EST timezone which is GMT-5.
5404  *
5405  *  == Creating a new Time instance
5406  *
5407  *  You can create a new instance of Time with Time::new. This will use the
5408  *  current system time. Time::now is an alias for this. You can also
5409  *  pass parts of the time to Time::new such as year, month, minute, etc. When
5410  *  you want to construct a time this way you must pass at least a year. If you
5411  *  pass the year with nothing else time will default to January 1 of that year
5412  *  at 00:00:00 with the current system timezone. Here are some examples:
5413  *
5414  *    Time.new(2002)         #=> 2002-01-01 00:00:00 -0500
5415  *    Time.new(2002, 10)     #=> 2002-10-01 00:00:00 -0500
5416  *    Time.new(2002, 10, 31) #=> 2002-10-31 00:00:00 -0500
5417  *
5418  *  You can pass a UTC offset:
5419  *
5420  *    Time.new(2002, 10, 31, 2, 2, 2, "+02:00") #=> 2002-10-31 02:02:02 +0200
5421  *
5422  *  Or a timezone object:
5423  *
5424  *    tz = timezone("Europe/Athens") # Eastern European Time, UTC+2
5425  *    Time.new(2002, 10, 31, 2, 2, 2, tz) #=> 2002-10-31 02:02:02 +0200
5426  *
5427  *  You can also use Time::gm, Time::local and Time::utc to infer GMT,
5428  *  local and UTC timezones instead of using the current system
5429  *  setting.
5430  *
5431  *  You can also create a new time using Time::at which takes the number of
5432  *  seconds (or fraction of seconds) since the {Unix
5433  *  Epoch}[http://en.wikipedia.org/wiki/Unix_time].
5434  *
5435  *    Time.at(628232400) #=> 1989-11-28 00:00:00 -0500
5436  *
5437  *  == Working with an instance of Time
5438  *
5439  *  Once you have an instance of Time there is a multitude of things you can
5440  *  do with it. Below are some examples. For all of the following examples, we
5441  *  will work on the assumption that you have done the following:
5442  *
5443  *    t = Time.new(1993, 02, 24, 12, 0, 0, "+09:00")
5444  *
5445  *  Was that a monday?
5446  *
5447  *    t.monday? #=> false
5448  *
5449  *  What year was that again?
5450  *
5451  *    t.year #=> 1993
5452  *
5453  *  Was it daylight savings at the time?
5454  *
5455  *    t.dst? #=> false
5456  *
5457  *  What's the day a year later?
5458  *
5459  *    t + (60*60*24*365) #=> 1994-02-24 12:00:00 +0900
5460  *
5461  *  How many seconds was that since the Unix Epoch?
5462  *
5463  *    t.to_i #=> 730522800
5464  *
5465  *  You can also do standard functions like compare two times.
5466  *
5467  *    t1 = Time.new(2010)
5468  *    t2 = Time.new(2011)
5469  *
5470  *    t1 == t2 #=> false
5471  *    t1 == t1 #=> true
5472  *    t1 <  t2 #=> true
5473  *    t1 >  t2 #=> false
5474  *
5475  *    Time.new(2010,10,31).between?(t1, t2) #=> true
5476  *
5477  *  == Timezone argument
5478  *
5479  *  A timezone argument must have +local_to_utc+ and +utc_to_local+
5480  *  methods, and may have +name+ and +abbr+ methods.
5481  *
5482  *  The +local_to_utc+ method should convert a Time-like object from
5483  *  the timezone to UTC, and +utc_to_local+ is the opposite.  The
5484  *  result also should be a Time or Time-like object (not necessary to
5485  *  be the same class).  The #zone of the result is just ignored.
5486  *  Time-like argument to these methods is similar to a Time object in
5487  *  UTC without sub-second; it has attribute readers for the parts,
5488  *  e.g. #year, #month, and so on, and epoch time readers, #to_i.  The
5489  *  sub-second attributes are fixed as 0, and #utc_offset, #zone,
5490  *  #isdst, and their aliases are same as a Time object in UTC.
5491  *  Also #to_time, #+, and #- methods are defined.
5492  *
5493  *  The +name+ method is used for marshaling. If this method is not
5494  *  defined on a timezone object, Time objects using that timezone
5495  *  object can not be dumped by Marshal.
5496  *
5497  *  The +abbr+ method is used by '%Z' in #strftime.
5498  *
5499  *  === Auto conversion to Timezone
5500  *
5501  *  At loading marshaled data, a timezone name will be converted to a timezone
5502  *  object by +find_timezone+ class method, if the method is defined.
5503  *
5504  *  Similary, that class method will be called when a timezone argument does
5505  *  not have the necessary methods mentioned above.
5506  */
5507 
5508 void
Init_Time(void)5509 Init_Time(void)
5510 {
5511 #undef rb_intern
5512 #define rb_intern(str) rb_intern_const(str)
5513 
5514     id_quo = rb_intern("quo");
5515     id_div = rb_intern("div");
5516     id_divmod = rb_intern("divmod");
5517     id_submicro = rb_intern("submicro");
5518     id_nano_num = rb_intern("nano_num");
5519     id_nano_den = rb_intern("nano_den");
5520     id_offset = rb_intern("offset");
5521     id_zone = rb_intern("zone");
5522     id_nanosecond = rb_intern("nanosecond");
5523     id_microsecond = rb_intern("microsecond");
5524     id_millisecond = rb_intern("millisecond");
5525     id_nsec = rb_intern("nsec");
5526     id_usec = rb_intern("usec");
5527     id_local_to_utc = rb_intern("local_to_utc");
5528     id_utc_to_local = rb_intern("utc_to_local");
5529     id_year = rb_intern("year");
5530     id_mon = rb_intern("mon");
5531     id_mday = rb_intern("mday");
5532     id_hour = rb_intern("hour");
5533     id_min = rb_intern("min");
5534     id_sec = rb_intern("sec");
5535     id_isdst = rb_intern("isdst");
5536     id_name = rb_intern("name");
5537     id_find_timezone = rb_intern("find_timezone");
5538 
5539     rb_cTime = rb_define_class("Time", rb_cObject);
5540     rb_include_module(rb_cTime, rb_mComparable);
5541 
5542     rb_define_alloc_func(rb_cTime, time_s_alloc);
5543     rb_define_singleton_method(rb_cTime, "now", time_s_now, 0);
5544     rb_define_singleton_method(rb_cTime, "at", time_s_at, -1);
5545     rb_define_singleton_method(rb_cTime, "utc", time_s_mkutc, -1);
5546     rb_define_singleton_method(rb_cTime, "gm", time_s_mkutc, -1);
5547     rb_define_singleton_method(rb_cTime, "local", time_s_mktime, -1);
5548     rb_define_singleton_method(rb_cTime, "mktime", time_s_mktime, -1);
5549 
5550     rb_define_method(rb_cTime, "to_i", time_to_i, 0);
5551     rb_define_method(rb_cTime, "to_f", time_to_f, 0);
5552     rb_define_method(rb_cTime, "to_r", time_to_r, 0);
5553     rb_define_method(rb_cTime, "<=>", time_cmp, 1);
5554     rb_define_method(rb_cTime, "eql?", time_eql, 1);
5555     rb_define_method(rb_cTime, "hash", time_hash, 0);
5556     rb_define_method(rb_cTime, "initialize", time_init, -1);
5557     rb_define_method(rb_cTime, "initialize_copy", time_init_copy, 1);
5558 
5559     rb_define_method(rb_cTime, "localtime", time_localtime_m, -1);
5560     rb_define_method(rb_cTime, "gmtime", time_gmtime, 0);
5561     rb_define_method(rb_cTime, "utc", time_gmtime, 0);
5562     rb_define_method(rb_cTime, "getlocal", time_getlocaltime, -1);
5563     rb_define_method(rb_cTime, "getgm", time_getgmtime, 0);
5564     rb_define_method(rb_cTime, "getutc", time_getgmtime, 0);
5565 
5566     rb_define_method(rb_cTime, "ctime", time_asctime, 0);
5567     rb_define_method(rb_cTime, "asctime", time_asctime, 0);
5568     rb_define_method(rb_cTime, "to_s", time_to_s, 0);
5569     rb_define_method(rb_cTime, "inspect", time_to_s, 0);
5570     rb_define_method(rb_cTime, "to_a", time_to_a, 0);
5571 
5572     rb_define_method(rb_cTime, "+", time_plus, 1);
5573     rb_define_method(rb_cTime, "-", time_minus, 1);
5574 
5575     rb_define_method(rb_cTime, "succ", time_succ, 0);
5576     rb_define_method(rb_cTime, "round", time_round, -1);
5577 
5578     rb_define_method(rb_cTime, "sec", time_sec, 0);
5579     rb_define_method(rb_cTime, "min", time_min, 0);
5580     rb_define_method(rb_cTime, "hour", time_hour, 0);
5581     rb_define_method(rb_cTime, "mday", time_mday, 0);
5582     rb_define_method(rb_cTime, "day", time_mday, 0);
5583     rb_define_method(rb_cTime, "mon", time_mon, 0);
5584     rb_define_method(rb_cTime, "month", time_mon, 0);
5585     rb_define_method(rb_cTime, "year", time_year, 0);
5586     rb_define_method(rb_cTime, "wday", time_wday, 0);
5587     rb_define_method(rb_cTime, "yday", time_yday, 0);
5588     rb_define_method(rb_cTime, "isdst", time_isdst, 0);
5589     rb_define_method(rb_cTime, "dst?", time_isdst, 0);
5590     rb_define_method(rb_cTime, "zone", time_zone, 0);
5591     rb_define_method(rb_cTime, "gmtoff", rb_time_utc_offset, 0);
5592     rb_define_method(rb_cTime, "gmt_offset", rb_time_utc_offset, 0);
5593     rb_define_method(rb_cTime, "utc_offset", rb_time_utc_offset, 0);
5594 
5595     rb_define_method(rb_cTime, "utc?", time_utc_p, 0);
5596     rb_define_method(rb_cTime, "gmt?", time_utc_p, 0);
5597 
5598     rb_define_method(rb_cTime, "sunday?", time_sunday, 0);
5599     rb_define_method(rb_cTime, "monday?", time_monday, 0);
5600     rb_define_method(rb_cTime, "tuesday?", time_tuesday, 0);
5601     rb_define_method(rb_cTime, "wednesday?", time_wednesday, 0);
5602     rb_define_method(rb_cTime, "thursday?", time_thursday, 0);
5603     rb_define_method(rb_cTime, "friday?", time_friday, 0);
5604     rb_define_method(rb_cTime, "saturday?", time_saturday, 0);
5605 
5606     rb_define_method(rb_cTime, "tv_sec", time_to_i, 0);
5607     rb_define_method(rb_cTime, "tv_usec", time_usec, 0);
5608     rb_define_method(rb_cTime, "usec", time_usec, 0);
5609     rb_define_method(rb_cTime, "tv_nsec", time_nsec, 0);
5610     rb_define_method(rb_cTime, "nsec", time_nsec, 0);
5611     rb_define_method(rb_cTime, "subsec", time_subsec, 0);
5612 
5613     rb_define_method(rb_cTime, "strftime", time_strftime, 1);
5614 
5615     /* methods for marshaling */
5616     rb_define_private_method(rb_cTime, "_dump", time_dump, -1);
5617     rb_define_private_method(rb_singleton_class(rb_cTime), "_load", time_load, 1);
5618 #if 0
5619     /* Time will support marshal_dump and marshal_load in the future (1.9 maybe) */
5620     rb_define_private_method(rb_cTime, "marshal_dump", time_mdump, 0);
5621     rb_define_private_method(rb_cTime, "marshal_load", time_mload, 1);
5622 #endif
5623 
5624 #ifdef DEBUG_FIND_TIME_NUMGUESS
5625     rb_define_virtual_variable("$find_time_numguess", find_time_numguess_getter, NULL);
5626 #endif
5627 
5628     rb_cTimeTM = Init_tm(rb_cTime, "tm");
5629 }
5630