1 //! Error Reporting Code for the inference engine
2 //!
3 //! Because of the way inference, and in particular region inference,
4 //! works, it often happens that errors are not detected until far after
5 //! the relevant line of code has been type-checked. Therefore, there is
6 //! an elaborate system to track why a particular constraint in the
7 //! inference graph arose so that we can explain to the user what gave
8 //! rise to a particular error.
9 //!
10 //! The system is based around a set of "origin" types. An "origin" is the
11 //! reason that a constraint or inference variable arose. There are
12 //! different "origin" enums for different kinds of constraints/variables
13 //! (e.g., `TypeOrigin`, `RegionVariableOrigin`). An origin always has
14 //! a span, but also more information so that we can generate a meaningful
15 //! error message.
16 //!
17 //! Having a catalog of all the different reasons an error can arise is
18 //! also useful for other reasons, like cross-referencing FAQs etc, though
19 //! we are not really taking advantage of this yet.
20 //!
21 //! # Region Inference
22 //!
23 //! Region inference is particularly tricky because it always succeeds "in
24 //! the moment" and simply registers a constraint. Then, at the end, we
25 //! can compute the full graph and report errors, so we need to be able to
26 //! store and later report what gave rise to the conflicting constraints.
27 //!
28 //! # Subtype Trace
29 //!
30 //! Determining whether `T1 <: T2` often involves a number of subtypes and
31 //! subconstraints along the way. A "TypeTrace" is an extended version
32 //! of an origin that traces the types and other values that were being
33 //! compared. It is not necessarily comprehensive (in fact, at the time of
34 //! this writing it only tracks the root values being compared) but I'd
35 //! like to extend it to include significant "waypoints". For example, if
36 //! you are comparing `(T1, T2) <: (T3, T4)`, and the problem is that `T2
37 //! <: T4` fails, I'd like the trace to include enough information to say
38 //! "in the 2nd element of the tuple". Similarly, failures when comparing
39 //! arguments or return types in fn types should be able to cite the
40 //! specific position, etc.
41 //!
42 //! # Reality vs plan
43 //!
44 //! Of course, there is still a LOT of code in typeck that has yet to be
45 //! ported to this system, and which relies on string concatenation at the
46 //! time of error detection.
47 
48 use super::lexical_region_resolve::RegionResolutionError;
49 use super::region_constraints::GenericKind;
50 use super::{InferCtxt, RegionVariableOrigin, SubregionOrigin, TypeTrace, ValuePairs};
51 
52 use crate::infer;
53 use crate::infer::error_reporting::nice_region_error::find_anon_type::find_anon_type;
54 use crate::traits::error_reporting::report_object_safety_error;
55 use crate::traits::{
56     IfExpressionCause, MatchExpressionArmCause, ObligationCause, ObligationCauseCode,
57     StatementAsExpression,
58 };
59 
60 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
61 use rustc_errors::{pluralize, struct_span_err};
62 use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString};
63 use rustc_hir as hir;
64 use rustc_hir::def_id::DefId;
65 use rustc_hir::lang_items::LangItem;
66 use rustc_hir::{Item, ItemKind, Node};
67 use rustc_middle::dep_graph::DepContext;
68 use rustc_middle::ty::error::TypeError;
69 use rustc_middle::ty::{
70     self,
71     subst::{GenericArgKind, Subst, SubstsRef},
72     Region, Ty, TyCtxt, TypeFoldable,
73 };
74 use rustc_span::{sym, BytePos, DesugaringKind, MultiSpan, Pos, Span};
75 use rustc_target::spec::abi;
76 use std::ops::ControlFlow;
77 use std::{cmp, fmt, iter};
78 
79 mod note;
80 
81 mod need_type_info;
82 pub use need_type_info::TypeAnnotationNeeded;
83 
84 pub mod nice_region_error;
85 
note_and_explain_region( tcx: TyCtxt<'tcx>, err: &mut DiagnosticBuilder<'_>, prefix: &str, region: ty::Region<'tcx>, suffix: &str, alt_span: Option<Span>, )86 pub(super) fn note_and_explain_region(
87     tcx: TyCtxt<'tcx>,
88     err: &mut DiagnosticBuilder<'_>,
89     prefix: &str,
90     region: ty::Region<'tcx>,
91     suffix: &str,
92     alt_span: Option<Span>,
93 ) {
94     let (description, span) = match *region {
95         ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReStatic => {
96             msg_span_from_free_region(tcx, region, alt_span)
97         }
98 
99         ty::ReEmpty(ty::UniverseIndex::ROOT) => ("the empty lifetime".to_owned(), alt_span),
100 
101         // uh oh, hope no user ever sees THIS
102         ty::ReEmpty(ui) => (format!("the empty lifetime in universe {:?}", ui), alt_span),
103 
104         ty::RePlaceholder(_) => return,
105 
106         // FIXME(#13998) RePlaceholder should probably print like
107         // ReFree rather than dumping Debug output on the user.
108         //
109         // We shouldn't really be having unification failures with ReVar
110         // and ReLateBound though.
111         ty::ReVar(_) | ty::ReLateBound(..) | ty::ReErased => {
112             (format!("lifetime {:?}", region), alt_span)
113         }
114     };
115 
116     emit_msg_span(err, prefix, description, span, suffix);
117 }
118 
explain_free_region( tcx: TyCtxt<'tcx>, err: &mut DiagnosticBuilder<'_>, prefix: &str, region: ty::Region<'tcx>, suffix: &str, )119 fn explain_free_region(
120     tcx: TyCtxt<'tcx>,
121     err: &mut DiagnosticBuilder<'_>,
122     prefix: &str,
123     region: ty::Region<'tcx>,
124     suffix: &str,
125 ) {
126     let (description, span) = msg_span_from_free_region(tcx, region, None);
127 
128     label_msg_span(err, prefix, description, span, suffix);
129 }
130 
msg_span_from_free_region( tcx: TyCtxt<'tcx>, region: ty::Region<'tcx>, alt_span: Option<Span>, ) -> (String, Option<Span>)131 fn msg_span_from_free_region(
132     tcx: TyCtxt<'tcx>,
133     region: ty::Region<'tcx>,
134     alt_span: Option<Span>,
135 ) -> (String, Option<Span>) {
136     match *region {
137         ty::ReEarlyBound(_) | ty::ReFree(_) => {
138             let (msg, span) = msg_span_from_early_bound_and_free_regions(tcx, region);
139             (msg, Some(span))
140         }
141         ty::ReStatic => ("the static lifetime".to_owned(), alt_span),
142         ty::ReEmpty(ty::UniverseIndex::ROOT) => ("an empty lifetime".to_owned(), alt_span),
143         ty::ReEmpty(ui) => (format!("an empty lifetime in universe {:?}", ui), alt_span),
144         _ => bug!("{:?}", region),
145     }
146 }
147 
msg_span_from_early_bound_and_free_regions( tcx: TyCtxt<'tcx>, region: ty::Region<'tcx>, ) -> (String, Span)148 fn msg_span_from_early_bound_and_free_regions(
149     tcx: TyCtxt<'tcx>,
150     region: ty::Region<'tcx>,
151 ) -> (String, Span) {
152     let sm = tcx.sess.source_map();
153 
154     let scope = region.free_region_binding_scope(tcx);
155     let node = tcx.hir().local_def_id_to_hir_id(scope.expect_local());
156     match *region {
157         ty::ReEarlyBound(ref br) => {
158             let mut sp = sm.guess_head_span(tcx.hir().span(node));
159             if let Some(param) =
160                 tcx.hir().get_generics(scope).and_then(|generics| generics.get_named(br.name))
161             {
162                 sp = param.span;
163             }
164             (format!("the lifetime `{}` as defined here", br.name), sp)
165         }
166         ty::ReFree(ty::FreeRegion {
167             bound_region: ty::BoundRegionKind::BrNamed(_, name), ..
168         }) => {
169             let mut sp = sm.guess_head_span(tcx.hir().span(node));
170             if let Some(param) =
171                 tcx.hir().get_generics(scope).and_then(|generics| generics.get_named(name))
172             {
173                 sp = param.span;
174             }
175             (format!("the lifetime `{}` as defined here", name), sp)
176         }
177         ty::ReFree(ref fr) => match fr.bound_region {
178             ty::BrAnon(idx) => {
179                 if let Some((ty, _)) = find_anon_type(tcx, region, &fr.bound_region) {
180                     ("the anonymous lifetime defined here".to_string(), ty.span)
181                 } else {
182                     (
183                         format!("the anonymous lifetime #{} defined here", idx + 1),
184                         tcx.hir().span(node),
185                     )
186                 }
187             }
188             _ => (
189                 format!("the lifetime `{}` as defined here", region),
190                 sm.guess_head_span(tcx.hir().span(node)),
191             ),
192         },
193         _ => bug!(),
194     }
195 }
196 
emit_msg_span( err: &mut DiagnosticBuilder<'_>, prefix: &str, description: String, span: Option<Span>, suffix: &str, )197 fn emit_msg_span(
198     err: &mut DiagnosticBuilder<'_>,
199     prefix: &str,
200     description: String,
201     span: Option<Span>,
202     suffix: &str,
203 ) {
204     let message = format!("{}{}{}", prefix, description, suffix);
205 
206     if let Some(span) = span {
207         err.span_note(span, &message);
208     } else {
209         err.note(&message);
210     }
211 }
212 
label_msg_span( err: &mut DiagnosticBuilder<'_>, prefix: &str, description: String, span: Option<Span>, suffix: &str, )213 fn label_msg_span(
214     err: &mut DiagnosticBuilder<'_>,
215     prefix: &str,
216     description: String,
217     span: Option<Span>,
218     suffix: &str,
219 ) {
220     let message = format!("{}{}{}", prefix, description, suffix);
221 
222     if let Some(span) = span {
223         err.span_label(span, &message);
224     } else {
225         err.note(&message);
226     }
227 }
228 
unexpected_hidden_region_diagnostic( tcx: TyCtxt<'tcx>, span: Span, hidden_ty: Ty<'tcx>, hidden_region: ty::Region<'tcx>, ) -> DiagnosticBuilder<'tcx>229 pub fn unexpected_hidden_region_diagnostic(
230     tcx: TyCtxt<'tcx>,
231     span: Span,
232     hidden_ty: Ty<'tcx>,
233     hidden_region: ty::Region<'tcx>,
234 ) -> DiagnosticBuilder<'tcx> {
235     let mut err = struct_span_err!(
236         tcx.sess,
237         span,
238         E0700,
239         "hidden type for `impl Trait` captures lifetime that does not appear in bounds",
240     );
241 
242     // Explain the region we are capturing.
243     match hidden_region {
244         ty::ReEmpty(ty::UniverseIndex::ROOT) => {
245             // All lifetimes shorter than the function body are `empty` in
246             // lexical region resolution. The default explanation of "an empty
247             // lifetime" isn't really accurate here.
248             let message = format!(
249                 "hidden type `{}` captures lifetime smaller than the function body",
250                 hidden_ty
251             );
252             err.span_note(span, &message);
253         }
254         ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReStatic | ty::ReEmpty(_) => {
255             // Assuming regionck succeeded (*), we ought to always be
256             // capturing *some* region from the fn header, and hence it
257             // ought to be free. So under normal circumstances, we will go
258             // down this path which gives a decent human readable
259             // explanation.
260             //
261             // (*) if not, the `tainted_by_errors` field would be set to
262             // `Some(ErrorReported)` in any case, so we wouldn't be here at all.
263             explain_free_region(
264                 tcx,
265                 &mut err,
266                 &format!("hidden type `{}` captures ", hidden_ty),
267                 hidden_region,
268                 "",
269             );
270             if let Some(reg_info) = tcx.is_suitable_region(hidden_region) {
271                 let fn_returns = tcx.return_type_impl_or_dyn_traits(reg_info.def_id);
272                 nice_region_error::suggest_new_region_bound(
273                     tcx,
274                     &mut err,
275                     fn_returns,
276                     hidden_region.to_string(),
277                     None,
278                     format!("captures {}", hidden_region),
279                     None,
280                 )
281             }
282         }
283         _ => {
284             // Ugh. This is a painful case: the hidden region is not one
285             // that we can easily summarize or explain. This can happen
286             // in a case like
287             // `src/test/ui/multiple-lifetimes/ordinary-bounds-unsuited.rs`:
288             //
289             // ```
290             // fn upper_bounds<'a, 'b>(a: Ordinary<'a>, b: Ordinary<'b>) -> impl Trait<'a, 'b> {
291             //   if condition() { a } else { b }
292             // }
293             // ```
294             //
295             // Here the captured lifetime is the intersection of `'a` and
296             // `'b`, which we can't quite express.
297 
298             // We can at least report a really cryptic error for now.
299             note_and_explain_region(
300                 tcx,
301                 &mut err,
302                 &format!("hidden type `{}` captures ", hidden_ty),
303                 hidden_region,
304                 "",
305                 None,
306             );
307         }
308     }
309 
310     err
311 }
312 
313 /// Structurally compares two types, modulo any inference variables.
314 ///
315 /// Returns `true` if two types are equal, or if one type is an inference variable compatible
316 /// with the other type. A TyVar inference type is compatible with any type, and an IntVar or
317 /// FloatVar inference type are compatible with themselves or their concrete types (Int and
318 /// Float types, respectively). When comparing two ADTs, these rules apply recursively.
same_type_modulo_infer(a: Ty<'tcx>, b: Ty<'ctx>) -> bool319 pub fn same_type_modulo_infer(a: Ty<'tcx>, b: Ty<'ctx>) -> bool {
320     match (&a.kind(), &b.kind()) {
321         (&ty::Adt(did_a, substs_a), &ty::Adt(did_b, substs_b)) => {
322             if did_a != did_b {
323                 return false;
324             }
325 
326             substs_a.types().zip(substs_b.types()).all(|(a, b)| same_type_modulo_infer(a, b))
327         }
328         (&ty::Int(_), &ty::Infer(ty::InferTy::IntVar(_)))
329         | (&ty::Infer(ty::InferTy::IntVar(_)), &ty::Int(_) | &ty::Infer(ty::InferTy::IntVar(_)))
330         | (&ty::Float(_), &ty::Infer(ty::InferTy::FloatVar(_)))
331         | (
332             &ty::Infer(ty::InferTy::FloatVar(_)),
333             &ty::Float(_) | &ty::Infer(ty::InferTy::FloatVar(_)),
334         )
335         | (&ty::Infer(ty::InferTy::TyVar(_)), _)
336         | (_, &ty::Infer(ty::InferTy::TyVar(_))) => true,
337         _ => a == b,
338     }
339 }
340 
341 impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
report_region_errors(&self, errors: &Vec<RegionResolutionError<'tcx>>)342     pub fn report_region_errors(&self, errors: &Vec<RegionResolutionError<'tcx>>) {
343         debug!("report_region_errors(): {} errors to start", errors.len());
344 
345         // try to pre-process the errors, which will group some of them
346         // together into a `ProcessedErrors` group:
347         let errors = self.process_errors(errors);
348 
349         debug!("report_region_errors: {} errors after preprocessing", errors.len());
350 
351         for error in errors {
352             debug!("report_region_errors: error = {:?}", error);
353 
354             if !self.try_report_nice_region_error(&error) {
355                 match error.clone() {
356                     // These errors could indicate all manner of different
357                     // problems with many different solutions. Rather
358                     // than generate a "one size fits all" error, what we
359                     // attempt to do is go through a number of specific
360                     // scenarios and try to find the best way to present
361                     // the error. If all of these fails, we fall back to a rather
362                     // general bit of code that displays the error information
363                     RegionResolutionError::ConcreteFailure(origin, sub, sup) => {
364                         if sub.is_placeholder() || sup.is_placeholder() {
365                             self.report_placeholder_failure(origin, sub, sup).emit();
366                         } else {
367                             self.report_concrete_failure(origin, sub, sup).emit();
368                         }
369                     }
370 
371                     RegionResolutionError::GenericBoundFailure(origin, param_ty, sub) => {
372                         self.report_generic_bound_failure(
373                             origin.span(),
374                             Some(origin),
375                             param_ty,
376                             sub,
377                         );
378                     }
379 
380                     RegionResolutionError::SubSupConflict(
381                         _,
382                         var_origin,
383                         sub_origin,
384                         sub_r,
385                         sup_origin,
386                         sup_r,
387                     ) => {
388                         if sub_r.is_placeholder() {
389                             self.report_placeholder_failure(sub_origin, sub_r, sup_r).emit();
390                         } else if sup_r.is_placeholder() {
391                             self.report_placeholder_failure(sup_origin, sub_r, sup_r).emit();
392                         } else {
393                             self.report_sub_sup_conflict(
394                                 var_origin, sub_origin, sub_r, sup_origin, sup_r,
395                             );
396                         }
397                     }
398 
399                     RegionResolutionError::UpperBoundUniverseConflict(
400                         _,
401                         _,
402                         var_universe,
403                         sup_origin,
404                         sup_r,
405                     ) => {
406                         assert!(sup_r.is_placeholder());
407 
408                         // Make a dummy value for the "sub region" --
409                         // this is the initial value of the
410                         // placeholder. In practice, we expect more
411                         // tailored errors that don't really use this
412                         // value.
413                         let sub_r = self.tcx.mk_region(ty::ReEmpty(var_universe));
414 
415                         self.report_placeholder_failure(sup_origin, sub_r, sup_r).emit();
416                     }
417                 }
418             }
419         }
420     }
421 
422     // This method goes through all the errors and try to group certain types
423     // of error together, for the purpose of suggesting explicit lifetime
424     // parameters to the user. This is done so that we can have a more
425     // complete view of what lifetimes should be the same.
426     // If the return value is an empty vector, it means that processing
427     // failed (so the return value of this method should not be used).
428     //
429     // The method also attempts to weed out messages that seem like
430     // duplicates that will be unhelpful to the end-user. But
431     // obviously it never weeds out ALL errors.
process_errors( &self, errors: &[RegionResolutionError<'tcx>], ) -> Vec<RegionResolutionError<'tcx>>432     fn process_errors(
433         &self,
434         errors: &[RegionResolutionError<'tcx>],
435     ) -> Vec<RegionResolutionError<'tcx>> {
436         debug!("process_errors()");
437 
438         // We want to avoid reporting generic-bound failures if we can
439         // avoid it: these have a very high rate of being unhelpful in
440         // practice. This is because they are basically secondary
441         // checks that test the state of the region graph after the
442         // rest of inference is done, and the other kinds of errors
443         // indicate that the region constraint graph is internally
444         // inconsistent, so these test results are likely to be
445         // meaningless.
446         //
447         // Therefore, we filter them out of the list unless they are
448         // the only thing in the list.
449 
450         let is_bound_failure = |e: &RegionResolutionError<'tcx>| match *e {
451             RegionResolutionError::GenericBoundFailure(..) => true,
452             RegionResolutionError::ConcreteFailure(..)
453             | RegionResolutionError::SubSupConflict(..)
454             | RegionResolutionError::UpperBoundUniverseConflict(..) => false,
455         };
456 
457         let mut errors = if errors.iter().all(|e| is_bound_failure(e)) {
458             errors.to_owned()
459         } else {
460             errors.iter().filter(|&e| !is_bound_failure(e)).cloned().collect()
461         };
462 
463         // sort the errors by span, for better error message stability.
464         errors.sort_by_key(|u| match *u {
465             RegionResolutionError::ConcreteFailure(ref sro, _, _) => sro.span(),
466             RegionResolutionError::GenericBoundFailure(ref sro, _, _) => sro.span(),
467             RegionResolutionError::SubSupConflict(_, ref rvo, _, _, _, _) => rvo.span(),
468             RegionResolutionError::UpperBoundUniverseConflict(_, ref rvo, _, _, _) => rvo.span(),
469         });
470         errors
471     }
472 
473     /// Adds a note if the types come from similarly named crates
check_and_note_conflicting_crates( &self, err: &mut DiagnosticBuilder<'_>, terr: &TypeError<'tcx>, )474     fn check_and_note_conflicting_crates(
475         &self,
476         err: &mut DiagnosticBuilder<'_>,
477         terr: &TypeError<'tcx>,
478     ) {
479         use hir::def_id::CrateNum;
480         use rustc_hir::definitions::DisambiguatedDefPathData;
481         use ty::print::Printer;
482         use ty::subst::GenericArg;
483 
484         struct AbsolutePathPrinter<'tcx> {
485             tcx: TyCtxt<'tcx>,
486         }
487 
488         struct NonTrivialPath;
489 
490         impl<'tcx> Printer<'tcx> for AbsolutePathPrinter<'tcx> {
491             type Error = NonTrivialPath;
492 
493             type Path = Vec<String>;
494             type Region = !;
495             type Type = !;
496             type DynExistential = !;
497             type Const = !;
498 
499             fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
500                 self.tcx
501             }
502 
503             fn print_region(self, _region: ty::Region<'_>) -> Result<Self::Region, Self::Error> {
504                 Err(NonTrivialPath)
505             }
506 
507             fn print_type(self, _ty: Ty<'tcx>) -> Result<Self::Type, Self::Error> {
508                 Err(NonTrivialPath)
509             }
510 
511             fn print_dyn_existential(
512                 self,
513                 _predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
514             ) -> Result<Self::DynExistential, Self::Error> {
515                 Err(NonTrivialPath)
516             }
517 
518             fn print_const(self, _ct: &'tcx ty::Const<'tcx>) -> Result<Self::Const, Self::Error> {
519                 Err(NonTrivialPath)
520             }
521 
522             fn path_crate(self, cnum: CrateNum) -> Result<Self::Path, Self::Error> {
523                 Ok(vec![self.tcx.crate_name(cnum).to_string()])
524             }
525             fn path_qualified(
526                 self,
527                 _self_ty: Ty<'tcx>,
528                 _trait_ref: Option<ty::TraitRef<'tcx>>,
529             ) -> Result<Self::Path, Self::Error> {
530                 Err(NonTrivialPath)
531             }
532 
533             fn path_append_impl(
534                 self,
535                 _print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
536                 _disambiguated_data: &DisambiguatedDefPathData,
537                 _self_ty: Ty<'tcx>,
538                 _trait_ref: Option<ty::TraitRef<'tcx>>,
539             ) -> Result<Self::Path, Self::Error> {
540                 Err(NonTrivialPath)
541             }
542             fn path_append(
543                 self,
544                 print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
545                 disambiguated_data: &DisambiguatedDefPathData,
546             ) -> Result<Self::Path, Self::Error> {
547                 let mut path = print_prefix(self)?;
548                 path.push(disambiguated_data.to_string());
549                 Ok(path)
550             }
551             fn path_generic_args(
552                 self,
553                 print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
554                 _args: &[GenericArg<'tcx>],
555             ) -> Result<Self::Path, Self::Error> {
556                 print_prefix(self)
557             }
558         }
559 
560         let report_path_match = |err: &mut DiagnosticBuilder<'_>, did1: DefId, did2: DefId| {
561             // Only external crates, if either is from a local
562             // module we could have false positives
563             if !(did1.is_local() || did2.is_local()) && did1.krate != did2.krate {
564                 let abs_path =
565                     |def_id| AbsolutePathPrinter { tcx: self.tcx }.print_def_path(def_id, &[]);
566 
567                 // We compare strings because DefPath can be different
568                 // for imported and non-imported crates
569                 let same_path = || -> Result<_, NonTrivialPath> {
570                     Ok(self.tcx.def_path_str(did1) == self.tcx.def_path_str(did2)
571                         || abs_path(did1)? == abs_path(did2)?)
572                 };
573                 if same_path().unwrap_or(false) {
574                     let crate_name = self.tcx.crate_name(did1.krate);
575                     err.note(&format!(
576                         "perhaps two different versions of crate `{}` are being used?",
577                         crate_name
578                     ));
579                 }
580             }
581         };
582         match *terr {
583             TypeError::Sorts(ref exp_found) => {
584                 // if they are both "path types", there's a chance of ambiguity
585                 // due to different versions of the same crate
586                 if let (&ty::Adt(exp_adt, _), &ty::Adt(found_adt, _)) =
587                     (exp_found.expected.kind(), exp_found.found.kind())
588                 {
589                     report_path_match(err, exp_adt.did, found_adt.did);
590                 }
591             }
592             TypeError::Traits(ref exp_found) => {
593                 report_path_match(err, exp_found.expected, exp_found.found);
594             }
595             _ => (), // FIXME(#22750) handle traits and stuff
596         }
597     }
598 
note_error_origin( &self, err: &mut DiagnosticBuilder<'tcx>, cause: &ObligationCause<'tcx>, exp_found: Option<ty::error::ExpectedFound<Ty<'tcx>>>, terr: &TypeError<'tcx>, )599     fn note_error_origin(
600         &self,
601         err: &mut DiagnosticBuilder<'tcx>,
602         cause: &ObligationCause<'tcx>,
603         exp_found: Option<ty::error::ExpectedFound<Ty<'tcx>>>,
604         terr: &TypeError<'tcx>,
605     ) {
606         match cause.code {
607             ObligationCauseCode::Pattern { origin_expr: true, span: Some(span), root_ty } => {
608                 let ty = self.resolve_vars_if_possible(root_ty);
609                 if ty.is_suggestable() {
610                     // don't show type `_`
611                     err.span_label(span, format!("this expression has type `{}`", ty));
612                 }
613                 if let Some(ty::error::ExpectedFound { found, .. }) = exp_found {
614                     if ty.is_box() && ty.boxed_ty() == found {
615                         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
616                             err.span_suggestion(
617                                 span,
618                                 "consider dereferencing the boxed value",
619                                 format!("*{}", snippet),
620                                 Applicability::MachineApplicable,
621                             );
622                         }
623                     }
624                 }
625             }
626             ObligationCauseCode::Pattern { origin_expr: false, span: Some(span), .. } => {
627                 err.span_label(span, "expected due to this");
628             }
629             ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
630                 semi_span,
631                 source,
632                 ref prior_arms,
633                 last_ty,
634                 scrut_hir_id,
635                 opt_suggest_box_span,
636                 arm_span,
637                 scrut_span,
638                 ..
639             }) => match source {
640                 hir::MatchSource::TryDesugar => {
641                     if let Some(ty::error::ExpectedFound { expected, .. }) = exp_found {
642                         let scrut_expr = self.tcx.hir().expect_expr(scrut_hir_id);
643                         let scrut_ty = if let hir::ExprKind::Call(_, args) = &scrut_expr.kind {
644                             let arg_expr = args.first().expect("try desugaring call w/out arg");
645                             self.in_progress_typeck_results.and_then(|typeck_results| {
646                                 typeck_results.borrow().expr_ty_opt(arg_expr)
647                             })
648                         } else {
649                             bug!("try desugaring w/out call expr as scrutinee");
650                         };
651 
652                         match scrut_ty {
653                             Some(ty) if expected == ty => {
654                                 let source_map = self.tcx.sess.source_map();
655                                 err.span_suggestion(
656                                     source_map.end_point(cause.span),
657                                     "try removing this `?`",
658                                     "".to_string(),
659                                     Applicability::MachineApplicable,
660                                 );
661                             }
662                             _ => {}
663                         }
664                     }
665                 }
666                 _ => {
667                     // `last_ty` can be `!`, `expected` will have better info when present.
668                     let t = self.resolve_vars_if_possible(match exp_found {
669                         Some(ty::error::ExpectedFound { expected, .. }) => expected,
670                         _ => last_ty,
671                     });
672                     let source_map = self.tcx.sess.source_map();
673                     let mut any_multiline_arm = source_map.is_multiline(arm_span);
674                     if prior_arms.len() <= 4 {
675                         for sp in prior_arms {
676                             any_multiline_arm |= source_map.is_multiline(*sp);
677                             err.span_label(*sp, format!("this is found to be of type `{}`", t));
678                         }
679                     } else if let Some(sp) = prior_arms.last() {
680                         any_multiline_arm |= source_map.is_multiline(*sp);
681                         err.span_label(
682                             *sp,
683                             format!("this and all prior arms are found to be of type `{}`", t),
684                         );
685                     }
686                     let outer_error_span = if any_multiline_arm {
687                         // Cover just `match` and the scrutinee expression, not
688                         // the entire match body, to reduce diagram noise.
689                         cause.span.shrink_to_lo().to(scrut_span)
690                     } else {
691                         cause.span
692                     };
693                     let msg = "`match` arms have incompatible types";
694                     err.span_label(outer_error_span, msg);
695                     if let Some((sp, boxed)) = semi_span {
696                         if let (StatementAsExpression::NeedsBoxing, [.., prior_arm]) =
697                             (boxed, &prior_arms[..])
698                         {
699                             err.multipart_suggestion(
700                                 "consider removing this semicolon and boxing the expressions",
701                                 vec![
702                                     (prior_arm.shrink_to_lo(), "Box::new(".to_string()),
703                                     (prior_arm.shrink_to_hi(), ")".to_string()),
704                                     (arm_span.shrink_to_lo(), "Box::new(".to_string()),
705                                     (arm_span.shrink_to_hi(), ")".to_string()),
706                                     (sp, String::new()),
707                                 ],
708                                 Applicability::HasPlaceholders,
709                             );
710                         } else if matches!(boxed, StatementAsExpression::NeedsBoxing) {
711                             err.span_suggestion_short(
712                                 sp,
713                                 "consider removing this semicolon and boxing the expressions",
714                                 String::new(),
715                                 Applicability::MachineApplicable,
716                             );
717                         } else {
718                             err.span_suggestion_short(
719                                 sp,
720                                 "consider removing this semicolon",
721                                 String::new(),
722                                 Applicability::MachineApplicable,
723                             );
724                         }
725                     }
726                     if let Some(ret_sp) = opt_suggest_box_span {
727                         // Get return type span and point to it.
728                         self.suggest_boxing_for_return_impl_trait(
729                             err,
730                             ret_sp,
731                             prior_arms.iter().chain(std::iter::once(&arm_span)).map(|s| *s),
732                         );
733                     }
734                 }
735             },
736             ObligationCauseCode::IfExpression(box IfExpressionCause {
737                 then,
738                 else_sp,
739                 outer,
740                 semicolon,
741                 opt_suggest_box_span,
742             }) => {
743                 err.span_label(then, "expected because of this");
744                 if let Some(sp) = outer {
745                     err.span_label(sp, "`if` and `else` have incompatible types");
746                 }
747                 if let Some((sp, boxed)) = semicolon {
748                     if matches!(boxed, StatementAsExpression::NeedsBoxing) {
749                         err.multipart_suggestion(
750                             "consider removing this semicolon and boxing the expression",
751                             vec![
752                                 (then.shrink_to_lo(), "Box::new(".to_string()),
753                                 (then.shrink_to_hi(), ")".to_string()),
754                                 (else_sp.shrink_to_lo(), "Box::new(".to_string()),
755                                 (else_sp.shrink_to_hi(), ")".to_string()),
756                                 (sp, String::new()),
757                             ],
758                             Applicability::MachineApplicable,
759                         );
760                     } else {
761                         err.span_suggestion_short(
762                             sp,
763                             "consider removing this semicolon",
764                             String::new(),
765                             Applicability::MachineApplicable,
766                         );
767                     }
768                 }
769                 if let Some(ret_sp) = opt_suggest_box_span {
770                     self.suggest_boxing_for_return_impl_trait(
771                         err,
772                         ret_sp,
773                         vec![then, else_sp].into_iter(),
774                     );
775                 }
776             }
777             ObligationCauseCode::LetElse => {
778                 err.help("try adding a diverging expression, such as `return` or `panic!(..)`");
779                 err.help("...or use `match` instead of `let...else`");
780             }
781             _ => {
782                 if let ObligationCauseCode::BindingObligation(_, binding_span) =
783                     cause.code.peel_derives()
784                 {
785                     if matches!(terr, TypeError::RegionsPlaceholderMismatch) {
786                         err.span_note(*binding_span, "the lifetime requirement is introduced here");
787                     }
788                 }
789             }
790         }
791     }
792 
suggest_boxing_for_return_impl_trait( &self, err: &mut DiagnosticBuilder<'tcx>, return_sp: Span, arm_spans: impl Iterator<Item = Span>, )793     fn suggest_boxing_for_return_impl_trait(
794         &self,
795         err: &mut DiagnosticBuilder<'tcx>,
796         return_sp: Span,
797         arm_spans: impl Iterator<Item = Span>,
798     ) {
799         err.multipart_suggestion(
800             "you could change the return type to be a boxed trait object",
801             vec![
802                 (return_sp.with_hi(return_sp.lo() + BytePos(4)), "Box<dyn".to_string()),
803                 (return_sp.shrink_to_hi(), ">".to_string()),
804             ],
805             Applicability::MaybeIncorrect,
806         );
807         let sugg = arm_spans
808             .flat_map(|sp| {
809                 vec![
810                     (sp.shrink_to_lo(), "Box::new(".to_string()),
811                     (sp.shrink_to_hi(), ")".to_string()),
812                 ]
813                 .into_iter()
814             })
815             .collect::<Vec<_>>();
816         err.multipart_suggestion(
817             "if you change the return type to expect trait objects, box the returned expressions",
818             sugg,
819             Applicability::MaybeIncorrect,
820         );
821     }
822 
823     /// Given that `other_ty` is the same as a type argument for `name` in `sub`, populate `value`
824     /// highlighting `name` and every type argument that isn't at `pos` (which is `other_ty`), and
825     /// populate `other_value` with `other_ty`.
826     ///
827     /// ```text
828     /// Foo<Bar<Qux>>
829     /// ^^^^--------^ this is highlighted
830     /// |   |
831     /// |   this type argument is exactly the same as the other type, not highlighted
832     /// this is highlighted
833     /// Bar<Qux>
834     /// -------- this type is the same as a type argument in the other type, not highlighted
835     /// ```
highlight_outer( &self, value: &mut DiagnosticStyledString, other_value: &mut DiagnosticStyledString, name: String, sub: ty::subst::SubstsRef<'tcx>, pos: usize, other_ty: Ty<'tcx>, )836     fn highlight_outer(
837         &self,
838         value: &mut DiagnosticStyledString,
839         other_value: &mut DiagnosticStyledString,
840         name: String,
841         sub: ty::subst::SubstsRef<'tcx>,
842         pos: usize,
843         other_ty: Ty<'tcx>,
844     ) {
845         // `value` and `other_value` hold two incomplete type representation for display.
846         // `name` is the path of both types being compared. `sub`
847         value.push_highlighted(name);
848         let len = sub.len();
849         if len > 0 {
850             value.push_highlighted("<");
851         }
852 
853         // Output the lifetimes for the first type
854         let lifetimes = sub
855             .regions()
856             .map(|lifetime| {
857                 let s = lifetime.to_string();
858                 if s.is_empty() { "'_".to_string() } else { s }
859             })
860             .collect::<Vec<_>>()
861             .join(", ");
862         if !lifetimes.is_empty() {
863             if sub.regions().count() < len {
864                 value.push_normal(lifetimes + ", ");
865             } else {
866                 value.push_normal(lifetimes);
867             }
868         }
869 
870         // Highlight all the type arguments that aren't at `pos` and compare the type argument at
871         // `pos` and `other_ty`.
872         for (i, type_arg) in sub.types().enumerate() {
873             if i == pos {
874                 let values = self.cmp(type_arg, other_ty);
875                 value.0.extend((values.0).0);
876                 other_value.0.extend((values.1).0);
877             } else {
878                 value.push_highlighted(type_arg.to_string());
879             }
880 
881             if len > 0 && i != len - 1 {
882                 value.push_normal(", ");
883             }
884         }
885         if len > 0 {
886             value.push_highlighted(">");
887         }
888     }
889 
890     /// If `other_ty` is the same as a type argument present in `sub`, highlight `path` in `t1_out`,
891     /// as that is the difference to the other type.
892     ///
893     /// For the following code:
894     ///
895     /// ```no_run
896     /// let x: Foo<Bar<Qux>> = foo::<Bar<Qux>>();
897     /// ```
898     ///
899     /// The type error output will behave in the following way:
900     ///
901     /// ```text
902     /// Foo<Bar<Qux>>
903     /// ^^^^--------^ this is highlighted
904     /// |   |
905     /// |   this type argument is exactly the same as the other type, not highlighted
906     /// this is highlighted
907     /// Bar<Qux>
908     /// -------- this type is the same as a type argument in the other type, not highlighted
909     /// ```
cmp_type_arg( &self, mut t1_out: &mut DiagnosticStyledString, mut t2_out: &mut DiagnosticStyledString, path: String, sub: ty::subst::SubstsRef<'tcx>, other_path: String, other_ty: Ty<'tcx>, ) -> Option<()>910     fn cmp_type_arg(
911         &self,
912         mut t1_out: &mut DiagnosticStyledString,
913         mut t2_out: &mut DiagnosticStyledString,
914         path: String,
915         sub: ty::subst::SubstsRef<'tcx>,
916         other_path: String,
917         other_ty: Ty<'tcx>,
918     ) -> Option<()> {
919         for (i, ta) in sub.types().enumerate() {
920             if ta == other_ty {
921                 self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
922                 return Some(());
923             }
924             if let ty::Adt(def, _) = ta.kind() {
925                 let path_ = self.tcx.def_path_str(def.did);
926                 if path_ == other_path {
927                     self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
928                     return Some(());
929                 }
930             }
931         }
932         None
933     }
934 
935     /// Adds a `,` to the type representation only if it is appropriate.
push_comma( &self, value: &mut DiagnosticStyledString, other_value: &mut DiagnosticStyledString, len: usize, pos: usize, )936     fn push_comma(
937         &self,
938         value: &mut DiagnosticStyledString,
939         other_value: &mut DiagnosticStyledString,
940         len: usize,
941         pos: usize,
942     ) {
943         if len > 0 && pos != len - 1 {
944             value.push_normal(", ");
945             other_value.push_normal(", ");
946         }
947     }
948 
949     /// For generic types with parameters with defaults, remove the parameters corresponding to
950     /// the defaults. This repeats a lot of the logic found in `ty::print::pretty`.
strip_generic_default_params( &self, def_id: DefId, substs: ty::subst::SubstsRef<'tcx>, ) -> SubstsRef<'tcx>951     fn strip_generic_default_params(
952         &self,
953         def_id: DefId,
954         substs: ty::subst::SubstsRef<'tcx>,
955     ) -> SubstsRef<'tcx> {
956         let generics = self.tcx.generics_of(def_id);
957         let mut num_supplied_defaults = 0;
958 
959         let default_params = generics.params.iter().rev().filter_map(|param| match param.kind {
960             ty::GenericParamDefKind::Type { has_default: true, .. } => Some(param.def_id),
961             ty::GenericParamDefKind::Const { has_default: true } => Some(param.def_id),
962             _ => None,
963         });
964         for (def_id, actual) in iter::zip(default_params, substs.iter().rev()) {
965             match actual.unpack() {
966                 GenericArgKind::Const(c) => {
967                     if self.tcx.const_param_default(def_id).subst(self.tcx, substs) != c {
968                         break;
969                     }
970                 }
971                 GenericArgKind::Type(ty) => {
972                     if self.tcx.type_of(def_id).subst(self.tcx, substs) != ty {
973                         break;
974                     }
975                 }
976                 _ => break,
977             }
978             num_supplied_defaults += 1;
979         }
980         let len = generics.params.len();
981         let mut generics = generics.clone();
982         generics.params.truncate(len - num_supplied_defaults);
983         substs.truncate_to(self.tcx, &generics)
984     }
985 
986     /// Given two `fn` signatures highlight only sub-parts that are different.
cmp_fn_sig( &self, sig1: &ty::PolyFnSig<'tcx>, sig2: &ty::PolyFnSig<'tcx>, ) -> (DiagnosticStyledString, DiagnosticStyledString)987     fn cmp_fn_sig(
988         &self,
989         sig1: &ty::PolyFnSig<'tcx>,
990         sig2: &ty::PolyFnSig<'tcx>,
991     ) -> (DiagnosticStyledString, DiagnosticStyledString) {
992         let get_lifetimes = |sig| {
993             use rustc_hir::def::Namespace;
994             let mut s = String::new();
995             let (_, sig, reg) = ty::print::FmtPrinter::new(self.tcx, &mut s, Namespace::TypeNS)
996                 .name_all_regions(sig)
997                 .unwrap();
998             let lts: Vec<String> = reg.into_iter().map(|(_, kind)| kind.to_string()).collect();
999             (if lts.is_empty() { String::new() } else { format!("for<{}> ", lts.join(", ")) }, sig)
1000         };
1001 
1002         let (lt1, sig1) = get_lifetimes(sig1);
1003         let (lt2, sig2) = get_lifetimes(sig2);
1004 
1005         // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
1006         let mut values = (
1007             DiagnosticStyledString::normal("".to_string()),
1008             DiagnosticStyledString::normal("".to_string()),
1009         );
1010 
1011         // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
1012         // ^^^^^^
1013         values.0.push(sig1.unsafety.prefix_str(), sig1.unsafety != sig2.unsafety);
1014         values.1.push(sig2.unsafety.prefix_str(), sig1.unsafety != sig2.unsafety);
1015 
1016         // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
1017         //        ^^^^^^^^^^
1018         if sig1.abi != abi::Abi::Rust {
1019             values.0.push(format!("extern {} ", sig1.abi), sig1.abi != sig2.abi);
1020         }
1021         if sig2.abi != abi::Abi::Rust {
1022             values.1.push(format!("extern {} ", sig2.abi), sig1.abi != sig2.abi);
1023         }
1024 
1025         // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
1026         //                   ^^^^^^^^
1027         let lifetime_diff = lt1 != lt2;
1028         values.0.push(lt1, lifetime_diff);
1029         values.1.push(lt2, lifetime_diff);
1030 
1031         // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
1032         //                           ^^^
1033         values.0.push_normal("fn(");
1034         values.1.push_normal("fn(");
1035 
1036         // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
1037         //                              ^^^^^
1038         let len1 = sig1.inputs().len();
1039         let len2 = sig2.inputs().len();
1040         if len1 == len2 {
1041             for (i, (l, r)) in iter::zip(sig1.inputs(), sig2.inputs()).enumerate() {
1042                 let (x1, x2) = self.cmp(l, r);
1043                 (values.0).0.extend(x1.0);
1044                 (values.1).0.extend(x2.0);
1045                 self.push_comma(&mut values.0, &mut values.1, len1, i);
1046             }
1047         } else {
1048             for (i, l) in sig1.inputs().iter().enumerate() {
1049                 values.0.push_highlighted(l.to_string());
1050                 if i != len1 - 1 {
1051                     values.0.push_highlighted(", ");
1052                 }
1053             }
1054             for (i, r) in sig2.inputs().iter().enumerate() {
1055                 values.1.push_highlighted(r.to_string());
1056                 if i != len2 - 1 {
1057                     values.1.push_highlighted(", ");
1058                 }
1059             }
1060         }
1061 
1062         if sig1.c_variadic {
1063             if len1 > 0 {
1064                 values.0.push_normal(", ");
1065             }
1066             values.0.push("...", !sig2.c_variadic);
1067         }
1068         if sig2.c_variadic {
1069             if len2 > 0 {
1070                 values.1.push_normal(", ");
1071             }
1072             values.1.push("...", !sig1.c_variadic);
1073         }
1074 
1075         // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
1076         //                                   ^
1077         values.0.push_normal(")");
1078         values.1.push_normal(")");
1079 
1080         // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
1081         //                                     ^^^^^^^^
1082         let output1 = sig1.output();
1083         let output2 = sig2.output();
1084         let (x1, x2) = self.cmp(output1, output2);
1085         if !output1.is_unit() {
1086             values.0.push_normal(" -> ");
1087             (values.0).0.extend(x1.0);
1088         }
1089         if !output2.is_unit() {
1090             values.1.push_normal(" -> ");
1091             (values.1).0.extend(x2.0);
1092         }
1093         values
1094     }
1095 
1096     /// Compares two given types, eliding parts that are the same between them and highlighting
1097     /// relevant differences, and return two representation of those types for highlighted printing.
cmp(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> (DiagnosticStyledString, DiagnosticStyledString)1098     fn cmp(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> (DiagnosticStyledString, DiagnosticStyledString) {
1099         debug!("cmp(t1={}, t1.kind={:?}, t2={}, t2.kind={:?})", t1, t1.kind(), t2, t2.kind());
1100 
1101         // helper functions
1102         fn equals<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
1103             match (a.kind(), b.kind()) {
1104                 (a, b) if *a == *b => true,
1105                 (&ty::Int(_), &ty::Infer(ty::InferTy::IntVar(_)))
1106                 | (
1107                     &ty::Infer(ty::InferTy::IntVar(_)),
1108                     &ty::Int(_) | &ty::Infer(ty::InferTy::IntVar(_)),
1109                 )
1110                 | (&ty::Float(_), &ty::Infer(ty::InferTy::FloatVar(_)))
1111                 | (
1112                     &ty::Infer(ty::InferTy::FloatVar(_)),
1113                     &ty::Float(_) | &ty::Infer(ty::InferTy::FloatVar(_)),
1114                 ) => true,
1115                 _ => false,
1116             }
1117         }
1118 
1119         fn push_ty_ref<'tcx>(
1120             region: &ty::Region<'tcx>,
1121             ty: Ty<'tcx>,
1122             mutbl: hir::Mutability,
1123             s: &mut DiagnosticStyledString,
1124         ) {
1125             let mut r = region.to_string();
1126             if r == "'_" {
1127                 r.clear();
1128             } else {
1129                 r.push(' ');
1130             }
1131             s.push_highlighted(format!("&{}{}", r, mutbl.prefix_str()));
1132             s.push_normal(ty.to_string());
1133         }
1134 
1135         // process starts here
1136         match (t1.kind(), t2.kind()) {
1137             (&ty::Adt(def1, sub1), &ty::Adt(def2, sub2)) => {
1138                 let sub_no_defaults_1 = self.strip_generic_default_params(def1.did, sub1);
1139                 let sub_no_defaults_2 = self.strip_generic_default_params(def2.did, sub2);
1140                 let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
1141                 let path1 = self.tcx.def_path_str(def1.did);
1142                 let path2 = self.tcx.def_path_str(def2.did);
1143                 if def1.did == def2.did {
1144                     // Easy case. Replace same types with `_` to shorten the output and highlight
1145                     // the differing ones.
1146                     //     let x: Foo<Bar, Qux> = y::<Foo<Quz, Qux>>();
1147                     //     Foo<Bar, _>
1148                     //     Foo<Quz, _>
1149                     //         ---  ^ type argument elided
1150                     //         |
1151                     //         highlighted in output
1152                     values.0.push_normal(path1);
1153                     values.1.push_normal(path2);
1154 
1155                     // Avoid printing out default generic parameters that are common to both
1156                     // types.
1157                     let len1 = sub_no_defaults_1.len();
1158                     let len2 = sub_no_defaults_2.len();
1159                     let common_len = cmp::min(len1, len2);
1160                     let remainder1: Vec<_> = sub1.types().skip(common_len).collect();
1161                     let remainder2: Vec<_> = sub2.types().skip(common_len).collect();
1162                     let common_default_params =
1163                         iter::zip(remainder1.iter().rev(), remainder2.iter().rev())
1164                             .filter(|(a, b)| a == b)
1165                             .count();
1166                     let len = sub1.len() - common_default_params;
1167                     let consts_offset = len - sub1.consts().count();
1168 
1169                     // Only draw `<...>` if there're lifetime/type arguments.
1170                     if len > 0 {
1171                         values.0.push_normal("<");
1172                         values.1.push_normal("<");
1173                     }
1174 
1175                     fn lifetime_display(lifetime: Region<'_>) -> String {
1176                         let s = lifetime.to_string();
1177                         if s.is_empty() { "'_".to_string() } else { s }
1178                     }
1179                     // At one point we'd like to elide all lifetimes here, they are irrelevant for
1180                     // all diagnostics that use this output
1181                     //
1182                     //     Foo<'x, '_, Bar>
1183                     //     Foo<'y, '_, Qux>
1184                     //         ^^  ^^  --- type arguments are not elided
1185                     //         |   |
1186                     //         |   elided as they were the same
1187                     //         not elided, they were different, but irrelevant
1188                     //
1189                     // For bound lifetimes, keep the names of the lifetimes,
1190                     // even if they are the same so that it's clear what's happening
1191                     // if we have something like
1192                     //
1193                     // for<'r, 's> fn(Inv<'r>, Inv<'s>)
1194                     // for<'r> fn(Inv<'r>, Inv<'r>)
1195                     let lifetimes = sub1.regions().zip(sub2.regions());
1196                     for (i, lifetimes) in lifetimes.enumerate() {
1197                         let l1 = lifetime_display(lifetimes.0);
1198                         let l2 = lifetime_display(lifetimes.1);
1199                         if lifetimes.0 != lifetimes.1 {
1200                             values.0.push_highlighted(l1);
1201                             values.1.push_highlighted(l2);
1202                         } else if lifetimes.0.is_late_bound() {
1203                             values.0.push_normal(l1);
1204                             values.1.push_normal(l2);
1205                         } else {
1206                             values.0.push_normal("'_");
1207                             values.1.push_normal("'_");
1208                         }
1209                         self.push_comma(&mut values.0, &mut values.1, len, i);
1210                     }
1211 
1212                     // We're comparing two types with the same path, so we compare the type
1213                     // arguments for both. If they are the same, do not highlight and elide from the
1214                     // output.
1215                     //     Foo<_, Bar>
1216                     //     Foo<_, Qux>
1217                     //         ^ elided type as this type argument was the same in both sides
1218                     let type_arguments = sub1.types().zip(sub2.types());
1219                     let regions_len = sub1.regions().count();
1220                     let num_display_types = consts_offset - regions_len;
1221                     for (i, (ta1, ta2)) in type_arguments.take(num_display_types).enumerate() {
1222                         let i = i + regions_len;
1223                         if ta1 == ta2 {
1224                             values.0.push_normal("_");
1225                             values.1.push_normal("_");
1226                         } else {
1227                             let (x1, x2) = self.cmp(ta1, ta2);
1228                             (values.0).0.extend(x1.0);
1229                             (values.1).0.extend(x2.0);
1230                         }
1231                         self.push_comma(&mut values.0, &mut values.1, len, i);
1232                     }
1233 
1234                     // Do the same for const arguments, if they are equal, do not highlight and
1235                     // elide them from the output.
1236                     let const_arguments = sub1.consts().zip(sub2.consts());
1237                     for (i, (ca1, ca2)) in const_arguments.enumerate() {
1238                         let i = i + consts_offset;
1239                         if ca1 == ca2 {
1240                             values.0.push_normal("_");
1241                             values.1.push_normal("_");
1242                         } else {
1243                             values.0.push_highlighted(ca1.to_string());
1244                             values.1.push_highlighted(ca2.to_string());
1245                         }
1246                         self.push_comma(&mut values.0, &mut values.1, len, i);
1247                     }
1248 
1249                     // Close the type argument bracket.
1250                     // Only draw `<...>` if there're lifetime/type arguments.
1251                     if len > 0 {
1252                         values.0.push_normal(">");
1253                         values.1.push_normal(">");
1254                     }
1255                     values
1256                 } else {
1257                     // Check for case:
1258                     //     let x: Foo<Bar<Qux> = foo::<Bar<Qux>>();
1259                     //     Foo<Bar<Qux>
1260                     //         ------- this type argument is exactly the same as the other type
1261                     //     Bar<Qux>
1262                     if self
1263                         .cmp_type_arg(
1264                             &mut values.0,
1265                             &mut values.1,
1266                             path1.clone(),
1267                             sub_no_defaults_1,
1268                             path2.clone(),
1269                             &t2,
1270                         )
1271                         .is_some()
1272                     {
1273                         return values;
1274                     }
1275                     // Check for case:
1276                     //     let x: Bar<Qux> = y:<Foo<Bar<Qux>>>();
1277                     //     Bar<Qux>
1278                     //     Foo<Bar<Qux>>
1279                     //         ------- this type argument is exactly the same as the other type
1280                     if self
1281                         .cmp_type_arg(
1282                             &mut values.1,
1283                             &mut values.0,
1284                             path2,
1285                             sub_no_defaults_2,
1286                             path1,
1287                             &t1,
1288                         )
1289                         .is_some()
1290                     {
1291                         return values;
1292                     }
1293 
1294                     // We can't find anything in common, highlight relevant part of type path.
1295                     //     let x: foo::bar::Baz<Qux> = y:<foo::bar::Bar<Zar>>();
1296                     //     foo::bar::Baz<Qux>
1297                     //     foo::bar::Bar<Zar>
1298                     //               -------- this part of the path is different
1299 
1300                     let t1_str = t1.to_string();
1301                     let t2_str = t2.to_string();
1302                     let min_len = t1_str.len().min(t2_str.len());
1303 
1304                     const SEPARATOR: &str = "::";
1305                     let separator_len = SEPARATOR.len();
1306                     let split_idx: usize =
1307                         iter::zip(t1_str.split(SEPARATOR), t2_str.split(SEPARATOR))
1308                             .take_while(|(mod1_str, mod2_str)| mod1_str == mod2_str)
1309                             .map(|(mod_str, _)| mod_str.len() + separator_len)
1310                             .sum();
1311 
1312                     debug!(
1313                         "cmp: separator_len={}, split_idx={}, min_len={}",
1314                         separator_len, split_idx, min_len
1315                     );
1316 
1317                     if split_idx >= min_len {
1318                         // paths are identical, highlight everything
1319                         (
1320                             DiagnosticStyledString::highlighted(t1_str),
1321                             DiagnosticStyledString::highlighted(t2_str),
1322                         )
1323                     } else {
1324                         let (common, uniq1) = t1_str.split_at(split_idx);
1325                         let (_, uniq2) = t2_str.split_at(split_idx);
1326                         debug!("cmp: common={}, uniq1={}, uniq2={}", common, uniq1, uniq2);
1327 
1328                         values.0.push_normal(common);
1329                         values.0.push_highlighted(uniq1);
1330                         values.1.push_normal(common);
1331                         values.1.push_highlighted(uniq2);
1332 
1333                         values
1334                     }
1335                 }
1336             }
1337 
1338             // When finding T != &T, highlight only the borrow
1339             (&ty::Ref(r1, ref_ty1, mutbl1), _) if equals(&ref_ty1, &t2) => {
1340                 let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
1341                 push_ty_ref(&r1, ref_ty1, mutbl1, &mut values.0);
1342                 values.1.push_normal(t2.to_string());
1343                 values
1344             }
1345             (_, &ty::Ref(r2, ref_ty2, mutbl2)) if equals(&t1, &ref_ty2) => {
1346                 let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
1347                 values.0.push_normal(t1.to_string());
1348                 push_ty_ref(&r2, ref_ty2, mutbl2, &mut values.1);
1349                 values
1350             }
1351 
1352             // When encountering &T != &mut T, highlight only the borrow
1353             (&ty::Ref(r1, ref_ty1, mutbl1), &ty::Ref(r2, ref_ty2, mutbl2))
1354                 if equals(&ref_ty1, &ref_ty2) =>
1355             {
1356                 let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
1357                 push_ty_ref(&r1, ref_ty1, mutbl1, &mut values.0);
1358                 push_ty_ref(&r2, ref_ty2, mutbl2, &mut values.1);
1359                 values
1360             }
1361 
1362             // When encountering tuples of the same size, highlight only the differing types
1363             (&ty::Tuple(substs1), &ty::Tuple(substs2)) if substs1.len() == substs2.len() => {
1364                 let mut values =
1365                     (DiagnosticStyledString::normal("("), DiagnosticStyledString::normal("("));
1366                 let len = substs1.len();
1367                 for (i, (left, right)) in substs1.types().zip(substs2.types()).enumerate() {
1368                     let (x1, x2) = self.cmp(left, right);
1369                     (values.0).0.extend(x1.0);
1370                     (values.1).0.extend(x2.0);
1371                     self.push_comma(&mut values.0, &mut values.1, len, i);
1372                 }
1373                 if len == 1 {
1374                     // Keep the output for single element tuples as `(ty,)`.
1375                     values.0.push_normal(",");
1376                     values.1.push_normal(",");
1377                 }
1378                 values.0.push_normal(")");
1379                 values.1.push_normal(")");
1380                 values
1381             }
1382 
1383             (ty::FnDef(did1, substs1), ty::FnDef(did2, substs2)) => {
1384                 let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1);
1385                 let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2);
1386                 let mut values = self.cmp_fn_sig(&sig1, &sig2);
1387                 let path1 = format!(" {{{}}}", self.tcx.def_path_str_with_substs(*did1, substs1));
1388                 let path2 = format!(" {{{}}}", self.tcx.def_path_str_with_substs(*did2, substs2));
1389                 let same_path = path1 == path2;
1390                 values.0.push(path1, !same_path);
1391                 values.1.push(path2, !same_path);
1392                 values
1393             }
1394 
1395             (ty::FnDef(did1, substs1), ty::FnPtr(sig2)) => {
1396                 let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1);
1397                 let mut values = self.cmp_fn_sig(&sig1, sig2);
1398                 values.0.push_highlighted(format!(
1399                     " {{{}}}",
1400                     self.tcx.def_path_str_with_substs(*did1, substs1)
1401                 ));
1402                 values
1403             }
1404 
1405             (ty::FnPtr(sig1), ty::FnDef(did2, substs2)) => {
1406                 let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2);
1407                 let mut values = self.cmp_fn_sig(sig1, &sig2);
1408                 values.1.push_normal(format!(
1409                     " {{{}}}",
1410                     self.tcx.def_path_str_with_substs(*did2, substs2)
1411                 ));
1412                 values
1413             }
1414 
1415             (ty::FnPtr(sig1), ty::FnPtr(sig2)) => self.cmp_fn_sig(sig1, sig2),
1416 
1417             _ => {
1418                 if t1 == t2 {
1419                     // The two types are the same, elide and don't highlight.
1420                     (DiagnosticStyledString::normal("_"), DiagnosticStyledString::normal("_"))
1421                 } else {
1422                     // We couldn't find anything in common, highlight everything.
1423                     (
1424                         DiagnosticStyledString::highlighted(t1.to_string()),
1425                         DiagnosticStyledString::highlighted(t2.to_string()),
1426                     )
1427                 }
1428             }
1429         }
1430     }
1431 
note_type_err( &self, diag: &mut DiagnosticBuilder<'tcx>, cause: &ObligationCause<'tcx>, secondary_span: Option<(Span, String)>, mut values: Option<ValuePairs<'tcx>>, terr: &TypeError<'tcx>, )1432     pub fn note_type_err(
1433         &self,
1434         diag: &mut DiagnosticBuilder<'tcx>,
1435         cause: &ObligationCause<'tcx>,
1436         secondary_span: Option<(Span, String)>,
1437         mut values: Option<ValuePairs<'tcx>>,
1438         terr: &TypeError<'tcx>,
1439     ) {
1440         let span = cause.span(self.tcx);
1441         debug!("note_type_err cause={:?} values={:?}, terr={:?}", cause, values, terr);
1442 
1443         // For some types of errors, expected-found does not make
1444         // sense, so just ignore the values we were given.
1445         if let TypeError::CyclicTy(_) = terr {
1446             values = None;
1447         }
1448         struct OpaqueTypesVisitor<'tcx> {
1449             types: FxHashMap<TyCategory, FxHashSet<Span>>,
1450             expected: FxHashMap<TyCategory, FxHashSet<Span>>,
1451             found: FxHashMap<TyCategory, FxHashSet<Span>>,
1452             ignore_span: Span,
1453             tcx: TyCtxt<'tcx>,
1454         }
1455 
1456         impl<'tcx> OpaqueTypesVisitor<'tcx> {
1457             fn visit_expected_found(
1458                 tcx: TyCtxt<'tcx>,
1459                 expected: Ty<'tcx>,
1460                 found: Ty<'tcx>,
1461                 ignore_span: Span,
1462             ) -> Self {
1463                 let mut types_visitor = OpaqueTypesVisitor {
1464                     types: Default::default(),
1465                     expected: Default::default(),
1466                     found: Default::default(),
1467                     ignore_span,
1468                     tcx,
1469                 };
1470                 // The visitor puts all the relevant encountered types in `self.types`, but in
1471                 // here we want to visit two separate types with no relation to each other, so we
1472                 // move the results from `types` to `expected` or `found` as appropriate.
1473                 expected.visit_with(&mut types_visitor);
1474                 std::mem::swap(&mut types_visitor.expected, &mut types_visitor.types);
1475                 found.visit_with(&mut types_visitor);
1476                 std::mem::swap(&mut types_visitor.found, &mut types_visitor.types);
1477                 types_visitor
1478             }
1479 
1480             fn report(&self, err: &mut DiagnosticBuilder<'_>) {
1481                 self.add_labels_for_types(err, "expected", &self.expected);
1482                 self.add_labels_for_types(err, "found", &self.found);
1483             }
1484 
1485             fn add_labels_for_types(
1486                 &self,
1487                 err: &mut DiagnosticBuilder<'_>,
1488                 target: &str,
1489                 types: &FxHashMap<TyCategory, FxHashSet<Span>>,
1490             ) {
1491                 for (key, values) in types.iter() {
1492                     let count = values.len();
1493                     let kind = key.descr();
1494                     let mut returned_async_output_error = false;
1495                     for &sp in values {
1496                         if sp.is_desugaring(DesugaringKind::Async) && !returned_async_output_error {
1497                             if [sp] != err.span.primary_spans() {
1498                                 let mut span: MultiSpan = sp.into();
1499                                 span.push_span_label(
1500                                     sp,
1501                                     format!(
1502                                         "checked the `Output` of this `async fn`, {}{} {}{}",
1503                                         if count > 1 { "one of the " } else { "" },
1504                                         target,
1505                                         kind,
1506                                         pluralize!(count),
1507                                     ),
1508                                 );
1509                                 err.span_note(
1510                                     span,
1511                                     "while checking the return type of the `async fn`",
1512                                 );
1513                             } else {
1514                                 err.span_label(
1515                                     sp,
1516                                     format!(
1517                                         "checked the `Output` of this `async fn`, {}{} {}{}",
1518                                         if count > 1 { "one of the " } else { "" },
1519                                         target,
1520                                         kind,
1521                                         pluralize!(count),
1522                                     ),
1523                                 );
1524                                 err.note("while checking the return type of the `async fn`");
1525                             }
1526                             returned_async_output_error = true;
1527                         } else {
1528                             err.span_label(
1529                                 sp,
1530                                 format!(
1531                                     "{}{} {}{}",
1532                                     if count == 1 { "the " } else { "one of the " },
1533                                     target,
1534                                     kind,
1535                                     pluralize!(count),
1536                                 ),
1537                             );
1538                         }
1539                     }
1540                 }
1541             }
1542         }
1543 
1544         impl<'tcx> ty::fold::TypeVisitor<'tcx> for OpaqueTypesVisitor<'tcx> {
1545             fn tcx_for_anon_const_substs(&self) -> Option<TyCtxt<'tcx>> {
1546                 Some(self.tcx)
1547             }
1548 
1549             fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1550                 if let Some((kind, def_id)) = TyCategory::from_ty(self.tcx, t) {
1551                     let span = self.tcx.def_span(def_id);
1552                     // Avoid cluttering the output when the "found" and error span overlap:
1553                     //
1554                     // error[E0308]: mismatched types
1555                     //   --> $DIR/issue-20862.rs:2:5
1556                     //    |
1557                     // LL |     |y| x + y
1558                     //    |     ^^^^^^^^^
1559                     //    |     |
1560                     //    |     the found closure
1561                     //    |     expected `()`, found closure
1562                     //    |
1563                     //    = note: expected unit type `()`
1564                     //                 found closure `[closure@$DIR/issue-20862.rs:2:5: 2:14 x:_]`
1565                     if !self.ignore_span.overlaps(span) {
1566                         self.types.entry(kind).or_default().insert(span);
1567                     }
1568                 }
1569                 t.super_visit_with(self)
1570             }
1571         }
1572 
1573         debug!("note_type_err(diag={:?})", diag);
1574         enum Mismatch<'a> {
1575             Variable(ty::error::ExpectedFound<Ty<'a>>),
1576             Fixed(&'static str),
1577         }
1578         let (expected_found, exp_found, is_simple_error) = match values {
1579             None => (None, Mismatch::Fixed("type"), false),
1580             Some(values) => {
1581                 let (is_simple_error, exp_found) = match values {
1582                     ValuePairs::Types(exp_found) => {
1583                         let is_simple_err =
1584                             exp_found.expected.is_simple_text() && exp_found.found.is_simple_text();
1585                         OpaqueTypesVisitor::visit_expected_found(
1586                             self.tcx,
1587                             exp_found.expected,
1588                             exp_found.found,
1589                             span,
1590                         )
1591                         .report(diag);
1592 
1593                         (is_simple_err, Mismatch::Variable(exp_found))
1594                     }
1595                     ValuePairs::TraitRefs(_) => (false, Mismatch::Fixed("trait")),
1596                     _ => (false, Mismatch::Fixed("type")),
1597                 };
1598                 let vals = match self.values_str(values) {
1599                     Some((expected, found)) => Some((expected, found)),
1600                     None => {
1601                         // Derived error. Cancel the emitter.
1602                         diag.cancel();
1603                         return;
1604                     }
1605                 };
1606                 (vals, exp_found, is_simple_error)
1607             }
1608         };
1609 
1610         // Ignore msg for object safe coercion
1611         // since E0038 message will be printed
1612         match terr {
1613             TypeError::ObjectUnsafeCoercion(_) => {}
1614             _ => {
1615                 diag.span_label(span, terr.to_string());
1616                 if let Some((sp, msg)) = secondary_span {
1617                     diag.span_label(sp, msg);
1618                 }
1619             }
1620         };
1621         if let Some((expected, found)) = expected_found {
1622             let (expected_label, found_label, exp_found) = match exp_found {
1623                 Mismatch::Variable(ef) => (
1624                     ef.expected.prefix_string(self.tcx),
1625                     ef.found.prefix_string(self.tcx),
1626                     Some(ef),
1627                 ),
1628                 Mismatch::Fixed(s) => (s.into(), s.into(), None),
1629             };
1630             match (&terr, expected == found) {
1631                 (TypeError::Sorts(values), extra) => {
1632                     let sort_string = |ty: Ty<'tcx>| match (extra, ty.kind()) {
1633                         (true, ty::Opaque(def_id, _)) => {
1634                             let sm = self.tcx.sess.source_map();
1635                             let pos = sm.lookup_char_pos(self.tcx.def_span(*def_id).lo());
1636                             format!(
1637                                 " (opaque type at <{}:{}:{}>)",
1638                                 sm.filename_for_diagnostics(&pos.file.name),
1639                                 pos.line,
1640                                 pos.col.to_usize() + 1,
1641                             )
1642                         }
1643                         (true, _) => format!(" ({})", ty.sort_string(self.tcx)),
1644                         (false, _) => "".to_string(),
1645                     };
1646                     if !(values.expected.is_simple_text() && values.found.is_simple_text())
1647                         || (exp_found.map_or(false, |ef| {
1648                             // This happens when the type error is a subset of the expectation,
1649                             // like when you have two references but one is `usize` and the other
1650                             // is `f32`. In those cases we still want to show the `note`. If the
1651                             // value from `ef` is `Infer(_)`, then we ignore it.
1652                             if !ef.expected.is_ty_infer() {
1653                                 ef.expected != values.expected
1654                             } else if !ef.found.is_ty_infer() {
1655                                 ef.found != values.found
1656                             } else {
1657                                 false
1658                             }
1659                         }))
1660                     {
1661                         diag.note_expected_found_extra(
1662                             &expected_label,
1663                             expected,
1664                             &found_label,
1665                             found,
1666                             &sort_string(values.expected),
1667                             &sort_string(values.found),
1668                         );
1669                     }
1670                 }
1671                 (TypeError::ObjectUnsafeCoercion(_), _) => {
1672                     diag.note_unsuccessful_coercion(found, expected);
1673                 }
1674                 (_, _) => {
1675                     debug!(
1676                         "note_type_err: exp_found={:?}, expected={:?} found={:?}",
1677                         exp_found, expected, found
1678                     );
1679                     if !is_simple_error || terr.must_include_note() {
1680                         diag.note_expected_found(&expected_label, expected, &found_label, found);
1681                     }
1682                 }
1683             }
1684         }
1685         let exp_found = match exp_found {
1686             Mismatch::Variable(exp_found) => Some(exp_found),
1687             Mismatch::Fixed(_) => None,
1688         };
1689         let exp_found = match terr {
1690             // `terr` has more accurate type information than `exp_found` in match expressions.
1691             ty::error::TypeError::Sorts(terr)
1692                 if exp_found.map_or(false, |ef| terr.found == ef.found) =>
1693             {
1694                 Some(*terr)
1695             }
1696             _ => exp_found,
1697         };
1698         debug!("exp_found {:?} terr {:?} cause.code {:?}", exp_found, terr, cause.code);
1699         if let Some(exp_found) = exp_found {
1700             let should_suggest_fixes = if let ObligationCauseCode::Pattern { root_ty, .. } =
1701                 &cause.code
1702             {
1703                 // Skip if the root_ty of the pattern is not the same as the expected_ty.
1704                 // If these types aren't equal then we've probably peeled off a layer of arrays.
1705                 same_type_modulo_infer(self.resolve_vars_if_possible(*root_ty), exp_found.expected)
1706             } else {
1707                 true
1708             };
1709 
1710             if should_suggest_fixes {
1711                 self.suggest_as_ref_where_appropriate(span, &exp_found, diag);
1712                 self.suggest_accessing_field_where_appropriate(cause, &exp_found, diag);
1713                 self.suggest_await_on_expect_found(cause, span, &exp_found, diag);
1714             }
1715         }
1716 
1717         // In some (most?) cases cause.body_id points to actual body, but in some cases
1718         // it's an actual definition. According to the comments (e.g. in
1719         // librustc_typeck/check/compare_method.rs:compare_predicate_entailment) the latter
1720         // is relied upon by some other code. This might (or might not) need cleanup.
1721         let body_owner_def_id =
1722             self.tcx.hir().opt_local_def_id(cause.body_id).unwrap_or_else(|| {
1723                 self.tcx.hir().body_owner_def_id(hir::BodyId { hir_id: cause.body_id })
1724             });
1725         self.check_and_note_conflicting_crates(diag, terr);
1726         self.tcx.note_and_explain_type_err(diag, terr, cause, span, body_owner_def_id.to_def_id());
1727 
1728         if let Some(ValuePairs::PolyTraitRefs(exp_found)) = values {
1729             if let ty::Closure(def_id, _) = exp_found.expected.skip_binder().self_ty().kind() {
1730                 if let Some(def_id) = def_id.as_local() {
1731                     let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
1732                     let span = self.tcx.hir().span(hir_id);
1733                     diag.span_note(span, "this closure does not fulfill the lifetime requirements");
1734                 }
1735             }
1736         }
1737 
1738         // It reads better to have the error origin as the final
1739         // thing.
1740         self.note_error_origin(diag, cause, exp_found, terr);
1741     }
1742 
get_impl_future_output_ty(&self, ty: Ty<'tcx>) -> Option<Ty<'tcx>>1743     pub fn get_impl_future_output_ty(&self, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
1744         if let ty::Opaque(def_id, substs) = ty.kind() {
1745             let future_trait = self.tcx.require_lang_item(LangItem::Future, None);
1746             // Future::Output
1747             let item_def_id = self.tcx.associated_item_def_ids(future_trait)[0];
1748 
1749             let bounds = self.tcx.explicit_item_bounds(*def_id);
1750 
1751             for (predicate, _) in bounds {
1752                 let predicate = predicate.subst(self.tcx, substs);
1753                 if let ty::PredicateKind::Projection(projection_predicate) =
1754                     predicate.kind().skip_binder()
1755                 {
1756                     if projection_predicate.projection_ty.item_def_id == item_def_id {
1757                         // We don't account for multiple `Future::Output = Ty` contraints.
1758                         return Some(projection_predicate.ty);
1759                     }
1760                 }
1761             }
1762         }
1763         None
1764     }
1765 
1766     /// A possible error is to forget to add `.await` when using futures:
1767     ///
1768     /// ```
1769     /// async fn make_u32() -> u32 {
1770     ///     22
1771     /// }
1772     ///
1773     /// fn take_u32(x: u32) {}
1774     ///
1775     /// async fn foo() {
1776     ///     let x = make_u32();
1777     ///     take_u32(x);
1778     /// }
1779     /// ```
1780     ///
1781     /// This routine checks if the found type `T` implements `Future<Output=U>` where `U` is the
1782     /// expected type. If this is the case, and we are inside of an async body, it suggests adding
1783     /// `.await` to the tail of the expression.
suggest_await_on_expect_found( &self, cause: &ObligationCause<'tcx>, exp_span: Span, exp_found: &ty::error::ExpectedFound<Ty<'tcx>>, diag: &mut DiagnosticBuilder<'tcx>, )1784     fn suggest_await_on_expect_found(
1785         &self,
1786         cause: &ObligationCause<'tcx>,
1787         exp_span: Span,
1788         exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
1789         diag: &mut DiagnosticBuilder<'tcx>,
1790     ) {
1791         debug!(
1792             "suggest_await_on_expect_found: exp_span={:?}, expected_ty={:?}, found_ty={:?}",
1793             exp_span, exp_found.expected, exp_found.found,
1794         );
1795 
1796         if let ObligationCauseCode::CompareImplMethodObligation { .. } = &cause.code {
1797             return;
1798         }
1799 
1800         match (
1801             self.get_impl_future_output_ty(exp_found.expected),
1802             self.get_impl_future_output_ty(exp_found.found),
1803         ) {
1804             (Some(exp), Some(found)) if same_type_modulo_infer(exp, found) => match &cause.code {
1805                 ObligationCauseCode::IfExpression(box IfExpressionCause { then, .. }) => {
1806                     diag.multipart_suggestion(
1807                         "consider `await`ing on both `Future`s",
1808                         vec![
1809                             (then.shrink_to_hi(), ".await".to_string()),
1810                             (exp_span.shrink_to_hi(), ".await".to_string()),
1811                         ],
1812                         Applicability::MaybeIncorrect,
1813                     );
1814                 }
1815                 ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
1816                     prior_arms,
1817                     ..
1818                 }) => {
1819                     if let [.., arm_span] = &prior_arms[..] {
1820                         diag.multipart_suggestion(
1821                             "consider `await`ing on both `Future`s",
1822                             vec![
1823                                 (arm_span.shrink_to_hi(), ".await".to_string()),
1824                                 (exp_span.shrink_to_hi(), ".await".to_string()),
1825                             ],
1826                             Applicability::MaybeIncorrect,
1827                         );
1828                     } else {
1829                         diag.help("consider `await`ing on both `Future`s");
1830                     }
1831                 }
1832                 _ => {
1833                     diag.help("consider `await`ing on both `Future`s");
1834                 }
1835             },
1836             (_, Some(ty)) if same_type_modulo_infer(exp_found.expected, ty) => {
1837                 diag.span_suggestion_verbose(
1838                     exp_span.shrink_to_hi(),
1839                     "consider `await`ing on the `Future`",
1840                     ".await".to_string(),
1841                     Applicability::MaybeIncorrect,
1842                 );
1843             }
1844             (Some(ty), _) if same_type_modulo_infer(ty, exp_found.found) => match cause.code {
1845                 ObligationCauseCode::Pattern { span: Some(span), .. }
1846                 | ObligationCauseCode::IfExpression(box IfExpressionCause { then: span, .. }) => {
1847                     diag.span_suggestion_verbose(
1848                         span.shrink_to_hi(),
1849                         "consider `await`ing on the `Future`",
1850                         ".await".to_string(),
1851                         Applicability::MaybeIncorrect,
1852                     );
1853                 }
1854                 ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
1855                     ref prior_arms,
1856                     ..
1857                 }) => {
1858                     diag.multipart_suggestion_verbose(
1859                         "consider `await`ing on the `Future`",
1860                         prior_arms
1861                             .iter()
1862                             .map(|arm| (arm.shrink_to_hi(), ".await".to_string()))
1863                             .collect(),
1864                         Applicability::MaybeIncorrect,
1865                     );
1866                 }
1867                 _ => {}
1868             },
1869             _ => {}
1870         }
1871     }
1872 
suggest_accessing_field_where_appropriate( &self, cause: &ObligationCause<'tcx>, exp_found: &ty::error::ExpectedFound<Ty<'tcx>>, diag: &mut DiagnosticBuilder<'tcx>, )1873     fn suggest_accessing_field_where_appropriate(
1874         &self,
1875         cause: &ObligationCause<'tcx>,
1876         exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
1877         diag: &mut DiagnosticBuilder<'tcx>,
1878     ) {
1879         debug!(
1880             "suggest_accessing_field_where_appropriate(cause={:?}, exp_found={:?})",
1881             cause, exp_found
1882         );
1883         if let ty::Adt(expected_def, expected_substs) = exp_found.expected.kind() {
1884             if expected_def.is_enum() {
1885                 return;
1886             }
1887 
1888             if let Some((name, ty)) = expected_def
1889                 .non_enum_variant()
1890                 .fields
1891                 .iter()
1892                 .filter(|field| field.vis.is_accessible_from(field.did, self.tcx))
1893                 .map(|field| (field.ident.name, field.ty(self.tcx, expected_substs)))
1894                 .find(|(_, ty)| same_type_modulo_infer(ty, exp_found.found))
1895             {
1896                 if let ObligationCauseCode::Pattern { span: Some(span), .. } = cause.code {
1897                     if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
1898                         let suggestion = if expected_def.is_struct() {
1899                             format!("{}.{}", snippet, name)
1900                         } else if expected_def.is_union() {
1901                             format!("unsafe {{ {}.{} }}", snippet, name)
1902                         } else {
1903                             return;
1904                         };
1905                         diag.span_suggestion(
1906                             span,
1907                             &format!(
1908                                 "you might have meant to use field `{}` whose type is `{}`",
1909                                 name, ty
1910                             ),
1911                             suggestion,
1912                             Applicability::MaybeIncorrect,
1913                         );
1914                     }
1915                 }
1916             }
1917         }
1918     }
1919 
1920     /// When encountering a case where `.as_ref()` on a `Result` or `Option` would be appropriate,
1921     /// suggests it.
suggest_as_ref_where_appropriate( &self, span: Span, exp_found: &ty::error::ExpectedFound<Ty<'tcx>>, diag: &mut DiagnosticBuilder<'tcx>, )1922     fn suggest_as_ref_where_appropriate(
1923         &self,
1924         span: Span,
1925         exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
1926         diag: &mut DiagnosticBuilder<'tcx>,
1927     ) {
1928         if let (ty::Adt(exp_def, exp_substs), ty::Ref(_, found_ty, _)) =
1929             (exp_found.expected.kind(), exp_found.found.kind())
1930         {
1931             if let ty::Adt(found_def, found_substs) = *found_ty.kind() {
1932                 let path_str = format!("{:?}", exp_def);
1933                 if exp_def == &found_def {
1934                     let opt_msg = "you can convert from `&Option<T>` to `Option<&T>` using \
1935                                        `.as_ref()`";
1936                     let result_msg = "you can convert from `&Result<T, E>` to \
1937                                           `Result<&T, &E>` using `.as_ref()`";
1938                     let have_as_ref = &[
1939                         ("std::option::Option", opt_msg),
1940                         ("core::option::Option", opt_msg),
1941                         ("std::result::Result", result_msg),
1942                         ("core::result::Result", result_msg),
1943                     ];
1944                     if let Some(msg) = have_as_ref
1945                         .iter()
1946                         .find_map(|(path, msg)| (&path_str == path).then_some(msg))
1947                     {
1948                         let mut show_suggestion = true;
1949                         for (exp_ty, found_ty) in
1950                             iter::zip(exp_substs.types(), found_substs.types())
1951                         {
1952                             match *exp_ty.kind() {
1953                                 ty::Ref(_, exp_ty, _) => {
1954                                     match (exp_ty.kind(), found_ty.kind()) {
1955                                         (_, ty::Param(_))
1956                                         | (_, ty::Infer(_))
1957                                         | (ty::Param(_), _)
1958                                         | (ty::Infer(_), _) => {}
1959                                         _ if same_type_modulo_infer(exp_ty, found_ty) => {}
1960                                         _ => show_suggestion = false,
1961                                     };
1962                                 }
1963                                 ty::Param(_) | ty::Infer(_) => {}
1964                                 _ => show_suggestion = false,
1965                             }
1966                         }
1967                         if let (Ok(snippet), true) =
1968                             (self.tcx.sess.source_map().span_to_snippet(span), show_suggestion)
1969                         {
1970                             diag.span_suggestion(
1971                                 span,
1972                                 msg,
1973                                 format!("{}.as_ref()", snippet),
1974                                 Applicability::MachineApplicable,
1975                             );
1976                         }
1977                     }
1978                 }
1979             }
1980         }
1981     }
1982 
report_and_explain_type_error( &self, trace: TypeTrace<'tcx>, terr: &TypeError<'tcx>, ) -> DiagnosticBuilder<'tcx>1983     pub fn report_and_explain_type_error(
1984         &self,
1985         trace: TypeTrace<'tcx>,
1986         terr: &TypeError<'tcx>,
1987     ) -> DiagnosticBuilder<'tcx> {
1988         use crate::traits::ObligationCauseCode::MatchExpressionArm;
1989 
1990         debug!("report_and_explain_type_error(trace={:?}, terr={:?})", trace, terr);
1991 
1992         let span = trace.cause.span(self.tcx);
1993         let failure_code = trace.cause.as_failure_code(terr);
1994         let mut diag = match failure_code {
1995             FailureCode::Error0038(did) => {
1996                 let violations = self.tcx.object_safety_violations(did);
1997                 report_object_safety_error(self.tcx, span, did, violations)
1998             }
1999             FailureCode::Error0317(failure_str) => {
2000                 struct_span_err!(self.tcx.sess, span, E0317, "{}", failure_str)
2001             }
2002             FailureCode::Error0580(failure_str) => {
2003                 struct_span_err!(self.tcx.sess, span, E0580, "{}", failure_str)
2004             }
2005             FailureCode::Error0308(failure_str) => {
2006                 let mut err = struct_span_err!(self.tcx.sess, span, E0308, "{}", failure_str);
2007                 if let ValuePairs::Types(ty::error::ExpectedFound { expected, found }) =
2008                     trace.values
2009                 {
2010                     // If a tuple of length one was expected and the found expression has
2011                     // parentheses around it, perhaps the user meant to write `(expr,)` to
2012                     // build a tuple (issue #86100)
2013                     match (expected.kind(), found.kind()) {
2014                         (ty::Tuple(_), ty::Tuple(_)) => {}
2015                         (ty::Tuple(_), _) if expected.tuple_fields().count() == 1 => {
2016                             if let Ok(code) = self.tcx.sess().source_map().span_to_snippet(span) {
2017                                 if let Some(code) =
2018                                     code.strip_prefix('(').and_then(|s| s.strip_suffix(')'))
2019                                 {
2020                                     err.span_suggestion(
2021                                         span,
2022                                         "use a trailing comma to create a tuple with one element",
2023                                         format!("({},)", code),
2024                                         Applicability::MaybeIncorrect,
2025                                     );
2026                                 }
2027                             }
2028                         }
2029                         _ => {}
2030                     }
2031                 }
2032                 if let MatchExpressionArm(box MatchExpressionArmCause { source, .. }) =
2033                     trace.cause.code
2034                 {
2035                     if let hir::MatchSource::TryDesugar = source {
2036                         if let Some((expected_ty, found_ty)) = self.values_str(trace.values) {
2037                             err.note(&format!(
2038                                 "`?` operator cannot convert from `{}` to `{}`",
2039                                 found_ty.content(),
2040                                 expected_ty.content(),
2041                             ));
2042                         }
2043                     }
2044                 }
2045                 err
2046             }
2047             FailureCode::Error0644(failure_str) => {
2048                 struct_span_err!(self.tcx.sess, span, E0644, "{}", failure_str)
2049             }
2050         };
2051         self.note_type_err(&mut diag, &trace.cause, None, Some(trace.values), terr);
2052         diag
2053     }
2054 
values_str( &self, values: ValuePairs<'tcx>, ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)>2055     fn values_str(
2056         &self,
2057         values: ValuePairs<'tcx>,
2058     ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
2059         match values {
2060             infer::Types(exp_found) => self.expected_found_str_ty(exp_found),
2061             infer::Regions(exp_found) => self.expected_found_str(exp_found),
2062             infer::Consts(exp_found) => self.expected_found_str(exp_found),
2063             infer::TraitRefs(exp_found) => {
2064                 let pretty_exp_found = ty::error::ExpectedFound {
2065                     expected: exp_found.expected.print_only_trait_path(),
2066                     found: exp_found.found.print_only_trait_path(),
2067                 };
2068                 match self.expected_found_str(pretty_exp_found) {
2069                     Some((expected, found)) if expected == found => {
2070                         self.expected_found_str(exp_found)
2071                     }
2072                     ret => ret,
2073                 }
2074             }
2075             infer::PolyTraitRefs(exp_found) => {
2076                 let pretty_exp_found = ty::error::ExpectedFound {
2077                     expected: exp_found.expected.print_only_trait_path(),
2078                     found: exp_found.found.print_only_trait_path(),
2079                 };
2080                 match self.expected_found_str(pretty_exp_found) {
2081                     Some((expected, found)) if expected == found => {
2082                         self.expected_found_str(exp_found)
2083                     }
2084                     ret => ret,
2085                 }
2086             }
2087         }
2088     }
2089 
expected_found_str_ty( &self, exp_found: ty::error::ExpectedFound<Ty<'tcx>>, ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)>2090     fn expected_found_str_ty(
2091         &self,
2092         exp_found: ty::error::ExpectedFound<Ty<'tcx>>,
2093     ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
2094         let exp_found = self.resolve_vars_if_possible(exp_found);
2095         if exp_found.references_error() {
2096             return None;
2097         }
2098 
2099         Some(self.cmp(exp_found.expected, exp_found.found))
2100     }
2101 
2102     /// Returns a string of the form "expected `{}`, found `{}`".
expected_found_str<T: fmt::Display + TypeFoldable<'tcx>>( &self, exp_found: ty::error::ExpectedFound<T>, ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)>2103     fn expected_found_str<T: fmt::Display + TypeFoldable<'tcx>>(
2104         &self,
2105         exp_found: ty::error::ExpectedFound<T>,
2106     ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
2107         let exp_found = self.resolve_vars_if_possible(exp_found);
2108         if exp_found.references_error() {
2109             return None;
2110         }
2111 
2112         Some((
2113             DiagnosticStyledString::highlighted(exp_found.expected.to_string()),
2114             DiagnosticStyledString::highlighted(exp_found.found.to_string()),
2115         ))
2116     }
2117 
report_generic_bound_failure( &self, span: Span, origin: Option<SubregionOrigin<'tcx>>, bound_kind: GenericKind<'tcx>, sub: Region<'tcx>, )2118     pub fn report_generic_bound_failure(
2119         &self,
2120         span: Span,
2121         origin: Option<SubregionOrigin<'tcx>>,
2122         bound_kind: GenericKind<'tcx>,
2123         sub: Region<'tcx>,
2124     ) {
2125         self.construct_generic_bound_failure(span, origin, bound_kind, sub).emit();
2126     }
2127 
construct_generic_bound_failure( &self, span: Span, origin: Option<SubregionOrigin<'tcx>>, bound_kind: GenericKind<'tcx>, sub: Region<'tcx>, ) -> DiagnosticBuilder<'a>2128     pub fn construct_generic_bound_failure(
2129         &self,
2130         span: Span,
2131         origin: Option<SubregionOrigin<'tcx>>,
2132         bound_kind: GenericKind<'tcx>,
2133         sub: Region<'tcx>,
2134     ) -> DiagnosticBuilder<'a> {
2135         let hir = &self.tcx.hir();
2136         // Attempt to obtain the span of the parameter so we can
2137         // suggest adding an explicit lifetime bound to it.
2138         let generics = self
2139             .in_progress_typeck_results
2140             .map(|typeck_results| typeck_results.borrow().hir_owner)
2141             .map(|owner| {
2142                 let hir_id = hir.local_def_id_to_hir_id(owner);
2143                 let parent_id = hir.get_parent_item(hir_id);
2144                 (
2145                     // Parent item could be a `mod`, so we check the HIR before calling:
2146                     if let Some(Node::Item(Item {
2147                         kind: ItemKind::Trait(..) | ItemKind::Impl { .. },
2148                         ..
2149                     })) = hir.find(parent_id)
2150                     {
2151                         Some(self.tcx.generics_of(hir.local_def_id(parent_id).to_def_id()))
2152                     } else {
2153                         None
2154                     },
2155                     self.tcx.generics_of(owner.to_def_id()),
2156                     hir.span(hir_id),
2157                 )
2158             });
2159 
2160         let span = match generics {
2161             // This is to get around the trait identity obligation, that has a `DUMMY_SP` as signal
2162             // for other diagnostics, so we need to recover it here.
2163             Some((_, _, node)) if span.is_dummy() => node,
2164             _ => span,
2165         };
2166 
2167         let type_param_span = match (generics, bound_kind) {
2168             (Some((_, ref generics, _)), GenericKind::Param(ref param)) => {
2169                 // Account for the case where `param` corresponds to `Self`,
2170                 // which doesn't have the expected type argument.
2171                 if !(generics.has_self && param.index == 0) {
2172                     let type_param = generics.type_param(param, self.tcx);
2173                     type_param.def_id.as_local().map(|def_id| {
2174                         // Get the `hir::Param` to verify whether it already has any bounds.
2175                         // We do this to avoid suggesting code that ends up as `T: 'a'b`,
2176                         // instead we suggest `T: 'a + 'b` in that case.
2177                         let id = hir.local_def_id_to_hir_id(def_id);
2178                         let mut has_bounds = false;
2179                         if let Node::GenericParam(param) = hir.get(id) {
2180                             has_bounds = !param.bounds.is_empty();
2181                         }
2182                         let sp = hir.span(id);
2183                         // `sp` only covers `T`, change it so that it covers
2184                         // `T:` when appropriate
2185                         let is_impl_trait = bound_kind.to_string().starts_with("impl ");
2186                         let sp = if has_bounds && !is_impl_trait {
2187                             sp.to(self
2188                                 .tcx
2189                                 .sess
2190                                 .source_map()
2191                                 .next_point(self.tcx.sess.source_map().next_point(sp)))
2192                         } else {
2193                             sp
2194                         };
2195                         (sp, has_bounds, is_impl_trait)
2196                     })
2197                 } else {
2198                     None
2199                 }
2200             }
2201             _ => None,
2202         };
2203         let new_lt = generics
2204             .as_ref()
2205             .and_then(|(parent_g, g, _)| {
2206                 let mut possible = (b'a'..=b'z').map(|c| format!("'{}", c as char));
2207                 let mut lts_names = g
2208                     .params
2209                     .iter()
2210                     .filter(|p| matches!(p.kind, ty::GenericParamDefKind::Lifetime))
2211                     .map(|p| p.name.as_str())
2212                     .collect::<Vec<_>>();
2213                 if let Some(g) = parent_g {
2214                     lts_names.extend(
2215                         g.params
2216                             .iter()
2217                             .filter(|p| matches!(p.kind, ty::GenericParamDefKind::Lifetime))
2218                             .map(|p| p.name.as_str()),
2219                     );
2220                 }
2221                 let lts = lts_names.iter().map(|s| -> &str { &*s }).collect::<Vec<_>>();
2222                 possible.find(|candidate| !lts.contains(&candidate.as_str()))
2223             })
2224             .unwrap_or("'lt".to_string());
2225         let add_lt_sugg = generics
2226             .as_ref()
2227             .and_then(|(_, g, _)| g.params.first())
2228             .and_then(|param| param.def_id.as_local())
2229             .map(|def_id| {
2230                 (
2231                     hir.span(hir.local_def_id_to_hir_id(def_id)).shrink_to_lo(),
2232                     format!("{}, ", new_lt),
2233                 )
2234             });
2235 
2236         let labeled_user_string = match bound_kind {
2237             GenericKind::Param(ref p) => format!("the parameter type `{}`", p),
2238             GenericKind::Projection(ref p) => format!("the associated type `{}`", p),
2239         };
2240 
2241         if let Some(SubregionOrigin::CompareImplMethodObligation {
2242             span,
2243             impl_item_def_id,
2244             trait_item_def_id,
2245         }) = origin
2246         {
2247             return self.report_extra_impl_obligation(
2248                 span,
2249                 impl_item_def_id,
2250                 trait_item_def_id,
2251                 &format!("`{}: {}`", bound_kind, sub),
2252             );
2253         }
2254 
2255         fn binding_suggestion<'tcx, S: fmt::Display>(
2256             err: &mut DiagnosticBuilder<'tcx>,
2257             type_param_span: Option<(Span, bool, bool)>,
2258             bound_kind: GenericKind<'tcx>,
2259             sub: S,
2260         ) {
2261             let msg = "consider adding an explicit lifetime bound";
2262             if let Some((sp, has_lifetimes, is_impl_trait)) = type_param_span {
2263                 let suggestion = if is_impl_trait {
2264                     format!("{} + {}", bound_kind, sub)
2265                 } else {
2266                     let tail = if has_lifetimes { " + " } else { "" };
2267                     format!("{}: {}{}", bound_kind, sub, tail)
2268                 };
2269                 err.span_suggestion(
2270                     sp,
2271                     &format!("{}...", msg),
2272                     suggestion,
2273                     Applicability::MaybeIncorrect, // Issue #41966
2274                 );
2275             } else {
2276                 let consider = format!(
2277                     "{} {}...",
2278                     msg,
2279                     if type_param_span.map_or(false, |(_, _, is_impl_trait)| is_impl_trait) {
2280                         format!(" `{}` to `{}`", sub, bound_kind)
2281                     } else {
2282                         format!("`{}: {}`", bound_kind, sub)
2283                     },
2284                 );
2285                 err.help(&consider);
2286             }
2287         }
2288 
2289         let new_binding_suggestion =
2290             |err: &mut DiagnosticBuilder<'tcx>,
2291              type_param_span: Option<(Span, bool, bool)>,
2292              bound_kind: GenericKind<'tcx>| {
2293                 let msg = "consider introducing an explicit lifetime bound";
2294                 if let Some((sp, has_lifetimes, is_impl_trait)) = type_param_span {
2295                     let suggestion = if is_impl_trait {
2296                         (sp.shrink_to_hi(), format!(" + {}", new_lt))
2297                     } else {
2298                         let tail = if has_lifetimes { " +" } else { "" };
2299                         (sp, format!("{}: {}{}", bound_kind, new_lt, tail))
2300                     };
2301                     let mut sugg =
2302                         vec![suggestion, (span.shrink_to_hi(), format!(" + {}", new_lt))];
2303                     if let Some(lt) = add_lt_sugg {
2304                         sugg.push(lt);
2305                         sugg.rotate_right(1);
2306                     }
2307                     // `MaybeIncorrect` due to issue #41966.
2308                     err.multipart_suggestion(msg, sugg, Applicability::MaybeIncorrect);
2309                 }
2310             };
2311 
2312         #[derive(Debug)]
2313         enum SubOrigin<'hir> {
2314             GAT(&'hir hir::Generics<'hir>),
2315             Impl(&'hir hir::Generics<'hir>),
2316             Trait(&'hir hir::Generics<'hir>),
2317             Fn(&'hir hir::Generics<'hir>),
2318             Unknown,
2319         }
2320         let sub_origin = 'origin: {
2321             match *sub {
2322                 ty::ReEarlyBound(ty::EarlyBoundRegion { def_id, .. }) => {
2323                     let node = self.tcx.hir().get_if_local(def_id).unwrap();
2324                     match node {
2325                         Node::GenericParam(param) => {
2326                             for h in self.tcx.hir().parent_iter(param.hir_id) {
2327                                 break 'origin match h.1 {
2328                                     Node::ImplItem(hir::ImplItem {
2329                                         kind: hir::ImplItemKind::TyAlias(..),
2330                                         generics,
2331                                         ..
2332                                     }) => SubOrigin::GAT(generics),
2333                                     Node::ImplItem(hir::ImplItem {
2334                                         kind: hir::ImplItemKind::Fn(..),
2335                                         generics,
2336                                         ..
2337                                     }) => SubOrigin::Fn(generics),
2338                                     Node::TraitItem(hir::TraitItem {
2339                                         kind: hir::TraitItemKind::Type(..),
2340                                         generics,
2341                                         ..
2342                                     }) => SubOrigin::GAT(generics),
2343                                     Node::TraitItem(hir::TraitItem {
2344                                         kind: hir::TraitItemKind::Fn(..),
2345                                         generics,
2346                                         ..
2347                                     }) => SubOrigin::Fn(generics),
2348                                     Node::Item(hir::Item {
2349                                         kind: hir::ItemKind::Trait(_, _, generics, _, _),
2350                                         ..
2351                                     }) => SubOrigin::Trait(generics),
2352                                     Node::Item(hir::Item {
2353                                         kind: hir::ItemKind::Impl(hir::Impl { generics, .. }),
2354                                         ..
2355                                     }) => SubOrigin::Impl(generics),
2356                                     Node::Item(hir::Item {
2357                                         kind: hir::ItemKind::Fn(_, generics, _),
2358                                         ..
2359                                     }) => SubOrigin::Fn(generics),
2360                                     _ => continue,
2361                                 };
2362                             }
2363                         }
2364                         _ => {}
2365                     }
2366                 }
2367                 _ => {}
2368             }
2369             SubOrigin::Unknown
2370         };
2371         debug!(?sub_origin);
2372 
2373         let mut err = match (*sub, sub_origin) {
2374             // In the case of GATs, we have to be careful. If we a type parameter `T` on an impl,
2375             // but a lifetime `'a` on an associated type, then we might need to suggest adding
2376             // `where T: 'a`. Importantly, this is on the GAT span, not on the `T` declaration.
2377             (ty::ReEarlyBound(ty::EarlyBoundRegion { name: _, .. }), SubOrigin::GAT(generics)) => {
2378                 // Does the required lifetime have a nice name we can print?
2379                 let mut err = struct_span_err!(
2380                     self.tcx.sess,
2381                     span,
2382                     E0309,
2383                     "{} may not live long enough",
2384                     labeled_user_string
2385                 );
2386                 let pred = format!("{}: {}", bound_kind, sub);
2387                 let suggestion = format!(
2388                     "{} {}",
2389                     if !generics.where_clause.predicates.is_empty() { "," } else { " where" },
2390                     pred,
2391                 );
2392                 err.span_suggestion(
2393                     generics.where_clause.tail_span_for_suggestion(),
2394                     "consider adding a where clause",
2395                     suggestion,
2396                     Applicability::MaybeIncorrect,
2397                 );
2398                 err
2399             }
2400             (
2401                 ty::ReEarlyBound(ty::EarlyBoundRegion { name, .. })
2402                 | ty::ReFree(ty::FreeRegion { bound_region: ty::BrNamed(_, name), .. }),
2403                 _,
2404             ) => {
2405                 // Does the required lifetime have a nice name we can print?
2406                 let mut err = struct_span_err!(
2407                     self.tcx.sess,
2408                     span,
2409                     E0309,
2410                     "{} may not live long enough",
2411                     labeled_user_string
2412                 );
2413                 // Explicitly use the name instead of `sub`'s `Display` impl. The `Display` impl
2414                 // for the bound is not suitable for suggestions when `-Zverbose` is set because it
2415                 // uses `Debug` output, so we handle it specially here so that suggestions are
2416                 // always correct.
2417                 binding_suggestion(&mut err, type_param_span, bound_kind, name);
2418                 err
2419             }
2420 
2421             (ty::ReStatic, _) => {
2422                 // Does the required lifetime have a nice name we can print?
2423                 let mut err = struct_span_err!(
2424                     self.tcx.sess,
2425                     span,
2426                     E0310,
2427                     "{} may not live long enough",
2428                     labeled_user_string
2429                 );
2430                 binding_suggestion(&mut err, type_param_span, bound_kind, "'static");
2431                 err
2432             }
2433 
2434             _ => {
2435                 // If not, be less specific.
2436                 let mut err = struct_span_err!(
2437                     self.tcx.sess,
2438                     span,
2439                     E0311,
2440                     "{} may not live long enough",
2441                     labeled_user_string
2442                 );
2443                 note_and_explain_region(
2444                     self.tcx,
2445                     &mut err,
2446                     &format!("{} must be valid for ", labeled_user_string),
2447                     sub,
2448                     "...",
2449                     None,
2450                 );
2451                 if let Some(infer::RelateParamBound(_, t, _)) = origin {
2452                     let return_impl_trait = self
2453                         .in_progress_typeck_results
2454                         .map(|typeck_results| typeck_results.borrow().hir_owner)
2455                         .and_then(|owner| self.tcx.return_type_impl_trait(owner))
2456                         .is_some();
2457                     let t = self.resolve_vars_if_possible(t);
2458                     match t.kind() {
2459                         // We've got:
2460                         // fn get_later<G, T>(g: G, dest: &mut T) -> impl FnOnce() + '_
2461                         // suggest:
2462                         // fn get_later<'a, G: 'a, T>(g: G, dest: &mut T) -> impl FnOnce() + '_ + 'a
2463                         ty::Closure(_, _substs) | ty::Opaque(_, _substs) if return_impl_trait => {
2464                             new_binding_suggestion(&mut err, type_param_span, bound_kind);
2465                         }
2466                         _ => {
2467                             binding_suggestion(&mut err, type_param_span, bound_kind, new_lt);
2468                         }
2469                     }
2470                 }
2471                 err
2472             }
2473         };
2474 
2475         if let Some(origin) = origin {
2476             self.note_region_origin(&mut err, &origin);
2477         }
2478         err
2479     }
2480 
report_sub_sup_conflict( &self, var_origin: RegionVariableOrigin, sub_origin: SubregionOrigin<'tcx>, sub_region: Region<'tcx>, sup_origin: SubregionOrigin<'tcx>, sup_region: Region<'tcx>, )2481     fn report_sub_sup_conflict(
2482         &self,
2483         var_origin: RegionVariableOrigin,
2484         sub_origin: SubregionOrigin<'tcx>,
2485         sub_region: Region<'tcx>,
2486         sup_origin: SubregionOrigin<'tcx>,
2487         sup_region: Region<'tcx>,
2488     ) {
2489         let mut err = self.report_inference_failure(var_origin);
2490 
2491         note_and_explain_region(
2492             self.tcx,
2493             &mut err,
2494             "first, the lifetime cannot outlive ",
2495             sup_region,
2496             "...",
2497             None,
2498         );
2499 
2500         debug!("report_sub_sup_conflict: var_origin={:?}", var_origin);
2501         debug!("report_sub_sup_conflict: sub_region={:?}", sub_region);
2502         debug!("report_sub_sup_conflict: sub_origin={:?}", sub_origin);
2503         debug!("report_sub_sup_conflict: sup_region={:?}", sup_region);
2504         debug!("report_sub_sup_conflict: sup_origin={:?}", sup_origin);
2505 
2506         if let (&infer::Subtype(ref sup_trace), &infer::Subtype(ref sub_trace)) =
2507             (&sup_origin, &sub_origin)
2508         {
2509             debug!("report_sub_sup_conflict: sup_trace={:?}", sup_trace);
2510             debug!("report_sub_sup_conflict: sub_trace={:?}", sub_trace);
2511             debug!("report_sub_sup_conflict: sup_trace.values={:?}", sup_trace.values);
2512             debug!("report_sub_sup_conflict: sub_trace.values={:?}", sub_trace.values);
2513 
2514             if let (Some((sup_expected, sup_found)), Some((sub_expected, sub_found))) =
2515                 (self.values_str(sup_trace.values), self.values_str(sub_trace.values))
2516             {
2517                 if sub_expected == sup_expected && sub_found == sup_found {
2518                     note_and_explain_region(
2519                         self.tcx,
2520                         &mut err,
2521                         "...but the lifetime must also be valid for ",
2522                         sub_region,
2523                         "...",
2524                         None,
2525                     );
2526                     err.span_note(
2527                         sup_trace.cause.span,
2528                         &format!("...so that the {}", sup_trace.cause.as_requirement_str()),
2529                     );
2530 
2531                     err.note_expected_found(&"", sup_expected, &"", sup_found);
2532                     err.emit();
2533                     return;
2534                 }
2535             }
2536         }
2537 
2538         self.note_region_origin(&mut err, &sup_origin);
2539 
2540         note_and_explain_region(
2541             self.tcx,
2542             &mut err,
2543             "but, the lifetime must be valid for ",
2544             sub_region,
2545             "...",
2546             None,
2547         );
2548 
2549         self.note_region_origin(&mut err, &sub_origin);
2550         err.emit();
2551     }
2552 
2553     /// Determine whether an error associated with the given span and definition
2554     /// should be treated as being caused by the implicit `From` conversion
2555     /// within `?` desugaring.
is_try_conversion(&self, span: Span, trait_def_id: DefId) -> bool2556     pub fn is_try_conversion(&self, span: Span, trait_def_id: DefId) -> bool {
2557         span.is_desugaring(DesugaringKind::QuestionMark)
2558             && self.tcx.is_diagnostic_item(sym::From, trait_def_id)
2559     }
2560 }
2561 
2562 impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
report_inference_failure( &self, var_origin: RegionVariableOrigin, ) -> DiagnosticBuilder<'tcx>2563     fn report_inference_failure(
2564         &self,
2565         var_origin: RegionVariableOrigin,
2566     ) -> DiagnosticBuilder<'tcx> {
2567         let br_string = |br: ty::BoundRegionKind| {
2568             let mut s = match br {
2569                 ty::BrNamed(_, name) => name.to_string(),
2570                 _ => String::new(),
2571             };
2572             if !s.is_empty() {
2573                 s.push(' ');
2574             }
2575             s
2576         };
2577         let var_description = match var_origin {
2578             infer::MiscVariable(_) => String::new(),
2579             infer::PatternRegion(_) => " for pattern".to_string(),
2580             infer::AddrOfRegion(_) => " for borrow expression".to_string(),
2581             infer::Autoref(_) => " for autoref".to_string(),
2582             infer::Coercion(_) => " for automatic coercion".to_string(),
2583             infer::LateBoundRegion(_, br, infer::FnCall) => {
2584                 format!(" for lifetime parameter {}in function call", br_string(br))
2585             }
2586             infer::LateBoundRegion(_, br, infer::HigherRankedType) => {
2587                 format!(" for lifetime parameter {}in generic type", br_string(br))
2588             }
2589             infer::LateBoundRegion(_, br, infer::AssocTypeProjection(def_id)) => format!(
2590                 " for lifetime parameter {}in trait containing associated type `{}`",
2591                 br_string(br),
2592                 self.tcx.associated_item(def_id).ident
2593             ),
2594             infer::EarlyBoundRegion(_, name) => format!(" for lifetime parameter `{}`", name),
2595             infer::UpvarRegion(ref upvar_id, _) => {
2596                 let var_name = self.tcx.hir().name(upvar_id.var_path.hir_id);
2597                 format!(" for capture of `{}` by closure", var_name)
2598             }
2599             infer::Nll(..) => bug!("NLL variable found in lexical phase"),
2600         };
2601 
2602         struct_span_err!(
2603             self.tcx.sess,
2604             var_origin.span(),
2605             E0495,
2606             "cannot infer an appropriate lifetime{} due to conflicting requirements",
2607             var_description
2608         )
2609     }
2610 }
2611 
2612 enum FailureCode {
2613     Error0038(DefId),
2614     Error0317(&'static str),
2615     Error0580(&'static str),
2616     Error0308(&'static str),
2617     Error0644(&'static str),
2618 }
2619 
2620 trait ObligationCauseExt<'tcx> {
as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode2621     fn as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode;
as_requirement_str(&self) -> &'static str2622     fn as_requirement_str(&self) -> &'static str;
2623 }
2624 
2625 impl<'tcx> ObligationCauseExt<'tcx> for ObligationCause<'tcx> {
as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode2626     fn as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode {
2627         use self::FailureCode::*;
2628         use crate::traits::ObligationCauseCode::*;
2629         match self.code {
2630             CompareImplMethodObligation { .. } => Error0308("method not compatible with trait"),
2631             CompareImplTypeObligation { .. } => Error0308("type not compatible with trait"),
2632             MatchExpressionArm(box MatchExpressionArmCause { source, .. }) => {
2633                 Error0308(match source {
2634                     hir::MatchSource::TryDesugar => "`?` operator has incompatible types",
2635                     _ => "`match` arms have incompatible types",
2636                 })
2637             }
2638             IfExpression { .. } => Error0308("`if` and `else` have incompatible types"),
2639             IfExpressionWithNoElse => Error0317("`if` may be missing an `else` clause"),
2640             LetElse => Error0308("`else` clause of `let...else` does not diverge"),
2641             MainFunctionType => Error0580("`main` function has wrong type"),
2642             StartFunctionType => Error0308("`#[start]` function has wrong type"),
2643             IntrinsicType => Error0308("intrinsic has wrong type"),
2644             MethodReceiver => Error0308("mismatched `self` parameter type"),
2645 
2646             // In the case where we have no more specific thing to
2647             // say, also take a look at the error code, maybe we can
2648             // tailor to that.
2649             _ => match terr {
2650                 TypeError::CyclicTy(ty) if ty.is_closure() || ty.is_generator() => {
2651                     Error0644("closure/generator type that references itself")
2652                 }
2653                 TypeError::IntrinsicCast => {
2654                     Error0308("cannot coerce intrinsics to function pointers")
2655                 }
2656                 TypeError::ObjectUnsafeCoercion(did) => Error0038(*did),
2657                 _ => Error0308("mismatched types"),
2658             },
2659         }
2660     }
2661 
as_requirement_str(&self) -> &'static str2662     fn as_requirement_str(&self) -> &'static str {
2663         use crate::traits::ObligationCauseCode::*;
2664         match self.code {
2665             CompareImplMethodObligation { .. } => "method type is compatible with trait",
2666             CompareImplTypeObligation { .. } => "associated type is compatible with trait",
2667             ExprAssignable => "expression is assignable",
2668             IfExpression { .. } => "`if` and `else` have incompatible types",
2669             IfExpressionWithNoElse => "`if` missing an `else` returns `()`",
2670             MainFunctionType => "`main` function has the correct type",
2671             StartFunctionType => "`#[start]` function has the correct type",
2672             IntrinsicType => "intrinsic has the correct type",
2673             MethodReceiver => "method receiver has the correct type",
2674             _ => "types are compatible",
2675         }
2676     }
2677 }
2678 
2679 /// This is a bare signal of what kind of type we're dealing with. `ty::TyKind` tracks
2680 /// extra information about each type, but we only care about the category.
2681 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
2682 pub enum TyCategory {
2683     Closure,
2684     Opaque,
2685     Generator(hir::GeneratorKind),
2686     Foreign,
2687 }
2688 
2689 impl TyCategory {
descr(&self) -> &'static str2690     fn descr(&self) -> &'static str {
2691         match self {
2692             Self::Closure => "closure",
2693             Self::Opaque => "opaque type",
2694             Self::Generator(gk) => gk.descr(),
2695             Self::Foreign => "foreign type",
2696         }
2697     }
2698 
from_ty(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Self, DefId)>2699     pub fn from_ty(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Self, DefId)> {
2700         match *ty.kind() {
2701             ty::Closure(def_id, _) => Some((Self::Closure, def_id)),
2702             ty::Opaque(def_id, _) => Some((Self::Opaque, def_id)),
2703             ty::Generator(def_id, ..) => {
2704                 Some((Self::Generator(tcx.generator_kind(def_id).unwrap()), def_id))
2705             }
2706             ty::Foreign(def_id) => Some((Self::Foreign, def_id)),
2707             _ => None,
2708         }
2709     }
2710 }
2711