1 use crate::{LateContext, LateLintPass, LintContext};
2 use rustc_ast as ast;
3 use rustc_attr as attr;
4 use rustc_data_structures::fx::FxHashSet;
5 use rustc_errors::Applicability;
6 use rustc_hir as hir;
7 use rustc_hir::def_id::DefId;
8 use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
9 use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
10 use rustc_middle::ty::subst::SubstsRef;
11 use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeFoldable};
12 use rustc_span::source_map;
13 use rustc_span::symbol::sym;
14 use rustc_span::{Span, Symbol, DUMMY_SP};
15 use rustc_target::abi::Abi;
16 use rustc_target::abi::{Integer, TagEncoding, Variants};
17 use rustc_target::spec::abi::Abi as SpecAbi;
18 
19 use if_chain::if_chain;
20 use std::cmp;
21 use std::iter;
22 use std::ops::ControlFlow;
23 use tracing::debug;
24 
25 declare_lint! {
26     /// The `unused_comparisons` lint detects comparisons made useless by
27     /// limits of the types involved.
28     ///
29     /// ### Example
30     ///
31     /// ```rust
32     /// fn foo(x: u8) {
33     ///     x >= 0;
34     /// }
35     /// ```
36     ///
37     /// {{produces}}
38     ///
39     /// ### Explanation
40     ///
41     /// A useless comparison may indicate a mistake, and should be fixed or
42     /// removed.
43     UNUSED_COMPARISONS,
44     Warn,
45     "comparisons made useless by limits of the types involved"
46 }
47 
48 declare_lint! {
49     /// The `overflowing_literals` lint detects literal out of range for its
50     /// type.
51     ///
52     /// ### Example
53     ///
54     /// ```rust,compile_fail
55     /// let x: u8 = 1000;
56     /// ```
57     ///
58     /// {{produces}}
59     ///
60     /// ### Explanation
61     ///
62     /// It is usually a mistake to use a literal that overflows the type where
63     /// it is used. Either use a literal that is within range, or change the
64     /// type to be within the range of the literal.
65     OVERFLOWING_LITERALS,
66     Deny,
67     "literal out of range for its type"
68 }
69 
70 declare_lint! {
71     /// The `variant_size_differences` lint detects enums with widely varying
72     /// variant sizes.
73     ///
74     /// ### Example
75     ///
76     /// ```rust,compile_fail
77     /// #![deny(variant_size_differences)]
78     /// enum En {
79     ///     V0(u8),
80     ///     VBig([u8; 1024]),
81     /// }
82     /// ```
83     ///
84     /// {{produces}}
85     ///
86     /// ### Explanation
87     ///
88     /// It can be a mistake to add a variant to an enum that is much larger
89     /// than the other variants, bloating the overall size required for all
90     /// variants. This can impact performance and memory usage. This is
91     /// triggered if one variant is more than 3 times larger than the
92     /// second-largest variant.
93     ///
94     /// Consider placing the large variant's contents on the heap (for example
95     /// via [`Box`]) to keep the overall size of the enum itself down.
96     ///
97     /// This lint is "allow" by default because it can be noisy, and may not be
98     /// an actual problem. Decisions about this should be guided with
99     /// profiling and benchmarking.
100     ///
101     /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
102     VARIANT_SIZE_DIFFERENCES,
103     Allow,
104     "detects enums with widely varying variant sizes"
105 }
106 
107 #[derive(Copy, Clone)]
108 pub struct TypeLimits {
109     /// Id of the last visited negated expression
110     negated_expr_id: Option<hir::HirId>,
111 }
112 
113 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
114 
115 impl TypeLimits {
new() -> TypeLimits116     pub fn new() -> TypeLimits {
117         TypeLimits { negated_expr_id: None }
118     }
119 }
120 
121 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
122 /// Returns `true` iff the lint was overridden.
lint_overflowing_range_endpoint<'tcx>( cx: &LateContext<'tcx>, lit: &hir::Lit, lit_val: u128, max: u128, expr: &'tcx hir::Expr<'tcx>, parent_expr: &'tcx hir::Expr<'tcx>, ty: &str, ) -> bool123 fn lint_overflowing_range_endpoint<'tcx>(
124     cx: &LateContext<'tcx>,
125     lit: &hir::Lit,
126     lit_val: u128,
127     max: u128,
128     expr: &'tcx hir::Expr<'tcx>,
129     parent_expr: &'tcx hir::Expr<'tcx>,
130     ty: &str,
131 ) -> bool {
132     // We only want to handle exclusive (`..`) ranges,
133     // which are represented as `ExprKind::Struct`.
134     let mut overwritten = false;
135     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
136         if eps.len() != 2 {
137             return false;
138         }
139         // We can suggest using an inclusive range
140         // (`..=`) instead only if it is the `end` that is
141         // overflowing and only by 1.
142         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
143             cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
144                 let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
145                 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
146                     use ast::{LitIntType, LitKind};
147                     // We need to preserve the literal's suffix,
148                     // as it may determine typing information.
149                     let suffix = match lit.node {
150                         LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
151                         LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
152                         LitKind::Int(_, LitIntType::Unsuffixed) => "",
153                         _ => bug!(),
154                     };
155                     let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
156                     err.span_suggestion(
157                         parent_expr.span,
158                         &"use an inclusive range instead",
159                         suggestion,
160                         Applicability::MachineApplicable,
161                     );
162                     err.emit();
163                     overwritten = true;
164                 }
165             });
166         }
167     }
168     overwritten
169 }
170 
171 // For `isize` & `usize`, be conservative with the warnings, so that the
172 // warnings are consistent between 32- and 64-bit platforms.
int_ty_range(int_ty: ty::IntTy) -> (i128, i128)173 fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
174     match int_ty {
175         ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
176         ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
177         ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
178         ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
179         ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
180         ty::IntTy::I128 => (i128::MIN, i128::MAX),
181     }
182 }
183 
uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128)184 fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
185     let max = match uint_ty {
186         ty::UintTy::Usize => u64::MAX.into(),
187         ty::UintTy::U8 => u8::MAX.into(),
188         ty::UintTy::U16 => u16::MAX.into(),
189         ty::UintTy::U32 => u32::MAX.into(),
190         ty::UintTy::U64 => u64::MAX.into(),
191         ty::UintTy::U128 => u128::MAX,
192     };
193     (0, max)
194 }
195 
get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String>196 fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
197     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
198     let firstch = src.chars().next()?;
199 
200     if firstch == '0' {
201         match src.chars().nth(1) {
202             Some('x' | 'b') => return Some(src),
203             _ => return None,
204         }
205     }
206 
207     None
208 }
209 
report_bin_hex_error( cx: &LateContext<'_>, expr: &hir::Expr<'_>, ty: attr::IntType, repr_str: String, val: u128, negative: bool, )210 fn report_bin_hex_error(
211     cx: &LateContext<'_>,
212     expr: &hir::Expr<'_>,
213     ty: attr::IntType,
214     repr_str: String,
215     val: u128,
216     negative: bool,
217 ) {
218     let size = Integer::from_attr(&cx.tcx, ty).size();
219     cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
220         let (t, actually) = match ty {
221             attr::IntType::SignedInt(t) => {
222                 let actually = if negative {
223                     -(size.sign_extend(val) as i128)
224                 } else {
225                     size.sign_extend(val) as i128
226                 };
227                 (t.name_str(), actually.to_string())
228             }
229             attr::IntType::UnsignedInt(t) => {
230                 let actually = size.truncate(val);
231                 (t.name_str(), actually.to_string())
232             }
233         };
234         let mut err = lint.build(&format!("literal out of range for `{}`", t));
235         if negative {
236             // If the value is negative,
237             // emits a note about the value itself, apart from the literal.
238             err.note(&format!(
239                 "the literal `{}` (decimal `{}`) does not fit into \
240                  the type `{}`",
241                 repr_str, val, t
242             ));
243             err.note(&format!("and the value `-{}` will become `{}{}`", repr_str, actually, t));
244         } else {
245             err.note(&format!(
246                 "the literal `{}` (decimal `{}`) does not fit into \
247                  the type `{}` and will become `{}{}`",
248                 repr_str, val, t, actually, t
249             ));
250         }
251         if let Some(sugg_ty) =
252             get_type_suggestion(&cx.typeck_results().node_type(expr.hir_id), val, negative)
253         {
254             if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
255                 let (sans_suffix, _) = repr_str.split_at(pos);
256                 err.span_suggestion(
257                     expr.span,
258                     &format!("consider using the type `{}` instead", sugg_ty),
259                     format!("{}{}", sans_suffix, sugg_ty),
260                     Applicability::MachineApplicable,
261                 );
262             } else {
263                 err.help(&format!("consider using the type `{}` instead", sugg_ty));
264             }
265         }
266         err.emit();
267     });
268 }
269 
270 // This function finds the next fitting type and generates a suggestion string.
271 // It searches for fitting types in the following way (`X < Y`):
272 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
273 //  - `-iX` => `iY`
274 //  - `uX` => `uY`
275 //
276 // No suggestion for: `isize`, `usize`.
get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str>277 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
278     use ty::IntTy::*;
279     use ty::UintTy::*;
280     macro_rules! find_fit {
281         ($ty:expr, $val:expr, $negative:expr,
282          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
283             {
284                 let _neg = if negative { 1 } else { 0 };
285                 match $ty {
286                     $($type => {
287                         $(if !negative && val <= uint_ty_range($utypes).1 {
288                             return Some($utypes.name_str())
289                         })*
290                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
291                             return Some($itypes.name_str())
292                         })*
293                         None
294                     },)+
295                     _ => None
296                 }
297             }
298         }
299     }
300     match t.kind() {
301         ty::Int(i) => find_fit!(i, val, negative,
302                       I8 => [U8] => [I16, I32, I64, I128],
303                       I16 => [U16] => [I32, I64, I128],
304                       I32 => [U32] => [I64, I128],
305                       I64 => [U64] => [I128],
306                       I128 => [U128] => []),
307         ty::Uint(u) => find_fit!(u, val, negative,
308                       U8 => [U8, U16, U32, U64, U128] => [],
309                       U16 => [U16, U32, U64, U128] => [],
310                       U32 => [U32, U64, U128] => [],
311                       U64 => [U64, U128] => [],
312                       U128 => [U128] => []),
313         _ => None,
314     }
315 }
316 
lint_int_literal<'tcx>( cx: &LateContext<'tcx>, type_limits: &TypeLimits, e: &'tcx hir::Expr<'tcx>, lit: &hir::Lit, t: ty::IntTy, v: u128, )317 fn lint_int_literal<'tcx>(
318     cx: &LateContext<'tcx>,
319     type_limits: &TypeLimits,
320     e: &'tcx hir::Expr<'tcx>,
321     lit: &hir::Lit,
322     t: ty::IntTy,
323     v: u128,
324 ) {
325     let int_type = t.normalize(cx.sess().target.pointer_width);
326     let (min, max) = int_ty_range(int_type);
327     let max = max as u128;
328     let negative = type_limits.negated_expr_id == Some(e.hir_id);
329 
330     // Detect literal value out of range [min, max] inclusive
331     // avoiding use of -min to prevent overflow/panic
332     if (negative && v > max + 1) || (!negative && v > max) {
333         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
334             report_bin_hex_error(
335                 cx,
336                 e,
337                 attr::IntType::SignedInt(ty::ast_int_ty(t)),
338                 repr_str,
339                 v,
340                 negative,
341             );
342             return;
343         }
344 
345         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
346         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
347             if let hir::ExprKind::Struct(..) = par_e.kind {
348                 if is_range_literal(par_e)
349                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
350                 {
351                     // The overflowing literal lint was overridden.
352                     return;
353                 }
354             }
355         }
356 
357         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
358             let mut err = lint.build(&format!("literal out of range for `{}`", t.name_str()));
359             err.note(&format!(
360                 "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
361                 cx.sess()
362                     .source_map()
363                     .span_to_snippet(lit.span)
364                     .expect("must get snippet from literal"),
365                 t.name_str(),
366                 min,
367                 max,
368             ));
369             if let Some(sugg_ty) =
370                 get_type_suggestion(&cx.typeck_results().node_type(e.hir_id), v, negative)
371             {
372                 err.help(&format!("consider using the type `{}` instead", sugg_ty));
373             }
374             err.emit();
375         });
376     }
377 }
378 
lint_uint_literal<'tcx>( cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>, lit: &hir::Lit, t: ty::UintTy, )379 fn lint_uint_literal<'tcx>(
380     cx: &LateContext<'tcx>,
381     e: &'tcx hir::Expr<'tcx>,
382     lit: &hir::Lit,
383     t: ty::UintTy,
384 ) {
385     let uint_type = t.normalize(cx.sess().target.pointer_width);
386     let (min, max) = uint_ty_range(uint_type);
387     let lit_val: u128 = match lit.node {
388         // _v is u8, within range by definition
389         ast::LitKind::Byte(_v) => return,
390         ast::LitKind::Int(v, _) => v,
391         _ => bug!(),
392     };
393     if lit_val < min || lit_val > max {
394         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
395         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
396             match par_e.kind {
397                 hir::ExprKind::Cast(..) => {
398                     if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
399                         cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
400                             lint.build("only `u8` can be cast into `char`")
401                                 .span_suggestion(
402                                     par_e.span,
403                                     &"use a `char` literal instead",
404                                     format!("'\\u{{{:X}}}'", lit_val),
405                                     Applicability::MachineApplicable,
406                                 )
407                                 .emit();
408                         });
409                         return;
410                     }
411                 }
412                 hir::ExprKind::Struct(..) if is_range_literal(par_e) => {
413                     let t = t.name_str();
414                     if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
415                         // The overflowing literal lint was overridden.
416                         return;
417                     }
418                 }
419                 _ => {}
420             }
421         }
422         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
423             report_bin_hex_error(
424                 cx,
425                 e,
426                 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
427                 repr_str,
428                 lit_val,
429                 false,
430             );
431             return;
432         }
433         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
434             lint.build(&format!("literal out of range for `{}`", t.name_str()))
435                 .note(&format!(
436                     "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
437                     cx.sess()
438                         .source_map()
439                         .span_to_snippet(lit.span)
440                         .expect("must get snippet from literal"),
441                     t.name_str(),
442                     min,
443                     max,
444                 ))
445                 .emit()
446         });
447     }
448 }
449 
lint_literal<'tcx>( cx: &LateContext<'tcx>, type_limits: &TypeLimits, e: &'tcx hir::Expr<'tcx>, lit: &hir::Lit, )450 fn lint_literal<'tcx>(
451     cx: &LateContext<'tcx>,
452     type_limits: &TypeLimits,
453     e: &'tcx hir::Expr<'tcx>,
454     lit: &hir::Lit,
455 ) {
456     match *cx.typeck_results().node_type(e.hir_id).kind() {
457         ty::Int(t) => {
458             match lit.node {
459                 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
460                     lint_int_literal(cx, type_limits, e, lit, t, v)
461                 }
462                 _ => bug!(),
463             };
464         }
465         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
466         ty::Float(t) => {
467             let is_infinite = match lit.node {
468                 ast::LitKind::Float(v, _) => match t {
469                     ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
470                     ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
471                 },
472                 _ => bug!(),
473             };
474             if is_infinite == Ok(true) {
475                 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
476                     lint.build(&format!("literal out of range for `{}`", t.name_str()))
477                         .note(&format!(
478                             "the literal `{}` does not fit into the type `{}` and will be converted to `{}::INFINITY`",
479                             cx.sess()
480                                 .source_map()
481                                 .span_to_snippet(lit.span)
482                                 .expect("must get snippet from literal"),
483                             t.name_str(),
484                             t.name_str(),
485                         ))
486                         .emit();
487                 });
488             }
489         }
490         _ => {}
491     }
492 }
493 
494 impl<'tcx> LateLintPass<'tcx> for TypeLimits {
check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>)495     fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
496         match e.kind {
497             hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
498                 // propagate negation, if the negation itself isn't negated
499                 if self.negated_expr_id != Some(e.hir_id) {
500                     self.negated_expr_id = Some(expr.hir_id);
501                 }
502             }
503             hir::ExprKind::Binary(binop, ref l, ref r) => {
504                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
505                     cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
506                         lint.build("comparison is useless due to type limits").emit()
507                     });
508                 }
509             }
510             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
511             _ => {}
512         };
513 
514         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
515             match binop.node {
516                 hir::BinOpKind::Lt => v > min && v <= max,
517                 hir::BinOpKind::Le => v >= min && v < max,
518                 hir::BinOpKind::Gt => v >= min && v < max,
519                 hir::BinOpKind::Ge => v > min && v <= max,
520                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
521                 _ => bug!(),
522             }
523         }
524 
525         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
526             source_map::respan(
527                 binop.span,
528                 match binop.node {
529                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
530                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
531                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
532                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
533                     _ => return binop,
534                 },
535             )
536         }
537 
538         fn check_limits(
539             cx: &LateContext<'_>,
540             binop: hir::BinOp,
541             l: &hir::Expr<'_>,
542             r: &hir::Expr<'_>,
543         ) -> bool {
544             let (lit, expr, swap) = match (&l.kind, &r.kind) {
545                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
546                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
547                 _ => return true,
548             };
549             // Normalize the binop so that the literal is always on the RHS in
550             // the comparison
551             let norm_binop = if swap { rev_binop(binop) } else { binop };
552             match *cx.typeck_results().node_type(expr.hir_id).kind() {
553                 ty::Int(int_ty) => {
554                     let (min, max) = int_ty_range(int_ty);
555                     let lit_val: i128 = match lit.kind {
556                         hir::ExprKind::Lit(ref li) => match li.node {
557                             ast::LitKind::Int(
558                                 v,
559                                 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
560                             ) => v as i128,
561                             _ => return true,
562                         },
563                         _ => bug!(),
564                     };
565                     is_valid(norm_binop, lit_val, min, max)
566                 }
567                 ty::Uint(uint_ty) => {
568                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
569                     let lit_val: u128 = match lit.kind {
570                         hir::ExprKind::Lit(ref li) => match li.node {
571                             ast::LitKind::Int(v, _) => v,
572                             _ => return true,
573                         },
574                         _ => bug!(),
575                     };
576                     is_valid(norm_binop, lit_val, min, max)
577                 }
578                 _ => true,
579             }
580         }
581 
582         fn is_comparison(binop: hir::BinOp) -> bool {
583             matches!(
584                 binop.node,
585                 hir::BinOpKind::Eq
586                     | hir::BinOpKind::Lt
587                     | hir::BinOpKind::Le
588                     | hir::BinOpKind::Ne
589                     | hir::BinOpKind::Ge
590                     | hir::BinOpKind::Gt
591             )
592         }
593     }
594 }
595 
596 declare_lint! {
597     /// The `improper_ctypes` lint detects incorrect use of types in foreign
598     /// modules.
599     ///
600     /// ### Example
601     ///
602     /// ```rust
603     /// extern "C" {
604     ///     static STATIC: String;
605     /// }
606     /// ```
607     ///
608     /// {{produces}}
609     ///
610     /// ### Explanation
611     ///
612     /// The compiler has several checks to verify that types used in `extern`
613     /// blocks are safe and follow certain rules to ensure proper
614     /// compatibility with the foreign interfaces. This lint is issued when it
615     /// detects a probable mistake in a definition. The lint usually should
616     /// provide a description of the issue, along with possibly a hint on how
617     /// to resolve it.
618     IMPROPER_CTYPES,
619     Warn,
620     "proper use of libc types in foreign modules"
621 }
622 
623 declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
624 
625 declare_lint! {
626     /// The `improper_ctypes_definitions` lint detects incorrect use of
627     /// [`extern` function] definitions.
628     ///
629     /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
630     ///
631     /// ### Example
632     ///
633     /// ```rust
634     /// # #![allow(unused)]
635     /// pub extern "C" fn str_type(p: &str) { }
636     /// ```
637     ///
638     /// {{produces}}
639     ///
640     /// ### Explanation
641     ///
642     /// There are many parameter and return types that may be specified in an
643     /// `extern` function that are not compatible with the given ABI. This
644     /// lint is an alert that these types should not be used. The lint usually
645     /// should provide a description of the issue, along with possibly a hint
646     /// on how to resolve it.
647     IMPROPER_CTYPES_DEFINITIONS,
648     Warn,
649     "proper use of libc types in foreign item definitions"
650 }
651 
652 declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
653 
654 #[derive(Clone, Copy)]
655 crate enum CItemKind {
656     Declaration,
657     Definition,
658 }
659 
660 struct ImproperCTypesVisitor<'a, 'tcx> {
661     cx: &'a LateContext<'tcx>,
662     mode: CItemKind,
663 }
664 
665 enum FfiResult<'tcx> {
666     FfiSafe,
667     FfiPhantom(Ty<'tcx>),
668     FfiUnsafe { ty: Ty<'tcx>, reason: String, help: Option<String> },
669 }
670 
nonnull_optimization_guaranteed<'tcx>(tcx: TyCtxt<'tcx>, def: &ty::AdtDef) -> bool671 crate fn nonnull_optimization_guaranteed<'tcx>(tcx: TyCtxt<'tcx>, def: &ty::AdtDef) -> bool {
672     tcx.get_attrs(def.did).iter().any(|a| a.has_name(sym::rustc_nonnull_optimization_guaranteed))
673 }
674 
675 /// `repr(transparent)` structs can have a single non-ZST field, this function returns that
676 /// field.
transparent_newtype_field<'a, 'tcx>( tcx: TyCtxt<'tcx>, variant: &'a ty::VariantDef, ) -> Option<&'a ty::FieldDef>677 pub fn transparent_newtype_field<'a, 'tcx>(
678     tcx: TyCtxt<'tcx>,
679     variant: &'a ty::VariantDef,
680 ) -> Option<&'a ty::FieldDef> {
681     let param_env = tcx.param_env(variant.def_id);
682     variant.fields.iter().find(|field| {
683         let field_ty = tcx.type_of(field.did);
684         let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
685         !is_zst
686     })
687 }
688 
689 /// Is type known to be non-null?
ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool690 fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
691     let tcx = cx.tcx;
692     match ty.kind() {
693         ty::FnPtr(_) => true,
694         ty::Ref(..) => true,
695         ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
696         ty::Adt(def, substs) if def.repr.transparent() && !def.is_union() => {
697             let marked_non_null = nonnull_optimization_guaranteed(tcx, &def);
698 
699             if marked_non_null {
700                 return true;
701             }
702 
703             // Types with a `#[repr(no_niche)]` attribute have their niche hidden.
704             // The attribute is used by the UnsafeCell for example (the only use so far).
705             if def.repr.hide_niche() {
706                 return false;
707             }
708 
709             def.variants
710                 .iter()
711                 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
712                 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
713         }
714         _ => false,
715     }
716 }
717 
718 /// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
719 /// If the type passed in was not scalar, returns None.
get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>>720 fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
721     let tcx = cx.tcx;
722     Some(match *ty.kind() {
723         ty::Adt(field_def, field_substs) => {
724             let inner_field_ty = {
725                 let first_non_zst_ty =
726                     field_def.variants.iter().filter_map(|v| transparent_newtype_field(cx.tcx, v));
727                 debug_assert_eq!(
728                     first_non_zst_ty.clone().count(),
729                     1,
730                     "Wrong number of fields for transparent type"
731                 );
732                 first_non_zst_ty
733                     .last()
734                     .expect("No non-zst fields in transparent type.")
735                     .ty(tcx, field_substs)
736             };
737             return get_nullable_type(cx, inner_field_ty);
738         }
739         ty::Int(ty) => tcx.mk_mach_int(ty),
740         ty::Uint(ty) => tcx.mk_mach_uint(ty),
741         ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
742         // As these types are always non-null, the nullable equivalent of
743         // Option<T> of these types are their raw pointer counterparts.
744         ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
745         ty::FnPtr(..) => {
746             // There is no nullable equivalent for Rust's function pointers -- you
747             // must use an Option<fn(..) -> _> to represent it.
748             ty
749         }
750 
751         // We should only ever reach this case if ty_is_known_nonnull is extended
752         // to other types.
753         ref unhandled => {
754             debug!(
755                 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
756                 unhandled, ty
757             );
758             return None;
759         }
760     })
761 }
762 
763 /// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
764 /// can, return the type that `ty` can be safely converted to, otherwise return `None`.
765 /// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
766 /// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
767 /// FIXME: This duplicates code in codegen.
repr_nullable_ptr<'tcx>( cx: &LateContext<'tcx>, ty: Ty<'tcx>, ckind: CItemKind, ) -> Option<Ty<'tcx>>768 crate fn repr_nullable_ptr<'tcx>(
769     cx: &LateContext<'tcx>,
770     ty: Ty<'tcx>,
771     ckind: CItemKind,
772 ) -> Option<Ty<'tcx>> {
773     debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
774     if let ty::Adt(ty_def, substs) = ty.kind() {
775         let field_ty = match &ty_def.variants.raw[..] {
776             [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
777                 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
778                 _ => return None,
779             },
780             _ => return None,
781         };
782 
783         if !ty_is_known_nonnull(cx, field_ty, ckind) {
784             return None;
785         }
786 
787         // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
788         // If the computed size for the field and the enum are different, the nonnull optimization isn't
789         // being applied (and we've got a problem somewhere).
790         let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
791         if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
792             bug!("improper_ctypes: Option nonnull optimization not applied?");
793         }
794 
795         // Return the nullable type this Option-like enum can be safely represented with.
796         let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
797         if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
798             match (field_ty_scalar.valid_range.start, field_ty_scalar.valid_range.end) {
799                 (0, _) => unreachable!("Non-null optimisation extended to a non-zero value."),
800                 (1, _) => {
801                     return Some(get_nullable_type(cx, field_ty).unwrap());
802                 }
803                 (start, end) => unreachable!("Unhandled start and end range: ({}, {})", start, end),
804             };
805         }
806     }
807     None
808 }
809 
810 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
811     /// Check if the type is array and emit an unsafe type lint.
check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool812     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
813         if let ty::Array(..) = ty.kind() {
814             self.emit_ffi_unsafe_type_lint(
815                 ty,
816                 sp,
817                 "passing raw arrays by value is not FFI-safe",
818                 Some("consider passing a pointer to the array"),
819             );
820             true
821         } else {
822             false
823         }
824     }
825 
826     /// Checks if the given field's type is "ffi-safe".
check_field_type_for_ffi( &self, cache: &mut FxHashSet<Ty<'tcx>>, field: &ty::FieldDef, substs: SubstsRef<'tcx>, ) -> FfiResult<'tcx>827     fn check_field_type_for_ffi(
828         &self,
829         cache: &mut FxHashSet<Ty<'tcx>>,
830         field: &ty::FieldDef,
831         substs: SubstsRef<'tcx>,
832     ) -> FfiResult<'tcx> {
833         let field_ty = field.ty(self.cx.tcx, substs);
834         if field_ty.has_opaque_types() {
835             self.check_type_for_ffi(cache, field_ty)
836         } else {
837             let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
838             self.check_type_for_ffi(cache, field_ty)
839         }
840     }
841 
842     /// Checks if the given `VariantDef`'s field types are "ffi-safe".
check_variant_for_ffi( &self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>, def: &ty::AdtDef, variant: &ty::VariantDef, substs: SubstsRef<'tcx>, ) -> FfiResult<'tcx>843     fn check_variant_for_ffi(
844         &self,
845         cache: &mut FxHashSet<Ty<'tcx>>,
846         ty: Ty<'tcx>,
847         def: &ty::AdtDef,
848         variant: &ty::VariantDef,
849         substs: SubstsRef<'tcx>,
850     ) -> FfiResult<'tcx> {
851         use FfiResult::*;
852 
853         if def.repr.transparent() {
854             // Can assume that at most one field is not a ZST, so only check
855             // that field's type for FFI-safety.
856             if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
857                 self.check_field_type_for_ffi(cache, field, substs)
858             } else {
859                 // All fields are ZSTs; this means that the type should behave
860                 // like (), which is FFI-unsafe
861                 FfiUnsafe {
862                     ty,
863                     reason: "this struct contains only zero-sized fields".into(),
864                     help: None,
865                 }
866             }
867         } else {
868             // We can't completely trust repr(C) markings; make sure the fields are
869             // actually safe.
870             let mut all_phantom = !variant.fields.is_empty();
871             for field in &variant.fields {
872                 match self.check_field_type_for_ffi(cache, &field, substs) {
873                     FfiSafe => {
874                         all_phantom = false;
875                     }
876                     FfiPhantom(..) if def.is_enum() => {
877                         return FfiUnsafe {
878                             ty,
879                             reason: "this enum contains a PhantomData field".into(),
880                             help: None,
881                         };
882                     }
883                     FfiPhantom(..) => {}
884                     r => return r,
885                 }
886             }
887 
888             if all_phantom { FfiPhantom(ty) } else { FfiSafe }
889         }
890     }
891 
892     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
893     /// representation which can be exported to C code).
check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx>894     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
895         use FfiResult::*;
896 
897         let tcx = self.cx.tcx;
898 
899         // Protect against infinite recursion, for example
900         // `struct S(*mut S);`.
901         // FIXME: A recursion limit is necessary as well, for irregular
902         // recursive types.
903         if !cache.insert(ty) {
904             return FfiSafe;
905         }
906 
907         match *ty.kind() {
908             ty::Adt(def, substs) => {
909                 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
910                     if ty.boxed_ty().is_sized(tcx.at(DUMMY_SP), self.cx.param_env) {
911                         return FfiSafe;
912                     } else {
913                         return FfiUnsafe {
914                             ty,
915                             reason: "box cannot be represented as a single pointer".to_string(),
916                             help: None,
917                         };
918                     }
919                 }
920                 if def.is_phantom_data() {
921                     return FfiPhantom(ty);
922                 }
923                 match def.adt_kind() {
924                     AdtKind::Struct | AdtKind::Union => {
925                         let kind = if def.is_struct() { "struct" } else { "union" };
926 
927                         if !def.repr.c() && !def.repr.transparent() {
928                             return FfiUnsafe {
929                                 ty,
930                                 reason: format!("this {} has unspecified layout", kind),
931                                 help: Some(format!(
932                                     "consider adding a `#[repr(C)]` or \
933                                              `#[repr(transparent)]` attribute to this {}",
934                                     kind
935                                 )),
936                             };
937                         }
938 
939                         let is_non_exhaustive =
940                             def.non_enum_variant().is_field_list_non_exhaustive();
941                         if is_non_exhaustive && !def.did.is_local() {
942                             return FfiUnsafe {
943                                 ty,
944                                 reason: format!("this {} is non-exhaustive", kind),
945                                 help: None,
946                             };
947                         }
948 
949                         if def.non_enum_variant().fields.is_empty() {
950                             return FfiUnsafe {
951                                 ty,
952                                 reason: format!("this {} has no fields", kind),
953                                 help: Some(format!("consider adding a member to this {}", kind)),
954                             };
955                         }
956 
957                         self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
958                     }
959                     AdtKind::Enum => {
960                         if def.variants.is_empty() {
961                             // Empty enums are okay... although sort of useless.
962                             return FfiSafe;
963                         }
964 
965                         // Check for a repr() attribute to specify the size of the
966                         // discriminant.
967                         if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
968                             // Special-case types like `Option<extern fn()>`.
969                             if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
970                                 return FfiUnsafe {
971                                     ty,
972                                     reason: "enum has no representation hint".into(),
973                                     help: Some(
974                                         "consider adding a `#[repr(C)]`, \
975                                                 `#[repr(transparent)]`, or integer `#[repr(...)]` \
976                                                 attribute to this enum"
977                                             .into(),
978                                     ),
979                                 };
980                             }
981                         }
982 
983                         if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
984                             return FfiUnsafe {
985                                 ty,
986                                 reason: "this enum is non-exhaustive".into(),
987                                 help: None,
988                             };
989                         }
990 
991                         // Check the contained variants.
992                         for variant in &def.variants {
993                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
994                             if is_non_exhaustive && !variant.def_id.is_local() {
995                                 return FfiUnsafe {
996                                     ty,
997                                     reason: "this enum has non-exhaustive variants".into(),
998                                     help: None,
999                                 };
1000                             }
1001 
1002                             match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1003                                 FfiSafe => (),
1004                                 r => return r,
1005                             }
1006                         }
1007 
1008                         FfiSafe
1009                     }
1010                 }
1011             }
1012 
1013             ty::Char => FfiUnsafe {
1014                 ty,
1015                 reason: "the `char` type has no C equivalent".into(),
1016                 help: Some("consider using `u32` or `libc::wchar_t` instead".into()),
1017             },
1018 
1019             ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => FfiUnsafe {
1020                 ty,
1021                 reason: "128-bit integers don't currently have a known stable ABI".into(),
1022                 help: None,
1023             },
1024 
1025             // Primitive types with a stable representation.
1026             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
1027 
1028             ty::Slice(_) => FfiUnsafe {
1029                 ty,
1030                 reason: "slices have no C equivalent".into(),
1031                 help: Some("consider using a raw pointer instead".into()),
1032             },
1033 
1034             ty::Dynamic(..) => {
1035                 FfiUnsafe { ty, reason: "trait objects have no C equivalent".into(), help: None }
1036             }
1037 
1038             ty::Str => FfiUnsafe {
1039                 ty,
1040                 reason: "string slices have no C equivalent".into(),
1041                 help: Some("consider using `*const u8` and a length instead".into()),
1042             },
1043 
1044             ty::Tuple(..) => FfiUnsafe {
1045                 ty,
1046                 reason: "tuples have unspecified layout".into(),
1047                 help: Some("consider using a struct instead".into()),
1048             },
1049 
1050             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1051                 if {
1052                     matches!(self.mode, CItemKind::Definition)
1053                         && ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
1054                 } =>
1055             {
1056                 FfiSafe
1057             }
1058 
1059             ty::RawPtr(ty::TypeAndMut { ty, .. })
1060                 if match ty.kind() {
1061                     ty::Tuple(tuple) => tuple.is_empty(),
1062                     _ => false,
1063                 } =>
1064             {
1065                 FfiSafe
1066             }
1067 
1068             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1069                 self.check_type_for_ffi(cache, ty)
1070             }
1071 
1072             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
1073 
1074             ty::FnPtr(sig) => {
1075                 if self.is_internal_abi(sig.abi()) {
1076                     return FfiUnsafe {
1077                         ty,
1078                         reason: "this function pointer has Rust-specific calling convention".into(),
1079                         help: Some(
1080                             "consider using an `extern fn(...) -> ...` \
1081                                     function pointer instead"
1082                                 .into(),
1083                         ),
1084                     };
1085                 }
1086 
1087                 let sig = tcx.erase_late_bound_regions(sig);
1088                 if !sig.output().is_unit() {
1089                     let r = self.check_type_for_ffi(cache, sig.output());
1090                     match r {
1091                         FfiSafe => {}
1092                         _ => {
1093                             return r;
1094                         }
1095                     }
1096                 }
1097                 for arg in sig.inputs() {
1098                     let r = self.check_type_for_ffi(cache, arg);
1099                     match r {
1100                         FfiSafe => {}
1101                         _ => {
1102                             return r;
1103                         }
1104                     }
1105                 }
1106                 FfiSafe
1107             }
1108 
1109             ty::Foreign(..) => FfiSafe,
1110 
1111             // While opaque types are checked for earlier, if a projection in a struct field
1112             // normalizes to an opaque type, then it will reach this branch.
1113             ty::Opaque(..) => {
1114                 FfiUnsafe { ty, reason: "opaque types have no C equivalent".into(), help: None }
1115             }
1116 
1117             // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1118             //  so they are currently ignored for the purposes of this lint.
1119             ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
1120                 FfiSafe
1121             }
1122 
1123             ty::Param(..)
1124             | ty::Projection(..)
1125             | ty::Infer(..)
1126             | ty::Bound(..)
1127             | ty::Error(_)
1128             | ty::Closure(..)
1129             | ty::Generator(..)
1130             | ty::GeneratorWitness(..)
1131             | ty::Placeholder(..)
1132             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
1133         }
1134     }
1135 
emit_ffi_unsafe_type_lint( &mut self, ty: Ty<'tcx>, sp: Span, note: &str, help: Option<&str>, )1136     fn emit_ffi_unsafe_type_lint(
1137         &mut self,
1138         ty: Ty<'tcx>,
1139         sp: Span,
1140         note: &str,
1141         help: Option<&str>,
1142     ) {
1143         let lint = match self.mode {
1144             CItemKind::Declaration => IMPROPER_CTYPES,
1145             CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
1146         };
1147 
1148         self.cx.struct_span_lint(lint, sp, |lint| {
1149             let item_description = match self.mode {
1150                 CItemKind::Declaration => "block",
1151                 CItemKind::Definition => "fn",
1152             };
1153             let mut diag = lint.build(&format!(
1154                 "`extern` {} uses type `{}`, which is not FFI-safe",
1155                 item_description, ty
1156             ));
1157             diag.span_label(sp, "not FFI-safe");
1158             if let Some(help) = help {
1159                 diag.help(help);
1160             }
1161             diag.note(note);
1162             if let ty::Adt(def, _) = ty.kind() {
1163                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
1164                     diag.span_note(sp, "the type is defined here");
1165                 }
1166             }
1167             diag.emit();
1168         });
1169     }
1170 
check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool1171     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1172         struct ProhibitOpaqueTypes<'a, 'tcx> {
1173             cx: &'a LateContext<'tcx>,
1174         }
1175 
1176         impl<'a, 'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
1177             type BreakTy = Ty<'tcx>;
1178             fn tcx_for_anon_const_substs(&self) -> Option<TyCtxt<'tcx>> {
1179                 Some(self.cx.tcx)
1180             }
1181 
1182             fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1183                 match ty.kind() {
1184                     ty::Opaque(..) => ControlFlow::Break(ty),
1185                     // Consider opaque types within projections FFI-safe if they do not normalize
1186                     // to more opaque types.
1187                     ty::Projection(..) => {
1188                         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1189 
1190                         // If `ty` is an opaque type directly then `super_visit_with` won't invoke
1191                         // this function again.
1192                         if ty.has_opaque_types() {
1193                             self.visit_ty(ty)
1194                         } else {
1195                             ControlFlow::CONTINUE
1196                         }
1197                     }
1198                     _ => ty.super_visit_with(self),
1199                 }
1200             }
1201         }
1202 
1203         if let Some(ty) = ty.visit_with(&mut ProhibitOpaqueTypes { cx: self.cx }).break_value() {
1204             self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
1205             true
1206         } else {
1207             false
1208         }
1209     }
1210 
check_type_for_ffi_and_report_errors( &mut self, sp: Span, ty: Ty<'tcx>, is_static: bool, is_return_type: bool, )1211     fn check_type_for_ffi_and_report_errors(
1212         &mut self,
1213         sp: Span,
1214         ty: Ty<'tcx>,
1215         is_static: bool,
1216         is_return_type: bool,
1217     ) {
1218         // We have to check for opaque types before `normalize_erasing_regions`,
1219         // which will replace opaque types with their underlying concrete type.
1220         if self.check_for_opaque_ty(sp, ty) {
1221             // We've already emitted an error due to an opaque type.
1222             return;
1223         }
1224 
1225         // it is only OK to use this function because extern fns cannot have
1226         // any generic types right now:
1227         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1228 
1229         // C doesn't really support passing arrays by value - the only way to pass an array by value
1230         // is through a struct. So, first test that the top level isn't an array, and then
1231         // recursively check the types inside.
1232         if !is_static && self.check_for_array_ty(sp, ty) {
1233             return;
1234         }
1235 
1236         // Don't report FFI errors for unit return types. This check exists here, and not in
1237         // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1238         // happened.
1239         if is_return_type && ty.is_unit() {
1240             return;
1241         }
1242 
1243         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
1244             FfiResult::FfiSafe => {}
1245             FfiResult::FfiPhantom(ty) => {
1246                 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
1247             }
1248             // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1249             // argument, which after substitution, is `()`, then this branch can be hit.
1250             FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
1251             FfiResult::FfiUnsafe { ty, reason, help } => {
1252                 self.emit_ffi_unsafe_type_lint(ty, sp, &reason, help.as_deref());
1253             }
1254         }
1255     }
1256 
check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>)1257     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
1258         let def_id = self.cx.tcx.hir().local_def_id(id);
1259         let sig = self.cx.tcx.fn_sig(def_id);
1260         let sig = self.cx.tcx.erase_late_bound_regions(sig);
1261 
1262         for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
1263             self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false, false);
1264         }
1265 
1266         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
1267             let ret_ty = sig.output();
1268             self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
1269         }
1270     }
1271 
check_foreign_static(&mut self, id: hir::HirId, span: Span)1272     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1273         let def_id = self.cx.tcx.hir().local_def_id(id);
1274         let ty = self.cx.tcx.type_of(def_id);
1275         self.check_type_for_ffi_and_report_errors(span, ty, true, false);
1276     }
1277 
is_internal_abi(&self, abi: SpecAbi) -> bool1278     fn is_internal_abi(&self, abi: SpecAbi) -> bool {
1279         matches!(
1280             abi,
1281             SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1282         )
1283     }
1284 }
1285 
1286 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>)1287     fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
1288         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
1289         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
1290 
1291         if !vis.is_internal_abi(abi) {
1292             match it.kind {
1293                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1294                     vis.check_foreign_fn(it.hir_id(), decl);
1295                 }
1296                 hir::ForeignItemKind::Static(ref ty, _) => {
1297                     vis.check_foreign_static(it.hir_id(), ty.span);
1298                 }
1299                 hir::ForeignItemKind::Type => (),
1300             }
1301         }
1302     }
1303 }
1304 
1305 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
check_fn( &mut self, cx: &LateContext<'tcx>, kind: hir::intravisit::FnKind<'tcx>, decl: &'tcx hir::FnDecl<'_>, _: &'tcx hir::Body<'_>, _: Span, hir_id: hir::HirId, )1306     fn check_fn(
1307         &mut self,
1308         cx: &LateContext<'tcx>,
1309         kind: hir::intravisit::FnKind<'tcx>,
1310         decl: &'tcx hir::FnDecl<'_>,
1311         _: &'tcx hir::Body<'_>,
1312         _: Span,
1313         hir_id: hir::HirId,
1314     ) {
1315         use hir::intravisit::FnKind;
1316 
1317         let abi = match kind {
1318             FnKind::ItemFn(_, _, header, ..) => header.abi,
1319             FnKind::Method(_, sig, ..) => sig.header.abi,
1320             _ => return,
1321         };
1322 
1323         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
1324         if !vis.is_internal_abi(abi) {
1325             vis.check_foreign_fn(hir_id, decl);
1326         }
1327     }
1328 }
1329 
1330 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1331 
1332 impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>)1333     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1334         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1335             let t = cx.tcx.type_of(it.def_id);
1336             let ty = cx.tcx.erase_regions(t);
1337             let layout = match cx.layout_of(ty) {
1338                 Ok(layout) => layout,
1339                 Err(
1340                     ty::layout::LayoutError::Unknown(_) | ty::layout::LayoutError::SizeOverflow(_),
1341                 ) => return,
1342             };
1343             let (variants, tag) = match layout.variants {
1344                 Variants::Multiple {
1345                     tag_encoding: TagEncoding::Direct, tag, ref variants, ..
1346                 } => (variants, tag),
1347                 _ => return,
1348             };
1349 
1350             let tag_size = tag.value.size(&cx.tcx).bytes();
1351 
1352             debug!(
1353                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1354                 t,
1355                 layout.size.bytes(),
1356                 layout
1357             );
1358 
1359             let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
1360                 .map(|(variant, variant_layout)| {
1361                     // Subtract the size of the enum tag.
1362                     let bytes = variant_layout.size.bytes().saturating_sub(tag_size);
1363 
1364                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1365                     bytes
1366                 })
1367                 .enumerate()
1368                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1369                     if size > l {
1370                         (size, l, idx)
1371                     } else if size > s {
1372                         (l, size, li)
1373                     } else {
1374                         (l, s, li)
1375                     }
1376                 });
1377 
1378             // We only warn if the largest variant is at least thrice as large as
1379             // the second-largest.
1380             if largest > slargest * 3 && slargest > 0 {
1381                 cx.struct_span_lint(
1382                     VARIANT_SIZE_DIFFERENCES,
1383                     enum_definition.variants[largest_index].span,
1384                     |lint| {
1385                         lint.build(&format!(
1386                             "enum variant is more than three times \
1387                                           larger ({} bytes) than the next largest",
1388                             largest
1389                         ))
1390                         .emit()
1391                     },
1392                 );
1393             }
1394         }
1395     }
1396 }
1397 
1398 declare_lint! {
1399     /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1400     /// to an atomic operation that does not support that ordering.
1401     ///
1402     /// ### Example
1403     ///
1404     /// ```rust,compile_fail
1405     /// # use core::sync::atomic::{AtomicU8, Ordering};
1406     /// let atom = AtomicU8::new(0);
1407     /// let value = atom.load(Ordering::Release);
1408     /// # let _ = value;
1409     /// ```
1410     ///
1411     /// {{produces}}
1412     ///
1413     /// ### Explanation
1414     ///
1415     /// Some atomic operations are only supported for a subset of the
1416     /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1417     /// an unconditional panic at runtime, which is detected by this lint.
1418     ///
1419     /// This lint will trigger in the following cases: (where `AtomicType` is an
1420     /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1421     /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1422     ///
1423     /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1424     ///   `AtomicType::store`.
1425     ///
1426     /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1427     ///   `AtomicType::load`.
1428     ///
1429     /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1430     ///   `core::sync::atomic::compiler_fence`.
1431     ///
1432     /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1433     ///   ordering for any of `AtomicType::compare_exchange`,
1434     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
1435     ///
1436     /// - Passing in a pair of orderings to `AtomicType::compare_exchange`,
1437     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`
1438     ///   where the failure ordering is stronger than the success ordering.
1439     INVALID_ATOMIC_ORDERING,
1440     Deny,
1441     "usage of invalid atomic ordering in atomic operations and memory fences"
1442 }
1443 
1444 declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1445 
1446 impl InvalidAtomicOrdering {
inherent_atomic_method_call<'hir>( cx: &LateContext<'_>, expr: &Expr<'hir>, recognized_names: &[Symbol], ) -> Option<(Symbol, &'hir [Expr<'hir>])>1447     fn inherent_atomic_method_call<'hir>(
1448         cx: &LateContext<'_>,
1449         expr: &Expr<'hir>,
1450         recognized_names: &[Symbol], // used for fast path calculation
1451     ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1452         const ATOMIC_TYPES: &[Symbol] = &[
1453             sym::AtomicBool,
1454             sym::AtomicPtr,
1455             sym::AtomicUsize,
1456             sym::AtomicU8,
1457             sym::AtomicU16,
1458             sym::AtomicU32,
1459             sym::AtomicU64,
1460             sym::AtomicU128,
1461             sym::AtomicIsize,
1462             sym::AtomicI8,
1463             sym::AtomicI16,
1464             sym::AtomicI32,
1465             sym::AtomicI64,
1466             sym::AtomicI128,
1467         ];
1468         if_chain! {
1469             if let ExprKind::MethodCall(ref method_path, _, args, _) = &expr.kind;
1470             if recognized_names.contains(&method_path.ident.name);
1471             if let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id);
1472             if let Some(impl_did) = cx.tcx.impl_of_method(m_def_id);
1473             if let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def();
1474             // skip extension traits, only lint functions from the standard library
1475             if cx.tcx.trait_id_of_impl(impl_did).is_none();
1476 
1477             if let Some(parent) = cx.tcx.parent(adt.did);
1478             if cx.tcx.is_diagnostic_item(sym::atomic_mod, parent);
1479             if ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did));
1480             then {
1481                 return Some((method_path.ident.name, args));
1482             }
1483         }
1484         None
1485     }
1486 
matches_ordering(cx: &LateContext<'_>, did: DefId, orderings: &[Symbol]) -> bool1487     fn matches_ordering(cx: &LateContext<'_>, did: DefId, orderings: &[Symbol]) -> bool {
1488         let tcx = cx.tcx;
1489         let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
1490         orderings.iter().any(|ordering| {
1491             tcx.item_name(did) == *ordering && {
1492                 let parent = tcx.parent(did);
1493                 parent == atomic_ordering
1494                     // needed in case this is a ctor, not a variant
1495                     || parent.map_or(false, |parent| tcx.parent(parent) == atomic_ordering)
1496             }
1497         })
1498     }
1499 
opt_ordering_defid(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<DefId>1500     fn opt_ordering_defid(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<DefId> {
1501         if let ExprKind::Path(ref ord_qpath) = ord_arg.kind {
1502             cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()
1503         } else {
1504             None
1505         }
1506     }
1507 
check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>)1508     fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
1509         use rustc_hir::def::{DefKind, Res};
1510         use rustc_hir::QPath;
1511         if_chain! {
1512             if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store]);
1513             if let Some((ordering_arg, invalid_ordering)) = match method {
1514                 sym::load => Some((&args[1], sym::Release)),
1515                 sym::store => Some((&args[2], sym::Acquire)),
1516                 _ => None,
1517             };
1518 
1519             if let ExprKind::Path(QPath::Resolved(_, path)) = ordering_arg.kind;
1520             if let Res::Def(DefKind::Ctor(..), ctor_id) = path.res;
1521             if Self::matches_ordering(cx, ctor_id, &[invalid_ordering, sym::AcqRel]);
1522             then {
1523                 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, |diag| {
1524                     if method == sym::load {
1525                         diag.build("atomic loads cannot have `Release` or `AcqRel` ordering")
1526                             .help("consider using ordering modes `Acquire`, `SeqCst` or `Relaxed`")
1527                             .emit()
1528                     } else {
1529                         debug_assert_eq!(method, sym::store);
1530                         diag.build("atomic stores cannot have `Acquire` or `AcqRel` ordering")
1531                             .help("consider using ordering modes `Release`, `SeqCst` or `Relaxed`")
1532                             .emit();
1533                     }
1534                 });
1535             }
1536         }
1537     }
1538 
check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>)1539     fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
1540         if_chain! {
1541             if let ExprKind::Call(ref func, ref args) = expr.kind;
1542             if let ExprKind::Path(ref func_qpath) = func.kind;
1543             if let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id();
1544             if matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence));
1545             if let ExprKind::Path(ref ordering_qpath) = &args[0].kind;
1546             if let Some(ordering_def_id) = cx.qpath_res(ordering_qpath, args[0].hir_id).opt_def_id();
1547             if Self::matches_ordering(cx, ordering_def_id, &[sym::Relaxed]);
1548             then {
1549                 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, |diag| {
1550                     diag.build("memory fences cannot have `Relaxed` ordering")
1551                         .help("consider using ordering modes `Acquire`, `Release`, `AcqRel` or `SeqCst`")
1552                         .emit();
1553                 });
1554             }
1555         }
1556     }
1557 
check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>)1558     fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
1559         if_chain! {
1560             if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak]);
1561             if let Some((success_order_arg, failure_order_arg)) = match method {
1562                 sym::fetch_update => Some((&args[1], &args[2])),
1563                 sym::compare_exchange | sym::compare_exchange_weak => Some((&args[3], &args[4])),
1564                 _ => None,
1565             };
1566 
1567             if let Some(fail_ordering_def_id) = Self::opt_ordering_defid(cx, failure_order_arg);
1568             then {
1569                 // Helper type holding on to some checking and error reporting data. Has
1570                 // - (success ordering,
1571                 // - list of failure orderings forbidden by the success order,
1572                 // - suggestion message)
1573                 type OrdLintInfo = (Symbol, &'static [Symbol], &'static str);
1574                 const RELAXED: OrdLintInfo = (sym::Relaxed, &[sym::SeqCst, sym::Acquire], "ordering mode `Relaxed`");
1575                 const ACQUIRE: OrdLintInfo = (sym::Acquire, &[sym::SeqCst], "ordering modes `Acquire` or `Relaxed`");
1576                 const SEQ_CST: OrdLintInfo = (sym::SeqCst, &[], "ordering modes `Acquire`, `SeqCst` or `Relaxed`");
1577                 const RELEASE: OrdLintInfo = (sym::Release, RELAXED.1, RELAXED.2);
1578                 const ACQREL: OrdLintInfo = (sym::AcqRel, ACQUIRE.1, ACQUIRE.2);
1579                 const SEARCH: [OrdLintInfo; 5] = [RELAXED, ACQUIRE, SEQ_CST, RELEASE, ACQREL];
1580 
1581                 let success_lint_info = Self::opt_ordering_defid(cx, success_order_arg)
1582                     .and_then(|success_ord_def_id| -> Option<OrdLintInfo> {
1583                         SEARCH
1584                             .iter()
1585                             .copied()
1586                             .find(|(ordering, ..)| {
1587                                 Self::matches_ordering(cx, success_ord_def_id, &[*ordering])
1588                             })
1589                     });
1590                 if Self::matches_ordering(cx, fail_ordering_def_id, &[sym::Release, sym::AcqRel]) {
1591                     // If we don't know the success order is, use what we'd suggest
1592                     // if it were maximally permissive.
1593                     let suggested = success_lint_info.unwrap_or(SEQ_CST).2;
1594                     cx.struct_span_lint(INVALID_ATOMIC_ORDERING, failure_order_arg.span, |diag| {
1595                         let msg = format!(
1596                             "{}'s failure ordering may not be `Release` or `AcqRel`",
1597                             method,
1598                         );
1599                         diag.build(&msg)
1600                             .help(&format!("consider using {} instead", suggested))
1601                             .emit();
1602                     });
1603                 } else if let Some((success_ord, bad_ords_given_success, suggested)) = success_lint_info {
1604                     if Self::matches_ordering(cx, fail_ordering_def_id, bad_ords_given_success) {
1605                         cx.struct_span_lint(INVALID_ATOMIC_ORDERING, failure_order_arg.span, |diag| {
1606                             let msg = format!(
1607                                 "{}'s failure ordering may not be stronger than the success ordering of `{}`",
1608                                 method,
1609                                 success_ord,
1610                             );
1611                             diag.build(&msg)
1612                                 .help(&format!("consider using {} instead", suggested))
1613                                 .emit();
1614                         });
1615                     }
1616                 }
1617             }
1618         }
1619     }
1620 }
1621 
1622 impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>)1623     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1624         Self::check_atomic_load_store(cx, expr);
1625         Self::check_memory_fence(cx, expr);
1626         Self::check_atomic_compare_exchange(cx, expr);
1627     }
1628 }
1629