1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16 
17 use crate::astconv::AstConv;
18 use crate::bounds::Bounds;
19 use crate::check::intrinsic::intrinsic_operation_unsafety;
20 use crate::constrained_generic_params as cgp;
21 use crate::errors;
22 use crate::middle::resolve_lifetime as rl;
23 use rustc_ast as ast;
24 use rustc_ast::Attribute;
25 use rustc_ast::{MetaItemKind, NestedMetaItem};
26 use rustc_attr::{list_contains_name, InlineAttr, InstructionSetAttr, OptimizeAttr};
27 use rustc_data_structures::captures::Captures;
28 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
29 use rustc_errors::{struct_span_err, Applicability};
30 use rustc_hir as hir;
31 use rustc_hir::def::{CtorKind, DefKind};
32 use rustc_hir::def_id::{DefId, LocalDefId, LOCAL_CRATE};
33 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
34 use rustc_hir::weak_lang_items;
35 use rustc_hir::{GenericParamKind, HirId, Node};
36 use rustc_middle::hir::map::Map;
37 use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
38 use rustc_middle::mir::mono::Linkage;
39 use rustc_middle::ty::query::Providers;
40 use rustc_middle::ty::subst::InternalSubsts;
41 use rustc_middle::ty::util::Discr;
42 use rustc_middle::ty::util::IntTypeExt;
43 use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, Ty, TyCtxt};
44 use rustc_middle::ty::{ReprOptions, ToPredicate, WithConstness};
45 use rustc_session::lint;
46 use rustc_session::parse::feature_err;
47 use rustc_span::symbol::{kw, sym, Ident, Symbol};
48 use rustc_span::{Span, DUMMY_SP};
49 use rustc_target::spec::{abi, PanicStrategy, SanitizerSet};
50 use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
51 use std::iter;
52 
53 mod item_bounds;
54 mod type_of;
55 
56 struct OnlySelfBounds(bool);
57 
58 ///////////////////////////////////////////////////////////////////////////
59 // Main entry point
60 
collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId)61 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
62     tcx.hir().visit_item_likes_in_module(
63         module_def_id,
64         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
65     );
66 }
67 
provide(providers: &mut Providers)68 pub fn provide(providers: &mut Providers) {
69     *providers = Providers {
70         opt_const_param_of: type_of::opt_const_param_of,
71         default_anon_const_substs: type_of::default_anon_const_substs,
72         type_of: type_of::type_of,
73         item_bounds: item_bounds::item_bounds,
74         explicit_item_bounds: item_bounds::explicit_item_bounds,
75         generics_of,
76         predicates_of,
77         predicates_defined_on,
78         explicit_predicates_of,
79         super_predicates_of,
80         super_predicates_that_define_assoc_type,
81         trait_explicit_predicates_and_bounds,
82         type_param_predicates,
83         trait_def,
84         adt_def,
85         fn_sig,
86         impl_trait_ref,
87         impl_polarity,
88         is_foreign_item,
89         static_mutability,
90         generator_kind,
91         codegen_fn_attrs,
92         collect_mod_item_types,
93         should_inherit_track_caller,
94         ..*providers
95     };
96 }
97 
98 ///////////////////////////////////////////////////////////////////////////
99 
100 /// Context specific to some particular item. This is what implements
101 /// `AstConv`. It has information about the predicates that are defined
102 /// on the trait. Unfortunately, this predicate information is
103 /// available in various different forms at various points in the
104 /// process. So we can't just store a pointer to e.g., the AST or the
105 /// parsed ty form, we have to be more flexible. To this end, the
106 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
107 /// `get_type_parameter_bounds` requests, drawing the information from
108 /// the AST (`hir::Generics`), recursively.
109 pub struct ItemCtxt<'tcx> {
110     tcx: TyCtxt<'tcx>,
111     item_def_id: DefId,
112 }
113 
114 ///////////////////////////////////////////////////////////////////////////
115 
116 #[derive(Default)]
117 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
118 
119 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
120     type Map = intravisit::ErasedMap<'v>;
121 
nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map>122     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
123         NestedVisitorMap::None
124     }
visit_ty(&mut self, t: &'v hir::Ty<'v>)125     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
126         if let hir::TyKind::Infer = t.kind {
127             self.0.push(t.span);
128         }
129         intravisit::walk_ty(self, t)
130     }
visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>)131     fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) {
132         match generic_arg {
133             hir::GenericArg::Infer(inf) => {
134                 self.0.push(inf.span);
135                 intravisit::walk_inf(self, inf);
136             }
137             hir::GenericArg::Type(t) => self.visit_ty(t),
138             _ => {}
139         }
140     }
141 }
142 
143 struct CollectItemTypesVisitor<'tcx> {
144     tcx: TyCtxt<'tcx>,
145 }
146 
147 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
148 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
149 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
placeholder_type_error( tcx: TyCtxt<'tcx>, span: Option<Span>, generics: &[hir::GenericParam<'_>], placeholder_types: Vec<Span>, suggest: bool, hir_ty: Option<&hir::Ty<'_>>, kind: &'static str, )150 crate fn placeholder_type_error(
151     tcx: TyCtxt<'tcx>,
152     span: Option<Span>,
153     generics: &[hir::GenericParam<'_>],
154     placeholder_types: Vec<Span>,
155     suggest: bool,
156     hir_ty: Option<&hir::Ty<'_>>,
157     kind: &'static str,
158 ) {
159     if placeholder_types.is_empty() {
160         return;
161     }
162 
163     let type_name = generics.next_type_param_name(None);
164     let mut sugg: Vec<_> =
165         placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
166 
167     if generics.is_empty() {
168         if let Some(span) = span {
169             sugg.push((span, format!("<{}>", type_name)));
170         }
171     } else if let Some(arg) = generics
172         .iter()
173         .find(|arg| matches!(arg.name, hir::ParamName::Plain(Ident { name: kw::Underscore, .. })))
174     {
175         // Account for `_` already present in cases like `struct S<_>(_);` and suggest
176         // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
177         sugg.push((arg.span, (*type_name).to_string()));
178     } else {
179         let last = generics.iter().last().unwrap();
180         sugg.push((
181             // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
182             last.bounds_span().unwrap_or(last.span).shrink_to_hi(),
183             format!(", {}", type_name),
184         ));
185     }
186 
187     let mut err = bad_placeholder_type(tcx, placeholder_types, kind);
188 
189     // Suggest, but only if it is not a function in const or static
190     if suggest {
191         let mut is_fn = false;
192         let mut is_const_or_static = false;
193 
194         if let Some(hir_ty) = hir_ty {
195             if let hir::TyKind::BareFn(_) = hir_ty.kind {
196                 is_fn = true;
197 
198                 // Check if parent is const or static
199                 let parent_id = tcx.hir().get_parent_node(hir_ty.hir_id);
200                 let parent_node = tcx.hir().get(parent_id);
201 
202                 is_const_or_static = matches!(
203                     parent_node,
204                     Node::Item(&hir::Item {
205                         kind: hir::ItemKind::Const(..) | hir::ItemKind::Static(..),
206                         ..
207                     }) | Node::TraitItem(&hir::TraitItem {
208                         kind: hir::TraitItemKind::Const(..),
209                         ..
210                     }) | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. })
211                 );
212             }
213         }
214 
215         // if function is wrapped around a const or static,
216         // then don't show the suggestion
217         if !(is_fn && is_const_or_static) {
218             err.multipart_suggestion(
219                 "use type parameters instead",
220                 sugg,
221                 Applicability::HasPlaceholders,
222             );
223         }
224     }
225     err.emit();
226 }
227 
reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>)228 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
229     let (generics, suggest) = match &item.kind {
230         hir::ItemKind::Union(_, generics)
231         | hir::ItemKind::Enum(_, generics)
232         | hir::ItemKind::TraitAlias(generics, _)
233         | hir::ItemKind::Trait(_, _, generics, ..)
234         | hir::ItemKind::Impl(hir::Impl { generics, .. })
235         | hir::ItemKind::Struct(_, generics) => (generics, true),
236         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
237         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
238         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
239         _ => return,
240     };
241 
242     let mut visitor = PlaceholderHirTyCollector::default();
243     visitor.visit_item(item);
244 
245     placeholder_type_error(
246         tcx,
247         Some(generics.span),
248         generics.params,
249         visitor.0,
250         suggest,
251         None,
252         item.kind.descr(),
253     );
254 }
255 
256 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
257     type Map = Map<'tcx>;
258 
nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map>259     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
260         NestedVisitorMap::OnlyBodies(self.tcx.hir())
261     }
262 
visit_item(&mut self, item: &'tcx hir::Item<'tcx>)263     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
264         convert_item(self.tcx, item.item_id());
265         reject_placeholder_type_signatures_in_item(self.tcx, item);
266         intravisit::walk_item(self, item);
267     }
268 
visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>)269     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
270         for param in generics.params {
271             match param.kind {
272                 hir::GenericParamKind::Lifetime { .. } => {}
273                 hir::GenericParamKind::Type { default: Some(_), .. } => {
274                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
275                     self.tcx.ensure().type_of(def_id);
276                 }
277                 hir::GenericParamKind::Type { .. } => {}
278                 hir::GenericParamKind::Const { default, .. } => {
279                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
280                     self.tcx.ensure().type_of(def_id);
281                     if let Some(default) = default {
282                         let default_def_id = self.tcx.hir().local_def_id(default.hir_id);
283                         // need to store default and type of default
284                         self.tcx.ensure().type_of(default_def_id);
285                         self.tcx.ensure().const_param_default(def_id);
286                     }
287                 }
288             }
289         }
290         intravisit::walk_generics(self, generics);
291     }
292 
visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>)293     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
294         if let hir::ExprKind::Closure(..) = expr.kind {
295             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
296             self.tcx.ensure().generics_of(def_id);
297             self.tcx.ensure().type_of(def_id);
298         }
299         intravisit::walk_expr(self, expr);
300     }
301 
visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>)302     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
303         convert_trait_item(self.tcx, trait_item.trait_item_id());
304         intravisit::walk_trait_item(self, trait_item);
305     }
306 
visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>)307     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
308         convert_impl_item(self.tcx, impl_item.impl_item_id());
309         intravisit::walk_impl_item(self, impl_item);
310     }
311 }
312 
313 ///////////////////////////////////////////////////////////////////////////
314 // Utility types and common code for the above passes.
315 
bad_placeholder_type( tcx: TyCtxt<'tcx>, mut spans: Vec<Span>, kind: &'static str, ) -> rustc_errors::DiagnosticBuilder<'tcx>316 fn bad_placeholder_type(
317     tcx: TyCtxt<'tcx>,
318     mut spans: Vec<Span>,
319     kind: &'static str,
320 ) -> rustc_errors::DiagnosticBuilder<'tcx> {
321     let kind = if kind.ends_with('s') { format!("{}es", kind) } else { format!("{}s", kind) };
322 
323     spans.sort();
324     let mut err = struct_span_err!(
325         tcx.sess,
326         spans.clone(),
327         E0121,
328         "the type placeholder `_` is not allowed within types on item signatures for {}",
329         kind
330     );
331     for span in spans {
332         err.span_label(span, "not allowed in type signatures");
333     }
334     err
335 }
336 
337 impl ItemCtxt<'tcx> {
new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx>338     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
339         ItemCtxt { tcx, item_def_id }
340     }
341 
to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx>342     pub fn to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
343         <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_ty)
344     }
345 
hir_id(&self) -> hir::HirId346     pub fn hir_id(&self) -> hir::HirId {
347         self.tcx.hir().local_def_id_to_hir_id(self.item_def_id.expect_local())
348     }
349 
node(&self) -> hir::Node<'tcx>350     pub fn node(&self) -> hir::Node<'tcx> {
351         self.tcx.hir().get(self.hir_id())
352     }
353 }
354 
355 impl AstConv<'tcx> for ItemCtxt<'tcx> {
tcx(&self) -> TyCtxt<'tcx>356     fn tcx(&self) -> TyCtxt<'tcx> {
357         self.tcx
358     }
359 
item_def_id(&self) -> Option<DefId>360     fn item_def_id(&self) -> Option<DefId> {
361         Some(self.item_def_id)
362     }
363 
get_type_parameter_bounds( &self, span: Span, def_id: DefId, assoc_name: Ident, ) -> ty::GenericPredicates<'tcx>364     fn get_type_parameter_bounds(
365         &self,
366         span: Span,
367         def_id: DefId,
368         assoc_name: Ident,
369     ) -> ty::GenericPredicates<'tcx> {
370         self.tcx.at(span).type_param_predicates((
371             self.item_def_id,
372             def_id.expect_local(),
373             assoc_name,
374         ))
375     }
376 
re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>>377     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
378         None
379     }
380 
allow_ty_infer(&self) -> bool381     fn allow_ty_infer(&self) -> bool {
382         false
383     }
384 
ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>385     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
386         self.tcx().ty_error_with_message(span, "bad_placeholder_type")
387     }
388 
ct_infer( &self, ty: Ty<'tcx>, _: Option<&ty::GenericParamDef>, span: Span, ) -> &'tcx Const<'tcx>389     fn ct_infer(
390         &self,
391         ty: Ty<'tcx>,
392         _: Option<&ty::GenericParamDef>,
393         span: Span,
394     ) -> &'tcx Const<'tcx> {
395         bad_placeholder_type(self.tcx(), vec![span], "generic").emit();
396         // Typeck doesn't expect erased regions to be returned from `type_of`.
397         let ty = self.tcx.fold_regions(ty, &mut false, |r, _| match r {
398             ty::ReErased => self.tcx.lifetimes.re_static,
399             _ => r,
400         });
401         self.tcx().const_error(ty)
402     }
403 
projected_ty_from_poly_trait_ref( &self, span: Span, item_def_id: DefId, item_segment: &hir::PathSegment<'_>, poly_trait_ref: ty::PolyTraitRef<'tcx>, ) -> Ty<'tcx>404     fn projected_ty_from_poly_trait_ref(
405         &self,
406         span: Span,
407         item_def_id: DefId,
408         item_segment: &hir::PathSegment<'_>,
409         poly_trait_ref: ty::PolyTraitRef<'tcx>,
410     ) -> Ty<'tcx> {
411         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
412             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
413                 self,
414                 self.tcx,
415                 span,
416                 item_def_id,
417                 item_segment,
418                 trait_ref.substs,
419             );
420             self.tcx().mk_projection(item_def_id, item_substs)
421         } else {
422             // There are no late-bound regions; we can just ignore the binder.
423             let mut err = struct_span_err!(
424                 self.tcx().sess,
425                 span,
426                 E0212,
427                 "cannot use the associated type of a trait \
428                  with uninferred generic parameters"
429             );
430 
431             match self.node() {
432                 hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
433                     let item =
434                         self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(self.hir_id()));
435                     match &item.kind {
436                         hir::ItemKind::Enum(_, generics)
437                         | hir::ItemKind::Struct(_, generics)
438                         | hir::ItemKind::Union(_, generics) => {
439                             let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
440                             let (lt_sp, sugg) = match generics.params {
441                                 [] => (generics.span, format!("<{}>", lt_name)),
442                                 [bound, ..] => {
443                                     (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
444                                 }
445                             };
446                             let suggestions = vec![
447                                 (lt_sp, sugg),
448                                 (
449                                     span.with_hi(item_segment.ident.span.lo()),
450                                     format!(
451                                         "{}::",
452                                         // Replace the existing lifetimes with a new named lifetime.
453                                         self.tcx
454                                             .replace_late_bound_regions(poly_trait_ref, |_| {
455                                                 self.tcx.mk_region(ty::ReEarlyBound(
456                                                     ty::EarlyBoundRegion {
457                                                         def_id: item_def_id,
458                                                         index: 0,
459                                                         name: Symbol::intern(&lt_name),
460                                                     },
461                                                 ))
462                                             })
463                                             .0,
464                                     ),
465                                 ),
466                             ];
467                             err.multipart_suggestion(
468                                 "use a fully qualified path with explicit lifetimes",
469                                 suggestions,
470                                 Applicability::MaybeIncorrect,
471                             );
472                         }
473                         _ => {}
474                     }
475                 }
476                 hir::Node::Item(hir::Item {
477                     kind:
478                         hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
479                     ..
480                 }) => {}
481                 hir::Node::Item(_)
482                 | hir::Node::ForeignItem(_)
483                 | hir::Node::TraitItem(_)
484                 | hir::Node::ImplItem(_) => {
485                     err.span_suggestion_verbose(
486                         span.with_hi(item_segment.ident.span.lo()),
487                         "use a fully qualified path with inferred lifetimes",
488                         format!(
489                             "{}::",
490                             // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
491                             self.tcx.anonymize_late_bound_regions(poly_trait_ref).skip_binder(),
492                         ),
493                         Applicability::MaybeIncorrect,
494                     );
495                 }
496                 _ => {}
497             }
498             err.emit();
499             self.tcx().ty_error()
500         }
501     }
502 
normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx>503     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
504         // Types in item signatures are not normalized to avoid undue dependencies.
505         ty
506     }
507 
set_tainted_by_errors(&self)508     fn set_tainted_by_errors(&self) {
509         // There's no obvious place to track this, so just let it go.
510     }
511 
record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span)512     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
513         // There's no place to record types from signatures?
514     }
515 }
516 
517 /// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
get_new_lifetime_name<'tcx>( tcx: TyCtxt<'tcx>, poly_trait_ref: ty::PolyTraitRef<'tcx>, generics: &hir::Generics<'tcx>, ) -> String518 fn get_new_lifetime_name<'tcx>(
519     tcx: TyCtxt<'tcx>,
520     poly_trait_ref: ty::PolyTraitRef<'tcx>,
521     generics: &hir::Generics<'tcx>,
522 ) -> String {
523     let existing_lifetimes = tcx
524         .collect_referenced_late_bound_regions(&poly_trait_ref)
525         .into_iter()
526         .filter_map(|lt| {
527             if let ty::BoundRegionKind::BrNamed(_, name) = lt {
528                 Some(name.as_str().to_string())
529             } else {
530                 None
531             }
532         })
533         .chain(generics.params.iter().filter_map(|param| {
534             if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
535                 Some(param.name.ident().as_str().to_string())
536             } else {
537                 None
538             }
539         }))
540         .collect::<FxHashSet<String>>();
541 
542     let a_to_z_repeat_n = |n| {
543         (b'a'..=b'z').map(move |c| {
544             let mut s = '\''.to_string();
545             s.extend(std::iter::repeat(char::from(c)).take(n));
546             s
547         })
548     };
549 
550     // If all single char lifetime names are present, we wrap around and double the chars.
551     (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
552 }
553 
554 /// Returns the predicates defined on `item_def_id` of the form
555 /// `X: Foo` where `X` is the type parameter `def_id`.
type_param_predicates( tcx: TyCtxt<'_>, (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident), ) -> ty::GenericPredicates<'_>556 fn type_param_predicates(
557     tcx: TyCtxt<'_>,
558     (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident),
559 ) -> ty::GenericPredicates<'_> {
560     use rustc_hir::*;
561 
562     // In the AST, bounds can derive from two places. Either
563     // written inline like `<T: Foo>` or in a where-clause like
564     // `where T: Foo`.
565 
566     let param_id = tcx.hir().local_def_id_to_hir_id(def_id);
567     let param_owner = tcx.hir().ty_param_owner(param_id);
568     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
569     let generics = tcx.generics_of(param_owner_def_id);
570     let index = generics.param_def_id_to_index[&def_id.to_def_id()];
571     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
572 
573     // Don't look for bounds where the type parameter isn't in scope.
574     let parent = if item_def_id == param_owner_def_id.to_def_id() {
575         None
576     } else {
577         tcx.generics_of(item_def_id).parent
578     };
579 
580     let mut result = parent
581         .map(|parent| {
582             let icx = ItemCtxt::new(tcx, parent);
583             icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id(), assoc_name)
584         })
585         .unwrap_or_default();
586     let mut extend = None;
587 
588     let item_hir_id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
589     let ast_generics = match tcx.hir().get(item_hir_id) {
590         Node::TraitItem(item) => &item.generics,
591 
592         Node::ImplItem(item) => &item.generics,
593 
594         Node::Item(item) => {
595             match item.kind {
596                 ItemKind::Fn(.., ref generics, _)
597                 | ItemKind::Impl(hir::Impl { ref generics, .. })
598                 | ItemKind::TyAlias(_, ref generics)
599                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
600                 | ItemKind::Enum(_, ref generics)
601                 | ItemKind::Struct(_, ref generics)
602                 | ItemKind::Union(_, ref generics) => generics,
603                 ItemKind::Trait(_, _, ref generics, ..) => {
604                     // Implied `Self: Trait` and supertrait bounds.
605                     if param_id == item_hir_id {
606                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
607                         extend =
608                             Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
609                     }
610                     generics
611                 }
612                 _ => return result,
613             }
614         }
615 
616         Node::ForeignItem(item) => match item.kind {
617             ForeignItemKind::Fn(_, _, ref generics) => generics,
618             _ => return result,
619         },
620 
621         _ => return result,
622     };
623 
624     let icx = ItemCtxt::new(tcx, item_def_id);
625     let extra_predicates = extend.into_iter().chain(
626         icx.type_parameter_bounds_in_generics(
627             ast_generics,
628             param_id,
629             ty,
630             OnlySelfBounds(true),
631             Some(assoc_name),
632         )
633         .into_iter()
634         .filter(|(predicate, _)| match predicate.kind().skip_binder() {
635             ty::PredicateKind::Trait(data) => data.self_ty().is_param(index),
636             _ => false,
637         }),
638     );
639     result.predicates =
640         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
641     result
642 }
643 
644 impl ItemCtxt<'tcx> {
645     /// Finds bounds from `hir::Generics`. This requires scanning through the
646     /// AST. We do this to avoid having to convert *all* the bounds, which
647     /// would create artificial cycles. Instead, we can only convert the
648     /// bounds for a type parameter `X` if `X::Foo` is used.
type_parameter_bounds_in_generics( &self, ast_generics: &'tcx hir::Generics<'tcx>, param_id: hir::HirId, ty: Ty<'tcx>, only_self_bounds: OnlySelfBounds, assoc_name: Option<Ident>, ) -> Vec<(ty::Predicate<'tcx>, Span)>649     fn type_parameter_bounds_in_generics(
650         &self,
651         ast_generics: &'tcx hir::Generics<'tcx>,
652         param_id: hir::HirId,
653         ty: Ty<'tcx>,
654         only_self_bounds: OnlySelfBounds,
655         assoc_name: Option<Ident>,
656     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
657         let from_ty_params = ast_generics
658             .params
659             .iter()
660             .filter_map(|param| match param.kind {
661                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
662                 _ => None,
663             })
664             .flat_map(|bounds| bounds.iter())
665             .filter(|b| match assoc_name {
666                 Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
667                 None => true,
668             })
669             .flat_map(|b| predicates_from_bound(self, ty, b));
670 
671         let param_def_id = self.tcx.hir().local_def_id(param_id).to_def_id();
672         let from_where_clauses = ast_generics
673             .where_clause
674             .predicates
675             .iter()
676             .filter_map(|wp| match *wp {
677                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
678                 _ => None,
679             })
680             .flat_map(|bp| {
681                 let bt = if bp.is_param_bound(param_def_id) {
682                     Some(ty)
683                 } else if !only_self_bounds.0 {
684                     Some(self.to_ty(bp.bounded_ty))
685                 } else {
686                     None
687                 };
688                 bp.bounds
689                     .iter()
690                     .filter(|b| match assoc_name {
691                         Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
692                         None => true,
693                     })
694                     .filter_map(move |b| bt.map(|bt| (bt, b)))
695             })
696             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
697 
698         from_ty_params.chain(from_where_clauses).collect()
699     }
700 
bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool701     fn bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool {
702         debug!("bound_defines_assoc_item(b={:?}, assoc_name={:?})", b, assoc_name);
703 
704         match b {
705             hir::GenericBound::Trait(poly_trait_ref, _) => {
706                 let trait_ref = &poly_trait_ref.trait_ref;
707                 if let Some(trait_did) = trait_ref.trait_def_id() {
708                     self.tcx.trait_may_define_assoc_type(trait_did, assoc_name)
709                 } else {
710                     false
711                 }
712             }
713             _ => false,
714         }
715     }
716 }
717 
convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId)718 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId) {
719     let it = tcx.hir().item(item_id);
720     debug!("convert: item {} with id {}", it.ident, it.hir_id());
721     let def_id = item_id.def_id;
722 
723     match it.kind {
724         // These don't define types.
725         hir::ItemKind::ExternCrate(_)
726         | hir::ItemKind::Use(..)
727         | hir::ItemKind::Macro(_)
728         | hir::ItemKind::Mod(_)
729         | hir::ItemKind::GlobalAsm(_) => {}
730         hir::ItemKind::ForeignMod { items, .. } => {
731             for item in items {
732                 let item = tcx.hir().foreign_item(item.id);
733                 tcx.ensure().generics_of(item.def_id);
734                 tcx.ensure().type_of(item.def_id);
735                 tcx.ensure().predicates_of(item.def_id);
736                 match item.kind {
737                     hir::ForeignItemKind::Fn(..) => tcx.ensure().fn_sig(item.def_id),
738                     hir::ForeignItemKind::Static(..) => {
739                         let mut visitor = PlaceholderHirTyCollector::default();
740                         visitor.visit_foreign_item(item);
741                         placeholder_type_error(
742                             tcx,
743                             None,
744                             &[],
745                             visitor.0,
746                             false,
747                             None,
748                             "static variable",
749                         );
750                     }
751                     _ => (),
752                 }
753             }
754         }
755         hir::ItemKind::Enum(ref enum_definition, _) => {
756             tcx.ensure().generics_of(def_id);
757             tcx.ensure().type_of(def_id);
758             tcx.ensure().predicates_of(def_id);
759             convert_enum_variant_types(tcx, def_id.to_def_id(), enum_definition.variants);
760         }
761         hir::ItemKind::Impl { .. } => {
762             tcx.ensure().generics_of(def_id);
763             tcx.ensure().type_of(def_id);
764             tcx.ensure().impl_trait_ref(def_id);
765             tcx.ensure().predicates_of(def_id);
766         }
767         hir::ItemKind::Trait(..) => {
768             tcx.ensure().generics_of(def_id);
769             tcx.ensure().trait_def(def_id);
770             tcx.at(it.span).super_predicates_of(def_id);
771             tcx.ensure().predicates_of(def_id);
772         }
773         hir::ItemKind::TraitAlias(..) => {
774             tcx.ensure().generics_of(def_id);
775             tcx.at(it.span).super_predicates_of(def_id);
776             tcx.ensure().predicates_of(def_id);
777         }
778         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
779             tcx.ensure().generics_of(def_id);
780             tcx.ensure().type_of(def_id);
781             tcx.ensure().predicates_of(def_id);
782 
783             for f in struct_def.fields() {
784                 let def_id = tcx.hir().local_def_id(f.hir_id);
785                 tcx.ensure().generics_of(def_id);
786                 tcx.ensure().type_of(def_id);
787                 tcx.ensure().predicates_of(def_id);
788             }
789 
790             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
791                 convert_variant_ctor(tcx, ctor_hir_id);
792             }
793         }
794 
795         // Desugared from `impl Trait`, so visited by the function's return type.
796         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
797 
798         // Don't call `type_of` on opaque types, since that depends on type
799         // checking function bodies. `check_item_type` ensures that it's called
800         // instead.
801         hir::ItemKind::OpaqueTy(..) => {
802             tcx.ensure().generics_of(def_id);
803             tcx.ensure().predicates_of(def_id);
804             tcx.ensure().explicit_item_bounds(def_id);
805         }
806         hir::ItemKind::TyAlias(..)
807         | hir::ItemKind::Static(..)
808         | hir::ItemKind::Const(..)
809         | hir::ItemKind::Fn(..) => {
810             tcx.ensure().generics_of(def_id);
811             tcx.ensure().type_of(def_id);
812             tcx.ensure().predicates_of(def_id);
813             match it.kind {
814                 hir::ItemKind::Fn(..) => tcx.ensure().fn_sig(def_id),
815                 hir::ItemKind::OpaqueTy(..) => tcx.ensure().item_bounds(def_id),
816                 hir::ItemKind::Const(ty, ..) | hir::ItemKind::Static(ty, ..) => {
817                     // (#75889): Account for `const C: dyn Fn() -> _ = "";`
818                     if let hir::TyKind::TraitObject(..) = ty.kind {
819                         let mut visitor = PlaceholderHirTyCollector::default();
820                         visitor.visit_item(it);
821                         placeholder_type_error(
822                             tcx,
823                             None,
824                             &[],
825                             visitor.0,
826                             false,
827                             None,
828                             it.kind.descr(),
829                         );
830                     }
831                 }
832                 _ => (),
833             }
834         }
835     }
836 }
837 
convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId)838 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId) {
839     let trait_item = tcx.hir().trait_item(trait_item_id);
840     tcx.ensure().generics_of(trait_item_id.def_id);
841 
842     match trait_item.kind {
843         hir::TraitItemKind::Fn(..) => {
844             tcx.ensure().type_of(trait_item_id.def_id);
845             tcx.ensure().fn_sig(trait_item_id.def_id);
846         }
847 
848         hir::TraitItemKind::Const(.., Some(_)) => {
849             tcx.ensure().type_of(trait_item_id.def_id);
850         }
851 
852         hir::TraitItemKind::Const(..) => {
853             tcx.ensure().type_of(trait_item_id.def_id);
854             // Account for `const C: _;`.
855             let mut visitor = PlaceholderHirTyCollector::default();
856             visitor.visit_trait_item(trait_item);
857             placeholder_type_error(tcx, None, &[], visitor.0, false, None, "constant");
858         }
859 
860         hir::TraitItemKind::Type(_, Some(_)) => {
861             tcx.ensure().item_bounds(trait_item_id.def_id);
862             tcx.ensure().type_of(trait_item_id.def_id);
863             // Account for `type T = _;`.
864             let mut visitor = PlaceholderHirTyCollector::default();
865             visitor.visit_trait_item(trait_item);
866             placeholder_type_error(tcx, None, &[], visitor.0, false, None, "associated type");
867         }
868 
869         hir::TraitItemKind::Type(_, None) => {
870             tcx.ensure().item_bounds(trait_item_id.def_id);
871             // #74612: Visit and try to find bad placeholders
872             // even if there is no concrete type.
873             let mut visitor = PlaceholderHirTyCollector::default();
874             visitor.visit_trait_item(trait_item);
875 
876             placeholder_type_error(tcx, None, &[], visitor.0, false, None, "associated type");
877         }
878     };
879 
880     tcx.ensure().predicates_of(trait_item_id.def_id);
881 }
882 
convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId)883 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId) {
884     let def_id = impl_item_id.def_id;
885     tcx.ensure().generics_of(def_id);
886     tcx.ensure().type_of(def_id);
887     tcx.ensure().predicates_of(def_id);
888     let impl_item = tcx.hir().impl_item(impl_item_id);
889     match impl_item.kind {
890         hir::ImplItemKind::Fn(..) => {
891             tcx.ensure().fn_sig(def_id);
892         }
893         hir::ImplItemKind::TyAlias(_) => {
894             // Account for `type T = _;`
895             let mut visitor = PlaceholderHirTyCollector::default();
896             visitor.visit_impl_item(impl_item);
897 
898             placeholder_type_error(tcx, None, &[], visitor.0, false, None, "associated type");
899         }
900         hir::ImplItemKind::Const(..) => {}
901     }
902 }
903 
convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId)904 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
905     let def_id = tcx.hir().local_def_id(ctor_id);
906     tcx.ensure().generics_of(def_id);
907     tcx.ensure().type_of(def_id);
908     tcx.ensure().predicates_of(def_id);
909 }
910 
convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>])911 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
912     let def = tcx.adt_def(def_id);
913     let repr_type = def.repr.discr_type();
914     let initial = repr_type.initial_discriminant(tcx);
915     let mut prev_discr = None::<Discr<'_>>;
916 
917     // fill the discriminant values and field types
918     for variant in variants {
919         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
920         prev_discr = Some(
921             if let Some(ref e) = variant.disr_expr {
922                 let expr_did = tcx.hir().local_def_id(e.hir_id);
923                 def.eval_explicit_discr(tcx, expr_did.to_def_id())
924             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
925                 Some(discr)
926             } else {
927                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
928                     .span_label(
929                         variant.span,
930                         format!("overflowed on value after {}", prev_discr.unwrap()),
931                     )
932                     .note(&format!(
933                         "explicitly set `{} = {}` if that is desired outcome",
934                         variant.ident, wrapped_discr
935                     ))
936                     .emit();
937                 None
938             }
939             .unwrap_or(wrapped_discr),
940         );
941 
942         for f in variant.data.fields() {
943             let def_id = tcx.hir().local_def_id(f.hir_id);
944             tcx.ensure().generics_of(def_id);
945             tcx.ensure().type_of(def_id);
946             tcx.ensure().predicates_of(def_id);
947         }
948 
949         // Convert the ctor, if any. This also registers the variant as
950         // an item.
951         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
952             convert_variant_ctor(tcx, ctor_hir_id);
953         }
954     }
955 }
956 
convert_variant( tcx: TyCtxt<'_>, variant_did: Option<LocalDefId>, ctor_did: Option<LocalDefId>, ident: Ident, discr: ty::VariantDiscr, def: &hir::VariantData<'_>, adt_kind: ty::AdtKind, parent_did: LocalDefId, ) -> ty::VariantDef957 fn convert_variant(
958     tcx: TyCtxt<'_>,
959     variant_did: Option<LocalDefId>,
960     ctor_did: Option<LocalDefId>,
961     ident: Ident,
962     discr: ty::VariantDiscr,
963     def: &hir::VariantData<'_>,
964     adt_kind: ty::AdtKind,
965     parent_did: LocalDefId,
966 ) -> ty::VariantDef {
967     let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
968     let fields = def
969         .fields()
970         .iter()
971         .map(|f| {
972             let fid = tcx.hir().local_def_id(f.hir_id);
973             let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
974             if let Some(prev_span) = dup_span {
975                 tcx.sess.emit_err(errors::FieldAlreadyDeclared {
976                     field_name: f.ident,
977                     span: f.span,
978                     prev_span,
979                 });
980             } else {
981                 seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
982             }
983 
984             ty::FieldDef { did: fid.to_def_id(), ident: f.ident, vis: tcx.visibility(fid) }
985         })
986         .collect();
987     let recovered = match def {
988         hir::VariantData::Struct(_, r) => *r,
989         _ => false,
990     };
991     ty::VariantDef::new(
992         ident,
993         variant_did.map(LocalDefId::to_def_id),
994         ctor_did.map(LocalDefId::to_def_id),
995         discr,
996         fields,
997         CtorKind::from_hir(def),
998         adt_kind,
999         parent_did.to_def_id(),
1000         recovered,
1001         adt_kind == AdtKind::Struct && tcx.has_attr(parent_did.to_def_id(), sym::non_exhaustive)
1002             || variant_did.map_or(false, |variant_did| {
1003                 tcx.has_attr(variant_did.to_def_id(), sym::non_exhaustive)
1004             }),
1005     )
1006 }
1007 
adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef1008 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
1009     use rustc_hir::*;
1010 
1011     let def_id = def_id.expect_local();
1012     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1013     let item = match tcx.hir().get(hir_id) {
1014         Node::Item(item) => item,
1015         _ => bug!(),
1016     };
1017 
1018     let repr = ReprOptions::new(tcx, def_id.to_def_id());
1019     let (kind, variants) = match item.kind {
1020         ItemKind::Enum(ref def, _) => {
1021             let mut distance_from_explicit = 0;
1022             let variants = def
1023                 .variants
1024                 .iter()
1025                 .map(|v| {
1026                     let variant_did = Some(tcx.hir().local_def_id(v.id));
1027                     let ctor_did =
1028                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1029 
1030                     let discr = if let Some(ref e) = v.disr_expr {
1031                         distance_from_explicit = 0;
1032                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
1033                     } else {
1034                         ty::VariantDiscr::Relative(distance_from_explicit)
1035                     };
1036                     distance_from_explicit += 1;
1037 
1038                     convert_variant(
1039                         tcx,
1040                         variant_did,
1041                         ctor_did,
1042                         v.ident,
1043                         discr,
1044                         &v.data,
1045                         AdtKind::Enum,
1046                         def_id,
1047                     )
1048                 })
1049                 .collect();
1050 
1051             (AdtKind::Enum, variants)
1052         }
1053         ItemKind::Struct(ref def, _) => {
1054             let variant_did = None::<LocalDefId>;
1055             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1056 
1057             let variants = std::iter::once(convert_variant(
1058                 tcx,
1059                 variant_did,
1060                 ctor_did,
1061                 item.ident,
1062                 ty::VariantDiscr::Relative(0),
1063                 def,
1064                 AdtKind::Struct,
1065                 def_id,
1066             ))
1067             .collect();
1068 
1069             (AdtKind::Struct, variants)
1070         }
1071         ItemKind::Union(ref def, _) => {
1072             let variant_did = None;
1073             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1074 
1075             let variants = std::iter::once(convert_variant(
1076                 tcx,
1077                 variant_did,
1078                 ctor_did,
1079                 item.ident,
1080                 ty::VariantDiscr::Relative(0),
1081                 def,
1082                 AdtKind::Union,
1083                 def_id,
1084             ))
1085             .collect();
1086 
1087             (AdtKind::Union, variants)
1088         }
1089         _ => bug!(),
1090     };
1091     tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
1092 }
1093 
1094 /// Ensures that the super-predicates of the trait with a `DefId`
1095 /// of `trait_def_id` are converted and stored. This also ensures that
1096 /// the transitive super-predicates are converted.
super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_>1097 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
1098     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
1099     tcx.super_predicates_that_define_assoc_type((trait_def_id, None))
1100 }
1101 
1102 /// Ensures that the super-predicates of the trait with a `DefId`
1103 /// of `trait_def_id` are converted and stored. This also ensures that
1104 /// the transitive super-predicates are converted.
super_predicates_that_define_assoc_type( tcx: TyCtxt<'_>, (trait_def_id, assoc_name): (DefId, Option<Ident>), ) -> ty::GenericPredicates<'_>1105 fn super_predicates_that_define_assoc_type(
1106     tcx: TyCtxt<'_>,
1107     (trait_def_id, assoc_name): (DefId, Option<Ident>),
1108 ) -> ty::GenericPredicates<'_> {
1109     debug!(
1110         "super_predicates_that_define_assoc_type(trait_def_id={:?}, assoc_name={:?})",
1111         trait_def_id, assoc_name
1112     );
1113     if trait_def_id.is_local() {
1114         debug!("super_predicates_that_define_assoc_type: local trait_def_id={:?}", trait_def_id);
1115         let trait_hir_id = tcx.hir().local_def_id_to_hir_id(trait_def_id.expect_local());
1116 
1117         let item = match tcx.hir().get(trait_hir_id) {
1118             Node::Item(item) => item,
1119             _ => bug!("trait_node_id {} is not an item", trait_hir_id),
1120         };
1121 
1122         let (generics, bounds) = match item.kind {
1123             hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
1124             hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
1125             _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
1126         };
1127 
1128         let icx = ItemCtxt::new(tcx, trait_def_id);
1129 
1130         // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
1131         let self_param_ty = tcx.types.self_param;
1132         let superbounds1 = if let Some(assoc_name) = assoc_name {
1133             <dyn AstConv<'_>>::compute_bounds_that_match_assoc_type(
1134                 &icx,
1135                 self_param_ty,
1136                 bounds,
1137                 assoc_name,
1138             )
1139         } else {
1140             <dyn AstConv<'_>>::compute_bounds(&icx, self_param_ty, bounds)
1141         };
1142 
1143         let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
1144 
1145         // Convert any explicit superbounds in the where-clause,
1146         // e.g., `trait Foo where Self: Bar`.
1147         // In the case of trait aliases, however, we include all bounds in the where-clause,
1148         // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
1149         // as one of its "superpredicates".
1150         let is_trait_alias = tcx.is_trait_alias(trait_def_id);
1151         let superbounds2 = icx.type_parameter_bounds_in_generics(
1152             generics,
1153             item.hir_id(),
1154             self_param_ty,
1155             OnlySelfBounds(!is_trait_alias),
1156             assoc_name,
1157         );
1158 
1159         // Combine the two lists to form the complete set of superbounds:
1160         let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
1161 
1162         // Now require that immediate supertraits are converted,
1163         // which will, in turn, reach indirect supertraits.
1164         if assoc_name.is_none() {
1165             // Now require that immediate supertraits are converted,
1166             // which will, in turn, reach indirect supertraits.
1167             for &(pred, span) in superbounds {
1168                 debug!("superbound: {:?}", pred);
1169                 if let ty::PredicateKind::Trait(bound) = pred.kind().skip_binder() {
1170                     tcx.at(span).super_predicates_of(bound.def_id());
1171                 }
1172             }
1173         }
1174 
1175         ty::GenericPredicates { parent: None, predicates: superbounds }
1176     } else {
1177         // if `assoc_name` is None, then the query should've been redirected to an
1178         // external provider
1179         assert!(assoc_name.is_some());
1180         tcx.super_predicates_of(trait_def_id)
1181     }
1182 }
1183 
trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef1184 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
1185     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1186     let item = tcx.hir().expect_item(hir_id);
1187 
1188     let (is_auto, unsafety) = match item.kind {
1189         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
1190         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
1191         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
1192     };
1193 
1194     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
1195     if paren_sugar && !tcx.features().unboxed_closures {
1196         tcx.sess
1197             .struct_span_err(
1198                 item.span,
1199                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
1200                  which traits can use parenthetical notation",
1201             )
1202             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
1203             .emit();
1204     }
1205 
1206     let is_marker = tcx.has_attr(def_id, sym::marker);
1207     let skip_array_during_method_dispatch =
1208         tcx.has_attr(def_id, sym::rustc_skip_array_during_method_dispatch);
1209     let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
1210         ty::trait_def::TraitSpecializationKind::Marker
1211     } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
1212         ty::trait_def::TraitSpecializationKind::AlwaysApplicable
1213     } else {
1214         ty::trait_def::TraitSpecializationKind::None
1215     };
1216     let def_path_hash = tcx.def_path_hash(def_id);
1217     ty::TraitDef::new(
1218         def_id,
1219         unsafety,
1220         paren_sugar,
1221         is_auto,
1222         is_marker,
1223         skip_array_during_method_dispatch,
1224         spec_kind,
1225         def_path_hash,
1226     )
1227 }
1228 
has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span>1229 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
1230     struct LateBoundRegionsDetector<'tcx> {
1231         tcx: TyCtxt<'tcx>,
1232         outer_index: ty::DebruijnIndex,
1233         has_late_bound_regions: Option<Span>,
1234     }
1235 
1236     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
1237         type Map = intravisit::ErasedMap<'tcx>;
1238 
1239         fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1240             NestedVisitorMap::None
1241         }
1242 
1243         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
1244             if self.has_late_bound_regions.is_some() {
1245                 return;
1246             }
1247             match ty.kind {
1248                 hir::TyKind::BareFn(..) => {
1249                     self.outer_index.shift_in(1);
1250                     intravisit::walk_ty(self, ty);
1251                     self.outer_index.shift_out(1);
1252                 }
1253                 _ => intravisit::walk_ty(self, ty),
1254             }
1255         }
1256 
1257         fn visit_poly_trait_ref(
1258             &mut self,
1259             tr: &'tcx hir::PolyTraitRef<'tcx>,
1260             m: hir::TraitBoundModifier,
1261         ) {
1262             if self.has_late_bound_regions.is_some() {
1263                 return;
1264             }
1265             self.outer_index.shift_in(1);
1266             intravisit::walk_poly_trait_ref(self, tr, m);
1267             self.outer_index.shift_out(1);
1268         }
1269 
1270         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
1271             if self.has_late_bound_regions.is_some() {
1272                 return;
1273             }
1274 
1275             match self.tcx.named_region(lt.hir_id) {
1276                 Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
1277                 Some(
1278                     rl::Region::LateBound(debruijn, _, _, _)
1279                     | rl::Region::LateBoundAnon(debruijn, _, _),
1280                 ) if debruijn < self.outer_index => {}
1281                 Some(
1282                     rl::Region::LateBound(..)
1283                     | rl::Region::LateBoundAnon(..)
1284                     | rl::Region::Free(..),
1285                 )
1286                 | None => {
1287                     self.has_late_bound_regions = Some(lt.span);
1288                 }
1289             }
1290         }
1291     }
1292 
1293     fn has_late_bound_regions<'tcx>(
1294         tcx: TyCtxt<'tcx>,
1295         generics: &'tcx hir::Generics<'tcx>,
1296         decl: &'tcx hir::FnDecl<'tcx>,
1297     ) -> Option<Span> {
1298         let mut visitor = LateBoundRegionsDetector {
1299             tcx,
1300             outer_index: ty::INNERMOST,
1301             has_late_bound_regions: None,
1302         };
1303         for param in generics.params {
1304             if let GenericParamKind::Lifetime { .. } = param.kind {
1305                 if tcx.is_late_bound(param.hir_id) {
1306                     return Some(param.span);
1307                 }
1308             }
1309         }
1310         visitor.visit_fn_decl(decl);
1311         visitor.has_late_bound_regions
1312     }
1313 
1314     match node {
1315         Node::TraitItem(item) => match item.kind {
1316             hir::TraitItemKind::Fn(ref sig, _) => {
1317                 has_late_bound_regions(tcx, &item.generics, sig.decl)
1318             }
1319             _ => None,
1320         },
1321         Node::ImplItem(item) => match item.kind {
1322             hir::ImplItemKind::Fn(ref sig, _) => {
1323                 has_late_bound_regions(tcx, &item.generics, sig.decl)
1324             }
1325             _ => None,
1326         },
1327         Node::ForeignItem(item) => match item.kind {
1328             hir::ForeignItemKind::Fn(fn_decl, _, ref generics) => {
1329                 has_late_bound_regions(tcx, generics, fn_decl)
1330             }
1331             _ => None,
1332         },
1333         Node::Item(item) => match item.kind {
1334             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1335                 has_late_bound_regions(tcx, generics, sig.decl)
1336             }
1337             _ => None,
1338         },
1339         _ => None,
1340     }
1341 }
1342 
1343 struct AnonConstInParamTyDetector {
1344     in_param_ty: bool,
1345     found_anon_const_in_param_ty: bool,
1346     ct: HirId,
1347 }
1348 
1349 impl<'v> Visitor<'v> for AnonConstInParamTyDetector {
1350     type Map = intravisit::ErasedMap<'v>;
1351 
nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map>1352     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1353         NestedVisitorMap::None
1354     }
1355 
visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>)1356     fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
1357         if let GenericParamKind::Const { ty, default: _ } = p.kind {
1358             let prev = self.in_param_ty;
1359             self.in_param_ty = true;
1360             self.visit_ty(ty);
1361             self.in_param_ty = prev;
1362         }
1363     }
1364 
visit_anon_const(&mut self, c: &'v hir::AnonConst)1365     fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
1366         if self.in_param_ty && self.ct == c.hir_id {
1367             self.found_anon_const_in_param_ty = true;
1368         } else {
1369             intravisit::walk_anon_const(self, c)
1370         }
1371     }
1372 }
1373 
generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics1374 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
1375     use rustc_hir::*;
1376 
1377     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1378 
1379     let node = tcx.hir().get(hir_id);
1380     let parent_def_id = match node {
1381         Node::ImplItem(_)
1382         | Node::TraitItem(_)
1383         | Node::Variant(_)
1384         | Node::Ctor(..)
1385         | Node::Field(_) => {
1386             let parent_id = tcx.hir().get_parent_item(hir_id);
1387             Some(tcx.hir().local_def_id(parent_id).to_def_id())
1388         }
1389         // FIXME(#43408) always enable this once `lazy_normalization` is
1390         // stable enough and does not need a feature gate anymore.
1391         Node::AnonConst(_) => {
1392             let parent_id = tcx.hir().get_parent_item(hir_id);
1393             let parent_def_id = tcx.hir().local_def_id(parent_id);
1394 
1395             let mut in_param_ty = false;
1396             for (_parent, node) in tcx.hir().parent_iter(hir_id) {
1397                 if let Some(generics) = node.generics() {
1398                     let mut visitor = AnonConstInParamTyDetector {
1399                         in_param_ty: false,
1400                         found_anon_const_in_param_ty: false,
1401                         ct: hir_id,
1402                     };
1403 
1404                     visitor.visit_generics(generics);
1405                     in_param_ty = visitor.found_anon_const_in_param_ty;
1406                     break;
1407                 }
1408             }
1409 
1410             if in_param_ty {
1411                 // We do not allow generic parameters in anon consts if we are inside
1412                 // of a const parameter type, e.g. `struct Foo<const N: usize, const M: [u8; N]>` is not allowed.
1413                 None
1414             } else if tcx.lazy_normalization() {
1415                 if let Some(param_id) = tcx.hir().opt_const_param_default_param_hir_id(hir_id) {
1416                     // If the def_id we are calling generics_of on is an anon ct default i.e:
1417                     //
1418                     // struct Foo<const N: usize = { .. }>;
1419                     //        ^^^       ^          ^^^^^^ def id of this anon const
1420                     //        ^         ^ param_id
1421                     //        ^ parent_def_id
1422                     //
1423                     // then we only want to return generics for params to the left of `N`. If we don't do that we
1424                     // end up with that const looking like: `ty::ConstKind::Unevaluated(def_id, substs: [N#0])`.
1425                     //
1426                     // This causes ICEs (#86580) when building the substs for Foo in `fn foo() -> Foo { .. }` as
1427                     // we substitute the defaults with the partially built substs when we build the substs. Subst'ing
1428                     // the `N#0` on the unevaluated const indexes into the empty substs we're in the process of building.
1429                     //
1430                     // We fix this by having this function return the parent's generics ourselves and truncating the
1431                     // generics to only include non-forward declared params (with the exception of the `Self` ty)
1432                     //
1433                     // For the above code example that means we want `substs: []`
1434                     // For the following struct def we want `substs: [N#0]` when generics_of is called on
1435                     // the def id of the `{ N + 1 }` anon const
1436                     // struct Foo<const N: usize, const M: usize = { N + 1 }>;
1437                     //
1438                     // This has some implications for how we get the predicates available to the anon const
1439                     // see `explicit_predicates_of` for more information on this
1440                     let generics = tcx.generics_of(parent_def_id.to_def_id());
1441                     let param_def = tcx.hir().local_def_id(param_id).to_def_id();
1442                     let param_def_idx = generics.param_def_id_to_index[&param_def];
1443                     // In the above example this would be .params[..N#0]
1444                     let params = generics.params[..param_def_idx as usize].to_owned();
1445                     let param_def_id_to_index =
1446                         params.iter().map(|param| (param.def_id, param.index)).collect();
1447 
1448                     return ty::Generics {
1449                         // we set the parent of these generics to be our parent's parent so that we
1450                         // dont end up with substs: [N, M, N] for the const default on a struct like this:
1451                         // struct Foo<const N: usize, const M: usize = { ... }>;
1452                         parent: generics.parent,
1453                         parent_count: generics.parent_count,
1454                         params,
1455                         param_def_id_to_index,
1456                         has_self: generics.has_self,
1457                         has_late_bound_regions: generics.has_late_bound_regions,
1458                     };
1459                 }
1460 
1461                 // HACK(eddyb) this provides the correct generics when
1462                 // `feature(generic_const_expressions)` is enabled, so that const expressions
1463                 // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1464                 //
1465                 // Note that we do not supply the parent generics when using
1466                 // `min_const_generics`.
1467                 Some(parent_def_id.to_def_id())
1468             } else {
1469                 let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1470                 match parent_node {
1471                     // HACK(eddyb) this provides the correct generics for repeat
1472                     // expressions' count (i.e. `N` in `[x; N]`), and explicit
1473                     // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
1474                     // as they shouldn't be able to cause query cycle errors.
1475                     Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1476                     | Node::Variant(Variant { disr_expr: Some(ref constant), .. })
1477                         if constant.hir_id == hir_id =>
1478                     {
1479                         Some(parent_def_id.to_def_id())
1480                     }
1481                     Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) => {
1482                         Some(tcx.typeck_root_def_id(def_id))
1483                     }
1484                     _ => None,
1485                 }
1486             }
1487         }
1488         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1489             Some(tcx.typeck_root_def_id(def_id))
1490         }
1491         Node::Item(item) => match item.kind {
1492             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
1493                 impl_trait_fn.or_else(|| {
1494                     let parent_id = tcx.hir().get_parent_item(hir_id);
1495                     assert!(parent_id != hir_id && parent_id != CRATE_HIR_ID);
1496                     debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
1497                     // Opaque types are always nested within another item, and
1498                     // inherit the generics of the item.
1499                     Some(tcx.hir().local_def_id(parent_id).to_def_id())
1500                 })
1501             }
1502             _ => None,
1503         },
1504         _ => None,
1505     };
1506 
1507     let mut opt_self = None;
1508     let mut allow_defaults = false;
1509 
1510     let no_generics = hir::Generics::empty();
1511     let ast_generics = match node {
1512         Node::TraitItem(item) => &item.generics,
1513 
1514         Node::ImplItem(item) => &item.generics,
1515 
1516         Node::Item(item) => {
1517             match item.kind {
1518                 ItemKind::Fn(.., ref generics, _)
1519                 | ItemKind::Impl(hir::Impl { ref generics, .. }) => generics,
1520 
1521                 ItemKind::TyAlias(_, ref generics)
1522                 | ItemKind::Enum(_, ref generics)
1523                 | ItemKind::Struct(_, ref generics)
1524                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1525                 | ItemKind::Union(_, ref generics) => {
1526                     allow_defaults = true;
1527                     generics
1528                 }
1529 
1530                 ItemKind::Trait(_, _, ref generics, ..)
1531                 | ItemKind::TraitAlias(ref generics, ..) => {
1532                     // Add in the self type parameter.
1533                     //
1534                     // Something of a hack: use the node id for the trait, also as
1535                     // the node id for the Self type parameter.
1536                     let param_id = item.def_id;
1537 
1538                     opt_self = Some(ty::GenericParamDef {
1539                         index: 0,
1540                         name: kw::SelfUpper,
1541                         def_id: param_id.to_def_id(),
1542                         pure_wrt_drop: false,
1543                         kind: ty::GenericParamDefKind::Type {
1544                             has_default: false,
1545                             object_lifetime_default: rl::Set1::Empty,
1546                             synthetic: false,
1547                         },
1548                     });
1549 
1550                     allow_defaults = true;
1551                     generics
1552                 }
1553 
1554                 _ => &no_generics,
1555             }
1556         }
1557 
1558         Node::ForeignItem(item) => match item.kind {
1559             ForeignItemKind::Static(..) => &no_generics,
1560             ForeignItemKind::Fn(_, _, ref generics) => generics,
1561             ForeignItemKind::Type => &no_generics,
1562         },
1563 
1564         _ => &no_generics,
1565     };
1566 
1567     let has_self = opt_self.is_some();
1568     let mut parent_has_self = false;
1569     let mut own_start = has_self as u32;
1570     let parent_count = parent_def_id.map_or(0, |def_id| {
1571         let generics = tcx.generics_of(def_id);
1572         assert!(!has_self);
1573         parent_has_self = generics.has_self;
1574         own_start = generics.count() as u32;
1575         generics.parent_count + generics.params.len()
1576     });
1577 
1578     let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize);
1579 
1580     if let Some(opt_self) = opt_self {
1581         params.push(opt_self);
1582     }
1583 
1584     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1585     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1586         name: param.name.ident().name,
1587         index: own_start + i as u32,
1588         def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1589         pure_wrt_drop: param.pure_wrt_drop,
1590         kind: ty::GenericParamDefKind::Lifetime,
1591     }));
1592 
1593     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1594 
1595     // Now create the real type and const parameters.
1596     let type_start = own_start - has_self as u32 + params.len() as u32;
1597     let mut i = 0;
1598 
1599     params.extend(ast_generics.params.iter().filter_map(|param| match param.kind {
1600         GenericParamKind::Lifetime { .. } => None,
1601         GenericParamKind::Type { ref default, synthetic, .. } => {
1602             if !allow_defaults && default.is_some() {
1603                 if !tcx.features().default_type_parameter_fallback {
1604                     tcx.struct_span_lint_hir(
1605                         lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1606                         param.hir_id,
1607                         param.span,
1608                         |lint| {
1609                             lint.build(
1610                                 "defaults for type parameters are only allowed in \
1611                                  `struct`, `enum`, `type`, or `trait` definitions",
1612                             )
1613                             .emit();
1614                         },
1615                     );
1616                 }
1617             }
1618 
1619             let kind = ty::GenericParamDefKind::Type {
1620                 has_default: default.is_some(),
1621                 object_lifetime_default: object_lifetime_defaults
1622                     .as_ref()
1623                     .map_or(rl::Set1::Empty, |o| o[i]),
1624                 synthetic,
1625             };
1626 
1627             let param_def = ty::GenericParamDef {
1628                 index: type_start + i as u32,
1629                 name: param.name.ident().name,
1630                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1631                 pure_wrt_drop: param.pure_wrt_drop,
1632                 kind,
1633             };
1634             i += 1;
1635             Some(param_def)
1636         }
1637         GenericParamKind::Const { default, .. } => {
1638             if !allow_defaults && default.is_some() {
1639                 tcx.sess.span_err(
1640                     param.span,
1641                     "defaults for const parameters are only allowed in \
1642                     `struct`, `enum`, `type`, or `trait` definitions",
1643                 );
1644             }
1645 
1646             let param_def = ty::GenericParamDef {
1647                 index: type_start + i as u32,
1648                 name: param.name.ident().name,
1649                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1650                 pure_wrt_drop: param.pure_wrt_drop,
1651                 kind: ty::GenericParamDefKind::Const { has_default: default.is_some() },
1652             };
1653             i += 1;
1654             Some(param_def)
1655         }
1656     }));
1657 
1658     // provide junk type parameter defs - the only place that
1659     // cares about anything but the length is instantiation,
1660     // and we don't do that for closures.
1661     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1662         let dummy_args = if gen.is_some() {
1663             &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
1664         } else {
1665             &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
1666         };
1667 
1668         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1669             index: type_start + i as u32,
1670             name: Symbol::intern(arg),
1671             def_id,
1672             pure_wrt_drop: false,
1673             kind: ty::GenericParamDefKind::Type {
1674                 has_default: false,
1675                 object_lifetime_default: rl::Set1::Empty,
1676                 synthetic: false,
1677             },
1678         }));
1679     }
1680 
1681     // provide junk type parameter defs for const blocks.
1682     if let Node::AnonConst(_) = node {
1683         let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1684         if let Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) = parent_node {
1685             params.push(ty::GenericParamDef {
1686                 index: type_start,
1687                 name: Symbol::intern("<const_ty>"),
1688                 def_id,
1689                 pure_wrt_drop: false,
1690                 kind: ty::GenericParamDefKind::Type {
1691                     has_default: false,
1692                     object_lifetime_default: rl::Set1::Empty,
1693                     synthetic: false,
1694                 },
1695             });
1696         }
1697     }
1698 
1699     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1700 
1701     ty::Generics {
1702         parent: parent_def_id,
1703         parent_count,
1704         params,
1705         param_def_id_to_index,
1706         has_self: has_self || parent_has_self,
1707         has_late_bound_regions: has_late_bound_regions(tcx, node),
1708     }
1709 }
1710 
are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool1711 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1712     generic_args.iter().any(|arg| match arg {
1713         hir::GenericArg::Type(ty) => is_suggestable_infer_ty(ty),
1714         hir::GenericArg::Infer(_) => true,
1715         _ => false,
1716     })
1717 }
1718 
1719 /// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
1720 /// use inference to provide suggestions for the appropriate type if possible.
is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool1721 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1722     use hir::TyKind::*;
1723     match &ty.kind {
1724         Infer => true,
1725         Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1726         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1727         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1728         OpaqueDef(_, generic_args) => are_suggestable_generic_args(generic_args),
1729         Path(hir::QPath::TypeRelative(ty, segment)) => {
1730             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.args().args)
1731         }
1732         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1733             ty_opt.map_or(false, is_suggestable_infer_ty)
1734                 || segments.iter().any(|segment| are_suggestable_generic_args(segment.args().args))
1735         }
1736         _ => false,
1737     }
1738 }
1739 
get_infer_ret_ty(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>>1740 pub fn get_infer_ret_ty(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1741     if let hir::FnRetTy::Return(ty) = output {
1742         if is_suggestable_infer_ty(ty) {
1743             return Some(&*ty);
1744         }
1745     }
1746     None
1747 }
1748 
fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_>1749 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1750     use rustc_hir::Node::*;
1751     use rustc_hir::*;
1752 
1753     let def_id = def_id.expect_local();
1754     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1755 
1756     let icx = ItemCtxt::new(tcx, def_id.to_def_id());
1757 
1758     match tcx.hir().get(hir_id) {
1759         TraitItem(hir::TraitItem {
1760             kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
1761             ident,
1762             generics,
1763             ..
1764         })
1765         | ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), ident, generics, .. })
1766         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
1767             match get_infer_ret_ty(&sig.decl.output) {
1768                 Some(ty) => {
1769                     let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
1770                     // Typeck doesn't expect erased regions to be returned from `type_of`.
1771                     let fn_sig = tcx.fold_regions(fn_sig, &mut false, |r, _| match r {
1772                         ty::ReErased => tcx.lifetimes.re_static,
1773                         _ => r,
1774                     });
1775                     let fn_sig = ty::Binder::dummy(fn_sig);
1776 
1777                     let mut visitor = PlaceholderHirTyCollector::default();
1778                     visitor.visit_ty(ty);
1779                     let mut diag = bad_placeholder_type(tcx, visitor.0, "return type");
1780                     let ret_ty = fn_sig.skip_binder().output();
1781                     if ret_ty != tcx.ty_error() {
1782                         if !ret_ty.is_closure() {
1783                             let ret_ty_str = match ret_ty.kind() {
1784                                 // Suggest a function pointer return type instead of a unique function definition
1785                                 // (e.g. `fn() -> i32` instead of `fn() -> i32 { f }`, the latter of which is invalid
1786                                 // syntax)
1787                                 ty::FnDef(..) => ret_ty.fn_sig(tcx).to_string(),
1788                                 _ => ret_ty.to_string(),
1789                             };
1790                             diag.span_suggestion(
1791                                 ty.span,
1792                                 "replace with the correct return type",
1793                                 ret_ty_str,
1794                                 Applicability::MaybeIncorrect,
1795                             );
1796                         } else {
1797                             // We're dealing with a closure, so we should suggest using `impl Fn` or trait bounds
1798                             // to prevent the user from getting a papercut while trying to use the unique closure
1799                             // syntax (e.g. `[closure@src/lib.rs:2:5: 2:9]`).
1800                             diag.help("consider using an `Fn`, `FnMut`, or `FnOnce` trait bound");
1801                             diag.note("for more information on `Fn` traits and closure types, see https://doc.rust-lang.org/book/ch13-01-closures.html");
1802                         }
1803                     }
1804                     diag.emit();
1805 
1806                     fn_sig
1807                 }
1808                 None => <dyn AstConv<'_>>::ty_of_fn(
1809                     &icx,
1810                     hir_id,
1811                     sig.header.unsafety,
1812                     sig.header.abi,
1813                     sig.decl,
1814                     generics,
1815                     Some(ident.span),
1816                     None,
1817                 ),
1818             }
1819         }
1820 
1821         TraitItem(hir::TraitItem {
1822             kind: TraitItemKind::Fn(FnSig { header, decl, span: _ }, _),
1823             ident,
1824             generics,
1825             ..
1826         }) => <dyn AstConv<'_>>::ty_of_fn(
1827             &icx,
1828             hir_id,
1829             header.unsafety,
1830             header.abi,
1831             decl,
1832             generics,
1833             Some(ident.span),
1834             None,
1835         ),
1836 
1837         ForeignItem(&hir::ForeignItem {
1838             kind: ForeignItemKind::Fn(fn_decl, _, _), ident, ..
1839         }) => {
1840             let abi = tcx.hir().get_foreign_abi(hir_id);
1841             compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi, ident)
1842         }
1843 
1844         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1845             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id).to_def_id());
1846             let inputs =
1847                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1848             ty::Binder::dummy(tcx.mk_fn_sig(
1849                 inputs,
1850                 ty,
1851                 false,
1852                 hir::Unsafety::Normal,
1853                 abi::Abi::Rust,
1854             ))
1855         }
1856 
1857         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1858             // Closure signatures are not like other function
1859             // signatures and cannot be accessed through `fn_sig`. For
1860             // example, a closure signature excludes the `self`
1861             // argument. In any case they are embedded within the
1862             // closure type as part of the `ClosureSubsts`.
1863             //
1864             // To get the signature of a closure, you should use the
1865             // `sig` method on the `ClosureSubsts`:
1866             //
1867             //    substs.as_closure().sig(def_id, tcx)
1868             bug!(
1869                 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
1870             );
1871         }
1872 
1873         x => {
1874             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1875         }
1876     }
1877 }
1878 
impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>>1879 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1880     let icx = ItemCtxt::new(tcx, def_id);
1881 
1882     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1883     match tcx.hir().expect_item(hir_id).kind {
1884         hir::ItemKind::Impl(ref impl_) => impl_.of_trait.as_ref().map(|ast_trait_ref| {
1885             let selfty = tcx.type_of(def_id);
1886             <dyn AstConv<'_>>::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1887         }),
1888         _ => bug!(),
1889     }
1890 }
1891 
impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity1892 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1893     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1894     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1895     let item = tcx.hir().expect_item(hir_id);
1896     match &item.kind {
1897         hir::ItemKind::Impl(hir::Impl {
1898             polarity: hir::ImplPolarity::Negative(span),
1899             of_trait,
1900             ..
1901         }) => {
1902             if is_rustc_reservation {
1903                 let span = span.to(of_trait.as_ref().map_or(*span, |t| t.path.span));
1904                 tcx.sess.span_err(span, "reservation impls can't be negative");
1905             }
1906             ty::ImplPolarity::Negative
1907         }
1908         hir::ItemKind::Impl(hir::Impl {
1909             polarity: hir::ImplPolarity::Positive,
1910             of_trait: None,
1911             ..
1912         }) => {
1913             if is_rustc_reservation {
1914                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1915             }
1916             ty::ImplPolarity::Positive
1917         }
1918         hir::ItemKind::Impl(hir::Impl {
1919             polarity: hir::ImplPolarity::Positive,
1920             of_trait: Some(_),
1921             ..
1922         }) => {
1923             if is_rustc_reservation {
1924                 ty::ImplPolarity::Reservation
1925             } else {
1926                 ty::ImplPolarity::Positive
1927             }
1928         }
1929         item => bug!("impl_polarity: {:?} not an impl", item),
1930     }
1931 }
1932 
1933 /// Returns the early-bound lifetimes declared in this generics
1934 /// listing. For anything other than fns/methods, this is just all
1935 /// the lifetimes that are declared. For fns or methods, we have to
1936 /// screen out those that do not appear in any where-clauses etc using
1937 /// `resolve_lifetime::early_bound_lifetimes`.
early_bound_lifetimes_from_generics<'a, 'tcx: 'a>( tcx: TyCtxt<'tcx>, generics: &'a hir::Generics<'a>, ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx>1938 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1939     tcx: TyCtxt<'tcx>,
1940     generics: &'a hir::Generics<'a>,
1941 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
1942     generics.params.iter().filter(move |param| match param.kind {
1943         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
1944         _ => false,
1945     })
1946 }
1947 
1948 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1949 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1950 /// inferred constraints concerning which regions outlive other regions.
predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_>1951 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1952     debug!("predicates_defined_on({:?})", def_id);
1953     let mut result = tcx.explicit_predicates_of(def_id);
1954     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
1955     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1956     if !inferred_outlives.is_empty() {
1957         debug!(
1958             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1959             def_id, inferred_outlives,
1960         );
1961         if result.predicates.is_empty() {
1962             result.predicates = inferred_outlives;
1963         } else {
1964             result.predicates = tcx
1965                 .arena
1966                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
1967         }
1968     }
1969 
1970     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1971     result
1972 }
1973 
1974 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1975 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1976 /// `Self: Trait` predicates for traits.
predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_>1977 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1978     let mut result = tcx.predicates_defined_on(def_id);
1979 
1980     if tcx.is_trait(def_id) {
1981         // For traits, add `Self: Trait` predicate. This is
1982         // not part of the predicates that a user writes, but it
1983         // is something that one must prove in order to invoke a
1984         // method or project an associated type.
1985         //
1986         // In the chalk setup, this predicate is not part of the
1987         // "predicates" for a trait item. But it is useful in
1988         // rustc because if you directly (e.g.) invoke a trait
1989         // method like `Trait::method(...)`, you must naturally
1990         // prove that the trait applies to the types that were
1991         // used, and adding the predicate into this list ensures
1992         // that this is done.
1993         //
1994         // We use a DUMMY_SP here as a way to signal trait bounds that come
1995         // from the trait itself that *shouldn't* be shown as the source of
1996         // an obligation and instead be skipped. Otherwise we'd use
1997         // `tcx.def_span(def_id);`
1998         let span = rustc_span::DUMMY_SP;
1999         result.predicates =
2000             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
2001                 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(tcx),
2002                 span,
2003             ))));
2004     }
2005     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
2006     result
2007 }
2008 
2009 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
2010 /// N.B., this does not include any implied/inferred constraints.
gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_>2011 fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2012     use rustc_hir::*;
2013 
2014     debug!("explicit_predicates_of(def_id={:?})", def_id);
2015 
2016     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2017     let node = tcx.hir().get(hir_id);
2018 
2019     let mut is_trait = None;
2020     let mut is_default_impl_trait = None;
2021 
2022     let icx = ItemCtxt::new(tcx, def_id);
2023 
2024     const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
2025 
2026     // We use an `IndexSet` to preserves order of insertion.
2027     // Preserving the order of insertion is important here so as not to break UI tests.
2028     let mut predicates: FxIndexSet<(ty::Predicate<'_>, Span)> = FxIndexSet::default();
2029 
2030     let ast_generics = match node {
2031         Node::TraitItem(item) => &item.generics,
2032 
2033         Node::ImplItem(item) => &item.generics,
2034 
2035         Node::Item(item) => {
2036             match item.kind {
2037                 ItemKind::Impl(ref impl_) => {
2038                     if impl_.defaultness.is_default() {
2039                         is_default_impl_trait = tcx.impl_trait_ref(def_id).map(ty::Binder::dummy);
2040                     }
2041                     &impl_.generics
2042                 }
2043                 ItemKind::Fn(.., ref generics, _)
2044                 | ItemKind::TyAlias(_, ref generics)
2045                 | ItemKind::Enum(_, ref generics)
2046                 | ItemKind::Struct(_, ref generics)
2047                 | ItemKind::Union(_, ref generics) => generics,
2048 
2049                 ItemKind::Trait(_, _, ref generics, ..) => {
2050                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
2051                     generics
2052                 }
2053                 ItemKind::TraitAlias(ref generics, _) => {
2054                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
2055                     generics
2056                 }
2057                 ItemKind::OpaqueTy(OpaqueTy {
2058                     bounds: _,
2059                     impl_trait_fn,
2060                     ref generics,
2061                     origin: _,
2062                 }) => {
2063                     if impl_trait_fn.is_some() {
2064                         // return-position impl trait
2065                         //
2066                         // We don't inherit predicates from the parent here:
2067                         // If we have, say `fn f<'a, T: 'a>() -> impl Sized {}`
2068                         // then the return type is `f::<'static, T>::{{opaque}}`.
2069                         //
2070                         // If we inherited the predicates of `f` then we would
2071                         // require that `T: 'static` to show that the return
2072                         // type is well-formed.
2073                         //
2074                         // The only way to have something with this opaque type
2075                         // is from the return type of the containing function,
2076                         // which will ensure that the function's predicates
2077                         // hold.
2078                         return ty::GenericPredicates { parent: None, predicates: &[] };
2079                     } else {
2080                         // type-alias impl trait
2081                         generics
2082                     }
2083                 }
2084 
2085                 _ => NO_GENERICS,
2086             }
2087         }
2088 
2089         Node::ForeignItem(item) => match item.kind {
2090             ForeignItemKind::Static(..) => NO_GENERICS,
2091             ForeignItemKind::Fn(_, _, ref generics) => generics,
2092             ForeignItemKind::Type => NO_GENERICS,
2093         },
2094 
2095         _ => NO_GENERICS,
2096     };
2097 
2098     let generics = tcx.generics_of(def_id);
2099     let parent_count = generics.parent_count as u32;
2100     let has_own_self = generics.has_self && parent_count == 0;
2101 
2102     // Below we'll consider the bounds on the type parameters (including `Self`)
2103     // and the explicit where-clauses, but to get the full set of predicates
2104     // on a trait we need to add in the supertrait bounds and bounds found on
2105     // associated types.
2106     if let Some(_trait_ref) = is_trait {
2107         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2108     }
2109 
2110     // In default impls, we can assume that the self type implements
2111     // the trait. So in:
2112     //
2113     //     default impl Foo for Bar { .. }
2114     //
2115     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2116     // (see below). Recall that a default impl is not itself an impl, but rather a
2117     // set of defaults that can be incorporated into another impl.
2118     if let Some(trait_ref) = is_default_impl_trait {
2119         predicates.insert((trait_ref.without_const().to_predicate(tcx), tcx.def_span(def_id)));
2120     }
2121 
2122     // Collect the region predicates that were declared inline as
2123     // well. In the case of parameters declared on a fn or method, we
2124     // have to be careful to only iterate over early-bound regions.
2125     let mut index = parent_count + has_own_self as u32;
2126     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2127         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2128             def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
2129             index,
2130             name: param.name.ident().name,
2131         }));
2132         index += 1;
2133 
2134         match param.kind {
2135             GenericParamKind::Lifetime { .. } => {
2136                 param.bounds.iter().for_each(|bound| match bound {
2137                     hir::GenericBound::Outlives(lt) => {
2138                         let bound = <dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None);
2139                         let outlives = ty::Binder::dummy(ty::OutlivesPredicate(region, bound));
2140                         predicates.insert((outlives.to_predicate(tcx), lt.span));
2141                     }
2142                     _ => bug!(),
2143                 });
2144             }
2145             _ => bug!(),
2146         }
2147     }
2148 
2149     // Collect the predicates that were written inline by the user on each
2150     // type parameter (e.g., `<T: Foo>`).
2151     for param in ast_generics.params {
2152         match param.kind {
2153             // We already dealt with early bound lifetimes above.
2154             GenericParamKind::Lifetime { .. } => (),
2155             GenericParamKind::Type { .. } => {
2156                 let name = param.name.ident().name;
2157                 let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2158                 index += 1;
2159 
2160                 let mut bounds = <dyn AstConv<'_>>::compute_bounds(&icx, param_ty, param.bounds);
2161                 // Params are implicitly sized unless a `?Sized` bound is found
2162                 <dyn AstConv<'_>>::add_implicitly_sized(
2163                     &icx,
2164                     &mut bounds,
2165                     param.bounds,
2166                     Some((param.hir_id, ast_generics.where_clause.predicates)),
2167                     param.span,
2168                 );
2169                 predicates.extend(bounds.predicates(tcx, param_ty));
2170             }
2171             GenericParamKind::Const { .. } => {
2172                 // Bounds on const parameters are currently not possible.
2173                 debug_assert!(param.bounds.is_empty());
2174                 index += 1;
2175             }
2176         }
2177     }
2178 
2179     // Add in the bounds that appear in the where-clause.
2180     let where_clause = &ast_generics.where_clause;
2181     for predicate in where_clause.predicates {
2182         match predicate {
2183             hir::WherePredicate::BoundPredicate(bound_pred) => {
2184                 let ty = icx.to_ty(bound_pred.bounded_ty);
2185                 let bound_vars = icx.tcx.late_bound_vars(bound_pred.bounded_ty.hir_id);
2186 
2187                 // Keep the type around in a dummy predicate, in case of no bounds.
2188                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2189                 // is still checked for WF.
2190                 if bound_pred.bounds.is_empty() {
2191                     if let ty::Param(_) = ty.kind() {
2192                         // This is a `where T:`, which can be in the HIR from the
2193                         // transformation that moves `?Sized` to `T`'s declaration.
2194                         // We can skip the predicate because type parameters are
2195                         // trivially WF, but also we *should*, to avoid exposing
2196                         // users who never wrote `where Type:,` themselves, to
2197                         // compiler/tooling bugs from not handling WF predicates.
2198                     } else {
2199                         let span = bound_pred.bounded_ty.span;
2200                         let re_root_empty = tcx.lifetimes.re_root_empty;
2201                         let predicate = ty::Binder::bind_with_vars(
2202                             ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(
2203                                 ty,
2204                                 re_root_empty,
2205                             )),
2206                             bound_vars,
2207                         );
2208                         predicates.insert((predicate.to_predicate(tcx), span));
2209                     }
2210                 }
2211 
2212                 let mut bounds = Bounds::default();
2213                 <dyn AstConv<'_>>::add_bounds(
2214                     &icx,
2215                     ty,
2216                     bound_pred.bounds.iter(),
2217                     &mut bounds,
2218                     bound_vars,
2219                 );
2220                 predicates.extend(bounds.predicates(tcx, ty));
2221             }
2222 
2223             hir::WherePredicate::RegionPredicate(region_pred) => {
2224                 let r1 = <dyn AstConv<'_>>::ast_region_to_region(&icx, &region_pred.lifetime, None);
2225                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2226                     let (r2, span) = match bound {
2227                         hir::GenericBound::Outlives(lt) => {
2228                             (<dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None), lt.span)
2229                         }
2230                         _ => bug!(),
2231                     };
2232                     let pred = ty::Binder::dummy(ty::PredicateKind::RegionOutlives(
2233                         ty::OutlivesPredicate(r1, r2),
2234                     ))
2235                     .to_predicate(icx.tcx);
2236 
2237                     (pred, span)
2238                 }))
2239             }
2240 
2241             hir::WherePredicate::EqPredicate(..) => {
2242                 // FIXME(#20041)
2243             }
2244         }
2245     }
2246 
2247     if tcx.features().generic_const_exprs {
2248         predicates.extend(const_evaluatable_predicates_of(tcx, def_id.expect_local()));
2249     }
2250 
2251     let mut predicates: Vec<_> = predicates.into_iter().collect();
2252 
2253     // Subtle: before we store the predicates into the tcx, we
2254     // sort them so that predicates like `T: Foo<Item=U>` come
2255     // before uses of `U`.  This avoids false ambiguity errors
2256     // in trait checking. See `setup_constraining_predicates`
2257     // for details.
2258     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2259         let self_ty = tcx.type_of(def_id);
2260         let trait_ref = tcx.impl_trait_ref(def_id);
2261         cgp::setup_constraining_predicates(
2262             tcx,
2263             &mut predicates,
2264             trait_ref,
2265             &mut cgp::parameters_for_impl(tcx, self_ty, trait_ref),
2266         );
2267     }
2268 
2269     let result = ty::GenericPredicates {
2270         parent: generics.parent,
2271         predicates: tcx.arena.alloc_from_iter(predicates),
2272     };
2273     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2274     result
2275 }
2276 
const_evaluatable_predicates_of<'tcx>( tcx: TyCtxt<'tcx>, def_id: LocalDefId, ) -> FxIndexSet<(ty::Predicate<'tcx>, Span)>2277 fn const_evaluatable_predicates_of<'tcx>(
2278     tcx: TyCtxt<'tcx>,
2279     def_id: LocalDefId,
2280 ) -> FxIndexSet<(ty::Predicate<'tcx>, Span)> {
2281     struct ConstCollector<'tcx> {
2282         tcx: TyCtxt<'tcx>,
2283         preds: FxIndexSet<(ty::Predicate<'tcx>, Span)>,
2284     }
2285 
2286     impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
2287         type Map = Map<'tcx>;
2288 
2289         fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
2290             intravisit::NestedVisitorMap::None
2291         }
2292 
2293         fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
2294             let def_id = self.tcx.hir().local_def_id(c.hir_id);
2295             let ct = ty::Const::from_anon_const(self.tcx, def_id);
2296             if let ty::ConstKind::Unevaluated(uv) = ct.val {
2297                 assert_eq!(uv.promoted, None);
2298                 let span = self.tcx.hir().span(c.hir_id);
2299                 self.preds.insert((
2300                     ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(uv.shrink()))
2301                         .to_predicate(self.tcx),
2302                     span,
2303                 ));
2304             }
2305         }
2306 
2307         fn visit_const_param_default(&mut self, _param: HirId, _ct: &'tcx hir::AnonConst) {
2308             // Do not look into const param defaults,
2309             // these get checked when they are actually instantiated.
2310             //
2311             // We do not want the following to error:
2312             //
2313             //     struct Foo<const N: usize, const M: usize = { N + 1 }>;
2314             //     struct Bar<const N: usize>(Foo<N, 3>);
2315         }
2316     }
2317 
2318     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
2319     let node = tcx.hir().get(hir_id);
2320 
2321     let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
2322     if let hir::Node::Item(item) = node {
2323         if let hir::ItemKind::Impl(ref impl_) = item.kind {
2324             if let Some(of_trait) = &impl_.of_trait {
2325                 debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
2326                 collector.visit_trait_ref(of_trait);
2327             }
2328 
2329             debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
2330             collector.visit_ty(impl_.self_ty);
2331         }
2332     }
2333 
2334     if let Some(generics) = node.generics() {
2335         debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
2336         collector.visit_generics(generics);
2337     }
2338 
2339     if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
2340         debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
2341         collector.visit_fn_decl(fn_sig.decl);
2342     }
2343     debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
2344 
2345     collector.preds
2346 }
2347 
trait_explicit_predicates_and_bounds( tcx: TyCtxt<'_>, def_id: LocalDefId, ) -> ty::GenericPredicates<'_>2348 fn trait_explicit_predicates_and_bounds(
2349     tcx: TyCtxt<'_>,
2350     def_id: LocalDefId,
2351 ) -> ty::GenericPredicates<'_> {
2352     assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
2353     gather_explicit_predicates_of(tcx, def_id.to_def_id())
2354 }
2355 
explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_>2356 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2357     let def_kind = tcx.def_kind(def_id);
2358     if let DefKind::Trait = def_kind {
2359         // Remove bounds on associated types from the predicates, they will be
2360         // returned by `explicit_item_bounds`.
2361         let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id.expect_local());
2362         let trait_identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
2363 
2364         let is_assoc_item_ty = |ty: Ty<'_>| {
2365             // For a predicate from a where clause to become a bound on an
2366             // associated type:
2367             // * It must use the identity substs of the item.
2368             //     * Since any generic parameters on the item are not in scope,
2369             //       this means that the item is not a GAT, and its identity
2370             //       substs are the same as the trait's.
2371             // * It must be an associated type for this trait (*not* a
2372             //   supertrait).
2373             if let ty::Projection(projection) = ty.kind() {
2374                 projection.substs == trait_identity_substs
2375                     && tcx.associated_item(projection.item_def_id).container.id() == def_id
2376             } else {
2377                 false
2378             }
2379         };
2380 
2381         let predicates: Vec<_> = predicates_and_bounds
2382             .predicates
2383             .iter()
2384             .copied()
2385             .filter(|(pred, _)| match pred.kind().skip_binder() {
2386                 ty::PredicateKind::Trait(tr) => !is_assoc_item_ty(tr.self_ty()),
2387                 ty::PredicateKind::Projection(proj) => {
2388                     !is_assoc_item_ty(proj.projection_ty.self_ty())
2389                 }
2390                 ty::PredicateKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
2391                 _ => true,
2392             })
2393             .collect();
2394         if predicates.len() == predicates_and_bounds.predicates.len() {
2395             predicates_and_bounds
2396         } else {
2397             ty::GenericPredicates {
2398                 parent: predicates_and_bounds.parent,
2399                 predicates: tcx.arena.alloc_slice(&predicates),
2400             }
2401         }
2402     } else {
2403         if matches!(def_kind, DefKind::AnonConst) && tcx.lazy_normalization() {
2404             let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2405             if tcx.hir().opt_const_param_default_param_hir_id(hir_id).is_some() {
2406                 // In `generics_of` we set the generics' parent to be our parent's parent which means that
2407                 // we lose out on the predicates of our actual parent if we dont return those predicates here.
2408                 // (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
2409                 //
2410                 // struct Foo<T, const N: usize = { <T as Trait>::ASSOC }>(T) where T: Trait;
2411                 //        ^^^                     ^^^^^^^^^^^^^^^^^^^^^^^ the def id we are calling
2412                 //        ^^^                                             explicit_predicates_of on
2413                 //        parent item we dont have set as the
2414                 //        parent of generics returned by `generics_of`
2415                 //
2416                 // In the above code we want the anon const to have predicates in its param env for `T: Trait`
2417                 let item_id = tcx.hir().get_parent_item(hir_id);
2418                 let item_def_id = tcx.hir().local_def_id(item_id).to_def_id();
2419                 // In the above code example we would be calling `explicit_predicates_of(Foo)` here
2420                 return tcx.explicit_predicates_of(item_def_id);
2421             }
2422         }
2423         gather_explicit_predicates_of(tcx, def_id)
2424     }
2425 }
2426 
2427 /// Converts a specific `GenericBound` from the AST into a set of
2428 /// predicates that apply to the self type. A vector is returned
2429 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2430 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2431 /// and `<T as Bar>::X == i32`).
predicates_from_bound<'tcx>( astconv: &dyn AstConv<'tcx>, param_ty: Ty<'tcx>, bound: &'tcx hir::GenericBound<'tcx>, ) -> Vec<(ty::Predicate<'tcx>, Span)>2432 fn predicates_from_bound<'tcx>(
2433     astconv: &dyn AstConv<'tcx>,
2434     param_ty: Ty<'tcx>,
2435     bound: &'tcx hir::GenericBound<'tcx>,
2436 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2437     let mut bounds = Bounds::default();
2438     astconv.add_bounds(
2439         param_ty,
2440         std::array::IntoIter::new([bound]),
2441         &mut bounds,
2442         ty::List::empty(),
2443     );
2444     bounds.predicates(astconv.tcx(), param_ty)
2445 }
2446 
compute_sig_of_foreign_fn_decl<'tcx>( tcx: TyCtxt<'tcx>, def_id: DefId, decl: &'tcx hir::FnDecl<'tcx>, abi: abi::Abi, ident: Ident, ) -> ty::PolyFnSig<'tcx>2447 fn compute_sig_of_foreign_fn_decl<'tcx>(
2448     tcx: TyCtxt<'tcx>,
2449     def_id: DefId,
2450     decl: &'tcx hir::FnDecl<'tcx>,
2451     abi: abi::Abi,
2452     ident: Ident,
2453 ) -> ty::PolyFnSig<'tcx> {
2454     let unsafety = if abi == abi::Abi::RustIntrinsic {
2455         intrinsic_operation_unsafety(tcx.item_name(def_id))
2456     } else {
2457         hir::Unsafety::Unsafe
2458     };
2459     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2460     let fty = <dyn AstConv<'_>>::ty_of_fn(
2461         &ItemCtxt::new(tcx, def_id),
2462         hir_id,
2463         unsafety,
2464         abi,
2465         decl,
2466         &hir::Generics::empty(),
2467         Some(ident.span),
2468         None,
2469     );
2470 
2471     // Feature gate SIMD types in FFI, since I am not sure that the
2472     // ABIs are handled at all correctly. -huonw
2473     if abi != abi::Abi::RustIntrinsic
2474         && abi != abi::Abi::PlatformIntrinsic
2475         && !tcx.features().simd_ffi
2476     {
2477         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2478             if ty.is_simd() {
2479                 let snip = tcx
2480                     .sess
2481                     .source_map()
2482                     .span_to_snippet(ast_ty.span)
2483                     .map_or_else(|_| String::new(), |s| format!(" `{}`", s));
2484                 tcx.sess
2485                     .struct_span_err(
2486                         ast_ty.span,
2487                         &format!(
2488                             "use of SIMD type{} in FFI is highly experimental and \
2489                              may result in invalid code",
2490                             snip
2491                         ),
2492                     )
2493                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2494                     .emit();
2495             }
2496         };
2497         for (input, ty) in iter::zip(decl.inputs, fty.inputs().skip_binder()) {
2498             check(input, ty)
2499         }
2500         if let hir::FnRetTy::Return(ref ty) = decl.output {
2501             check(ty, fty.output().skip_binder())
2502         }
2503     }
2504 
2505     fty
2506 }
2507 
is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool2508 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2509     match tcx.hir().get_if_local(def_id) {
2510         Some(Node::ForeignItem(..)) => true,
2511         Some(_) => false,
2512         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2513     }
2514 }
2515 
static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability>2516 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2517     match tcx.hir().get_if_local(def_id) {
2518         Some(
2519             Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. })
2520             | Node::ForeignItem(&hir::ForeignItem {
2521                 kind: hir::ForeignItemKind::Static(_, mutbl),
2522                 ..
2523             }),
2524         ) => Some(mutbl),
2525         Some(_) => None,
2526         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2527     }
2528 }
2529 
generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind>2530 fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
2531     match tcx.hir().get_if_local(def_id) {
2532         Some(Node::Expr(&rustc_hir::Expr {
2533             kind: rustc_hir::ExprKind::Closure(_, _, body_id, _, _),
2534             ..
2535         })) => tcx.hir().body(body_id).generator_kind(),
2536         Some(_) => None,
2537         _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
2538     }
2539 }
2540 
from_target_feature( tcx: TyCtxt<'_>, id: DefId, attr: &ast::Attribute, supported_target_features: &FxHashMap<String, Option<Symbol>>, target_features: &mut Vec<Symbol>, )2541 fn from_target_feature(
2542     tcx: TyCtxt<'_>,
2543     id: DefId,
2544     attr: &ast::Attribute,
2545     supported_target_features: &FxHashMap<String, Option<Symbol>>,
2546     target_features: &mut Vec<Symbol>,
2547 ) {
2548     let list = match attr.meta_item_list() {
2549         Some(list) => list,
2550         None => return,
2551     };
2552     let bad_item = |span| {
2553         let msg = "malformed `target_feature` attribute input";
2554         let code = "enable = \"..\"".to_owned();
2555         tcx.sess
2556             .struct_span_err(span, msg)
2557             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2558             .emit();
2559     };
2560     let rust_features = tcx.features();
2561     for item in list {
2562         // Only `enable = ...` is accepted in the meta-item list.
2563         if !item.has_name(sym::enable) {
2564             bad_item(item.span());
2565             continue;
2566         }
2567 
2568         // Must be of the form `enable = "..."` (a string).
2569         let value = match item.value_str() {
2570             Some(value) => value,
2571             None => {
2572                 bad_item(item.span());
2573                 continue;
2574             }
2575         };
2576 
2577         // We allow comma separation to enable multiple features.
2578         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2579             let feature_gate = match supported_target_features.get(feature) {
2580                 Some(g) => g,
2581                 None => {
2582                     let msg =
2583                         format!("the feature named `{}` is not valid for this target", feature);
2584                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2585                     err.span_label(
2586                         item.span(),
2587                         format!("`{}` is not valid for this target", feature),
2588                     );
2589                     if let Some(stripped) = feature.strip_prefix('+') {
2590                         let valid = supported_target_features.contains_key(stripped);
2591                         if valid {
2592                             err.help("consider removing the leading `+` in the feature name");
2593                         }
2594                     }
2595                     err.emit();
2596                     return None;
2597                 }
2598             };
2599 
2600             // Only allow features whose feature gates have been enabled.
2601             let allowed = match feature_gate.as_ref().copied() {
2602                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2603                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2604                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2605                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2606                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2607                 Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
2608                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2609                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2610                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2611                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2612                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2613                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2614                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2615                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2616                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2617                 Some(sym::ermsb_target_feature) => rust_features.ermsb_target_feature,
2618                 Some(sym::bpf_target_feature) => rust_features.bpf_target_feature,
2619                 Some(name) => bug!("unknown target feature gate {}", name),
2620                 None => true,
2621             };
2622             if !allowed && id.is_local() {
2623                 feature_err(
2624                     &tcx.sess.parse_sess,
2625                     feature_gate.unwrap(),
2626                     item.span(),
2627                     &format!("the target feature `{}` is currently unstable", feature),
2628                 )
2629                 .emit();
2630             }
2631             Some(Symbol::intern(feature))
2632         }));
2633     }
2634 }
2635 
linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage2636 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2637     use rustc_middle::mir::mono::Linkage::*;
2638 
2639     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2640     // applicable to variable declarations and may not really make sense for
2641     // Rust code in the first place but allow them anyway and trust that the
2642     // user knows what s/he's doing. Who knows, unanticipated use cases may pop
2643     // up in the future.
2644     //
2645     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2646     // and don't have to be, LLVM treats them as no-ops.
2647     match name {
2648         "appending" => Appending,
2649         "available_externally" => AvailableExternally,
2650         "common" => Common,
2651         "extern_weak" => ExternalWeak,
2652         "external" => External,
2653         "internal" => Internal,
2654         "linkonce" => LinkOnceAny,
2655         "linkonce_odr" => LinkOnceODR,
2656         "private" => Private,
2657         "weak" => WeakAny,
2658         "weak_odr" => WeakODR,
2659         _ => {
2660             let span = tcx.hir().span_if_local(def_id);
2661             if let Some(span) = span {
2662                 tcx.sess.span_fatal(span, "invalid linkage specified")
2663             } else {
2664                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2665             }
2666         }
2667     }
2668 }
2669 
codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs2670 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2671     let attrs = tcx.get_attrs(id);
2672 
2673     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2674     if tcx.should_inherit_track_caller(id) {
2675         codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2676     }
2677 
2678     // With -Z panic-in-drop=abort, drop_in_place never unwinds.
2679     if tcx.sess.opts.debugging_opts.panic_in_drop == PanicStrategy::Abort {
2680         if Some(id) == tcx.lang_items().drop_in_place_fn() {
2681             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
2682         }
2683     }
2684 
2685     let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
2686 
2687     let mut inline_span = None;
2688     let mut link_ordinal_span = None;
2689     let mut no_sanitize_span = None;
2690     for attr in attrs.iter() {
2691         if attr.has_name(sym::cold) {
2692             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2693         } else if attr.has_name(sym::rustc_allocator) {
2694             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2695         } else if attr.has_name(sym::ffi_returns_twice) {
2696             if tcx.is_foreign_item(id) {
2697                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2698             } else {
2699                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2700                 struct_span_err!(
2701                     tcx.sess,
2702                     attr.span,
2703                     E0724,
2704                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2705                 )
2706                 .emit();
2707             }
2708         } else if attr.has_name(sym::ffi_pure) {
2709             if tcx.is_foreign_item(id) {
2710                 if attrs.iter().any(|a| a.has_name(sym::ffi_const)) {
2711                     // `#[ffi_const]` functions cannot be `#[ffi_pure]`
2712                     struct_span_err!(
2713                         tcx.sess,
2714                         attr.span,
2715                         E0757,
2716                         "`#[ffi_const]` function cannot be `#[ffi_pure]`"
2717                     )
2718                     .emit();
2719                 } else {
2720                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
2721                 }
2722             } else {
2723                 // `#[ffi_pure]` is only allowed on foreign functions
2724                 struct_span_err!(
2725                     tcx.sess,
2726                     attr.span,
2727                     E0755,
2728                     "`#[ffi_pure]` may only be used on foreign functions"
2729                 )
2730                 .emit();
2731             }
2732         } else if attr.has_name(sym::ffi_const) {
2733             if tcx.is_foreign_item(id) {
2734                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
2735             } else {
2736                 // `#[ffi_const]` is only allowed on foreign functions
2737                 struct_span_err!(
2738                     tcx.sess,
2739                     attr.span,
2740                     E0756,
2741                     "`#[ffi_const]` may only be used on foreign functions"
2742                 )
2743                 .emit();
2744             }
2745         } else if attr.has_name(sym::rustc_allocator_nounwind) {
2746             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
2747         } else if attr.has_name(sym::naked) {
2748             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2749         } else if attr.has_name(sym::no_mangle) {
2750             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2751         } else if attr.has_name(sym::no_coverage) {
2752             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_COVERAGE;
2753         } else if attr.has_name(sym::rustc_std_internal_symbol) {
2754             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2755         } else if attr.has_name(sym::used) {
2756             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2757         } else if attr.has_name(sym::cmse_nonsecure_entry) {
2758             if !matches!(tcx.fn_sig(id).abi(), abi::Abi::C { .. }) {
2759                 struct_span_err!(
2760                     tcx.sess,
2761                     attr.span,
2762                     E0776,
2763                     "`#[cmse_nonsecure_entry]` requires C ABI"
2764                 )
2765                 .emit();
2766             }
2767             if !tcx.sess.target.llvm_target.contains("thumbv8m") {
2768                 struct_span_err!(tcx.sess, attr.span, E0775, "`#[cmse_nonsecure_entry]` is only valid for targets with the TrustZone-M extension")
2769                     .emit();
2770             }
2771             codegen_fn_attrs.flags |= CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY;
2772         } else if attr.has_name(sym::thread_local) {
2773             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2774         } else if attr.has_name(sym::track_caller) {
2775             if !tcx.is_closure(id) && tcx.fn_sig(id).abi() != abi::Abi::Rust {
2776                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2777                     .emit();
2778             }
2779             if tcx.is_closure(id) && !tcx.features().closure_track_caller {
2780                 feature_err(
2781                     &tcx.sess.parse_sess,
2782                     sym::closure_track_caller,
2783                     attr.span,
2784                     "`#[track_caller]` on closures is currently unstable",
2785                 )
2786                 .emit();
2787             }
2788             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2789         } else if attr.has_name(sym::export_name) {
2790             if let Some(s) = attr.value_str() {
2791                 if s.as_str().contains('\0') {
2792                     // `#[export_name = ...]` will be converted to a null-terminated string,
2793                     // so it may not contain any null characters.
2794                     struct_span_err!(
2795                         tcx.sess,
2796                         attr.span,
2797                         E0648,
2798                         "`export_name` may not contain null characters"
2799                     )
2800                     .emit();
2801                 }
2802                 codegen_fn_attrs.export_name = Some(s);
2803             }
2804         } else if attr.has_name(sym::target_feature) {
2805             if !tcx.is_closure(id) && tcx.fn_sig(id).unsafety() == hir::Unsafety::Normal {
2806                 if tcx.sess.target.is_like_wasm || tcx.sess.opts.actually_rustdoc {
2807                     // The `#[target_feature]` attribute is allowed on
2808                     // WebAssembly targets on all functions, including safe
2809                     // ones. Other targets require that `#[target_feature]` is
2810                     // only applied to unsafe funtions (pending the
2811                     // `target_feature_11` feature) because on most targets
2812                     // execution of instructions that are not supported is
2813                     // considered undefined behavior. For WebAssembly which is a
2814                     // 100% safe target at execution time it's not possible to
2815                     // execute undefined instructions, and even if a future
2816                     // feature was added in some form for this it would be a
2817                     // deterministic trap. There is no undefined behavior when
2818                     // executing WebAssembly so `#[target_feature]` is allowed
2819                     // on safe functions (but again, only for WebAssembly)
2820                     //
2821                     // Note that this is also allowed if `actually_rustdoc` so
2822                     // if a target is documenting some wasm-specific code then
2823                     // it's not spuriously denied.
2824                 } else if !tcx.features().target_feature_11 {
2825                     let mut err = feature_err(
2826                         &tcx.sess.parse_sess,
2827                         sym::target_feature_11,
2828                         attr.span,
2829                         "`#[target_feature(..)]` can only be applied to `unsafe` functions",
2830                     );
2831                     err.span_label(tcx.def_span(id), "not an `unsafe` function");
2832                     err.emit();
2833                 } else if let Some(local_id) = id.as_local() {
2834                     check_target_feature_trait_unsafe(tcx, local_id, attr.span);
2835                 }
2836             }
2837             from_target_feature(
2838                 tcx,
2839                 id,
2840                 attr,
2841                 supported_target_features,
2842                 &mut codegen_fn_attrs.target_features,
2843             );
2844         } else if attr.has_name(sym::linkage) {
2845             if let Some(val) = attr.value_str() {
2846                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2847             }
2848         } else if attr.has_name(sym::link_section) {
2849             if let Some(val) = attr.value_str() {
2850                 if val.as_str().bytes().any(|b| b == 0) {
2851                     let msg = format!(
2852                         "illegal null byte in link_section \
2853                          value: `{}`",
2854                         &val
2855                     );
2856                     tcx.sess.span_err(attr.span, &msg);
2857                 } else {
2858                     codegen_fn_attrs.link_section = Some(val);
2859                 }
2860             }
2861         } else if attr.has_name(sym::link_name) {
2862             codegen_fn_attrs.link_name = attr.value_str();
2863         } else if attr.has_name(sym::link_ordinal) {
2864             link_ordinal_span = Some(attr.span);
2865             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2866                 codegen_fn_attrs.link_ordinal = ordinal;
2867             }
2868         } else if attr.has_name(sym::no_sanitize) {
2869             no_sanitize_span = Some(attr.span);
2870             if let Some(list) = attr.meta_item_list() {
2871                 for item in list.iter() {
2872                     if item.has_name(sym::address) {
2873                         codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
2874                     } else if item.has_name(sym::cfi) {
2875                         codegen_fn_attrs.no_sanitize |= SanitizerSet::CFI;
2876                     } else if item.has_name(sym::memory) {
2877                         codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
2878                     } else if item.has_name(sym::thread) {
2879                         codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
2880                     } else if item.has_name(sym::hwaddress) {
2881                         codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS;
2882                     } else {
2883                         tcx.sess
2884                             .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
2885                             .note("expected one of: `address`, `hwaddress`, `memory` or `thread`")
2886                             .emit();
2887                     }
2888                 }
2889             }
2890         } else if attr.has_name(sym::instruction_set) {
2891             codegen_fn_attrs.instruction_set = match attr.meta().map(|i| i.kind) {
2892                 Some(MetaItemKind::List(ref items)) => match items.as_slice() {
2893                     [NestedMetaItem::MetaItem(set)] => {
2894                         let segments =
2895                             set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
2896                         match segments.as_slice() {
2897                             [sym::arm, sym::a32] | [sym::arm, sym::t32] => {
2898                                 if !tcx.sess.target.has_thumb_interworking {
2899                                     struct_span_err!(
2900                                         tcx.sess.diagnostic(),
2901                                         attr.span,
2902                                         E0779,
2903                                         "target does not support `#[instruction_set]`"
2904                                     )
2905                                     .emit();
2906                                     None
2907                                 } else if segments[1] == sym::a32 {
2908                                     Some(InstructionSetAttr::ArmA32)
2909                                 } else if segments[1] == sym::t32 {
2910                                     Some(InstructionSetAttr::ArmT32)
2911                                 } else {
2912                                     unreachable!()
2913                                 }
2914                             }
2915                             _ => {
2916                                 struct_span_err!(
2917                                     tcx.sess.diagnostic(),
2918                                     attr.span,
2919                                     E0779,
2920                                     "invalid instruction set specified",
2921                                 )
2922                                 .emit();
2923                                 None
2924                             }
2925                         }
2926                     }
2927                     [] => {
2928                         struct_span_err!(
2929                             tcx.sess.diagnostic(),
2930                             attr.span,
2931                             E0778,
2932                             "`#[instruction_set]` requires an argument"
2933                         )
2934                         .emit();
2935                         None
2936                     }
2937                     _ => {
2938                         struct_span_err!(
2939                             tcx.sess.diagnostic(),
2940                             attr.span,
2941                             E0779,
2942                             "cannot specify more than one instruction set"
2943                         )
2944                         .emit();
2945                         None
2946                     }
2947                 },
2948                 _ => {
2949                     struct_span_err!(
2950                         tcx.sess.diagnostic(),
2951                         attr.span,
2952                         E0778,
2953                         "must specify an instruction set"
2954                     )
2955                     .emit();
2956                     None
2957                 }
2958             };
2959         } else if attr.has_name(sym::repr) {
2960             codegen_fn_attrs.alignment = match attr.meta_item_list() {
2961                 Some(items) => match items.as_slice() {
2962                     [item] => match item.name_value_literal() {
2963                         Some((sym::align, literal)) => {
2964                             let alignment = rustc_attr::parse_alignment(&literal.kind);
2965 
2966                             match alignment {
2967                                 Ok(align) => Some(align),
2968                                 Err(msg) => {
2969                                     struct_span_err!(
2970                                         tcx.sess.diagnostic(),
2971                                         attr.span,
2972                                         E0589,
2973                                         "invalid `repr(align)` attribute: {}",
2974                                         msg
2975                                     )
2976                                     .emit();
2977 
2978                                     None
2979                                 }
2980                             }
2981                         }
2982                         _ => None,
2983                     },
2984                     [] => None,
2985                     _ => None,
2986                 },
2987                 None => None,
2988             };
2989         }
2990     }
2991 
2992     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2993         if !attr.has_name(sym::inline) {
2994             return ia;
2995         }
2996         match attr.meta().map(|i| i.kind) {
2997             Some(MetaItemKind::Word) => InlineAttr::Hint,
2998             Some(MetaItemKind::List(ref items)) => {
2999                 inline_span = Some(attr.span);
3000                 if items.len() != 1 {
3001                     struct_span_err!(
3002                         tcx.sess.diagnostic(),
3003                         attr.span,
3004                         E0534,
3005                         "expected one argument"
3006                     )
3007                     .emit();
3008                     InlineAttr::None
3009                 } else if list_contains_name(&items[..], sym::always) {
3010                     InlineAttr::Always
3011                 } else if list_contains_name(&items[..], sym::never) {
3012                     InlineAttr::Never
3013                 } else {
3014                     struct_span_err!(
3015                         tcx.sess.diagnostic(),
3016                         items[0].span(),
3017                         E0535,
3018                         "invalid argument"
3019                     )
3020                     .emit();
3021 
3022                     InlineAttr::None
3023                 }
3024             }
3025             Some(MetaItemKind::NameValue(_)) => ia,
3026             None => ia,
3027         }
3028     });
3029 
3030     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
3031         if !attr.has_name(sym::optimize) {
3032             return ia;
3033         }
3034         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
3035         match attr.meta().map(|i| i.kind) {
3036             Some(MetaItemKind::Word) => {
3037                 err(attr.span, "expected one argument");
3038                 ia
3039             }
3040             Some(MetaItemKind::List(ref items)) => {
3041                 inline_span = Some(attr.span);
3042                 if items.len() != 1 {
3043                     err(attr.span, "expected one argument");
3044                     OptimizeAttr::None
3045                 } else if list_contains_name(&items[..], sym::size) {
3046                     OptimizeAttr::Size
3047                 } else if list_contains_name(&items[..], sym::speed) {
3048                     OptimizeAttr::Speed
3049                 } else {
3050                     err(items[0].span(), "invalid argument");
3051                     OptimizeAttr::None
3052                 }
3053             }
3054             Some(MetaItemKind::NameValue(_)) => ia,
3055             None => ia,
3056         }
3057     });
3058 
3059     // #73631: closures inherit `#[target_feature]` annotations
3060     if tcx.features().target_feature_11 && tcx.is_closure(id) {
3061         let owner_id = tcx.parent(id).expect("closure should have a parent");
3062         codegen_fn_attrs
3063             .target_features
3064             .extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied())
3065     }
3066 
3067     // If a function uses #[target_feature] it can't be inlined into general
3068     // purpose functions as they wouldn't have the right target features
3069     // enabled. For that reason we also forbid #[inline(always)] as it can't be
3070     // respected.
3071     if !codegen_fn_attrs.target_features.is_empty() {
3072         if codegen_fn_attrs.inline == InlineAttr::Always {
3073             if let Some(span) = inline_span {
3074                 tcx.sess.span_err(
3075                     span,
3076                     "cannot use `#[inline(always)]` with \
3077                      `#[target_feature]`",
3078                 );
3079             }
3080         }
3081     }
3082 
3083     if !codegen_fn_attrs.no_sanitize.is_empty() {
3084         if codegen_fn_attrs.inline == InlineAttr::Always {
3085             if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
3086                 let hir_id = tcx.hir().local_def_id_to_hir_id(id.expect_local());
3087                 tcx.struct_span_lint_hir(
3088                     lint::builtin::INLINE_NO_SANITIZE,
3089                     hir_id,
3090                     no_sanitize_span,
3091                     |lint| {
3092                         lint.build("`no_sanitize` will have no effect after inlining")
3093                             .span_note(inline_span, "inlining requested here")
3094                             .emit();
3095                     },
3096                 )
3097             }
3098         }
3099     }
3100 
3101     // Weak lang items have the same semantics as "std internal" symbols in the
3102     // sense that they're preserved through all our LTO passes and only
3103     // strippable by the linker.
3104     //
3105     // Additionally weak lang items have predetermined symbol names.
3106     if tcx.is_weak_lang_item(id) {
3107         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
3108     }
3109     let check_name = |attr: &Attribute, sym| attr.has_name(sym);
3110     if let Some(name) = weak_lang_items::link_name(check_name, attrs) {
3111         codegen_fn_attrs.export_name = Some(name);
3112         codegen_fn_attrs.link_name = Some(name);
3113     }
3114     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
3115 
3116     // Internal symbols to the standard library all have no_mangle semantics in
3117     // that they have defined symbol names present in the function name. This
3118     // also applies to weak symbols where they all have known symbol names.
3119     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
3120         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
3121     }
3122 
3123     // Any linkage to LLVM intrinsics for now forcibly marks them all as never
3124     // unwinds since LLVM sometimes can't handle codegen which `invoke`s
3125     // intrinsic functions.
3126     if let Some(name) = &codegen_fn_attrs.link_name {
3127         if name.as_str().starts_with("llvm.") {
3128             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
3129         }
3130     }
3131 
3132     codegen_fn_attrs
3133 }
3134 
3135 /// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
3136 /// applied to the method prototype.
should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool3137 fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
3138     if let Some(impl_item) = tcx.opt_associated_item(def_id) {
3139         if let ty::AssocItemContainer::ImplContainer(impl_def_id) = impl_item.container {
3140             if let Some(trait_def_id) = tcx.trait_id_of_impl(impl_def_id) {
3141                 if let Some(trait_item) = tcx
3142                     .associated_items(trait_def_id)
3143                     .filter_by_name_unhygienic(impl_item.ident.name)
3144                     .find(move |trait_item| {
3145                         trait_item.kind == ty::AssocKind::Fn
3146                             && tcx.hygienic_eq(impl_item.ident, trait_item.ident, trait_def_id)
3147                     })
3148                 {
3149                     return tcx
3150                         .codegen_fn_attrs(trait_item.def_id)
3151                         .flags
3152                         .intersects(CodegenFnAttrFlags::TRACK_CALLER);
3153                 }
3154             }
3155         }
3156     }
3157 
3158     false
3159 }
3160 
check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<u16>3161 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<u16> {
3162     use rustc_ast::{Lit, LitIntType, LitKind};
3163     let meta_item_list = attr.meta_item_list();
3164     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
3165     let sole_meta_list = match meta_item_list {
3166         Some([item]) => item.literal(),
3167         Some(_) => {
3168             tcx.sess
3169                 .struct_span_err(attr.span, "incorrect number of arguments to `#[link_ordinal]`")
3170                 .note("the attribute requires exactly one argument")
3171                 .emit();
3172             return None;
3173         }
3174         _ => None,
3175     };
3176     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
3177         // According to the table at https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-header,
3178         // the ordinal must fit into 16 bits.  Similarly, the Ordinal field in COFFShortExport (defined
3179         // in llvm/include/llvm/Object/COFFImportFile.h), which we use to communicate import information
3180         // to LLVM for `#[link(kind = "raw-dylib"_])`, is also defined to be uint16_t.
3181         //
3182         // FIXME: should we allow an ordinal of 0?  The MSVC toolchain has inconsistent support for this:
3183         // both LINK.EXE and LIB.EXE signal errors and abort when given a .DEF file that specifies
3184         // a zero ordinal.  However, llvm-dlltool is perfectly happy to generate an import library
3185         // for such a .DEF file, and MSVC's LINK.EXE is also perfectly happy to consume an import
3186         // library produced by LLVM with an ordinal of 0, and it generates an .EXE.  (I don't know yet
3187         // if the resulting EXE runs, as I haven't yet built the necessary DLL -- see earlier comment
3188         // about LINK.EXE failing.)
3189         if *ordinal <= u16::MAX as u128 {
3190             Some(*ordinal as u16)
3191         } else {
3192             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
3193             tcx.sess
3194                 .struct_span_err(attr.span, &msg)
3195                 .note("the value may not exceed `u16::MAX`")
3196                 .emit();
3197             None
3198         }
3199     } else {
3200         tcx.sess
3201             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
3202             .note("an unsuffixed integer value, e.g., `1`, is expected")
3203             .emit();
3204         None
3205     }
3206 }
3207 
check_link_name_xor_ordinal( tcx: TyCtxt<'_>, codegen_fn_attrs: &CodegenFnAttrs, inline_span: Option<Span>, )3208 fn check_link_name_xor_ordinal(
3209     tcx: TyCtxt<'_>,
3210     codegen_fn_attrs: &CodegenFnAttrs,
3211     inline_span: Option<Span>,
3212 ) {
3213     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
3214         return;
3215     }
3216     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
3217     if let Some(span) = inline_span {
3218         tcx.sess.span_err(span, msg);
3219     } else {
3220         tcx.sess.err(msg);
3221     }
3222 }
3223 
3224 /// Checks the function annotated with `#[target_feature]` is not a safe
3225 /// trait method implementation, reporting an error if it is.
check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span)3226 fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
3227     let hir_id = tcx.hir().local_def_id_to_hir_id(id);
3228     let node = tcx.hir().get(hir_id);
3229     if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
3230         let parent_id = tcx.hir().get_parent_item(hir_id);
3231         let parent_item = tcx.hir().expect_item(parent_id);
3232         if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = parent_item.kind {
3233             tcx.sess
3234                 .struct_span_err(
3235                     attr_span,
3236                     "`#[target_feature(..)]` cannot be applied to safe trait method",
3237                 )
3238                 .span_label(attr_span, "cannot be applied to safe trait method")
3239                 .span_label(tcx.def_span(id), "not an `unsafe` function")
3240                 .emit();
3241         }
3242     }
3243 }
3244