1 use crate::any::type_name;
2 use crate::fmt;
3 use crate::intrinsics;
4 use crate::mem::ManuallyDrop;
5 use crate::ptr;
6 
7 /// A wrapper type to construct uninitialized instances of `T`.
8 ///
9 /// # Initialization invariant
10 ///
11 /// The compiler, in general, assumes that a variable is properly initialized
12 /// according to the requirements of the variable's type. For example, a variable of
13 /// reference type must be aligned and non-null. This is an invariant that must
14 /// *always* be upheld, even in unsafe code. As a consequence, zero-initializing a
15 /// variable of reference type causes instantaneous [undefined behavior][ub],
16 /// no matter whether that reference ever gets used to access memory:
17 ///
18 /// ```rust,no_run
19 /// # #![allow(invalid_value)]
20 /// use std::mem::{self, MaybeUninit};
21 ///
22 /// let x: &i32 = unsafe { mem::zeroed() }; // undefined behavior! ⚠️
23 /// // The equivalent code with `MaybeUninit<&i32>`:
24 /// let x: &i32 = unsafe { MaybeUninit::zeroed().assume_init() }; // undefined behavior! ⚠️
25 /// ```
26 ///
27 /// This is exploited by the compiler for various optimizations, such as eliding
28 /// run-time checks and optimizing `enum` layout.
29 ///
30 /// Similarly, entirely uninitialized memory may have any content, while a `bool` must
31 /// always be `true` or `false`. Hence, creating an uninitialized `bool` is undefined behavior:
32 ///
33 /// ```rust,no_run
34 /// # #![allow(invalid_value)]
35 /// use std::mem::{self, MaybeUninit};
36 ///
37 /// let b: bool = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
38 /// // The equivalent code with `MaybeUninit<bool>`:
39 /// let b: bool = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
40 /// ```
41 ///
42 /// Moreover, uninitialized memory is special in that it does not have a fixed value ("fixed"
43 /// meaning "it won't change without being written to"). Reading the same uninitialized byte
44 /// multiple times can give different results. This makes it undefined behavior to have
45 /// uninitialized data in a variable even if that variable has an integer type, which otherwise can
46 /// hold any *fixed* bit pattern:
47 ///
48 /// ```rust,no_run
49 /// # #![allow(invalid_value)]
50 /// use std::mem::{self, MaybeUninit};
51 ///
52 /// let x: i32 = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
53 /// // The equivalent code with `MaybeUninit<i32>`:
54 /// let x: i32 = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
55 /// ```
56 /// (Notice that the rules around uninitialized integers are not finalized yet, but
57 /// until they are, it is advisable to avoid them.)
58 ///
59 /// On top of that, remember that most types have additional invariants beyond merely
60 /// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
61 /// is considered initialized (under the current implementation; this does not constitute
62 /// a stable guarantee) because the only requirement the compiler knows about it
63 /// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
64 /// *immediate* undefined behavior, but will cause undefined behavior with most
65 /// safe operations (including dropping it).
66 ///
67 /// [`Vec<T>`]: ../../std/vec/struct.Vec.html
68 ///
69 /// # Examples
70 ///
71 /// `MaybeUninit<T>` serves to enable unsafe code to deal with uninitialized data.
72 /// It is a signal to the compiler indicating that the data here might *not*
73 /// be initialized:
74 ///
75 /// ```rust
76 /// use std::mem::MaybeUninit;
77 ///
78 /// // Create an explicitly uninitialized reference. The compiler knows that data inside
79 /// // a `MaybeUninit<T>` may be invalid, and hence this is not UB:
80 /// let mut x = MaybeUninit::<&i32>::uninit();
81 /// // Set it to a valid value.
82 /// x.write(&0);
83 /// // Extract the initialized data -- this is only allowed *after* properly
84 /// // initializing `x`!
85 /// let x = unsafe { x.assume_init() };
86 /// ```
87 ///
88 /// The compiler then knows to not make any incorrect assumptions or optimizations on this code.
89 ///
90 /// You can think of `MaybeUninit<T>` as being a bit like `Option<T>` but without
91 /// any of the run-time tracking and without any of the safety checks.
92 ///
93 /// ## out-pointers
94 ///
95 /// You can use `MaybeUninit<T>` to implement "out-pointers": instead of returning data
96 /// from a function, pass it a pointer to some (uninitialized) memory to put the
97 /// result into. This can be useful when it is important for the caller to control
98 /// how the memory the result is stored in gets allocated, and you want to avoid
99 /// unnecessary moves.
100 ///
101 /// ```
102 /// use std::mem::MaybeUninit;
103 ///
104 /// unsafe fn make_vec(out: *mut Vec<i32>) {
105 ///     // `write` does not drop the old contents, which is important.
106 ///     out.write(vec![1, 2, 3]);
107 /// }
108 ///
109 /// let mut v = MaybeUninit::uninit();
110 /// unsafe { make_vec(v.as_mut_ptr()); }
111 /// // Now we know `v` is initialized! This also makes sure the vector gets
112 /// // properly dropped.
113 /// let v = unsafe { v.assume_init() };
114 /// assert_eq!(&v, &[1, 2, 3]);
115 /// ```
116 ///
117 /// ## Initializing an array element-by-element
118 ///
119 /// `MaybeUninit<T>` can be used to initialize a large array element-by-element:
120 ///
121 /// ```
122 /// use std::mem::{self, MaybeUninit};
123 ///
124 /// let data = {
125 ///     // Create an uninitialized array of `MaybeUninit`. The `assume_init` is
126 ///     // safe because the type we are claiming to have initialized here is a
127 ///     // bunch of `MaybeUninit`s, which do not require initialization.
128 ///     let mut data: [MaybeUninit<Vec<u32>>; 1000] = unsafe {
129 ///         MaybeUninit::uninit().assume_init()
130 ///     };
131 ///
132 ///     // Dropping a `MaybeUninit` does nothing. Thus using raw pointer
133 ///     // assignment instead of `ptr::write` does not cause the old
134 ///     // uninitialized value to be dropped. Also if there is a panic during
135 ///     // this loop, we have a memory leak, but there is no memory safety
136 ///     // issue.
137 ///     for elem in &mut data[..] {
138 ///         elem.write(vec![42]);
139 ///     }
140 ///
141 ///     // Everything is initialized. Transmute the array to the
142 ///     // initialized type.
143 ///     unsafe { mem::transmute::<_, [Vec<u32>; 1000]>(data) }
144 /// };
145 ///
146 /// assert_eq!(&data[0], &[42]);
147 /// ```
148 ///
149 /// You can also work with partially initialized arrays, which could
150 /// be found in low-level datastructures.
151 ///
152 /// ```
153 /// use std::mem::MaybeUninit;
154 /// use std::ptr;
155 ///
156 /// // Create an uninitialized array of `MaybeUninit`. The `assume_init` is
157 /// // safe because the type we are claiming to have initialized here is a
158 /// // bunch of `MaybeUninit`s, which do not require initialization.
159 /// let mut data: [MaybeUninit<String>; 1000] = unsafe { MaybeUninit::uninit().assume_init() };
160 /// // Count the number of elements we have assigned.
161 /// let mut data_len: usize = 0;
162 ///
163 /// for elem in &mut data[0..500] {
164 ///     elem.write(String::from("hello"));
165 ///     data_len += 1;
166 /// }
167 ///
168 /// // For each item in the array, drop if we allocated it.
169 /// for elem in &mut data[0..data_len] {
170 ///     unsafe { ptr::drop_in_place(elem.as_mut_ptr()); }
171 /// }
172 /// ```
173 ///
174 /// ## Initializing a struct field-by-field
175 ///
176 /// You can use `MaybeUninit<T>`, and the [`std::ptr::addr_of_mut`] macro, to initialize structs field by field:
177 ///
178 /// ```rust
179 /// use std::mem::MaybeUninit;
180 /// use std::ptr::addr_of_mut;
181 ///
182 /// #[derive(Debug, PartialEq)]
183 /// pub struct Foo {
184 ///     name: String,
185 ///     list: Vec<u8>,
186 /// }
187 ///
188 /// let foo = {
189 ///     let mut uninit: MaybeUninit<Foo> = MaybeUninit::uninit();
190 ///     let ptr = uninit.as_mut_ptr();
191 ///
192 ///     // Initializing the `name` field
193 ///     // Using `write` instead of assignment via `=` to not call `drop` on the
194 ///     // old, uninitialized value.
195 ///     unsafe { addr_of_mut!((*ptr).name).write("Bob".to_string()); }
196 ///
197 ///     // Initializing the `list` field
198 ///     // If there is a panic here, then the `String` in the `name` field leaks.
199 ///     unsafe { addr_of_mut!((*ptr).list).write(vec![0, 1, 2]); }
200 ///
201 ///     // All the fields are initialized, so we call `assume_init` to get an initialized Foo.
202 ///     unsafe { uninit.assume_init() }
203 /// };
204 ///
205 /// assert_eq!(
206 ///     foo,
207 ///     Foo {
208 ///         name: "Bob".to_string(),
209 ///         list: vec![0, 1, 2]
210 ///     }
211 /// );
212 /// ```
213 /// [`std::ptr::addr_of_mut`]: crate::ptr::addr_of_mut
214 /// [ub]: ../../reference/behavior-considered-undefined.html
215 ///
216 /// # Layout
217 ///
218 /// `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as `T`:
219 ///
220 /// ```rust
221 /// use std::mem::{MaybeUninit, size_of, align_of};
222 /// assert_eq!(size_of::<MaybeUninit<u64>>(), size_of::<u64>());
223 /// assert_eq!(align_of::<MaybeUninit<u64>>(), align_of::<u64>());
224 /// ```
225 ///
226 /// However remember that a type *containing* a `MaybeUninit<T>` is not necessarily the same
227 /// layout; Rust does not in general guarantee that the fields of a `Foo<T>` have the same order as
228 /// a `Foo<U>` even if `T` and `U` have the same size and alignment. Furthermore because any bit
229 /// value is valid for a `MaybeUninit<T>` the compiler can't apply non-zero/niche-filling
230 /// optimizations, potentially resulting in a larger size:
231 ///
232 /// ```rust
233 /// # use std::mem::{MaybeUninit, size_of};
234 /// assert_eq!(size_of::<Option<bool>>(), 1);
235 /// assert_eq!(size_of::<Option<MaybeUninit<bool>>>(), 2);
236 /// ```
237 ///
238 /// If `T` is FFI-safe, then so is `MaybeUninit<T>`.
239 ///
240 /// While `MaybeUninit` is `#[repr(transparent)]` (indicating it guarantees the same size,
241 /// alignment, and ABI as `T`), this does *not* change any of the previous caveats. `Option<T>` and
242 /// `Option<MaybeUninit<T>>` may still have different sizes, and types containing a field of type
243 /// `T` may be laid out (and sized) differently than if that field were `MaybeUninit<T>`.
244 /// `MaybeUninit` is a union type, and `#[repr(transparent)]` on unions is unstable (see [the
245 /// tracking issue](https://github.com/rust-lang/rust/issues/60405)). Over time, the exact
246 /// guarantees of `#[repr(transparent)]` on unions may evolve, and `MaybeUninit` may or may not
247 /// remain `#[repr(transparent)]`. That said, `MaybeUninit<T>` will *always* guarantee that it has
248 /// the same size, alignment, and ABI as `T`; it's just that the way `MaybeUninit` implements that
249 /// guarantee may evolve.
250 #[stable(feature = "maybe_uninit", since = "1.36.0")]
251 // Lang item so we can wrap other types in it. This is useful for generators.
252 #[lang = "maybe_uninit"]
253 #[derive(Copy)]
254 #[repr(transparent)]
255 pub union MaybeUninit<T> {
256     uninit: (),
257     value: ManuallyDrop<T>,
258 }
259 
260 #[stable(feature = "maybe_uninit", since = "1.36.0")]
261 impl<T: Copy> Clone for MaybeUninit<T> {
262     #[inline(always)]
clone(&self) -> Self263     fn clone(&self) -> Self {
264         // Not calling `T::clone()`, we cannot know if we are initialized enough for that.
265         *self
266     }
267 }
268 
269 #[stable(feature = "maybe_uninit_debug", since = "1.41.0")]
270 impl<T> fmt::Debug for MaybeUninit<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result271     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
272         f.pad(type_name::<Self>())
273     }
274 }
275 
276 impl<T> MaybeUninit<T> {
277     /// Creates a new `MaybeUninit<T>` initialized with the given value.
278     /// It is safe to call [`assume_init`] on the return value of this function.
279     ///
280     /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
281     /// It is your responsibility to make sure `T` gets dropped if it got initialized.
282     ///
283     /// # Example
284     ///
285     /// ```
286     /// use std::mem::MaybeUninit;
287     ///
288     /// let v: MaybeUninit<Vec<u8>> = MaybeUninit::new(vec![42]);
289     /// ```
290     ///
291     /// [`assume_init`]: MaybeUninit::assume_init
292     #[stable(feature = "maybe_uninit", since = "1.36.0")]
293     #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
294     #[must_use = "use `forget` to avoid running Drop code"]
295     #[inline(always)]
new(val: T) -> MaybeUninit<T>296     pub const fn new(val: T) -> MaybeUninit<T> {
297         MaybeUninit { value: ManuallyDrop::new(val) }
298     }
299 
300     /// Creates a new `MaybeUninit<T>` in an uninitialized state.
301     ///
302     /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
303     /// It is your responsibility to make sure `T` gets dropped if it got initialized.
304     ///
305     /// See the [type-level documentation][MaybeUninit] for some examples.
306     ///
307     /// # Example
308     ///
309     /// ```
310     /// use std::mem::MaybeUninit;
311     ///
312     /// let v: MaybeUninit<String> = MaybeUninit::uninit();
313     /// ```
314     #[stable(feature = "maybe_uninit", since = "1.36.0")]
315     #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
316     #[must_use]
317     #[inline(always)]
318     #[rustc_diagnostic_item = "maybe_uninit_uninit"]
uninit() -> MaybeUninit<T>319     pub const fn uninit() -> MaybeUninit<T> {
320         MaybeUninit { uninit: () }
321     }
322 
323     /// Create a new array of `MaybeUninit<T>` items, in an uninitialized state.
324     ///
325     /// Note: in a future Rust version this method may become unnecessary
326     /// when Rust allows
327     /// [inline const expressions](https://github.com/rust-lang/rust/issues/76001).
328     /// The example below could then use `let mut buf = [const { MaybeUninit::<u8>::uninit() }; 32];`.
329     ///
330     /// # Examples
331     ///
332     /// ```no_run
333     /// #![feature(maybe_uninit_uninit_array, maybe_uninit_extra, maybe_uninit_slice)]
334     ///
335     /// use std::mem::MaybeUninit;
336     ///
337     /// extern "C" {
338     ///     fn read_into_buffer(ptr: *mut u8, max_len: usize) -> usize;
339     /// }
340     ///
341     /// /// Returns a (possibly smaller) slice of data that was actually read
342     /// fn read(buf: &mut [MaybeUninit<u8>]) -> &[u8] {
343     ///     unsafe {
344     ///         let len = read_into_buffer(buf.as_mut_ptr() as *mut u8, buf.len());
345     ///         MaybeUninit::slice_assume_init_ref(&buf[..len])
346     ///     }
347     /// }
348     ///
349     /// let mut buf: [MaybeUninit<u8>; 32] = MaybeUninit::uninit_array();
350     /// let data = read(&mut buf);
351     /// ```
352     #[unstable(feature = "maybe_uninit_uninit_array", issue = "none")]
353     #[rustc_const_unstable(feature = "maybe_uninit_uninit_array", issue = "none")]
354     #[must_use]
355     #[inline(always)]
uninit_array<const LEN: usize>() -> [Self; LEN]356     pub const fn uninit_array<const LEN: usize>() -> [Self; LEN] {
357         // SAFETY: An uninitialized `[MaybeUninit<_>; LEN]` is valid.
358         unsafe { MaybeUninit::<[MaybeUninit<T>; LEN]>::uninit().assume_init() }
359     }
360 
361     /// Creates a new `MaybeUninit<T>` in an uninitialized state, with the memory being
362     /// filled with `0` bytes. It depends on `T` whether that already makes for
363     /// proper initialization. For example, `MaybeUninit<usize>::zeroed()` is initialized,
364     /// but `MaybeUninit<&'static i32>::zeroed()` is not because references must not
365     /// be null.
366     ///
367     /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
368     /// It is your responsibility to make sure `T` gets dropped if it got initialized.
369     ///
370     /// # Example
371     ///
372     /// Correct usage of this function: initializing a struct with zero, where all
373     /// fields of the struct can hold the bit-pattern 0 as a valid value.
374     ///
375     /// ```rust
376     /// use std::mem::MaybeUninit;
377     ///
378     /// let x = MaybeUninit::<(u8, bool)>::zeroed();
379     /// let x = unsafe { x.assume_init() };
380     /// assert_eq!(x, (0, false));
381     /// ```
382     ///
383     /// *Incorrect* usage of this function: calling `x.zeroed().assume_init()`
384     /// when `0` is not a valid bit-pattern for the type:
385     ///
386     /// ```rust,no_run
387     /// use std::mem::MaybeUninit;
388     ///
389     /// enum NotZero { One = 1, Two = 2 }
390     ///
391     /// let x = MaybeUninit::<(u8, NotZero)>::zeroed();
392     /// let x = unsafe { x.assume_init() };
393     /// // Inside a pair, we create a `NotZero` that does not have a valid discriminant.
394     /// // This is undefined behavior. ⚠️
395     /// ```
396     #[stable(feature = "maybe_uninit", since = "1.36.0")]
397     #[must_use]
398     #[inline]
399     #[rustc_diagnostic_item = "maybe_uninit_zeroed"]
zeroed() -> MaybeUninit<T>400     pub fn zeroed() -> MaybeUninit<T> {
401         let mut u = MaybeUninit::<T>::uninit();
402         // SAFETY: `u.as_mut_ptr()` points to allocated memory.
403         unsafe {
404             u.as_mut_ptr().write_bytes(0u8, 1);
405         }
406         u
407     }
408 
409     /// Sets the value of the `MaybeUninit<T>`.
410     ///
411     /// This overwrites any previous value without dropping it, so be careful
412     /// not to use this twice unless you want to skip running the destructor.
413     /// For your convenience, this also returns a mutable reference to the
414     /// (now safely initialized) contents of `self`.
415     ///
416     /// As the content is stored inside a `MaybeUninit`, the destructor is not
417     /// run for the inner data if the MaybeUninit leaves scope without a call to
418     /// [`assume_init`], [`assume_init_drop`], or similar. Code that receives
419     /// the mutable reference returned by this function needs to keep this in
420     /// mind. The safety model of Rust regards leaks as safe, but they are
421     /// usually still undesirable. This being said, the mutable reference
422     /// behaves like any other mutable reference would, so assigning a new value
423     /// to it will drop the old content.
424     ///
425     /// [`assume_init`]: Self::assume_init
426     /// [`assume_init_drop`]: Self::assume_init_drop
427     ///
428     /// # Examples
429     ///
430     /// Correct usage of this method:
431     ///
432     /// ```rust
433     /// use std::mem::MaybeUninit;
434     ///
435     /// let mut x = MaybeUninit::<Vec<u8>>::uninit();
436     ///
437     /// {
438     ///     let hello = x.write((&b"Hello, world!").to_vec());
439     ///     // Setting hello does not leak prior allocations, but drops them
440     ///     *hello = (&b"Hello").to_vec();
441     ///     hello[0] = 'h' as u8;
442     /// }
443     /// // x is initialized now:
444     /// let s = unsafe { x.assume_init() };
445     /// assert_eq!(b"hello", s.as_slice());
446     /// ```
447     ///
448     /// This usage of the method causes a leak:
449     ///
450     /// ```rust
451     /// use std::mem::MaybeUninit;
452     ///
453     /// let mut x = MaybeUninit::<String>::uninit();
454     ///
455     /// x.write("Hello".to_string());
456     /// // This leaks the contained string:
457     /// x.write("hello".to_string());
458     /// // x is initialized now:
459     /// let s = unsafe { x.assume_init() };
460     /// ```
461     ///
462     /// This method can be used to avoid unsafe in some cases. The example below
463     /// shows a part of an implementation of a fixed sized arena that lends out
464     /// pinned references.
465     /// With `write`, we can avoid the need to write through a raw pointer:
466     ///
467     /// ```rust
468     /// use core::pin::Pin;
469     /// use core::mem::MaybeUninit;
470     ///
471     /// struct PinArena<T> {
472     ///     memory: Box<[MaybeUninit<T>]>,
473     ///     len: usize,
474     /// }
475     ///
476     /// impl <T> PinArena<T> {
477     ///     pub fn capacity(&self) -> usize {
478     ///         self.memory.len()
479     ///     }
480     ///     pub fn push(&mut self, val: T) -> Pin<&mut T> {
481     ///         if self.len >= self.capacity() {
482     ///             panic!("Attempted to push to a full pin arena!");
483     ///         }
484     ///         let ref_ = self.memory[self.len].write(val);
485     ///         self.len += 1;
486     ///         unsafe { Pin::new_unchecked(ref_) }
487     ///     }
488     /// }
489     /// ```
490     #[stable(feature = "maybe_uninit_write", since = "1.55.0")]
491     #[rustc_const_unstable(feature = "const_maybe_uninit_write", issue = "63567")]
492     #[inline(always)]
write(&mut self, val: T) -> &mut T493     pub const fn write(&mut self, val: T) -> &mut T {
494         *self = MaybeUninit::new(val);
495         // SAFETY: We just initialized this value.
496         unsafe { self.assume_init_mut() }
497     }
498 
499     /// Gets a pointer to the contained value. Reading from this pointer or turning it
500     /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
501     /// Writing to memory that this pointer (non-transitively) points to is undefined behavior
502     /// (except inside an `UnsafeCell<T>`).
503     ///
504     /// # Examples
505     ///
506     /// Correct usage of this method:
507     ///
508     /// ```rust
509     /// use std::mem::MaybeUninit;
510     ///
511     /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
512     /// x.write(vec![0, 1, 2]);
513     /// // Create a reference into the `MaybeUninit<T>`. This is okay because we initialized it.
514     /// let x_vec = unsafe { &*x.as_ptr() };
515     /// assert_eq!(x_vec.len(), 3);
516     /// ```
517     ///
518     /// *Incorrect* usage of this method:
519     ///
520     /// ```rust,no_run
521     /// use std::mem::MaybeUninit;
522     ///
523     /// let x = MaybeUninit::<Vec<u32>>::uninit();
524     /// let x_vec = unsafe { &*x.as_ptr() };
525     /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
526     /// ```
527     ///
528     /// (Notice that the rules around references to uninitialized data are not finalized yet, but
529     /// until they are, it is advisable to avoid them.)
530     #[stable(feature = "maybe_uninit", since = "1.36.0")]
531     #[rustc_const_unstable(feature = "const_maybe_uninit_as_ptr", issue = "75251")]
532     #[inline(always)]
as_ptr(&self) -> *const T533     pub const fn as_ptr(&self) -> *const T {
534         // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
535         self as *const _ as *const T
536     }
537 
538     /// Gets a mutable pointer to the contained value. Reading from this pointer or turning it
539     /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
540     ///
541     /// # Examples
542     ///
543     /// Correct usage of this method:
544     ///
545     /// ```rust
546     /// use std::mem::MaybeUninit;
547     ///
548     /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
549     /// x.write(vec![0, 1, 2]);
550     /// // Create a reference into the `MaybeUninit<Vec<u32>>`.
551     /// // This is okay because we initialized it.
552     /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
553     /// x_vec.push(3);
554     /// assert_eq!(x_vec.len(), 4);
555     /// ```
556     ///
557     /// *Incorrect* usage of this method:
558     ///
559     /// ```rust,no_run
560     /// use std::mem::MaybeUninit;
561     ///
562     /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
563     /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
564     /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
565     /// ```
566     ///
567     /// (Notice that the rules around references to uninitialized data are not finalized yet, but
568     /// until they are, it is advisable to avoid them.)
569     #[stable(feature = "maybe_uninit", since = "1.36.0")]
570     #[rustc_const_unstable(feature = "const_maybe_uninit_as_ptr", issue = "75251")]
571     #[inline(always)]
as_mut_ptr(&mut self) -> *mut T572     pub const fn as_mut_ptr(&mut self) -> *mut T {
573         // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
574         self as *mut _ as *mut T
575     }
576 
577     /// Extracts the value from the `MaybeUninit<T>` container. This is a great way
578     /// to ensure that the data will get dropped, because the resulting `T` is
579     /// subject to the usual drop handling.
580     ///
581     /// # Safety
582     ///
583     /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
584     /// state. Calling this when the content is not yet fully initialized causes immediate undefined
585     /// behavior. The [type-level documentation][inv] contains more information about
586     /// this initialization invariant.
587     ///
588     /// [inv]: #initialization-invariant
589     ///
590     /// On top of that, remember that most types have additional invariants beyond merely
591     /// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
592     /// is considered initialized (under the current implementation; this does not constitute
593     /// a stable guarantee) because the only requirement the compiler knows about it
594     /// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
595     /// *immediate* undefined behavior, but will cause undefined behavior with most
596     /// safe operations (including dropping it).
597     ///
598     /// [`Vec<T>`]: ../../std/vec/struct.Vec.html
599     ///
600     /// # Examples
601     ///
602     /// Correct usage of this method:
603     ///
604     /// ```rust
605     /// use std::mem::MaybeUninit;
606     ///
607     /// let mut x = MaybeUninit::<bool>::uninit();
608     /// x.write(true);
609     /// let x_init = unsafe { x.assume_init() };
610     /// assert_eq!(x_init, true);
611     /// ```
612     ///
613     /// *Incorrect* usage of this method:
614     ///
615     /// ```rust,no_run
616     /// use std::mem::MaybeUninit;
617     ///
618     /// let x = MaybeUninit::<Vec<u32>>::uninit();
619     /// let x_init = unsafe { x.assume_init() };
620     /// // `x` had not been initialized yet, so this last line caused undefined behavior. ⚠️
621     /// ```
622     #[stable(feature = "maybe_uninit", since = "1.36.0")]
623     #[rustc_const_unstable(feature = "const_maybe_uninit_assume_init", issue = "none")]
624     #[inline(always)]
625     #[rustc_diagnostic_item = "assume_init"]
626     #[track_caller]
assume_init(self) -> T627     pub const unsafe fn assume_init(self) -> T {
628         // SAFETY: the caller must guarantee that `self` is initialized.
629         // This also means that `self` must be a `value` variant.
630         unsafe {
631             intrinsics::assert_inhabited::<T>();
632             ManuallyDrop::into_inner(self.value)
633         }
634     }
635 
636     /// Reads the value from the `MaybeUninit<T>` container. The resulting `T` is subject
637     /// to the usual drop handling.
638     ///
639     /// Whenever possible, it is preferable to use [`assume_init`] instead, which
640     /// prevents duplicating the content of the `MaybeUninit<T>`.
641     ///
642     /// # Safety
643     ///
644     /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
645     /// state. Calling this when the content is not yet fully initialized causes undefined
646     /// behavior. The [type-level documentation][inv] contains more information about
647     /// this initialization invariant.
648     ///
649     /// Moreover, similar to the [`ptr::read`] function, this function creates a
650     /// bitwise copy of the contents, regardless whether the contained type
651     /// implements the [`Copy`] trait or not. When using multiple copies of the
652     /// data (by calling `assume_init_read` multiple times, or first calling
653     /// `assume_init_read` and then [`assume_init`]), it is your responsibility
654     /// to ensure that that data may indeed be duplicated.
655     ///
656     /// [inv]: #initialization-invariant
657     /// [`assume_init`]: MaybeUninit::assume_init
658     ///
659     /// # Examples
660     ///
661     /// Correct usage of this method:
662     ///
663     /// ```rust
664     /// #![feature(maybe_uninit_extra)]
665     /// use std::mem::MaybeUninit;
666     ///
667     /// let mut x = MaybeUninit::<u32>::uninit();
668     /// x.write(13);
669     /// let x1 = unsafe { x.assume_init_read() };
670     /// // `u32` is `Copy`, so we may read multiple times.
671     /// let x2 = unsafe { x.assume_init_read() };
672     /// assert_eq!(x1, x2);
673     ///
674     /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
675     /// x.write(None);
676     /// let x1 = unsafe { x.assume_init_read() };
677     /// // Duplicating a `None` value is okay, so we may read multiple times.
678     /// let x2 = unsafe { x.assume_init_read() };
679     /// assert_eq!(x1, x2);
680     /// ```
681     ///
682     /// *Incorrect* usage of this method:
683     ///
684     /// ```rust,no_run
685     /// #![feature(maybe_uninit_extra)]
686     /// use std::mem::MaybeUninit;
687     ///
688     /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
689     /// x.write(Some(vec![0, 1, 2]));
690     /// let x1 = unsafe { x.assume_init_read() };
691     /// let x2 = unsafe { x.assume_init_read() };
692     /// // We now created two copies of the same vector, leading to a double-free ⚠️ when
693     /// // they both get dropped!
694     /// ```
695     #[unstable(feature = "maybe_uninit_extra", issue = "63567")]
696     #[rustc_const_unstable(feature = "maybe_uninit_extra", issue = "63567")]
697     #[inline(always)]
698     #[track_caller]
assume_init_read(&self) -> T699     pub const unsafe fn assume_init_read(&self) -> T {
700         // SAFETY: the caller must guarantee that `self` is initialized.
701         // Reading from `self.as_ptr()` is safe since `self` should be initialized.
702         unsafe {
703             intrinsics::assert_inhabited::<T>();
704             self.as_ptr().read()
705         }
706     }
707 
708     /// Drops the contained value in place.
709     ///
710     /// If you have ownership of the `MaybeUninit`, you can also use
711     /// [`assume_init`] as an alternative.
712     ///
713     /// # Safety
714     ///
715     /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is
716     /// in an initialized state. Calling this when the content is not yet fully
717     /// initialized causes undefined behavior.
718     ///
719     /// On top of that, all additional invariants of the type `T` must be
720     /// satisfied, as the `Drop` implementation of `T` (or its members) may
721     /// rely on this. For example, setting a [`Vec<T>`] to an invalid but
722     /// non-null address makes it initialized (under the current implementation;
723     /// this does not constitute a stable guarantee), because the only
724     /// requirement the compiler knows about it is that the data pointer must be
725     /// non-null. Dropping such a `Vec<T>` however will cause undefined
726     /// behaviour.
727     ///
728     /// [`assume_init`]: MaybeUninit::assume_init
729     /// [`Vec<T>`]: ../../std/vec/struct.Vec.html
730     #[unstable(feature = "maybe_uninit_extra", issue = "63567")]
assume_init_drop(&mut self)731     pub unsafe fn assume_init_drop(&mut self) {
732         // SAFETY: the caller must guarantee that `self` is initialized and
733         // satisfies all invariants of `T`.
734         // Dropping the value in place is safe if that is the case.
735         unsafe { ptr::drop_in_place(self.as_mut_ptr()) }
736     }
737 
738     /// Gets a shared reference to the contained value.
739     ///
740     /// This can be useful when we want to access a `MaybeUninit` that has been
741     /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
742     /// of `.assume_init()`).
743     ///
744     /// # Safety
745     ///
746     /// Calling this when the content is not yet fully initialized causes undefined
747     /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
748     /// is in an initialized state.
749     ///
750     /// # Examples
751     ///
752     /// ### Correct usage of this method:
753     ///
754     /// ```rust
755     /// use std::mem::MaybeUninit;
756     ///
757     /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
758     /// // Initialize `x`:
759     /// x.write(vec![1, 2, 3]);
760     /// // Now that our `MaybeUninit<_>` is known to be initialized, it is okay to
761     /// // create a shared reference to it:
762     /// let x: &Vec<u32> = unsafe {
763     ///     // SAFETY: `x` has been initialized.
764     ///     x.assume_init_ref()
765     /// };
766     /// assert_eq!(x, &vec![1, 2, 3]);
767     /// ```
768     ///
769     /// ### *Incorrect* usages of this method:
770     ///
771     /// ```rust,no_run
772     /// use std::mem::MaybeUninit;
773     ///
774     /// let x = MaybeUninit::<Vec<u32>>::uninit();
775     /// let x_vec: &Vec<u32> = unsafe { x.assume_init_ref() };
776     /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
777     /// ```
778     ///
779     /// ```rust,no_run
780     /// use std::{cell::Cell, mem::MaybeUninit};
781     ///
782     /// let b = MaybeUninit::<Cell<bool>>::uninit();
783     /// // Initialize the `MaybeUninit` using `Cell::set`:
784     /// unsafe {
785     ///     b.assume_init_ref().set(true);
786     ///    // ^^^^^^^^^^^^^^^
787     ///    // Reference to an uninitialized `Cell<bool>`: UB!
788     /// }
789     /// ```
790     #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
791     #[rustc_const_unstable(feature = "const_maybe_uninit_assume_init", issue = "none")]
792     #[inline(always)]
assume_init_ref(&self) -> &T793     pub const unsafe fn assume_init_ref(&self) -> &T {
794         // SAFETY: the caller must guarantee that `self` is initialized.
795         // This also means that `self` must be a `value` variant.
796         unsafe {
797             intrinsics::assert_inhabited::<T>();
798             &*self.as_ptr()
799         }
800     }
801 
802     /// Gets a mutable (unique) reference to the contained value.
803     ///
804     /// This can be useful when we want to access a `MaybeUninit` that has been
805     /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
806     /// of `.assume_init()`).
807     ///
808     /// # Safety
809     ///
810     /// Calling this when the content is not yet fully initialized causes undefined
811     /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
812     /// is in an initialized state. For instance, `.assume_init_mut()` cannot be used to
813     /// initialize a `MaybeUninit`.
814     ///
815     /// # Examples
816     ///
817     /// ### Correct usage of this method:
818     ///
819     /// ```rust
820     /// use std::mem::MaybeUninit;
821     ///
822     /// # unsafe extern "C" fn initialize_buffer(buf: *mut [u8; 1024]) { *buf = [0; 1024] }
823     /// # #[cfg(FALSE)]
824     /// extern "C" {
825     ///     /// Initializes *all* the bytes of the input buffer.
826     ///     fn initialize_buffer(buf: *mut [u8; 1024]);
827     /// }
828     ///
829     /// let mut buf = MaybeUninit::<[u8; 1024]>::uninit();
830     ///
831     /// // Initialize `buf`:
832     /// unsafe { initialize_buffer(buf.as_mut_ptr()); }
833     /// // Now we know that `buf` has been initialized, so we could `.assume_init()` it.
834     /// // However, using `.assume_init()` may trigger a `memcpy` of the 1024 bytes.
835     /// // To assert our buffer has been initialized without copying it, we upgrade
836     /// // the `&mut MaybeUninit<[u8; 1024]>` to a `&mut [u8; 1024]`:
837     /// let buf: &mut [u8; 1024] = unsafe {
838     ///     // SAFETY: `buf` has been initialized.
839     ///     buf.assume_init_mut()
840     /// };
841     ///
842     /// // Now we can use `buf` as a normal slice:
843     /// buf.sort_unstable();
844     /// assert!(
845     ///     buf.windows(2).all(|pair| pair[0] <= pair[1]),
846     ///     "buffer is sorted",
847     /// );
848     /// ```
849     ///
850     /// ### *Incorrect* usages of this method:
851     ///
852     /// You cannot use `.assume_init_mut()` to initialize a value:
853     ///
854     /// ```rust,no_run
855     /// use std::mem::MaybeUninit;
856     ///
857     /// let mut b = MaybeUninit::<bool>::uninit();
858     /// unsafe {
859     ///     *b.assume_init_mut() = true;
860     ///     // We have created a (mutable) reference to an uninitialized `bool`!
861     ///     // This is undefined behavior. ⚠️
862     /// }
863     /// ```
864     ///
865     /// For instance, you cannot [`Read`] into an uninitialized buffer:
866     ///
867     /// [`Read`]: https://doc.rust-lang.org/std/io/trait.Read.html
868     ///
869     /// ```rust,no_run
870     /// use std::{io, mem::MaybeUninit};
871     ///
872     /// fn read_chunk (reader: &'_ mut dyn io::Read) -> io::Result<[u8; 64]>
873     /// {
874     ///     let mut buffer = MaybeUninit::<[u8; 64]>::uninit();
875     ///     reader.read_exact(unsafe { buffer.assume_init_mut() })?;
876     ///                             // ^^^^^^^^^^^^^^^^^^^^^^^^
877     ///                             // (mutable) reference to uninitialized memory!
878     ///                             // This is undefined behavior.
879     ///     Ok(unsafe { buffer.assume_init() })
880     /// }
881     /// ```
882     ///
883     /// Nor can you use direct field access to do field-by-field gradual initialization:
884     ///
885     /// ```rust,no_run
886     /// use std::{mem::MaybeUninit, ptr};
887     ///
888     /// struct Foo {
889     ///     a: u32,
890     ///     b: u8,
891     /// }
892     ///
893     /// let foo: Foo = unsafe {
894     ///     let mut foo = MaybeUninit::<Foo>::uninit();
895     ///     ptr::write(&mut foo.assume_init_mut().a as *mut u32, 1337);
896     ///                  // ^^^^^^^^^^^^^^^^^^^^^
897     ///                  // (mutable) reference to uninitialized memory!
898     ///                  // This is undefined behavior.
899     ///     ptr::write(&mut foo.assume_init_mut().b as *mut u8, 42);
900     ///                  // ^^^^^^^^^^^^^^^^^^^^^
901     ///                  // (mutable) reference to uninitialized memory!
902     ///                  // This is undefined behavior.
903     ///     foo.assume_init()
904     /// };
905     /// ```
906     #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
907     #[rustc_const_unstable(feature = "const_maybe_uninit_assume_init", issue = "none")]
908     #[inline(always)]
assume_init_mut(&mut self) -> &mut T909     pub const unsafe fn assume_init_mut(&mut self) -> &mut T {
910         // SAFETY: the caller must guarantee that `self` is initialized.
911         // This also means that `self` must be a `value` variant.
912         unsafe {
913             intrinsics::assert_inhabited::<T>();
914             &mut *self.as_mut_ptr()
915         }
916     }
917 
918     /// Extracts the values from an array of `MaybeUninit` containers.
919     ///
920     /// # Safety
921     ///
922     /// It is up to the caller to guarantee that all elements of the array are
923     /// in an initialized state.
924     ///
925     /// # Examples
926     ///
927     /// ```
928     /// #![feature(maybe_uninit_uninit_array)]
929     /// #![feature(maybe_uninit_array_assume_init)]
930     /// use std::mem::MaybeUninit;
931     ///
932     /// let mut array: [MaybeUninit<i32>; 3] = MaybeUninit::uninit_array();
933     /// array[0].write(0);
934     /// array[1].write(1);
935     /// array[2].write(2);
936     ///
937     /// // SAFETY: Now safe as we initialised all elements
938     /// let array = unsafe {
939     ///     MaybeUninit::array_assume_init(array)
940     /// };
941     ///
942     /// assert_eq!(array, [0, 1, 2]);
943     /// ```
944     #[unstable(feature = "maybe_uninit_array_assume_init", issue = "80908")]
945     #[inline(always)]
946     #[track_caller]
array_assume_init<const N: usize>(array: [Self; N]) -> [T; N]947     pub unsafe fn array_assume_init<const N: usize>(array: [Self; N]) -> [T; N] {
948         // SAFETY:
949         // * The caller guarantees that all elements of the array are initialized
950         // * `MaybeUninit<T>` and T are guaranteed to have the same layout
951         // * `MaybeUninit` does not drop, so there are no double-frees
952         // And thus the conversion is safe
953         unsafe {
954             intrinsics::assert_inhabited::<[T; N]>();
955             (&array as *const _ as *const [T; N]).read()
956         }
957     }
958 
959     /// Assuming all the elements are initialized, get a slice to them.
960     ///
961     /// # Safety
962     ///
963     /// It is up to the caller to guarantee that the `MaybeUninit<T>` elements
964     /// really are in an initialized state.
965     /// Calling this when the content is not yet fully initialized causes undefined behavior.
966     ///
967     /// See [`assume_init_ref`] for more details and examples.
968     ///
969     /// [`assume_init_ref`]: MaybeUninit::assume_init_ref
970     #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
971     #[rustc_const_unstable(feature = "const_maybe_uninit_assume_init", issue = "none")]
972     #[inline(always)]
slice_assume_init_ref(slice: &[Self]) -> &[T]973     pub const unsafe fn slice_assume_init_ref(slice: &[Self]) -> &[T] {
974         // SAFETY: casting slice to a `*const [T]` is safe since the caller guarantees that
975         // `slice` is initialized, and`MaybeUninit` is guaranteed to have the same layout as `T`.
976         // The pointer obtained is valid since it refers to memory owned by `slice` which is a
977         // reference and thus guaranteed to be valid for reads.
978         unsafe { &*(slice as *const [Self] as *const [T]) }
979     }
980 
981     /// Assuming all the elements are initialized, get a mutable slice to them.
982     ///
983     /// # Safety
984     ///
985     /// It is up to the caller to guarantee that the `MaybeUninit<T>` elements
986     /// really are in an initialized state.
987     /// Calling this when the content is not yet fully initialized causes undefined behavior.
988     ///
989     /// See [`assume_init_mut`] for more details and examples.
990     ///
991     /// [`assume_init_mut`]: MaybeUninit::assume_init_mut
992     #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
993     #[rustc_const_unstable(feature = "const_maybe_uninit_assume_init", issue = "none")]
994     #[inline(always)]
slice_assume_init_mut(slice: &mut [Self]) -> &mut [T]995     pub const unsafe fn slice_assume_init_mut(slice: &mut [Self]) -> &mut [T] {
996         // SAFETY: similar to safety notes for `slice_get_ref`, but we have a
997         // mutable reference which is also guaranteed to be valid for writes.
998         unsafe { &mut *(slice as *mut [Self] as *mut [T]) }
999     }
1000 
1001     /// Gets a pointer to the first element of the array.
1002     #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1003     #[rustc_const_unstable(feature = "maybe_uninit_slice", issue = "63569")]
1004     #[inline(always)]
slice_as_ptr(this: &[MaybeUninit<T>]) -> *const T1005     pub const fn slice_as_ptr(this: &[MaybeUninit<T>]) -> *const T {
1006         this.as_ptr() as *const T
1007     }
1008 
1009     /// Gets a mutable pointer to the first element of the array.
1010     #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1011     #[rustc_const_unstable(feature = "maybe_uninit_slice", issue = "63569")]
1012     #[inline(always)]
slice_as_mut_ptr(this: &mut [MaybeUninit<T>]) -> *mut T1013     pub const fn slice_as_mut_ptr(this: &mut [MaybeUninit<T>]) -> *mut T {
1014         this.as_mut_ptr() as *mut T
1015     }
1016 
1017     /// Copies the elements from `src` to `this`, returning a mutable reference to the now initialized contents of `this`.
1018     ///
1019     /// If `T` does not implement `Copy`, use [`write_slice_cloned`]
1020     ///
1021     /// This is similar to [`slice::copy_from_slice`].
1022     ///
1023     /// # Panics
1024     ///
1025     /// This function will panic if the two slices have different lengths.
1026     ///
1027     /// # Examples
1028     ///
1029     /// ```
1030     /// #![feature(maybe_uninit_write_slice)]
1031     /// use std::mem::MaybeUninit;
1032     ///
1033     /// let mut dst = [MaybeUninit::uninit(); 32];
1034     /// let src = [0; 32];
1035     ///
1036     /// let init = MaybeUninit::write_slice(&mut dst, &src);
1037     ///
1038     /// assert_eq!(init, src);
1039     /// ```
1040     ///
1041     /// ```
1042     /// #![feature(maybe_uninit_write_slice, vec_spare_capacity)]
1043     /// use std::mem::MaybeUninit;
1044     ///
1045     /// let mut vec = Vec::with_capacity(32);
1046     /// let src = [0; 16];
1047     ///
1048     /// MaybeUninit::write_slice(&mut vec.spare_capacity_mut()[..src.len()], &src);
1049     ///
1050     /// // SAFETY: we have just copied all the elements of len into the spare capacity
1051     /// // the first src.len() elements of the vec are valid now.
1052     /// unsafe {
1053     ///     vec.set_len(src.len());
1054     /// }
1055     ///
1056     /// assert_eq!(vec, src);
1057     /// ```
1058     ///
1059     /// [`write_slice_cloned`]: MaybeUninit::write_slice_cloned
1060     #[unstable(feature = "maybe_uninit_write_slice", issue = "79995")]
write_slice<'a>(this: &'a mut [MaybeUninit<T>], src: &[T]) -> &'a mut [T] where T: Copy,1061     pub fn write_slice<'a>(this: &'a mut [MaybeUninit<T>], src: &[T]) -> &'a mut [T]
1062     where
1063         T: Copy,
1064     {
1065         // SAFETY: &[T] and &[MaybeUninit<T>] have the same layout
1066         let uninit_src: &[MaybeUninit<T>] = unsafe { super::transmute(src) };
1067 
1068         this.copy_from_slice(uninit_src);
1069 
1070         // SAFETY: Valid elements have just been copied into `this` so it is initialized
1071         unsafe { MaybeUninit::slice_assume_init_mut(this) }
1072     }
1073 
1074     /// Clones the elements from `src` to `this`, returning a mutable reference to the now initialized contents of `this`.
1075     /// Any already initialized elements will not be dropped.
1076     ///
1077     /// If `T` implements `Copy`, use [`write_slice`]
1078     ///
1079     /// This is similar to [`slice::clone_from_slice`] but does not drop existing elements.
1080     ///
1081     /// # Panics
1082     ///
1083     /// This function will panic if the two slices have different lengths, or if the implementation of `Clone` panics.
1084     ///
1085     /// If there is a panic, the already cloned elements will be dropped.
1086     ///
1087     /// # Examples
1088     ///
1089     /// ```
1090     /// #![feature(maybe_uninit_write_slice)]
1091     /// use std::mem::MaybeUninit;
1092     ///
1093     /// let mut dst = [MaybeUninit::uninit(), MaybeUninit::uninit(), MaybeUninit::uninit(), MaybeUninit::uninit(), MaybeUninit::uninit()];
1094     /// let src = ["wibbly".to_string(), "wobbly".to_string(), "timey".to_string(), "wimey".to_string(), "stuff".to_string()];
1095     ///
1096     /// let init = MaybeUninit::write_slice_cloned(&mut dst, &src);
1097     ///
1098     /// assert_eq!(init, src);
1099     /// ```
1100     ///
1101     /// ```
1102     /// #![feature(maybe_uninit_write_slice, vec_spare_capacity)]
1103     /// use std::mem::MaybeUninit;
1104     ///
1105     /// let mut vec = Vec::with_capacity(32);
1106     /// let src = ["rust", "is", "a", "pretty", "cool", "language"];
1107     ///
1108     /// MaybeUninit::write_slice_cloned(&mut vec.spare_capacity_mut()[..src.len()], &src);
1109     ///
1110     /// // SAFETY: we have just cloned all the elements of len into the spare capacity
1111     /// // the first src.len() elements of the vec are valid now.
1112     /// unsafe {
1113     ///     vec.set_len(src.len());
1114     /// }
1115     ///
1116     /// assert_eq!(vec, src);
1117     /// ```
1118     ///
1119     /// [`write_slice`]: MaybeUninit::write_slice
1120     #[unstable(feature = "maybe_uninit_write_slice", issue = "79995")]
write_slice_cloned<'a>(this: &'a mut [MaybeUninit<T>], src: &[T]) -> &'a mut [T] where T: Clone,1121     pub fn write_slice_cloned<'a>(this: &'a mut [MaybeUninit<T>], src: &[T]) -> &'a mut [T]
1122     where
1123         T: Clone,
1124     {
1125         // unlike copy_from_slice this does not call clone_from_slice on the slice
1126         // this is because `MaybeUninit<T: Clone>` does not implement Clone.
1127 
1128         struct Guard<'a, T> {
1129             slice: &'a mut [MaybeUninit<T>],
1130             initialized: usize,
1131         }
1132 
1133         impl<'a, T> Drop for Guard<'a, T> {
1134             fn drop(&mut self) {
1135                 let initialized_part = &mut self.slice[..self.initialized];
1136                 // SAFETY: this raw slice will contain only initialized objects
1137                 // that's why, it is allowed to drop it.
1138                 unsafe {
1139                     crate::ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(initialized_part));
1140                 }
1141             }
1142         }
1143 
1144         assert_eq!(this.len(), src.len(), "destination and source slices have different lengths");
1145         // NOTE: We need to explicitly slice them to the same length
1146         // for bounds checking to be elided, and the optimizer will
1147         // generate memcpy for simple cases (for example T = u8).
1148         let len = this.len();
1149         let src = &src[..len];
1150 
1151         // guard is needed b/c panic might happen during a clone
1152         let mut guard = Guard { slice: this, initialized: 0 };
1153 
1154         for i in 0..len {
1155             guard.slice[i].write(src[i].clone());
1156             guard.initialized += 1;
1157         }
1158 
1159         super::forget(guard);
1160 
1161         // SAFETY: Valid elements have just been written into `this` so it is initialized
1162         unsafe { MaybeUninit::slice_assume_init_mut(this) }
1163     }
1164 }
1165