1 //! Constants specific to the `f64` double-precision floating point type.
2 //!
3 //! *[See also the `f64` primitive type][f64].*
4 //!
5 //! Mathematically significant numbers are provided in the `consts` sub-module.
6 //!
7 //! For the constants defined directly in this module
8 //! (as distinct from those defined in the `consts` sub-module),
9 //! new code should instead use the associated constants
10 //! defined directly on the `f64` type.
11 
12 #![stable(feature = "rust1", since = "1.0.0")]
13 
14 use crate::convert::FloatToInt;
15 #[cfg(not(test))]
16 use crate::intrinsics;
17 use crate::mem;
18 use crate::num::FpCategory;
19 
20 /// The radix or base of the internal representation of `f64`.
21 /// Use [`f64::RADIX`] instead.
22 ///
23 /// # Examples
24 ///
25 /// ```rust
26 /// // deprecated way
27 /// # #[allow(deprecated, deprecated_in_future)]
28 /// let r = std::f64::RADIX;
29 ///
30 /// // intended way
31 /// let r = f64::RADIX;
32 /// ```
33 #[stable(feature = "rust1", since = "1.0.0")]
34 #[rustc_deprecated(since = "TBD", reason = "replaced by the `RADIX` associated constant on `f64`")]
35 pub const RADIX: u32 = f64::RADIX;
36 
37 /// Number of significant digits in base 2.
38 /// Use [`f64::MANTISSA_DIGITS`] instead.
39 ///
40 /// # Examples
41 ///
42 /// ```rust
43 /// // deprecated way
44 /// # #[allow(deprecated, deprecated_in_future)]
45 /// let d = std::f64::MANTISSA_DIGITS;
46 ///
47 /// // intended way
48 /// let d = f64::MANTISSA_DIGITS;
49 /// ```
50 #[stable(feature = "rust1", since = "1.0.0")]
51 #[rustc_deprecated(
52     since = "TBD",
53     reason = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
54 )]
55 pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
56 
57 /// Approximate number of significant digits in base 10.
58 /// Use [`f64::DIGITS`] instead.
59 ///
60 /// # Examples
61 ///
62 /// ```rust
63 /// // deprecated way
64 /// # #[allow(deprecated, deprecated_in_future)]
65 /// let d = std::f64::DIGITS;
66 ///
67 /// // intended way
68 /// let d = f64::DIGITS;
69 /// ```
70 #[stable(feature = "rust1", since = "1.0.0")]
71 #[rustc_deprecated(since = "TBD", reason = "replaced by the `DIGITS` associated constant on `f64`")]
72 pub const DIGITS: u32 = f64::DIGITS;
73 
74 /// [Machine epsilon] value for `f64`.
75 /// Use [`f64::EPSILON`] instead.
76 ///
77 /// This is the difference between `1.0` and the next larger representable number.
78 ///
79 /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
80 ///
81 /// # Examples
82 ///
83 /// ```rust
84 /// // deprecated way
85 /// # #[allow(deprecated, deprecated_in_future)]
86 /// let e = std::f64::EPSILON;
87 ///
88 /// // intended way
89 /// let e = f64::EPSILON;
90 /// ```
91 #[stable(feature = "rust1", since = "1.0.0")]
92 #[rustc_deprecated(
93     since = "TBD",
94     reason = "replaced by the `EPSILON` associated constant on `f64`"
95 )]
96 pub const EPSILON: f64 = f64::EPSILON;
97 
98 /// Smallest finite `f64` value.
99 /// Use [`f64::MIN`] instead.
100 ///
101 /// # Examples
102 ///
103 /// ```rust
104 /// // deprecated way
105 /// # #[allow(deprecated, deprecated_in_future)]
106 /// let min = std::f64::MIN;
107 ///
108 /// // intended way
109 /// let min = f64::MIN;
110 /// ```
111 #[stable(feature = "rust1", since = "1.0.0")]
112 #[rustc_deprecated(since = "TBD", reason = "replaced by the `MIN` associated constant on `f64`")]
113 pub const MIN: f64 = f64::MIN;
114 
115 /// Smallest positive normal `f64` value.
116 /// Use [`f64::MIN_POSITIVE`] instead.
117 ///
118 /// # Examples
119 ///
120 /// ```rust
121 /// // deprecated way
122 /// # #[allow(deprecated, deprecated_in_future)]
123 /// let min = std::f64::MIN_POSITIVE;
124 ///
125 /// // intended way
126 /// let min = f64::MIN_POSITIVE;
127 /// ```
128 #[stable(feature = "rust1", since = "1.0.0")]
129 #[rustc_deprecated(
130     since = "TBD",
131     reason = "replaced by the `MIN_POSITIVE` associated constant on `f64`"
132 )]
133 pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
134 
135 /// Largest finite `f64` value.
136 /// Use [`f64::MAX`] instead.
137 ///
138 /// # Examples
139 ///
140 /// ```rust
141 /// // deprecated way
142 /// # #[allow(deprecated, deprecated_in_future)]
143 /// let max = std::f64::MAX;
144 ///
145 /// // intended way
146 /// let max = f64::MAX;
147 /// ```
148 #[stable(feature = "rust1", since = "1.0.0")]
149 #[rustc_deprecated(since = "TBD", reason = "replaced by the `MAX` associated constant on `f64`")]
150 pub const MAX: f64 = f64::MAX;
151 
152 /// One greater than the minimum possible normal power of 2 exponent.
153 /// Use [`f64::MIN_EXP`] instead.
154 ///
155 /// # Examples
156 ///
157 /// ```rust
158 /// // deprecated way
159 /// # #[allow(deprecated, deprecated_in_future)]
160 /// let min = std::f64::MIN_EXP;
161 ///
162 /// // intended way
163 /// let min = f64::MIN_EXP;
164 /// ```
165 #[stable(feature = "rust1", since = "1.0.0")]
166 #[rustc_deprecated(
167     since = "TBD",
168     reason = "replaced by the `MIN_EXP` associated constant on `f64`"
169 )]
170 pub const MIN_EXP: i32 = f64::MIN_EXP;
171 
172 /// Maximum possible power of 2 exponent.
173 /// Use [`f64::MAX_EXP`] instead.
174 ///
175 /// # Examples
176 ///
177 /// ```rust
178 /// // deprecated way
179 /// # #[allow(deprecated, deprecated_in_future)]
180 /// let max = std::f64::MAX_EXP;
181 ///
182 /// // intended way
183 /// let max = f64::MAX_EXP;
184 /// ```
185 #[stable(feature = "rust1", since = "1.0.0")]
186 #[rustc_deprecated(
187     since = "TBD",
188     reason = "replaced by the `MAX_EXP` associated constant on `f64`"
189 )]
190 pub const MAX_EXP: i32 = f64::MAX_EXP;
191 
192 /// Minimum possible normal power of 10 exponent.
193 /// Use [`f64::MIN_10_EXP`] instead.
194 ///
195 /// # Examples
196 ///
197 /// ```rust
198 /// // deprecated way
199 /// # #[allow(deprecated, deprecated_in_future)]
200 /// let min = std::f64::MIN_10_EXP;
201 ///
202 /// // intended way
203 /// let min = f64::MIN_10_EXP;
204 /// ```
205 #[stable(feature = "rust1", since = "1.0.0")]
206 #[rustc_deprecated(
207     since = "TBD",
208     reason = "replaced by the `MIN_10_EXP` associated constant on `f64`"
209 )]
210 pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
211 
212 /// Maximum possible power of 10 exponent.
213 /// Use [`f64::MAX_10_EXP`] instead.
214 ///
215 /// # Examples
216 ///
217 /// ```rust
218 /// // deprecated way
219 /// # #[allow(deprecated, deprecated_in_future)]
220 /// let max = std::f64::MAX_10_EXP;
221 ///
222 /// // intended way
223 /// let max = f64::MAX_10_EXP;
224 /// ```
225 #[stable(feature = "rust1", since = "1.0.0")]
226 #[rustc_deprecated(
227     since = "TBD",
228     reason = "replaced by the `MAX_10_EXP` associated constant on `f64`"
229 )]
230 pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
231 
232 /// Not a Number (NaN).
233 /// Use [`f64::NAN`] instead.
234 ///
235 /// # Examples
236 ///
237 /// ```rust
238 /// // deprecated way
239 /// # #[allow(deprecated, deprecated_in_future)]
240 /// let nan = std::f64::NAN;
241 ///
242 /// // intended way
243 /// let nan = f64::NAN;
244 /// ```
245 #[stable(feature = "rust1", since = "1.0.0")]
246 #[rustc_deprecated(since = "TBD", reason = "replaced by the `NAN` associated constant on `f64`")]
247 pub const NAN: f64 = f64::NAN;
248 
249 /// Infinity (∞).
250 /// Use [`f64::INFINITY`] instead.
251 ///
252 /// # Examples
253 ///
254 /// ```rust
255 /// // deprecated way
256 /// # #[allow(deprecated, deprecated_in_future)]
257 /// let inf = std::f64::INFINITY;
258 ///
259 /// // intended way
260 /// let inf = f64::INFINITY;
261 /// ```
262 #[stable(feature = "rust1", since = "1.0.0")]
263 #[rustc_deprecated(
264     since = "TBD",
265     reason = "replaced by the `INFINITY` associated constant on `f64`"
266 )]
267 pub const INFINITY: f64 = f64::INFINITY;
268 
269 /// Negative infinity (−∞).
270 /// Use [`f64::NEG_INFINITY`] instead.
271 ///
272 /// # Examples
273 ///
274 /// ```rust
275 /// // deprecated way
276 /// # #[allow(deprecated, deprecated_in_future)]
277 /// let ninf = std::f64::NEG_INFINITY;
278 ///
279 /// // intended way
280 /// let ninf = f64::NEG_INFINITY;
281 /// ```
282 #[stable(feature = "rust1", since = "1.0.0")]
283 #[rustc_deprecated(
284     since = "TBD",
285     reason = "replaced by the `NEG_INFINITY` associated constant on `f64`"
286 )]
287 pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
288 
289 /// Basic mathematical constants.
290 #[stable(feature = "rust1", since = "1.0.0")]
291 pub mod consts {
292     // FIXME: replace with mathematical constants from cmath.
293 
294     /// Archimedes' constant (π)
295     #[stable(feature = "rust1", since = "1.0.0")]
296     pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
297 
298     /// The full circle constant (τ)
299     ///
300     /// Equal to 2π.
301     #[stable(feature = "tau_constant", since = "1.47.0")]
302     pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
303 
304     /// π/2
305     #[stable(feature = "rust1", since = "1.0.0")]
306     pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
307 
308     /// π/3
309     #[stable(feature = "rust1", since = "1.0.0")]
310     pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
311 
312     /// π/4
313     #[stable(feature = "rust1", since = "1.0.0")]
314     pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
315 
316     /// π/6
317     #[stable(feature = "rust1", since = "1.0.0")]
318     pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
319 
320     /// π/8
321     #[stable(feature = "rust1", since = "1.0.0")]
322     pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
323 
324     /// 1/π
325     #[stable(feature = "rust1", since = "1.0.0")]
326     pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
327 
328     /// 2/π
329     #[stable(feature = "rust1", since = "1.0.0")]
330     pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
331 
332     /// 2/sqrt(π)
333     #[stable(feature = "rust1", since = "1.0.0")]
334     pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
335 
336     /// sqrt(2)
337     #[stable(feature = "rust1", since = "1.0.0")]
338     pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
339 
340     /// 1/sqrt(2)
341     #[stable(feature = "rust1", since = "1.0.0")]
342     pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
343 
344     /// Euler's number (e)
345     #[stable(feature = "rust1", since = "1.0.0")]
346     pub const E: f64 = 2.71828182845904523536028747135266250_f64;
347 
348     /// log<sub>2</sub>(10)
349     #[stable(feature = "extra_log_consts", since = "1.43.0")]
350     pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
351 
352     /// log<sub>2</sub>(e)
353     #[stable(feature = "rust1", since = "1.0.0")]
354     pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
355 
356     /// log<sub>10</sub>(2)
357     #[stable(feature = "extra_log_consts", since = "1.43.0")]
358     pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
359 
360     /// log<sub>10</sub>(e)
361     #[stable(feature = "rust1", since = "1.0.0")]
362     pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
363 
364     /// ln(2)
365     #[stable(feature = "rust1", since = "1.0.0")]
366     pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
367 
368     /// ln(10)
369     #[stable(feature = "rust1", since = "1.0.0")]
370     pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
371 }
372 
373 #[lang = "f64"]
374 #[cfg(not(test))]
375 impl f64 {
376     /// The radix or base of the internal representation of `f64`.
377     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
378     pub const RADIX: u32 = 2;
379 
380     /// Number of significant digits in base 2.
381     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
382     pub const MANTISSA_DIGITS: u32 = 53;
383     /// Approximate number of significant digits in base 10.
384     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
385     pub const DIGITS: u32 = 15;
386 
387     /// [Machine epsilon] value for `f64`.
388     ///
389     /// This is the difference between `1.0` and the next larger representable number.
390     ///
391     /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
392     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
393     pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
394 
395     /// Smallest finite `f64` value.
396     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
397     pub const MIN: f64 = -1.7976931348623157e+308_f64;
398     /// Smallest positive normal `f64` value.
399     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
400     pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
401     /// Largest finite `f64` value.
402     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
403     pub const MAX: f64 = 1.7976931348623157e+308_f64;
404 
405     /// One greater than the minimum possible normal power of 2 exponent.
406     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
407     pub const MIN_EXP: i32 = -1021;
408     /// Maximum possible power of 2 exponent.
409     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
410     pub const MAX_EXP: i32 = 1024;
411 
412     /// Minimum possible normal power of 10 exponent.
413     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
414     pub const MIN_10_EXP: i32 = -307;
415     /// Maximum possible power of 10 exponent.
416     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
417     pub const MAX_10_EXP: i32 = 308;
418 
419     /// Not a Number (NaN).
420     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
421     pub const NAN: f64 = 0.0_f64 / 0.0_f64;
422     /// Infinity (∞).
423     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
424     pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
425     /// Negative infinity (−∞).
426     #[stable(feature = "assoc_int_consts", since = "1.43.0")]
427     pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
428 
429     /// Returns `true` if this value is `NaN`.
430     ///
431     /// ```
432     /// let nan = f64::NAN;
433     /// let f = 7.0_f64;
434     ///
435     /// assert!(nan.is_nan());
436     /// assert!(!f.is_nan());
437     /// ```
438     #[must_use]
439     #[stable(feature = "rust1", since = "1.0.0")]
440     #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
441     #[inline]
is_nan(self) -> bool442     pub const fn is_nan(self) -> bool {
443         self != self
444     }
445 
446     // FIXME(#50145): `abs` is publicly unavailable in libcore due to
447     // concerns about portability, so this implementation is for
448     // private use internally.
449     #[inline]
450     #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
abs_private(self) -> f64451     pub(crate) const fn abs_private(self) -> f64 {
452         f64::from_bits(self.to_bits() & 0x7fff_ffff_ffff_ffff)
453     }
454 
455     /// Returns `true` if this value is positive infinity or negative infinity, and
456     /// `false` otherwise.
457     ///
458     /// ```
459     /// let f = 7.0f64;
460     /// let inf = f64::INFINITY;
461     /// let neg_inf = f64::NEG_INFINITY;
462     /// let nan = f64::NAN;
463     ///
464     /// assert!(!f.is_infinite());
465     /// assert!(!nan.is_infinite());
466     ///
467     /// assert!(inf.is_infinite());
468     /// assert!(neg_inf.is_infinite());
469     /// ```
470     #[must_use]
471     #[stable(feature = "rust1", since = "1.0.0")]
472     #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
473     #[inline]
is_infinite(self) -> bool474     pub const fn is_infinite(self) -> bool {
475         self.abs_private() == Self::INFINITY
476     }
477 
478     /// Returns `true` if this number is neither infinite nor `NaN`.
479     ///
480     /// ```
481     /// let f = 7.0f64;
482     /// let inf: f64 = f64::INFINITY;
483     /// let neg_inf: f64 = f64::NEG_INFINITY;
484     /// let nan: f64 = f64::NAN;
485     ///
486     /// assert!(f.is_finite());
487     ///
488     /// assert!(!nan.is_finite());
489     /// assert!(!inf.is_finite());
490     /// assert!(!neg_inf.is_finite());
491     /// ```
492     #[must_use]
493     #[stable(feature = "rust1", since = "1.0.0")]
494     #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
495     #[inline]
is_finite(self) -> bool496     pub const fn is_finite(self) -> bool {
497         // There's no need to handle NaN separately: if self is NaN,
498         // the comparison is not true, exactly as desired.
499         self.abs_private() < Self::INFINITY
500     }
501 
502     /// Returns `true` if the number is [subnormal].
503     ///
504     /// ```
505     /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
506     /// let max = f64::MAX;
507     /// let lower_than_min = 1.0e-308_f64;
508     /// let zero = 0.0_f64;
509     ///
510     /// assert!(!min.is_subnormal());
511     /// assert!(!max.is_subnormal());
512     ///
513     /// assert!(!zero.is_subnormal());
514     /// assert!(!f64::NAN.is_subnormal());
515     /// assert!(!f64::INFINITY.is_subnormal());
516     /// // Values between `0` and `min` are Subnormal.
517     /// assert!(lower_than_min.is_subnormal());
518     /// ```
519     /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
520     #[must_use]
521     #[stable(feature = "is_subnormal", since = "1.53.0")]
522     #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
523     #[inline]
is_subnormal(self) -> bool524     pub const fn is_subnormal(self) -> bool {
525         matches!(self.classify(), FpCategory::Subnormal)
526     }
527 
528     /// Returns `true` if the number is neither zero, infinite,
529     /// [subnormal], or `NaN`.
530     ///
531     /// ```
532     /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
533     /// let max = f64::MAX;
534     /// let lower_than_min = 1.0e-308_f64;
535     /// let zero = 0.0f64;
536     ///
537     /// assert!(min.is_normal());
538     /// assert!(max.is_normal());
539     ///
540     /// assert!(!zero.is_normal());
541     /// assert!(!f64::NAN.is_normal());
542     /// assert!(!f64::INFINITY.is_normal());
543     /// // Values between `0` and `min` are Subnormal.
544     /// assert!(!lower_than_min.is_normal());
545     /// ```
546     /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
547     #[must_use]
548     #[stable(feature = "rust1", since = "1.0.0")]
549     #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
550     #[inline]
is_normal(self) -> bool551     pub const fn is_normal(self) -> bool {
552         matches!(self.classify(), FpCategory::Normal)
553     }
554 
555     /// Returns the floating point category of the number. If only one property
556     /// is going to be tested, it is generally faster to use the specific
557     /// predicate instead.
558     ///
559     /// ```
560     /// use std::num::FpCategory;
561     ///
562     /// let num = 12.4_f64;
563     /// let inf = f64::INFINITY;
564     ///
565     /// assert_eq!(num.classify(), FpCategory::Normal);
566     /// assert_eq!(inf.classify(), FpCategory::Infinite);
567     /// ```
568     #[stable(feature = "rust1", since = "1.0.0")]
569     #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
classify(self) -> FpCategory570     pub const fn classify(self) -> FpCategory {
571         const EXP_MASK: u64 = 0x7ff0000000000000;
572         const MAN_MASK: u64 = 0x000fffffffffffff;
573 
574         let bits = self.to_bits();
575         match (bits & MAN_MASK, bits & EXP_MASK) {
576             (0, 0) => FpCategory::Zero,
577             (_, 0) => FpCategory::Subnormal,
578             (0, EXP_MASK) => FpCategory::Infinite,
579             (_, EXP_MASK) => FpCategory::Nan,
580             _ => FpCategory::Normal,
581         }
582     }
583 
584     /// Returns `true` if `self` has a positive sign, including `+0.0`, `NaN`s with
585     /// positive sign bit and positive infinity.
586     ///
587     /// ```
588     /// let f = 7.0_f64;
589     /// let g = -7.0_f64;
590     ///
591     /// assert!(f.is_sign_positive());
592     /// assert!(!g.is_sign_positive());
593     /// ```
594     #[must_use]
595     #[stable(feature = "rust1", since = "1.0.0")]
596     #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
597     #[inline]
is_sign_positive(self) -> bool598     pub const fn is_sign_positive(self) -> bool {
599         !self.is_sign_negative()
600     }
601 
602     #[must_use]
603     #[stable(feature = "rust1", since = "1.0.0")]
604     #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_positive")]
605     #[inline]
606     #[doc(hidden)]
is_positive(self) -> bool607     pub fn is_positive(self) -> bool {
608         self.is_sign_positive()
609     }
610 
611     /// Returns `true` if `self` has a negative sign, including `-0.0`, `NaN`s with
612     /// negative sign bit and negative infinity.
613     ///
614     /// ```
615     /// let f = 7.0_f64;
616     /// let g = -7.0_f64;
617     ///
618     /// assert!(!f.is_sign_negative());
619     /// assert!(g.is_sign_negative());
620     /// ```
621     #[must_use]
622     #[stable(feature = "rust1", since = "1.0.0")]
623     #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
624     #[inline]
is_sign_negative(self) -> bool625     pub const fn is_sign_negative(self) -> bool {
626         self.to_bits() & 0x8000_0000_0000_0000 != 0
627     }
628 
629     #[must_use]
630     #[stable(feature = "rust1", since = "1.0.0")]
631     #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_negative")]
632     #[inline]
633     #[doc(hidden)]
is_negative(self) -> bool634     pub fn is_negative(self) -> bool {
635         self.is_sign_negative()
636     }
637 
638     /// Takes the reciprocal (inverse) of a number, `1/x`.
639     ///
640     /// ```
641     /// let x = 2.0_f64;
642     /// let abs_difference = (x.recip() - (1.0 / x)).abs();
643     ///
644     /// assert!(abs_difference < 1e-10);
645     /// ```
646     #[stable(feature = "rust1", since = "1.0.0")]
647     #[inline]
recip(self) -> f64648     pub fn recip(self) -> f64 {
649         1.0 / self
650     }
651 
652     /// Converts radians to degrees.
653     ///
654     /// ```
655     /// let angle = std::f64::consts::PI;
656     ///
657     /// let abs_difference = (angle.to_degrees() - 180.0).abs();
658     ///
659     /// assert!(abs_difference < 1e-10);
660     /// ```
661     #[must_use = "this returns the result of the operation, \
662                   without modifying the original"]
663     #[stable(feature = "rust1", since = "1.0.0")]
664     #[inline]
to_degrees(self) -> f64665     pub fn to_degrees(self) -> f64 {
666         // The division here is correctly rounded with respect to the true
667         // value of 180/π. (This differs from f32, where a constant must be
668         // used to ensure a correctly rounded result.)
669         self * (180.0f64 / consts::PI)
670     }
671 
672     /// Converts degrees to radians.
673     ///
674     /// ```
675     /// let angle = 180.0_f64;
676     ///
677     /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
678     ///
679     /// assert!(abs_difference < 1e-10);
680     /// ```
681     #[must_use = "this returns the result of the operation, \
682                   without modifying the original"]
683     #[stable(feature = "rust1", since = "1.0.0")]
684     #[inline]
to_radians(self) -> f64685     pub fn to_radians(self) -> f64 {
686         let value: f64 = consts::PI;
687         self * (value / 180.0)
688     }
689 
690     /// Returns the maximum of the two numbers.
691     ///
692     /// Follows the IEEE-754 2008 semantics for maxNum, except for handling of signaling NaNs.
693     /// This matches the behavior of libm’s fmin.
694     ///
695     /// ```
696     /// let x = 1.0_f64;
697     /// let y = 2.0_f64;
698     ///
699     /// assert_eq!(x.max(y), y);
700     /// ```
701     ///
702     /// If one of the arguments is NaN, then the other argument is returned.
703     #[stable(feature = "rust1", since = "1.0.0")]
704     #[inline]
max(self, other: f64) -> f64705     pub fn max(self, other: f64) -> f64 {
706         intrinsics::maxnumf64(self, other)
707     }
708 
709     /// Returns the minimum of the two numbers.
710     ///
711     /// Follows the IEEE-754 2008 semantics for minNum, except for handling of signaling NaNs.
712     /// This matches the behavior of libm’s fmin.
713     ///
714     /// ```
715     /// let x = 1.0_f64;
716     /// let y = 2.0_f64;
717     ///
718     /// assert_eq!(x.min(y), x);
719     /// ```
720     ///
721     /// If one of the arguments is NaN, then the other argument is returned.
722     #[stable(feature = "rust1", since = "1.0.0")]
723     #[inline]
min(self, other: f64) -> f64724     pub fn min(self, other: f64) -> f64 {
725         intrinsics::minnumf64(self, other)
726     }
727 
728     /// Returns the maximum of the two numbers, propagating NaNs.
729     ///
730     /// This returns NaN when *either* argument is NaN, as opposed to
731     /// [`f64::max`] which only returns NaN when *both* arguments are NaN.
732     ///
733     /// ```
734     /// #![feature(float_minimum_maximum)]
735     /// let x = 1.0_f64;
736     /// let y = 2.0_f64;
737     ///
738     /// assert_eq!(x.maximum(y), y);
739     /// assert!(x.maximum(f64::NAN).is_nan());
740     /// ```
741     ///
742     /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
743     /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
744     /// Note that this follows the semantics specified in IEEE 754-2019.
745     #[unstable(feature = "float_minimum_maximum", issue = "91079")]
746     #[inline]
maximum(self, other: f64) -> f64747     pub fn maximum(self, other: f64) -> f64 {
748         if self > other {
749             self
750         } else if other > self {
751             other
752         } else if self == other {
753             if self.is_sign_positive() && other.is_sign_negative() { self } else { other }
754         } else {
755             self + other
756         }
757     }
758 
759     /// Returns the minimum of the two numbers, propagating NaNs.
760     ///
761     /// This returns NaN when *either* argument is NaN, as opposed to
762     /// [`f64::min`] which only returns NaN when *both* arguments are NaN.
763     ///
764     /// ```
765     /// #![feature(float_minimum_maximum)]
766     /// let x = 1.0_f64;
767     /// let y = 2.0_f64;
768     ///
769     /// assert_eq!(x.minimum(y), x);
770     /// assert!(x.minimum(f64::NAN).is_nan());
771     /// ```
772     ///
773     /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
774     /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
775     /// Note that this follows the semantics specified in IEEE 754-2019.
776     #[unstable(feature = "float_minimum_maximum", issue = "91079")]
777     #[inline]
minimum(self, other: f64) -> f64778     pub fn minimum(self, other: f64) -> f64 {
779         if self < other {
780             self
781         } else if other < self {
782             other
783         } else if self == other {
784             if self.is_sign_negative() && other.is_sign_positive() { self } else { other }
785         } else {
786             self + other
787         }
788     }
789 
790     /// Rounds toward zero and converts to any primitive integer type,
791     /// assuming that the value is finite and fits in that type.
792     ///
793     /// ```
794     /// let value = 4.6_f64;
795     /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
796     /// assert_eq!(rounded, 4);
797     ///
798     /// let value = -128.9_f64;
799     /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
800     /// assert_eq!(rounded, i8::MIN);
801     /// ```
802     ///
803     /// # Safety
804     ///
805     /// The value must:
806     ///
807     /// * Not be `NaN`
808     /// * Not be infinite
809     /// * Be representable in the return type `Int`, after truncating off its fractional part
810     #[must_use = "this returns the result of the operation, \
811                   without modifying the original"]
812     #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
813     #[inline]
to_int_unchecked<Int>(self) -> Int where Self: FloatToInt<Int>,814     pub unsafe fn to_int_unchecked<Int>(self) -> Int
815     where
816         Self: FloatToInt<Int>,
817     {
818         // SAFETY: the caller must uphold the safety contract for
819         // `FloatToInt::to_int_unchecked`.
820         unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
821     }
822 
823     /// Raw transmutation to `u64`.
824     ///
825     /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
826     ///
827     /// See [`from_bits`](Self::from_bits) for some discussion of the
828     /// portability of this operation (there are almost no issues).
829     ///
830     /// Note that this function is distinct from `as` casting, which attempts to
831     /// preserve the *numeric* value, and not the bitwise value.
832     ///
833     /// # Examples
834     ///
835     /// ```
836     /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
837     /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
838     ///
839     /// ```
840     #[must_use = "this returns the result of the operation, \
841                   without modifying the original"]
842     #[stable(feature = "float_bits_conv", since = "1.20.0")]
843     #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
844     #[inline]
to_bits(self) -> u64845     pub const fn to_bits(self) -> u64 {
846         // SAFETY: `u64` is a plain old datatype so we can always transmute to it
847         unsafe { mem::transmute(self) }
848     }
849 
850     /// Raw transmutation from `u64`.
851     ///
852     /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
853     /// It turns out this is incredibly portable, for two reasons:
854     ///
855     /// * Floats and Ints have the same endianness on all supported platforms.
856     /// * IEEE-754 very precisely specifies the bit layout of floats.
857     ///
858     /// However there is one caveat: prior to the 2008 version of IEEE-754, how
859     /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
860     /// (notably x86 and ARM) picked the interpretation that was ultimately
861     /// standardized in 2008, but some didn't (notably MIPS). As a result, all
862     /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
863     ///
864     /// Rather than trying to preserve signaling-ness cross-platform, this
865     /// implementation favors preserving the exact bits. This means that
866     /// any payloads encoded in NaNs will be preserved even if the result of
867     /// this method is sent over the network from an x86 machine to a MIPS one.
868     ///
869     /// If the results of this method are only manipulated by the same
870     /// architecture that produced them, then there is no portability concern.
871     ///
872     /// If the input isn't NaN, then there is no portability concern.
873     ///
874     /// If you don't care about signaling-ness (very likely), then there is no
875     /// portability concern.
876     ///
877     /// Note that this function is distinct from `as` casting, which attempts to
878     /// preserve the *numeric* value, and not the bitwise value.
879     ///
880     /// # Examples
881     ///
882     /// ```
883     /// let v = f64::from_bits(0x4029000000000000);
884     /// assert_eq!(v, 12.5);
885     /// ```
886     #[stable(feature = "float_bits_conv", since = "1.20.0")]
887     #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
888     #[must_use]
889     #[inline]
from_bits(v: u64) -> Self890     pub const fn from_bits(v: u64) -> Self {
891         // SAFETY: `u64` is a plain old datatype so we can always transmute from it
892         // It turns out the safety issues with sNaN were overblown! Hooray!
893         unsafe { mem::transmute(v) }
894     }
895 
896     /// Return the memory representation of this floating point number as a byte array in
897     /// big-endian (network) byte order.
898     ///
899     /// # Examples
900     ///
901     /// ```
902     /// let bytes = 12.5f64.to_be_bytes();
903     /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
904     /// ```
905     #[must_use = "this returns the result of the operation, \
906                   without modifying the original"]
907     #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
908     #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
909     #[inline]
to_be_bytes(self) -> [u8; 8]910     pub const fn to_be_bytes(self) -> [u8; 8] {
911         self.to_bits().to_be_bytes()
912     }
913 
914     /// Return the memory representation of this floating point number as a byte array in
915     /// little-endian byte order.
916     ///
917     /// # Examples
918     ///
919     /// ```
920     /// let bytes = 12.5f64.to_le_bytes();
921     /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
922     /// ```
923     #[must_use = "this returns the result of the operation, \
924                   without modifying the original"]
925     #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
926     #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
927     #[inline]
to_le_bytes(self) -> [u8; 8]928     pub const fn to_le_bytes(self) -> [u8; 8] {
929         self.to_bits().to_le_bytes()
930     }
931 
932     /// Return the memory representation of this floating point number as a byte array in
933     /// native byte order.
934     ///
935     /// As the target platform's native endianness is used, portable code
936     /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
937     ///
938     /// [`to_be_bytes`]: f64::to_be_bytes
939     /// [`to_le_bytes`]: f64::to_le_bytes
940     ///
941     /// # Examples
942     ///
943     /// ```
944     /// let bytes = 12.5f64.to_ne_bytes();
945     /// assert_eq!(
946     ///     bytes,
947     ///     if cfg!(target_endian = "big") {
948     ///         [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
949     ///     } else {
950     ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
951     ///     }
952     /// );
953     /// ```
954     #[must_use = "this returns the result of the operation, \
955                   without modifying the original"]
956     #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
957     #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
958     #[inline]
to_ne_bytes(self) -> [u8; 8]959     pub const fn to_ne_bytes(self) -> [u8; 8] {
960         self.to_bits().to_ne_bytes()
961     }
962 
963     /// Create a floating point value from its representation as a byte array in big endian.
964     ///
965     /// # Examples
966     ///
967     /// ```
968     /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
969     /// assert_eq!(value, 12.5);
970     /// ```
971     #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
972     #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
973     #[must_use]
974     #[inline]
from_be_bytes(bytes: [u8; 8]) -> Self975     pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
976         Self::from_bits(u64::from_be_bytes(bytes))
977     }
978 
979     /// Create a floating point value from its representation as a byte array in little endian.
980     ///
981     /// # Examples
982     ///
983     /// ```
984     /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
985     /// assert_eq!(value, 12.5);
986     /// ```
987     #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
988     #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
989     #[must_use]
990     #[inline]
from_le_bytes(bytes: [u8; 8]) -> Self991     pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
992         Self::from_bits(u64::from_le_bytes(bytes))
993     }
994 
995     /// Create a floating point value from its representation as a byte array in native endian.
996     ///
997     /// As the target platform's native endianness is used, portable code
998     /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
999     /// appropriate instead.
1000     ///
1001     /// [`from_be_bytes`]: f64::from_be_bytes
1002     /// [`from_le_bytes`]: f64::from_le_bytes
1003     ///
1004     /// # Examples
1005     ///
1006     /// ```
1007     /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1008     ///     [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1009     /// } else {
1010     ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1011     /// });
1012     /// assert_eq!(value, 12.5);
1013     /// ```
1014     #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1015     #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
1016     #[must_use]
1017     #[inline]
from_ne_bytes(bytes: [u8; 8]) -> Self1018     pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
1019         Self::from_bits(u64::from_ne_bytes(bytes))
1020     }
1021 
1022     /// Returns an ordering between self and other values.
1023     /// Unlike the standard partial comparison between floating point numbers,
1024     /// this comparison always produces an ordering in accordance to
1025     /// the totalOrder predicate as defined in IEEE 754 (2008 revision)
1026     /// floating point standard. The values are ordered in following order:
1027     /// - Negative quiet NaN
1028     /// - Negative signaling NaN
1029     /// - Negative infinity
1030     /// - Negative numbers
1031     /// - Negative subnormal numbers
1032     /// - Negative zero
1033     /// - Positive zero
1034     /// - Positive subnormal numbers
1035     /// - Positive numbers
1036     /// - Positive infinity
1037     /// - Positive signaling NaN
1038     /// - Positive quiet NaN
1039     ///
1040     /// Note that this function does not always agree with the [`PartialOrd`]
1041     /// and [`PartialEq`] implementations of `f64`. In particular, they regard
1042     /// negative and positive zero as equal, while `total_cmp` doesn't.
1043     ///
1044     /// # Example
1045     /// ```
1046     /// #![feature(total_cmp)]
1047     /// struct GoodBoy {
1048     ///     name: String,
1049     ///     weight: f64,
1050     /// }
1051     ///
1052     /// let mut bois = vec![
1053     ///     GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1054     ///     GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1055     ///     GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1056     ///     GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1057     ///     GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1058     ///     GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1059     /// ];
1060     ///
1061     /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1062     /// # assert!(bois.into_iter().map(|b| b.weight)
1063     /// #     .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1064     /// #     .all(|(a, b)| a.to_bits() == b.to_bits()))
1065     /// ```
1066     #[unstable(feature = "total_cmp", issue = "72599")]
1067     #[must_use]
1068     #[inline]
total_cmp(&self, other: &Self) -> crate::cmp::Ordering1069     pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1070         let mut left = self.to_bits() as i64;
1071         let mut right = other.to_bits() as i64;
1072 
1073         // In case of negatives, flip all the bits except the sign
1074         // to achieve a similar layout as two's complement integers
1075         //
1076         // Why does this work? IEEE 754 floats consist of three fields:
1077         // Sign bit, exponent and mantissa. The set of exponent and mantissa
1078         // fields as a whole have the property that their bitwise order is
1079         // equal to the numeric magnitude where the magnitude is defined.
1080         // The magnitude is not normally defined on NaN values, but
1081         // IEEE 754 totalOrder defines the NaN values also to follow the
1082         // bitwise order. This leads to order explained in the doc comment.
1083         // However, the representation of magnitude is the same for negative
1084         // and positive numbers – only the sign bit is different.
1085         // To easily compare the floats as signed integers, we need to
1086         // flip the exponent and mantissa bits in case of negative numbers.
1087         // We effectively convert the numbers to "two's complement" form.
1088         //
1089         // To do the flipping, we construct a mask and XOR against it.
1090         // We branchlessly calculate an "all-ones except for the sign bit"
1091         // mask from negative-signed values: right shifting sign-extends
1092         // the integer, so we "fill" the mask with sign bits, and then
1093         // convert to unsigned to push one more zero bit.
1094         // On positive values, the mask is all zeros, so it's a no-op.
1095         left ^= (((left >> 63) as u64) >> 1) as i64;
1096         right ^= (((right >> 63) as u64) >> 1) as i64;
1097 
1098         left.cmp(&right)
1099     }
1100 
1101     /// Restrict a value to a certain interval unless it is NaN.
1102     ///
1103     /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1104     /// less than `min`. Otherwise this returns `self`.
1105     ///
1106     /// Note that this function returns NaN if the initial value was NaN as
1107     /// well.
1108     ///
1109     /// # Panics
1110     ///
1111     /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1112     ///
1113     /// # Examples
1114     ///
1115     /// ```
1116     /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1117     /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1118     /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1119     /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1120     /// ```
1121     #[must_use = "method returns a new number and does not mutate the original value"]
1122     #[stable(feature = "clamp", since = "1.50.0")]
1123     #[inline]
clamp(self, min: f64, max: f64) -> f641124     pub fn clamp(self, min: f64, max: f64) -> f64 {
1125         assert!(min <= max);
1126         let mut x = self;
1127         if x < min {
1128             x = min;
1129         }
1130         if x > max {
1131             x = max;
1132         }
1133         x
1134     }
1135 }
1136