1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
19 #include "ToolChains/CrossWindows.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Hurd.h"
30 #include "ToolChains/Lanai.h"
31 #include "ToolChains/Linux.h"
32 #include "ToolChains/MSP430.h"
33 #include "ToolChains/MSVC.h"
34 #include "ToolChains/MinGW.h"
35 #include "ToolChains/Minix.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/Myriad.h"
38 #include "ToolChains/NaCl.h"
39 #include "ToolChains/NetBSD.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PPCLinux.h"
42 #include "ToolChains/PS4CPU.h"
43 #include "ToolChains/RISCVToolchain.h"
44 #include "ToolChains/Solaris.h"
45 #include "ToolChains/TCE.h"
46 #include "ToolChains/VEToolchain.h"
47 #include "ToolChains/WebAssembly.h"
48 #include "ToolChains/XCore.h"
49 #include "ToolChains/ZOS.h"
50 #include "clang/Basic/TargetID.h"
51 #include "clang/Basic/Version.h"
52 #include "clang/Config/config.h"
53 #include "clang/Driver/Action.h"
54 #include "clang/Driver/Compilation.h"
55 #include "clang/Driver/DriverDiagnostic.h"
56 #include "clang/Driver/InputInfo.h"
57 #include "clang/Driver/Job.h"
58 #include "clang/Driver/Options.h"
59 #include "clang/Driver/SanitizerArgs.h"
60 #include "clang/Driver/Tool.h"
61 #include "clang/Driver/ToolChain.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallSet.h"
65 #include "llvm/ADT/StringExtras.h"
66 #include "llvm/ADT/StringRef.h"
67 #include "llvm/ADT/StringSet.h"
68 #include "llvm/ADT/StringSwitch.h"
69 #include "llvm/Config/llvm-config.h"
70 #include "llvm/Option/Arg.h"
71 #include "llvm/Option/ArgList.h"
72 #include "llvm/Option/OptSpecifier.h"
73 #include "llvm/Option/OptTable.h"
74 #include "llvm/Option/Option.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/ExitCodes.h"
78 #include "llvm/Support/FileSystem.h"
79 #include "llvm/Support/FormatVariadic.h"
80 #include "llvm/Support/Host.h"
81 #include "llvm/Support/MD5.h"
82 #include "llvm/Support/Path.h"
83 #include "llvm/Support/PrettyStackTrace.h"
84 #include "llvm/Support/Process.h"
85 #include "llvm/Support/Program.h"
86 #include "llvm/Support/StringSaver.h"
87 #include "llvm/Support/TargetRegistry.h"
88 #include "llvm/Support/VirtualFileSystem.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include <map>
91 #include <memory>
92 #include <utility>
93 #if LLVM_ON_UNIX
94 #include <unistd.h> // getpid
95 #endif
96
97 using namespace clang::driver;
98 using namespace clang;
99 using namespace llvm::opt;
100
getHIPOffloadTargetTriple()101 static llvm::Triple getHIPOffloadTargetTriple() {
102 static const llvm::Triple T("amdgcn-amd-amdhsa");
103 return T;
104 }
105
106 // static
GetResourcesPath(StringRef BinaryPath,StringRef CustomResourceDir)107 std::string Driver::GetResourcesPath(StringRef BinaryPath,
108 StringRef CustomResourceDir) {
109 // Since the resource directory is embedded in the module hash, it's important
110 // that all places that need it call this function, so that they get the
111 // exact same string ("a/../b/" and "b/" get different hashes, for example).
112
113 // Dir is bin/ or lib/, depending on where BinaryPath is.
114 std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
115
116 SmallString<128> P(Dir);
117 if (CustomResourceDir != "") {
118 llvm::sys::path::append(P, CustomResourceDir);
119 } else {
120 // On Windows, libclang.dll is in bin/.
121 // On non-Windows, libclang.so/.dylib is in lib/.
122 // With a static-library build of libclang, LibClangPath will contain the
123 // path of the embedding binary, which for LLVM binaries will be in bin/.
124 // ../lib gets us to lib/ in both cases.
125 P = llvm::sys::path::parent_path(Dir);
126 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
127 CLANG_VERSION_STRING);
128 }
129
130 return std::string(P.str());
131 }
132
Driver(StringRef ClangExecutable,StringRef TargetTriple,DiagnosticsEngine & Diags,std::string Title,IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)133 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
134 DiagnosticsEngine &Diags, std::string Title,
135 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
136 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
137 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
138 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
139 DriverTitle(Title), CCPrintStatReportFilename(), CCPrintOptionsFilename(),
140 CCPrintHeadersFilename(), CCLogDiagnosticsFilename(),
141 CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
142 CCLogDiagnostics(false), CCGenDiagnostics(false),
143 CCPrintProcessStats(false), TargetTriple(TargetTriple),
144 CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
145 GenReproducer(false), SuppressMissingInputWarning(false) {
146 // Provide a sane fallback if no VFS is specified.
147 if (!this->VFS)
148 this->VFS = llvm::vfs::getRealFileSystem();
149
150 Name = std::string(llvm::sys::path::filename(ClangExecutable));
151 Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
152 InstalledDir = Dir; // Provide a sensible default installed dir.
153
154 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
155 // Prepend InstalledDir if SysRoot is relative
156 SmallString<128> P(InstalledDir);
157 llvm::sys::path::append(P, SysRoot);
158 SysRoot = std::string(P);
159 }
160
161 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
162 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
163 #endif
164 #if defined(CLANG_CONFIG_FILE_USER_DIR)
165 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
166 #endif
167
168 // Compute the path to the resource directory.
169 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
170 }
171
setDriverMode(StringRef Value)172 void Driver::setDriverMode(StringRef Value) {
173 static const std::string OptName =
174 getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
175 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
176 .Case("gcc", GCCMode)
177 .Case("g++", GXXMode)
178 .Case("cpp", CPPMode)
179 .Case("cl", CLMode)
180 .Case("flang", FlangMode)
181 .Default(None))
182 Mode = *M;
183 else
184 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
185 }
186
ParseArgStrings(ArrayRef<const char * > ArgStrings,bool IsClCompatMode,bool & ContainsError)187 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
188 bool IsClCompatMode,
189 bool &ContainsError) {
190 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
191 ContainsError = false;
192
193 unsigned IncludedFlagsBitmask;
194 unsigned ExcludedFlagsBitmask;
195 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
196 getIncludeExcludeOptionFlagMasks(IsClCompatMode);
197
198 // Make sure that Flang-only options don't pollute the Clang output
199 // TODO: Make sure that Clang-only options don't pollute Flang output
200 if (!IsFlangMode())
201 ExcludedFlagsBitmask |= options::FlangOnlyOption;
202
203 unsigned MissingArgIndex, MissingArgCount;
204 InputArgList Args =
205 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
206 IncludedFlagsBitmask, ExcludedFlagsBitmask);
207
208 // Check for missing argument error.
209 if (MissingArgCount) {
210 Diag(diag::err_drv_missing_argument)
211 << Args.getArgString(MissingArgIndex) << MissingArgCount;
212 ContainsError |=
213 Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
214 SourceLocation()) > DiagnosticsEngine::Warning;
215 }
216
217 // Check for unsupported options.
218 for (const Arg *A : Args) {
219 if (A->getOption().hasFlag(options::Unsupported)) {
220 unsigned DiagID;
221 auto ArgString = A->getAsString(Args);
222 std::string Nearest;
223 if (getOpts().findNearest(
224 ArgString, Nearest, IncludedFlagsBitmask,
225 ExcludedFlagsBitmask | options::Unsupported) > 1) {
226 DiagID = diag::err_drv_unsupported_opt;
227 Diag(DiagID) << ArgString;
228 } else {
229 DiagID = diag::err_drv_unsupported_opt_with_suggestion;
230 Diag(DiagID) << ArgString << Nearest;
231 }
232 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
233 DiagnosticsEngine::Warning;
234 continue;
235 }
236
237 // Warn about -mcpu= without an argument.
238 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
239 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
240 ContainsError |= Diags.getDiagnosticLevel(
241 diag::warn_drv_empty_joined_argument,
242 SourceLocation()) > DiagnosticsEngine::Warning;
243 }
244 }
245
246 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
247 unsigned DiagID;
248 auto ArgString = A->getAsString(Args);
249 std::string Nearest;
250 if (getOpts().findNearest(
251 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
252 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
253 : diag::err_drv_unknown_argument;
254 Diags.Report(DiagID) << ArgString;
255 } else {
256 DiagID = IsCLMode()
257 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
258 : diag::err_drv_unknown_argument_with_suggestion;
259 Diags.Report(DiagID) << ArgString << Nearest;
260 }
261 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
262 DiagnosticsEngine::Warning;
263 }
264
265 return Args;
266 }
267
268 // Determine which compilation mode we are in. We look for options which
269 // affect the phase, starting with the earliest phases, and record which
270 // option we used to determine the final phase.
getFinalPhase(const DerivedArgList & DAL,Arg ** FinalPhaseArg) const271 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
272 Arg **FinalPhaseArg) const {
273 Arg *PhaseArg = nullptr;
274 phases::ID FinalPhase;
275
276 // -{E,EP,P,M,MM} only run the preprocessor.
277 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
278 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
279 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
280 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
281 FinalPhase = phases::Preprocess;
282
283 // --precompile only runs up to precompilation.
284 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
285 FinalPhase = phases::Precompile;
286
287 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
288 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
289 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
290 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
291 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
292 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
293 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
294 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
295 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
296 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
297 FinalPhase = phases::Compile;
298
299 // -S only runs up to the backend.
300 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
301 FinalPhase = phases::Backend;
302
303 // -c compilation only runs up to the assembler.
304 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
305 FinalPhase = phases::Assemble;
306
307 // Otherwise do everything.
308 } else
309 FinalPhase = phases::Link;
310
311 if (FinalPhaseArg)
312 *FinalPhaseArg = PhaseArg;
313
314 return FinalPhase;
315 }
316
MakeInputArg(DerivedArgList & Args,const OptTable & Opts,StringRef Value,bool Claim=true)317 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
318 StringRef Value, bool Claim = true) {
319 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
320 Args.getBaseArgs().MakeIndex(Value), Value.data());
321 Args.AddSynthesizedArg(A);
322 if (Claim)
323 A->claim();
324 return A;
325 }
326
TranslateInputArgs(const InputArgList & Args) const327 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
328 const llvm::opt::OptTable &Opts = getOpts();
329 DerivedArgList *DAL = new DerivedArgList(Args);
330
331 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
332 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
333 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
334 for (Arg *A : Args) {
335 // Unfortunately, we have to parse some forwarding options (-Xassembler,
336 // -Xlinker, -Xpreprocessor) because we either integrate their functionality
337 // (assembler and preprocessor), or bypass a previous driver ('collect2').
338
339 // Rewrite linker options, to replace --no-demangle with a custom internal
340 // option.
341 if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
342 A->getOption().matches(options::OPT_Xlinker)) &&
343 A->containsValue("--no-demangle")) {
344 // Add the rewritten no-demangle argument.
345 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
346
347 // Add the remaining values as Xlinker arguments.
348 for (StringRef Val : A->getValues())
349 if (Val != "--no-demangle")
350 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
351
352 continue;
353 }
354
355 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
356 // some build systems. We don't try to be complete here because we don't
357 // care to encourage this usage model.
358 if (A->getOption().matches(options::OPT_Wp_COMMA) &&
359 (A->getValue(0) == StringRef("-MD") ||
360 A->getValue(0) == StringRef("-MMD"))) {
361 // Rewrite to -MD/-MMD along with -MF.
362 if (A->getValue(0) == StringRef("-MD"))
363 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
364 else
365 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
366 if (A->getNumValues() == 2)
367 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
368 continue;
369 }
370
371 // Rewrite reserved library names.
372 if (A->getOption().matches(options::OPT_l)) {
373 StringRef Value = A->getValue();
374
375 // Rewrite unless -nostdlib is present.
376 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
377 Value == "stdc++") {
378 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
379 continue;
380 }
381
382 // Rewrite unconditionally.
383 if (Value == "cc_kext") {
384 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
385 continue;
386 }
387 }
388
389 // Pick up inputs via the -- option.
390 if (A->getOption().matches(options::OPT__DASH_DASH)) {
391 A->claim();
392 for (StringRef Val : A->getValues())
393 DAL->append(MakeInputArg(*DAL, Opts, Val, false));
394 continue;
395 }
396
397 DAL->append(A);
398 }
399
400 // Enforce -static if -miamcu is present.
401 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
402 DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
403
404 // Add a default value of -mlinker-version=, if one was given and the user
405 // didn't specify one.
406 #if defined(HOST_LINK_VERSION)
407 if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
408 strlen(HOST_LINK_VERSION) > 0) {
409 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
410 HOST_LINK_VERSION);
411 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
412 }
413 #endif
414
415 return DAL;
416 }
417
418 /// Compute target triple from args.
419 ///
420 /// This routine provides the logic to compute a target triple from various
421 /// args passed to the driver and the default triple string.
computeTargetTriple(const Driver & D,StringRef TargetTriple,const ArgList & Args,StringRef DarwinArchName="")422 static llvm::Triple computeTargetTriple(const Driver &D,
423 StringRef TargetTriple,
424 const ArgList &Args,
425 StringRef DarwinArchName = "") {
426 // FIXME: Already done in Compilation *Driver::BuildCompilation
427 if (const Arg *A = Args.getLastArg(options::OPT_target))
428 TargetTriple = A->getValue();
429
430 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
431
432 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
433 // -gnu* only, and we can not change this, so we have to detect that case as
434 // being the Hurd OS.
435 if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
436 TargetTriple.find("-pc-gnu") != StringRef::npos)
437 Target.setOSName("hurd");
438
439 // Handle Apple-specific options available here.
440 if (Target.isOSBinFormatMachO()) {
441 // If an explicit Darwin arch name is given, that trumps all.
442 if (!DarwinArchName.empty()) {
443 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
444 return Target;
445 }
446
447 // Handle the Darwin '-arch' flag.
448 if (Arg *A = Args.getLastArg(options::OPT_arch)) {
449 StringRef ArchName = A->getValue();
450 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
451 }
452 }
453
454 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
455 // '-mbig-endian'/'-EB'.
456 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
457 options::OPT_mbig_endian)) {
458 if (A->getOption().matches(options::OPT_mlittle_endian)) {
459 llvm::Triple LE = Target.getLittleEndianArchVariant();
460 if (LE.getArch() != llvm::Triple::UnknownArch)
461 Target = std::move(LE);
462 } else {
463 llvm::Triple BE = Target.getBigEndianArchVariant();
464 if (BE.getArch() != llvm::Triple::UnknownArch)
465 Target = std::move(BE);
466 }
467 }
468
469 // Skip further flag support on OSes which don't support '-m32' or '-m64'.
470 if (Target.getArch() == llvm::Triple::tce ||
471 Target.getOS() == llvm::Triple::Minix)
472 return Target;
473
474 // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
475 if (Target.isOSAIX()) {
476 if (Optional<std::string> ObjectModeValue =
477 llvm::sys::Process::GetEnv("OBJECT_MODE")) {
478 StringRef ObjectMode = *ObjectModeValue;
479 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
480
481 if (ObjectMode.equals("64")) {
482 AT = Target.get64BitArchVariant().getArch();
483 } else if (ObjectMode.equals("32")) {
484 AT = Target.get32BitArchVariant().getArch();
485 } else {
486 D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
487 }
488
489 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
490 Target.setArch(AT);
491 }
492 }
493
494 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
495 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
496 options::OPT_m32, options::OPT_m16);
497 if (A) {
498 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
499
500 if (A->getOption().matches(options::OPT_m64)) {
501 AT = Target.get64BitArchVariant().getArch();
502 if (Target.getEnvironment() == llvm::Triple::GNUX32)
503 Target.setEnvironment(llvm::Triple::GNU);
504 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
505 Target.setEnvironment(llvm::Triple::Musl);
506 } else if (A->getOption().matches(options::OPT_mx32) &&
507 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
508 AT = llvm::Triple::x86_64;
509 if (Target.getEnvironment() == llvm::Triple::Musl)
510 Target.setEnvironment(llvm::Triple::MuslX32);
511 else
512 Target.setEnvironment(llvm::Triple::GNUX32);
513 } else if (A->getOption().matches(options::OPT_m32)) {
514 AT = Target.get32BitArchVariant().getArch();
515 if (Target.getEnvironment() == llvm::Triple::GNUX32)
516 Target.setEnvironment(llvm::Triple::GNU);
517 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
518 Target.setEnvironment(llvm::Triple::Musl);
519 } else if (A->getOption().matches(options::OPT_m16) &&
520 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
521 AT = llvm::Triple::x86;
522 Target.setEnvironment(llvm::Triple::CODE16);
523 }
524
525 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
526 Target.setArch(AT);
527 }
528
529 // Handle -miamcu flag.
530 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
531 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
532 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
533 << Target.str();
534
535 if (A && !A->getOption().matches(options::OPT_m32))
536 D.Diag(diag::err_drv_argument_not_allowed_with)
537 << "-miamcu" << A->getBaseArg().getAsString(Args);
538
539 Target.setArch(llvm::Triple::x86);
540 Target.setArchName("i586");
541 Target.setEnvironment(llvm::Triple::UnknownEnvironment);
542 Target.setEnvironmentName("");
543 Target.setOS(llvm::Triple::ELFIAMCU);
544 Target.setVendor(llvm::Triple::UnknownVendor);
545 Target.setVendorName("intel");
546 }
547
548 // If target is MIPS adjust the target triple
549 // accordingly to provided ABI name.
550 A = Args.getLastArg(options::OPT_mabi_EQ);
551 if (A && Target.isMIPS()) {
552 StringRef ABIName = A->getValue();
553 if (ABIName == "32") {
554 Target = Target.get32BitArchVariant();
555 if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
556 Target.getEnvironment() == llvm::Triple::GNUABIN32)
557 Target.setEnvironment(llvm::Triple::GNU);
558 } else if (ABIName == "n32") {
559 Target = Target.get64BitArchVariant();
560 if (Target.getEnvironment() == llvm::Triple::GNU ||
561 Target.getEnvironment() == llvm::Triple::GNUABI64)
562 Target.setEnvironment(llvm::Triple::GNUABIN32);
563 } else if (ABIName == "64") {
564 Target = Target.get64BitArchVariant();
565 if (Target.getEnvironment() == llvm::Triple::GNU ||
566 Target.getEnvironment() == llvm::Triple::GNUABIN32)
567 Target.setEnvironment(llvm::Triple::GNUABI64);
568 }
569 }
570
571 // If target is RISC-V adjust the target triple according to
572 // provided architecture name
573 A = Args.getLastArg(options::OPT_march_EQ);
574 if (A && Target.isRISCV()) {
575 StringRef ArchName = A->getValue();
576 if (ArchName.startswith_insensitive("rv32"))
577 Target.setArch(llvm::Triple::riscv32);
578 else if (ArchName.startswith_insensitive("rv64"))
579 Target.setArch(llvm::Triple::riscv64);
580 }
581
582 return Target;
583 }
584
585 // Parse the LTO options and record the type of LTO compilation
586 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
587 // option occurs last.
588 static llvm::Optional<driver::LTOKind>
parseLTOMode(Driver & D,const llvm::opt::ArgList & Args,OptSpecifier OptPos,OptSpecifier OptNeg,OptSpecifier OptEq,bool IsOffload)589 parseLTOMode(Driver &D, const llvm::opt::ArgList &Args, OptSpecifier OptPos,
590 OptSpecifier OptNeg, OptSpecifier OptEq, bool IsOffload) {
591 driver::LTOKind LTOMode = LTOK_None;
592 // Non-offload LTO allows -flto=auto and -flto=jobserver. Offload LTO does
593 // not support those options.
594 if (!Args.hasFlag(OptPos, OptEq, OptNeg, false) &&
595 (IsOffload ||
596 (!Args.hasFlag(options::OPT_flto_EQ_auto, options::OPT_fno_lto, false) &&
597 !Args.hasFlag(options::OPT_flto_EQ_jobserver, options::OPT_fno_lto,
598 false))))
599 return None;
600
601 StringRef LTOName("full");
602
603 const Arg *A = Args.getLastArg(OptEq);
604 if (A)
605 LTOName = A->getValue();
606
607 LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
608 .Case("full", LTOK_Full)
609 .Case("thin", LTOK_Thin)
610 .Default(LTOK_Unknown);
611
612 if (LTOMode == LTOK_Unknown) {
613 assert(A);
614 D.Diag(diag::err_drv_unsupported_option_argument)
615 << A->getOption().getName() << A->getValue();
616 return None;
617 }
618 return LTOMode;
619 }
620
621 // Parse the LTO options.
setLTOMode(const llvm::opt::ArgList & Args)622 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
623 LTOMode = LTOK_None;
624 if (auto M = parseLTOMode(*this, Args, options::OPT_flto,
625 options::OPT_fno_lto, options::OPT_flto_EQ,
626 /*IsOffload=*/false))
627 LTOMode = M.getValue();
628
629 OffloadLTOMode = LTOK_None;
630 if (auto M = parseLTOMode(*this, Args, options::OPT_foffload_lto,
631 options::OPT_fno_offload_lto,
632 options::OPT_foffload_lto_EQ,
633 /*IsOffload=*/true))
634 OffloadLTOMode = M.getValue();
635 }
636
637 /// Compute the desired OpenMP runtime from the flags provided.
getOpenMPRuntime(const ArgList & Args) const638 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
639 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
640
641 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
642 if (A)
643 RuntimeName = A->getValue();
644
645 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
646 .Case("libomp", OMPRT_OMP)
647 .Case("libgomp", OMPRT_GOMP)
648 .Case("libiomp5", OMPRT_IOMP5)
649 .Default(OMPRT_Unknown);
650
651 if (RT == OMPRT_Unknown) {
652 if (A)
653 Diag(diag::err_drv_unsupported_option_argument)
654 << A->getOption().getName() << A->getValue();
655 else
656 // FIXME: We could use a nicer diagnostic here.
657 Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
658 }
659
660 return RT;
661 }
662
CreateOffloadingDeviceToolChains(Compilation & C,InputList & Inputs)663 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
664 InputList &Inputs) {
665
666 //
667 // CUDA/HIP
668 //
669 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
670 // or HIP type. However, mixed CUDA/HIP compilation is not supported.
671 bool IsCuda =
672 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
673 return types::isCuda(I.first);
674 });
675 bool IsHIP =
676 llvm::any_of(Inputs,
677 [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
678 return types::isHIP(I.first);
679 }) ||
680 C.getInputArgs().hasArg(options::OPT_hip_link);
681 if (IsCuda && IsHIP) {
682 Diag(clang::diag::err_drv_mix_cuda_hip);
683 return;
684 }
685 if (IsCuda) {
686 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
687 const llvm::Triple &HostTriple = HostTC->getTriple();
688 StringRef DeviceTripleStr;
689 auto OFK = Action::OFK_Cuda;
690 DeviceTripleStr =
691 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
692 llvm::Triple CudaTriple(DeviceTripleStr);
693 // Use the CUDA and host triples as the key into the ToolChains map,
694 // because the device toolchain we create depends on both.
695 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
696 if (!CudaTC) {
697 CudaTC = std::make_unique<toolchains::CudaToolChain>(
698 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
699 }
700 C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
701 } else if (IsHIP) {
702 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
703 const llvm::Triple &HostTriple = HostTC->getTriple();
704 auto OFK = Action::OFK_HIP;
705 llvm::Triple HIPTriple = getHIPOffloadTargetTriple();
706 // Use the HIP and host triples as the key into the ToolChains map,
707 // because the device toolchain we create depends on both.
708 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
709 if (!HIPTC) {
710 HIPTC = std::make_unique<toolchains::HIPToolChain>(
711 *this, HIPTriple, *HostTC, C.getInputArgs());
712 }
713 C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
714 }
715
716 //
717 // OpenMP
718 //
719 // We need to generate an OpenMP toolchain if the user specified targets with
720 // the -fopenmp-targets option.
721 if (Arg *OpenMPTargets =
722 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
723 if (OpenMPTargets->getNumValues()) {
724 // We expect that -fopenmp-targets is always used in conjunction with the
725 // option -fopenmp specifying a valid runtime with offloading support,
726 // i.e. libomp or libiomp.
727 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
728 options::OPT_fopenmp, options::OPT_fopenmp_EQ,
729 options::OPT_fno_openmp, false);
730 if (HasValidOpenMPRuntime) {
731 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
732 HasValidOpenMPRuntime =
733 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
734 }
735
736 if (HasValidOpenMPRuntime) {
737 llvm::StringMap<const char *> FoundNormalizedTriples;
738 for (const char *Val : OpenMPTargets->getValues()) {
739 llvm::Triple TT(Val);
740 std::string NormalizedName = TT.normalize();
741
742 // Make sure we don't have a duplicate triple.
743 auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
744 if (Duplicate != FoundNormalizedTriples.end()) {
745 Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
746 << Val << Duplicate->second;
747 continue;
748 }
749
750 // Store the current triple so that we can check for duplicates in the
751 // following iterations.
752 FoundNormalizedTriples[NormalizedName] = Val;
753
754 // If the specified target is invalid, emit a diagnostic.
755 if (TT.getArch() == llvm::Triple::UnknownArch)
756 Diag(clang::diag::err_drv_invalid_omp_target) << Val;
757 else {
758 const ToolChain *TC;
759 // Device toolchains have to be selected differently. They pair host
760 // and device in their implementation.
761 if (TT.isNVPTX() || TT.isAMDGCN()) {
762 const ToolChain *HostTC =
763 C.getSingleOffloadToolChain<Action::OFK_Host>();
764 assert(HostTC && "Host toolchain should be always defined.");
765 auto &DeviceTC =
766 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
767 if (!DeviceTC) {
768 if (TT.isNVPTX())
769 DeviceTC = std::make_unique<toolchains::CudaToolChain>(
770 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
771 else if (TT.isAMDGCN())
772 DeviceTC =
773 std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
774 *this, TT, *HostTC, C.getInputArgs());
775 else
776 assert(DeviceTC && "Device toolchain not defined.");
777 }
778
779 TC = DeviceTC.get();
780 } else
781 TC = &getToolChain(C.getInputArgs(), TT);
782 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
783 }
784 }
785 } else
786 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
787 } else
788 Diag(clang::diag::warn_drv_empty_joined_argument)
789 << OpenMPTargets->getAsString(C.getInputArgs());
790 }
791
792 //
793 // TODO: Add support for other offloading programming models here.
794 //
795 }
796
797 /// Looks the given directories for the specified file.
798 ///
799 /// \param[out] FilePath File path, if the file was found.
800 /// \param[in] Dirs Directories used for the search.
801 /// \param[in] FileName Name of the file to search for.
802 /// \return True if file was found.
803 ///
804 /// Looks for file specified by FileName sequentially in directories specified
805 /// by Dirs.
806 ///
searchForFile(SmallVectorImpl<char> & FilePath,ArrayRef<StringRef> Dirs,StringRef FileName)807 static bool searchForFile(SmallVectorImpl<char> &FilePath,
808 ArrayRef<StringRef> Dirs, StringRef FileName) {
809 SmallString<128> WPath;
810 for (const StringRef &Dir : Dirs) {
811 if (Dir.empty())
812 continue;
813 WPath.clear();
814 llvm::sys::path::append(WPath, Dir, FileName);
815 llvm::sys::path::native(WPath);
816 if (llvm::sys::fs::is_regular_file(WPath)) {
817 FilePath = std::move(WPath);
818 return true;
819 }
820 }
821 return false;
822 }
823
readConfigFile(StringRef FileName)824 bool Driver::readConfigFile(StringRef FileName) {
825 // Try reading the given file.
826 SmallVector<const char *, 32> NewCfgArgs;
827 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
828 Diag(diag::err_drv_cannot_read_config_file) << FileName;
829 return true;
830 }
831
832 // Read options from config file.
833 llvm::SmallString<128> CfgFileName(FileName);
834 llvm::sys::path::native(CfgFileName);
835 ConfigFile = std::string(CfgFileName);
836 bool ContainErrors;
837 CfgOptions = std::make_unique<InputArgList>(
838 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
839 if (ContainErrors) {
840 CfgOptions.reset();
841 return true;
842 }
843
844 if (CfgOptions->hasArg(options::OPT_config)) {
845 CfgOptions.reset();
846 Diag(diag::err_drv_nested_config_file);
847 return true;
848 }
849
850 // Claim all arguments that come from a configuration file so that the driver
851 // does not warn on any that is unused.
852 for (Arg *A : *CfgOptions)
853 A->claim();
854 return false;
855 }
856
loadConfigFile()857 bool Driver::loadConfigFile() {
858 std::string CfgFileName;
859 bool FileSpecifiedExplicitly = false;
860
861 // Process options that change search path for config files.
862 if (CLOptions) {
863 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
864 SmallString<128> CfgDir;
865 CfgDir.append(
866 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
867 if (!CfgDir.empty()) {
868 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
869 SystemConfigDir.clear();
870 else
871 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
872 }
873 }
874 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
875 SmallString<128> CfgDir;
876 CfgDir.append(
877 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
878 if (!CfgDir.empty()) {
879 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
880 UserConfigDir.clear();
881 else
882 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
883 }
884 }
885 }
886
887 // First try to find config file specified in command line.
888 if (CLOptions) {
889 std::vector<std::string> ConfigFiles =
890 CLOptions->getAllArgValues(options::OPT_config);
891 if (ConfigFiles.size() > 1) {
892 if (!std::all_of(ConfigFiles.begin(), ConfigFiles.end(),
893 [ConfigFiles](const std::string &s) {
894 return s == ConfigFiles[0];
895 })) {
896 Diag(diag::err_drv_duplicate_config);
897 return true;
898 }
899 }
900
901 if (!ConfigFiles.empty()) {
902 CfgFileName = ConfigFiles.front();
903 assert(!CfgFileName.empty());
904
905 // If argument contains directory separator, treat it as a path to
906 // configuration file.
907 if (llvm::sys::path::has_parent_path(CfgFileName)) {
908 SmallString<128> CfgFilePath;
909 if (llvm::sys::path::is_relative(CfgFileName))
910 llvm::sys::fs::current_path(CfgFilePath);
911 llvm::sys::path::append(CfgFilePath, CfgFileName);
912 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
913 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
914 return true;
915 }
916 return readConfigFile(CfgFilePath);
917 }
918
919 FileSpecifiedExplicitly = true;
920 }
921 }
922
923 // If config file is not specified explicitly, try to deduce configuration
924 // from executable name. For instance, an executable 'armv7l-clang' will
925 // search for config file 'armv7l-clang.cfg'.
926 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
927 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
928
929 if (CfgFileName.empty())
930 return false;
931
932 // Determine architecture part of the file name, if it is present.
933 StringRef CfgFileArch = CfgFileName;
934 size_t ArchPrefixLen = CfgFileArch.find('-');
935 if (ArchPrefixLen == StringRef::npos)
936 ArchPrefixLen = CfgFileArch.size();
937 llvm::Triple CfgTriple;
938 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
939 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
940 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
941 ArchPrefixLen = 0;
942
943 if (!StringRef(CfgFileName).endswith(".cfg"))
944 CfgFileName += ".cfg";
945
946 // If config file starts with architecture name and command line options
947 // redefine architecture (with options like -m32 -LE etc), try finding new
948 // config file with that architecture.
949 SmallString<128> FixedConfigFile;
950 size_t FixedArchPrefixLen = 0;
951 if (ArchPrefixLen) {
952 // Get architecture name from config file name like 'i386.cfg' or
953 // 'armv7l-clang.cfg'.
954 // Check if command line options changes effective triple.
955 llvm::Triple EffectiveTriple = computeTargetTriple(*this,
956 CfgTriple.getTriple(), *CLOptions);
957 if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
958 FixedConfigFile = EffectiveTriple.getArchName();
959 FixedArchPrefixLen = FixedConfigFile.size();
960 // Append the rest of original file name so that file name transforms
961 // like: i386-clang.cfg -> x86_64-clang.cfg.
962 if (ArchPrefixLen < CfgFileName.size())
963 FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
964 }
965 }
966
967 // Prepare list of directories where config file is searched for.
968 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
969
970 // Try to find config file. First try file with corrected architecture.
971 llvm::SmallString<128> CfgFilePath;
972 if (!FixedConfigFile.empty()) {
973 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
974 return readConfigFile(CfgFilePath);
975 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
976 FixedConfigFile.resize(FixedArchPrefixLen);
977 FixedConfigFile.append(".cfg");
978 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
979 return readConfigFile(CfgFilePath);
980 }
981
982 // Then try original file name.
983 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
984 return readConfigFile(CfgFilePath);
985
986 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
987 if (!ClangNameParts.ModeSuffix.empty() &&
988 !ClangNameParts.TargetPrefix.empty()) {
989 CfgFileName.assign(ClangNameParts.TargetPrefix);
990 CfgFileName.append(".cfg");
991 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
992 return readConfigFile(CfgFilePath);
993 }
994
995 // Report error but only if config file was specified explicitly, by option
996 // --config. If it was deduced from executable name, it is not an error.
997 if (FileSpecifiedExplicitly) {
998 Diag(diag::err_drv_config_file_not_found) << CfgFileName;
999 for (const StringRef &SearchDir : CfgFileSearchDirs)
1000 if (!SearchDir.empty())
1001 Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1002 return true;
1003 }
1004
1005 return false;
1006 }
1007
BuildCompilation(ArrayRef<const char * > ArgList)1008 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1009 llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1010
1011 // FIXME: Handle environment options which affect driver behavior, somewhere
1012 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1013
1014 // We look for the driver mode option early, because the mode can affect
1015 // how other options are parsed.
1016
1017 auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1018 if (!DriverMode.empty())
1019 setDriverMode(DriverMode);
1020
1021 // FIXME: What are we going to do with -V and -b?
1022
1023 // Arguments specified in command line.
1024 bool ContainsError;
1025 CLOptions = std::make_unique<InputArgList>(
1026 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
1027
1028 // Try parsing configuration file.
1029 if (!ContainsError)
1030 ContainsError = loadConfigFile();
1031 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1032
1033 // All arguments, from both config file and command line.
1034 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1035 : std::move(*CLOptions));
1036
1037 // The args for config files or /clang: flags belong to different InputArgList
1038 // objects than Args. This copies an Arg from one of those other InputArgLists
1039 // to the ownership of Args.
1040 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
1041 unsigned Index = Args.MakeIndex(Opt->getSpelling());
1042 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
1043 Index, BaseArg);
1044 Copy->getValues() = Opt->getValues();
1045 if (Opt->isClaimed())
1046 Copy->claim();
1047 Copy->setOwnsValues(Opt->getOwnsValues());
1048 Opt->setOwnsValues(false);
1049 Args.append(Copy);
1050 };
1051
1052 if (HasConfigFile)
1053 for (auto *Opt : *CLOptions) {
1054 if (Opt->getOption().matches(options::OPT_config))
1055 continue;
1056 const Arg *BaseArg = &Opt->getBaseArg();
1057 if (BaseArg == Opt)
1058 BaseArg = nullptr;
1059 appendOneArg(Opt, BaseArg);
1060 }
1061
1062 // In CL mode, look for any pass-through arguments
1063 if (IsCLMode() && !ContainsError) {
1064 SmallVector<const char *, 16> CLModePassThroughArgList;
1065 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1066 A->claim();
1067 CLModePassThroughArgList.push_back(A->getValue());
1068 }
1069
1070 if (!CLModePassThroughArgList.empty()) {
1071 // Parse any pass through args using default clang processing rather
1072 // than clang-cl processing.
1073 auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1074 ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1075
1076 if (!ContainsError)
1077 for (auto *Opt : *CLModePassThroughOptions) {
1078 appendOneArg(Opt, nullptr);
1079 }
1080 }
1081 }
1082
1083 // Check for working directory option before accessing any files
1084 if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1085 if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1086 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1087
1088 // FIXME: This stuff needs to go into the Compilation, not the driver.
1089 bool CCCPrintPhases;
1090
1091 // Silence driver warnings if requested
1092 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1093
1094 // -no-canonical-prefixes is used very early in main.
1095 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1096
1097 // f(no-)integated-cc1 is also used very early in main.
1098 Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1099 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1100
1101 // Ignore -pipe.
1102 Args.ClaimAllArgs(options::OPT_pipe);
1103
1104 // Extract -ccc args.
1105 //
1106 // FIXME: We need to figure out where this behavior should live. Most of it
1107 // should be outside in the client; the parts that aren't should have proper
1108 // options, either by introducing new ones or by overloading gcc ones like -V
1109 // or -b.
1110 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1111 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1112 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1113 CCCGenericGCCName = A->getValue();
1114 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1115 options::OPT_fno_crash_diagnostics,
1116 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1117
1118 // Process -fproc-stat-report options.
1119 if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1120 CCPrintProcessStats = true;
1121 CCPrintStatReportFilename = A->getValue();
1122 }
1123 if (Args.hasArg(options::OPT_fproc_stat_report))
1124 CCPrintProcessStats = true;
1125
1126 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1127 // and getToolChain is const.
1128 if (IsCLMode()) {
1129 // clang-cl targets MSVC-style Win32.
1130 llvm::Triple T(TargetTriple);
1131 T.setOS(llvm::Triple::Win32);
1132 T.setVendor(llvm::Triple::PC);
1133 T.setEnvironment(llvm::Triple::MSVC);
1134 T.setObjectFormat(llvm::Triple::COFF);
1135 TargetTriple = T.str();
1136 }
1137 if (const Arg *A = Args.getLastArg(options::OPT_target))
1138 TargetTriple = A->getValue();
1139 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1140 Dir = InstalledDir = A->getValue();
1141 for (const Arg *A : Args.filtered(options::OPT_B)) {
1142 A->claim();
1143 PrefixDirs.push_back(A->getValue(0));
1144 }
1145 if (Optional<std::string> CompilerPathValue =
1146 llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1147 StringRef CompilerPath = *CompilerPathValue;
1148 while (!CompilerPath.empty()) {
1149 std::pair<StringRef, StringRef> Split =
1150 CompilerPath.split(llvm::sys::EnvPathSeparator);
1151 PrefixDirs.push_back(std::string(Split.first));
1152 CompilerPath = Split.second;
1153 }
1154 }
1155 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1156 SysRoot = A->getValue();
1157 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1158 DyldPrefix = A->getValue();
1159
1160 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1161 ResourceDir = A->getValue();
1162
1163 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1164 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1165 .Case("cwd", SaveTempsCwd)
1166 .Case("obj", SaveTempsObj)
1167 .Default(SaveTempsCwd);
1168 }
1169
1170 setLTOMode(Args);
1171
1172 // Process -fembed-bitcode= flags.
1173 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1174 StringRef Name = A->getValue();
1175 unsigned Model = llvm::StringSwitch<unsigned>(Name)
1176 .Case("off", EmbedNone)
1177 .Case("all", EmbedBitcode)
1178 .Case("bitcode", EmbedBitcode)
1179 .Case("marker", EmbedMarker)
1180 .Default(~0U);
1181 if (Model == ~0U) {
1182 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1183 << Name;
1184 } else
1185 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1186 }
1187
1188 std::unique_ptr<llvm::opt::InputArgList> UArgs =
1189 std::make_unique<InputArgList>(std::move(Args));
1190
1191 // Perform the default argument translations.
1192 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1193
1194 // Owned by the host.
1195 const ToolChain &TC = getToolChain(
1196 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1197
1198 // The compilation takes ownership of Args.
1199 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1200 ContainsError);
1201
1202 if (!HandleImmediateArgs(*C))
1203 return C;
1204
1205 // Construct the list of inputs.
1206 InputList Inputs;
1207 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1208
1209 // Populate the tool chains for the offloading devices, if any.
1210 CreateOffloadingDeviceToolChains(*C, Inputs);
1211
1212 // Construct the list of abstract actions to perform for this compilation. On
1213 // MachO targets this uses the driver-driver and universal actions.
1214 if (TC.getTriple().isOSBinFormatMachO())
1215 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1216 else
1217 BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1218
1219 if (CCCPrintPhases) {
1220 PrintActions(*C);
1221 return C;
1222 }
1223
1224 BuildJobs(*C);
1225
1226 return C;
1227 }
1228
printArgList(raw_ostream & OS,const llvm::opt::ArgList & Args)1229 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1230 llvm::opt::ArgStringList ASL;
1231 for (const auto *A : Args)
1232 A->render(Args, ASL);
1233
1234 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1235 if (I != ASL.begin())
1236 OS << ' ';
1237 llvm::sys::printArg(OS, *I, true);
1238 }
1239 OS << '\n';
1240 }
1241
getCrashDiagnosticFile(StringRef ReproCrashFilename,SmallString<128> & CrashDiagDir)1242 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1243 SmallString<128> &CrashDiagDir) {
1244 using namespace llvm::sys;
1245 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1246 "Only knows about .crash files on Darwin");
1247
1248 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1249 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1250 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1251 path::home_directory(CrashDiagDir);
1252 if (CrashDiagDir.startswith("/var/root"))
1253 CrashDiagDir = "/";
1254 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1255 int PID =
1256 #if LLVM_ON_UNIX
1257 getpid();
1258 #else
1259 0;
1260 #endif
1261 std::error_code EC;
1262 fs::file_status FileStatus;
1263 TimePoint<> LastAccessTime;
1264 SmallString<128> CrashFilePath;
1265 // Lookup the .crash files and get the one generated by a subprocess spawned
1266 // by this driver invocation.
1267 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1268 File != FileEnd && !EC; File.increment(EC)) {
1269 StringRef FileName = path::filename(File->path());
1270 if (!FileName.startswith(Name))
1271 continue;
1272 if (fs::status(File->path(), FileStatus))
1273 continue;
1274 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1275 llvm::MemoryBuffer::getFile(File->path());
1276 if (!CrashFile)
1277 continue;
1278 // The first line should start with "Process:", otherwise this isn't a real
1279 // .crash file.
1280 StringRef Data = CrashFile.get()->getBuffer();
1281 if (!Data.startswith("Process:"))
1282 continue;
1283 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1284 size_t ParentProcPos = Data.find("Parent Process:");
1285 if (ParentProcPos == StringRef::npos)
1286 continue;
1287 size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1288 if (LineEnd == StringRef::npos)
1289 continue;
1290 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1291 int OpenBracket = -1, CloseBracket = -1;
1292 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1293 if (ParentProcess[i] == '[')
1294 OpenBracket = i;
1295 if (ParentProcess[i] == ']')
1296 CloseBracket = i;
1297 }
1298 // Extract the parent process PID from the .crash file and check whether
1299 // it matches this driver invocation pid.
1300 int CrashPID;
1301 if (OpenBracket < 0 || CloseBracket < 0 ||
1302 ParentProcess.slice(OpenBracket + 1, CloseBracket)
1303 .getAsInteger(10, CrashPID) || CrashPID != PID) {
1304 continue;
1305 }
1306
1307 // Found a .crash file matching the driver pid. To avoid getting an older
1308 // and misleading crash file, continue looking for the most recent.
1309 // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1310 // multiple crashes poiting to the same parent process. Since the driver
1311 // does not collect pid information for the dispatched invocation there's
1312 // currently no way to distinguish among them.
1313 const auto FileAccessTime = FileStatus.getLastModificationTime();
1314 if (FileAccessTime > LastAccessTime) {
1315 CrashFilePath.assign(File->path());
1316 LastAccessTime = FileAccessTime;
1317 }
1318 }
1319
1320 // If found, copy it over to the location of other reproducer files.
1321 if (!CrashFilePath.empty()) {
1322 EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1323 if (EC)
1324 return false;
1325 return true;
1326 }
1327
1328 return false;
1329 }
1330
1331 // When clang crashes, produce diagnostic information including the fully
1332 // preprocessed source file(s). Request that the developer attach the
1333 // diagnostic information to a bug report.
generateCompilationDiagnostics(Compilation & C,const Command & FailingCommand,StringRef AdditionalInformation,CompilationDiagnosticReport * Report)1334 void Driver::generateCompilationDiagnostics(
1335 Compilation &C, const Command &FailingCommand,
1336 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1337 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1338 return;
1339
1340 // Don't try to generate diagnostics for link or dsymutil jobs.
1341 if (FailingCommand.getCreator().isLinkJob() ||
1342 FailingCommand.getCreator().isDsymutilJob())
1343 return;
1344
1345 // Print the version of the compiler.
1346 PrintVersion(C, llvm::errs());
1347
1348 // Suppress driver output and emit preprocessor output to temp file.
1349 Mode = CPPMode;
1350 CCGenDiagnostics = true;
1351
1352 // Save the original job command(s).
1353 Command Cmd = FailingCommand;
1354
1355 // Keep track of whether we produce any errors while trying to produce
1356 // preprocessed sources.
1357 DiagnosticErrorTrap Trap(Diags);
1358
1359 // Suppress tool output.
1360 C.initCompilationForDiagnostics();
1361
1362 // Construct the list of inputs.
1363 InputList Inputs;
1364 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1365
1366 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1367 bool IgnoreInput = false;
1368
1369 // Ignore input from stdin or any inputs that cannot be preprocessed.
1370 // Check type first as not all linker inputs have a value.
1371 if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1372 IgnoreInput = true;
1373 } else if (!strcmp(it->second->getValue(), "-")) {
1374 Diag(clang::diag::note_drv_command_failed_diag_msg)
1375 << "Error generating preprocessed source(s) - "
1376 "ignoring input from stdin.";
1377 IgnoreInput = true;
1378 }
1379
1380 if (IgnoreInput) {
1381 it = Inputs.erase(it);
1382 ie = Inputs.end();
1383 } else {
1384 ++it;
1385 }
1386 }
1387
1388 if (Inputs.empty()) {
1389 Diag(clang::diag::note_drv_command_failed_diag_msg)
1390 << "Error generating preprocessed source(s) - "
1391 "no preprocessable inputs.";
1392 return;
1393 }
1394
1395 // Don't attempt to generate preprocessed files if multiple -arch options are
1396 // used, unless they're all duplicates.
1397 llvm::StringSet<> ArchNames;
1398 for (const Arg *A : C.getArgs()) {
1399 if (A->getOption().matches(options::OPT_arch)) {
1400 StringRef ArchName = A->getValue();
1401 ArchNames.insert(ArchName);
1402 }
1403 }
1404 if (ArchNames.size() > 1) {
1405 Diag(clang::diag::note_drv_command_failed_diag_msg)
1406 << "Error generating preprocessed source(s) - cannot generate "
1407 "preprocessed source with multiple -arch options.";
1408 return;
1409 }
1410
1411 // Construct the list of abstract actions to perform for this compilation. On
1412 // Darwin OSes this uses the driver-driver and builds universal actions.
1413 const ToolChain &TC = C.getDefaultToolChain();
1414 if (TC.getTriple().isOSBinFormatMachO())
1415 BuildUniversalActions(C, TC, Inputs);
1416 else
1417 BuildActions(C, C.getArgs(), Inputs, C.getActions());
1418
1419 BuildJobs(C);
1420
1421 // If there were errors building the compilation, quit now.
1422 if (Trap.hasErrorOccurred()) {
1423 Diag(clang::diag::note_drv_command_failed_diag_msg)
1424 << "Error generating preprocessed source(s).";
1425 return;
1426 }
1427
1428 // Generate preprocessed output.
1429 SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1430 C.ExecuteJobs(C.getJobs(), FailingCommands);
1431
1432 // If any of the preprocessing commands failed, clean up and exit.
1433 if (!FailingCommands.empty()) {
1434 Diag(clang::diag::note_drv_command_failed_diag_msg)
1435 << "Error generating preprocessed source(s).";
1436 return;
1437 }
1438
1439 const ArgStringList &TempFiles = C.getTempFiles();
1440 if (TempFiles.empty()) {
1441 Diag(clang::diag::note_drv_command_failed_diag_msg)
1442 << "Error generating preprocessed source(s).";
1443 return;
1444 }
1445
1446 Diag(clang::diag::note_drv_command_failed_diag_msg)
1447 << "\n********************\n\n"
1448 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1449 "Preprocessed source(s) and associated run script(s) are located at:";
1450
1451 SmallString<128> VFS;
1452 SmallString<128> ReproCrashFilename;
1453 for (const char *TempFile : TempFiles) {
1454 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1455 if (Report)
1456 Report->TemporaryFiles.push_back(TempFile);
1457 if (ReproCrashFilename.empty()) {
1458 ReproCrashFilename = TempFile;
1459 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1460 }
1461 if (StringRef(TempFile).endswith(".cache")) {
1462 // In some cases (modules) we'll dump extra data to help with reproducing
1463 // the crash into a directory next to the output.
1464 VFS = llvm::sys::path::filename(TempFile);
1465 llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1466 }
1467 }
1468
1469 // Assume associated files are based off of the first temporary file.
1470 CrashReportInfo CrashInfo(TempFiles[0], VFS);
1471
1472 llvm::SmallString<128> Script(CrashInfo.Filename);
1473 llvm::sys::path::replace_extension(Script, "sh");
1474 std::error_code EC;
1475 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1476 llvm::sys::fs::FA_Write,
1477 llvm::sys::fs::OF_Text);
1478 if (EC) {
1479 Diag(clang::diag::note_drv_command_failed_diag_msg)
1480 << "Error generating run script: " << Script << " " << EC.message();
1481 } else {
1482 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1483 << "# Driver args: ";
1484 printArgList(ScriptOS, C.getInputArgs());
1485 ScriptOS << "# Original command: ";
1486 Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1487 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1488 if (!AdditionalInformation.empty())
1489 ScriptOS << "\n# Additional information: " << AdditionalInformation
1490 << "\n";
1491 if (Report)
1492 Report->TemporaryFiles.push_back(std::string(Script.str()));
1493 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1494 }
1495
1496 // On darwin, provide information about the .crash diagnostic report.
1497 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1498 SmallString<128> CrashDiagDir;
1499 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1500 Diag(clang::diag::note_drv_command_failed_diag_msg)
1501 << ReproCrashFilename.str();
1502 } else { // Suggest a directory for the user to look for .crash files.
1503 llvm::sys::path::append(CrashDiagDir, Name);
1504 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1505 Diag(clang::diag::note_drv_command_failed_diag_msg)
1506 << "Crash backtrace is located in";
1507 Diag(clang::diag::note_drv_command_failed_diag_msg)
1508 << CrashDiagDir.str();
1509 Diag(clang::diag::note_drv_command_failed_diag_msg)
1510 << "(choose the .crash file that corresponds to your crash)";
1511 }
1512 }
1513
1514 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
1515 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1516
1517 Diag(clang::diag::note_drv_command_failed_diag_msg)
1518 << "\n\n********************";
1519 }
1520
setUpResponseFiles(Compilation & C,Command & Cmd)1521 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1522 // Since commandLineFitsWithinSystemLimits() may underestimate system's
1523 // capacity if the tool does not support response files, there is a chance/
1524 // that things will just work without a response file, so we silently just
1525 // skip it.
1526 if (Cmd.getResponseFileSupport().ResponseKind ==
1527 ResponseFileSupport::RF_None ||
1528 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1529 Cmd.getArguments()))
1530 return;
1531
1532 std::string TmpName = GetTemporaryPath("response", "txt");
1533 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1534 }
1535
ExecuteCompilation(Compilation & C,SmallVectorImpl<std::pair<int,const Command * >> & FailingCommands)1536 int Driver::ExecuteCompilation(
1537 Compilation &C,
1538 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1539 // Just print if -### was present.
1540 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1541 C.getJobs().Print(llvm::errs(), "\n", true);
1542 return 0;
1543 }
1544
1545 // If there were errors building the compilation, quit now.
1546 if (Diags.hasErrorOccurred())
1547 return 1;
1548
1549 // Set up response file names for each command, if necessary
1550 for (auto &Job : C.getJobs())
1551 setUpResponseFiles(C, Job);
1552
1553 C.ExecuteJobs(C.getJobs(), FailingCommands);
1554
1555 // If the command succeeded, we are done.
1556 if (FailingCommands.empty())
1557 return 0;
1558
1559 // Otherwise, remove result files and print extra information about abnormal
1560 // failures.
1561 int Res = 0;
1562 for (const auto &CmdPair : FailingCommands) {
1563 int CommandRes = CmdPair.first;
1564 const Command *FailingCommand = CmdPair.second;
1565
1566 // Remove result files if we're not saving temps.
1567 if (!isSaveTempsEnabled()) {
1568 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1569 C.CleanupFileMap(C.getResultFiles(), JA, true);
1570
1571 // Failure result files are valid unless we crashed.
1572 if (CommandRes < 0)
1573 C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1574 }
1575
1576 #if LLVM_ON_UNIX
1577 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1578 // for SIGPIPE. Do not print diagnostics for this case.
1579 if (CommandRes == EX_IOERR) {
1580 Res = CommandRes;
1581 continue;
1582 }
1583 #endif
1584
1585 // Print extra information about abnormal failures, if possible.
1586 //
1587 // This is ad-hoc, but we don't want to be excessively noisy. If the result
1588 // status was 1, assume the command failed normally. In particular, if it
1589 // was the compiler then assume it gave a reasonable error code. Failures
1590 // in other tools are less common, and they generally have worse
1591 // diagnostics, so always print the diagnostic there.
1592 const Tool &FailingTool = FailingCommand->getCreator();
1593
1594 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1595 // FIXME: See FIXME above regarding result code interpretation.
1596 if (CommandRes < 0)
1597 Diag(clang::diag::err_drv_command_signalled)
1598 << FailingTool.getShortName();
1599 else
1600 Diag(clang::diag::err_drv_command_failed)
1601 << FailingTool.getShortName() << CommandRes;
1602 }
1603 }
1604 return Res;
1605 }
1606
PrintHelp(bool ShowHidden) const1607 void Driver::PrintHelp(bool ShowHidden) const {
1608 unsigned IncludedFlagsBitmask;
1609 unsigned ExcludedFlagsBitmask;
1610 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1611 getIncludeExcludeOptionFlagMasks(IsCLMode());
1612
1613 ExcludedFlagsBitmask |= options::NoDriverOption;
1614 if (!ShowHidden)
1615 ExcludedFlagsBitmask |= HelpHidden;
1616
1617 if (IsFlangMode())
1618 IncludedFlagsBitmask |= options::FlangOption;
1619 else
1620 ExcludedFlagsBitmask |= options::FlangOnlyOption;
1621
1622 std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1623 getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1624 IncludedFlagsBitmask, ExcludedFlagsBitmask,
1625 /*ShowAllAliases=*/false);
1626 }
1627
PrintVersion(const Compilation & C,raw_ostream & OS) const1628 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1629 if (IsFlangMode()) {
1630 OS << getClangToolFullVersion("flang-new") << '\n';
1631 } else {
1632 // FIXME: The following handlers should use a callback mechanism, we don't
1633 // know what the client would like to do.
1634 OS << getClangFullVersion() << '\n';
1635 }
1636 const ToolChain &TC = C.getDefaultToolChain();
1637 OS << "Target: " << TC.getTripleString() << '\n';
1638
1639 // Print the threading model.
1640 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1641 // Don't print if the ToolChain would have barfed on it already
1642 if (TC.isThreadModelSupported(A->getValue()))
1643 OS << "Thread model: " << A->getValue();
1644 } else
1645 OS << "Thread model: " << TC.getThreadModel();
1646 OS << '\n';
1647
1648 // Print out the install directory.
1649 OS << "InstalledDir: " << InstalledDir << '\n';
1650
1651 // If configuration file was used, print its path.
1652 if (!ConfigFile.empty())
1653 OS << "Configuration file: " << ConfigFile << '\n';
1654 }
1655
1656 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1657 /// option.
PrintDiagnosticCategories(raw_ostream & OS)1658 static void PrintDiagnosticCategories(raw_ostream &OS) {
1659 // Skip the empty category.
1660 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1661 ++i)
1662 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1663 }
1664
HandleAutocompletions(StringRef PassedFlags) const1665 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1666 if (PassedFlags == "")
1667 return;
1668 // Print out all options that start with a given argument. This is used for
1669 // shell autocompletion.
1670 std::vector<std::string> SuggestedCompletions;
1671 std::vector<std::string> Flags;
1672
1673 unsigned int DisableFlags =
1674 options::NoDriverOption | options::Unsupported | options::Ignored;
1675
1676 // Make sure that Flang-only options don't pollute the Clang output
1677 // TODO: Make sure that Clang-only options don't pollute Flang output
1678 if (!IsFlangMode())
1679 DisableFlags |= options::FlangOnlyOption;
1680
1681 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1682 // because the latter indicates that the user put space before pushing tab
1683 // which should end up in a file completion.
1684 const bool HasSpace = PassedFlags.endswith(",");
1685
1686 // Parse PassedFlags by "," as all the command-line flags are passed to this
1687 // function separated by ","
1688 StringRef TargetFlags = PassedFlags;
1689 while (TargetFlags != "") {
1690 StringRef CurFlag;
1691 std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1692 Flags.push_back(std::string(CurFlag));
1693 }
1694
1695 // We want to show cc1-only options only when clang is invoked with -cc1 or
1696 // -Xclang.
1697 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1698 DisableFlags &= ~options::NoDriverOption;
1699
1700 const llvm::opt::OptTable &Opts = getOpts();
1701 StringRef Cur;
1702 Cur = Flags.at(Flags.size() - 1);
1703 StringRef Prev;
1704 if (Flags.size() >= 2) {
1705 Prev = Flags.at(Flags.size() - 2);
1706 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1707 }
1708
1709 if (SuggestedCompletions.empty())
1710 SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1711
1712 // If Flags were empty, it means the user typed `clang [tab]` where we should
1713 // list all possible flags. If there was no value completion and the user
1714 // pressed tab after a space, we should fall back to a file completion.
1715 // We're printing a newline to be consistent with what we print at the end of
1716 // this function.
1717 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1718 llvm::outs() << '\n';
1719 return;
1720 }
1721
1722 // When flag ends with '=' and there was no value completion, return empty
1723 // string and fall back to the file autocompletion.
1724 if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1725 // If the flag is in the form of "--autocomplete=-foo",
1726 // we were requested to print out all option names that start with "-foo".
1727 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1728 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1729
1730 // We have to query the -W flags manually as they're not in the OptTable.
1731 // TODO: Find a good way to add them to OptTable instead and them remove
1732 // this code.
1733 for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1734 if (S.startswith(Cur))
1735 SuggestedCompletions.push_back(std::string(S));
1736 }
1737
1738 // Sort the autocomplete candidates so that shells print them out in a
1739 // deterministic order. We could sort in any way, but we chose
1740 // case-insensitive sorting for consistency with the -help option
1741 // which prints out options in the case-insensitive alphabetical order.
1742 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1743 if (int X = A.compare_insensitive(B))
1744 return X < 0;
1745 return A.compare(B) > 0;
1746 });
1747
1748 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1749 }
1750
HandleImmediateArgs(const Compilation & C)1751 bool Driver::HandleImmediateArgs(const Compilation &C) {
1752 // The order these options are handled in gcc is all over the place, but we
1753 // don't expect inconsistencies w.r.t. that to matter in practice.
1754
1755 if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1756 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1757 return false;
1758 }
1759
1760 if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1761 // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1762 // return an answer which matches our definition of __VERSION__.
1763 llvm::outs() << CLANG_VERSION_STRING << "\n";
1764 return false;
1765 }
1766
1767 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1768 PrintDiagnosticCategories(llvm::outs());
1769 return false;
1770 }
1771
1772 if (C.getArgs().hasArg(options::OPT_help) ||
1773 C.getArgs().hasArg(options::OPT__help_hidden)) {
1774 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1775 return false;
1776 }
1777
1778 if (C.getArgs().hasArg(options::OPT__version)) {
1779 // Follow gcc behavior and use stdout for --version and stderr for -v.
1780 PrintVersion(C, llvm::outs());
1781 return false;
1782 }
1783
1784 if (C.getArgs().hasArg(options::OPT_v) ||
1785 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1786 C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1787 PrintVersion(C, llvm::errs());
1788 SuppressMissingInputWarning = true;
1789 }
1790
1791 if (C.getArgs().hasArg(options::OPT_v)) {
1792 if (!SystemConfigDir.empty())
1793 llvm::errs() << "System configuration file directory: "
1794 << SystemConfigDir << "\n";
1795 if (!UserConfigDir.empty())
1796 llvm::errs() << "User configuration file directory: "
1797 << UserConfigDir << "\n";
1798 }
1799
1800 const ToolChain &TC = C.getDefaultToolChain();
1801
1802 if (C.getArgs().hasArg(options::OPT_v))
1803 TC.printVerboseInfo(llvm::errs());
1804
1805 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1806 llvm::outs() << ResourceDir << '\n';
1807 return false;
1808 }
1809
1810 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1811 llvm::outs() << "programs: =";
1812 bool separator = false;
1813 // Print -B and COMPILER_PATH.
1814 for (const std::string &Path : PrefixDirs) {
1815 if (separator)
1816 llvm::outs() << llvm::sys::EnvPathSeparator;
1817 llvm::outs() << Path;
1818 separator = true;
1819 }
1820 for (const std::string &Path : TC.getProgramPaths()) {
1821 if (separator)
1822 llvm::outs() << llvm::sys::EnvPathSeparator;
1823 llvm::outs() << Path;
1824 separator = true;
1825 }
1826 llvm::outs() << "\n";
1827 llvm::outs() << "libraries: =" << ResourceDir;
1828
1829 StringRef sysroot = C.getSysRoot();
1830
1831 for (const std::string &Path : TC.getFilePaths()) {
1832 // Always print a separator. ResourceDir was the first item shown.
1833 llvm::outs() << llvm::sys::EnvPathSeparator;
1834 // Interpretation of leading '=' is needed only for NetBSD.
1835 if (Path[0] == '=')
1836 llvm::outs() << sysroot << Path.substr(1);
1837 else
1838 llvm::outs() << Path;
1839 }
1840 llvm::outs() << "\n";
1841 return false;
1842 }
1843
1844 if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
1845 std::string CandidateRuntimePath = TC.getRuntimePath();
1846 if (getVFS().exists(CandidateRuntimePath))
1847 llvm::outs() << CandidateRuntimePath << '\n';
1848 else
1849 llvm::outs() << TC.getCompilerRTPath() << '\n';
1850 return false;
1851 }
1852
1853 // FIXME: The following handlers should use a callback mechanism, we don't
1854 // know what the client would like to do.
1855 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1856 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1857 return false;
1858 }
1859
1860 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1861 StringRef ProgName = A->getValue();
1862
1863 // Null program name cannot have a path.
1864 if (! ProgName.empty())
1865 llvm::outs() << GetProgramPath(ProgName, TC);
1866
1867 llvm::outs() << "\n";
1868 return false;
1869 }
1870
1871 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1872 StringRef PassedFlags = A->getValue();
1873 HandleAutocompletions(PassedFlags);
1874 return false;
1875 }
1876
1877 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1878 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1879 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1880 RegisterEffectiveTriple TripleRAII(TC, Triple);
1881 switch (RLT) {
1882 case ToolChain::RLT_CompilerRT:
1883 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1884 break;
1885 case ToolChain::RLT_Libgcc:
1886 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1887 break;
1888 }
1889 return false;
1890 }
1891
1892 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1893 for (const Multilib &Multilib : TC.getMultilibs())
1894 llvm::outs() << Multilib << "\n";
1895 return false;
1896 }
1897
1898 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1899 const Multilib &Multilib = TC.getMultilib();
1900 if (Multilib.gccSuffix().empty())
1901 llvm::outs() << ".\n";
1902 else {
1903 StringRef Suffix(Multilib.gccSuffix());
1904 assert(Suffix.front() == '/');
1905 llvm::outs() << Suffix.substr(1) << "\n";
1906 }
1907 return false;
1908 }
1909
1910 if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1911 llvm::outs() << TC.getTripleString() << "\n";
1912 return false;
1913 }
1914
1915 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1916 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1917 llvm::outs() << Triple.getTriple() << "\n";
1918 return false;
1919 }
1920
1921 if (C.getArgs().hasArg(options::OPT_print_multiarch)) {
1922 llvm::outs() << TC.getMultiarchTriple(*this, TC.getTriple(), SysRoot)
1923 << "\n";
1924 return false;
1925 }
1926
1927 if (C.getArgs().hasArg(options::OPT_print_targets)) {
1928 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
1929 return false;
1930 }
1931
1932 return true;
1933 }
1934
1935 enum {
1936 TopLevelAction = 0,
1937 HeadSibAction = 1,
1938 OtherSibAction = 2,
1939 };
1940
1941 // Display an action graph human-readably. Action A is the "sink" node
1942 // and latest-occuring action. Traversal is in pre-order, visiting the
1943 // inputs to each action before printing the action itself.
PrintActions1(const Compilation & C,Action * A,std::map<Action *,unsigned> & Ids,Twine Indent={},int Kind=TopLevelAction)1944 static unsigned PrintActions1(const Compilation &C, Action *A,
1945 std::map<Action *, unsigned> &Ids,
1946 Twine Indent = {}, int Kind = TopLevelAction) {
1947 if (Ids.count(A)) // A was already visited.
1948 return Ids[A];
1949
1950 std::string str;
1951 llvm::raw_string_ostream os(str);
1952
__anon1f3831fc0702(int K) 1953 auto getSibIndent = [](int K) -> Twine {
1954 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
1955 };
1956
1957 Twine SibIndent = Indent + getSibIndent(Kind);
1958 int SibKind = HeadSibAction;
1959 os << Action::getClassName(A->getKind()) << ", ";
1960 if (InputAction *IA = dyn_cast<InputAction>(A)) {
1961 os << "\"" << IA->getInputArg().getValue() << "\"";
1962 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1963 os << '"' << BIA->getArchName() << '"' << ", {"
1964 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
1965 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1966 bool IsFirst = true;
1967 OA->doOnEachDependence(
__anon1f3831fc0802(Action *A, const ToolChain *TC, const char *BoundArch) 1968 [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1969 assert(TC && "Unknown host toolchain");
1970 // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1971 // sm_35 this will generate:
1972 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1973 // (nvptx64-nvidia-cuda:sm_35) {#ID}
1974 if (!IsFirst)
1975 os << ", ";
1976 os << '"';
1977 os << A->getOffloadingKindPrefix();
1978 os << " (";
1979 os << TC->getTriple().normalize();
1980 if (BoundArch)
1981 os << ":" << BoundArch;
1982 os << ")";
1983 os << '"';
1984 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
1985 IsFirst = false;
1986 SibKind = OtherSibAction;
1987 });
1988 } else {
1989 const ActionList *AL = &A->getInputs();
1990
1991 if (AL->size()) {
1992 const char *Prefix = "{";
1993 for (Action *PreRequisite : *AL) {
1994 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
1995 Prefix = ", ";
1996 SibKind = OtherSibAction;
1997 }
1998 os << "}";
1999 } else
2000 os << "{}";
2001 }
2002
2003 // Append offload info for all options other than the offloading action
2004 // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2005 std::string offload_str;
2006 llvm::raw_string_ostream offload_os(offload_str);
2007 if (!isa<OffloadAction>(A)) {
2008 auto S = A->getOffloadingKindPrefix();
2009 if (!S.empty()) {
2010 offload_os << ", (" << S;
2011 if (A->getOffloadingArch())
2012 offload_os << ", " << A->getOffloadingArch();
2013 offload_os << ")";
2014 }
2015 }
2016
__anon1f3831fc0902(int K) 2017 auto getSelfIndent = [](int K) -> Twine {
2018 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2019 };
2020
2021 unsigned Id = Ids.size();
2022 Ids[A] = Id;
2023 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2024 << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2025
2026 return Id;
2027 }
2028
2029 // Print the action graphs in a compilation C.
2030 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
PrintActions(const Compilation & C) const2031 void Driver::PrintActions(const Compilation &C) const {
2032 std::map<Action *, unsigned> Ids;
2033 for (Action *A : C.getActions())
2034 PrintActions1(C, A, Ids);
2035 }
2036
2037 /// Check whether the given input tree contains any compilation or
2038 /// assembly actions.
ContainsCompileOrAssembleAction(const Action * A)2039 static bool ContainsCompileOrAssembleAction(const Action *A) {
2040 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2041 isa<AssembleJobAction>(A))
2042 return true;
2043
2044 for (const Action *Input : A->inputs())
2045 if (ContainsCompileOrAssembleAction(Input))
2046 return true;
2047
2048 return false;
2049 }
2050
BuildUniversalActions(Compilation & C,const ToolChain & TC,const InputList & BAInputs) const2051 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2052 const InputList &BAInputs) const {
2053 DerivedArgList &Args = C.getArgs();
2054 ActionList &Actions = C.getActions();
2055 llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2056 // Collect the list of architectures. Duplicates are allowed, but should only
2057 // be handled once (in the order seen).
2058 llvm::StringSet<> ArchNames;
2059 SmallVector<const char *, 4> Archs;
2060 for (Arg *A : Args) {
2061 if (A->getOption().matches(options::OPT_arch)) {
2062 // Validate the option here; we don't save the type here because its
2063 // particular spelling may participate in other driver choices.
2064 llvm::Triple::ArchType Arch =
2065 tools::darwin::getArchTypeForMachOArchName(A->getValue());
2066 if (Arch == llvm::Triple::UnknownArch) {
2067 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2068 continue;
2069 }
2070
2071 A->claim();
2072 if (ArchNames.insert(A->getValue()).second)
2073 Archs.push_back(A->getValue());
2074 }
2075 }
2076
2077 // When there is no explicit arch for this platform, make sure we still bind
2078 // the architecture (to the default) so that -Xarch_ is handled correctly.
2079 if (!Archs.size())
2080 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2081
2082 ActionList SingleActions;
2083 BuildActions(C, Args, BAInputs, SingleActions);
2084
2085 // Add in arch bindings for every top level action, as well as lipo and
2086 // dsymutil steps if needed.
2087 for (Action* Act : SingleActions) {
2088 // Make sure we can lipo this kind of output. If not (and it is an actual
2089 // output) then we disallow, since we can't create an output file with the
2090 // right name without overwriting it. We could remove this oddity by just
2091 // changing the output names to include the arch, which would also fix
2092 // -save-temps. Compatibility wins for now.
2093
2094 if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2095 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2096 << types::getTypeName(Act->getType());
2097
2098 ActionList Inputs;
2099 for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2100 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2101
2102 // Lipo if necessary, we do it this way because we need to set the arch flag
2103 // so that -Xarch_ gets overwritten.
2104 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2105 Actions.append(Inputs.begin(), Inputs.end());
2106 else
2107 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2108
2109 // Handle debug info queries.
2110 Arg *A = Args.getLastArg(options::OPT_g_Group);
2111 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2112 !A->getOption().matches(options::OPT_gstabs);
2113 if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2114 ContainsCompileOrAssembleAction(Actions.back())) {
2115
2116 // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2117 // have a compile input. We need to run 'dsymutil' ourselves in such cases
2118 // because the debug info will refer to a temporary object file which
2119 // will be removed at the end of the compilation process.
2120 if (Act->getType() == types::TY_Image) {
2121 ActionList Inputs;
2122 Inputs.push_back(Actions.back());
2123 Actions.pop_back();
2124 Actions.push_back(
2125 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2126 }
2127
2128 // Verify the debug info output.
2129 if (Args.hasArg(options::OPT_verify_debug_info)) {
2130 Action* LastAction = Actions.back();
2131 Actions.pop_back();
2132 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2133 LastAction, types::TY_Nothing));
2134 }
2135 }
2136 }
2137 }
2138
DiagnoseInputExistence(const DerivedArgList & Args,StringRef Value,types::ID Ty,bool TypoCorrect) const2139 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2140 types::ID Ty, bool TypoCorrect) const {
2141 if (!getCheckInputsExist())
2142 return true;
2143
2144 // stdin always exists.
2145 if (Value == "-")
2146 return true;
2147
2148 if (getVFS().exists(Value))
2149 return true;
2150
2151 if (IsCLMode()) {
2152 if (!llvm::sys::path::is_absolute(Twine(Value)) &&
2153 llvm::sys::Process::FindInEnvPath("LIB", Value, ';'))
2154 return true;
2155
2156 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2157 // Arguments to the /link flag might cause the linker to search for object
2158 // and library files in paths we don't know about. Don't error in such
2159 // cases.
2160 return true;
2161 }
2162 }
2163
2164 if (TypoCorrect) {
2165 // Check if the filename is a typo for an option flag. OptTable thinks
2166 // that all args that are not known options and that start with / are
2167 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2168 // the option `/diagnostics:caret` than a reference to a file in the root
2169 // directory.
2170 unsigned IncludedFlagsBitmask;
2171 unsigned ExcludedFlagsBitmask;
2172 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2173 getIncludeExcludeOptionFlagMasks(IsCLMode());
2174 std::string Nearest;
2175 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2176 ExcludedFlagsBitmask) <= 1) {
2177 Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2178 << Value << Nearest;
2179 return false;
2180 }
2181 }
2182
2183 Diag(clang::diag::err_drv_no_such_file) << Value;
2184 return false;
2185 }
2186
2187 // Construct a the list of inputs and their types.
BuildInputs(const ToolChain & TC,DerivedArgList & Args,InputList & Inputs) const2188 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2189 InputList &Inputs) const {
2190 const llvm::opt::OptTable &Opts = getOpts();
2191 // Track the current user specified (-x) input. We also explicitly track the
2192 // argument used to set the type; we only want to claim the type when we
2193 // actually use it, so we warn about unused -x arguments.
2194 types::ID InputType = types::TY_Nothing;
2195 Arg *InputTypeArg = nullptr;
2196
2197 // The last /TC or /TP option sets the input type to C or C++ globally.
2198 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2199 options::OPT__SLASH_TP)) {
2200 InputTypeArg = TCTP;
2201 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2202 ? types::TY_C
2203 : types::TY_CXX;
2204
2205 Arg *Previous = nullptr;
2206 bool ShowNote = false;
2207 for (Arg *A :
2208 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2209 if (Previous) {
2210 Diag(clang::diag::warn_drv_overriding_flag_option)
2211 << Previous->getSpelling() << A->getSpelling();
2212 ShowNote = true;
2213 }
2214 Previous = A;
2215 }
2216 if (ShowNote)
2217 Diag(clang::diag::note_drv_t_option_is_global);
2218
2219 // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2220 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2221 }
2222
2223 for (Arg *A : Args) {
2224 if (A->getOption().getKind() == Option::InputClass) {
2225 const char *Value = A->getValue();
2226 types::ID Ty = types::TY_INVALID;
2227
2228 // Infer the input type if necessary.
2229 if (InputType == types::TY_Nothing) {
2230 // If there was an explicit arg for this, claim it.
2231 if (InputTypeArg)
2232 InputTypeArg->claim();
2233
2234 // stdin must be handled specially.
2235 if (memcmp(Value, "-", 2) == 0) {
2236 if (IsFlangMode()) {
2237 Ty = types::TY_Fortran;
2238 } else {
2239 // If running with -E, treat as a C input (this changes the
2240 // builtin macros, for example). This may be overridden by -ObjC
2241 // below.
2242 //
2243 // Otherwise emit an error but still use a valid type to avoid
2244 // spurious errors (e.g., no inputs).
2245 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2246 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2247 : clang::diag::err_drv_unknown_stdin_type);
2248 Ty = types::TY_C;
2249 }
2250 } else {
2251 // Otherwise lookup by extension.
2252 // Fallback is C if invoked as C preprocessor, C++ if invoked with
2253 // clang-cl /E, or Object otherwise.
2254 // We use a host hook here because Darwin at least has its own
2255 // idea of what .s is.
2256 if (const char *Ext = strrchr(Value, '.'))
2257 Ty = TC.LookupTypeForExtension(Ext + 1);
2258
2259 if (Ty == types::TY_INVALID) {
2260 if (CCCIsCPP())
2261 Ty = types::TY_C;
2262 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2263 Ty = types::TY_CXX;
2264 else
2265 Ty = types::TY_Object;
2266 }
2267
2268 // If the driver is invoked as C++ compiler (like clang++ or c++) it
2269 // should autodetect some input files as C++ for g++ compatibility.
2270 if (CCCIsCXX()) {
2271 types::ID OldTy = Ty;
2272 Ty = types::lookupCXXTypeForCType(Ty);
2273
2274 if (Ty != OldTy)
2275 Diag(clang::diag::warn_drv_treating_input_as_cxx)
2276 << getTypeName(OldTy) << getTypeName(Ty);
2277 }
2278
2279 // If running with -fthinlto-index=, extensions that normally identify
2280 // native object files actually identify LLVM bitcode files.
2281 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2282 Ty == types::TY_Object)
2283 Ty = types::TY_LLVM_BC;
2284 }
2285
2286 // -ObjC and -ObjC++ override the default language, but only for "source
2287 // files". We just treat everything that isn't a linker input as a
2288 // source file.
2289 //
2290 // FIXME: Clean this up if we move the phase sequence into the type.
2291 if (Ty != types::TY_Object) {
2292 if (Args.hasArg(options::OPT_ObjC))
2293 Ty = types::TY_ObjC;
2294 else if (Args.hasArg(options::OPT_ObjCXX))
2295 Ty = types::TY_ObjCXX;
2296 }
2297 } else {
2298 assert(InputTypeArg && "InputType set w/o InputTypeArg");
2299 if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2300 // If emulating cl.exe, make sure that /TC and /TP don't affect input
2301 // object files.
2302 const char *Ext = strrchr(Value, '.');
2303 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2304 Ty = types::TY_Object;
2305 }
2306 if (Ty == types::TY_INVALID) {
2307 Ty = InputType;
2308 InputTypeArg->claim();
2309 }
2310 }
2311
2312 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2313 Inputs.push_back(std::make_pair(Ty, A));
2314
2315 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2316 StringRef Value = A->getValue();
2317 if (DiagnoseInputExistence(Args, Value, types::TY_C,
2318 /*TypoCorrect=*/false)) {
2319 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2320 Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2321 }
2322 A->claim();
2323 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2324 StringRef Value = A->getValue();
2325 if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2326 /*TypoCorrect=*/false)) {
2327 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2328 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2329 }
2330 A->claim();
2331 } else if (A->getOption().hasFlag(options::LinkerInput)) {
2332 // Just treat as object type, we could make a special type for this if
2333 // necessary.
2334 Inputs.push_back(std::make_pair(types::TY_Object, A));
2335
2336 } else if (A->getOption().matches(options::OPT_x)) {
2337 InputTypeArg = A;
2338 InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2339 A->claim();
2340
2341 // Follow gcc behavior and treat as linker input for invalid -x
2342 // options. Its not clear why we shouldn't just revert to unknown; but
2343 // this isn't very important, we might as well be bug compatible.
2344 if (!InputType) {
2345 Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2346 InputType = types::TY_Object;
2347 }
2348 } else if (A->getOption().getID() == options::OPT_U) {
2349 assert(A->getNumValues() == 1 && "The /U option has one value.");
2350 StringRef Val = A->getValue(0);
2351 if (Val.find_first_of("/\\") != StringRef::npos) {
2352 // Warn about e.g. "/Users/me/myfile.c".
2353 Diag(diag::warn_slash_u_filename) << Val;
2354 Diag(diag::note_use_dashdash);
2355 }
2356 }
2357 }
2358 if (CCCIsCPP() && Inputs.empty()) {
2359 // If called as standalone preprocessor, stdin is processed
2360 // if no other input is present.
2361 Arg *A = MakeInputArg(Args, Opts, "-");
2362 Inputs.push_back(std::make_pair(types::TY_C, A));
2363 }
2364 }
2365
2366 namespace {
2367 /// Provides a convenient interface for different programming models to generate
2368 /// the required device actions.
2369 class OffloadingActionBuilder final {
2370 /// Flag used to trace errors in the builder.
2371 bool IsValid = false;
2372
2373 /// The compilation that is using this builder.
2374 Compilation &C;
2375
2376 /// Map between an input argument and the offload kinds used to process it.
2377 std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2378
2379 /// Builder interface. It doesn't build anything or keep any state.
2380 class DeviceActionBuilder {
2381 public:
2382 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2383
2384 enum ActionBuilderReturnCode {
2385 // The builder acted successfully on the current action.
2386 ABRT_Success,
2387 // The builder didn't have to act on the current action.
2388 ABRT_Inactive,
2389 // The builder was successful and requested the host action to not be
2390 // generated.
2391 ABRT_Ignore_Host,
2392 };
2393
2394 protected:
2395 /// Compilation associated with this builder.
2396 Compilation &C;
2397
2398 /// Tool chains associated with this builder. The same programming
2399 /// model may have associated one or more tool chains.
2400 SmallVector<const ToolChain *, 2> ToolChains;
2401
2402 /// The derived arguments associated with this builder.
2403 DerivedArgList &Args;
2404
2405 /// The inputs associated with this builder.
2406 const Driver::InputList &Inputs;
2407
2408 /// The associated offload kind.
2409 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2410
2411 public:
DeviceActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind AssociatedOffloadKind)2412 DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2413 const Driver::InputList &Inputs,
2414 Action::OffloadKind AssociatedOffloadKind)
2415 : C(C), Args(Args), Inputs(Inputs),
2416 AssociatedOffloadKind(AssociatedOffloadKind) {}
~DeviceActionBuilder()2417 virtual ~DeviceActionBuilder() {}
2418
2419 /// Fill up the array \a DA with all the device dependences that should be
2420 /// added to the provided host action \a HostAction. By default it is
2421 /// inactive.
2422 virtual ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2423 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2424 phases::ID CurPhase, phases::ID FinalPhase,
2425 PhasesTy &Phases) {
2426 return ABRT_Inactive;
2427 }
2428
2429 /// Update the state to include the provided host action \a HostAction as a
2430 /// dependency of the current device action. By default it is inactive.
addDeviceDepences(Action * HostAction)2431 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2432 return ABRT_Inactive;
2433 }
2434
2435 /// Append top level actions generated by the builder.
appendTopLevelActions(ActionList & AL)2436 virtual void appendTopLevelActions(ActionList &AL) {}
2437
2438 /// Append linker device actions generated by the builder.
appendLinkDeviceActions(ActionList & AL)2439 virtual void appendLinkDeviceActions(ActionList &AL) {}
2440
2441 /// Append linker host action generated by the builder.
appendLinkHostActions(ActionList & AL)2442 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2443
2444 /// Append linker actions generated by the builder.
appendLinkDependences(OffloadAction::DeviceDependences & DA)2445 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2446
2447 /// Initialize the builder. Return true if any initialization errors are
2448 /// found.
initialize()2449 virtual bool initialize() { return false; }
2450
2451 /// Return true if the builder can use bundling/unbundling.
canUseBundlerUnbundler() const2452 virtual bool canUseBundlerUnbundler() const { return false; }
2453
2454 /// Return true if this builder is valid. We have a valid builder if we have
2455 /// associated device tool chains.
isValid()2456 bool isValid() { return !ToolChains.empty(); }
2457
2458 /// Return the associated offload kind.
getAssociatedOffloadKind()2459 Action::OffloadKind getAssociatedOffloadKind() {
2460 return AssociatedOffloadKind;
2461 }
2462 };
2463
2464 /// Base class for CUDA/HIP action builder. It injects device code in
2465 /// the host backend action.
2466 class CudaActionBuilderBase : public DeviceActionBuilder {
2467 protected:
2468 /// Flags to signal if the user requested host-only or device-only
2469 /// compilation.
2470 bool CompileHostOnly = false;
2471 bool CompileDeviceOnly = false;
2472 bool EmitLLVM = false;
2473 bool EmitAsm = false;
2474
2475 /// ID to identify each device compilation. For CUDA it is simply the
2476 /// GPU arch string. For HIP it is either the GPU arch string or GPU
2477 /// arch string plus feature strings delimited by a plus sign, e.g.
2478 /// gfx906+xnack.
2479 struct TargetID {
2480 /// Target ID string which is persistent throughout the compilation.
2481 const char *ID;
TargetID__anon1f3831fc0a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2482 TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
TargetID__anon1f3831fc0a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2483 TargetID(const char *ID) : ID(ID) {}
operator const char*__anon1f3831fc0a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2484 operator const char *() { return ID; }
operator StringRef__anon1f3831fc0a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2485 operator StringRef() { return StringRef(ID); }
2486 };
2487 /// List of GPU architectures to use in this compilation.
2488 SmallVector<TargetID, 4> GpuArchList;
2489
2490 /// The CUDA actions for the current input.
2491 ActionList CudaDeviceActions;
2492
2493 /// The CUDA fat binary if it was generated for the current input.
2494 Action *CudaFatBinary = nullptr;
2495
2496 /// Flag that is set to true if this builder acted on the current input.
2497 bool IsActive = false;
2498
2499 /// Flag for -fgpu-rdc.
2500 bool Relocatable = false;
2501
2502 /// Default GPU architecture if there's no one specified.
2503 CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2504
2505 /// Method to generate compilation unit ID specified by option
2506 /// '-fuse-cuid='.
2507 enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2508 UseCUIDKind UseCUID = CUID_Hash;
2509
2510 /// Compilation unit ID specified by option '-cuid='.
2511 StringRef FixedCUID;
2512
2513 public:
CudaActionBuilderBase(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind OFKind)2514 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2515 const Driver::InputList &Inputs,
2516 Action::OffloadKind OFKind)
2517 : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2518
addDeviceDepences(Action * HostAction)2519 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2520 // While generating code for CUDA, we only depend on the host input action
2521 // to trigger the creation of all the CUDA device actions.
2522
2523 // If we are dealing with an input action, replicate it for each GPU
2524 // architecture. If we are in host-only mode we return 'success' so that
2525 // the host uses the CUDA offload kind.
2526 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2527 assert(!GpuArchList.empty() &&
2528 "We should have at least one GPU architecture.");
2529
2530 // If the host input is not CUDA or HIP, we don't need to bother about
2531 // this input.
2532 if (!(IA->getType() == types::TY_CUDA ||
2533 IA->getType() == types::TY_HIP ||
2534 IA->getType() == types::TY_PP_HIP)) {
2535 // The builder will ignore this input.
2536 IsActive = false;
2537 return ABRT_Inactive;
2538 }
2539
2540 // Set the flag to true, so that the builder acts on the current input.
2541 IsActive = true;
2542
2543 if (CompileHostOnly)
2544 return ABRT_Success;
2545
2546 // Replicate inputs for each GPU architecture.
2547 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2548 : types::TY_CUDA_DEVICE;
2549 std::string CUID = FixedCUID.str();
2550 if (CUID.empty()) {
2551 if (UseCUID == CUID_Random)
2552 CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2553 /*LowerCase=*/true);
2554 else if (UseCUID == CUID_Hash) {
2555 llvm::MD5 Hasher;
2556 llvm::MD5::MD5Result Hash;
2557 SmallString<256> RealPath;
2558 llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2559 /*expand_tilde=*/true);
2560 Hasher.update(RealPath);
2561 for (auto *A : Args) {
2562 if (A->getOption().matches(options::OPT_INPUT))
2563 continue;
2564 Hasher.update(A->getAsString(Args));
2565 }
2566 Hasher.final(Hash);
2567 CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2568 }
2569 }
2570 IA->setId(CUID);
2571
2572 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2573 CudaDeviceActions.push_back(
2574 C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
2575 }
2576
2577 return ABRT_Success;
2578 }
2579
2580 // If this is an unbundling action use it as is for each CUDA toolchain.
2581 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2582
2583 // If -fgpu-rdc is disabled, should not unbundle since there is no
2584 // device code to link.
2585 if (UA->getType() == types::TY_Object && !Relocatable)
2586 return ABRT_Inactive;
2587
2588 CudaDeviceActions.clear();
2589 auto *IA = cast<InputAction>(UA->getInputs().back());
2590 std::string FileName = IA->getInputArg().getAsString(Args);
2591 // Check if the type of the file is the same as the action. Do not
2592 // unbundle it if it is not. Do not unbundle .so files, for example,
2593 // which are not object files.
2594 if (IA->getType() == types::TY_Object &&
2595 (!llvm::sys::path::has_extension(FileName) ||
2596 types::lookupTypeForExtension(
2597 llvm::sys::path::extension(FileName).drop_front()) !=
2598 types::TY_Object))
2599 return ABRT_Inactive;
2600
2601 for (auto Arch : GpuArchList) {
2602 CudaDeviceActions.push_back(UA);
2603 UA->registerDependentActionInfo(ToolChains[0], Arch,
2604 AssociatedOffloadKind);
2605 }
2606 return ABRT_Success;
2607 }
2608
2609 return IsActive ? ABRT_Success : ABRT_Inactive;
2610 }
2611
appendTopLevelActions(ActionList & AL)2612 void appendTopLevelActions(ActionList &AL) override {
2613 // Utility to append actions to the top level list.
2614 auto AddTopLevel = [&](Action *A, TargetID TargetID) {
2615 OffloadAction::DeviceDependences Dep;
2616 Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
2617 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2618 };
2619
2620 // If we have a fat binary, add it to the list.
2621 if (CudaFatBinary) {
2622 AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
2623 CudaDeviceActions.clear();
2624 CudaFatBinary = nullptr;
2625 return;
2626 }
2627
2628 if (CudaDeviceActions.empty())
2629 return;
2630
2631 // If we have CUDA actions at this point, that's because we have a have
2632 // partial compilation, so we should have an action for each GPU
2633 // architecture.
2634 assert(CudaDeviceActions.size() == GpuArchList.size() &&
2635 "Expecting one action per GPU architecture.");
2636 assert(ToolChains.size() == 1 &&
2637 "Expecting to have a sing CUDA toolchain.");
2638 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2639 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2640
2641 CudaDeviceActions.clear();
2642 }
2643
2644 /// Get canonicalized offload arch option. \returns empty StringRef if the
2645 /// option is invalid.
2646 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
2647
2648 virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2649 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
2650
initialize()2651 bool initialize() override {
2652 assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2653 AssociatedOffloadKind == Action::OFK_HIP);
2654
2655 // We don't need to support CUDA.
2656 if (AssociatedOffloadKind == Action::OFK_Cuda &&
2657 !C.hasOffloadToolChain<Action::OFK_Cuda>())
2658 return false;
2659
2660 // We don't need to support HIP.
2661 if (AssociatedOffloadKind == Action::OFK_HIP &&
2662 !C.hasOffloadToolChain<Action::OFK_HIP>())
2663 return false;
2664
2665 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2666 options::OPT_fno_gpu_rdc, /*Default=*/false);
2667
2668 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2669 assert(HostTC && "No toolchain for host compilation.");
2670 if (HostTC->getTriple().isNVPTX() ||
2671 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2672 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2673 // an error and abort pipeline construction early so we don't trip
2674 // asserts that assume device-side compilation.
2675 C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2676 << HostTC->getTriple().getArchName();
2677 return true;
2678 }
2679
2680 ToolChains.push_back(
2681 AssociatedOffloadKind == Action::OFK_Cuda
2682 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2683 : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2684
2685 Arg *PartialCompilationArg = Args.getLastArg(
2686 options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2687 options::OPT_cuda_compile_host_device);
2688 CompileHostOnly = PartialCompilationArg &&
2689 PartialCompilationArg->getOption().matches(
2690 options::OPT_cuda_host_only);
2691 CompileDeviceOnly = PartialCompilationArg &&
2692 PartialCompilationArg->getOption().matches(
2693 options::OPT_cuda_device_only);
2694 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2695 EmitAsm = Args.getLastArg(options::OPT_S);
2696 FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
2697 if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
2698 StringRef UseCUIDStr = A->getValue();
2699 UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
2700 .Case("hash", CUID_Hash)
2701 .Case("random", CUID_Random)
2702 .Case("none", CUID_None)
2703 .Default(CUID_Invalid);
2704 if (UseCUID == CUID_Invalid) {
2705 C.getDriver().Diag(diag::err_drv_invalid_value)
2706 << A->getAsString(Args) << UseCUIDStr;
2707 C.setContainsError();
2708 return true;
2709 }
2710 }
2711
2712 // Collect all cuda_gpu_arch parameters, removing duplicates.
2713 std::set<StringRef> GpuArchs;
2714 bool Error = false;
2715 for (Arg *A : Args) {
2716 if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
2717 A->getOption().matches(options::OPT_no_offload_arch_EQ)))
2718 continue;
2719 A->claim();
2720
2721 StringRef ArchStr = A->getValue();
2722 if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
2723 ArchStr == "all") {
2724 GpuArchs.clear();
2725 continue;
2726 }
2727 ArchStr = getCanonicalOffloadArch(ArchStr);
2728 if (ArchStr.empty()) {
2729 Error = true;
2730 } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
2731 GpuArchs.insert(ArchStr);
2732 else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
2733 GpuArchs.erase(ArchStr);
2734 else
2735 llvm_unreachable("Unexpected option.");
2736 }
2737
2738 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
2739 if (ConflictingArchs) {
2740 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
2741 << ConflictingArchs.getValue().first
2742 << ConflictingArchs.getValue().second;
2743 C.setContainsError();
2744 return true;
2745 }
2746
2747 // Collect list of GPUs remaining in the set.
2748 for (auto Arch : GpuArchs)
2749 GpuArchList.push_back(Arch.data());
2750
2751 // Default to sm_20 which is the lowest common denominator for
2752 // supported GPUs. sm_20 code should work correctly, if
2753 // suboptimally, on all newer GPUs.
2754 if (GpuArchList.empty())
2755 GpuArchList.push_back(DefaultCudaArch);
2756
2757 return Error;
2758 }
2759 };
2760
2761 /// \brief CUDA action builder. It injects device code in the host backend
2762 /// action.
2763 class CudaActionBuilder final : public CudaActionBuilderBase {
2764 public:
CudaActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)2765 CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2766 const Driver::InputList &Inputs)
2767 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
2768 DefaultCudaArch = CudaArch::SM_20;
2769 }
2770
getCanonicalOffloadArch(StringRef ArchStr)2771 StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
2772 CudaArch Arch = StringToCudaArch(ArchStr);
2773 if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
2774 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2775 return StringRef();
2776 }
2777 return CudaArchToString(Arch);
2778 }
2779
2780 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> & GpuArchs)2781 getConflictOffloadArchCombination(
2782 const std::set<StringRef> &GpuArchs) override {
2783 return llvm::None;
2784 }
2785
2786 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2787 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2788 phases::ID CurPhase, phases::ID FinalPhase,
2789 PhasesTy &Phases) override {
2790 if (!IsActive)
2791 return ABRT_Inactive;
2792
2793 // If we don't have more CUDA actions, we don't have any dependences to
2794 // create for the host.
2795 if (CudaDeviceActions.empty())
2796 return ABRT_Success;
2797
2798 assert(CudaDeviceActions.size() == GpuArchList.size() &&
2799 "Expecting one action per GPU architecture.");
2800 assert(!CompileHostOnly &&
2801 "Not expecting CUDA actions in host-only compilation.");
2802
2803 // If we are generating code for the device or we are in a backend phase,
2804 // we attempt to generate the fat binary. We compile each arch to ptx and
2805 // assemble to cubin, then feed the cubin *and* the ptx into a device
2806 // "link" action, which uses fatbinary to combine these cubins into one
2807 // fatbin. The fatbin is then an input to the host action if not in
2808 // device-only mode.
2809 if (CompileDeviceOnly || CurPhase == phases::Backend) {
2810 ActionList DeviceActions;
2811 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2812 // Produce the device action from the current phase up to the assemble
2813 // phase.
2814 for (auto Ph : Phases) {
2815 // Skip the phases that were already dealt with.
2816 if (Ph < CurPhase)
2817 continue;
2818 // We have to be consistent with the host final phase.
2819 if (Ph > FinalPhase)
2820 break;
2821
2822 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2823 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2824
2825 if (Ph == phases::Assemble)
2826 break;
2827 }
2828
2829 // If we didn't reach the assemble phase, we can't generate the fat
2830 // binary. We don't need to generate the fat binary if we are not in
2831 // device-only mode.
2832 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2833 CompileDeviceOnly)
2834 continue;
2835
2836 Action *AssembleAction = CudaDeviceActions[I];
2837 assert(AssembleAction->getType() == types::TY_Object);
2838 assert(AssembleAction->getInputs().size() == 1);
2839
2840 Action *BackendAction = AssembleAction->getInputs()[0];
2841 assert(BackendAction->getType() == types::TY_PP_Asm);
2842
2843 for (auto &A : {AssembleAction, BackendAction}) {
2844 OffloadAction::DeviceDependences DDep;
2845 DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
2846 DeviceActions.push_back(
2847 C.MakeAction<OffloadAction>(DDep, A->getType()));
2848 }
2849 }
2850
2851 // We generate the fat binary if we have device input actions.
2852 if (!DeviceActions.empty()) {
2853 CudaFatBinary =
2854 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2855
2856 if (!CompileDeviceOnly) {
2857 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2858 Action::OFK_Cuda);
2859 // Clear the fat binary, it is already a dependence to an host
2860 // action.
2861 CudaFatBinary = nullptr;
2862 }
2863
2864 // Remove the CUDA actions as they are already connected to an host
2865 // action or fat binary.
2866 CudaDeviceActions.clear();
2867 }
2868
2869 // We avoid creating host action in device-only mode.
2870 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2871 } else if (CurPhase > phases::Backend) {
2872 // If we are past the backend phase and still have a device action, we
2873 // don't have to do anything as this action is already a device
2874 // top-level action.
2875 return ABRT_Success;
2876 }
2877
2878 assert(CurPhase < phases::Backend && "Generating single CUDA "
2879 "instructions should only occur "
2880 "before the backend phase!");
2881
2882 // By default, we produce an action for each device arch.
2883 for (Action *&A : CudaDeviceActions)
2884 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2885
2886 return ABRT_Success;
2887 }
2888 };
2889 /// \brief HIP action builder. It injects device code in the host backend
2890 /// action.
2891 class HIPActionBuilder final : public CudaActionBuilderBase {
2892 /// The linker inputs obtained for each device arch.
2893 SmallVector<ActionList, 8> DeviceLinkerInputs;
2894 bool GPUSanitize;
2895 // The default bundling behavior depends on the type of output, therefore
2896 // BundleOutput needs to be tri-value: None, true, or false.
2897 // Bundle code objects except --no-gpu-output is specified for device
2898 // only compilation. Bundle other type of output files only if
2899 // --gpu-bundle-output is specified for device only compilation.
2900 Optional<bool> BundleOutput;
2901
2902 public:
HIPActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)2903 HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2904 const Driver::InputList &Inputs)
2905 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
2906 DefaultCudaArch = CudaArch::GFX803;
2907 GPUSanitize = Args.hasFlag(options::OPT_fgpu_sanitize,
2908 options::OPT_fno_gpu_sanitize, false);
2909 if (Args.hasArg(options::OPT_gpu_bundle_output,
2910 options::OPT_no_gpu_bundle_output))
2911 BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
2912 options::OPT_no_gpu_bundle_output);
2913 }
2914
canUseBundlerUnbundler() const2915 bool canUseBundlerUnbundler() const override { return true; }
2916
getCanonicalOffloadArch(StringRef IdStr)2917 StringRef getCanonicalOffloadArch(StringRef IdStr) override {
2918 llvm::StringMap<bool> Features;
2919 auto ArchStr =
2920 parseTargetID(getHIPOffloadTargetTriple(), IdStr, &Features);
2921 if (!ArchStr) {
2922 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
2923 C.setContainsError();
2924 return StringRef();
2925 }
2926 auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features);
2927 return Args.MakeArgStringRef(CanId);
2928 };
2929
2930 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> & GpuArchs)2931 getConflictOffloadArchCombination(
2932 const std::set<StringRef> &GpuArchs) override {
2933 return getConflictTargetIDCombination(GpuArchs);
2934 }
2935
2936 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2937 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2938 phases::ID CurPhase, phases::ID FinalPhase,
2939 PhasesTy &Phases) override {
2940 // amdgcn does not support linking of object files, therefore we skip
2941 // backend and assemble phases to output LLVM IR. Except for generating
2942 // non-relocatable device coee, where we generate fat binary for device
2943 // code and pass to host in Backend phase.
2944 if (CudaDeviceActions.empty())
2945 return ABRT_Success;
2946
2947 assert(((CurPhase == phases::Link && Relocatable) ||
2948 CudaDeviceActions.size() == GpuArchList.size()) &&
2949 "Expecting one action per GPU architecture.");
2950 assert(!CompileHostOnly &&
2951 "Not expecting CUDA actions in host-only compilation.");
2952
2953 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
2954 !EmitAsm) {
2955 // If we are in backend phase, we attempt to generate the fat binary.
2956 // We compile each arch to IR and use a link action to generate code
2957 // object containing ISA. Then we use a special "link" action to create
2958 // a fat binary containing all the code objects for different GPU's.
2959 // The fat binary is then an input to the host action.
2960 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2961 if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
2962 // When LTO is enabled, skip the backend and assemble phases and
2963 // use lld to link the bitcode.
2964 ActionList AL;
2965 AL.push_back(CudaDeviceActions[I]);
2966 // Create a link action to link device IR with device library
2967 // and generate ISA.
2968 CudaDeviceActions[I] =
2969 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2970 } else {
2971 // When LTO is not enabled, we follow the conventional
2972 // compiler phases, including backend and assemble phases.
2973 ActionList AL;
2974 auto BackendAction = C.getDriver().ConstructPhaseAction(
2975 C, Args, phases::Backend, CudaDeviceActions[I],
2976 AssociatedOffloadKind);
2977 auto AssembleAction = C.getDriver().ConstructPhaseAction(
2978 C, Args, phases::Assemble, BackendAction,
2979 AssociatedOffloadKind);
2980 AL.push_back(AssembleAction);
2981 // Create a link action to link device IR with device library
2982 // and generate ISA.
2983 CudaDeviceActions[I] =
2984 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2985 }
2986
2987 // OffloadingActionBuilder propagates device arch until an offload
2988 // action. Since the next action for creating fatbin does
2989 // not have device arch, whereas the above link action and its input
2990 // have device arch, an offload action is needed to stop the null
2991 // device arch of the next action being propagated to the above link
2992 // action.
2993 OffloadAction::DeviceDependences DDep;
2994 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
2995 AssociatedOffloadKind);
2996 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2997 DDep, CudaDeviceActions[I]->getType());
2998 }
2999
3000 if (!CompileDeviceOnly || !BundleOutput.hasValue() ||
3001 BundleOutput.getValue()) {
3002 // Create HIP fat binary with a special "link" action.
3003 CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3004 types::TY_HIP_FATBIN);
3005
3006 if (!CompileDeviceOnly) {
3007 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3008 AssociatedOffloadKind);
3009 // Clear the fat binary, it is already a dependence to an host
3010 // action.
3011 CudaFatBinary = nullptr;
3012 }
3013
3014 // Remove the CUDA actions as they are already connected to an host
3015 // action or fat binary.
3016 CudaDeviceActions.clear();
3017 }
3018
3019 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3020 } else if (CurPhase == phases::Link) {
3021 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3022 // This happens to each device action originated from each input file.
3023 // Later on, device actions in DeviceLinkerInputs are used to create
3024 // device link actions in appendLinkDependences and the created device
3025 // link actions are passed to the offload action as device dependence.
3026 DeviceLinkerInputs.resize(CudaDeviceActions.size());
3027 auto LI = DeviceLinkerInputs.begin();
3028 for (auto *A : CudaDeviceActions) {
3029 LI->push_back(A);
3030 ++LI;
3031 }
3032
3033 // We will pass the device action as a host dependence, so we don't
3034 // need to do anything else with them.
3035 CudaDeviceActions.clear();
3036 return ABRT_Success;
3037 }
3038
3039 // By default, we produce an action for each device arch.
3040 for (Action *&A : CudaDeviceActions)
3041 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3042 AssociatedOffloadKind);
3043
3044 if (CompileDeviceOnly && CurPhase == FinalPhase &&
3045 BundleOutput.hasValue() && BundleOutput.getValue()) {
3046 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3047 OffloadAction::DeviceDependences DDep;
3048 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3049 AssociatedOffloadKind);
3050 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3051 DDep, CudaDeviceActions[I]->getType());
3052 }
3053 CudaFatBinary =
3054 C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3055 CudaDeviceActions.clear();
3056 }
3057
3058 return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
3059 : ABRT_Success;
3060 }
3061
appendLinkDeviceActions(ActionList & AL)3062 void appendLinkDeviceActions(ActionList &AL) override {
3063 if (DeviceLinkerInputs.size() == 0)
3064 return;
3065
3066 assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3067 "Linker inputs and GPU arch list sizes do not match.");
3068
3069 // Append a new link action for each device.
3070 unsigned I = 0;
3071 for (auto &LI : DeviceLinkerInputs) {
3072 // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3073 auto *DeviceLinkAction =
3074 C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3075 // Linking all inputs for the current GPU arch.
3076 // LI contains all the inputs for the linker.
3077 OffloadAction::DeviceDependences DeviceLinkDeps;
3078 DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3079 GpuArchList[I], AssociatedOffloadKind);
3080 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3081 DeviceLinkAction->getType()));
3082 ++I;
3083 }
3084 DeviceLinkerInputs.clear();
3085
3086 // Create a host object from all the device images by embedding them
3087 // in a fat binary.
3088 OffloadAction::DeviceDependences DDeps;
3089 auto *TopDeviceLinkAction =
3090 C.MakeAction<LinkJobAction>(AL, types::TY_Object);
3091 DDeps.add(*TopDeviceLinkAction, *ToolChains[0],
3092 nullptr, AssociatedOffloadKind);
3093
3094 // Offload the host object to the host linker.
3095 AL.push_back(C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3096 }
3097
appendLinkHostActions(ActionList & AL)3098 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3099
appendLinkDependences(OffloadAction::DeviceDependences & DA)3100 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3101 };
3102
3103 /// OpenMP action builder. The host bitcode is passed to the device frontend
3104 /// and all the device linked images are passed to the host link phase.
3105 class OpenMPActionBuilder final : public DeviceActionBuilder {
3106 /// The OpenMP actions for the current input.
3107 ActionList OpenMPDeviceActions;
3108
3109 /// The linker inputs obtained for each toolchain.
3110 SmallVector<ActionList, 8> DeviceLinkerInputs;
3111
3112 public:
OpenMPActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3113 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
3114 const Driver::InputList &Inputs)
3115 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
3116
3117 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)3118 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3119 phases::ID CurPhase, phases::ID FinalPhase,
3120 PhasesTy &Phases) override {
3121 if (OpenMPDeviceActions.empty())
3122 return ABRT_Inactive;
3123
3124 // We should always have an action for each input.
3125 assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3126 "Number of OpenMP actions and toolchains do not match.");
3127
3128 // The host only depends on device action in the linking phase, when all
3129 // the device images have to be embedded in the host image.
3130 if (CurPhase == phases::Link) {
3131 assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3132 "Toolchains and linker inputs sizes do not match.");
3133 auto LI = DeviceLinkerInputs.begin();
3134 for (auto *A : OpenMPDeviceActions) {
3135 LI->push_back(A);
3136 ++LI;
3137 }
3138
3139 // We passed the device action as a host dependence, so we don't need to
3140 // do anything else with them.
3141 OpenMPDeviceActions.clear();
3142 return ABRT_Success;
3143 }
3144
3145 // By default, we produce an action for each device arch.
3146 for (Action *&A : OpenMPDeviceActions)
3147 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3148
3149 return ABRT_Success;
3150 }
3151
addDeviceDepences(Action * HostAction)3152 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
3153
3154 // If this is an input action replicate it for each OpenMP toolchain.
3155 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3156 OpenMPDeviceActions.clear();
3157 for (unsigned I = 0; I < ToolChains.size(); ++I)
3158 OpenMPDeviceActions.push_back(
3159 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
3160 return ABRT_Success;
3161 }
3162
3163 // If this is an unbundling action use it as is for each OpenMP toolchain.
3164 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3165 OpenMPDeviceActions.clear();
3166 auto *IA = cast<InputAction>(UA->getInputs().back());
3167 std::string FileName = IA->getInputArg().getAsString(Args);
3168 // Check if the type of the file is the same as the action. Do not
3169 // unbundle it if it is not. Do not unbundle .so files, for example,
3170 // which are not object files.
3171 if (IA->getType() == types::TY_Object &&
3172 (!llvm::sys::path::has_extension(FileName) ||
3173 types::lookupTypeForExtension(
3174 llvm::sys::path::extension(FileName).drop_front()) !=
3175 types::TY_Object))
3176 return ABRT_Inactive;
3177 for (unsigned I = 0; I < ToolChains.size(); ++I) {
3178 OpenMPDeviceActions.push_back(UA);
3179 UA->registerDependentActionInfo(
3180 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
3181 }
3182 return ABRT_Success;
3183 }
3184
3185 // When generating code for OpenMP we use the host compile phase result as
3186 // a dependence to the device compile phase so that it can learn what
3187 // declarations should be emitted. However, this is not the only use for
3188 // the host action, so we prevent it from being collapsed.
3189 if (isa<CompileJobAction>(HostAction)) {
3190 HostAction->setCannotBeCollapsedWithNextDependentAction();
3191 assert(ToolChains.size() == OpenMPDeviceActions.size() &&
3192 "Toolchains and device action sizes do not match.");
3193 OffloadAction::HostDependence HDep(
3194 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3195 /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3196 auto TC = ToolChains.begin();
3197 for (Action *&A : OpenMPDeviceActions) {
3198 assert(isa<CompileJobAction>(A));
3199 OffloadAction::DeviceDependences DDep;
3200 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3201 A = C.MakeAction<OffloadAction>(HDep, DDep);
3202 ++TC;
3203 }
3204 }
3205 return ABRT_Success;
3206 }
3207
appendTopLevelActions(ActionList & AL)3208 void appendTopLevelActions(ActionList &AL) override {
3209 if (OpenMPDeviceActions.empty())
3210 return;
3211
3212 // We should always have an action for each input.
3213 assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3214 "Number of OpenMP actions and toolchains do not match.");
3215
3216 // Append all device actions followed by the proper offload action.
3217 auto TI = ToolChains.begin();
3218 for (auto *A : OpenMPDeviceActions) {
3219 OffloadAction::DeviceDependences Dep;
3220 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3221 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3222 ++TI;
3223 }
3224 // We no longer need the action stored in this builder.
3225 OpenMPDeviceActions.clear();
3226 }
3227
appendLinkDeviceActions(ActionList & AL)3228 void appendLinkDeviceActions(ActionList &AL) override {
3229 assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3230 "Toolchains and linker inputs sizes do not match.");
3231
3232 // Append a new link action for each device.
3233 auto TC = ToolChains.begin();
3234 for (auto &LI : DeviceLinkerInputs) {
3235 auto *DeviceLinkAction =
3236 C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3237 OffloadAction::DeviceDependences DeviceLinkDeps;
3238 DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
3239 Action::OFK_OpenMP);
3240 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3241 DeviceLinkAction->getType()));
3242 ++TC;
3243 }
3244 DeviceLinkerInputs.clear();
3245 }
3246
appendLinkHostActions(ActionList & AL)3247 Action* appendLinkHostActions(ActionList &AL) override {
3248 // Create wrapper bitcode from the result of device link actions and compile
3249 // it to an object which will be added to the host link command.
3250 auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
3251 auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3252 return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3253 }
3254
appendLinkDependences(OffloadAction::DeviceDependences & DA)3255 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3256
initialize()3257 bool initialize() override {
3258 // Get the OpenMP toolchains. If we don't get any, the action builder will
3259 // know there is nothing to do related to OpenMP offloading.
3260 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
3261 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
3262 ++TI)
3263 ToolChains.push_back(TI->second);
3264
3265 DeviceLinkerInputs.resize(ToolChains.size());
3266 return false;
3267 }
3268
canUseBundlerUnbundler() const3269 bool canUseBundlerUnbundler() const override {
3270 // OpenMP should use bundled files whenever possible.
3271 return true;
3272 }
3273 };
3274
3275 ///
3276 /// TODO: Add the implementation for other specialized builders here.
3277 ///
3278
3279 /// Specialized builders being used by this offloading action builder.
3280 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3281
3282 /// Flag set to true if all valid builders allow file bundling/unbundling.
3283 bool CanUseBundler;
3284
3285 public:
OffloadingActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3286 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3287 const Driver::InputList &Inputs)
3288 : C(C) {
3289 // Create a specialized builder for each device toolchain.
3290
3291 IsValid = true;
3292
3293 // Create a specialized builder for CUDA.
3294 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3295
3296 // Create a specialized builder for HIP.
3297 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3298
3299 // Create a specialized builder for OpenMP.
3300 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
3301
3302 //
3303 // TODO: Build other specialized builders here.
3304 //
3305
3306 // Initialize all the builders, keeping track of errors. If all valid
3307 // builders agree that we can use bundling, set the flag to true.
3308 unsigned ValidBuilders = 0u;
3309 unsigned ValidBuildersSupportingBundling = 0u;
3310 for (auto *SB : SpecializedBuilders) {
3311 IsValid = IsValid && !SB->initialize();
3312
3313 // Update the counters if the builder is valid.
3314 if (SB->isValid()) {
3315 ++ValidBuilders;
3316 if (SB->canUseBundlerUnbundler())
3317 ++ValidBuildersSupportingBundling;
3318 }
3319 }
3320 CanUseBundler =
3321 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3322 }
3323
~OffloadingActionBuilder()3324 ~OffloadingActionBuilder() {
3325 for (auto *SB : SpecializedBuilders)
3326 delete SB;
3327 }
3328
3329 /// Generate an action that adds device dependences (if any) to a host action.
3330 /// If no device dependence actions exist, just return the host action \a
3331 /// HostAction. If an error is found or if no builder requires the host action
3332 /// to be generated, return nullptr.
3333 Action *
addDeviceDependencesToHostAction(Action * HostAction,const Arg * InputArg,phases::ID CurPhase,phases::ID FinalPhase,DeviceActionBuilder::PhasesTy & Phases)3334 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3335 phases::ID CurPhase, phases::ID FinalPhase,
3336 DeviceActionBuilder::PhasesTy &Phases) {
3337 if (!IsValid)
3338 return nullptr;
3339
3340 if (SpecializedBuilders.empty())
3341 return HostAction;
3342
3343 assert(HostAction && "Invalid host action!");
3344
3345 OffloadAction::DeviceDependences DDeps;
3346 // Check if all the programming models agree we should not emit the host
3347 // action. Also, keep track of the offloading kinds employed.
3348 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3349 unsigned InactiveBuilders = 0u;
3350 unsigned IgnoringBuilders = 0u;
3351 for (auto *SB : SpecializedBuilders) {
3352 if (!SB->isValid()) {
3353 ++InactiveBuilders;
3354 continue;
3355 }
3356
3357 auto RetCode =
3358 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3359
3360 // If the builder explicitly says the host action should be ignored,
3361 // we need to increment the variable that tracks the builders that request
3362 // the host object to be ignored.
3363 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3364 ++IgnoringBuilders;
3365
3366 // Unless the builder was inactive for this action, we have to record the
3367 // offload kind because the host will have to use it.
3368 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3369 OffloadKind |= SB->getAssociatedOffloadKind();
3370 }
3371
3372 // If all builders agree that the host object should be ignored, just return
3373 // nullptr.
3374 if (IgnoringBuilders &&
3375 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3376 return nullptr;
3377
3378 if (DDeps.getActions().empty())
3379 return HostAction;
3380
3381 // We have dependences we need to bundle together. We use an offload action
3382 // for that.
3383 OffloadAction::HostDependence HDep(
3384 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3385 /*BoundArch=*/nullptr, DDeps);
3386 return C.MakeAction<OffloadAction>(HDep, DDeps);
3387 }
3388
3389 /// Generate an action that adds a host dependence to a device action. The
3390 /// results will be kept in this action builder. Return true if an error was
3391 /// found.
addHostDependenceToDeviceActions(Action * & HostAction,const Arg * InputArg)3392 bool addHostDependenceToDeviceActions(Action *&HostAction,
3393 const Arg *InputArg) {
3394 if (!IsValid)
3395 return true;
3396
3397 // If we are supporting bundling/unbundling and the current action is an
3398 // input action of non-source file, we replace the host action by the
3399 // unbundling action. The bundler tool has the logic to detect if an input
3400 // is a bundle or not and if the input is not a bundle it assumes it is a
3401 // host file. Therefore it is safe to create an unbundling action even if
3402 // the input is not a bundle.
3403 if (CanUseBundler && isa<InputAction>(HostAction) &&
3404 InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3405 (!types::isSrcFile(HostAction->getType()) ||
3406 HostAction->getType() == types::TY_PP_HIP)) {
3407 auto UnbundlingHostAction =
3408 C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3409 UnbundlingHostAction->registerDependentActionInfo(
3410 C.getSingleOffloadToolChain<Action::OFK_Host>(),
3411 /*BoundArch=*/StringRef(), Action::OFK_Host);
3412 HostAction = UnbundlingHostAction;
3413 }
3414
3415 assert(HostAction && "Invalid host action!");
3416
3417 // Register the offload kinds that are used.
3418 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3419 for (auto *SB : SpecializedBuilders) {
3420 if (!SB->isValid())
3421 continue;
3422
3423 auto RetCode = SB->addDeviceDepences(HostAction);
3424
3425 // Host dependences for device actions are not compatible with that same
3426 // action being ignored.
3427 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3428 "Host dependence not expected to be ignored.!");
3429
3430 // Unless the builder was inactive for this action, we have to record the
3431 // offload kind because the host will have to use it.
3432 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3433 OffloadKind |= SB->getAssociatedOffloadKind();
3434 }
3435
3436 // Do not use unbundler if the Host does not depend on device action.
3437 if (OffloadKind == Action::OFK_None && CanUseBundler)
3438 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3439 HostAction = UA->getInputs().back();
3440
3441 return false;
3442 }
3443
3444 /// Add the offloading top level actions to the provided action list. This
3445 /// function can replace the host action by a bundling action if the
3446 /// programming models allow it.
appendTopLevelActions(ActionList & AL,Action * HostAction,const Arg * InputArg)3447 bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3448 const Arg *InputArg) {
3449 // Get the device actions to be appended.
3450 ActionList OffloadAL;
3451 for (auto *SB : SpecializedBuilders) {
3452 if (!SB->isValid())
3453 continue;
3454 SB->appendTopLevelActions(OffloadAL);
3455 }
3456
3457 // If we can use the bundler, replace the host action by the bundling one in
3458 // the resulting list. Otherwise, just append the device actions. For
3459 // device only compilation, HostAction is a null pointer, therefore only do
3460 // this when HostAction is not a null pointer.
3461 if (CanUseBundler && HostAction &&
3462 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3463 // Add the host action to the list in order to create the bundling action.
3464 OffloadAL.push_back(HostAction);
3465
3466 // We expect that the host action was just appended to the action list
3467 // before this method was called.
3468 assert(HostAction == AL.back() && "Host action not in the list??");
3469 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3470 AL.back() = HostAction;
3471 } else
3472 AL.append(OffloadAL.begin(), OffloadAL.end());
3473
3474 // Propagate to the current host action (if any) the offload information
3475 // associated with the current input.
3476 if (HostAction)
3477 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3478 /*BoundArch=*/nullptr);
3479 return false;
3480 }
3481
makeHostLinkAction()3482 Action* makeHostLinkAction() {
3483 // Build a list of device linking actions.
3484 ActionList DeviceAL;
3485 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3486 if (!SB->isValid())
3487 continue;
3488 SB->appendLinkDeviceActions(DeviceAL);
3489 }
3490
3491 if (DeviceAL.empty())
3492 return nullptr;
3493
3494 // Let builders add host linking actions.
3495 Action* HA = nullptr;
3496 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3497 if (!SB->isValid())
3498 continue;
3499 HA = SB->appendLinkHostActions(DeviceAL);
3500 }
3501 return HA;
3502 }
3503
3504 /// Processes the host linker action. This currently consists of replacing it
3505 /// with an offload action if there are device link objects and propagate to
3506 /// the host action all the offload kinds used in the current compilation. The
3507 /// resulting action is returned.
processHostLinkAction(Action * HostAction)3508 Action *processHostLinkAction(Action *HostAction) {
3509 // Add all the dependences from the device linking actions.
3510 OffloadAction::DeviceDependences DDeps;
3511 for (auto *SB : SpecializedBuilders) {
3512 if (!SB->isValid())
3513 continue;
3514
3515 SB->appendLinkDependences(DDeps);
3516 }
3517
3518 // Calculate all the offload kinds used in the current compilation.
3519 unsigned ActiveOffloadKinds = 0u;
3520 for (auto &I : InputArgToOffloadKindMap)
3521 ActiveOffloadKinds |= I.second;
3522
3523 // If we don't have device dependencies, we don't have to create an offload
3524 // action.
3525 if (DDeps.getActions().empty()) {
3526 // Propagate all the active kinds to host action. Given that it is a link
3527 // action it is assumed to depend on all actions generated so far.
3528 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3529 /*BoundArch=*/nullptr);
3530 return HostAction;
3531 }
3532
3533 // Create the offload action with all dependences. When an offload action
3534 // is created the kinds are propagated to the host action, so we don't have
3535 // to do that explicitly here.
3536 OffloadAction::HostDependence HDep(
3537 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3538 /*BoundArch*/ nullptr, ActiveOffloadKinds);
3539 return C.MakeAction<OffloadAction>(HDep, DDeps);
3540 }
3541 };
3542 } // anonymous namespace.
3543
handleArguments(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const3544 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3545 const InputList &Inputs,
3546 ActionList &Actions) const {
3547
3548 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3549 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3550 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3551 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3552 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3553 Args.eraseArg(options::OPT__SLASH_Yc);
3554 Args.eraseArg(options::OPT__SLASH_Yu);
3555 YcArg = YuArg = nullptr;
3556 }
3557 if (YcArg && Inputs.size() > 1) {
3558 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3559 Args.eraseArg(options::OPT__SLASH_Yc);
3560 YcArg = nullptr;
3561 }
3562
3563 Arg *FinalPhaseArg;
3564 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3565
3566 if (FinalPhase == phases::Link) {
3567 if (Args.hasArg(options::OPT_emit_llvm))
3568 Diag(clang::diag::err_drv_emit_llvm_link);
3569 if (IsCLMode() && LTOMode != LTOK_None &&
3570 !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3571 .equals_insensitive("lld"))
3572 Diag(clang::diag::err_drv_lto_without_lld);
3573 }
3574
3575 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3576 // If only preprocessing or /Y- is used, all pch handling is disabled.
3577 // Rather than check for it everywhere, just remove clang-cl pch-related
3578 // flags here.
3579 Args.eraseArg(options::OPT__SLASH_Fp);
3580 Args.eraseArg(options::OPT__SLASH_Yc);
3581 Args.eraseArg(options::OPT__SLASH_Yu);
3582 YcArg = YuArg = nullptr;
3583 }
3584
3585 unsigned LastPLSize = 0;
3586 for (auto &I : Inputs) {
3587 types::ID InputType = I.first;
3588 const Arg *InputArg = I.second;
3589
3590 auto PL = types::getCompilationPhases(InputType);
3591 LastPLSize = PL.size();
3592
3593 // If the first step comes after the final phase we are doing as part of
3594 // this compilation, warn the user about it.
3595 phases::ID InitialPhase = PL[0];
3596 if (InitialPhase > FinalPhase) {
3597 if (InputArg->isClaimed())
3598 continue;
3599
3600 // Claim here to avoid the more general unused warning.
3601 InputArg->claim();
3602
3603 // Suppress all unused style warnings with -Qunused-arguments
3604 if (Args.hasArg(options::OPT_Qunused_arguments))
3605 continue;
3606
3607 // Special case when final phase determined by binary name, rather than
3608 // by a command-line argument with a corresponding Arg.
3609 if (CCCIsCPP())
3610 Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3611 << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3612 // Special case '-E' warning on a previously preprocessed file to make
3613 // more sense.
3614 else if (InitialPhase == phases::Compile &&
3615 (Args.getLastArg(options::OPT__SLASH_EP,
3616 options::OPT__SLASH_P) ||
3617 Args.getLastArg(options::OPT_E) ||
3618 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3619 getPreprocessedType(InputType) == types::TY_INVALID)
3620 Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3621 << InputArg->getAsString(Args) << !!FinalPhaseArg
3622 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3623 else
3624 Diag(clang::diag::warn_drv_input_file_unused)
3625 << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3626 << !!FinalPhaseArg
3627 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3628 continue;
3629 }
3630
3631 if (YcArg) {
3632 // Add a separate precompile phase for the compile phase.
3633 if (FinalPhase >= phases::Compile) {
3634 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3635 // Build the pipeline for the pch file.
3636 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3637 for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3638 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3639 assert(ClangClPch);
3640 Actions.push_back(ClangClPch);
3641 // The driver currently exits after the first failed command. This
3642 // relies on that behavior, to make sure if the pch generation fails,
3643 // the main compilation won't run.
3644 // FIXME: If the main compilation fails, the PCH generation should
3645 // probably not be considered successful either.
3646 }
3647 }
3648 }
3649
3650 // If we are linking, claim any options which are obviously only used for
3651 // compilation.
3652 // FIXME: Understand why the last Phase List length is used here.
3653 if (FinalPhase == phases::Link && LastPLSize == 1) {
3654 Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3655 Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3656 }
3657 }
3658
BuildActions(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const3659 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3660 const InputList &Inputs, ActionList &Actions) const {
3661 llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3662
3663 if (!SuppressMissingInputWarning && Inputs.empty()) {
3664 Diag(clang::diag::err_drv_no_input_files);
3665 return;
3666 }
3667
3668 // Reject -Z* at the top level, these options should never have been exposed
3669 // by gcc.
3670 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3671 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3672
3673 // Diagnose misuse of /Fo.
3674 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3675 StringRef V = A->getValue();
3676 if (Inputs.size() > 1 && !V.empty() &&
3677 !llvm::sys::path::is_separator(V.back())) {
3678 // Check whether /Fo tries to name an output file for multiple inputs.
3679 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3680 << A->getSpelling() << V;
3681 Args.eraseArg(options::OPT__SLASH_Fo);
3682 }
3683 }
3684
3685 // Diagnose misuse of /Fa.
3686 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3687 StringRef V = A->getValue();
3688 if (Inputs.size() > 1 && !V.empty() &&
3689 !llvm::sys::path::is_separator(V.back())) {
3690 // Check whether /Fa tries to name an asm file for multiple inputs.
3691 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3692 << A->getSpelling() << V;
3693 Args.eraseArg(options::OPT__SLASH_Fa);
3694 }
3695 }
3696
3697 // Diagnose misuse of /o.
3698 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3699 if (A->getValue()[0] == '\0') {
3700 // It has to have a value.
3701 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3702 Args.eraseArg(options::OPT__SLASH_o);
3703 }
3704 }
3705
3706 handleArguments(C, Args, Inputs, Actions);
3707
3708 // Builder to be used to build offloading actions.
3709 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3710
3711 // Construct the actions to perform.
3712 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3713 ActionList LinkerInputs;
3714 ActionList MergerInputs;
3715
3716 for (auto &I : Inputs) {
3717 types::ID InputType = I.first;
3718 const Arg *InputArg = I.second;
3719
3720 auto PL = types::getCompilationPhases(*this, Args, InputType);
3721 if (PL.empty())
3722 continue;
3723
3724 auto FullPL = types::getCompilationPhases(InputType);
3725
3726 // Build the pipeline for this file.
3727 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3728
3729 // Use the current host action in any of the offloading actions, if
3730 // required.
3731 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3732 break;
3733
3734 for (phases::ID Phase : PL) {
3735
3736 // Add any offload action the host action depends on.
3737 Current = OffloadBuilder.addDeviceDependencesToHostAction(
3738 Current, InputArg, Phase, PL.back(), FullPL);
3739 if (!Current)
3740 break;
3741
3742 // Queue linker inputs.
3743 if (Phase == phases::Link) {
3744 assert(Phase == PL.back() && "linking must be final compilation step.");
3745 LinkerInputs.push_back(Current);
3746 Current = nullptr;
3747 break;
3748 }
3749
3750 // TODO: Consider removing this because the merged may not end up being
3751 // the final Phase in the pipeline. Perhaps the merged could just merge
3752 // and then pass an artifact of some sort to the Link Phase.
3753 // Queue merger inputs.
3754 if (Phase == phases::IfsMerge) {
3755 assert(Phase == PL.back() && "merging must be final compilation step.");
3756 MergerInputs.push_back(Current);
3757 Current = nullptr;
3758 break;
3759 }
3760
3761 // Each precompiled header file after a module file action is a module
3762 // header of that same module file, rather than being compiled to a
3763 // separate PCH.
3764 if (Phase == phases::Precompile && HeaderModuleAction &&
3765 getPrecompiledType(InputType) == types::TY_PCH) {
3766 HeaderModuleAction->addModuleHeaderInput(Current);
3767 Current = nullptr;
3768 break;
3769 }
3770
3771 // FIXME: Should we include any prior module file outputs as inputs of
3772 // later actions in the same command line?
3773
3774 // Otherwise construct the appropriate action.
3775 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3776
3777 // We didn't create a new action, so we will just move to the next phase.
3778 if (NewCurrent == Current)
3779 continue;
3780
3781 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3782 HeaderModuleAction = HMA;
3783
3784 Current = NewCurrent;
3785
3786 // Use the current host action in any of the offloading actions, if
3787 // required.
3788 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3789 break;
3790
3791 if (Current->getType() == types::TY_Nothing)
3792 break;
3793 }
3794
3795 // If we ended with something, add to the output list.
3796 if (Current)
3797 Actions.push_back(Current);
3798
3799 // Add any top level actions generated for offloading.
3800 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3801 }
3802
3803 // Add a link action if necessary.
3804 if (!LinkerInputs.empty()) {
3805 if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
3806 LinkerInputs.push_back(Wrapper);
3807 Action *LA;
3808 // Check if this Linker Job should emit a static library.
3809 if (ShouldEmitStaticLibrary(Args)) {
3810 LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
3811 } else {
3812 LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3813 }
3814 LA = OffloadBuilder.processHostLinkAction(LA);
3815 Actions.push_back(LA);
3816 }
3817
3818 // Add an interface stubs merge action if necessary.
3819 if (!MergerInputs.empty())
3820 Actions.push_back(
3821 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3822
3823 if (Args.hasArg(options::OPT_emit_interface_stubs)) {
3824 auto PhaseList = types::getCompilationPhases(
3825 types::TY_IFS_CPP,
3826 Args.hasArg(options::OPT_c) ? phases::Compile : phases::LastPhase);
3827
3828 ActionList MergerInputs;
3829
3830 for (auto &I : Inputs) {
3831 types::ID InputType = I.first;
3832 const Arg *InputArg = I.second;
3833
3834 // Currently clang and the llvm assembler do not support generating symbol
3835 // stubs from assembly, so we skip the input on asm files. For ifs files
3836 // we rely on the normal pipeline setup in the pipeline setup code above.
3837 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
3838 InputType == types::TY_Asm)
3839 continue;
3840
3841 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3842
3843 for (auto Phase : PhaseList) {
3844 switch (Phase) {
3845 default:
3846 llvm_unreachable(
3847 "IFS Pipeline can only consist of Compile followed by IfsMerge.");
3848 case phases::Compile: {
3849 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
3850 // files where the .o file is located. The compile action can not
3851 // handle this.
3852 if (InputType == types::TY_Object)
3853 break;
3854
3855 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
3856 break;
3857 }
3858 case phases::IfsMerge: {
3859 assert(Phase == PhaseList.back() &&
3860 "merging must be final compilation step.");
3861 MergerInputs.push_back(Current);
3862 Current = nullptr;
3863 break;
3864 }
3865 }
3866 }
3867
3868 // If we ended with something, add to the output list.
3869 if (Current)
3870 Actions.push_back(Current);
3871 }
3872
3873 // Add an interface stubs merge action if necessary.
3874 if (!MergerInputs.empty())
3875 Actions.push_back(
3876 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3877 }
3878
3879 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3880 // Compile phase that prints out supported cpu models and quits.
3881 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3882 // Use the -mcpu=? flag as the dummy input to cc1.
3883 Actions.clear();
3884 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3885 Actions.push_back(
3886 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3887 for (auto &I : Inputs)
3888 I.second->claim();
3889 }
3890
3891 // Claim ignored clang-cl options.
3892 Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3893
3894 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3895 // to non-CUDA compilations and should not trigger warnings there.
3896 Args.ClaimAllArgs(options::OPT_cuda_host_only);
3897 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3898 }
3899
ConstructPhaseAction(Compilation & C,const ArgList & Args,phases::ID Phase,Action * Input,Action::OffloadKind TargetDeviceOffloadKind) const3900 Action *Driver::ConstructPhaseAction(
3901 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3902 Action::OffloadKind TargetDeviceOffloadKind) const {
3903 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3904
3905 // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3906 // encode this in the steps because the intermediate type depends on
3907 // arguments. Just special case here.
3908 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3909 return Input;
3910
3911 // Build the appropriate action.
3912 switch (Phase) {
3913 case phases::Link:
3914 llvm_unreachable("link action invalid here.");
3915 case phases::IfsMerge:
3916 llvm_unreachable("ifsmerge action invalid here.");
3917 case phases::Preprocess: {
3918 types::ID OutputTy;
3919 // -M and -MM specify the dependency file name by altering the output type,
3920 // -if -MD and -MMD are not specified.
3921 if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
3922 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
3923 OutputTy = types::TY_Dependencies;
3924 } else {
3925 OutputTy = Input->getType();
3926 if (!Args.hasFlag(options::OPT_frewrite_includes,
3927 options::OPT_fno_rewrite_includes, false) &&
3928 !Args.hasFlag(options::OPT_frewrite_imports,
3929 options::OPT_fno_rewrite_imports, false) &&
3930 !CCGenDiagnostics)
3931 OutputTy = types::getPreprocessedType(OutputTy);
3932 assert(OutputTy != types::TY_INVALID &&
3933 "Cannot preprocess this input type!");
3934 }
3935 return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3936 }
3937 case phases::Precompile: {
3938 types::ID OutputTy = getPrecompiledType(Input->getType());
3939 assert(OutputTy != types::TY_INVALID &&
3940 "Cannot precompile this input type!");
3941
3942 // If we're given a module name, precompile header file inputs as a
3943 // module, not as a precompiled header.
3944 const char *ModName = nullptr;
3945 if (OutputTy == types::TY_PCH) {
3946 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3947 ModName = A->getValue();
3948 if (ModName)
3949 OutputTy = types::TY_ModuleFile;
3950 }
3951
3952 if (Args.hasArg(options::OPT_fsyntax_only)) {
3953 // Syntax checks should not emit a PCH file
3954 OutputTy = types::TY_Nothing;
3955 }
3956
3957 if (ModName)
3958 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3959 ModName);
3960 return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3961 }
3962 case phases::Compile: {
3963 if (Args.hasArg(options::OPT_fsyntax_only))
3964 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3965 if (Args.hasArg(options::OPT_rewrite_objc))
3966 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3967 if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3968 return C.MakeAction<CompileJobAction>(Input,
3969 types::TY_RewrittenLegacyObjC);
3970 if (Args.hasArg(options::OPT__analyze))
3971 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3972 if (Args.hasArg(options::OPT__migrate))
3973 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3974 if (Args.hasArg(options::OPT_emit_ast))
3975 return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3976 if (Args.hasArg(options::OPT_module_file_info))
3977 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3978 if (Args.hasArg(options::OPT_verify_pch))
3979 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3980 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3981 }
3982 case phases::Backend: {
3983 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3984 types::ID Output =
3985 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3986 return C.MakeAction<BackendJobAction>(Input, Output);
3987 }
3988 if (Args.hasArg(options::OPT_emit_llvm) ||
3989 (TargetDeviceOffloadKind == Action::OFK_HIP &&
3990 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
3991 false))) {
3992 types::ID Output =
3993 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3994 return C.MakeAction<BackendJobAction>(Input, Output);
3995 }
3996 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3997 }
3998 case phases::Assemble:
3999 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4000 }
4001
4002 llvm_unreachable("invalid phase in ConstructPhaseAction");
4003 }
4004
BuildJobs(Compilation & C) const4005 void Driver::BuildJobs(Compilation &C) const {
4006 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4007
4008 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4009
4010 // It is an error to provide a -o option if we are making multiple output
4011 // files. There are exceptions:
4012 //
4013 // IfsMergeJob: when generating interface stubs enabled we want to be able to
4014 // generate the stub file at the same time that we generate the real
4015 // library/a.out. So when a .o, .so, etc are the output, with clang interface
4016 // stubs there will also be a .ifs and .ifso at the same location.
4017 //
4018 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4019 // and -c is passed, we still want to be able to generate a .ifs file while
4020 // we are also generating .o files. So we allow more than one output file in
4021 // this case as well.
4022 //
4023 if (FinalOutput) {
4024 unsigned NumOutputs = 0;
4025 unsigned NumIfsOutputs = 0;
4026 for (const Action *A : C.getActions())
4027 if (A->getType() != types::TY_Nothing &&
4028 !(A->getKind() == Action::IfsMergeJobClass ||
4029 (A->getType() == clang::driver::types::TY_IFS_CPP &&
4030 A->getKind() == clang::driver::Action::CompileJobClass &&
4031 0 == NumIfsOutputs++) ||
4032 (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4033 A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4034 ++NumOutputs;
4035
4036 if (NumOutputs > 1) {
4037 Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4038 FinalOutput = nullptr;
4039 }
4040 }
4041
4042 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4043 if (RawTriple.isOSAIX()) {
4044 if (Arg *A = C.getArgs().getLastArg(options::OPT_G))
4045 Diag(diag::err_drv_unsupported_opt_for_target)
4046 << A->getSpelling() << RawTriple.str();
4047 if (LTOMode == LTOK_Thin)
4048 Diag(diag::err_drv_clang_unsupported) << "thinLTO on AIX";
4049 }
4050
4051 // Collect the list of architectures.
4052 llvm::StringSet<> ArchNames;
4053 if (RawTriple.isOSBinFormatMachO())
4054 for (const Arg *A : C.getArgs())
4055 if (A->getOption().matches(options::OPT_arch))
4056 ArchNames.insert(A->getValue());
4057
4058 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4059 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
4060 for (Action *A : C.getActions()) {
4061 // If we are linking an image for multiple archs then the linker wants
4062 // -arch_multiple and -final_output <final image name>. Unfortunately, this
4063 // doesn't fit in cleanly because we have to pass this information down.
4064 //
4065 // FIXME: This is a hack; find a cleaner way to integrate this into the
4066 // process.
4067 const char *LinkingOutput = nullptr;
4068 if (isa<LipoJobAction>(A)) {
4069 if (FinalOutput)
4070 LinkingOutput = FinalOutput->getValue();
4071 else
4072 LinkingOutput = getDefaultImageName();
4073 }
4074
4075 BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4076 /*BoundArch*/ StringRef(),
4077 /*AtTopLevel*/ true,
4078 /*MultipleArchs*/ ArchNames.size() > 1,
4079 /*LinkingOutput*/ LinkingOutput, CachedResults,
4080 /*TargetDeviceOffloadKind*/ Action::OFK_None);
4081 }
4082
4083 // If we have more than one job, then disable integrated-cc1 for now. Do this
4084 // also when we need to report process execution statistics.
4085 if (C.getJobs().size() > 1 || CCPrintProcessStats)
4086 for (auto &J : C.getJobs())
4087 J.InProcess = false;
4088
4089 if (CCPrintProcessStats) {
4090 C.setPostCallback([=](const Command &Cmd, int Res) {
4091 Optional<llvm::sys::ProcessStatistics> ProcStat =
4092 Cmd.getProcessStatistics();
4093 if (!ProcStat)
4094 return;
4095
4096 const char *LinkingOutput = nullptr;
4097 if (FinalOutput)
4098 LinkingOutput = FinalOutput->getValue();
4099 else if (!Cmd.getOutputFilenames().empty())
4100 LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4101 else
4102 LinkingOutput = getDefaultImageName();
4103
4104 if (CCPrintStatReportFilename.empty()) {
4105 using namespace llvm;
4106 // Human readable output.
4107 outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4108 << "output=" << LinkingOutput;
4109 outs() << ", total="
4110 << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4111 << ", user="
4112 << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4113 << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4114 } else {
4115 // CSV format.
4116 std::string Buffer;
4117 llvm::raw_string_ostream Out(Buffer);
4118 llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4119 /*Quote*/ true);
4120 Out << ',';
4121 llvm::sys::printArg(Out, LinkingOutput, true);
4122 Out << ',' << ProcStat->TotalTime.count() << ','
4123 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4124 << '\n';
4125 Out.flush();
4126 std::error_code EC;
4127 llvm::raw_fd_ostream OS(CCPrintStatReportFilename.c_str(), EC,
4128 llvm::sys::fs::OF_Append |
4129 llvm::sys::fs::OF_Text);
4130 if (EC)
4131 return;
4132 auto L = OS.lock();
4133 if (!L) {
4134 llvm::errs() << "ERROR: Cannot lock file "
4135 << CCPrintStatReportFilename << ": "
4136 << toString(L.takeError()) << "\n";
4137 return;
4138 }
4139 OS << Buffer;
4140 OS.flush();
4141 }
4142 });
4143 }
4144
4145 // If the user passed -Qunused-arguments or there were errors, don't warn
4146 // about any unused arguments.
4147 if (Diags.hasErrorOccurred() ||
4148 C.getArgs().hasArg(options::OPT_Qunused_arguments))
4149 return;
4150
4151 // Claim -### here.
4152 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4153
4154 // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4155 (void)C.getArgs().hasArg(options::OPT_driver_mode);
4156 (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4157
4158 for (Arg *A : C.getArgs()) {
4159 // FIXME: It would be nice to be able to send the argument to the
4160 // DiagnosticsEngine, so that extra values, position, and so on could be
4161 // printed.
4162 if (!A->isClaimed()) {
4163 if (A->getOption().hasFlag(options::NoArgumentUnused))
4164 continue;
4165
4166 // Suppress the warning automatically if this is just a flag, and it is an
4167 // instance of an argument we already claimed.
4168 const Option &Opt = A->getOption();
4169 if (Opt.getKind() == Option::FlagClass) {
4170 bool DuplicateClaimed = false;
4171
4172 for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4173 if (AA->isClaimed()) {
4174 DuplicateClaimed = true;
4175 break;
4176 }
4177 }
4178
4179 if (DuplicateClaimed)
4180 continue;
4181 }
4182
4183 // In clang-cl, don't mention unknown arguments here since they have
4184 // already been warned about.
4185 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
4186 Diag(clang::diag::warn_drv_unused_argument)
4187 << A->getAsString(C.getArgs());
4188 }
4189 }
4190 }
4191
4192 namespace {
4193 /// Utility class to control the collapse of dependent actions and select the
4194 /// tools accordingly.
4195 class ToolSelector final {
4196 /// The tool chain this selector refers to.
4197 const ToolChain &TC;
4198
4199 /// The compilation this selector refers to.
4200 const Compilation &C;
4201
4202 /// The base action this selector refers to.
4203 const JobAction *BaseAction;
4204
4205 /// Set to true if the current toolchain refers to host actions.
4206 bool IsHostSelector;
4207
4208 /// Set to true if save-temps and embed-bitcode functionalities are active.
4209 bool SaveTemps;
4210 bool EmbedBitcode;
4211
4212 /// Get previous dependent action or null if that does not exist. If
4213 /// \a CanBeCollapsed is false, that action must be legal to collapse or
4214 /// null will be returned.
getPrevDependentAction(const ActionList & Inputs,ActionList & SavedOffloadAction,bool CanBeCollapsed=true)4215 const JobAction *getPrevDependentAction(const ActionList &Inputs,
4216 ActionList &SavedOffloadAction,
4217 bool CanBeCollapsed = true) {
4218 // An option can be collapsed only if it has a single input.
4219 if (Inputs.size() != 1)
4220 return nullptr;
4221
4222 Action *CurAction = *Inputs.begin();
4223 if (CanBeCollapsed &&
4224 !CurAction->isCollapsingWithNextDependentActionLegal())
4225 return nullptr;
4226
4227 // If the input action is an offload action. Look through it and save any
4228 // offload action that can be dropped in the event of a collapse.
4229 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
4230 // If the dependent action is a device action, we will attempt to collapse
4231 // only with other device actions. Otherwise, we would do the same but
4232 // with host actions only.
4233 if (!IsHostSelector) {
4234 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4235 CurAction =
4236 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4237 if (CanBeCollapsed &&
4238 !CurAction->isCollapsingWithNextDependentActionLegal())
4239 return nullptr;
4240 SavedOffloadAction.push_back(OA);
4241 return dyn_cast<JobAction>(CurAction);
4242 }
4243 } else if (OA->hasHostDependence()) {
4244 CurAction = OA->getHostDependence();
4245 if (CanBeCollapsed &&
4246 !CurAction->isCollapsingWithNextDependentActionLegal())
4247 return nullptr;
4248 SavedOffloadAction.push_back(OA);
4249 return dyn_cast<JobAction>(CurAction);
4250 }
4251 return nullptr;
4252 }
4253
4254 return dyn_cast<JobAction>(CurAction);
4255 }
4256
4257 /// Return true if an assemble action can be collapsed.
canCollapseAssembleAction() const4258 bool canCollapseAssembleAction() const {
4259 return TC.useIntegratedAs() && !SaveTemps &&
4260 !C.getArgs().hasArg(options::OPT_via_file_asm) &&
4261 !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
4262 !C.getArgs().hasArg(options::OPT__SLASH_Fa);
4263 }
4264
4265 /// Return true if a preprocessor action can be collapsed.
canCollapsePreprocessorAction() const4266 bool canCollapsePreprocessorAction() const {
4267 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
4268 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
4269 !C.getArgs().hasArg(options::OPT_rewrite_objc);
4270 }
4271
4272 /// Struct that relates an action with the offload actions that would be
4273 /// collapsed with it.
4274 struct JobActionInfo final {
4275 /// The action this info refers to.
4276 const JobAction *JA = nullptr;
4277 /// The offload actions we need to take care off if this action is
4278 /// collapsed.
4279 ActionList SavedOffloadAction;
4280 };
4281
4282 /// Append collapsed offload actions from the give nnumber of elements in the
4283 /// action info array.
AppendCollapsedOffloadAction(ActionList & CollapsedOffloadAction,ArrayRef<JobActionInfo> & ActionInfo,unsigned ElementNum)4284 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
4285 ArrayRef<JobActionInfo> &ActionInfo,
4286 unsigned ElementNum) {
4287 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
4288 for (unsigned I = 0; I < ElementNum; ++I)
4289 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
4290 ActionInfo[I].SavedOffloadAction.end());
4291 }
4292
4293 /// Functions that attempt to perform the combining. They detect if that is
4294 /// legal, and if so they update the inputs \a Inputs and the offload action
4295 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4296 /// the combined action is returned. If the combining is not legal or if the
4297 /// tool does not exist, null is returned.
4298 /// Currently three kinds of collapsing are supported:
4299 /// - Assemble + Backend + Compile;
4300 /// - Assemble + Backend ;
4301 /// - Backend + Compile.
4302 const Tool *
combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)4303 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4304 ActionList &Inputs,
4305 ActionList &CollapsedOffloadAction) {
4306 if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4307 return nullptr;
4308 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4309 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4310 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4311 if (!AJ || !BJ || !CJ)
4312 return nullptr;
4313
4314 // Get compiler tool.
4315 const Tool *T = TC.SelectTool(*CJ);
4316 if (!T)
4317 return nullptr;
4318
4319 // When using -fembed-bitcode, it is required to have the same tool (clang)
4320 // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4321 if (EmbedBitcode) {
4322 const Tool *BT = TC.SelectTool(*BJ);
4323 if (BT == T)
4324 return nullptr;
4325 }
4326
4327 if (!T->hasIntegratedAssembler())
4328 return nullptr;
4329
4330 Inputs = CJ->getInputs();
4331 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4332 /*NumElements=*/3);
4333 return T;
4334 }
combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)4335 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
4336 ActionList &Inputs,
4337 ActionList &CollapsedOffloadAction) {
4338 if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
4339 return nullptr;
4340 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4341 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4342 if (!AJ || !BJ)
4343 return nullptr;
4344
4345 // Get backend tool.
4346 const Tool *T = TC.SelectTool(*BJ);
4347 if (!T)
4348 return nullptr;
4349
4350 if (!T->hasIntegratedAssembler())
4351 return nullptr;
4352
4353 Inputs = BJ->getInputs();
4354 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4355 /*NumElements=*/2);
4356 return T;
4357 }
combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)4358 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4359 ActionList &Inputs,
4360 ActionList &CollapsedOffloadAction) {
4361 if (ActionInfo.size() < 2)
4362 return nullptr;
4363 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
4364 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
4365 if (!BJ || !CJ)
4366 return nullptr;
4367
4368 // Check if the initial input (to the compile job or its predessor if one
4369 // exists) is LLVM bitcode. In that case, no preprocessor step is required
4370 // and we can still collapse the compile and backend jobs when we have
4371 // -save-temps. I.e. there is no need for a separate compile job just to
4372 // emit unoptimized bitcode.
4373 bool InputIsBitcode = true;
4374 for (size_t i = 1; i < ActionInfo.size(); i++)
4375 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
4376 ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
4377 InputIsBitcode = false;
4378 break;
4379 }
4380 if (!InputIsBitcode && !canCollapsePreprocessorAction())
4381 return nullptr;
4382
4383 // Get compiler tool.
4384 const Tool *T = TC.SelectTool(*CJ);
4385 if (!T)
4386 return nullptr;
4387
4388 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
4389 return nullptr;
4390
4391 Inputs = CJ->getInputs();
4392 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4393 /*NumElements=*/2);
4394 return T;
4395 }
4396
4397 /// Updates the inputs if the obtained tool supports combining with
4398 /// preprocessor action, and the current input is indeed a preprocessor
4399 /// action. If combining results in the collapse of offloading actions, those
4400 /// are appended to \a CollapsedOffloadAction.
combineWithPreprocessor(const Tool * T,ActionList & Inputs,ActionList & CollapsedOffloadAction)4401 void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
4402 ActionList &CollapsedOffloadAction) {
4403 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
4404 return;
4405
4406 // Attempt to get a preprocessor action dependence.
4407 ActionList PreprocessJobOffloadActions;
4408 ActionList NewInputs;
4409 for (Action *A : Inputs) {
4410 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
4411 if (!PJ || !isa<PreprocessJobAction>(PJ)) {
4412 NewInputs.push_back(A);
4413 continue;
4414 }
4415
4416 // This is legal to combine. Append any offload action we found and add the
4417 // current input to preprocessor inputs.
4418 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
4419 PreprocessJobOffloadActions.end());
4420 NewInputs.append(PJ->input_begin(), PJ->input_end());
4421 }
4422 Inputs = NewInputs;
4423 }
4424
4425 public:
ToolSelector(const JobAction * BaseAction,const ToolChain & TC,const Compilation & C,bool SaveTemps,bool EmbedBitcode)4426 ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
4427 const Compilation &C, bool SaveTemps, bool EmbedBitcode)
4428 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
4429 EmbedBitcode(EmbedBitcode) {
4430 assert(BaseAction && "Invalid base action.");
4431 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
4432 }
4433
4434 /// Check if a chain of actions can be combined and return the tool that can
4435 /// handle the combination of actions. The pointer to the current inputs \a
4436 /// Inputs and the list of offload actions \a CollapsedOffloadActions
4437 /// connected to collapsed actions are updated accordingly. The latter enables
4438 /// the caller of the selector to process them afterwards instead of just
4439 /// dropping them. If no suitable tool is found, null will be returned.
getTool(ActionList & Inputs,ActionList & CollapsedOffloadAction)4440 const Tool *getTool(ActionList &Inputs,
4441 ActionList &CollapsedOffloadAction) {
4442 //
4443 // Get the largest chain of actions that we could combine.
4444 //
4445
4446 SmallVector<JobActionInfo, 5> ActionChain(1);
4447 ActionChain.back().JA = BaseAction;
4448 while (ActionChain.back().JA) {
4449 const Action *CurAction = ActionChain.back().JA;
4450
4451 // Grow the chain by one element.
4452 ActionChain.resize(ActionChain.size() + 1);
4453 JobActionInfo &AI = ActionChain.back();
4454
4455 // Attempt to fill it with the
4456 AI.JA =
4457 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
4458 }
4459
4460 // Pop the last action info as it could not be filled.
4461 ActionChain.pop_back();
4462
4463 //
4464 // Attempt to combine actions. If all combining attempts failed, just return
4465 // the tool of the provided action. At the end we attempt to combine the
4466 // action with any preprocessor action it may depend on.
4467 //
4468
4469 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
4470 CollapsedOffloadAction);
4471 if (!T)
4472 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
4473 if (!T)
4474 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
4475 if (!T) {
4476 Inputs = BaseAction->getInputs();
4477 T = TC.SelectTool(*BaseAction);
4478 }
4479
4480 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
4481 return T;
4482 }
4483 };
4484 }
4485
4486 /// Return a string that uniquely identifies the result of a job. The bound arch
4487 /// is not necessarily represented in the toolchain's triple -- for example,
4488 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
4489 /// Also, we need to add the offloading device kind, as the same tool chain can
4490 /// be used for host and device for some programming models, e.g. OpenMP.
GetTriplePlusArchString(const ToolChain * TC,StringRef BoundArch,Action::OffloadKind OffloadKind)4491 static std::string GetTriplePlusArchString(const ToolChain *TC,
4492 StringRef BoundArch,
4493 Action::OffloadKind OffloadKind) {
4494 std::string TriplePlusArch = TC->getTriple().normalize();
4495 if (!BoundArch.empty()) {
4496 TriplePlusArch += "-";
4497 TriplePlusArch += BoundArch;
4498 }
4499 TriplePlusArch += "-";
4500 TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
4501 return TriplePlusArch;
4502 }
4503
BuildJobsForAction(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfo> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const4504 InputInfo Driver::BuildJobsForAction(
4505 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4506 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4507 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4508 Action::OffloadKind TargetDeviceOffloadKind) const {
4509 std::pair<const Action *, std::string> ActionTC = {
4510 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4511 auto CachedResult = CachedResults.find(ActionTC);
4512 if (CachedResult != CachedResults.end()) {
4513 return CachedResult->second;
4514 }
4515 InputInfo Result = BuildJobsForActionNoCache(
4516 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
4517 CachedResults, TargetDeviceOffloadKind);
4518 CachedResults[ActionTC] = Result;
4519 return Result;
4520 }
4521
BuildJobsForActionNoCache(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfo> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const4522 InputInfo Driver::BuildJobsForActionNoCache(
4523 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4524 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4525 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4526 Action::OffloadKind TargetDeviceOffloadKind) const {
4527 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4528
4529 InputInfoList OffloadDependencesInputInfo;
4530 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
4531 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
4532 // The 'Darwin' toolchain is initialized only when its arguments are
4533 // computed. Get the default arguments for OFK_None to ensure that
4534 // initialization is performed before processing the offload action.
4535 // FIXME: Remove when darwin's toolchain is initialized during construction.
4536 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
4537
4538 // The offload action is expected to be used in four different situations.
4539 //
4540 // a) Set a toolchain/architecture/kind for a host action:
4541 // Host Action 1 -> OffloadAction -> Host Action 2
4542 //
4543 // b) Set a toolchain/architecture/kind for a device action;
4544 // Device Action 1 -> OffloadAction -> Device Action 2
4545 //
4546 // c) Specify a device dependence to a host action;
4547 // Device Action 1 _
4548 // \
4549 // Host Action 1 ---> OffloadAction -> Host Action 2
4550 //
4551 // d) Specify a host dependence to a device action.
4552 // Host Action 1 _
4553 // \
4554 // Device Action 1 ---> OffloadAction -> Device Action 2
4555 //
4556 // For a) and b), we just return the job generated for the dependence. For
4557 // c) and d) we override the current action with the host/device dependence
4558 // if the current toolchain is host/device and set the offload dependences
4559 // info with the jobs obtained from the device/host dependence(s).
4560
4561 // If there is a single device option, just generate the job for it.
4562 if (OA->hasSingleDeviceDependence()) {
4563 InputInfo DevA;
4564 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4565 const char *DepBoundArch) {
4566 DevA =
4567 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4568 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4569 CachedResults, DepA->getOffloadingDeviceKind());
4570 });
4571 return DevA;
4572 }
4573
4574 // If 'Action 2' is host, we generate jobs for the device dependences and
4575 // override the current action with the host dependence. Otherwise, we
4576 // generate the host dependences and override the action with the device
4577 // dependence. The dependences can't therefore be a top-level action.
4578 OA->doOnEachDependence(
4579 /*IsHostDependence=*/BuildingForOffloadDevice,
4580 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4581 OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4582 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4583 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4584 DepA->getOffloadingDeviceKind()));
4585 });
4586
4587 A = BuildingForOffloadDevice
4588 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4589 : OA->getHostDependence();
4590 }
4591
4592 if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4593 // FIXME: It would be nice to not claim this here; maybe the old scheme of
4594 // just using Args was better?
4595 const Arg &Input = IA->getInputArg();
4596 Input.claim();
4597 if (Input.getOption().matches(options::OPT_INPUT)) {
4598 const char *Name = Input.getValue();
4599 return InputInfo(A, Name, /* _BaseInput = */ Name);
4600 }
4601 return InputInfo(A, &Input, /* _BaseInput = */ "");
4602 }
4603
4604 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4605 const ToolChain *TC;
4606 StringRef ArchName = BAA->getArchName();
4607
4608 if (!ArchName.empty())
4609 TC = &getToolChain(C.getArgs(),
4610 computeTargetTriple(*this, TargetTriple,
4611 C.getArgs(), ArchName));
4612 else
4613 TC = &C.getDefaultToolChain();
4614
4615 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4616 MultipleArchs, LinkingOutput, CachedResults,
4617 TargetDeviceOffloadKind);
4618 }
4619
4620
4621 ActionList Inputs = A->getInputs();
4622
4623 const JobAction *JA = cast<JobAction>(A);
4624 ActionList CollapsedOffloadActions;
4625
4626 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4627 embedBitcodeInObject() && !isUsingLTO());
4628 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4629
4630 if (!T)
4631 return InputInfo();
4632
4633 if (BuildingForOffloadDevice &&
4634 A->getOffloadingDeviceKind() == Action::OFK_OpenMP) {
4635 if (TC->getTriple().isAMDGCN()) {
4636 // AMDGCN treats backend and assemble actions as no-op because
4637 // linker does not support object files.
4638 if (const BackendJobAction *BA = dyn_cast<BackendJobAction>(A)) {
4639 return BuildJobsForAction(C, *BA->input_begin(), TC, BoundArch,
4640 AtTopLevel, MultipleArchs, LinkingOutput,
4641 CachedResults, TargetDeviceOffloadKind);
4642 }
4643
4644 if (const AssembleJobAction *AA = dyn_cast<AssembleJobAction>(A)) {
4645 return BuildJobsForAction(C, *AA->input_begin(), TC, BoundArch,
4646 AtTopLevel, MultipleArchs, LinkingOutput,
4647 CachedResults, TargetDeviceOffloadKind);
4648 }
4649 }
4650 }
4651
4652 // If we've collapsed action list that contained OffloadAction we
4653 // need to build jobs for host/device-side inputs it may have held.
4654 for (const auto *OA : CollapsedOffloadActions)
4655 cast<OffloadAction>(OA)->doOnEachDependence(
4656 /*IsHostDependence=*/BuildingForOffloadDevice,
4657 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4658 OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4659 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4660 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4661 DepA->getOffloadingDeviceKind()));
4662 });
4663
4664 // Only use pipes when there is exactly one input.
4665 InputInfoList InputInfos;
4666 for (const Action *Input : Inputs) {
4667 // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4668 // shouldn't get temporary output names.
4669 // FIXME: Clean this up.
4670 bool SubJobAtTopLevel =
4671 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4672 InputInfos.push_back(BuildJobsForAction(
4673 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4674 CachedResults, A->getOffloadingDeviceKind()));
4675 }
4676
4677 // Always use the first input as the base input.
4678 const char *BaseInput = InputInfos[0].getBaseInput();
4679
4680 // ... except dsymutil actions, which use their actual input as the base
4681 // input.
4682 if (JA->getType() == types::TY_dSYM)
4683 BaseInput = InputInfos[0].getFilename();
4684
4685 // ... and in header module compilations, which use the module name.
4686 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4687 BaseInput = ModuleJA->getModuleName();
4688
4689 // Append outputs of offload device jobs to the input list
4690 if (!OffloadDependencesInputInfo.empty())
4691 InputInfos.append(OffloadDependencesInputInfo.begin(),
4692 OffloadDependencesInputInfo.end());
4693
4694 // Set the effective triple of the toolchain for the duration of this job.
4695 llvm::Triple EffectiveTriple;
4696 const ToolChain &ToolTC = T->getToolChain();
4697 const ArgList &Args =
4698 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4699 if (InputInfos.size() != 1) {
4700 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4701 } else {
4702 // Pass along the input type if it can be unambiguously determined.
4703 EffectiveTriple = llvm::Triple(
4704 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4705 }
4706 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4707
4708 // Determine the place to write output to, if any.
4709 InputInfo Result;
4710 InputInfoList UnbundlingResults;
4711 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4712 // If we have an unbundling job, we need to create results for all the
4713 // outputs. We also update the results cache so that other actions using
4714 // this unbundling action can get the right results.
4715 for (auto &UI : UA->getDependentActionsInfo()) {
4716 assert(UI.DependentOffloadKind != Action::OFK_None &&
4717 "Unbundling with no offloading??");
4718
4719 // Unbundling actions are never at the top level. When we generate the
4720 // offloading prefix, we also do that for the host file because the
4721 // unbundling action does not change the type of the output which can
4722 // cause a overwrite.
4723 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4724 UI.DependentOffloadKind,
4725 UI.DependentToolChain->getTriple().normalize(),
4726 /*CreatePrefixForHost=*/true);
4727 auto CurI = InputInfo(
4728 UA,
4729 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4730 /*AtTopLevel=*/false,
4731 MultipleArchs ||
4732 UI.DependentOffloadKind == Action::OFK_HIP,
4733 OffloadingPrefix),
4734 BaseInput);
4735 // Save the unbundling result.
4736 UnbundlingResults.push_back(CurI);
4737
4738 // Get the unique string identifier for this dependence and cache the
4739 // result.
4740 StringRef Arch;
4741 if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4742 if (UI.DependentOffloadKind == Action::OFK_Host)
4743 Arch = StringRef();
4744 else
4745 Arch = UI.DependentBoundArch;
4746 } else
4747 Arch = BoundArch;
4748
4749 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4750 UI.DependentOffloadKind)}] =
4751 CurI;
4752 }
4753
4754 // Now that we have all the results generated, select the one that should be
4755 // returned for the current depending action.
4756 std::pair<const Action *, std::string> ActionTC = {
4757 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4758 assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4759 "Result does not exist??");
4760 Result = CachedResults[ActionTC];
4761 } else if (JA->getType() == types::TY_Nothing)
4762 Result = InputInfo(A, BaseInput);
4763 else {
4764 // We only have to generate a prefix for the host if this is not a top-level
4765 // action.
4766 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4767 A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4768 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4769 !AtTopLevel);
4770 if (isa<OffloadWrapperJobAction>(JA)) {
4771 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4772 BaseInput = FinalOutput->getValue();
4773 else
4774 BaseInput = getDefaultImageName();
4775 BaseInput =
4776 C.getArgs().MakeArgString(std::string(BaseInput) + "-wrapper");
4777 }
4778 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4779 AtTopLevel, MultipleArchs,
4780 OffloadingPrefix),
4781 BaseInput);
4782 }
4783
4784 if (CCCPrintBindings && !CCGenDiagnostics) {
4785 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4786 << " - \"" << T->getName() << "\", inputs: [";
4787 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4788 llvm::errs() << InputInfos[i].getAsString();
4789 if (i + 1 != e)
4790 llvm::errs() << ", ";
4791 }
4792 if (UnbundlingResults.empty())
4793 llvm::errs() << "], output: " << Result.getAsString() << "\n";
4794 else {
4795 llvm::errs() << "], outputs: [";
4796 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4797 llvm::errs() << UnbundlingResults[i].getAsString();
4798 if (i + 1 != e)
4799 llvm::errs() << ", ";
4800 }
4801 llvm::errs() << "] \n";
4802 }
4803 } else {
4804 if (UnbundlingResults.empty())
4805 T->ConstructJob(
4806 C, *JA, Result, InputInfos,
4807 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4808 LinkingOutput);
4809 else
4810 T->ConstructJobMultipleOutputs(
4811 C, *JA, UnbundlingResults, InputInfos,
4812 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4813 LinkingOutput);
4814 }
4815 return Result;
4816 }
4817
getDefaultImageName() const4818 const char *Driver::getDefaultImageName() const {
4819 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4820 return Target.isOSWindows() ? "a.exe" : "a.out";
4821 }
4822
4823 /// Create output filename based on ArgValue, which could either be a
4824 /// full filename, filename without extension, or a directory. If ArgValue
4825 /// does not provide a filename, then use BaseName, and use the extension
4826 /// suitable for FileType.
MakeCLOutputFilename(const ArgList & Args,StringRef ArgValue,StringRef BaseName,types::ID FileType)4827 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4828 StringRef BaseName,
4829 types::ID FileType) {
4830 SmallString<128> Filename = ArgValue;
4831
4832 if (ArgValue.empty()) {
4833 // If the argument is empty, output to BaseName in the current dir.
4834 Filename = BaseName;
4835 } else if (llvm::sys::path::is_separator(Filename.back())) {
4836 // If the argument is a directory, output to BaseName in that dir.
4837 llvm::sys::path::append(Filename, BaseName);
4838 }
4839
4840 if (!llvm::sys::path::has_extension(ArgValue)) {
4841 // If the argument didn't provide an extension, then set it.
4842 const char *Extension = types::getTypeTempSuffix(FileType, true);
4843
4844 if (FileType == types::TY_Image &&
4845 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4846 // The output file is a dll.
4847 Extension = "dll";
4848 }
4849
4850 llvm::sys::path::replace_extension(Filename, Extension);
4851 }
4852
4853 return Args.MakeArgString(Filename.c_str());
4854 }
4855
HasPreprocessOutput(const Action & JA)4856 static bool HasPreprocessOutput(const Action &JA) {
4857 if (isa<PreprocessJobAction>(JA))
4858 return true;
4859 if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
4860 return true;
4861 if (isa<OffloadBundlingJobAction>(JA) &&
4862 HasPreprocessOutput(*(JA.getInputs()[0])))
4863 return true;
4864 return false;
4865 }
4866
GetNamedOutputPath(Compilation & C,const JobAction & JA,const char * BaseInput,StringRef OrigBoundArch,bool AtTopLevel,bool MultipleArchs,StringRef OffloadingPrefix) const4867 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4868 const char *BaseInput,
4869 StringRef OrigBoundArch, bool AtTopLevel,
4870 bool MultipleArchs,
4871 StringRef OffloadingPrefix) const {
4872 std::string BoundArch = OrigBoundArch.str();
4873 #if defined(_WIN32)
4874 // BoundArch may contains ':', which is invalid in file names on Windows,
4875 // therefore replace it with '%'.
4876 std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
4877 #endif
4878
4879 llvm::PrettyStackTraceString CrashInfo("Computing output path");
4880 // Output to a user requested destination?
4881 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4882 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4883 return C.addResultFile(FinalOutput->getValue(), &JA);
4884 }
4885
4886 // For /P, preprocess to file named after BaseInput.
4887 if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4888 assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4889 StringRef BaseName = llvm::sys::path::filename(BaseInput);
4890 StringRef NameArg;
4891 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4892 NameArg = A->getValue();
4893 return C.addResultFile(
4894 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4895 &JA);
4896 }
4897
4898 // Default to writing to stdout?
4899 if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
4900 return "-";
4901 }
4902
4903 if (JA.getType() == types::TY_ModuleFile &&
4904 C.getArgs().getLastArg(options::OPT_module_file_info)) {
4905 return "-";
4906 }
4907
4908 // Is this the assembly listing for /FA?
4909 if (JA.getType() == types::TY_PP_Asm &&
4910 (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4911 C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4912 // Use /Fa and the input filename to determine the asm file name.
4913 StringRef BaseName = llvm::sys::path::filename(BaseInput);
4914 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4915 return C.addResultFile(
4916 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4917 &JA);
4918 }
4919
4920 // Output to a temporary file?
4921 if ((!AtTopLevel && !isSaveTempsEnabled() &&
4922 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4923 CCGenDiagnostics) {
4924 StringRef Name = llvm::sys::path::filename(BaseInput);
4925 std::pair<StringRef, StringRef> Split = Name.split('.');
4926 SmallString<128> TmpName;
4927 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4928 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4929 if (CCGenDiagnostics && A) {
4930 SmallString<128> CrashDirectory(A->getValue());
4931 if (!getVFS().exists(CrashDirectory))
4932 llvm::sys::fs::create_directories(CrashDirectory);
4933 llvm::sys::path::append(CrashDirectory, Split.first);
4934 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4935 std::error_code EC = llvm::sys::fs::createUniqueFile(
4936 CrashDirectory + Middle + Suffix, TmpName);
4937 if (EC) {
4938 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4939 return "";
4940 }
4941 } else {
4942 TmpName = GetTemporaryPath(Split.first, Suffix);
4943 }
4944 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4945 }
4946
4947 SmallString<128> BasePath(BaseInput);
4948 SmallString<128> ExternalPath("");
4949 StringRef BaseName;
4950
4951 // Dsymutil actions should use the full path.
4952 if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
4953 ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
4954 // We use posix style here because the tests (specifically
4955 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
4956 // even on Windows and if we don't then the similar test covering this
4957 // fails.
4958 llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
4959 llvm::sys::path::filename(BasePath));
4960 BaseName = ExternalPath;
4961 } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4962 BaseName = BasePath;
4963 else
4964 BaseName = llvm::sys::path::filename(BasePath);
4965
4966 // Determine what the derived output name should be.
4967 const char *NamedOutput;
4968
4969 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4970 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4971 // The /Fo or /o flag decides the object filename.
4972 StringRef Val =
4973 C.getArgs()
4974 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4975 ->getValue();
4976 NamedOutput =
4977 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4978 } else if (JA.getType() == types::TY_Image &&
4979 C.getArgs().hasArg(options::OPT__SLASH_Fe,
4980 options::OPT__SLASH_o)) {
4981 // The /Fe or /o flag names the linked file.
4982 StringRef Val =
4983 C.getArgs()
4984 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4985 ->getValue();
4986 NamedOutput =
4987 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4988 } else if (JA.getType() == types::TY_Image) {
4989 if (IsCLMode()) {
4990 // clang-cl uses BaseName for the executable name.
4991 NamedOutput =
4992 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4993 } else {
4994 SmallString<128> Output(getDefaultImageName());
4995 // HIP image for device compilation with -fno-gpu-rdc is per compilation
4996 // unit.
4997 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
4998 !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
4999 options::OPT_fno_gpu_rdc, false);
5000 if (IsHIPNoRDC) {
5001 Output = BaseName;
5002 llvm::sys::path::replace_extension(Output, "");
5003 }
5004 Output += OffloadingPrefix;
5005 if (MultipleArchs && !BoundArch.empty()) {
5006 Output += "-";
5007 Output.append(BoundArch);
5008 }
5009 if (IsHIPNoRDC)
5010 Output += ".out";
5011 NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5012 }
5013 } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5014 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5015 } else {
5016 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5017 assert(Suffix && "All types used for output should have a suffix.");
5018
5019 std::string::size_type End = std::string::npos;
5020 if (!types::appendSuffixForType(JA.getType()))
5021 End = BaseName.rfind('.');
5022 SmallString<128> Suffixed(BaseName.substr(0, End));
5023 Suffixed += OffloadingPrefix;
5024 if (MultipleArchs && !BoundArch.empty()) {
5025 Suffixed += "-";
5026 Suffixed.append(BoundArch);
5027 }
5028 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5029 // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5030 // optimized bitcode output.
5031 auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
5032 const llvm::opt::DerivedArgList &Args) {
5033 // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
5034 // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
5035 // phase.)
5036 return isa<CompileJobAction>(JA) &&
5037 JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5038 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5039 false);
5040 };
5041 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5042 (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5043 IsHIPRDCInCompilePhase(JA, C.getArgs())))
5044 Suffixed += ".tmp";
5045 Suffixed += '.';
5046 Suffixed += Suffix;
5047 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5048 }
5049
5050 // Prepend object file path if -save-temps=obj
5051 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
5052 JA.getType() != types::TY_PCH) {
5053 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5054 SmallString<128> TempPath(FinalOutput->getValue());
5055 llvm::sys::path::remove_filename(TempPath);
5056 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
5057 llvm::sys::path::append(TempPath, OutputFileName);
5058 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
5059 }
5060
5061 // If we're saving temps and the temp file conflicts with the input file,
5062 // then avoid overwriting input file.
5063 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
5064 bool SameFile = false;
5065 SmallString<256> Result;
5066 llvm::sys::fs::current_path(Result);
5067 llvm::sys::path::append(Result, BaseName);
5068 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
5069 // Must share the same path to conflict.
5070 if (SameFile) {
5071 StringRef Name = llvm::sys::path::filename(BaseInput);
5072 std::pair<StringRef, StringRef> Split = Name.split('.');
5073 std::string TmpName = GetTemporaryPath(
5074 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
5075 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5076 }
5077 }
5078
5079 // As an annoying special case, PCH generation doesn't strip the pathname.
5080 if (JA.getType() == types::TY_PCH && !IsCLMode()) {
5081 llvm::sys::path::remove_filename(BasePath);
5082 if (BasePath.empty())
5083 BasePath = NamedOutput;
5084 else
5085 llvm::sys::path::append(BasePath, NamedOutput);
5086 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
5087 } else {
5088 return C.addResultFile(NamedOutput, &JA);
5089 }
5090 }
5091
GetFilePath(StringRef Name,const ToolChain & TC) const5092 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
5093 // Search for Name in a list of paths.
5094 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
5095 -> llvm::Optional<std::string> {
5096 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5097 // attempting to use this prefix when looking for file paths.
5098 for (const auto &Dir : P) {
5099 if (Dir.empty())
5100 continue;
5101 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
5102 llvm::sys::path::append(P, Name);
5103 if (llvm::sys::fs::exists(Twine(P)))
5104 return std::string(P);
5105 }
5106 return None;
5107 };
5108
5109 if (auto P = SearchPaths(PrefixDirs))
5110 return *P;
5111
5112 SmallString<128> R(ResourceDir);
5113 llvm::sys::path::append(R, Name);
5114 if (llvm::sys::fs::exists(Twine(R)))
5115 return std::string(R.str());
5116
5117 SmallString<128> P(TC.getCompilerRTPath());
5118 llvm::sys::path::append(P, Name);
5119 if (llvm::sys::fs::exists(Twine(P)))
5120 return std::string(P.str());
5121
5122 SmallString<128> D(Dir);
5123 llvm::sys::path::append(D, "..", Name);
5124 if (llvm::sys::fs::exists(Twine(D)))
5125 return std::string(D.str());
5126
5127 if (auto P = SearchPaths(TC.getLibraryPaths()))
5128 return *P;
5129
5130 if (auto P = SearchPaths(TC.getFilePaths()))
5131 return *P;
5132
5133 return std::string(Name);
5134 }
5135
generatePrefixedToolNames(StringRef Tool,const ToolChain & TC,SmallVectorImpl<std::string> & Names) const5136 void Driver::generatePrefixedToolNames(
5137 StringRef Tool, const ToolChain &TC,
5138 SmallVectorImpl<std::string> &Names) const {
5139 // FIXME: Needs a better variable than TargetTriple
5140 Names.emplace_back((TargetTriple + "-" + Tool).str());
5141 Names.emplace_back(Tool);
5142 }
5143
ScanDirForExecutable(SmallString<128> & Dir,StringRef Name)5144 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
5145 llvm::sys::path::append(Dir, Name);
5146 if (llvm::sys::fs::can_execute(Twine(Dir)))
5147 return true;
5148 llvm::sys::path::remove_filename(Dir);
5149 return false;
5150 }
5151
GetProgramPath(StringRef Name,const ToolChain & TC) const5152 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
5153 SmallVector<std::string, 2> TargetSpecificExecutables;
5154 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
5155
5156 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5157 // attempting to use this prefix when looking for program paths.
5158 for (const auto &PrefixDir : PrefixDirs) {
5159 if (llvm::sys::fs::is_directory(PrefixDir)) {
5160 SmallString<128> P(PrefixDir);
5161 if (ScanDirForExecutable(P, Name))
5162 return std::string(P.str());
5163 } else {
5164 SmallString<128> P((PrefixDir + Name).str());
5165 if (llvm::sys::fs::can_execute(Twine(P)))
5166 return std::string(P.str());
5167 }
5168 }
5169
5170 const ToolChain::path_list &List = TC.getProgramPaths();
5171 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
5172 // For each possible name of the tool look for it in
5173 // program paths first, then the path.
5174 // Higher priority names will be first, meaning that
5175 // a higher priority name in the path will be found
5176 // instead of a lower priority name in the program path.
5177 // E.g. <triple>-gcc on the path will be found instead
5178 // of gcc in the program path
5179 for (const auto &Path : List) {
5180 SmallString<128> P(Path);
5181 if (ScanDirForExecutable(P, TargetSpecificExecutable))
5182 return std::string(P.str());
5183 }
5184
5185 // Fall back to the path
5186 if (llvm::ErrorOr<std::string> P =
5187 llvm::sys::findProgramByName(TargetSpecificExecutable))
5188 return *P;
5189 }
5190
5191 return std::string(Name);
5192 }
5193
GetTemporaryPath(StringRef Prefix,StringRef Suffix) const5194 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
5195 SmallString<128> Path;
5196 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
5197 if (EC) {
5198 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5199 return "";
5200 }
5201
5202 return std::string(Path.str());
5203 }
5204
GetTemporaryDirectory(StringRef Prefix) const5205 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
5206 SmallString<128> Path;
5207 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
5208 if (EC) {
5209 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5210 return "";
5211 }
5212
5213 return std::string(Path.str());
5214 }
5215
GetClPchPath(Compilation & C,StringRef BaseName) const5216 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
5217 SmallString<128> Output;
5218 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
5219 // FIXME: If anybody needs it, implement this obscure rule:
5220 // "If you specify a directory without a file name, the default file name
5221 // is VCx0.pch., where x is the major version of Visual C++ in use."
5222 Output = FpArg->getValue();
5223
5224 // "If you do not specify an extension as part of the path name, an
5225 // extension of .pch is assumed. "
5226 if (!llvm::sys::path::has_extension(Output))
5227 Output += ".pch";
5228 } else {
5229 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
5230 Output = YcArg->getValue();
5231 if (Output.empty())
5232 Output = BaseName;
5233 llvm::sys::path::replace_extension(Output, ".pch");
5234 }
5235 return std::string(Output.str());
5236 }
5237
getToolChain(const ArgList & Args,const llvm::Triple & Target) const5238 const ToolChain &Driver::getToolChain(const ArgList &Args,
5239 const llvm::Triple &Target) const {
5240
5241 auto &TC = ToolChains[Target.str()];
5242 if (!TC) {
5243 switch (Target.getOS()) {
5244 case llvm::Triple::AIX:
5245 TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
5246 break;
5247 case llvm::Triple::Haiku:
5248 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
5249 break;
5250 case llvm::Triple::Ananas:
5251 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
5252 break;
5253 case llvm::Triple::CloudABI:
5254 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
5255 break;
5256 case llvm::Triple::Darwin:
5257 case llvm::Triple::MacOSX:
5258 case llvm::Triple::IOS:
5259 case llvm::Triple::TvOS:
5260 case llvm::Triple::WatchOS:
5261 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
5262 break;
5263 case llvm::Triple::DragonFly:
5264 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
5265 break;
5266 case llvm::Triple::OpenBSD:
5267 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
5268 break;
5269 case llvm::Triple::NetBSD:
5270 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
5271 break;
5272 case llvm::Triple::FreeBSD:
5273 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
5274 break;
5275 case llvm::Triple::Minix:
5276 TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
5277 break;
5278 case llvm::Triple::Linux:
5279 case llvm::Triple::ELFIAMCU:
5280 if (Target.getArch() == llvm::Triple::hexagon)
5281 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5282 Args);
5283 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
5284 !Target.hasEnvironment())
5285 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
5286 Args);
5287 else if (Target.isPPC())
5288 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
5289 Args);
5290 else if (Target.getArch() == llvm::Triple::ve)
5291 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5292
5293 else
5294 TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
5295 break;
5296 case llvm::Triple::NaCl:
5297 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
5298 break;
5299 case llvm::Triple::Fuchsia:
5300 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
5301 break;
5302 case llvm::Triple::Solaris:
5303 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
5304 break;
5305 case llvm::Triple::AMDHSA:
5306 TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
5307 break;
5308 case llvm::Triple::AMDPAL:
5309 case llvm::Triple::Mesa3D:
5310 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
5311 break;
5312 case llvm::Triple::Win32:
5313 switch (Target.getEnvironment()) {
5314 default:
5315 if (Target.isOSBinFormatELF())
5316 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5317 else if (Target.isOSBinFormatMachO())
5318 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5319 else
5320 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5321 break;
5322 case llvm::Triple::GNU:
5323 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
5324 break;
5325 case llvm::Triple::Itanium:
5326 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
5327 Args);
5328 break;
5329 case llvm::Triple::MSVC:
5330 case llvm::Triple::UnknownEnvironment:
5331 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
5332 .startswith_insensitive("bfd"))
5333 TC = std::make_unique<toolchains::CrossWindowsToolChain>(
5334 *this, Target, Args);
5335 else
5336 TC =
5337 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
5338 break;
5339 }
5340 break;
5341 case llvm::Triple::PS4:
5342 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
5343 break;
5344 case llvm::Triple::Contiki:
5345 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
5346 break;
5347 case llvm::Triple::Hurd:
5348 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
5349 break;
5350 case llvm::Triple::ZOS:
5351 TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
5352 break;
5353 default:
5354 // Of these targets, Hexagon is the only one that might have
5355 // an OS of Linux, in which case it got handled above already.
5356 switch (Target.getArch()) {
5357 case llvm::Triple::tce:
5358 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
5359 break;
5360 case llvm::Triple::tcele:
5361 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
5362 break;
5363 case llvm::Triple::hexagon:
5364 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5365 Args);
5366 break;
5367 case llvm::Triple::lanai:
5368 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
5369 break;
5370 case llvm::Triple::xcore:
5371 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
5372 break;
5373 case llvm::Triple::wasm32:
5374 case llvm::Triple::wasm64:
5375 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
5376 break;
5377 case llvm::Triple::avr:
5378 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
5379 break;
5380 case llvm::Triple::msp430:
5381 TC =
5382 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
5383 break;
5384 case llvm::Triple::riscv32:
5385 case llvm::Triple::riscv64:
5386 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
5387 TC =
5388 std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
5389 else
5390 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5391 break;
5392 case llvm::Triple::ve:
5393 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5394 break;
5395 default:
5396 if (Target.getVendor() == llvm::Triple::Myriad)
5397 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
5398 Args);
5399 else if (toolchains::BareMetal::handlesTarget(Target))
5400 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5401 else if (Target.isOSBinFormatELF())
5402 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5403 else if (Target.isOSBinFormatMachO())
5404 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5405 else
5406 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5407 }
5408 }
5409 }
5410
5411 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
5412 // compiles always need two toolchains, the CUDA toolchain and the host
5413 // toolchain. So the only valid way to create a CUDA toolchain is via
5414 // CreateOffloadingDeviceToolChains.
5415
5416 return *TC;
5417 }
5418
ShouldUseClangCompiler(const JobAction & JA) const5419 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
5420 // Say "no" if there is not exactly one input of a type clang understands.
5421 if (JA.size() != 1 ||
5422 !types::isAcceptedByClang((*JA.input_begin())->getType()))
5423 return false;
5424
5425 // And say "no" if this is not a kind of action clang understands.
5426 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
5427 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5428 return false;
5429
5430 return true;
5431 }
5432
ShouldUseFlangCompiler(const JobAction & JA) const5433 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
5434 // Say "no" if there is not exactly one input of a type flang understands.
5435 if (JA.size() != 1 ||
5436 !types::isFortran((*JA.input_begin())->getType()))
5437 return false;
5438
5439 // And say "no" if this is not a kind of action flang understands.
5440 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5441 return false;
5442
5443 return true;
5444 }
5445
ShouldEmitStaticLibrary(const ArgList & Args) const5446 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
5447 // Only emit static library if the flag is set explicitly.
5448 if (Args.hasArg(options::OPT_emit_static_lib))
5449 return true;
5450 return false;
5451 }
5452
5453 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
5454 /// grouped values as integers. Numbers which are not provided are set to 0.
5455 ///
5456 /// \return True if the entire string was parsed (9.2), or all groups were
5457 /// parsed (10.3.5extrastuff).
GetReleaseVersion(StringRef Str,unsigned & Major,unsigned & Minor,unsigned & Micro,bool & HadExtra)5458 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
5459 unsigned &Micro, bool &HadExtra) {
5460 HadExtra = false;
5461
5462 Major = Minor = Micro = 0;
5463 if (Str.empty())
5464 return false;
5465
5466 if (Str.consumeInteger(10, Major))
5467 return false;
5468 if (Str.empty())
5469 return true;
5470 if (Str[0] != '.')
5471 return false;
5472
5473 Str = Str.drop_front(1);
5474
5475 if (Str.consumeInteger(10, Minor))
5476 return false;
5477 if (Str.empty())
5478 return true;
5479 if (Str[0] != '.')
5480 return false;
5481 Str = Str.drop_front(1);
5482
5483 if (Str.consumeInteger(10, Micro))
5484 return false;
5485 if (!Str.empty())
5486 HadExtra = true;
5487 return true;
5488 }
5489
5490 /// Parse digits from a string \p Str and fulfill \p Digits with
5491 /// the parsed numbers. This method assumes that the max number of
5492 /// digits to look for is equal to Digits.size().
5493 ///
5494 /// \return True if the entire string was parsed and there are
5495 /// no extra characters remaining at the end.
GetReleaseVersion(StringRef Str,MutableArrayRef<unsigned> Digits)5496 bool Driver::GetReleaseVersion(StringRef Str,
5497 MutableArrayRef<unsigned> Digits) {
5498 if (Str.empty())
5499 return false;
5500
5501 unsigned CurDigit = 0;
5502 while (CurDigit < Digits.size()) {
5503 unsigned Digit;
5504 if (Str.consumeInteger(10, Digit))
5505 return false;
5506 Digits[CurDigit] = Digit;
5507 if (Str.empty())
5508 return true;
5509 if (Str[0] != '.')
5510 return false;
5511 Str = Str.drop_front(1);
5512 CurDigit++;
5513 }
5514
5515 // More digits than requested, bail out...
5516 return false;
5517 }
5518
5519 std::pair<unsigned, unsigned>
getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const5520 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
5521 unsigned IncludedFlagsBitmask = 0;
5522 unsigned ExcludedFlagsBitmask = options::NoDriverOption;
5523
5524 if (IsClCompatMode) {
5525 // Include CL and Core options.
5526 IncludedFlagsBitmask |= options::CLOption;
5527 IncludedFlagsBitmask |= options::CoreOption;
5528 } else {
5529 ExcludedFlagsBitmask |= options::CLOption;
5530 }
5531
5532 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
5533 }
5534
isOptimizationLevelFast(const ArgList & Args)5535 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
5536 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
5537 }
5538
willEmitRemarks(const ArgList & Args)5539 bool clang::driver::willEmitRemarks(const ArgList &Args) {
5540 // -fsave-optimization-record enables it.
5541 if (Args.hasFlag(options::OPT_fsave_optimization_record,
5542 options::OPT_fno_save_optimization_record, false))
5543 return true;
5544
5545 // -fsave-optimization-record=<format> enables it as well.
5546 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
5547 options::OPT_fno_save_optimization_record, false))
5548 return true;
5549
5550 // -foptimization-record-file alone enables it too.
5551 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
5552 options::OPT_fno_save_optimization_record, false))
5553 return true;
5554
5555 // -foptimization-record-passes alone enables it too.
5556 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
5557 options::OPT_fno_save_optimization_record, false))
5558 return true;
5559 return false;
5560 }
5561
getDriverMode(StringRef ProgName,ArrayRef<const char * > Args)5562 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
5563 ArrayRef<const char *> Args) {
5564 static const std::string OptName =
5565 getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
5566 llvm::StringRef Opt;
5567 for (StringRef Arg : Args) {
5568 if (!Arg.startswith(OptName))
5569 continue;
5570 Opt = Arg;
5571 }
5572 if (Opt.empty())
5573 Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
5574 return Opt.consume_front(OptName) ? Opt : "";
5575 }
5576
IsClangCL(StringRef DriverMode)5577 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }
5578